
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, JUNE 2017 1

Model-Based Estimation of the Communication
Cost of Hybrid Data-Parallel Applications on

Heterogeneous Clusters
Juan-Antonio Rico-Gallego, Alexey L. Lastovetsky, Member, IEEE, and Juan-Carlos Dı́az-Martı́n

Abstract—Heterogeneous systems composed of CPUs and accelerators sharing communication channels of different performance
are getting mainstream in HPC but, at the same time, they show a complexity that makes it difficult to optimize the deployment of a
data parallel application. Recent analytical tools such as Functional Performance Models, combined with advanced partitioning
algorithms, manage to achieve a balanced configuration by distributing the workload unevenly, according to the performance of the
different processing units. Unfortunately, such uneven distribution of the computation load leads to communication unbalances that,
very often, render worthless the previous workload balancing efforts. Finding the optimal communication scheme without expensive
testing on the executing platform requires an analytical approach to the estimation of the communication cost of different configurations
of the application. With this goal in mind, we propose and discuss an extension of the τ–Lop communication performance model to
cover heterogeneous architectures. In order to provide a quantitative assessment of this extended model, we conduct experiments with
two representative computational kernels, the SUMMA algorithm and the 2D wave equation solver. The τ–Lop predictions are
compared against the HLogGP model and the observed costs for a variety of configurations, hardware resources and problem sizes.

Index Terms—Communication Performance Modeling, Hybrid Algorithms, Performance Analysis, Functional Performance Models,
Heterogeneous Platforms.

F

1 MOTIVATION AND GOALS

THE efficient increase of performance of modern HPC
systems, measured in terms of both cost and energy

consumption, is the main cause for high performance
computing becoming heterogeneous. Systems composed
of nodes with multi-core processors and accelerators, and
communicating through channels of different capacity, are
getting mainstream. Data parallel applications running on
these platforms, known as hybrid applications, distribute data
between a set of processes that run on processors of different
types and hence with distinct performance. We know this
set as a process layout. It is described in a file with the num-
ber, type and mapping of the processes onto the platform
processors. Fig. 1 shows an example.

A hybrid application typically runs on top of a set of
one or more kernels. A kernel is a recurrent representative
piece of code, such as matrix multiplication or Fourier trans-
form, which usually progresses by repeating two stages:
computation and communication. To achieve optimal per-
formance, a hybrid application unevenly distributes the
kernel workload between its processes, thus avoiding faster
processes to wait for slower processes at synchronization or
communication points. Though current research on compu-
tation performance models has disregarded communication
costs, the fact is that they are significant and such non-
uniform distribution has an influence on them. The reason
is twofold. First, non-uniform distribution introduces high
traffic imbalances, because different processes communicate

Juan-Antonio Rico-Gallego and Juan-Carlos Dı́az-Martı́n are with the Uni-
versity of Extremadura, Avd. Universidad s/n, 10003, Cáceres, Spain.
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Fig. 1: Process layout of eight processes p = {p0, p1, . . . , p7}
in a machine of two nodes of different types with GPUs.
GPU processes use a dedicated core for communication.

different volumes of data. Second, the mapping of processes
to the processors of the platform determines their communi-
cation channels. These channels have different features that
significantly impact on the global communication cost. The
pair composed by the distribution of the kernel workload
among the processes, and by the mapping of these processes
on the platform is known as a configuration. The commu-
nication cost of a hybrid application will depend on the
chosen configuration. The point is that the configuration
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achieving optimal computation performance may suffer an
adverse communication pattern that ruins the previous load
balancing efforts. It is this problem that motivates this work.

Especially for large multi-kernel applications, the esti-
mation of the cost of communication is usually carried out
through a battery of thorough tests of a shortened version of
the target application (for instance, individual kernels) on a
subset of the target platform. This practice has two main
drawbacks: the use of valuable computational resources
for testing, and the difficulty (often, the impossibility) of
correctly extrapolating estimations from such twofold sim-
plification. This scenario calls for a fully analytic approach,
shown in Fig. 2, that adds a communication performance model
to the computation performance model used to determine load
balanced configurations. Needless to say, only this stand-
point avoids the long, difficult and expensive experimental
testing, allowing quick comparisons of multiple settings to,
eventually, find out that of the optimal overall cost.

Indeed, the cornerstone of this approach is an appro-
priate model. Our proposal is an extension of τ–Lop, a
communication performance model originally designed to
predict the cost of collective operations in homogeneous
multi-core clusters. The main contributions of this paper are:

C1. An extension of the τ–Lop model for estimation of
the communication cost of data-parallel application
on hybrid heterogeneous platforms.

C2. Experimental validation of the accuracy of the ex-
tended model using two data parallel kernels with
opposite features, the SUMMA matrix multiplica-
tion, with a high communication to computation
ratio, and a finite difference solver of the 2D wave
equation, much less demanding in terms of commu-
nication.

C3. An automatic tool for solving the formal model ex-
pressions named τ–Lop Library. Its description and
examples of the use are available as supplementary
material.

Exhibiting a remarkable economy of parameters, the
model predicts the communication cost with good accuracy,
robustness and scalability (within the scale of the experi-
mental platform). In our view, there is no a priori reason
that could hinder the extrapolation of the experimental
results to other applications. The principles of typical data
parallel applications such as FFT or molecular dynamics are
likewise anchored to a 2D or 3D matrix partitioned among
P processes.

The rest of the paper is structured as follows. Section 2
reviews the field of performance optimization in heteroge-
neous platforms, focusing on computational load balancing.
Section 3 introduces the τ–Lop model and extends it in
order to cover heterogeneous platforms. Section 4 describes
the kernels used to evaluate τ–Lop. Section 5 presents the
evaluation method and its results, and Section 6 concludes.

2 RELATED WORK

Two main approaches face the problem of optimizing the
performance of applications on heterogeneous platforms.
The first characterizes the application as a graph and applies
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Fig. 2: Fully analytical approach to performance modeling
of hybrid data-parallel applications. The partition table de-
scribes the coordinates (X and Y ) and shape (W idth and
Height) of the per-process data rectangle. The configuration
is the union of the partition and layout tables.

techniques of graph partitioning. Though not directly con-
nected with the paper, it is briefly covered here for the sake
of completeness and bringing a broader perspective. The
second, born in the very field of heterogeneous computing,
characterizes the application processes with a computation
performance model and distributes the computation among
them according to their performance.

