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Abstract 
 

It is expected that the future large-scale problem solving environment, especially 

the Computational Grid, would be more heterogeneous, geographically distributed 

and independently administrated. The motivation is that the ever increasing 

deployment of heterogeneous Networks of Computers computers can easify solving 

the computation-intensive tasks. However, all these factors make the probability of 

resources failure reach a much higher figure than the traditional scenes. Fault 

tolerance, as an essential feature for long-running tasks, plays a key role in putting 

such systems into practice. This thesis investigates the technique to provide portable 

fault tolerance facility to the MPI programs running in the heterogeneous network.  

It is observed that most existing fault tolerance mechanisms for MPI programs are 

not system-independent. They are either built on some particular platform or more 

often, implemented as plug-in to some specific MPI distributions. However, given the 

inherent heterogeneity of such environment, the first and foremost challenge in 

providing fault tolerance is the software portability. As a solution, this thesis presents 

a new coordinated checkpoint algorithm: Event Logging, which addresses the 

application-level non-FIFO message passing problem in Chandy-Lamport algorithm. 

It implements also libELC, a portable checkpoint/recovery library for C/MPI 

programs that uses Event Logging for the process coordination. Moreover, compared 

with the existing checkpoint/recovery systems for MPI, the ability to interoperate with 

various MPI implementations is considered as a huge advantage of libELC. 

Experiments results and analysis presented in this thesis have demonstrated the 

efficiency of both the Event Logging algorithm and libELC library. 
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Chapter 1   

Introduction  
 

1.1 Motivation 
High performance computing is an issue permanently discussed in computer science.  

It can be found in a number of fields, such as climate modelling, chemical/nuclear 

reaction, biologic/gnome analysis and oil exploration. Recent advances in software 

systems as well as the growing number of available higher-performance computing 

and networking hardware have made the use of metasystems, namely: networks of 

workstations, personal computers, and supercomputers as virtual, distributed-memory 

parallel machines a common approach in solving computation-intensive problems. 

The combination of distributed nodes within a single system is expected to rapidly 

replace the dedicated, centralized supercomputers and is expected to become 

eventually the main stream in the high performance computing community. 

Moreover, as the technology like Grid Computing suggests, the future of high 

performance computing would be more common and popular in heterogeneous 

network of computers. 

 

The heterogeneous architectures and operating system platforms, working within a 

single high performance computing system, give rise to number of problems that are 

not present in the traditional homogenous systems. The complexity of both (a) 

varying architectural features, such as data representation and instruction sets, and (b) 

varying operating system features, such as process management and communication 

interfaces, must be masked from the application programmer. Further heterogeneity 

complicates existing problems in parallel and distributed systems. For example, data 

partition may depend on several factors: processor speed and architecture, operating 

system and network bandwidth. Despite the complexity and challenges involved in 

heterogeneous distributed computing it remains an active and promising area of 

research because it promises increased performance both by the use of a larger 

hardware and by mapping sub-tasks of a computation to the most appropriate 

available hardware, described in mpC [1] and HMPI [2]. 
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However, as a common problem in network of computers, both the heterogeneity and 

independent administration of computation node increase the probability of failures. 

Unlike the RPC-based distributed system, the parallel processes that disperse in 

networks of computers are usually tightly coupled. If no fault tolerance is provided, 

then when one or several processes fail, the rest cannot survive to continue and the 

whole program crashes. In this sense, what is needed is a technique that would enable 

a system to perform fault tolerant procedures that can continue to execute even in the 

presence of a fault. Therefore, support for fault tolerance is an essential feature of 

heterogeneous networks of computers, because the execution time of parallel 

programs is long. 

 

This thesis focuses on fault tolerance in heterogeneous networks of computers, 

providing the portable checkpoint/recovery facility to the MPI programs running in 

such environment. The solution suggested here is an innovative coordination 

checkpoint algorithm: Event Logging.  This algorithm is designed and implemented 

together with corresponding software library libELC. Finally, the thesis reports 

experiment results that demonstrate the efficiency of Event Logging and libELC. 

 

1.2 Heterogeneous Network of Computers 
Networks of Computers (NoC) is the most general and popular architecture for 

parallel computing nowadays. Unlike the Symmetric Multiprocessors (SMP), NoC 

can be included in the volume of Distributed Memory Multiprocessors. The 

Distributed Memory Multiprocessors differentiate from Symmetric Multiprocessors 

by two major features.  The first is that the former consist of a set of independent 

processors and the second is that they share no global memory space. Rather, this type 

of processors maintains local memory and is interconnected by the network. 

 

Similar with other subsets of the Distributed Memory Multiprocessors (MPP), in NoC 

the processors communicate by passing messages. However, different from the 

traditional MPP, NoC is distributed, heterogeneous and autonomous. 
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 MPP NoC 

Equipment 

As MPP is specially manufactured 

for high performance computing, 

it adopts the homogeneous 

design: the identical system 

architecture, similar hardware 

performance and single image 

software. Unlike MPP, a typical 

NoC is a naturally evolving 

collection of computers. 

Generally, a NoC is composed 

of various architectures: PCs, 

workstations, SMP servers, and 

even MPP supercomputers and 

clusters. As the result, the 

performance of these 

architectures varies 

significantly. NoC is 

heterogeneous. 

