
HeteroMPI Programmers’ Reference and Installation Manual

1

HeteroMPI Programmers’ Reference and Installation Manual

HeteroMPI Programmers’ Reference and Installation Manual

2

HeteroMPI:

A Message Passing Library for Heterogeneous Networks of

Computers

Version 1.3.0

Ravi Reddy, Alexey Lastovetsky

School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4,

Ireland

E-mail: Manumachu.Reddy@ucd.ie, Alexey.Lastovetsky@ucd.ie

May 1, 2009

HeteroMPI Programmers’ Reference and Installation Manual

3

CONTENTS

1 INTRODUCTION ...5

2 WHAT IS HETEROMPI ..5

3 HETEROMPI’S LIBRARY INTERFACE ...6

3.1 HETEROMPI RUNTIME INITIALIZATION AND FINALIZATION..6

HMPI_Init..6
HMPI_Finalize ..7

3.2 HETEROMPI GROUP MANAGEMENT FUNCTIONS ...8

HMPI_Group_rank ...8
HMPI_Rank..9
HMPI_Group_coordof ..10
HMPI_Coordof...11
HMPI_Group_topo_size..12
HMPI_Group_topology ..13
HMPI_Group_parent...14
HMPI_Group_size ...15
HMPI_Is_host...16
HMPI_Is_parent ..16
HMPI_Is_member ..17
HMPI_Is_free...18
HMPI_Get_comm ..18
HMPI_Group_create...19
HMPI_Group_auto_create...22
HMPI_Group_pauto_create ..23
HMPI_Group_heuristic_auto_create ...24
HMPI_Group_heuristic_pauto_create...25
HMPI_Group_pauto_d_create..26
HMPI_Group_heuristic_pauto_d_create ..27
HMPI_Group_free ...29

3.3 HETEROMPI RUNTIME UPDATION FUNCTIONS ...30

HMPI_Recon ...30
HMPI_Recon_t...32

3.4 HETEROMPI ESTIMATION FUNCTIONS...34

HMPI_Timeof ...34
HMPI_Group_timeof...35

3.5 HETEROMPI PROCESSOR INFORMATION FUNCTIONS..36

HMPI_Get_number_of_processors ..36
HMPI_Get_processors_info ..36
HMPI_Get_processes_info ..37
HMPI_Group_performances ..38

3.6 HETEROMPI SYNCHRONIZATION FUNCTIONS ..39

HMPI_Barrier...39

3.7 HETEROMPI DEBUGGING AND VERSION FUNCTIONS ...40

HMPI_Printf ...40

HeteroMPI Programmers’ Reference and Installation Manual

4

HMPI_Strerror ..41
HMPI_Debug ...42
HMPI_Get_version ...42

4 HETEROGENEOUS DATA PARTITIONING INTERFACE (HETERODPI)..43

4.1 SETS...43

Partition_unordered_set ..43
Partition_ordered_set ...43
Get_set_processor...44
Get_my_partition ...45

4.2 DENSE MATRICES...45

Partition_matrix_2d ..45
Partition_matrix_1d_dp...46
Partition_matrix_1d_iterative ..47
Partition_matrix_1d_refining...48
Get_matrix_processor..48
Get_my_width...48
Get_my_height ..49
Get_diagonal...49
Get_my_elements ...49
Get_my_kk_elements ..50

4.3 GRAPHS..50

Partition_graph ...50
Partition_bipartite_graph..51
Partition_hypergraph..52

4.4 TREES ...53

Partition_tree ..53

5 HETEROMPI PROGRAM EXECUTION..54

5.1 HETEROMPI ENVIRONMENT ..54

5.2 BUILDING HETEROMPI APPLICATION..54

5.3 RUNNING HETEROMPI APPLICATION ...56

6 HETEROMPI INSTALLATION GUIDE FOR UNIX...56

6.1 SYSTEM REQUIREMENTS ..56

6.2 CONTENTS OF HETEROMPI DISTRIBUTION ..57

6.3 INSTALLATION ..57

HeteroMPI Programmers’ Reference and Installation Manual

5

1 Introduction

The tools designed for programming high-performance computations on HNOCs must provide

mechanisms to automate the following tedious and error-prone tasks:

• Parameter determination characterizing the computational requirements of the parallel

application and the capabilities of the machines,

• Data partitioning,

• Matching and Scheduling, and

• Task execution.

Ideally a tool must supply mechanisms to the programmer so that he or she can provide

information to it that can assist in finding the most efficient implementation on HNOCs.

Combining the system’s detailed analysis with the programmer’s high-level knowledge of the

application is essential in finding more efficient mappings than either one alone is capable of

achieving. The performance models used by the tools must take into account all the essential

features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects

of paging and the speed and the bandwidth of the communication links between the processors.

The model of the executing network of computers must take into consideration the essential set

of machine characteristics such as computing bandwidth, communication latency,

communication overhead, communication bandwidth, network contention effects and the

memory hierarchy. Such a model must have enough parameters for it to be effective and

accurate.

HeteroMPI is such a tool, which is an extension of MPI for programming high-performance

computations on heterogeneous networks of computers. The main idea of HeteroMPI is to

automate the process of selection of a group of processes, which would execute the

heterogeneous algorithm faster than any other group. HeteroMPI provides features that allow the

user to carefully design their parallel applications that can run efficiently on HNOCs.

The rest of the manual is organized as follows. Section 2 describes HeteroMPI. Section 3

presents the HeteroMPI API, which are extensions to MPI. Section 4 presents the library of data

partitioning functions. Section 5 provides the HeteroMPI command-line user’s interface. This is

followed by installation instructions for HeteroMPI on UNIX platforms in section 6.

2 What is HeteroMPI

Heterogeneous MPI (HeteroMPI) is an extension of MPI for programming high-

performance computations on heterogeneous networks of computers. It allows the application

programmer to describe the performance model of the implemented algorithm in a generic form.

This model allows for all the main features of the underlying parallel algorithm, which have an

impact on its execution performance, such as the total number of parallel processes, the total

volume of computations to be performed by each process, the total volume of data to be

transferred between each pair of the processes, and how exactly the processes interact during the

execution of the algorithm. Given the description of the performance model, HeteroMPI tries to

create a group of processes that executes the algorithm faster than any other group of processes.

HeteroMPI provides all the features to the user to write portable and efficient parallel

applications on HNOCs. These features automate all the essential steps involved in application

development on HNOCs:

HeteroMPI Programmers’ Reference and Installation Manual

6

1). Determination of the characterization parameters relevant to the computational

requirements of the applications and the machine capabilities of the heterogeneous system. The

machine capabilities are determined before the application execution and supplied to the model

of executing network of computers. The model of the executing network of computers is

implementation-dependent. We use a static structure automatically obtained by HeteroMPI

environment and saved in the form of an ASCII file. However, the parameters of the model can

be updated at runtime taking into account the changing network loads.

2). Decomposition of the whole problem into a set of sub-problems that can be solved in

parallel by interacting processes. This step of heterogeneous decomposition is parameterized by

the number and speeds of processors and the speeds and bandwidths of the communication links

between them. The Heterogeneous Data Partitioning Interface (HeteroDPI) is developed to

automate this step of heterogeneous decomposition. HeteroDPI provides API that allows the

application programmers to specify simple and basic partitioning criteria in the form of

parameters and functions to partition the mathematical objects used in their parallel applications.

3). Selection of the optimal set of processes running on different computers of the

heterogeneous network by taking into account the speeds of the processors, and the speeds and

the bandwidths of the communications links between them. During the creation of this set of

optimal processes, HeteroMPI runtime system solves the problem of selection of the optimal set

of processes running on different computers of the heterogeneous network using an advanced

mapping algorithm. The mapping algorithm is based on the performance model of the parallel

algorithm in the form of the set of functions generated by the compiler from the description of

the performance model, and the performance model of the executing network of computers,

which reflects the state of this network just before the execution of the parallel algorithm.

4). Application program execution on the HNOCs. The command line user interface of

HeteroMPI developed consists of a number of shell commands supporting the creation of a

virtual parallel machine and the execution of the HeteroMPI application programs on the virtual

parallel machine. The notion of virtual parallel machine enables a collection of heterogeneous

computers to be used as single large parallel computer.

3 HeteroMPI’s Library Interface

In this section, we describe the interfaces to the routines provided by HeteroMPI as extensions to

MPI and the interfaces to the routines in the heterogeneous data partitioning interface (HPDI).

