
Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

1

Heterogeneous ScaLAPACK Programmers’ Reference and Installation

Manual

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

2

Heterogeneous ScaLAPACK
Parallel Linear Algebra Programs for Heterogeneous Networks of

Computers

Version 1.1.0

Ravi Reddy, Alexey Lastovetsky, Pedro Alonso

E-mail: Manumachu.Reddy@ucd.ie, Alexey.Lastovetsky@ucd.ie,

palonso@dsic.upv.es

1 May 2009

mailto:Ravi.Reddy@ucd.ie
mailto:Alexey.Lastovetsky@ucd.ie
mailto:palonso@dsic.upv.es

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

3

CONTENTS

1 INTRODUCTION .. 4

2 WHAT IS HETEROGENEOUS SCALAPACK ... 4

3 HETEROGENEOUS SCALAPACK LIBRARY INTERFACE .. 8

3.1 HETEROGENEOUS SCALAPACK RUNTIME INITIALIZATION AND FINALIZATION 8

hscal_init .. 8
hscal_finalize .. 9

3.2 HETEROGENEOUS SCALAPACK CONTEXT MANAGEMENT FUNCTIONS 10

3.2.1 NAMING SCHEME ... 10

3.2.2 ROUTINES .. 10

hscal_pdgesv_ctxt ... 11
hscal_in_ctxt .. 12
hscal_get_comm .. 13
hscal_timeof ... 14
hscal_free_ctxt .. 15

3.3 HETEROGENEOUS SCALAPACK AUXILIARY FUNCTIONS .. 16

hscal_pdgesv_info ... 17
hscal_pdgemm_info ... 18
hscal_dgemm_info ... 20

3.4 HETEROGENEOUS SCALAPACK DEBUG FUNCTIONS ... 21

hscal_set_debug .. 21

3.5 HETEROGENEOUS SCALAPACK AND HETEROMPI ... 21

4 HETEROGENEOUS SCALAPACK PROGRAM EXECUTION .. 26

4.1 BUILDING HETEROGENEOUS SCALAPACK APPLICATION ... 26

4.2 RUNNING HETEROGENEOUS SCALAPACK APPLICATION .. 26

5 HETEROGENEOUS SCALAPACK INSTALLATION GUIDE FOR UNIX ... 27

5.1 SYSTEM REQUIREMENTS ... 27

5.2 CONTENTS OF HETEROGENEOUS SCALAPACK INSTALLATION .. 27

5.3 INSTALLATION .. 27

5.4 TESTING YOUR INSTALLATION ... 28

6 REFERENCES ... 29

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

4

1 Introduction

This manual presents Heterogeneous ScaLAPACK, which provides the following high

performance parallel linear algebra programs for Heterogeneous Networks of Computers

(HNOCs) supporting MPI [1]:

 Dense linear system solvers

 Least squares solvers

 Eigenvalue solvers

The fundamental building blocks of Heterogeneous ScaLAPACK are:

 ScaLAPACK [2]

 PBLAS [3]

 BLAS [4]

 BLACS [5]

 HeteroMPI [6]

The rest of the manual is organized as follows. Section 2 presents the model of a sample

Heterogeneous ScaLAPACK program. Section 3 presents the Heterogeneous ScaLAPACK user

interface. Section 4 provides the command-line interface to build and run Heterogeneous

ScaLAPACK applications. This is followed by installation instructions for UNIX/LINUX

platforms in section 5.

2 What is Heterogeneous ScaLAPACK

Heterogeneous ScaLAPACK is a package which provides high performance parallel basic linear

algebra programs for HNOCs. It is built on the top of ScaLAPACK software using the

multiprocessing approach and thus reuses it completely. The multiprocessing approach can be

summarized as follows:

 The whole computation is partitioned into a large number of equal chunks;

 Each chunk is performed by a separate process;

 The number of processes run by each processor is as proportional to its speed as possible.

Thus, while distributed evenly across parallel processes, data and computations are distributed

unevenly over processors of the heterogeneous network so that each processor performs the

volume of computations proportional to its speed.

To summarize the essential differences between calling a ScaLAPACK routine and a

heterogeneous ScaLAPACK routine, consider the four basic steps involved in calling a PDGESV

ScaLAPACK routine as shown in Figure 1.

1. Initialize the process grid using Cblacs_gridinit;

2. Distribute of the matrix on the process grid. Each global matrix that is to be distributed

across the process grid is assigned an array descriptor using the ScaLAPACK TOOLS

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

5

Figure 1. Basic steps involved in calling the ScaLAPACK routine PDGESV.

routine descinit. A mapping of the global matrix onto the process grid is accomplished

using the user-defined routine pdmatgen;

3. Call the ScaLAPACK routine pdgesv;

4. Release the process grid via a call to Cblacs_gridexit. When all the computations have

been completed, the program is exited with a call to Cblacs_exit.

Figure 2 shows the essential steps of the Heterogeneous ScaLAPACK program calling the

ScaLAPACK PDGESV routine, which are:

1. Initialize the Heterogeneous ScaLAPACK runtime using using the operation

int hscal_init(int * argc, int *** argv)

where argc and argv are the same as the arguments passed to main. This routine must be

called before any other Heterogeneous ScaLAPACK context management routine and must

be called once. It must be called by all the processes running in the Heterogeneous

ScaLAPACK application;

2. Get the Heterogeneous ScaLAPACK PDGESV context using the routine

hscal_pdgesv_ctxt. The function call hscal_in_ctxt returns a value of 1 for the

processes chosen to execute the PDGESV routine or otherwise 0;

3. Execute the steps (2) and (3) involved in calling the ScaLAPACK PDGESV routine (shown

in Figure 1);