Deployment 

MPP is typically located in a 

small area, such as in a 

computing centre or research lab. 

The processors are interconnected 

by special high bandwidth 

networks, like Myrinet 

NoC often consists of nodes 

widely distributed and 

connected with mixed network 

equipments. 

Admin 

MPP is often administrated by a 

small-dedicated group and 

dedicated for the high 

performance tasks. 

NoCs are general-purpose 

computer systems, each node of 

which is administrated 

independently by the owner. 

This leads unpredictable during 

a job’s execution. 

 Table 1. Comparison of MPP and NoC 

Table 1 is a detailed comparison between NoC with MPP. Compared with MPP, NoC 

has one major advantage — scalability.  It is one of the goals of NoC to enable any 

computing device to join the pool. Further, the cost of building a NoC is much lower 

than that of building other parallel systems of similar scale. There is, however a 

downside of NoC, heterogeneity. The heterogeneity is the most significant and 

inherent feature of NoC. There are three aspects, in which the heterogeneity is 

evaluated.  

 Hardware: In hardware, heterogeneity is due to the variety of existing 

architectures and hardware standards. This problem is complicated further by 

the various hardware vendors. The term “compatibility of hardware” can be in 
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certain cases vague and in other cases confusing. For instance, sometimes two 

devices may be interchangeable and compatible from the point of view of the 

user, but they could be built on toally different architectures. In this sense, 

writing portable codes across various machines is definitely the most necessary 

requirement for the heterogeneous NoCs.  

 

 Software: Software heterogeneity is evaluated in terms of Interoperability. 

Usually, interoperability problems occur when different implementations of the 

same software standard exist. An example, close to the topic of this thesis, is MPI. 

Currently there are two main versions of MPI: MPICH [4] and LAM/MPI [5]. As 

a well-known problem, these two distributions lack the capacity of interoperation, 

which requires all joining processes to be running with the same version: either 

MPICH or LAM/MPI. In this sense, a portable MPI program should not rely on 

any facility provided by the underlying implementation. Otherwise the program 

can be launched only at a node with the specified MPI version. 

 

 Performance: The third heterogeneity of NoC results from the two previous 

aspects. In general, differences between hardware architecture and software 

implementation has lead to significant performance fluctuation among the 

machines in a network. Moreover, since the processors communicate by passing 

messages, the networks connecting them turn into the key factor affecting the 

overall system performance. This results in a totally different problem partition 

scheme for NoCs. In the homogeneous, regular environment such as MPP, the 

problem is usually evenly distributed. However in NoCs, the data should be 

partitioned proportional to the individual processor’s speed and the network 

bandwidth among them [1]. So, in order to maximally utilize the resources, a 

good NoC-oriented parallel program should take into account the irregular 

machine performance. 

 

The work in this thesis is motivated by this analysis. The review presented here shows 

that heterogeneity is the most urgent and important issue to be addressed before NoCs 

can be put into general practice.  
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1.3 Fault Tolerance of Heterogeneous Network of 
Computers 
As a result of heterogeneities, the probability of resources failure is much greater for a 

NoC. The primary reason is that there are different levels of reliability for each node. 

For example, commercial supercomputers are usually highly robust, while PCs are 

quite unstable. However to a parallel program running in NoC, the overall failure 

probability is decided by the failure probability of the most unreliable node. A second 

reason is that the network communication between separate processors in a NoC is 

unstable. Since the network equipment used in a NoC is not dedicatedly manufactured 

and maintained for high performance computing, communication failures occur often. 

Most commonly, communication faults cause the programs to crash. However there 

are some cases in which processes will be blocked by communication operations as 

long as the connection is faulty. Third reason is that since the machines in a NoC are 

administrated independently, any individual node might disconnect unexpectedly 

from the network. The machine could be (a) switched off, (b) rebooted (c) or 

rescheduled to a job with higher priority. As a result, the machine is no longer a 

working node in a NoC. 

 

All the above arguments make fault tolerance a highly desirable feature for long 

running parallel programs on NoCs. There are four components that comprise fault 

tolerance: fault detection, fault location, fault masking and fault recovery. Fault 

tolerance can be provided to the parallel computing at three different levels [3]: 

hardware level, architecture level and software level. In the hardware and architecture 

levels, importance is given to fault detection and fault location. In the software level, 

fault tolerance policy usually emphasizes on the fault masking and fault recovery. By 

comparison, it is easier and more cost effective to provide software fault tolerance 

solutions at the software level than hardware solutions. 

 

1.3.1 System Model 
So far, it was argued that the aim of this thesis is to design and implement a software-

level fault tolerant system for parallel programs in NoCs. However, the need to 

specify a parallel programming model is the target here as well as the type of faults 
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that are going to be the focus of this work. The following sections elaborate on these 

two aspects. 