3.1 HeteroMPI runtime initialization and finalization

HMPI_Init

Initializes HeteroMPI runtime system

Synopsis:

 int
 HMPI_Init
 (
 int * argc,

HeteroMPI Programmers’ Reference and Installation Manual

7

 char *** argv
)

Parameters:

 argc --- Number of arguments supplied to main

 argv --- Values of arguments supplied to main

Description: All processes must call this routine to initialize HeteroMPI runtime system. This

routine must be called before any other HeteroMPI routine. It must be called at most once;

subsequent calls are erroneous.

Usage:

 int main(int argc, char ** argv)
 {
 int rc = HMPI_Init (
 &argc,
 &argv
);

 if (rc != HMPI_SUCCESS)
 {
 //Error has occurred
 }
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Finalize

Finalizes HeteroMPI runtime system

Synopsis:

 int
 HMPI_Finalize
 (
 int exitcode
)

Parameters:

 exitcode --- code to be returned to the command shell

Description: This routine cleans up all HeteroMPI state. All processes must call this routine at

the end of processing tasks. Once this routine is called, no HeteroMPI routine (even

HMPI_Init) may be called.

HeteroMPI Programmers’ Reference and Installation Manual

8

Usage:

 int main(int argc, char ** argv)
 {
 int rc = HMPI_Init (
 &argc,
 &argv
);

 if (rc != HMPI_SUCCESS)
 {
 //Error has occurred
 }

 rc = HMPI_Finalize (0);

 if (rc != HMPI_SUCCESS)
 {
 //Error has occurred
 }
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

3.2 HeteroMPI Group Management Functions

HMPI_Group_rank

Returns rank of the calling process

Synopsis:

 int
 HMPI_Group_rank
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

Description: This routine returns the rank of the process calling it. Only processes that are

members of the group represented by the handle gid can call this routine.

HeteroMPI Programmers’ Reference and Installation Manual

9

Usage:

 // HMPI_HOST_GROUP is a predefined group handle
 // containing the host process.
 HMPI_Group * gid = HMPI_HOST_GROUP;

 if (HMPI_Is_member (gid))
 {
 int rank = HMPI_Group_rank (
 gid
);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Rank

Returns rank of the process with the coordinates specified

Synopsis:

 int
 HMPI_Rank
 (
 const HMPI_Group* gid,
 const int * coordinates
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

 coordinates --- coordinates representing a process in the group represented by

 the handle gid

Description: This routine returns the rank of the process in the group represented by the handle

gid and the coordinates of the process being coordinates . Only processes that are members

of the group represented by the handle gid can call this routine. (It must be noted that a

topology is explicitly associated with a HeteroMPI group)

Usage:

 // HeteroMPI target program
 HMPI_Group gid;
 int coordinates = 3;

HeteroMPI Programmers’ Reference and Installation Manual

10

 if (HMPI_Is_member (&gid))
 {
 int rank = HMPI_Rank(
 &gid,
 &coordinates
);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Group_coordof

Returns the coordinates of the process

Synopsis:

 int
 HMPI_Group_coordof
 (
 const HMPI_Group* gid,
 int * numc,
 int ** coordinates
)

Parameters:

 gid --- Handle to the HeteroMPI group of processes. This is an input parameter.

 numc --- Output parameter giving the number of coordinates representing the

 calling process in the group represented by the handle gid .

 coordinates --- The values of the coordinates of the calling process in the

 group represented by the handle gid .

Description: If the process calling this routine is a member of the group given by the handle

gid , then its coordinates are returned in coordinates , the initial element of which points to

an integer array containing the coordinates with size numc. Only processes that are members of

the group represented by the handle gid can call this routine.

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (&gid))
 {
 int numc;

HeteroMPI Programmers’ Reference and Installation Manual

11

 int * coordinates;

 int rc = HMPI_Group_coordof (
 &gid,
 &numc,
 &coordinates
);

 if (rc != HMPI_SUCCESS)
 {
 //Failure
 }

 free(coordinates);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid . HMPI_SUCCESS is returned on success.

HMPI_Coordof

Returns the coordinates of the process with a specified rank.

Synopsis:

 int
 HMPI_Coordof
 (
 const HMPI_Group* gid,
 int rank,
 int * numc,
 int ** coordinates
)

Parameters:

 gid --- Handle to the HeteroMPI group of processes. This is an input parameter.

 rank --- The rank of the process whose coordinates are returned.

 This is an input parameter.

 numc --- Output parameter giving the number of coordinates of the process

 whose rank is rank in the group represented by the handle gid .

 coordinates --- The values of the coordinates of the process whose rank is

 rank in the group represented by the handle gid .

Description: The coordinates of the process whose rank is rank in the group represented by the

handle gid are returned in coordinates , the initial element of which points to an integer

HeteroMPI Programmers’ Reference and Installation Manual

12

array containing the coordinates with size numc. Only processes that are members of the group

represented by the handle gid can call this routine.

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (gid))
 {
 int rank = 0;
 int numc;
 int * coordinates;

 int rc = HMPI_Coordof (
 &gid,
 rank,
 &numc,
 &coordinates
);

 if (rc != HMPI_SUCCESS)
 {
 //Failure
 }

 free(coordinates);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid . HMPI_SUCCESS is returned on success.

HMPI_Group_topo_size

Returns the number of coordinates that can specify a process in a group

Synopsis:

 int
 HMPI_Group_topo_size
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

HeteroMPI Programmers’ Reference and Installation Manual

13

Description: This routine returns the number of coordinates used to specify a process, which is a

member of the group represented by the handle gid . Only processes that are members of the

group represented by the handle gid can call this routine.

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (&gid))
 {
 int numc = HMPI_Group_topo_size (
 &gid
);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Group_topology

Returns the number of processes in the group in each dimension of the topology of the group.

Synopsis:

 int
 HMPI_Group_topology
 (
 const HMPI_Group* gid,
 int * numc,
 int ** coordinates
)

Parameters:

 gid --- handle to the HeteroMPI group of processes.

 numc --- Output parameter giving the number of dimensions of the topology

specifying the arrangement of the processes, which are members of the

group represented by the handle gid .

 coordinates --- Output parameter giving the number of processes in each

 dimension of the topology specifying the arrangement of

 the processes, which are members of the group represented by

 the handle gid .

Description: This routine returns the number of dimensions of the topology and the number of

processes in each dimension of the topology representing the arrangement of the processes,

HeteroMPI Programmers’ Reference and Installation Manual

14

which are members of the group represented by the handle gid . The number of processes in

each dimension are returned in coordinates , the initial element of which points to an integer

array with number numc of elements containing the number of dimensions. Only processes that

are members of the group represented by the handle gid can call this routine.

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (&gid))
 {
 int numc;
 int * coordinates;
 int rc = HMPI_Group_topology (
 &gid,
 &numc,
 &coordinates
);

 if (rc != HMPI_SUCCESS)
 {
 //Failure
 }

 free(coordinates);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid . HMPI_SUCCESS is returned on success.

HMPI_Group_parent

Returns the rank of the parent of a group

Synopsis:

 int
 HMPI_Group_parent
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes.

HeteroMPI Programmers’ Reference and Installation Manual

15

Description: This routine returns the rank of the parent of the group represented by the handle

gid . Only processes that are members of the group represented by the handle gid can call this

routine.

Usage:

 HMPI_Group * gid;
 if (HMPI_Is_member (gid))
 {
 int prank = HMPI_Group_parent (gid);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Group_size

Returns the number of processes in the group

Synopsis:

 int
 HMPI_Group_size
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

Description: This routine returns the number of processes in the group represented by the handle

gid . Only processes that are members of the group represented by the handle gid can call this

routine.

Usage:

 HMPI_Group * gid;

 if (HMPI_Is_member (gid))
 {
 int size = HMPI_Group_size (gid);
 }

HeteroMPI Programmers’ Reference and Installation Manual

16

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Is_host

Is the calling process the host?

Synopsis:

 unsigned char
 HMPI_Is_host()

Description: This routine returns true if the process calling this function is the host process

otherwise false . Any process can call this function.

Usage:

 if (HMPI_Is_host ())
 {
 printf(“I’m the host\n”);
 }
 else
 {
 printf(“I’m not the host\n”);
 }

Return values: Value of 1 is returned if the process is the member of the group. 0 otherwise.

HMPI_Is_parent

Is the calling process the parent process of the group?

Synopsis:

 unsigned char
 HMPI_Is_parent
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes.

Description: This routine returns true if the process calling this routine is the parent of the

group represented by the handle gid otherwise false . Only processes that are members of the

group represented by the handle gid can call this routine.