Graph partitioning is a technique extensively studied.
The application is modeled as a graph. Each vertex repre-
sents a computational task, and edges represent the com-
munication between the vertices. The graph is partitioned
into subsets, and each subset is assigned to a process. The
partitioning objective is to minimize the number of edges
connecting the subsets, hence minimizing the communi-
cation. Methods to accomplish the partition problem are
generally classified in combinational [1, 2], spectral [3, 4],
multilevel [5, 6] and geometric [7, 8], with a large number of
algorithms in the literature. This extensive amount of work
contrasts, to the best of our knowledge, with its actual use in
real-life applications. There exist several tools implementing
graph partition algorithms such as METIS [9], JOSTLE [10]
and SCOTCH [11]. In addition to the graph partitioning
problem, there is an issue of mapping the resultant graph
to the underlying non-homogeneous network. Pellegrini
discusses different methods for solving this problem in [12].
The matching of the communication pattern of an applica-
tion, represented by a partitioned graph, to the underlying
hierarchical network, represented as a tree, is accomplished
by the Jeannot et al. [13] TreeMatch algorithm.

The second, more recent approach, deals with determin-
ing a balanced distribution of the kernel workload among a
pre-specified set of processes on a heterogeneous platform
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Fig. 3: Outline of the FuPerMod-based tool for 2D data
partitioning.

(upper part of Fig. 2) ignoring, at its current state of develop-
ment, communication costs. As pointed out, the automatic
determination of the communication cost of such balanced
workload is the focus of this work (lower part of Fig. 2).

The computational load balancing of a hybrid applica-
tion has been well settled in the literature. Its relevant topics,
notwithstanding, need to be recalled here in some detail.
Formulated as a data partitioning problem [14], it departs
from n independent computational units of equal size. A
computational unit is kernel dependent. In a matrix mul-
tiplication, for instance, the computational unit could be the
calculation of an element or, more commonly, a small subre-
gion of the resultant matrix. The goal is to distribute theseN
computational units among the set p = {p0, p1, . . . , pP−1}
of P (P < N ) processes in the platform (as those of Fig. 1),
in a way that the workload is best balanced. The processes
are characterized by the set s = {s0, s1, . . . , sP−1}, where
si is the speed of pi, the number of computational units pi
performs per time unit. Such modeling of the performance
of a process is referred as Constant Performance Model. Lets
suppose n = {n0, n1, . . . , nP−1}, with ni the number of
computational units assigned to pi, so N =

∑P−1
i=0 ni. Each

process pi has an execution time ti = ni

si
. The execution

time of the application as a whole is given by the slower
process as maxP−1i=0 ti. An optimal workload distribution
minimizes this value. Beaumont et al [15] develops an algo-
rithm for achieving optimal load balancing using a Constant
Performance Model and applies it to the matrix multiplication
algorithm in the ScaLAPACK library [16].

A challenging point is to determine si. It depends on so
many factors of the platform that representing it as a mere
constant results simplistic and inaccurate. For instance, a
process can become much slower if its assigned data exceeds
the cache size. A Functional Performance Model [17] represents
the speed of a process as a function of its task size, a set of
parameters characterizing the amount of its assigned data.
As an example, the task size of the matrix multiplication of
two square matrices of size x × x is characterized by x. It
defines the amount of data stored as 3× x2 and the number
of operations to do as (x+ (x− 1))× x2 ≈ 2x3. The speed
of pi is now a real function of the task size si(x).

An algorithm achieving optimal load balancing ni

si(x)
≈

const is proposed in [17]. FuPerMod [18, 19] is a software

tool that, using this algorithm, implements the whole pro-
cedure of workload partition and distribution for a set of
processes running on a heterogeneous platform. The FPM
of pi is a table of real values representing si in executing
a particular kernel for different task sizes. Fig. 3 shows
the FuPerMod functionality. First, FuPerMod generates the
per-process FPM executing a benchmark code provided by
the user. The benchmark code has to be as similar to the
kernel code as possible. The user also provides a text file
describing the layout of the processes, that is, the execution
node and its processor cores or GPU. Next, following with
the matrix multiplication example, a 2D partitioning of the
matrices is generated from all the FPMs [20, 21, 22] assigning
a rectangle of data in the matrix to each process.

Turning to the communication issue, a formal model
can be used to estimate the cost of the communications
of a hybrid application. To the best of our knowledge,
only a limited number of analytic models have been devel-
oped to predict the communication cost on heterogeneous
platforms. HLogGP [23] is a model based on LogGP [24]
that takes into account both the processor and network
heterogeneity. The scalar parameters of the homogeneous
LogGP model are expanded to represent the values of the P
processors as vectors of P components, and the parameters
involving links of a pair of processors are expanded to
matrices of P × P values. HLogGP provides a method-
ology to measure the parameters based on simple micro-
benchmarks. The model estimations are validated for a
single master/worker application in a small cluster. LMO
[25] is another model designed for heterogeneous platforms.
It is based on the Hockney model [26], a presumed less accu-
rate model than LogGP, and assumes an Ethernet network
without contention. Nevertheless, it has interesting features.
LMO defines the cost of a point-to-point message through a
set of parameters representing the fixed and variable costs
related to the specific processor and the cost derived from
the network. It predicts the communication cost of point-
to-point, one-to-many (scatter and gather) and broadcasting
operations in a switched Ethernet heterogeneous cluster. A
disadvantage of these models is the amount of parameters
to be measured, which tends to P 2 in a platform with P
processors. Despite their interest, they have not proven their
accuracy and utility in modeling real applications.