 

 Parallel Programming Model 

First, we focus on the MPI programs [6]. Although there are some alternatives, MPI 

has the distinct scalability advantage with regards to NoCs. Conceptually, a MPI 

program can be thought as a set of independent processes running in separate address 

spaces. Processes are hosted on different machines, but are coupled by passing 

messages. MPI is built on the assumption that communication takes place within a 

known group of processes. Each group is assigned an ID. Each process within a group 

is also assigned a local ID. So, a pair of <GroupID, ProcessID> uniquely identifies a 

process. Messages are sent and received by the source and target process through 

explicit function calls. As to each individual process, the execution is defined by a 

sequence of state intervals, each started by a nondeterministic event. Execution 

during every state interval is deterministic, such that if a process starts from the same 

state and is subjected to the same nondeterministic events at the same locations within 

the execution, it will always yield the same output.  

 

However, a process may fail. Generally there are two common types of failures in the 

community of parallel/distributed systems: Fail-stop failure [7] and Byzantine 

failure [8]. In the Fail-stop failure model, a faulty process loses its volatile state and 

stops responding to the rest of the system in such a way that its halting can be 

detected by other processes. In comparison, Byzantine failure incurs more serious 

problems, because the fault process may still communicate with the others and as a 

result it is possible to send malicious messages.  

 

In this thesis, we concentrate on the Fail-stop failure of MPI programs. The work 

here is based on two assumptions.  The first is that processes have access to a stable 

storage device that survives faults, such that state information saved on this device 

during failure-free execution is valid through process failures.  

 

The second assumption is the existence of a secure and reliable transportation layer 

for the message passing. “Reliable” means that the communication latency is arbitrary 

but finite. In other words, a reliable communication layer guarantees that any message 
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will be delivered to the destination once it is sent out. This feature is generally 

supported by the network layer. Also “reliable” implies that correct semantics of 

message passing must be guaranteed by the underlying communication facility. In the 

context of MPI, this applies two rules:  

 

1. No message would be altered during the communication, which includes both the 

message envelope and the message content.  

2. No message delivery will be dropped or duplicated during the transfer. In other 

words, once a message is sent out, the underlying communication layer 

guarantees the eventual delivery of that message. 

  

Any faults within such a communication layer are hidden from the upper-level MPI 

program, by either the network itself or by the MPI implementation [9]. These 

assumptions release our work from the worries about the communication faults, while 

helping us to concentrate on the more general software-level fault tolerance. 

 

1.3.2 Design Goal 
Given a heterogeneous network, the following sections list several criteria for 

designing the fault tolerance facility.  

 

First of all, the fault tolerance mechanism must be portable. Given an environment 

comprised of various architectures and platforms, a system-independent solution has 

an unparalleled advantage. More, we emphasize that the portability also applies to the 

software. For MPI, we note that the fault tolerance approach should be built on top of 

the standard, which in particular makes no assumption about the underlying MPI 

implementations. The ability to interoperate with various MPI distributions is 

considered a huge benefit. 

 

Secondly, the portability should not result in too great a performance penalty. In other 

words, the solution must provide similar performance to other lower level approaches. 

 

Third, from the point of view of the end users, they may not want to deal with the 

details of the underlying fault tolerance mechanism. Therefore, the proposed design 
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should be transparent to the users. However, certain options should be exposed to 

allow advanced tuning of the fault tolerance. 

 

1.3.3 Redundancy and Replication 
Physical redundancy is the most straightforward and widely used fault tolerance 

technique [10]. By adding extra components, the fault can be made transparent to the 

rest of the system. The malfunctioned element is replaced with one of the 

substitutions. Usually one might think that the redundancy is implemented by means 

of hardware. However, software can also provide the redundancy, more often called 

replication [11]. 

 

The key technique of software replication is group membership. In the context of 

MPI programs, each process is associated with a group of backups. Upon the 

occurrence of a fault in a process, the backup group uses some election algorithm to 

choose the replacement. Therefore, if a MPI program consists of N processes and the 

failure probability of the i  process is th
iP  (0 i<N)≤ , without replication the overall 

survival probability of the MPI program is calculated by: ∏ . However, 

suppose that the i MPI process has B replications, which has the same failure 

probability , then the MPI program’s survival probability is changed to∏ . 

Obviously, the improvement is  
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Generally speaking, software replication gives a MPI program a higher probability of 

survival [12]. However, the downside of this type of fault tolerance technique is the 

resource consumption problem. In a minimal case, N process MPI program needs to 

keep 2N processes running, while each MPI process maintains only one replication. In 
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particular a robust system built on software replication will consume a big amount of 

extra resources. 

 

Furthermore, to implement the replication on message passing programs, a key 

technique is Atomic Multicast.  Atomic multicast guarantees that a process always 

synchronizes with its backups. However, the synchronization incurs with significant 

overhead to the message-passing program. Currently, high performance MPI 

implementations are literally counting every cycle in an attempt to reduce latency as 

much as possible.  As a result, adding overhead is unacceptable except for critical 

tasks which emphasize more on the system availability, rather than the parallel 

computationally extensive jobs which focus on minimizing the problem solving time.  

 

1.3.4 Program Resilience 
The research on hardware redundancy and software replication overlooks completely 

faults which are hidden from the user. As a rule, when a failure occurs the system tries 

to implicitly heal itself. The user need not and usually cannot detect and manage the 

failures. Although ultimately this process needs to be made transparent, the tradeoffs 

could be a high performance overhead and considerable cost. In this case, a 

lightweight approach, which is named Program Resilience [13], is taken to release 

the performance burden. 