HeteroMPI Programmers’ Reference and Installation Manual

17

Usage:

 HMPI_Group * gid;

 if (HMPI_Is_parent (gid))
 {
 printf(“I’m the parent of the group gid\n”);
 }
 else
 {
 printf(“I’m not the parent of the group gid\n”);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Is_member

Am I a member of the group?

Synopsis:

 unsigned char
 HMPI_Is_member
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes.

Description: This function returns true if the process calling this routine is the member of the

group represented by the handle gid otherwise false . Only processes that are members of the

group represented by the handle gid can call this routine.

Usage:

 HMPI_Group * gid;

 if (HMPI_Is_member (gid))
 {
 printf(“I’m a member of the group gid\n”);
 }
 else

HeteroMPI Programmers’ Reference and Installation Manual

18

 {
 printf(“I’m not a member of the group gid\n”);
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group represented by the handle gid .

HMPI_Is_free

Am I a member of the predefined group HMPI_FREE_GROUP?

Synopsis:

 unsigned char
 HMPI_Is_free()

Description: This routine returns true if the process is free and is member of the predefined

group HMPI_FREE_GROUP and false otherwise. Any process can call this function.

Usage:

 if (HMPI_Is_free ())
 {
 printf(“I’m a free process and member of”
 “ HMPI_FREE_GROUP \n”);
 }
 else
 {
 printf(“I’m not a free process and not a member of”
 “ HMPI_FREE_GROUP \n”);
 }

Return values: Value of 1 is returned if the process is not the member of any other group other

than HMPI_FREE_GROUP. 0 otherwise.

HMPI_Get_comm

Returns an MPI communicator with communication group of MPI processes

Synopsis:

 const MPI_Comm*
 HMPI_Get_comm
 (
 const HMPI_Group* gid
)

HeteroMPI Programmers’ Reference and Installation Manual

19

Parameters:

 gid --- handle to the HeteroMPI group of processes.

Description: This routine returns an MPI communicator with communication group of MPI

processes defined by gid . This is a local operation not requiring inter-process communication.

Application programmers can use this communicator to call the standard MPI communication

routines during the execution of the parallel algorithm. This communicator can safely be used in

other MPI routines.

Usage:

 HMPI_Group * gid;
 MPI_Comm* comm;

 if (HMPI_Is_member (gid))
 {
 comm = HMPI_Get_comm(gid);
 if (comm == NULL)
 {
 //error
 }
 }

Return values: This call returns NULL if the process is not a member of the group represented

by the handle gid .

HMPI_Group_create

Create a HeteroMPI group of processes

Synopsis:

 int
 HMPI_Group_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

HeteroMPI Programmers’ Reference and Installation Manual

20

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine tries to create a group that would execute the heterogeneous algorithm

faster than any other group of processes. In HeteroMPI, groups are not absolutely independent on

each other. Every newly created group has exactly one process shared with already existing

groups. That process is called a parent of this newly created group, and is the connecting link,

through which results of computations are passed if the group ceases to exist.

HMPI_Group_create is a collective operation and must be called by the parent and all the

processes, which are not members of any HeteroMPI group.

Usage:

 HMPI_Group gid1, gid2, gid3;

 int modelp[1] = {5};
 unsigned char is_parent_of_nid2 = 0;
 unsigned char is_parent_of_nid3 = 0;

 // The parent used in the creation of abstract network
 // gid1 is the host
 if (HMPI_Is_member (HMPI_HOST_GROUP))
 {
 HMPI_Group_create (
 &gid1,
 &HMPI_Model_simple,
 modelp,
 1
);
 }

 if (HMPI_Is_free ())
 {
 HMPI_Group_create (
 &gid1,
 &HMPI_Model_simple,
 NULL,
 0
);
 }

 // The parent used in the creation of group gid2 is the
 // member of group gid1 whose coordinates are given
 // {2}
 if (HMPI_Is_member (&gid1))

HeteroMPI Programmers’ Reference and Installation Manual

21

 {
 int numc;
 int ** coordinates = (int**)malloc(
 sizeof(int*)
);
 int rc = HMPI_Group_coordof (
 &gid1,
 &numc,
 coordinates,
);
 if ((*coordinates)[0] == 2)
 {
 is_parent_of_nid2 = 1;
 }

 free(coordinates[0]);
 free(coordinates);
 }

 if (is_parent_of_nid2
 || HMPI_Is_free ()
)
 {
 HMPI_Group_create (
 &nid2,
 &HMPI_Model_simple,
 modelp,
 1
);
 }

 // The parent used in the creation of the group gid3 is
 // the member of abstract network nid2 whose
 // coordinates are given by {3}
 if (HMPI_Is_member (&nid2))
 {
 int numc;
 int ** coordinates = (int **)malloc(
 sizeof(int *)
);

 int result = HMPI_Group_coordof (
 &gid2,
 &numc,
 coordinates,
);

HeteroMPI Programmers’ Reference and Installation Manual

22

 if ((*coordinates)[0] == 3)
 {
 is_parent_of_gid3 = 1;
 }

 free(coordinates[0]);
 free(coordinates);
 }

 if (is_parent_of_nid3
 || HMPI_Is_free ()
)
 {
 HMPI_Group_create (
 &gid3,
 &HMPI_Model_simple,
 modelp,
 1
);
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_auto_create

Create a HeteroMPI group of processes with optimal number of processes

Synopsis:

 int
 HMPI_Group_auto_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

HeteroMPI Programmers’ Reference and Installation Manual

23

Description: This routine allows application programmers not to bother about finding the

optimal number of processes that can execute the parallel application. They can specify only the

rest of the parameters thus leaving the detection of the optimal number of processes to the

HeteroMPI runtime system. HMPI_Group_auto_create is a collective operation and must

be called by the parent and all the processes, which are not members of any HeteroMPI group.

The parameters model_parameters and param_count are input parameters. User fills

only the input-specific part of the parameter model_parameters and ignores the return

parameters specifying the number of processes to be involved in executing the algorithm and

their performances.

During the execution of this function, process arrangements are evaluated serially, that is, one

after the other. The parent of the group evaluates the process arrangements.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_pauto_create

Create a HeteroMPI group of processes with optimal number of processes

Synopsis:

 int
 HMPI_Group_pauto_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine allows application programmers not to bother about finding the

optimal number of processes that can execute the parallel application. They can specify only the

rest of the parameters thus leaving the detection of the optimal number of processes to the

HeteroMPI runtime system. HMPI_Group_pauto_create is a collective operation and must

be called by the parent and all the processes, which are not members of any HeteroMPI group.

HeteroMPI Programmers’ Reference and Installation Manual

24

The parameters model_parameters and param_count are input parameters. User fills

only the input-specific part of the parameter model_parameters and ignores the return

parameters specifying the number of processes to be involved in executing the algorithm and

their performances.

During the execution of this function, process arrangements are evaluated parallely. The process

arrangements are evaluated by all the processes available for computation. The process

arrangements are divided amongst the processes based on the speeds of the processors. This

function call may be more efficient than the function call, HMPI_Group_auto_create.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_heuristic_auto_create

Uses user-supplied heuristics to create a HeteroMPI group of processes with optimal number of

processes

Synopsis:

 typedef int (*HMPI_Heuristic_function)(

 int np, int *dp, const int * modelp, int paramc);
 int
 HMPI_Group_heuristic_auto_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 HMPI_Heuristic_function hfunc,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 hfunc --- User-supplied heuristic function (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine has the same functionality as HMPI_Group_auto_create except

that it allows application programmers to supply heuristics that minimize the number of process

arrangements evaluated.

Application programmers provide the heuristic function hfunc . The input parameter np is the

number of dimensions in the process arrangement. The input parameter dp is an integer array of

HeteroMPI Programmers’ Reference and Installation Manual

25

size np containing the number of processes in each dimension of the process arrangement. The

input parameters modelp and paramc are the parameters supplied to the performance model.

The function HMPI_Group_heuristic_auto_create evaluates a process arrangement

only if the heuristic function hfunc returns true.

During the execution of this function, process arrangements are evaluated serially, that is, one

after the other. The parent of the group evaluates the process arrangements.