4. Release the context using the context destructor operation

int hscal_free_ctxt(int * ctxt);

 int main(int argc, char **argv) {

 int nprow, npcol, pdgesvctxt, myrow, mycol, c__0 = 0, c__1 = -1;

/* Problem parameters */

 int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV;

/* Initialize the process grid */

 Cblacs_get(c__1, c__0, &pdgesvctxt);

 Cblacs_gridinit(&pdgesvctxt, "r", nprow, npcol);

 Cblacs_gridinfo(pdgesvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdgesvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdgesvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix A */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdgesv‟ routine */

 pdgesv_(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO);

/* Release the process grid and Free the BLACS context */

 Cblacs_gridexit(pdgesvctxt);

/* Exit the BLACS */

 Cblacs_exit(c__0);

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

6

Figure 2. Basic steps of the Heterogeneous ScaLAPACK program calling the ScaLAPACK

routine PDGESV.

5. When all the computations have been completed, the program is exited with a call to

hscal_finalize, which finalizes the heterogeneous ScaLAPACK runtime.

It is relatively straightforward for the application programmers to wrap the steps (2) to (4) in

a single function call, which would form the heterogeneous counterpart of the ScaLAPACK

PDGESV routine. It can also be seen that the application programmers need not specify the

process grid arrangement for the execution of the Heterogeneous ScaLAPACK program

employing the ScaLAPACK routine, as it is automatically determined in the context constructor

routine. Apart from this, the only other major rewriting that the application programmers must

perform is the redistribution of matrix data from the process grid arrangement used in the

ScaLAPACK program to the process grid arrangement automatically determined in the

heterogeneous ScaLAPACK program. The matrix redistribution/copy routines [7, 8], provided

 int main(int argc, char **argv) {

 int nprow, npcol, pdgesvctxt, myrow, mycol, c__0 = 0;

/* Problem parameters */

 int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV;

/* Initialize the heterogeneous ScaLAPACK runtime */

 hscal_init(&argc, &argv);

/* Initialize the array descriptors for the matrices A and B

 No need to specify the context argument */

 descinit_(DESCA, …, NULL); /* for Matrix A */

 descinit_(DESCB, …, NULL); /* for Matrix B */

/* Get the heterogeneous PDGESV context */

 hscal_pdgesv_ctxt(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pdgesvctxt);

 if (!hscal_in_ctxt(&pdgesvctxt)) {

 hscal_free_ctxt(&pdgesvctxt);

 hscal_finalize(c__0);

 return 0;

 }

/* Retrieve the process grid information */

 blacs_gridinfo__(&pdgesvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdgesvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdgesvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix A */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdgesv‟ routine */

 pdgesv_(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO);

/* Release the heterogeneous PDGESV context */

 hscal_free_ctxt(&pdgesvctxt);

/* Finalize the Heterogeneous ScaLAPACK runtime */

 hscal_finalize(c__0);

 return 0;

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

7

Figure 3. Basic steps of the Heterogeneous ScaLAPACK program calling two ScaLAPACK

routines PDGESV and PDPOSV.

by the ScaLAPACK package for each data type, can be used to achieve this redistribution. These

routines provide a truly general copy from any block cyclicly distributed (sub)matrix to any other

 int main(int argc, char **argv) {

 int nprow, npcol, pdgesvctxt, pdposvctxt, myrow, mycol, c__0 = 0;

/* Problem parameters */

 char *UPLO; int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV;

/* Initialize the heterogeneous ScaLAPACK runtime */

 hscal_init(&argc, &argv);

/* Initialize the array descriptors for the matrices A and B*/

 descinit_(DESCA, …, NULL); /* for Matrix A */

 descinit_(DESCB, …, NULL); /* for Matrix B */

/* Get the heterogeneous PDGESV context */

 hscal_pdgesv_ctxt(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pdgesvctxt);

 if (hscal_in_ctxt(&pdgesvctxt)) {

/* Retrieve the process grid information */

 Cblacs_gridinfo(pdgesvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdgesvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdgesvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix A */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdgesv‟ routine */

 pdgesv_(N, NRHS, A, IA, JA, DESCA, IPIV,

 B, IB, JB, DESCB, INFO);

 }

/* Release the heterogeneous PDGESV context */

 hscal_free_ctxt(&pdgesvctxt);

/* Initialize the array descriptors for the matrices A and B*/

 descinit_(DESCA, …, NULL); /* for Matrix A */

 descinit_(DESCB, …, NULL); /* for Matrix B */

/* Get the heterogeneous PDPOSV context */

 hscal_pdposv_ctxt(UPLO, N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pdposvctxt);

 if (hscal_in_ctxt(&pdposvctxt)) {

/* Retrieve the process grid information */

 Cblacs_gridinfo(pdposvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdposvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdposvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdposvctxt, …); /* for Matrix A */

 pdmatgen_(&pdposvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdposv‟ routine */

 pdposv_(UPLO, N, NRHS, A, IA, JA, DESCA,

 B, IB, JB, DESCB, INFO);

 }

/* Release the heterogeneous PDPOSV context */

 hscal_free_ctxt(&pdposvctxt);

/* Finalize the Heterogeneous ScaLAPACK runtime */

 hscal_finalize(c__0);

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

8

block cyclicly distributed (sub)matrix. In our future work, we would address this issue of the cost

of data redistribution.

Now assume that application programmer has a ScaLAPACK application, which employs

more than one ScaLAPACK routine (in this case two routines PDGESV and PDPOSV), then the

Figure 3 shows the main steps of the Heterogeneous ScaLAPACK application.

3 Heterogeneous ScaLAPACK Library Interface

In this section, we describe the interfaces to the routines provided by Heterogeneous

ScaLAPACK.