 

The program resilience approach emphasizes the survival of a partially 

malfunctioning program. However, it does not guarantee the correct semantics of the 

program execution. In this case, the program is able to continue running if failure 

happens. The task of adapting or restoring program state is left to the user. The user 

has the flexibility to choose different strategies to manage the errors in different 

failure scenarios. Therefore the program resilience approach has less overhead 

compared to the software replication.  

 

A well-known example of program resilience in the context of MPI is taken in the FT-

MPI library [14]. In FT-MPI, the state of a communicator is extended from {VALID, 

INVALID} to {OK, PROBLEM, FAILED}; while the process state is extended from 

the simple {OK, FAILED} to {OK, UNAVAILABLE, JOINING, FAILED}. The 
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enriched states give the user the opportunity to detect a failure within the time it runs. 

When the user detects a failure s/he may take different actions to repair a broken 

communicator: Shrink, Blank, Rebuild or Abort. Hence the program is able to survive 

through the faults. 

 

However, in the very advantage of this approach is rooted its disadvantage: in a 

program resilience system, nothing is transparent. Therefore as a requirement, the 

program must be able to adapt itself to various faults. However in many scenarios, 

such an adaptive algorithm is very difficult to design. Consider an example of a 

SPMD program which consists of N processes, and each process holds a unique 

dataset. The data partition scheme determines that the failure of any process will 

result in the loss of this unique dataset. In such a case, execution cannot simply 

continue upon failures, even if the application may survive with the aid of resilience. 

In simple cases which are data independent, a solution may re-allocate the lost dataset 

to the remaining N-1 process.  The N-1 will repeat the computation of the lost dataset. 

Unfortunately, these are isolated examples. In the more common cases there is a 

dependency between different datasets and there is not an easy solution to restore the 

state that executed before failures. 

 

Also, it must be noted here that not all types of faults can be tolerated in the program 

resilience approach. Consider the example of an MPI program working in the 

Master/Slave pattern. As opposed to a slave process, master process failure cannot be 

easily ignored. Also in many cases there is a lower bound of the numbers for living 

processes. Above the value, program resilience may cut down the malfunctioned 

process to survive the execution. However, when this limit is reached, the program 

cannot simply resize itself so as to continue. Some other fault tolerance mechanisms, 

like employing new process, are needed as a backup solution. In this sense, a program 

resilience system cannot tolerate all faults that could occur.  

 

To conclude, although program resilience has the huge advantage of less performance 

overhead and is a promising concept in the world of fault tolerance, it is far from its 

mature stage. 
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1.3.5 Checkpoint and Rollback Recovery 
Fundamental to fault tolerance is recovery from an error. The whole idea behind the 

rollback recovery is to replay the failed program from some pre-saved points, where 

the state that executed before the failure can be restored. In this sense, there is no need 

to restart the failed program from its very beginning, but resume from some 

intermediate state. Resuming the execution from such intermediate points does reduce 

the execution time lost due to either software or hardware failures. To do so, it is 

necessary to create a checkpoint to capture the state of a running program and output 

the checkpoint onto a stable storage from time to time. To restore a failed program, 

the program’s execution state is reloaded from the physical checkpoint file. Once the 

loading completes, the process is recovered and ready to resume the execution. 

 

The significant advangtage of checkpoint/recovery is that it is a general method that 

can handle most kinds of failures. As result, the checkpoint/recovery has become the 

mainstream mechanism to provide fault tolerance for MPI programs. A substantial 

body of research demonstrates the utility and desirability of such a mechanism. The 

following is an overview of the applications that implement this method. 

 

CoCheck is one of the earliest efforts to provide complete user-transparent 

checkpoint/recovery service to message passing application [15]. CoCheck follows 

the coordinated checkpoint flavour, using the Chandy-Lamport algorithm [16] for 

process coordination. It is noted that CoCheck is built on its own MPI 

implementation, known tuMPI. LAM/MPI [56] is a widely used MPI implementation. 

LAM/MPI has its built-in checkpoint/recovery functionality, which also uses the 

Chandy-Lamport algorithm for the coordinated checkpoint. Clip [17] is a user level 

coordinated checkpoint library dedicated to the Intel Paragon Systems. This library 

can be linked to MPI programs to provide semi-transparent checkpoint. The users 

need to explicitly invoke the checkpoint, but are not expected to manage the recovery. 

MPI-FT [18] is another fault tolerance library based on LAM/MPI, which uses the 

uncoordinated checkpoint mechanism with the aid of pessimistic message logging. 

MPICH-V2 [19] is one of the most recent fault tolerance solutions for the well 

established MPICH distribution. MPICH-V2 implements causal message logging, 

while using uncoordinated checkpointing to reduce the execution time lost. MPICH-
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GF [20] is another checkpoint approach, which provides multi-protocol checkpointing 

to MPICH-G2 [21].  

 

It is noted that a common of all these systems is that none is built on top of MPI. They 

are either platform-dependent or more often, implemented as plug-in for some 

specific MPI version. The only MPI-implementation-independent approach we notice 

is the C  system [22]. The merit of  C  is that this system can interoperate with any 

MPI distribution. Our work shares the objectives of . However we are dedicated to 

design a portable checkpoint/recovery facility for a heterogeneous network, which has 

not been addressed in . 