A simple heuristic function is shown below, which returns a value true only if the process

arrangement is a square grid.

 int Square_grid_only(

 int np, int *dp, void *modelp, int paramc){
 if ((np == 2) && (dp[0] == dp[1]))
 return true ;
 return false ;
 }

The function evaluates process arrangements that are square grids only if this heuristic function

is provided as an input.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_heuristic_pauto_create

Uses user-supplied heuristics to create a HeteroMPI group of processes with optimal number of

processes

Synopsis:

 typedef int (*HMPI_Heuristic_function)(

 int np, int *dp, const int * modelp, int paramc);
 int
 HMPI_Group_heuristic_pauto_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 HMPI_Heuristic_function hfunc,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

HeteroMPI Programmers’ Reference and Installation Manual

26

 of the performance model (input parameter)

 hfunc --- User-supplied heuristic function (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine has the same functionality as HMPI_Group_pauto_create

except that it allows application programmers to supply heuristics that minimize the number of

process arrangements evaluated.

Application programmers provide the heuristic function hfunc . The input parameter np is the

number of dimensions in the process arrangement. The input parameter dp is an integer array of

size np containing the number of processes in each dimension of the process arrangement. The

input parameters modelp and paramc are the parameters supplied to the performance model.

The function HMPI_Group_heuristic_pauto_create evaluates a process arrangement

only if the heuristic function hfunc returns true.

During the execution of this function, process arrangements are evaluated parallely. The process

arrangements are evaluated by all the processes available for computation. The process

arrangements are divided amongst the processes based on the speeds of the processors. This

function call may be more efficient than the function call,

HMPI_Group_heuristic_auto_create.

A simple heuristic function is shown below, which returns a value true only if the process

arrangement is a square grid.

 int Square_grid_only(

 int np, int *dp, void *modelp, int paramc){
 if ((np == 2) && (dp[0] == dp[1]))
 return true ;
 return false ;
 }

The function evaluates process arrangements that are square grids only if this heuristic function

is provided as an input.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_pauto_d_create

Create a HeteroMPI group of processes with optimal number of processes

Synopsis:

 int
 HMPI_Group_pauto_d_create
 (
 HMPI_Group* gid,

HeteroMPI Programmers’ Reference and Installation Manual

27

 const HMPI_Model* model,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine allows application programmers not to bother about finding the

optimal number of processes that can execute the parallel application. They can specify only the

rest of the parameters thus leaving the detection of the optimal number of processes to the

HeteroMPI runtime system. HMPI_Group_pauto_d_create is a collective operation and

must be called by the parent and all the processes, which are not members of any HeteroMPI

group.

The parameters model_parameters and param_count are input parameters. User fills

only the input-specific part of the parameter model_parameters and ignores the return

parameters specifying the number of processes to be involved in executing the algorithm and

their performances.

This function has additional constraints:

1). It is valid only for 1D and 2D process arrangements

2). It starts with the total number of processes in the communication universe. It obtains all the

possible two dimensional process arrangements for this total number of processes. It evaluates

these process arrangements parallely. The process arrangements are evaluated by all the

processes available for computation. The process arrangements are divided amongst the

processes based on the speeds of the processors. It determines the best process arrangement

using the estimated execution times.

Now it decrements the total number of processes by one. It obtains again all the possible two

dimensional process arrangements. If the estimated execution times are more than the optimal

estimated execution time calculated before, the algorithm stops.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_heuristic_pauto_d_create

Uses user-supplied heuristics to create a HeteroMPI group of processes with optimal number of

processes

Synopsis:

HeteroMPI Programmers’ Reference and Installation Manual

28

 typedef int (*HMPI_Heuristic_function)(
 int np, int *dp, const int * modelp, int paramc);
 int
 HMPI_Group_heuristic_pauto_d_create
 (
 HMPI_Group* gid,
 const HMPI_Model* model,
 HMPI_Heuristic_function hfunc,
 const int * model_parameters,
 int paramc
)

Parameters:

 gid --- handle to the HeteroMPI group of processes. This is an output parameter.

 model --- handle that encapsulates all the features of the performance model in the

 form of a set of functions generated by the compiler from the description

 of the performance model (input parameter)

 hfunc --- User-supplied heuristic function (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine has the same functionality as HMPI_Group_pauto_d_create

except that it allows application programmers to supply heuristics that minimize the number of

process arrangements evaluated.

Application programmers provide the heuristic function hfunc . The input parameter np is the

number of dimensions in the process arrangement. The input parameter dp is an integer array of

size np containing the number of processes in each dimension of the process arrangement. The

input parameters modelp and paramc are the parameters supplied to the performance model.

The function HMPI_Group_heuristic_pauto_d_create evaluates a process

arrangement only if the heuristic function hfunc returns true.

This function has additional constraints:

1). It is valid only for 1D and 2D process arrangements

2). It starts with the total number of processes in the communication universe. It obtains all the

possible two dimensional process arrangements for this total number of processes. It evaluates

these process arrangements parallely. The process arrangements are evaluated by all the

processes available for computation. The process arrangements are divided amongst the

processes based on the speeds of the processors. It determines the best process arrangement

using the estimated execution times.

Now it decrements the total number of processes by one. It obtains again all the possible two

dimensional process arrangements. If the estimated execution times are more than the optimal

estimated execution time calculated before, the algorithm stops.

HeteroMPI Programmers’ Reference and Installation Manual

29

A simple heuristic function is shown below, which returns a value true only if the process

arrangement is a square grid.

 int Square_grid_only(

 int np, int *dp, void *modelp, int paramc){
 if ((np == 2) && (dp[0] == dp[1]))
 return true ;
 return false ;
 }

The function evaluates process arrangements that are square grids only if this heuristic function

is provided as an input.

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Group_free

Free a HeteroMPI group of processes

Synopsis:

 int
 HMPI_Group_free
 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

Description: This routine deallocates the resources associated with a group object gid .

HMPI_Group_free is a collective operation and must be called by all the processes, which are

members of the communication universe HMPI_COMM_WORLD.

Usage:

 HMPI_Group gid;

 // Create a HeteroMPI group of processes

 if (HMPI_Is_member (HMPI_COMM_WORLD_GROUP))
 {
 HMPI_Group_free (&gid);
 }

HeteroMPI Programmers’ Reference and Installation Manual

30

Return values: HMPI_SUCCESS on success and an error in case of failure.

3.3 HeteroMPI Runtime updation Functions

HMPI_Recon

Updates the estimation of processor performances dynamically

Synopsis:

 typedef void (*HMPI_Benchmark_function)(
 const void *, int , void *);

 int
 HMPI_Recon
 (
 HMPI_Benchmark_function func,
 const void * input_p,
 int num_of_parameters,
 void * output_p
)

Parameters:

 func --- Benchmark user function executed by all the physical processors.

 input_p --- Input parameters to the user function.

 num_of_parameters --- Number of input parameters to the user function.

 output_p --- Return parameter on the execution of the user function.

Description: All the processors execute the benchmark function func in parallel, and the time

elapsed by each of the processors to execute the code is used to refresh the estimation of its

speed. This is a collective operation and must be called by all the processes available for

computation.

This routine allows updating the estimation of processor performances dynamically, at

runtime, just before using the estimation by the programming system. It is especially important if

computers, executing the HeteroMPI program, are used for other computations as well. In that

case, the real performance of processors can dynamically change dependent on the external

computations. The use of this routine allows writing parallel programs sensitive to such dynamic

variation of the workload of the underlying computer system.

Usage:

 double Perf_func (
 double l, double w, double h, double delta)

HeteroMPI Programmers’ Reference and Installation Manual

31

 {
 double m,x,y,z;
 for (m = 0.0, x = 0.0; x < l; x += delta)
 for (y = 0.; y < w; y += delta)
 for (z = 0.; z < h; z += delta)
 m += XYZ_func(x,y,z);
 return m * delta * delta * delta;
 }

 void Benchmark_function
 (
 const void * input_p,
 int num_of_p,
 void * output_p
)
 {
 double * params = (double *)input_p;
 double result = Perf_func(
 params[0],
 params[1],
 params[2],
 params[3]
);
 *(double *)(output_p) = result;
 return ;
 }

 // All processes available for computation must call
 // this function
 {
 double output_p;
 int rc = HMPI_Recon(
 Benchmark_function,
 input_p,
 4,
 &output_p
);

 if (rc != HMPI_SUCCESS)
 {
 //An error has occurred
 }
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

HeteroMPI Programmers’ Reference and Installation Manual

32

HMPI_Recon_t

Updates the estimation of processor performances dynamically

Synopsis:

 typedef double (*HMPI_Benchmark_function_t)(
 const void *, int , void *);

 int
 HMPI_Recon_t
 (
 HMPI_Benchmark_function func,
 const void * input_p,
 int num_of_parameters,
 void * output_p
)

Parameters:

 func --- Benchmark user function executed by all the physical processors.

 input_p --- Input parameters to the user function.

 num_of_parameters --- Number of input parameters to the user function.

 output_p --- Return parameter on the execution of the user function.