Ogata et al. [27] propose a model for optimizing an FFT
library on a GPU/CPU heterogeneous platform. It divides
the FFT computation into subsets and predicts the execution
time of each step for a particular GPU/CPU combination.
The model is interesting because it considers not just com-
puting time, but also the cost of data transfers between
CPU and GPU, estimated by a simple linear communication
performance model. Chan et al. [28] propose a performance
model that predicts execution times of iterative mesh-based
applications running on heterogeneous multi-core clusters.
The execution time for a process includes the communica-
tion time. Both jobs share the feature that their modeling
domain is specific, reduced to a particular case, in contrast
to τ-Lop, LMO and HLogGP, which take a general approach.
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3 THE τ–LOP MODEL AND ITS EXTENSION FOR
HETEROGENEOUS COMMUNICATION MODELING

τ–Lop [29, 30] is a middleware parameterized communi-
cation performance model aimed to represent and predict
the cost of parallel algorithms in multi-core clusters. It
represents a point-to-point message transmission between
two processes as a sequence of transfers progressing through
a communication channel. The most simple message trans-
mission in the shared memory channel (c = 0)1 is done
through an intermediate buffer placed in a shared mem-
ory area. This is the common mechanism adopted by the
widespread MPI implementations MPICH and Open MPI
for transferring small messages. If m is the size of the
message, the transmission starts after a time represented by
the overhead parameter oc(m), defined as the time elapsed
since the invocation of a message transmission operation
until the beginning of data injection into the channel. The
transmission requires two transfers, with a total cost

T 0
p2p(m) = o0(m) + 2L0(m, 1) (1)

The first transfer copies the data to the intermediate
buffer, with cost L0(m, 1). When data is ready in the in-
termediate buffer, the receiver starts the second transfer to
its user buffer. The parameter transfer time L is the cost of
a transfer and is represented as Lc(m, τ). As the transfer
may flow concurrently with others, its cost depends not
only on the message size m, but also on the number τ of
such concurrent transfers.

In the network channel (c = 1), τ–Lop follows the same
scheme by Cameron et al. in [31], that considers a simple
message transmission as composed of three transfers: first,
from the sender buffer to the internal buffer of the NIC
in the sender node, second, from here to the NIC in the
receiver node, and last, from here to the receiver buffer. τ–
Lop considers the first and third transfers as shared memory
transfers, with cost L0, whereas the second transfer pro-
gresses through the network, with cost L1. Thus, the cost of
a point-to-point transmission through channel c1 becomes

T 1
p2p(m) = o1(m) + 2L0(m, 1) + L1(m, 1) (2)

Nevertheless, the number of transfers composing a net-
work transmission depends on the network technology. For
instance, some networks, e.g. Infiniband, allow the direct
transfer to the user buffer of the receiver using a Remote
Direct Memory Access mechanism [32], hence:

T 1
p2p(m) = o1(m) + L1(m, 1) (3)

The main distinguishing feature of τ–Lop is its ability
to capture the fact that the contention for the channel
increases the cost of each individual transfer. This effect
in both shared memory and networks is deeply studied
in [29], [30] and [33]. Briefly exposed, τ–Lop also repre-
sents the cost of A concurrent transfers with the ‖ oper-
ator, so that A ‖Lc(m, 1) = Lc(m,A) and more gener-
ally A ‖Lc(m, τ) = Lc(m,A × τ). The operator is then
extended so that A ‖T c(m) represents the cost of A con-
current transmissions of a message of size m contending

1. The communication channels in a system are identified by a
number c starting from 0. Zero is the number usually assigned to the
channel with the best overall performance.
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Fig. 4: An Open MPI Binomial Tree with P = 16 processes.

for the channel c. To be evaluable, expressions involv-
ing transmissions must be reduced to expressions of just
transfer times and overheads. For instance 2 ‖T 0

p2p(m) =
2 ‖
[
o0(m) + 2L0(m, 1)

]
= o0(m)+2L0(m, 2). Note that the

overhead cost is attributable to the processor, a non-shared
resource, and hence not affected by ‖.

The definition of L enforces the restriction that the cost
of A concurrent transfers will be between the cost of a
single transfer and that of A consecutive ones, that is,
L(m, 1) ≤ L(m,A) ≤ A×L(m, 1), an expression that can be
generalized as L(m, τ) ≤ L(m,A×τ) ≤ A×L(m, τ). In ad-
dition, the transfer time cost grows linearly with the increase
of the message size, and hence L(A×m, τ) = A×L(m, τ).
Once the τ–Lop parameters have been calculated, expres-
sions (1)-(3) are applied to estimate the cost of transmissions.

The concept of concurrent transmissions, those sharing the
channel, allows τ–Lop to better represent collective opera-
tions. In fact, τ–Lop was initially conceived to model more
accurately the cost of collectives on homogeneous systems.
In general, a collective operation executes in a sequence of
stages, where the number of involved processes and the
message size may change along the stages. For instance,
the Binomial Tree algorithm used in the MPI Bcast collective,
represented in Fig. 4, runs in dlog2 P e stages, the height of
the tree. The cost of the operation is given by:

ΘBin(m) =

dlog2(P )e−1∑
i=0

[
2i ‖T c(m)

]
(4)

In the first stage, the rank root sends the message of size
m to the rank root+2i. The algorithm recursively continues
with both processes acting as roots of sub-trees with P/2
processes. The number of sending processes doubles in each
stage, whereas the message size remains constant. The key
point, however, is that τ–Lop clearly states how contention
grows exponentially in each stage. Formula (4) gives a good
insight into the τ–Lop expressive power, particularly at the
transmission level.

Regular τ–Lop analyses in homogeneous platforms lead
to tractable cost expressions in the forms n ‖T c(m) and
T c(m1) + T c(m2). Heterogeneous environments, however,
give place to more complex, even intricate, cost formulas,
as those in the form T c1(m1) ‖T c2(m2) for different c1 and
c2 channels. The formal development of such expressions
causes an impasse in the decomposition path, whose break-
ing imposes an extension of τ-Lop. Such extension consists
of the following three assumptions, illustrated in Fig. 5.
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Fig. 5: Graphic representation of the three assumptions
defining the τ–Lop extension for heterogeneous platforms.

A1. A sequence of transmissions progressing through the
same channel has the cost of a single transmission of
a message of aggregate size:

A ‖T c(m1) +A ‖T c(m2) = A ‖T c(m1 +m2)

The expression assumes the error of disregarding the
overhead of second and subsequent transmissions,
so its application can be canceled for small messages,
where overhead is a significant term.