3 3

3C

3C

 

1.4 Conclusion and Thesis Outline 
The purpose of this chapter is to identify the goal of the work presented here.  It also 

introduces the main concepts and issues discussed further on. This is achieved by 

briefly examining the features of a heterogeneous NoC. Further, it identifies the needs 

and requirements of the fault tolerance for MPI programs in a given heterogeneous 

environment. Moreover, it introduces the three candidates for providing the fault 

tolerance facility: software replication, program resilience and checkpoint/recovery. It 

also highlights the advantages of the checkpoint/rollback-recovery approach over the 

other two, selects it as the method that is going to be used in this work.  

 

The following chapters present our approach to provide checkpoint/recovery facility 

for an MPI program running on a heterogeneous network of computers. Chapter  2 

defines the condition for creating checkpoints for MPI programs and examines the 

main checkpoint models; Chapter 3 presents a new coordinated checkpoint algorithm, 

Event Logging, which addresses the application-level coordination problem of the 

Chandy-Lamport algorithm; Chapter 4 describes libELC, an application-level 

checkpoint/recovery library for C/MPI program, using the Event Logging algorithm 

for the process coordination; Chapter 5 gives the performance experiments and 

analysis of Event Logging algorithm and libELC library; Chapter 6 concludes the 

work and list several routes for future development of the work. 
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Chapter 2  

Checkpoint and Recovery for MPI 
 

This chapter introduces the major approaches that are used in the literature.  It is 

organized as follows: Section 2.1 defines the sufficient and necessary condition for 

creating checkpoints for MPI programs; Section 2.2 -- 2.4 introduce three different 

protocols for checkpointing MPI programs: Coordinated, Uncoordinated and 

Communication-induced, and finally Section 2.5 examines the advantage and the 

disadvantage of these three checkpoint models.  

 

2.1 Creating Valid Recovery Line for fMPI 
In order to create checkpoints for a parallel program, the first step is to create 

checkpoints for each individual process. Here are the types of checkpoints that are 

necessary for each individual process: 

 

 Definition 1: Local Checkpoint 

The checkpoint of each separate process is called a Local Checkpoint.  

 

Upon recovering, the parallel program state is restored from a set of local 

checkpoints, which is called a recovery line. 

 

 Definition 2: Recovery Line 

A Recovery Line is a set of each process' local checkpoint that can be used to 

revert to a previous execution state of the parallel program. A Recovery Line is 

also called a Distributed Snapshot or Global Checkpoint. 

 

However the recovery line of a MPI program is not as simple as merely performing a 

collection of the local checkpoints of each participating process. Since MPI employs 

messages in order to do the communication among multiprocesses, these messages are 

part of the state of the running program. As any communication has latency, there 

might be some messages in transit at the time that the individual process's state is 
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saved. Therefore, the checkpointing algorithm of MPI must capture each state of the 

communication. 

 

Generally, there exist three types of messages in MPI: intra message, in-transit 

message and orphan message. Lamport proposed a relation called Happens Before 

Relation to indicate the partial order of the events in a distributed system [23]. This is 

an irreflexive, antisymmetric and transitive relation that can be applied to define these 

messages. 

 

 Definition 3: Happens Before Relation 

1. If events A and B happen on the same process and A happens before B, then 

A →  B. 

2. If events A and B happen on different processes, and A is a sending event of 

message M, B is the receiving event of M, then A  B. →

3. If not (A →  B) and not (B  A), then A and B are concurrent events. →

 

Given the definition of Happens Before Relation, the three types of messages can be 

defined as follows: 

 

 Definition 4:  

1. Intra Message: CKPT →  Send  CKPT' and CKPT  Recv →  CKPT' → →

2. In-transit Message: Send →  CKPT and CKPT  Recv →

3. Orphan Message: CKPT →  Send and Recv  CKPT →

Where CKPT and CKPT’ are two successive local checkpoints of a process. 

 

Among these messages, intra message is harmless, because the passing of an intra 

message is completed upon checkpoint. No intra messages will exist in the 

communication channel upon checkpointing so the recovery line is preserved. 

However, the other two types: in-transit and orphan message can impose treats on the 

processes. If a failure occurs after the system has finished the recovery line{C , 

the execution of the program is then restarted from that point. However, there are 

complications that can occur. Let take an example. If process P

1 2, C }

2P  

1  has sent the message 

 to P1m 2 without saving the communication state, and then the local checkpoint of 
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is taken before it receives m . This can lead to the problem that P  will wait for m  

after recovery but m  may be lost or discarded by the network during the program's 

failure.  In this case  would never send m  again. This problem is caused by in-

transit message and is referred to as Unrecoverable (See Figure 1).  

1 2 1

1

1P 1

 

Figure 1. In-transit Message 

Moreover, if as shown in Fig. 2, m  is sent after 's local checkpoint and is received 

before 's checkpoint, then upon recovery P  will re-send  a message that has 

actually been received and saved in P 's checkpoint. Although the execution of 

message sending can be recovered with the existence of orphan message, such a 

message does not only waste the buffer space, but also breaks the communication 

semantics. This type of error is referred to as Inconsistency. 