Description: All the processors execute the benchmark function func in parallel, and the time

elapsed by each of the processors to execute the code is used to refresh the estimation of its

speed. This is a collective operation and must be called by all the processes available for

computation.

This routine allows updating the estimation of processor performances dynamically, at

runtime, just before using the estimation by the programming system. It is especially important if

computers, executing the HeteroMPI program, are used for other computations as well. In that

case, the real performance of processors can dynamically change dependent on the external

computations. The use of this routine allows writing parallel programs sensitive to such dynamic

variation of the workload of the underlying computer system.

Usage:

 double Perf_func (
 double l, double w, double h, double delta)
 {
 double m,x,y,z;
 for (m = 0.0, x = 0.0; x < l; x += delta)
 for (y = 0.; y < w; y += delta)
 for (z = 0.; z < h; z += delta)

HeteroMPI Programmers’ Reference and Installation Manual

33

 m += XYZ_func(x,y,z);
 return m * delta * delta * delta;
 }

 double Benchmark_function
 (
 const void * input_p,
 int num_of_p,
 void * output_p
)
 {
 double * params = (double *)input_p;
 // Time the benchmark function
 double start = MPI_Wtime();
 double result = Perf_func(
 params[0],
 params[1],
 params[2],
 params[3]
);
 double end = MPI_Wtime();
 *(double *)(output_p) = result;
 return (end-start);
 }

 // All processes available for computation must call
 // this function
 {
 double output_p;
 int rc = HMPI_Recon_t (
 Benchmark_function,
 input_p,
 4,
 &output_p
);

 if (rc != HMPI_SUCCESS)
 {
 //An error has occurred
 }
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

HeteroMPI Programmers’ Reference and Installation Manual

34

3.4 HeteroMPI Estimation Functions

HMPI_Timeof

Predict the total time of execution of the algorithm on the underlying hardware without its real

execution

Synopsis:

 double
 HMPI_Timeof
 (
 const HMPI_Model* model,
 const int * model_parameters,
 int paramc
)

Parameters:

 model --- handle that encapsulates all the features of the performance model in

 the form of a set of functions generated by the compiler from the

 description of the performance model (input parameter)

 model_parameters --- parameters of the performance model (input parameter)

 paramc --- number of parameters of the performance model (input parameter)

Description: This routine allows application programmers to predict the total time of execution

of the algorithm on the underlying hardware without its real execution. This function allows the

application programmers to write such a parallel application that can follow different parallel

algorithms to solve the same problem, making choice at runtime depending on the particular

executing network and its actual performance. This is a local operation that can be called by any

process, which is a member of the group associated with the predefined communication universe

HMPI_COMM_WORLD of HeteroMPI.

HMPI_Timeof can thus be used to estimate the execution time on HNOCs for each possible

set of model parameters model_parameters . Application programmers can use this function

creatively to design best possible heuristics for the set of parameters. Depending on the time

estimated for each set, the optimal values of the parameters are determined. These values are

then passed to the performance model during the actual creation of the group of processes using

the function HMPI_Group_create .

Usage:

 algorithm bcast(int p, int n, int ITER, int rooot) {
 coord I=p;
 node {
 I>=0: bench*1;
 };
 link {

HeteroMPI Programmers’ Reference and Installation Manual

35

 I>=0&&I!=rooot: length *(n*n*ITER* sizeof (double))
 [rooot]->[I];
 };
 parent [0];
 scheme {
 int i, k;
 for (k = 0; k < ITER; k++)
 for (i = 0; i < p; i++)
 if (i != rooot)
 (100/ITER)%%[rooot]->[i];
 };
 };

 int main() {
 int p;
 HMPI_Group gid;
 …
 p = HMPI_Group_size (HMPI_COMM_WORLD_GROUP);
 if (HMPI_Is_host ()) {
 int param_count = 4;
 int model_params[4] = {
 p,
 N,
 ITER,
 root
 };
 double time;
 time = HMPI_Timeof (
 &HMPI_Model_bcast,
 &model_params,
 param_count
);
 time = (double)time/(double)ITER;
 printf("Number of bytes broadcast = %d,
 time=%0.9f\n", N*N*8, time);
 }
 }

Return values: -1.0 in case of failure.

HMPI_Group_timeof

Returns the predicted total time of execution of the algorithm on the underlying hardware

Synopsis:

 double
 HMPI_Group_timeof

HeteroMPI Programmers’ Reference and Installation Manual

36

 (
 const HMPI_Group* gid
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

Description: This routine returns the predicted total time of execution of the algorithm on the

underlying hardware. This function is a collective operation that must be called by all the

members of the group.

Return values: -1.0 in case of failure.

3.5 HeteroMPI Processor Information Functions

HMPI_Get_number_of_processors

Returns the number of physical processors of the underlying distributed memory machine

Synopsis:

 int
 HMPI_Get_number_of_processors()

Description: This routine returns the number of physical processors of the underlying distributed

memory machine. This is a collective operation and must be called by all the processes in the

group associated with the predefined communication universe HMPI_COMM_WORLD of

HeteroMPI.

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success.

HMPI_Get_processors_info

Returns the relative performances of the physical processors of the underlying distributed

memory machine

Synopsis:

 int
 HMPI_Get_processors_info
 (
 double * relative_performances
)

Parameters:

 Relative_performances --- Output parameter containing the relative

HeteroMPI Programmers’ Reference and Installation Manual

37

 performances of the physical processors of the

 underlying distributed memory machine

Description: This routine returns the relative performances of the physical processors of the

underlying distributed memory machine. This is a collective operation and must be called by all

the processes in the group associated with the predefined communication universe

HMPI_COMM_WORLD of HeteroMPI.

Usage:

 int p = HMPI_Get_number_of_processors ();
 double speeds = (double *)malloc(
 sizeof (double)
 *
 p
);

 int rc = HMPI_Get_processors_info (
 speeds
);

 if (rc != HMPI_SUCCESS)
 {
 //An error has occurred
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success.

HMPI_Get_processes_info

Returns the relative performances of the processes running on the physical processors of the

underlying distributed memory machine

Synopsis:

 int
 HMPI_Get_processes_info
 (
 double * relative_performances
)

Parameters:

 Relative_performances --- Output parameter containing the relative

 performances of the processes running on the

 physical processors of the underlying distributed

HeteroMPI Programmers’ Reference and Installation Manual

38

 memory machine

Description: This routine returns the relative performances of the processes running on the

physical processors of the underlying distributed memory machine. This is a collective operation

and must be called by all the processes in the group associated with the predefined

communication universe HMPI_COMM_WORLD of HeteroMPI.

Usage:

 int p = HMPI_Group_size (HMPI_COMM_WORLD_GROUP);
 double speeds = (double *)malloc(
 sizeof (double)
 *
 p
);

 int rc = HMPI_Get_processes_info (
 speeds
);

 if (rc != HMPI_SUCCESS)
 {
 //An error has occurred
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success.

HMPI_Group_performances

Returns the relative performances of the processes in a group

Synopsis:

 int
 HMPI_Group_performances
 (
 const HMPI_Group* gid,
 double * relative_performances
)

Parameters:

 gid --- handle to the HeteroMPI group of processes

 Relative_performances --- Output parameter containing the relative

 performances of the processes in the group

 represented by the handle gid

HeteroMPI Programmers’ Reference and Installation Manual

39

Description: This routine returns the relative performances of the processes in the group

represented by the handle gid . This is a collective operation and must be called by all the

processes in the group given by the handle gid .

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (gid))
 {
 int p = HMPI_Group_size (&gid);
 double speeds = (double *)malloc(
 sizeof (double)
 *
 p
);

 int rc = HMPI_Group_performances (
 gid,
 speeds
);

 if (rc != HMPI_SUCCESS)
 {
 //An error has occurred
 }
 }

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of

the group given by the handle gid . HMPI_SUCCESS is returned on success.

3.6 HeteroMPI Synchronization Functions

HMPI_Barrier

Barrier for the members of the group

Synopsis:

int HMPI_Barrier
(
 const HMPI_Group* gid
)

Parameters:

HeteroMPI Programmers’ Reference and Installation Manual

40

 gid --- handle to the HeteroMPI group of processes

Description: Has same functionality as MPI_Barrier . This is a collective operation and must

be called by all the processes in the group given by the handle gid .