3.1 Heterogeneous ScaLAPACK runtime initialization and finalization

hscal_init

Initializes Heterogeneous ScaLAPACK runtime system

Synopsis:

 int

 hscal_init

 (

 int* argc,

 char*** argv

)

Parameters:

 argc --- Number of arguments supplied to main

 argv --- Values of arguments supplied to main

Description: All processes must call this routine to initialize Heterogeneous ScaLAPACK

runtime system. This routine must be called before any Heterogeneous ScaLAPACK context

management routine. It must be called at most once; subsequent calls are erroneous.

Usage:

 int main(int argc, char** argv)

 {

 int rc = hscal_init(

 &argc,

 &argv

);

 if (rc != HSCAL_SUCCESS)

 {

 //Error has occurred

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

9

 }

 }

Return values: HSCAL_SUCCESS on success.

hscal_finalize

Finalizes Heterogeneous ScaLAPACK runtime system

Synopsis:

 int

 hscal_finalize

 (

 int exitcode

)

Parameters:

 exitcode --- code to be returned to the command shell

Description: This routine cleans up all Heterogeneous ScaLAPACK state. All processes must

call this routine at the end of processing tasks. Once this routine is called, no Heterogeneous

ScaLAPACK routine (even hscal_init) may be called.

Usage:

 int main(int argc, char** argv)

 {

 int rc = hscal_init(

 &argc,

 &argv

);

 if (rc != HSCAL_SUCCESS)

 {

 //Error has occurred

 }

 rc = hscal_finalize(0);

 if (rc != HSCAL_SUCCESS)

 {

 //Error has occurred

 }

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

10

Return values: HSCAL_SUCCESS on success.

3.2 Heterogeneous ScaLAPACK Context Management Functions

The main routine is the context creation function, which provides a context for the execution of

the ScaLAPACK routine. There is a context creation function for each and every ScaLAPACK

routine. This function frees the application programmer from having to specify the process grid

arrangement to be used in the execution of the ScaLAPACK routine. It tries to determine the

optimal process grid arrangement.

3.2.1 Naming Scheme

All the routines have names of the form hscal_pxyyzzz_ctxt. The second letter, x,

indicates the data type as follows:

 x MEANING

 ----- ------------------------------

 s Single precision real data

 d Double precision real data

 c Single precision complex data

 z Double precision complex data

Thus hscal_pxgesv_ctxt refers to any or all of the routines hscal_pcgesv_ctxt,

hscal_pdgesv_ctxt, hscal_psgesv_ctxt and hscal_pzgesv_ctxt.

The next two letters, yy, indicate the type of matrix (or of the most significant matrix).

ge - general

sy - symmetric

he - hermitian

tr - triangular

The last three letters zzz indicate the computation performed. Thus hscal_pcgels_ctxt

indicates a context routine for the ScaLAPACK routine pcgels, which solves overdetermined

or underdetermined complex linear systems.

3.2.2 Routines

The Heterogeneous ScaLAPACK and the Heterogeneous PBLAS context creation routines are

tabulated below. Only the names are displayed.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

11

Level 1 PBLAS Level 2 PBLAS Level 3 PBLAS

hscal_pxswap_ctxt

hscal_pxscal_ctxt

hscal_pxcopy_ctxt

hscal_pxaxpy_ctxt

hscal_pxdot_ctxt

hscal_pxdotu_ctxt

hscal_pxdotc_ctxt

hscal_pxnrm2_ctxt

hscal_pxasum_ctxt

hscal_pxamax_ctxt

hscal_pxgemv_ctxt

hscal_pxhemv_ctxt

hscal_pxsymv_ctxt

hscal_pxtrmv_ctxt

hscal_pxtrsv_ctxt

hscal_pxger_ctxt

hscal_pxgeru_ctxt

hscal_pxgerc_ctxt

hscal_pxher_ctxt

hscal_pxher2_ctxt

hscal_pxsyr_ctxt

hscal_pxsyr2_ctxt

hscal_pxgemm_ctxt

hscal_pxsymm_ctxt

hscal_pxhemm_ctxt

hscal_pxsyrk_ctxt

hscal_pxherk_ctxt

hscal_pxsyr2k_ctxt

hscal_pxher2k_ctxt

hscal_pxtran_ctxt

hscal_pxtranu_ctxt

hscal_pxtranc_ctxt

hscal_pxtrmm_ctxt

hscal_pxtrsm_ctxt

hscal_pxgeadd_ctxt

hscal_pxtradd_ctxt

ScaLAPACK

hscal_pxgesv_ctxt

hscal_pxgetrs_ctxt

hscal_pxgetrf_ctxt

hscal_pxgeqrf_ctxt

hscal_pxgelqf_ctxt

hscal_pxposv_ctxt

hscal_pxpotrs_ctxt

hscal_pxpotrf_ctxt

hscal_pxgels_ctxt

For example, the context creation function for the PDGESV routine has an interface, which is

shown below:

hscal_pdgesv_ctxt

Create a heterogeneous context for the execution of PDGESV routine

Synopsis:

 int hscal_pdgesv_ctxt(

 int * n, int * nrhs,

 int * ia, int * ja, int * desca,

 int * ib, int * jb, int * descb,

 int * octxt)

Parameters:

 octxt --- output context handle to the group of MPI processes

Description: It differs from the PDGESV call in the following ways:

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

12

 It returns a context but does not actually execute the PDGESV routine;

 The input arguments are the same as for the PDGESV call except

o The matrices A, B and C containing the data are not passed as arguments;

o The context element in the descriptor arrays desca and descb need not be filled.

 The output arguments differ as follows:

o The vector ipiv and info are not passed;

o It has an extra return argument, ictxt, which contains the handle to a group of MPI

processes that is subsequently used in the actual execution of the PDGEMM routine;

o A return value of HSCAL_SUCCESS indicates successful execution.