2 1P

2P 1 2m

2

 

Figure 2. Orphan Message 

Taking into account the arguments above, two conditions are prerequisite in order to 

achieve a valid recovery line, they are: 
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1. Recoverable: no existence of in-transit message or the message can be 

regenerated after recovery. 

2. Consistent: no existence of orphan message or the message can be eliminated 

after recovery. 

 

Given the condition to set up a valid recovery line for MPI programs, a 

checkpoint/recovery system can be categorized into one of three: Coordinated 

Checkpoint, Uncoordinated Checkpoint and Communication-induced Checkpoint. 

The criterion for classification is based on the way in which a specific system 

manages the in-transit and orphan messages. Therefore, a coordinated effort is 

required in order for all processes to be synchronized upon creating the recovery line.  

There are differences in the approaches.  The uncoordinated systems give processes 

the maximal autonomy in deciding when to create local checkpoints; while in a 

communication-induced checkpoint protocol, processes are allowed to create the local 

checkpoints independently. However sometimes additional checkpoints are forced in 

order to guarantee the eventual process of the recovery line. 

 

2.2 Coordinated Checkpoint 
The coordinated checkpoint is the most straightforward checkpoint mechanism for 

creating a recovery line for message passing programs. It orchestrates processes to 

create checkpoints to ensure that the communication channels are drained before the 

recovery line is setup. Similar with the checkpointing, the coordinated approach to 

failure of one process involves all other surviving processes to rollback to the latest 

recovery line.  

 

2.2.1 Blocking Coordination 
In its simplest form the coordinated checkpoint processes are synchronized before the 

local checkpoints in order to ensure a clean communication channel [24]. A 

coordinator broadcasts for every process a checkpoint request. When a process 

receives such a request, it stops its execution, flushes its communication channels, 

takes a local checkpoint, and sends an acknowledgment message back to the 

coordinator. After that the coordinator collects acknowledgments from all processes, 
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and broadcasts a commit message to complete the two-phase checkpoint protocol. 

Upon receiving the commit message, each process marks its local checkpoint as a new 

recovery line. Then the process resumes execution and exchanges messages with 

other processes. Although such an approach is implemented in certain programming 

models [25], the two-phase blocking operation incurs significant overheads during the 

failure free execution. This conflicts with the goal to achieve high performance.  

 

Another type of coordinated checkpoint protocols is the Time-based Coordinated 

Checkpoint [26-31].  This method follows the blocking flavour, but requires no 

explicit barrier operation. In this approach, the synchronization is not made through 

explicit blocking, instead, all inter-process communication are cached around the 

checkpoint time. This allows ensuring that when the recovery line is formed no 

message is left in the communication channel. The time-based checkpoint protocol 

coordinates the processes by means of a clock. However, the existence of time 

deviation does not allow the clock of distributed processes to be accurately 

synchronized. Given a real time interval [ startT ,T ] and the clock drift rateend ρ , the 

clock time of any process will be in the interval of 

[ (1 )( )end startT Tρ− − , (1 )( )end startT Tρ+ − ], if the processes are launched at the exact 

time start

2 ( )end startT T

T . In this case, the maximal clock deviation of two distributed processes is 

ρ − . Furthermore, the checkpoint protocol assumes the existence of a 

maximal and minimal message delivery latency: T , . As a result, if all 

processes start from the time 

max minT

startT  and agree to create a recovery line at T , the clean 

communication channel is taken as shown in Figure 3.):  

end

 

1. Cache all message passing from T T2 ( )end end start maxT Tρ− − − ; 
 
2. Resume the message passing at T T2 ( )end end start minT Tρ+ − − ; 
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Figure 3. Time-based Coordination 

 

Although the time-based coordination avoids the considerable overheads caused by 

the global barrier operation, this checkpoint protocol suffers from its scalability. In a 

small network, the algorithm works pretty well. However, when the network scales 

are taken into account, the clock-drift rate between two distributed processes, as well 

as the maximal message delivery latency, increase dramatically. It can even reach a 

degree in which the message passing caching period would be unacceptable. More 

important, in a heterogeneous network, it is actually not possible to accurately 

measure parameters such as clock-drift rate as well as maximal and minimal 

communication latency. 

 

2.2.2 Non-Blocking Coordination with Chandy-Lamport Algorithm 
The performance overheads in of the blocking coordination are difficult to avoid. That 

is why in practice a non-blocking scheme is preferred. A non-blocking scheme differs 

from the blocking scheme, because the former allows the process to resume its 

execution as soon as it finishes the local checkpoint. In the non-blocking scheme, 

although all processes are involved in creating the recovery line, processes are not 

firmly synchronized. In this sense, in-transit and orphan messages may exist in the 

communication channel at the time the local checkpoint is taken. However processes 

employ some external facilities to manage these messages, and thus to guarantee that 

the recovery line is consistent and recoverable. As a consequence, the non-blocking 
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coordination would have significant advantages on the checkpoint overheads, 

especially given the scalability concern. 

 

Among the approaches proposed in order to manage the in-transit and orphan 

message, the Chandy-Lamport algorithm [16] is the most widely used algorithm.  It is 

observed that it performs best when designing non-blocking coordinated checkpoint 

systems for message passing programs. We note that most existing 

checkpoint/recovery systems, which are built for message passing systems, employ 

the Chandy-Lamport algorithm as a foundation. Further, most of the algorithms that 

are proposed for checkpointing MPI programs by other researchers [26, 27, 32-37-58, 

73], can be derived by relaxing various assumptions and by modifying the way each 

step is carried out.  