A2. Two message transmissions through the same com-
munication channel progress concurrently during the
transmission time of the shorter one:

T c(m1) ‖T c(m2)= 2 ‖T c(m1)+T c(m2−m1),m2≥m1

A3. Two transmissions progressing through different
communication channels do not interfere. The total
cost is the maximum of the individual costs:

T c1(m1) ‖T c2(m2) = max{T c1(m1), T c2(m2)}

Once the extension has been stated, we show next an
example of use. Expression (5) appears quite often for het-
erogeneous kernels, as we will see in the next section.

[T c0(ma) + T c1(mb)] ‖ [T c0(mc) + T c1(md)] (5)

It models the concurrence of two sequences of transmis-
sions through different communication channels, and leads
to different developments depending on the size of the
messages. The most simple case happens when ma = mc

and mb = md. Then, the transmissions through the channel
c0 progress concurrently, as the c1 transmissions do, and
hence we have two concurrent pairs of transmissions on
which we can apply assumption A2 as:

pi ma mb

pj mdmc

[Tc (ma)+Tc (mb)] || [Tc (mc)+Tc (md)]0 1 0 1

t0 t1t1

time

t2 t3 t4

Fig. 6: Graphic representation of τ–Lop modeling of a com-
plex expression commonly found in heterogeneous plat-
forms. Each process transmits a sequence of two messages
through two different communication channels c0 and c1.
Transmissions have different costs.

[T c0(ma) ‖T c0(mc)] + [T c1(mb) ‖T
c1(md)]

= 2 ‖T c0(ma) + 2 ‖T c1(mb)

Fig. 6 illustrates a more general case of (5), where mc ≥
ma, mb ≥ md, and T c1(mb) ≥ T c0(mc−ma). At time t0 we
have two concurrent transmissions of messages ma and mc

through the same channel c0. By A2, (5) becomes

2 ‖T c0(ma) + (T c1(mb) ‖ [T c0(mc −ma) + T c1(md)]) . (6)

The first term 2 ‖T c0(ma) represents the cost be-
tween times t0 and t1. The second term begins with the
cost of two transmissions starting at time t1 progressing
through different channels, with individual costs T c1(mb)
and T c0(mc − ma). Applying A3 we have a joint cost
max{T c1(mb), T

c0(mc − ma)}, which is T c1(mb) by hy-
pothesis. In other words, T c0(mc −ma) drops out from (6),
resulting in 2 ‖T c0(ma) + [T c1(mb) ‖T c1(md)], where we
have two transmissions that progress concurrently through
c1. By applying A2 to the second term, (5) finally becomes

2 ‖T c0(ma) + 2 ‖T c1(md) + T c1(mb −md). (7)

4 MODELING REAL COMMON KERNELS

To test the abilities of the τ–Lop extensions, we have hy-
bridized two data-parallel kernels of rather opposite fea-
tures, namely the SUMMA matrix multiplication algorithm,
with a high communication to computation ratio, and a
finite difference solver of the 2D wave equation, much less
demanding in terms of communication load.

4.1 The SUMMA Algorithm
The Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [34] is a data-parallel kernel that is present in
many scientific applications. It can be found, for example,
in the linear algebra ScaLAPACK library. This subsection
discusses its τ–Lop cost as a hybrid case study.

SUMMA involves a set of processes that cooperatively
compute the dense matrix multiplication C = A × B. For
simplicity, square matrices are supposed. The elements of
the matrices are grouped into blocks of size b×b. The size of
the matrices is thenN = N×N blocks. The block is the unit
of computation. Let us first consider a homogeneous system.
Fig. 7 shows an example for P = 16 processes. The blocks
are distributed evenly between the processes following a 2D
arrangement, hence balancing both the computational load
and the communication volume of each process. SUMMA
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Fig. 7: Partition of the matrix multiplication SUMMA algorithm in a homogeneous platform between P = 16 processes. A
rectangle of 6 × 6 blocks is assigned to each process. The kth iteration is shown. Processes with blocks in the pivot block
column (pbc) of matrix A (p1, p5, p9 and p13) and in the pivot block row (pbr) of B (p4, p5, p6 and p7) transmit their blocks
to the rest. For instance, in the iteration showed k, process p5 sends its part of the pbc to the processes in the same row (p4,
p6 and p7), and then it sends its part of the pbr to the processes in the same column (p1, p9 and p13).

executes in N iterations. A column and a row of blocks
traverse the matrices A and B respectively with each itera-
tion, from k = 0 to N − 1. They are called the pivot block
column (pbc) and pivot block row (pbr). In each iteration k,
the processes compute partial results for all of their assigned
blocks of C so that ci j becomes ci j + ai k × bk j . To this end,
each process has to receive the k-th column block aik of
A and the k-th row block bkj of B. After N iterations, each
block of matrix C will have the value ci j =

∑N−1
k=0 ai k×bk j .

Thus, each iteration k is composed of three stages2, namely
(I) the processes owning the k-th pbc of the matrix A send
the blocks to the processes in the same row, (II) the processes
owning the k-th pbr of the matrix B send the blocks to
the processes in the same column, and (III) each process
pi updates the blocks in its assigned rectangle of matrix C .

In heterogeneous platforms, the number of blocks as-
signed to each process depends on its speed. Hence, the size
of the rectangles is not homogeneous, and the communica-
tion pattern changes. Fig. 8 shows an example. Following
the 2D partitioning algorithm by Beaumont et al. in [36] (see
Fig. 3 ), the processes are arranged in columns. Next the
cost Θ(80) of the iteration k = 80 is modeled using τ-Lop.
Two computing nodes are considered, and hence, two com-
munication channels, shared memory (c = 0) and network
(c = 1). The cost is modeled under the assumption that all
processes start the communication phase of the iteration at
the same time. Note that in the iteration 80 the blocks of the
pbc are owned and hence sent by processes p1 and p4. Look-
ing carefully at Fig. 8 we can appreciate that p1, for instance,
sends 134 blocks to p0. According to it and to assumption
A1, the cost of the transmissions of p1 is T 0(134) +T 1(158).
Similarly, that of p4 is T 0(116) + T 1(104). The total cost,
taking into account the simultaneity of the communications
in the rows, is

(
T 0(134) + T 1(158)

)
‖
(
T 0(116) + T 1(104)

)
,

which fits the pattern of expression (5), hence becoming(
T 0(134) ‖T 0(116)

)
+
(
T 1(158) ‖T 1(104)

)
. Finally, by ap-

plying assumption A2, we arrive to the following cost:

2. The communication performance can be improved using collective
and non-blocking communication operations, allowing the overlapping
of communication and computation. Other enhancements have been
proposed, as the HSUMMA algorithm by Hasanov et al. [35], which
proposes a hierarchical approach for the communications.