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (&gid))
 {
 HMPI_Barrier (&gid);
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

3.7 HeteroMPI Debugging and Version Functions

HMPI_Printf

Print formatted strings to the host processor.

Synopsis:

int HMPI_Printf
(
 const char * format,
 ...
)

Parameters:

 format --- Format string in printf-fashion.

Description: Prints formatted strings to standard output on the virtual host processor from any

virtual processor of the computing space. Any process can call this function.

Usage:

 HMPI_Group gid;

 if (HMPI_Is_member (&gid))
 {
 HMPI_Printf (
 "Hello, My node rank is %d, My Globalrank “
 “is %d\n ",
 HMPI_Group_rank (&nid),

HeteroMPI Programmers’ Reference and Installation Manual

41

 HMPI_Group_rank (HMPI_COMM_WORLD_GROUP)
);
 }

Return values: HMPI_SUCCESS on success and an error in case of failure.

HMPI_Strerror

Return a string associated with error code.

Synopsis:

int
HMPI_Strerror
(
 int errnum,
 char * message
)

Parameters:

 errnum --- Error code from any HeteroMPI routine call.

 message --- Output parameter. Error message associated with the error code.

 The message must represent storage that is at least

 HMPI_MAX_ERROR_STRING characters long.

Description: An error message string corresponding to the error number errnum is returned in

message . Any process can call this function.

Usage:

 char message[HMPI_MAX_ERROR_STRING];

 int rc = HMPI_Init (
 &argc,
 &argv
);

 if (rc != HMPI_SUCCESS)
 {
 HMPI_Strerror (
 rc,
 message
);

 HMPI_Printf (
 "Error during HETEROMPI initialization. Reason is %s\n",

HeteroMPI Programmers’ Reference and Installation Manual

42

 message
);
 }

Return values: HMPI_SUCCESS on success and error on failure.

HMPI_Debug

Turn the diagnostics on/off.

Synopsis:

int
HMPI_Debug
(
 int yesno
)

Parameters:

 yesno --- yes (1) or no (0)

Description: Produces detailed diagnostics. Any process can call this function. This is the only

function apart from HMPI_Get_version that can be called before HMPI_Init or after

HMPI_Finalize .

HMPI_Get_version

Returns the version of the HeteroMPI API in the format x.y

Synopsis:

int
HMPI_Get_version
(
 int *version,
 int *sub_version
)

Parameters:

 version --- Major version

 sub_version --- Minor version

Description: Returns the version of HeteroMPI. Any process can call this function. This is one

of the few functions that can be called before HMPI_Init or after HMPI_Finalize .

Usage:

HeteroMPI Programmers’ Reference and Installation Manual

43

 int version, sub_version;
 HMPI_Get_version (&version, &sub_version);

4 Heterogeneous Data Partitioning Interface (HeteroDPI)

The core of scientific, engineering or business applications is the processing of some

mathematical objects that are used in modeling corresponding real-life problems. In particular,

partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of

various scientific, engineering and business domains resulted in the following short list of

mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and

non-ordered), dense matrices (and multidimensional arrangements), graphs, and trees.

Based on this classification, we suggest an API for partitioning mathematical objects commonly

used in scientific and engineering domains for solving problems on networks of heterogeneous

computers. These interfaces allow the application programmers to specify simple and basic

partitioning criteria in the form of parameters and functions to partition their mathematical

objects. These partitioning interfaces are designed to be used along with various programming

tools for parallel and distributed computing on heterogeneous networks.

4.1 Sets

Partition_unordered_set

Partition a non-ordered set

Synopsis:

typedef double (*User_defined_metric)(

 int p, const double *speeds , const int *actual,
 const int *ideal)

int Partition_unordered_set (
 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int n,
 const int *w, int type_of_metric,
 User_defined_metric umf, double *metric, int *np)

Description: This routine partitions a set into p disjoint partitions.

Return values: 0 on success and -1 in case of failure.

Partition_ordered_set

Partition a well-ordered set

Synopsis:

HeteroMPI Programmers’ Reference and Installation Manual

44

int Partition_ordered_set (
 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int n,
 const int *w, int processor_reordering,
 int type_of_metric, User_defined_metric umf,
 double *metric, int *np)

Description: This routine partitions a well-ordered set into p disjoint contiguous partitions.

Parameters:

Parameter p is the number of partitions of the set. Parameters speeds and psizes specify

speeds of processors for pn different problem sizes. These parameters are 1D arrays of size

p×pn logically representing 2D arrays of shape [p][pn] . The speed of the i -th processor for

j -th problem size is given by the [i][j] -th element of speeds with the problem size itself

given by the [i][j] -th element of psizes . Parameter mlimits gives the maximum number

of elements that each processor can hold.

Parameter n is the number of elements in the set, and parameter w is the weights of its elements.

Parameter type_of_metric specifies which metric should be used to determine the quality

of the partitioning. If type_of_metric is USER_SPECIFIED, then the user provides a

metric function umf , which is used to calculate the quality of the partitioning. If

type_of_metric is SYSTEM_DEFINED, the system-defined metric is used.

The output parameter metric gives the quality of the partitioning, which is the deviation of the

partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the output

parameter metric is set to NULL, then the calculation of metric is ignored.

If w is not NULL and the set is well ordered, then the user needs to specify if the implementations

of this operation may reorder the processors before partitioning (Boolean parameter

processor_reordering is used to do it). One typical reordering is to order the processors

in the decreasing order of their speeds.

Return values: 0 on success and -1 in case of failure.

Get_set_processor

For an ordered set, returns the processor owning the set element at index i

Synopsis:

int Get_set_processor (
 int i, int n, int p, int processor_reordering,
 const int *np)

HeteroMPI Programmers’ Reference and Installation Manual

45

Return values: -1 in case of failure.

Get_my_partition

For a set, returns the number of elements allocated to processor i

Synopsis:

int Get_my_partition (
 int i, int p, const double *speeds, int n)

Return values: -1 in case of failure.

4.2 Dense Matrices

Partition_matrix_2d

Partition a matrix amongst processors arranged in a 2D grid

Synopsis:

int Partition_matrix_2d (
 int p, int q,
 int pn, const double *speeds, const int *psizes,
 const int *mlimits, int m, int n,

 int type_of_distribution, int *w, int *h, int *trow,
 int *tcol , int *ci , int *cj)

Parameters:

The parameter p is the number of processors along the row of the processor grid. The parameter

q is the number of processors along the column of the processor grid.

Parameters speeds and psizes specify speeds of processors for pn different problem sizes.

These parameters are 1D arrays of size p×q×pn logically representing arrays of shape

[p][q][pn] . The speed of the (i, j) -th processor for k -th problem size is given by the

[i][j][k] -th element of speeds with the problem size itself given by the [i][j][k] -th

element of psizes . Parameter mlimits gives the maximum number of elements that each

processor can hold.

The parameters m and n are the sizes of the generalized block along the row and the column.

The input parameter type_of_distribution specifies if the distribution is CARTESIAN,
ROW-BASED, and COLUMN-BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to

different processors. This parameter is an array of size p×q.

HeteroMPI Programmers’ Reference and Installation Manual

46

Output parameter h gives the heights of rectangles of the generalized block assigned to different

processors. This parameter is an array of size p×q×p×q logically representing array of shape

[p][q][p][q] .

Output parameter trow gives the top leftmost point of the rectangles of the generalized block

assigned to different processors from the first row of the generalized block. This parameter is an

array of size p×q.

Output parameter tcol gives the top leftmost point of the rectangles of the generalized block

assigned to different processors from the first column of the generalized block. This parameter is

an array of size p×q.

Output parameters ci , and cj are each an array of size m×n. The coordinates of the processor

in its processor grid to which the matrix element at row i and column j of the generalized block

is assigned is given by ci[i×n+j] , and cj[i×n+j] respectively. If the application

programmer sets these parameters to NULL, then these parameters are ignored.

Description: This routine partitions a matrix into p disjoint partitions amongst processors

arranged in a 2D grid.

Return values: 0 on success and -1 in case of failure.

Partition_matrix_1d_dp

Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition_matrix_1d_dp(

 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int m, int n,
 Get_lower_bound lb, DP_function dpf,
 int type_of_distribution,
 int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

The parameter p is the number of number of disjoint rectangles the matrix is partitioned into.

Parameters speeds and psizes specify speeds of processors for pn different problem sizes.