 

As per Chandy-Lamport's model, it is based on the following assumptions: 

1. The system is comprised of finite numbers of processes and communication 

channels. 

2. Communication is done by passing messages through the communication 

channel. 

3. The Latency of communication is finite and the communication is reliable. 

4. The message passing behaves in the FIFO manner. 

 

The algorithm can be summarized as follows. Let INx and OUTx be the number of 

incoming and outgoing communication channels respectively, which process x holds.  

1. A process p is selected to initiate a new global checkpoint. P first creates a 

local checkpoint. For i=1 to OUTp , p broadcasts a marker message along  

the outgoing channel i  and then resumes its execution. 

2. To any other processes: upon detecting the first marker message, a process q 

immediately creates a local checkpoint, and sends out its own markers along 

all outgoing communication channels it holds. After that, it resumes 

execution. 

3. To each process x: for i=1 to INx, x logs the messages from the incoming 

channel i as in-transit messages, until a marker message is received along 

channel i. Once the process x receives marker messages along all incoming 

channels, it marks its logging completed. 
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4. When all processes finish logging, the recovery line is formed. 

It is noted that the Chandy-Lamport algorithm is naturally immune to orphan 

messages since the FIFO property guarantees marker messages always arrive and are 

detected before all post-checkpoint messages. So the recovery procedure of the 

Chandy-Lamport algorithm is simply to rollback all processes to their latest local 

checkpoints, and replay the in-transit messages at the receiver side. 

 

At the time when the initiating process informs the rest of the processes about the new 

checkpoint, the Chandy-Lamport algorithm broadcasts marker messages along all 

communication channels. However it is unnecessary to send marker messages along 

every channel. Some marker messages can be safely eliminated along channels in 

which there is no message exchanged between the previous and the current 

checkpoint intervals [32-34]. The attempts to achieve this simplification result in 

Selective Checkpoint [35, 36] approach. In it not every process participates in the 

global checkpoint. Instead, a group of processes are selected to create a partial 

recovery line.  After that this line can be safely patched onto the latest global 

checkpoint. This advances significantly the whole recovery line. Apart from reducing 

the number of marker messages, another benefit of selective checkpoint is the failure 

recovery cost. In the coordinated checkpoint model, the failure of any number of 

processes requires the rollback of all processes. However with the selective 

checkpoint, the rollback does not have to involve every process. If the failed process 

can be found in a partial recovery line, only the processes that participated in creating 

the partial recovery line are rolled back.   

 

2.2.3 Summary of Coordinated Checkpoint 
Being the most straightforward checkpoint/recovery protocol for message passing 

systems, the coordinated checkpoint protocol has the inherent advantage of its 

simplicity. This advantage is reflected both in the checkpointing and in the recovery. 

A disadvantage to this protocol is its performance. The non-blocking coordination 

introduces negligible overheads compared to a program, which saves its state during 

the failure free run. Although there are questions raised regarding the scalability of a 

coordinated checkpoint protocol, it has been demonstrated by [76] that it is the most 

practical approach given all performance considerations are balanced. As a 
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consequence, it is observed that most existing checkpoint/recovery systems for 

message passing programs either are directly built on the coordinated checkpoint 

model (the non-blocking flavour), or that they implement the coordinated checkpoint 

as a secondary fault tolerance mechanism. 

2.3 Uncoordinated Checkpoint and Message Logging 
Unlike the coordinated protocol which orchestrates all processes to setup the recovery 

line, the uncoordinated scheme allows processes to create the local checkpoint 

independently. The main potential is that each process may choose the most 

appropriate time to trigger its local checkpoint, preferably at the point of the process 

that has the least amount of data for checkpointing. Another benefit of the 

uncoordinated checkpoint is that the recovery procedure is also uncoordinated. In the 

coordinated checkpoint once a failure occurs, all participating processes need to 

rollback. However in the uncoordinated mode, when a failure occurs only the failed 

processes need to rollback to the latest local checkpoint and replay the execution so 

there is no need to interrupt other processes. Compared with the coordinated 

mechanism, this form promises more flexibility. The reason is that it introduces less 

checkpoint overheads than the coordinated form since it eliminates the need to 

exchange coordination messages. 

 

However, usage of the uncoordinated checkpoint comes at a cost. First of all, the 

direct result of the lack of coordination is the possible danger of in-transit and orphan 

messages. Therefore an uncoordinated checkpoint system as a rule does not create a 

valid recovery line. The recovery line differs from the coordinated form in its usage of 

uncoordinated checkpoints. In this model the recovery line is actually constructed 

during the recovery. The system finds a set of local checkpoints that can be used for 

the rollback. However, this poses several problems. The first one is that every process 

needs to maintain multiple local checkpoints, rather than only the latest one. The 

second is that some of the local checkpoints may become redundant if they are not 

included in any recovery line and thus a garbage collection module is need. And 

finally, the third problem is that even though processes keep as many local 

checkpoints as they have created, they may still suffer from Domino Effect [37]. 
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Figure 4. Domino Effect 

Domino Effect is formulated as a cascaded rollback, which may continue and 

eventually causes the program to restart from its very beginning. Consider the 

example given in Figure 4, suppose that process P1 fails after it has completed the 

local checkpoint c1,2. Since processes create their local checkpoints uncoordinatedly, 

there is no naturally formed recovery line. To recover P1, P0 has to restart the 

execution from c0,2 to receive message m5. The rollback of P0 further forces P1 to step 

back to c1,1 in order to replay message m4, which also propagates to the rollback of P2 

to c2,1 due to m3. Then P  is rolled back to its beginning c0 0,0, since m  is invalidated 

for the rollback of P

2

2.  