Θ
(80)
pbc = 2 ‖T 0(116) + T 0(18) + 2 ‖T 1(104) + T 1(54) (8)

Transmissions of the pbr in each column of the ma-
trix B progress concurrently. Furthermore, note that they
progress through the network channel. The first column
has a communication cost of T 1(124) (from p1 to p4), the
second column has a cost of T 1(97) (from p0 to p5), and the
third column cost is T 1(35) (from p3 to p2). The total cost
of sending the pbr will be hence T 1(124) ‖T 1(97) ‖T 1(35).
The application of A2 yields:

Θ
(80)
pbr = 3 ‖T 1(35) + 2 ‖T 1(62) + T 1(27) (9)

The total cost in the iteration k = 80 is the addition of (8)
and (9), that is, 2 ‖T 0(116)+T 0(18)+2 ‖T 1(104)+T 1(54)+
3 ‖T 1(35)+2 ‖T 1(62)+T 1(27). Bringing terms together we
have 3 ‖T 1(35) + ( 2 ‖T 1(104) + 2 ‖T 1(62) ) + (T 1(54) +
T 1(27) ) + 2 ‖T 0(116) + T 0(18). Finally, applying A1:

Θ(80) = 3 ‖T 1(35) + 2 ‖T 1(166) + T 1(81)

+2 ‖T 0(116) + T 0(18)
(10)

The algorithm total cost is

ΘSUMMA =

N∑
k=0

Θ(k). (11)

Note that any change in the arrangement of the rectangles
of Fig. 8 leads to a different communication cost. Malik [37]
proposes some heuristics to reduce inter-node communica-
tions by relocating the intra-column rectangles.

The estimation of the HLogGP cost of SUMMA is formu-
lated as follows. For vertical communication, we calculate
the total cost of every column, and we take the maximum,
because the communication progresses in parallel. For the
horizontal communication, we take the maximum cost of
the processes in each column block. The total cost is the
addition of both horizontal and vertical costs 3.

3. The implementation of the micro-benchmarks and the tool for
estimating the communication costs are available on line ([38]), and
their description as a supplementary material.
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Fig. 8: The SUMMA algorithm on a heterogeneous platform, with P = 6 and M = 2. A rectangle of different size is
assigned to each process. White rectangles are assigned to processes running on the node 0, and grey rectangles to that on
the node 1. The figure shows the iteration k = 80. Now p1 sends its part of the pbc to p0, p3 and p5. We say that p1 overlaps
them. Likely p1 sends its part of the pbr to the processes in the same column (p4). The pbc transmissions involved and their
associated cost estimations are shown at the right side, where the message size is expressed in terms of blocks.
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Fig. 9: A 2D partition for solving the wave equation in a
mesh of N = 256 doubles. Each process recomputes its
rectangles New, Cur and Old along time. The computation
stencil imposes communications in Cur. Process p1 sends
its perimeter elements of Cur, which will form the halo of
its neighbors.

4.2 The 2D Wave Equation
The technique of finite differences is also ubiquitous in HPC.
We use it to build a hybrid kernel that solves the 2D wave
equation, formulated as ∂2u

∂t2 = c2
(
∂2u
∂x2 + ∂2u

∂y2

)
with initial

conditions u(x, y, 0) = I(x, y) and ∂
∂tu(x, y, 0) = 0. The

discrete solution u(x, y, t) is approached in the mesh x ∈
(0, N), y ∈ (0, N) and t ∈ (0, T ]. In our implementation,
we use the boundary conditions u(0, y, t) = u(x, 0, t) =
u(N, y, t) = u(x,N, t) = 0. Along time, u(x, y, t+1) is given
by successive instances of matrix New, generated from
matrices Cur (u(x, y, t)) and Old (u(x, y, t − 1)) according
to the recursive finite differences algorithm driven by the
stencil at the right of Fig. 9:

New(i, j) = 2(1− 2C2)Cur(i, j)−Old(i, j)

+C2Cur(i− 1, j) + C2Cur(i+ 1, j)

+C2Cur(i, j − 1) + C2Cur(i, j + 1)

(12)

Note that (12) imposes the communication of perimeter

elements between the Cur rectangles. Fig. 9 illustrates a 2D
partition between eight processes running on two machines.
The transmissions from p1 to its neighbors are shown.
For instance, if ηi denotes the neighborhood of pi in the
clockwise order, then η1 = {2, 4, 3, 6, 0, 5}. An alternative
1D partition of the data space in matrix slices would lead to
a more simple communication scheme, where each process
has just two neighbor processes for interchanging data. In
this paper, we evaluate the cost derived from 2D partitions.
Non-blocking sends (and receives) are used, so all transmis-
sions start at once. The cost per iteration allocated to pi is

Θi = ‖
j∈ηi

T c(j)(m(j)), (13)

where m(j) is the size of the message sent to neighbor pj ,
and c(j) is the channel used to send the message. For p1,
in terms of doubles, Θ1 = T 1(64) ‖T 1(48) ‖T 0(64) ‖T 0(64)
‖T 1(96) ‖T 0(16). As the transmissions of all P processes
progress concurrently, the cost of each iteration is

Θ =

[
P−1
‖
i=0

Θi

]
(14)

The τ–Lop cost of the algorithm is hence Θw2D = T ×Θ.
HLogGP, however, estimates the cost per process as the

sum of the transmission costs to the neighbors. The iteration
cost is the maximum of the per process cost.

5 MODEL EVALUATION

In this section we measure the real-life communication cost
of a broad set of sixteen hybrid configurations of SUMMA
and Wave2D kernels in Fermi. These figures are compared
with their τ–Lop and HLogGP estimations. For the purpose
of reproducibility, before presenting the results, we detail
the heterogeneous test platform, the procedure to estimate
the τ–Lop and HLogGP parameters, discuss some issues on
the generation of the test configurations and show the way of
measuring the real communication times.