It is a collective operation and must be called by all the processes running in the Heterogeneous

ScaLAPACK application. The context contains a handle to a group of MPI processes, which

tries to execute the ScaLAPACK routine faster than any other group of processes. This context

can be reused in multiple calls of the same routine or any routine that uses similar parallel

algorithm as PDGESV. During the creation of the group of MPI processes, the Heterogeneous

ScaLAPACK runtime system detects the optimal process arrangement as well as solves the

problem of selection of the optimal set of processes running on different computers of the

heterogeneous network.

Usage:

 int rc, octxt;

 rc = hscal_pdgesv_ctxt(

 n, nrhs,

 ia, ja, desca,

 ib, jb, descb,

 &octxt

);

 if (rc != HSCAL_SUCCESS)

 {

 return rc;

 }

Return values: HSCAL_CTXT_UNDEFINED is returned if the process is not the member of the

context represented by the handle ictxt. HSCAL_SUCCESS on success.

hscal_in_ctxt

Am I a member of the context?

Synopsis:

 int

 hscal_in_ctxt

 (

 int * ictxt

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

13

)

Parameters:

 ictxt --- input context handle to the group of MPI processes.

Description: This function returns true if the process calling this routine is the member of the

context represented by the handle gid otherwise false.

Usage:

 int ictxt;

 /* Create context */

 if (hscal_is_ctxt(&ictxt))

 {

 printf(“I‟m a member of the context\n”);

 }

 else

 {

 printf(“I‟m not a member of the context\n”);

 }

hscal_get_comm

Returns the MPI communicator

Synopsis:

 MPI_Comm*

 hscal_get_comm

 (

 int * ictxt

)

Parameters:

 ictxt --- input context handle to the group of MPI processes.

Description: This function returns the MPI communicator.

Usage:

 int ictxt;

 /* Create context */

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

14

 if (hscal_is_ctxt(&ictxt))

 {

 MPI_Comm* comm = hscal_get_comm(&ictxt);

 }

Return values: NULL is returned if the process is not the member of the context represented by

the handle ictxt.

hscal_timeof

Returns the estimated execution time of the ScaLAPACK routine using the optimal process

arrangement

Synopsis:

 double

 hscal_timeof

 (

 int * ictxt

)

Parameters:

 ictxt --- input context handle to the group of MPI processes.

Description: This function returns the estimated execution time of the ScaLAPACK routine

using the optimal process arrangement. This is only the estimated execution time since the

ScaLAPACK routine is not actually executed on the underlying hardware. This routine is serial

and can be called by any process, which is participating in the context ictxt.

Usage:

 int ictxt;

 /* Create PDGESV context using hscal_pdgesv_ctxt */

 if (hscal_is_ctxt(&ictxt))

 {

 double time_of_pdgesv = hscal_timeof(&ictxt));

 printf(

 “PDGESV estimated execution time is %f\n”,

 time_of_pdgemm

);

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

15

hscal_free_ctxt

Free the context

Synopsis:

 int

 hscal_free_ctxt

 (

 int * ictxt

)

Parameters:

 ictxt --- input context handle to the group of MPI processes

Description: This routine deallocates the resources associated with a group object gid.

HMPI_Group_free is a collective operation and must be called by all the processes, which are

members of the group gid.

Usage:

 if (hscal_is_ctxt(&ictxt))

 {

 int rc = hscal_free_ctxt(&ictxt);

 if (rc != HSCAL_SUCCESS)

 {

 /* Problems freeing the context */

 }

 }

Return values: HMPI_SUCCESS on success and an appropriate error code in case of failure.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

16

3.3 Heterogeneous ScaLAPACK Auxiliary Functions

In addition to the context management routines, auxiliary routines are provided for each

ScaLAPACK (and PBLAS) routine, which determine the total number of computations

(arithmetical operations) performed by each process and the total number of communications in

bytes between a pair of processes involved in the execution of the ScaLAPACK (and PBLAS)

routine. An auxiliary routine is also provided for the serial BLAS equivalent of each PBLAS

routine, which determines the total number of arithmetical operations involved in its execution.

These routines are serial and can be called by any process. They do not actually execute the

corresponding SCALAPACK/PBLAS/BLAS routine but just calculate the total number of

computations and communications involved.

The naming scheme and the names of the routines are similar to those discussed in the previous

sections and tabulated below.

Level 1 PBLAS Level 2 PBLAS Level 3 PBLAS

hscal_pxswap_info

hscal_pxscal_info

hscal_pxcopy_info

hscal_pxaxpy_info

hscal_pxdot_info

hscal_pxdotu_info

hscal_pxdotc_info

hscal_pxnrm2_info

hscal_pxasum_info

hscal_pxamax_info

hscal_pxgemv_info

hscal_pxhemv_info

hscal_pxsymv_info

hscal_pxtrmv_info

hscal_pxtrsv_info

hscal_pxger_info

hscal_pxgeru_info

hscal_pxgerc_info

hscal_pxher_info

hscal_pxher2_info

hscal_pxsyr_info

hscal_pxsyr2_info

hscal_pxgemm_info

hscal_pxsymm_info

hscal_pxhemm_info

hscal_pxsyrk_info

hscal_pxherk_info

hscal_pxsyr2k_info

hscal_pxher2k_info

hscal_pxtran_info

hscal_pxtranu_info

hscal_pxtranc_info

hscal_pxtrmm_info

hscal_pxtrsm_info

hscal_pxgeadd_info

hscal_pxtradd_info

ScaLAPACK

hscal_pxgesv_info

hscal_pxgetrs_info

hscal_pxgetrf_info

hscal_pxgeqrf_info

hscal_pxgelqf_info

hscal_pxposv_info

hscal_pxpotrs_info

hscal_pxpotrf_info

hscal_pxgels_info

We explain the details of the interface using one example for ScaLAPACK, PBLAS, and BLAS

respectively.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

17

hscal_pdgesv_info

Determines the total number of computations (arithmetical operations) performed by each

process and the total number of communications in bytes between a pair of processes involved in

the execution of the ScaLAPACK PDGESV routine

Synopsis:

 int hscal_pdgesv_info(

 int * n, int * nrhs,

 int * ia, int * ja, int * desca,

 int * ib, int * jb, int * descb,

 int nprow, int npcol,

 double * tcomp,

 int * tcomm)