These parameters are 1D arrays of size p×pn logically representing 2D arrays of shape

[p][pn] . The speed of the i -th processor for j -th problem size is given by the [i][j] -th

element of speeds with the problem size itself given by the [i][j] -th element of psizes .

Parameter mlimits gives the maximum number of elements that each processor can hold.

The parameters m and n are the sizes of the generalized block along the row and the column.

HeteroMPI Programmers’ Reference and Installation Manual

47

The input parameter type_of_distribution specifies if the distribution is ROW-BASED
or COLUMN-BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to

different processors. This parameter is an array of size p. Output parameter h gives the heights

of rectangles of the generalized block assigned to different processors. This parameter is an array

of size p×p. Output parameter trow gives the top leftmost point of the rectangles of the

generalized block assigned to different processors from the first row of the generalized block.

This parameter is an array of size p. Output parameter tcol gives the top leftmost point of the

rectangles of the generalized block assigned to different processors from the first column of the

generalized block. This parameter is an array of size p.

Output parameter c is an array of size m×n. The coordinates of the processor in its processor

array to which the matrix element at row i and column j of the generalized block is assigned is

given by c[i×n+j] . If the user sets these parameters to NULL, then these parameters are

ignored.

Description: This routine partitions a matrix into p disjoint partitions amongst processors

arranged in a linear array.

Return values: 0 on success and -1 in case of failure.

Partition_matrix_1d_iterative

Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition_matrix_1d_iterative(

 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int m, int n,
 Get_lower_bound lb, Iterative_function cf,
 int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

Application programmers provide a cost function cf that tests the optimality of a partition from

a finite set of partitions. The initial partition in this finite set of partitions is obtained using a

problem-specific strategy. The cost function cf is called iteratively for each of the partitions in

the subset of partitions. The return value of this function gives an optimality value. At each step

of the iteration, the optimality value is compared to the lower bound of the optimal solution to

the optimization problem. Application programmers specify a function lb , which is used to

calculate the lower bound of their optimization problem. The iteration stops when the function

returns an optimality value less than or equal to the lower bound or a negative return value

indicating that the partitioning cannot be improved and that the current partition is optimal.

HeteroMPI Programmers’ Reference and Installation Manual

48

Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear

array.

Return values: 0 on success and -1 in case of failure.

Partition_matrix_1d_refining

Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition_matrix_1d_refining(

 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int m, int n,
 Get_lower_bound lb, Refining_function cf,
 int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

Application programmers provide a refinement function rf that refines an old partition giving a

new better partition. A negative return value of this function suggests that the old partition

cannot be refined further. This function is iteratively called. The partition for the first call of this

refining function is obtained using a problem-specific strategy. Application programmers specify

a function lb , which is used to calculate the lower bound of their optimization problem. The

iteration stops when the refinement function rf returns an optimality value less than or equal to

the lower bound indicating that the current partition is optimal.

Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear

array.

Return values: 0 on success and -1 in case of failure.

Get_matrix_processor

Returns the coordinates (i,j) of the processor owning the matrix element at row r and column c

Synopsis:

typedef struct { int i; int j;} Processor;

int Get_matrix_processor(
 int r, int c, int p, int q , int *w, int *h, int *trow,
 int *tcol, int type_of_distribution, Processor *root)

Return values: 0 on success and -1 in case of failure.

Get_my_width

Returns the width of the rectangle owned by the processor with coordinates (i,j)

HeteroMPI Programmers’ Reference and Installation Manual

49

Synopsis:

int Get_my_width(

 int i, int j, int p, int q , const double *speeds,
 int type_of_distribution, int m, int n)

Description: Currently only applicable to two-dimensional processor arrangements.

Return values: -1 in case of failure.

Get_my_height

Returns the height of the rectangle owned by the processor with coordinates (i,j)

Synopsis:

int Get_my_height(

 int i, int j, int p, int q , const double *speeds,
 int type_of_distribution, int m, int n)

Description: Currently only applicable to two-dimensional processor arrangements.

Return values: -1 in case of failure.

Get_diagonal

Obtain the number of elements owned by the processor with coordinates (i,j) on the diagonal of

the matrix

Synopsis:

int Get_diagonal(

 int i, int j, int p, int q , int *w, int *h, int *trow,
 int *tcol)

Description: Currently only applicable to dense square matrices and two-dimensional processor

arrangements.

Return values: -1 in case of failure.

Get_my_elements

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or

lower half of the matrix including the diagonal elements

Synopsis:

int Get_my_elements(

HeteroMPI Programmers’ Reference and Installation Manual

50

 int n, int g, int i, int j, int p, int q , int *w, int *h,
 int *trow, int *tcol, int type_of_distribution,
 char upper_or_lower)

Description: Currently only applicable to dense square matrices and two-dimensional processor

arrangements.

Return values: -1 in case of failure.

Get_my_kk_elements

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or

lower half of the matrix starting from (k,k) including the diagonal elements

Synopsis:

int Get_my_kk_elements(

 int n, int g, int k, int i, int j, int p, int q , int *w,
 int *h, int *trow, int *tcol, int type_of_distribution,
 char upper_or_lower)

Description: Currently only applicable to dense square matrices and two-dimensional processor

arrangements.

Return values: -1 in case of failure.

4.3 Graphs

Partition_graph

Partition a graph

Synopsis:

int Partition_graph (
 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits, int n, int m,
 const int *vwgt, const int *xadj,
 const int *adjacency, const int *adjwgt,
 int nopts, const int *options, int *vp, int *edgecut)

Parameters:

Parameter p is the number of partitions of the graph. Parameters speeds and psizes specify

speeds of processors for pn different problem sizes. These parameters are 1D arrays of size

p×pn logically representing 2D arrays of shape [p][pn] . The speed of the i -th processor for

j -th problem size is given by the [i][j] -th element of speeds with the problem size itself

HeteroMPI Programmers’ Reference and Installation Manual

51

given by the [i][j] -th element of psizes . Parameter mlimits gives the maximum number

of elements that each processor can hold.

The parameters n and m are the number of vertices and edges in the graph. The parameters vwgt

and adjwgt are the weights of vertices and edges of the graph. In the case in which the graph is

unweighted (i.e., all vertices and/or edges have the same weight), then either or both of the arrays

vwgt and adjwgt can be set to NULL. The parameters vwgt is of size n. The parameter

adjwgt is of size 2m because every edge is listed twice (i.e., as (v, u) and (u, v)).

The parameters xadj and adjacency specify the adjacency structure of the graph

represented by the compressed storage format (CSR). The adjacency structure of the graph is

stored as follows. The adjacency list of vertex i is stored in adjacency starting at index

xadj[i] and ending at but not including xadj[i+1] . The adjacency lists for each vertex are

stored consecutively in the array adjacency .

The parameter options is an array of size nopts containing the options for the various phases

of the partitioning algorithms employed in partitioning the graph. These options allow

integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size n containing the partitions to which the vertices are

assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The

parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a graph into p disjoint partitions.

Return values: 0 on success and -1 in case of failure.

Partition_bipartite_graph

Partition a bipartite graph

Synopsis:

int Partition_bipartite_graph (

 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits,
 int n, int m, const int *vtype, const int *vwgt,
 const int *xadj, const int *adjacency,
 const int *adjwgt, int type_of_partitioning,
 int nopts, const int *options, int *vp, int *edgecut)

Parameters:

The meaning of the parameters p, pn , speeds , psizes , mlimits , n, m, vwgt , adjwgt ,

xadj , adjacency is identical to meaning of the corresponding parameters of

Partition_graph .

HeteroMPI Programmers’ Reference and Installation Manual

52

The parameter vtype specifies the type of vertex. The only values allowed are 0 and 1

representing the two disjoint subsets the bipartite graph is composed of.

The parameter type_of_partitioning specifies whether the partitioning of subsets is done

separately or not. It can take only one of the values PARTITION_SUBSET and

PARTITION_OTHER.

The parameter options is an array of size nopts containing the options for the various phases

of the partitioning algorithms employed in partitioning the graph. These options allow

integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are

assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The

parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a bipartite graph into p disjoint partitions.

Return values: 0 on success and -1 in case of failure.

Partition_hypergraph

Partition a hypergraph

Synopsis:

int Partition_hypergraph (
 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits,
 int nv, int nedges, const int *vwgt, const int *hptr,
 const int *hind, const int *hwgt, int *vp,
 int nopts, const int *options, int *edgecut)

Parameters:

The meaning of the parameters p, pn , speeds , psizes , and mlimits is identical to meaning

of the corresponding parameters of Partition_graph .