5.1 The Heterogeneous Test Platform
The platform, called Fermi, is equipped with 16 computing
nodes. Nine nodes have two six-core Intel Xeon E5649 pro-
cessors (2.53 GHz), while the other seven have two quad-
core Intel Xeon E5520 processors (2.27 GHz), making 108+56
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= 164 cores. Two NVidia Tesla M2075 GPUs are attached to
each of the 12-core nodes, while two C2050 GPUs to each
of the 8-core nodes. The nodes have a QDR Infiniband (40
Gbps) and a TCP/Ethernet (1 Gbps) network interfaces.

Operating system is CentOS 6.5, with libraries for com-
putation and communication. In the CPUs, a process uses
the function dgemm of the Intel MKL library to compute the
SUMMA kernel on a rectangle of double precision elements,
and the implementation of the recursive finite differences
algorithm in (12) for the Wave2D kernel. OpenMP threads
are used for multi-core processes. In the GPUs, cuBlas
library for SUMMA and a self made kernel for Wave2D are
used with the same purpose.

Open MPI 1.8.1 is used for communication. In SUMMA,
row communication uses the non-blocking primitives,
MPI Isend and MPI Irecv, while column communication
uses blocking primitives MPI Send and MPI Recv. This is
a standard SUMMA implementation, though other options
are possible including blocking communication for pbc,
broadcast, pipeline or ring pbr, etc. Non-blocking commu-
nication primitives are used in Wave2D.

5.2 Parameter Measurement of τ–Lop and HLogGP

The parameter set of both τ–Lop and HLogGP is next calcu-
lated for shared memory, TCP and Infiniband (IB) channels.
The procedure to measure the τ–Lop parameters is detailed
in [30]. Let Mt be the number of different types of nodes in
the system, with Mt = 2 in Fermi.

A Ring0τ operation is defined for calculating the Transfer
Time parameter L0(m, τ) of the shared memory channel. In
the operation, process pi sends a message to process pi+1

and receives from process pi−1. Ring0τ is run in each type of
node, for a range of message sizes m and increasing number
of processes concurrently communicating τ . Similarly, a
Ring1τ operation is set for calculating the network parame-
ters L1(m, τ), with the processes distributed in Round Robin
in two nodes of the system. With Mt types of nodes, the
operation is executed M2

t −
(
Mt

2

)
times for all the possible

combinations. The number of experiments performed is
hence Mt+Rt(M

2
t −
(
Mt

2

)
), been Rt the number of network

types used. In Fermi, for instance, using shared memory and
Infiniband (Rt = 1) is 2 + 1× (22 −

(
2
2

)
) = 5.

An important feature of τ–Lop is that the number of
experiments needed to estimate the parameter values is of
order M2

t . LMO and HLogGP shows order M2, usually
much higher. In addition, in both HLogGP and τ–Lop, the
parameters are estimated with independence of the final
distribution of the processes in the platform, and therefore,
they do not need to be estimated for each configuration.

For HLogGP, we implemented the parameter measure-
ment micro-benchmarks detailed in [23] and found them
rather simplistic resulting in low accuracy in the estimations
of the overhead and gap per message parameters, showing
a high variance. In any case, average values are taken.

5.3 Building the Configurations

The sixteen configurations used in the evaluation depart
from the set of sixteen process layouts of Table 1, listed by
growing number of processes P . The M column splits the

TABLE 1: Characterization of a set of sixteen nodes layouts
used in the evaluation. They are provided by the SLURM
scheduler of Fermi.

Name M c=6 c=5 c=4 c=3 c=2 GPU P
M1 1+0 2 0 0 0 0 0 2
M2 2+0 3 1 0 0 0 1 5
M3 2+1 3 1 2 0 0 1 7
M4 3+1 4 1 3 0 0 3 11
M5 3+2 4 1 4 1 0 4 14
M6 3+3 4 1 5 1 1 6 18
M7 4+3 6 1 5 1 1 6 20
M8 8+0 11 3 2 0 0 7 23
M9 9+0 12 3 3 0 0 9 27
M10 9+1 12 3 5 0 0 9 29
M11 9+2 12 3 6 1 0 10 32
M12 9+3 12 3 7 1 1 12 36
M13 9+4 12 3 9 1 1 12 38
M14 9+5 12 3 10 2 1 13 41
M15 9+6 12 3 11 2 2 15 45
M16 9+7 12 3 13 2 2 15 47
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Fig. 10: SUMMA data partition of the M10 configuration.
The number indicates the MPI rank for a total of P = 29
processes. The fill pattern indicates the node where the
process executes, for a total of M = 10 nodes. Note how
the partition algorithm arranges the rectangles in columns.

number of nodes in a layout by type, 12-core nodes and 8-
core nodes. M13, for instance, uses nine 12-core nodes and
four 8-core nodes. CPU processes execute in one or more
cores using OpenMP threads. Columns c = κ indicate the
number of processes in the row with κ cores assigned. The
point here is that having processes with different compu-
tational capabilities increases the heterogeneity of the con-
figuration. Finally, GPU indicates the number of processes
running on GPU. They use a dedicated core in the node for
MPI communication and management of the data transfers
between host and GPU memories. The cost of these transfers
is included in the FPM of a GPU process [39]. Note that the
P column is the summation of the former six.

Fig. 2 showed how a configuration comes from a process
layout and a balanced data partition. The procedure to
obtain this last one, using FuPerMod, is described in section
2. An user-provided benchmark feeds FuPerMod. The com-
putation of expression (12), for instance, is the benchmark
used in the Wave2D kernel. This benchmark is executed
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by all the processes of a given layout. The produced FPMs
are then used to generate the balanced partition of the data
matrix into block rectangles, one per process.