Parameters:

 nprow --- Number of process rows

 npcol --- Number of process columns

 tcomp --- Array containing the total number of arithmetic operations

 tcomm --- Array containing the total volume of communications between pairs of processes

Description: The matrices A and B containing the data are not passed as arguments. It has four

parameters in addition to those passed to the PDGESV function call. The parameters (nprow,

npcol) contain the process arrangement, where nprow specifies the number of process rows

and npcol specifies the number of process columns. The return parameter tcomp is a 1D

array of size nprow×npcol logically representing a 2D array of size [nprow][npcol]. Its

[i][j]–th element contains the total number of arithmetical operations performed by the

process with coordinates (i, j) during the execution of the PDGESV function call. The

return parameter tcomm is a 1D array of size nprow×npcol×nprow×npcol logically

representing an array of size [nprow][npcol][nprow][npcol]. Its [i][j][k][l]–th

element contains the total number of bytes communicated between a pair of processes with

coordinates (i, j) and (k, l) respectively during the execution of the PDGESV function

call. HSCAL_SUCCESS indicating successful execution or otherwise an appropriate error code is

the return value.

Usage:

 int rc, *tcomm;

 double *tcomp;

 tcomp = (double*)calloc(nprow*npcol, sizeof(double));

 tcomm = (int*)calloc(nprow*npcol*nprow*npcol, sizeof(int));

 rc = hscal_pdgesv_info(

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

18

 n, nrhs,

 ia, ja, desca,

 ib, jb, descb,

 nprow, npcol,

 tcomp, tcomm

);

 if (rc != HSCAL_SUCCESS)

 {

 /* Problems querying the information */

 }

 /* Print the computations and communications information */

 free(tcomp);

 free(tcomm);

Return values: HSCAL_SUCCESS on success.

hscal_pdgemm_info

Determines the total number of computations (arithmetical operations) performed by each

process and the total number of communications in bytes between a pair of processes involved in

the execution of the PBLAS PDGEMM routine

Synopsis:

 int hscal_pdgemm_info(

 char* transa, char* transb,

 int * m, int * n, int * k,

 double * alpha,

 int * ia, int * ja, int * desca,

 int * ib, int * jb, int * descb,

 double * beta,

 int * ic, int * jc, int * descc,

 int nprow, int npcol,

 double * tcomp,

 int * tcomm)

Parameters:

 nprow --- Number of process rows

 npcol --- Number of process columns

 tcomp --- Array containing the total number of arithmetic operations

 tcomm --- Array containing the total volume of communications between pairs of processes

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

19

Description: The matrices A, B and C containing the data are not passed as arguments. It has

four parameters in addition to those passed to the PDGEMM function call. The parameters

(nprow, npcol) contain the process arrangement, where nprow specifies the number of

process rows and npcol specifies the number of process columns. The return parameter

tcomp is a 1D array of size nprow×npcol logically representing a 2D array of size

[nprow][npcol]. Its [i][j]–th element contains the total number of arithmetical

operations performed by the process with coordinates (i, j) during the execution of the

PDGEMM function call. The return parameter tcomm is a 1D array of size

nprow×npcol×nprow×npcol logically representing an array of size

[nprow][npcol][nprow][npcol]. Its [i][j][k][l]–th element contains the total

number of bytes communicated between a pair of processes with coordinates (i, j) and (k,

l) respectively during the execution of the PDGEMM function call. HSCAL_SUCCESS

indicating successful execution or otherwise an appropriate error code is the return value.

Usage:

 int rc, *tcomm;

 double *tcomp;

 tcomp = (double*)calloc(nprow*npcol, sizeof(double));

 tcomm = (int*)calloc(nprow*npcol*nprow*npcol, sizeof(int));

 rc = hscal_pdgemm_info(

 transa, transb,

 m, n, k,

 alpha,

 ia, ja, desca,

 ib, jb, descb,

 beta,

 ic, jc, descc,

 nprow, npcol,

 tcomp, tcomm

);

 if (rc != HSCAL_SUCCESS)

 {

 /* Problems querying the information */

 }

 /* Print the computations and communications information */

 free(tcomp);

 free(tcomm);

Return values: HSCAL_SUCCESS on success.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

20

hscal_dgemm_info

Determines the total number of computations (arithmetical operations) involved in the execution

of the BLAS DGEMM routine

Synopsis:

 int hscal_dgemm_info(

 char* transa, char* transb,

 int * m, int * n, int * k,

 double * alpha,

 int * lda, int * ldb,

 double * beta, int * ldc, double *tcomp)

Parameters:

 tcomp --- The total number of arithmetic operations

Description: The matrices A, B and C containing the data are not passed as arguments. It has a

parameter in addition to those passed to the serial DGEMM function call. This is the return

parameter tcomp, which contains the total number of arithmetical operations performed in the

execution of the function call.