The parameters nv and nedges are the number of vertices and number of hyperedges in the

hypergraph.

The parameters vwgt is an array of size nv that stores the weights of the vertices and hwgt is

an array of size nedges that stores the weights of hyperedges of the graph. If the vertices in the

hypergraph are unweighted, then vwgt can be NULL. If the hyperedges in the hypergraph are

unweighted, then hwgt can be NULL.

HeteroMPI Programmers’ Reference and Installation Manual

53

The parameter hptr is an array of size nedges +1 and is an index into hind that stores the

actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in

consecutive locations in hind . Specifically, i -th hyperedge is stored starting at location

hind[hptr[i]] up to but not including hind[hptr[i+1]] .

The parameter options is an array of size nopts containing the options for the various phases

of the partitioning algorithms employed in partitioning the graph. These options allow

integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are

assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The

parameter edgecut contains the number of hyperedges that are cut by the partitioning.

Description: This routine partitions a hypergraph into p disjoint partitions.

Return values: 0 on success and -1 in case of failure.

4.4 Trees

Partition_tree

Partition a tree

Synopsis:

int Partition_tree (
 int p, int pn, const double *speeds,
 const int *psizes, const int *mlimits,
 int n, int nedges, const int *nwgt, const int *xadj,
 const int *adjacency, const int *adjwgt,
 int *vp, int *edgecut)

Parameters:

The meaning of the parameters p, pn , speeds , psizes , and mlimits is identical to meaning

of the corresponding parameters of Partition_graph .

The parameters n and nedges are the number of vertices and edges in the tree. The parameters

nwgt is an array of size n that stores the weights of the vertices and adjwgt is an array of size

nedges that stores the weights of edges of the tree. If the vertices in the tree are unweighted,

then nwgt can be NULL. If the edges in the tree are unweighted, then adjwgt can be NULL.

The parameters xadj and adjacency specify the adjacency structure of the tree.

HeteroMPI Programmers’ Reference and Installation Manual

54

Figure 1: Specification of a simple performance model in the HeteroMPI’s performance definition language.

The performance model definition is in the file “grid.mpc ”.

The parameter vp is an array of size of size n containing the partitions to which the vertices are

assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The

parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a tree into p disjoint subtrees.

Return values: 0 on success and -1 in case of failure.

5 HeteroMPI Program Execution

5.1 HeteroMPI Environment

Currently, the HeteroMPI programming environment includes a compiler and a library.

The compiler compiles the description of this performance model to generate a set of functions.

The functions make up an algorithm-specific part of the HeteroMPI runtime system.

The library consists of extensions to MPI and Heterogeneous Data Partitioning Interface

(HeteroDPI).

5.2 Building HeteroMPI Application

A sample performance model and the HeteroMPI application using the performance model are

shown in Figures 1 and 2:

Outlined below are steps to build and run a HeteroMPI application.

1). Compile the performance model file. The generated file is “grid.c ”.

shell$ mpcc grid.mpc

2). Create the executable.

shell$ mpicc –I<HMPI Installation directory>/include –o
Test_group_create Test_group_create.c -L<HMPI Installation
directory>/lib –lhmpi –lmpc –lm

 nettype grid(int p, int q) {
 coord I=p, J=q;
 };

HeteroMPI Programmers’ Reference and Installation Manual

55

Figure 2: A sample HeteroMPI program. The HeteroMPI program is written in the file

“Test_group_create.c ”.

More advanced examples can be studied from the “tests” directory.

 # include <math.h>
 # include <stdio.h>
 # include <sys/time.h>
 # include <hmpi.h>
 # include “grid.c”

 int main() {
 int param_count, model_params[2];
 struct timeval start, end;
 gettimeofday(&start, NULL);

 HMPI_Group gid;
 HMPI_Init (&argc, &argv);
 if (HMPI_Is_host ()) {
 int gsize, p, q;
 param_count = 2;
 gsize = HMPI_Group_size (HMPI_COMM_WORLD_GROUP);
 p = q = sqrt(gsize);
 if ((p == 0) && (q == 0))
 p = q = 1;
 model_params[0] = p;
 model_params[1] = q;

 printf("Total number of processes availab le for computation
 is %d\n", gsize);
 printf("Creating a grid (%d, %d) of proce sses\n", p, q);
 }
 if (HMPI_Is_host ())
 HMPI_Group_create (&gid, &MPC_NetType_grid,
 model_params, param_co unt)
 else
 HMPI_Group_create (&gid, &MPC_NetType_grid,
 NULL, 0)
 // Distribute computations using the optimal speeds of processes
 if (HMPI_Is_member (&gid)){
 // computations and communications are per formed here
 }
 HMPI_Group_free (&gid);
 gettimeofday(&end, NULL);
 if (HMPI_Is_host ()) {
 double tstart = start.tv_sec + (start.tv_usec/pow(10, 6)) ;
 double tend = end.tv_sec + (end.tv_usec/pow(10, 6));
 printf(“Time taken for group creation(sec)=%f\n”,
 tend-tstart);
 }
 HMPI_Finalize (0);
 }

HeteroMPI Programmers’ Reference and Installation Manual

56

5.3 Running HeteroMPI Application

Run the target program using mpirun.

<output…>
Total number of processes available for computation is 9
Creating a grid (3, 3) of processes
Time taken for group creation(sec)=0.262353

During the HeteroMPI runtime initialization, the structure of the network (performances of the

processors, values of the parameters of the communication model) is obtained. This information

is used by the runtime mapping algorithms. This initialization process takes time. To avoid this

penalty, there are two options that can be provided to the HeteroMPI program, which allow

initialization to take place from a file.

To write the structure/state of the executing network to a file, use the option “-wtopo”. For

example, consider the execution of the program Test_group_create using OpenMPI on a network

consisting of three hosts {hcl01, hcl02, hcl03}. The structure of the network is saved/written to a

file “topostruct.txt”.

shell$ mpirun –np 1 --host hcl01 Test_group_create –wtopo
topostruct.txt : –np 1 --host hcl02 Test_group_create : –np 1 --
host hcl03 Test_group_create

To read the structure/state of the executing network from a file, use the option “-rtopo”. For

example, consider the execution of the program Test_group_create using OpenMPI on three

hosts {hcl01, hcl02, hcl03}. The structure of the network is read from the file “topostruct.txt”.

shell$ mpirun –np 1 --host hcl01 Test_group_create –rtopo
topostruct.txt : –np 1 --host hcl02 Test_group_create : –np 1 --
host hcl03 Test_group_create

The topology files can be created once and used for multiple runs.

6 HeteroMPI Installation Guide for UNIX

This section provides information for programmers and/or system administrators who want to

install HeteroMPI for UNIX.

6.1 System Requirements

The following table describes system requirements for HeteroMPI for UNIX.

Component Requirement

Operating System Tested on Linux, Solaris, FreeBSD

C compiler Any ANSI C compiler

HeteroMPI Programmers’ Reference and Installation Manual

57

MPI LAM MPI

MPICH MPI 1.0.0 or higher with chp4

device

OpenMPI

6.2 Contents of HeteroMPI distribution

HeteroMPI for Unix distribution contains the following:

Directory Contents

README, AUTHORS Copyright information, Contact

information

INSTALL Installation instructions

configure… Configure scripts for installation

docs HeteroMPI manual for programmers

man Manual pages for HeteroMPI API

src Source code for HeteroMPI

include Header files

tests Tests for testing HeteroMPI library

mpC Source of mpC

6.3 Installation

You should have MPI installed on your system. Please make sure that mpicc and mpirun tools

are in your PATH environment variable.

Unpack the HeteroMPI distribution, which comes as a tar in the form heterompi-x.y.z.tar.gz. To

uncompress the file tree use:

shell$ tar -zxvf heterompi-x.y.z.tar.gz

where x.y.z stands for the installed version of the HeteroMPI library (say 1.2.1, 2.0.0, or 3.1.1).

The directory 'heterompi-x.y.z' will be created; execute

shell$ cd heterompi-x.y.z

shell$ mkdir build
shell$../configure –prefix=<HMPI Installation directory>
shell$ make all install

HeteroMPI Programmers’ Reference and Installation Manual

58

HeteroMPI installation directorycontains the following:

Directory Contents

bin Binaries mpcc

include Header files

share Manual pages for HeteroMPI API

lib Libraries libhmpi.a, libmpc.a

After you have successfully installed HeteroMPI, use the tests in the directory “tests” to test the

installation.