It is worth noting that the size of a rectangle must be kept
within certain limits in the interest of a correct design of the
evaluation experiments. If a rectangle has x × y blocks, we
have to compute them, communicate x pivot row blocks and
y pivot column blocks. In short, the computation time grows
quadratically while the communication time grows linearly.
As we need to make a meaningful addition of the two times,
the ratio of computation to communication times has to be
acceptable, which imposes test matrix sizes, and hence N/P
values, under certain bounds. The chosen sizes areN = 128,
N = 256 and b = 32 doubles, which yield matrices of (4K)2

and (8K)2 elements respectively, distributed between 2 and
47 processes. Fig. 10, for instance, shows the balanced data
partition obtained from layout M10.

Algorithm 1 Measuring the cost of the SUMMA kernel

MPI Comm rank(WORLD, ↑me)
for n = 0 to N − 1 do

MPI Barrier(WORLD)
t start←MPI Wtime()

// Horizontal communication
for all p ∈ 0..P − 1 do

if overlap(me, p) then
if hold pbc(me, n) then

MPI Type vector(. . .)
MPI Pack(packed pbc← pbc)
MPI Isend(packed pbc, overlap sz(n, me, p),

MPI DOUBLE, p, TAG, WORLD, ↑req[p])
else

MPI Irecv(pbc, overlap sz(n, me, p),
MPI DOUBLE, p, TAG, WORLD, ↑req[p])

end if
end if

end for

// Vertical communication
if hold pbr(me, n) then

MPI Comm size(vComm, ↑Q)
for all q ∈ 0..Q− 1, q <> self do

MPI Send(pbr, col width, MPI DOUBLE,
q, BTAG, vComm)

end for
else

MPI Recv(pbr, col width, MPI DOUBLE,
pbr holder, BTAG, vComm, ST IGNORE)

end if
MPI Waitall (WORLD, req, ST IGNORE)
t end←MPI Wtime()

// Computation
dgemm(. . . )

end for

5.4 Empirical Measurement of Communication Times.
Once a target configurations have been built, every and each
of its process executes the full kernel code, which access

t0 t1

time

t2 tN-1

pP-1

...

p2

p1

p0

...

Communication Computation

Ba
rrie
r

Ba
rrie
r

Ba
rrie
r

Ba
rrie
r

Fig. 11: Methodology proposed to measure the empirical
communication cost of a data-parallel kernel. The length of
a white bar represents the cost of process p in the iteration
n. The global cost of the iteration n is tn, defined as the
maximum cost of the P processes.

the configuration as needed. Algorithm 1 is the skeleton of
SUMMA kernel. Following, we discuss some aspects of this
code, though similar considerations can be directly applied
Wave2D. Non-blocking communication is used for the hor-
izontal transmission of the pbc. Each process determines if
any other process overlaps it (see Fig. 8). If this is the case, it
will send or receive the portion of the pbc. Note that the pbc
blocks are not contiguous in memory, so the sender needs
to pack them before sending. Our extensive experiments
have shown that packing time is negligible with respect
to transmission time. Regarding the pbr, it is sent using
blocking primitives. As all rectangles in the same column
have the same width in terms of blocks, the communicating
processes are known in advance (those in the column). This
fact allows us to avoid the search for overlaps and create one
communicator per column (vComm) at initialization time.

SUMMA, and any other data-parallel kernel, has a com-
mon execution pattern that repeats cycles of communica-
tion and computation. Each iteration performs a partial
block computation after completing the communications.
The methodology adopted in SUMMA to measure the cost
of the communication stage (again extensible to any other
2D kernel) assumes that all processes arrive at the same time
to the communication stage, a limitation imposed by the
models to give more accurate predictions. This assumption
isolates communication from computation to a great degree,
ensuring that the communication time is measured quite
accurately. The FuPerMod best efforts to produce a balanced
partition greatly helps to accomplish the goal. Still, as some
computation imbalances may exist between the processes,
we call MPI Barrier at the beginning of each iteration.
Fig. 11 helps to understand this framework. The measured
time of iteration n is tn, defined as the maximum of the
t end − t start figures of the P processes. The total real-
life SUMMA cost is t =

∑N−1
n=0 tn, next compared to the

analytical cost expression (11).

5.5 Comparison of Estimated and Measured Costs.

We have developed a tool that automatically calculates the
τ–Lop cost estimation of a kernel for a given configuration
[38]. The tool inputs are the configuration and the set of
τ–Lop parameters of the platform, as shown at the bottom
right side Fig. 2. A similar tool for HLogGP is also provided.
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(d) N = 256 on TCP.

Fig. 12: SUMMA measurements versus estimations for different configurations, networks and matrix sizes.
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(b) N = 512 on Infiniband.
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Fig. 13: Wave2D measurements versus estimations for different configurations, networks and matrix sizes.
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Fig. 14: Data of Fig. 12 and Fig. 13 expressed in terms of Proportional error.

Fig. 12 plots the comparison between estimated and
measured costs of the SUMMA configurations, of increasing
complexity from left to right. Though hard to appreciate, the
measured costs include the typical deviation for multiple
executions of the kernel. The left side plots are built with
N = 128, while N = 256 applies to the right side plots.
The two upper plots use the IB network and the two lower
plots use TCP. Note the scale difference between them (up to
one order of magnitude) due to the Infiniband higher per-
formance. Likewise, Fig. 13 applies to the Wave2D kernel,
with N = 256 and N = 512.

Interesting enough, one may observe that the measured
communication time remains almost constant along the con-
figurations, that is, with growing number of processes. The
reason is that each process has to transmit less data to the
other processes (a smaller rectangle implies a smaller num-
ber of elements per process), but it has to perform a higher
number of communications. τ–Lop accurately captures this
fact on these highly complex and diverse scenarios. The er-
ror plots reveal two points that need to be emphasized. First,
the error does not change significantly between different
matrix sizes and networks, which shows the robustness of the
model, with one exception, TCP estimations for the Wave2D
kernel, discussed later. Second, the error remains almost
constant for the range of configurations, what highlights
that the model keeps scalable in hybrid platforms.

HLogGP predictions are far from the measured costs
in both kernels, and show a high variability between con-

figurations. In our opinion, the main reasons are that the
model (1) proposes a methodology of parameter measure-
ment based on micro-benchmarks that is not accurate, (2)
has not been validated for communication patterns beyond
the simple master-worker transmissions, and (3) does not
consider the contention in communication.