Usage:

 int rc;

 double tcomp;

 rc = hscal_dgemm_info(

 transa, transb,

 m, n, k,

 alpha,

 lda, ldb,

 beta,

 ldc, &tcomp);

 if (rc != HSCAL_SUCCESS)

 {

 /* Problems querying the information */

 }

 /* Print the computations */

Return values: HSCAL_SUCCESS on success.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

21

3.4 Heterogeneous ScaLAPACK Debug Functions

hscal_set_debug

Set the debugging diagnostics levels

Synopsis:

 HSCAL_LOG_NONE /* No logging */

 HSCAL_LOG_VERBOSE /* Most verbose logging */

int

hscal_set_debug

(

 int debug_level

)

Parameters:

 debug_level --- one of the debug levels shown above

Description: Produces detailed diagnostics. Any process can call this function.

3.5 Heterogeneous ScaLAPACK and HeteroMPI

This section explains how to compose a Heterogeneous ScaLAPACK program using

Heterogeneous ScaLAPACK functions, which are counterparts of the HeteroMPI functions. It

also shows ways to use the timeof interfaces cleverly to write a Heterogeneous ScaLAPACK

program.

Assuming the application programmer wants to provide the process grid arrangement and not use

the Heterogeneous ScaLAPACK runtime system to find it, Figure 4 shows the essential steps.

Here the Heterogeneous ScaLAPACK program employs the ScaLAPACK PDGESV routine.

The input process grid arrangement is (nprow, npcol). The steps are:

1. Initialize the Heterogeneous ScaLAPACK runtime using using the operation

int hscal_init(int * argc, int *** argv)

where argc and argv are the same as the arguments passed to main. This routine must be

called before any other Heterogeneous ScaLAPACK context management routine and must

be called once. It must be called by all the processes running in the Heterogeneous

ScaLAPACK application;

2. Updating the estimation of the speeds of the processors using the routine

hscal_pdgesv_recon, which calls the HeteroMPI function HMPI_Recon. A

benchmark code representing the core computations involved in the execution of the

ScaLAPACK routine PDGESV is provided to this function call to accurately estimate the

speeds of the processors. In this case, the benchmark code performs a local GEMM update of

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

22

Figure 4. Basic steps of the Heterogeneous ScaLAPACK program calling the ScaLAPACK

routine PDGESV. The HeteroMPI functions are used.

 int main(int argc, char **argv) {

 int nprow, npcol, pdgesvctxt, myrow, mycol, c__0 = 0, ictxt;

/* Problem parameters */

 int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV;

/* HeteroMPI handle to the group of MPI processes */

 HMPI_Group gid;

 MPI_Comm pdgesvcomm;

/* Initialize the heterogeneous ScaLAPACK runtime */

 hscal_init(&argc, &argv);

/* Initialize the array descriptors for the matrices A and B

 No need to specify the context argument */

 descinit_(DESCA, …, NULL); /* for Matrix A */

 descinit_(DESCB, …, NULL); /* for Matrix B */

/* Refresh the speeds of the processors */

 hscal_pdgesv_recon(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB);

/* Create a HeteroMPI group of processes */

 hscal_pdgesv_group_create(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &nprow, &npcol, &gid, hscal_model_pdgesv);

/* All the processes that are not members of the group exit here */

 if (!HMPI_Is_member(&gid)) {

 HMPI_Group_free(&gid);

 hscal_finalize(c__0);

 return 0;

 }

/* Get the MPI communicator */

 pdgesvcomm = *(MPI_Comm*)HMPI_Get_comm(&gid);

/* Translate the MPI communicator to a BLACS handle */

 ictxt = Csys2blacs_handle(pdgesvcomm);

/* Form BLACS context based on pdgesvcomm */

 Cblacs_gridinit(&ictxt, "r", nprow, npcol);

/* Retrieve the process grid information */

 Cblacs_gridinfo(pdgesvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdgesvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdgesvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix A */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdgesv‟ routine */

 pdgesv_(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO);

/* Free the BLACS context */

 Cblacs_gridexit(ictxt);

/* Free the HeteroMPI group */

 HMPI_Group_free(&gid);

/* Finalize the Heterogeneous ScaLAPACK runtime */

 hscal_finalize(c__0);

 return 0;

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

23

m×b and b×n matrices where b is the data distribution blocking factor and m and n are local

number of matrix rows and columns determined based on the problem size solved;

3. Creation of a HeteroMPI group of MPI processes using the routine

hscal_pdgesv_group_create, which calls the HeteroMPI‟s group constructor routine

HMPI_Group_create. One of the inputs to this function call is the handle

hscal_model_pdgesv, which encapsulates all the features of the performance model in

the form of a set of functions generated by the compiler from the description of the

performance model of the ScaLAPACK routine. The other input is the process grid

arrangement, (nprow, npcol). During this function call, the HeteroMPI runtime system

solves the problem of selection of the optimal set of processes running on different

computers of the heterogeneous network (mapping problem). The solution is based on the

performance model of the ScaLAPACK routine and the performance model of the executing

network of computers, which reflects the state of this network just before the execution of the

ScaLAPACK routine;

4. The handle to the HeteroMPI group is passed as input to the HeteroMPI routine

HMPI_Get_comm to obtain the MPI communicator. This MPI communicator is translated

to a BLACS handle using the BLACS routine Csys2blacs_handle;

5. The BLACS handle is then passed to the BLACS routine Cblacs_gridinit, which

creates the BLACS context;

6. Execute the steps (2) and (3) involved in calling the ScaLAPACK PDGESV routine (shown

in Figure 1);

7. Release the process grid via a call to Cblacs_gridexit;

8. When all the computations have been completed, the program is exited with a call to

hscal_finalize, which finalizes the heterogeneous ScaLAPACK runtime.

Now assume that application programmer has a ScaLAPACK application, which employs two

routines PDGESV and PDPOSV. Let us also assume that the programmer has to choose between

using one of the process arrangements (3,3) and (4,4). Figure 5 shows how the timeof interface

can be used cleverly to determine the best process arrangement.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

24

Figure 5. Use of the timeof interfaces to choose the best process arrangement between a pair

of process arrangements.

Contrast this to the application shown in Figure 3 where the Heterogeneous ScaLAPACK

runtime finds the best process grid arrangement.

 int main(int argc, char **argv) {

/* Problem parameters */

 char *UPLO;

 int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV, pgatime1[2], pgatime2[2];

 int pga1[2] = {3, 3}, pga2[2] = {4, 4};

/* Initialize the heterogeneous ScaLAPACK runtime */

 hscal_init(&argc, &argv);

…

/* Refresh the speeds of the processors */

 hscal_pdgesv_recon(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB);

/* Use timeof to estimate the execution time of PDGESV for the

 process arrangement (3,3) */

 pgatime1[0] = hscal_pdgesv_timeof(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pga1[0], &pga1[1], hscal_model_pdgesv);

/* Refresh the speeds of the processors */

 hscal_pdposv_recon(UPLO, N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB);

/* Use timeof to estimate the execution time of PDPOSV for the

 process arrangement (3,3) */

 pgatime1[1] = hscal_pdposv_timeof(UPLO, N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pga1[0], &pga1[1], hscal_model_pdposv);

/* Refresh the speeds of the processors */

 hscal_pdgesv_recon(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB);

/* Use timeof to estimate the execution time of PDGESV for the

 process arrangement (4,4) */

 pgatime2[0] = hscal_pdgesv_timeof(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pga2[0], &pga2[1], hscal_model_pdgesv);

/* Refresh the speeds of the processors */

 hscal_pdposv_recon(UPLO, N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB);

/* Use timeof to estimate the execution time of PDPOSV for the

 process arrangement (4,4) */

 pgatime2[1] = hscal_pdposv_timeof(UPLO, N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pga2[0], &pga2[1], hscal_model_pdposv);

/* Use the times obtained to find the best process arrangement */

 if ((pgatime1[0]+pgatime1[1]) < (pgatime2[0]+pgatime2[1]))

 /* Use the process grid arrangement (3,3) */

 else

 /* Use the process grid arrangement (4,4) */

…

/* Finalize the Heterogeneous ScaLAPACK runtime */

 hscal_finalize(c__0);

 }

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

25

Figure 6. Basic steps involved in the heterogeneous ScaLAPACK program calling the routine

PDGESV. The file „test_hscal_pdgesv.c‟.

Figure 7. The parameters file „hscalapack_pdgesv_parameters.h‟.

 #include <hscalapack.h>

 #include “hscalapack_pdgesv_parameters.h”

 int main(int argc, char **argv) {

 int nprow, npcol, pdgesvctxt, myrow, mycol, c__0 = 0;

/* Problem parameters */

 int *N, *NRHS, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *INFO;

 double *A, *B, *IPIV;

/* Initialize the heterogeneous ScaLAPACK runtime */

 hscal_init(&argc, &argv);

/* Initialize the array descriptors for the matrices A and B

 No need to specify the context argument */

 descinit_(DESCA, …, NULL); /* for Matrix A */

 descinit_(DESCB, …, NULL); /* for Matrix B */

/* Get the heterogeneous PDGESV context */

 hscal_pdgesv_ctxt(N, NRHS, IA, JA, DESCA,

 IB, JB, DESCB, &pdgesvctxt);

 if (!hscal_in_ctxt(&pdgesvctxt)) {

 hscal_free_ctxt(&pdgesvctxt);

 hscal_finalize(c__0);

 return 0;

 }

/* Retrieve the process grid information */

 blacs_gridinfo__(&pdgesvctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A and B */

 descinit_(DESCA, …, &pdgesvctxt); /* for Matrix A */

 descinit_(DESCB, …, &pdgesvctxt); /* for Matrix B */

/* Distribute matrices on the process grid using user-defined pdmatgen */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix A */

 pdmatgen_(&pdgesvctxt, …); /* for Matrix B */

/* Call the PBLAS „pdgesv‟ routine */

 pdgesv_(N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB, INFO);

/* Release the heterogeneous PDGESV context */

 hscal_free_ctxt(&pdgesvctxt);

/* Finalize the Heterogeneous ScaLAPACK runtime */

 hscal_finalize(c__0);

 return 0;

 }

int N = 1024;

int NRHS = 1024;

int NB = 32;

int IA = 1;

int JA = 1;

int IB = 1;

int JB = 1;

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

26

4 Heterogeneous ScaLAPACK Program Execution

4.1 Building Heterogeneous ScaLAPACK Application

To create the executable of the application shown in Figure 6,

shell$ mpicc –I<HSCALAPACKDIR>/include –o test_hscal_pdgesv

test_hscal_pdgesv.c –L<HSCALAPACKDIR>/lib –lhscalapack –lhmpi -

lmpc <ScaLAPACK library> <BLACS library> <BLAS library> <F2C

library>

4.2 Running Heterogeneous ScaLAPACK Application

Run the target program using tools provided by MPI such as mpirun.

During the Heterogeneous ScaLAPACK runtime initialization, the structure of the network

(performances of the processors, values of the parameters of the communication model) is

obtained. This information is used by the runtime mapping algorithms. This initialization process

takes time. To avoid this penalty, there are two options that can be provided to the

Heterogeneous ScaLAPACK program, which allow initialization to take place from a file.