We use the Proportional error to express the accuracy of
estimation with respect to the real measurement, instead
of the Relative error ρ = |e − r|/r usually found in the
literature, where e and real r are the estimated and real
values respectively. The proportional error ρ suffers from
an anomaly: an underestimation gives a lower relative er-
ror than the overestimation in the same proportion. This
effect skews significantly the interpretation of our results.
Therefore, we set aside the relative error ρ in favor of
the proportional error µ = max(r, e)/min(r, e), which is
always greater than 1 on error, and equal to 1 otherwise.
Notwithstanding, a simple relation between ρ and µ exists
that allows the conversion from one another [30]. Fig. 14
shows the Proportional error of Fig. 12 and Fig. 13. For both
SUMMA and Wave2D, τ–Lop shows a good accuracy for all
experimental settings, except for the case of TCP Wave2D.
We attribute this behavior to much shorter messages used in
the Wave2D application. While τ–Lop predictions are con-
sistently accurate for longer messages (bigger matrices) for
both Infiniband and TCP, we observe some drop in accuracy
for short messages in TCP networks. We have to improve
the measurement method of the τ–Lop parameters and take
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Fig. 15: Communication measurements versus predictions
for a range of configurations in TCP network and N = 128,
without using MPI_Barrier in Algorithm 1.

into account the TCP network behavior for short messages,
including the piggy-backing mechanism. At the same time,

TABLE 2: Average Proportional error µ̄ along the configura-
tions of Fig. 14.

SUMMA Wave2D
Network Model N=128 N=256 N=256 N=512

Infiniband τ–Lop 1.16 1.12 1.21 1.20
HLogGP 12.44 14.46 6.53 7.06

TCP τ–Lop 1.34 1.19 3.88 3.11
HLogGP 6.64 6.69 13.08 14.19

HLogGP poorly predicts the communication time in most
cases, also showing significant and irregular fluctuations in
the accuracy of prediction. The Table 2 summarizes these
experimental results.

The models assume that processes start the communi-
cation phase at the same time. Therefore, to fairly estimate
the accuracy of their predictions, we used barriers in the
beginning of the communication phase in our applications.
In order to see how the predictive accuracy changes if
we remove the barriers, we also experimented with the
SUMMA kernel without the MPI_Barrier synchroniza-
tion. As Fig. 15 shows, the lack of synchronization of the
processes in each phase worsens the τ–Lop predictions.
Nevertheless, the applications can still benefit from much
more accurate τ–Lop predictions of the communication
time. Interestingly, the communication time is longer than
that of the kernel using the barrier synchronization (see
Fig. 12c), a behavior reproduced in all the configurations,
matrix sizes and networks, due to the overhead of waiting
for the processes arriving at the communication phase.
Thus, in contrast to HLogGP, a higher prediction error of
τ–Lop in this case is due to the difference between the
modeled and actual synchronization scenarios rather than
the inaccuracy of the model itself.

To further underline the accuracy of the heterogeneous
τ–Lop, Fig. 16 compares it to its homogeneous version. In
the homogeneous case, the matrices are partitioned into a
cluster of 8× 8 cores in the Fermi platform. Processes in the
same column run in the same node, and hence communicate
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Fig. 16: Average Proportional Error on the SUMMA kernel
made by heterogeneous τ-Lop with respect to homogeneous
τ-Lop, by HLogGP with respect to LogGPH, and by mlognP.

through shared memory, while they communicate through
the network horizontally. Note that even in the case of a far
more complex heterogeneous platform, the increase of the
prediction error of τ–Lop is quite small with respect to the
homogeneous case. The figure also includes the HLogGP
heterogeneous model and its counterpart for homogeneous
platforms LogGPH [40]. Heterogeneous HLogGP born as
an extension of homogeneous LogGPH which manages the
additional parameters appearing in a heterogeneous plat-
form. HLogGP becomes LogGPH when the nodes of the
platform are identical, and the heterogeneity is only in the
communication channels. Finally, Fig. 16 exposes mlognP
[41], a well-known homogeneous model.

The error of LogGPH and mlognP in the homogeneous
case is already much higher that that of τ–Lop in the het-
erogeneous case. It is natural to expect that their extensions
to heterogeneous platforms would not behave better. The
increase in µ̄ is especially noteworthy in HLogGP with
respect to LogGPH in the Infiniband case. The point is that
they have fundamental shortcomings in the treatment of the
concurrency of the transmissions, as demonstrated in [30].
In TCP, the HLogGP error increasing is not meaningful,
despite of its irregular proportional error figures for the
range of configurations evaluated in the heterogeneous case.

6 CONCLUSIONS

Functional Performance Models describe the computing
performance of a process by integrating performance char-
acteristics of both platform and algorithm. They are a useful
formalism for computing balancing in heterogeneous plat-
forms. FPMs however lack the ability of accounting for the
communication costs in its balancing efforts. Indeed, com-
munication costs have a crucial influence: The FPM driven
deployment of the processes on the platform determines the
channels used by a process for communicating with the rest.
As these channels are usually uneven or highly uneven in
terms of capacity, the deployment schedule impacts severely
the communication costs. A communication performance
model estimates these costs, avoiding an experimental mea-
surement which is always cumbersome, non-portable and
expensive. This leads us to envisage that a tight cooperation
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of both computation and communication formal models is
the way to go to make real progress in the problem of load
balancing optimization in heterogeneous environments.

The τ–Lop communication performance model appears
to be a suitable tool for this task. Satisfactorily evaluated
in multi-core clusters, it is here extended to heterogeneous
platforms under some basic and meaningful assumptions.
In practical terms, we provide a τ–Lop based software tool
which determines the communication cost of a FPM load
balanced process deployment avoiding any experimental
testing. The SUMMA matrix multiplication and the 2D wave
equation solver, representative for many HPC kernels, have
been evaluated, though the application to other data parallel
kernels is direct. The obtained communication cost predic-
tions show that τ–Lop reaches good accuracy, robustness
and scalability in the experimental platform with different
network types, Infiniband and Ethernet, and different pro-
cessing unit types, GPU and multi-core processors. In addi-
tion, we contribute with the modeling and cost estimations
of the HLogGP model and discuss the reasons of the poor
accuracy of its predictions compared to those of τ–Lop.
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