To write the structure/state of the executing network to a file, use the option “-wtopo”. For

example, consider the execution of the program test_hscal_pdgesv using OpenMPI on a network

consisting of three hosts {hcl01, hcl02, hcl03}. The structure of the network is saved/written to a

file “topostruct.txt”.

shell$ mpirun –np 1 --host hcl01 test_hscal_pdgesv –wtopo

topostruct.txt : –np 1 --host hcl02 test_hscal_pdgesv : –np 1 --

host hcl03 test_hscal_pdgesv

To read the structure/state of the executing network from a file, use the option “-rtopo”. For

example, consider the execution of the program test_hscal_pdgesv using OpenMPI on three

hosts {hcl01, hcl02, hcl03}. The structure of the network is read from the file “topostruct.txt”.

shell$ mpirun –np 1 --host hcl01 test_hscal_pdgesv –rtopo

topostruct.txt : –np 1 --host hcl02 test_hscal_pdgesv : –np 1 --

host hcl03 test_hscal_pdgesv

The topology files can be created once and used for multiple runs.

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

27

5 Heterogeneous ScaLAPACK Installation Guide for UNIX

This section provides information for programmers and/or system administrators who want to

install Heterogeneous ScaLAPACK for UNIX.

5.1 System Requirements

The following table describes system requirements for Heterogeneous ScaLAPACK for UNIX.

Component Requirement

Operating System Tested on Linux, Solaris, FreeBSD

C compiler Any ANSI C compiler

MPI LAM MPI 6.3.2 or higher

MPICH MPI 1.2.0 or higher with chp4

device

OpenMPI

5.2 Contents of Heterogeneous ScaLAPACK Installation

Heterogeneous ScaLAPACK installation contains the following:

Directory Contents

bin Binaries mpcc

include Header files

Lib Heterogeneous ScaLAPACK library

libhscalapack.a
HeteroMPI libraries libhmpi.a, libmpc.a

5.3 Installation

You should have MPI installed on your system. Please make sure that mpicc and mpirun tools

are in your PATH environment variable.

Unpack the Heterogeneous ScaLAPACK distribution, which comes as a tar in the form

heteroscalapack-x.y.z.tar.gz. To uncompress the file tree, use:

shell$ tar -zxvf heteroscalapack-x.y.z.tar.gz

where x.y.z stands for the installed version of the Heterogeneous ScaLAPACK library (say 1.2.1,

2.0.0, or 3.1.1).

The directory 'heteroscalapack-x.y.z' will be created; execute

shell$ cd heteroscalapack-x.y.z
shell$ mkdir build

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

28

shell$../configure –prefix=<Installation directory>

shell$ make all install

5.4 Testing your Installation

After you have successfully installed Heterogeneous ScaLAPACK, to test the installation, you

can test each individual test in the directory “heteroscalapack-x.y.z/tests”. There is

a test for each and every ScaLAPACK and PBLAS routine.

Diagnostics are produced showing success or failure of each individual test. The ScaLAPACK

tests are in the directory tests/SCALAPACK.

The following variables must be set in the environment before testing:

1). LIBSCALAPACKDIR: The location of the scalapack library

 LIBSSCALAPACK: The name of the scalapack library

 The link command would be -L$(LIBSCALAPACKDIR) -l$(LIBSSCALAPACK)

2). LIBBLACSDIR: The location of the BLACS libraries

 LIBSBLACS: The names of the BLACS libraries

 The link command would be -L$(LIBBLACSDIR) -l$(LIBSBLACS)

3). LIBBLASDIR: The location of the BLAS (optimized or non-optimized) libraries

 LIBSBLAS: The names of the BLAS libraries

 The link command would be -L$(LIBBLASDIR) -l$(LIBSBLAS)

4). LIBF2CDIR: The location of the f2c library

 LIBSF2C: The name of the f2c library

 The link command would be -L$(LIBF2CDIR) -l$(LIBSF2C)

IMPORTANT NOTES: In the case of LIBSSCALAPACK, LIBSBLACS, LIBSBLAS,

LIBSF2C, make sure there is a space in front of the value of the environment variable. For

example:

export LIBSSCALAPACK=" -lscalapack"

export LIBSBLACS=" -lblacs -lblacsCinit -lblacs"

export LIBSF2C=" -lf2c"

Notice a space in front of -lblacs, -lscalapack, -lf2c...

Heterogeneous ScaLAPACK Programmers’ Reference and Installation Manual

29

Edit the parameters file to specify the problem parameters. There are separate parameters files

for a ScaLAPACK program and the corresponding Heterogeneous ScaLAPACK program. This

is so that you can compare the execution times. Each and every test prints the execution time.

For example, to test the ScaLAPACK program employing the PBLAS routine PCGEMM, edit

the parameters file 'scalapack_pcgemm_parameters.h'

For example, to test the Heterogeneous ScaLAPACK program employing the routine PCGEMM,

edit the parameters file 'hscalapack_pcgemm_parameters.h'

Build and run the test using mpicc and mpirun tools.

6 References

[1] http://www-unix.mcs.anl.gov/mpi/.

[2] http://www.netlib.org/scalapack/scalapack_home.html.

[3] http://www.netlib.org/scalapack/pblas_qref.html.

[4] http://www.netlib.org/blas/.

[5] http://www.netlib.org/blacs/.

[6] http://hcl.ucd.ie/Software/HeteroMPI.

[7] L. Prylli and B. Tourancheau, “Efficient block cyclic data redistribution,” in Proceedings of

the Second International Euro-Par Conference on Parallel Processing (EUROPAR'96), Lecture

Notes in Computer Science 1123, Springer-Verlag, pp. 155-164, 1996.

[8] R. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical Optimizations of Software and

the ATLAS Project,” In Parallel Computing, Volume 27, No. (1–2), pp.3–35, January 2001,

ISSN 0167-8191.