 

To any checkpoint/recovery system, the possibility of the Domino Effect is intolerable 

and needs to be completely eliminated. There is extensive research focused on 

studying message logging [38]. Message logging relies on the piecewise deterministic 

(PWD) assumption [39]. Given a message passing program, a deterministic event 

refers to the receiving of an incoming message; while a nondeterministic event 

denotes a message sending operation. To an MPI process, the incoming message is 

the necessary condition for reproducing its outgoing message. Outgoing messages can 

be replayed only if the process gets the same incoming message during the recovery 

in the exactly same sequence as before the failure. Under the PWD assumption, the 

message logging protocol identifies all the nondeterministic events executed by each 

process. After that for each such event it logs a determinant that contains all 
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information necessary to replay the event. Thus the protocols can recover a failed 

process and replay its execution as it occurred before the failure.  

 

From the way in which the message logging is implemented, a specific system can be 

categorized into one of the three flavours: Pessimistic Message Logging, Optimistic 

Message Logging and Causal Message Logging. 

 

2.3.1 Pessimistic Message Logging 
Pessimistic Message Logging [40] presents the most rigid behaviour in the guarantee 

for the correctness of recovery, since it does not occupy time during the period when a 

failure occurs. In contrast, the pessimistic model is founded on the presumption that 

faults can occur at any time, regardless of whether an incoming message has been 

written or not onto the disk. Therefore it adopts a strategy in which every incoming 

message has to be logged onto the disk storage before it can be received. Hence, there 

is no need to calculate global recovery lines in the pessimistic model, since the failed 

process is able to reproduce its execution using the logged messages. However the 

rigid behaviour introduces considerable overheads. These are due to the synchronous 

logging operation during failure free execution. The tradeoff of pessimistic message 

logging becomes even more significant in communication-intensive programs. 

 

To reduce the logging overhead, a common solution is to use Sender-based Message 

Logging [41]. The Send-based Message Logging has the advantage to its counterpart, 

Receiver-based Message Logging, that all messages are logged in the sender’s 

volatile memory rather saved in the receiver’s stable storage. However, a 

disadvantage is that Sender-based Message Logging protocol tolerates only a single 

failure of a receiving process [42]. If both the sender and receiver have failed at the 

same time, the message necessary for the recovery of the receiver is logged in the 

sender’s volatile memory, and, will be therefore lost. In such case, the rollback must 

be propagated in order to find a valid recovery line. However this solution can cause 

the Domino Effect. 

 

Another optimization is to defer logging the incoming message until the process sends 

some outgoing messages [43]. This solution relaxes the pessimistic logging by 
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allowing the process to receive messages that have yet to be logged. Thus message 

logging and receiving are not performed in one atomic operation. This reduces 

overhead because several messages can be logged in one operation, reducing the 

frequency of synchronous access to stable storage. 

 

2.3.2 Optimistic Message Logging 
In the optimistic message logging, the protocol makes the “optimistic” assumption 

that no failure would occur before the messages are logged onto the stable storage 

[39]. In other words, the logging operation is asynchronous with the message passing. 

Messages are first saved in the memory (at either the sender or the receiver side) and 

then flushed periodically onto the stable storage.  In terms of the logging overhead, 

the Optimistic message logging performs significantly better than the pessimistic one. 

However, such logging schemes face the danger of the rollback propagation. It is 

possible that at the point in which a failure occurs some of the messages have not 

been actually written to the stable storage. In this sense optimistic model must employ 

more elaborate recover procedures in order to calculate the recovery line. 

 

A necessary step, in order to perform the rollback correctly, is to track the process 

dependency during the failure free execution. The process dependency can be 

formulated in the following model [44]: Let C  be the ,i x
thx  checkpoint of process P , i

,i xI  denotes the checkpoint interval between checkpoints C , 1i x−  and . Assuming 

process  at interval 

,i xC

iP ,i xI  sends a message m to , it piggybacks the interval value jP

,i xI  onto the message. When P  receives the message during interval j ,j yI , it records 

the dependency from ,i xI  to ,j yI . Unlike the message content, the dependency 

information is recorded onto the stable storage synchronously with the message 

passing. Thus, even if a volatile message log is lost due to a failure, the dependency 

information will still be available to the recovering process. As a result, the rollback 

in the optimistic message logging model is based on the observation that if there is an 

edge from C  to  and a failure forces ,i x ,j yC ,i xI  to be rolled back, ,j yI  must be rolled 

back as well. 
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In particular, when a failure occurs the recovering process starts the rollback by trying 

to collect the dependency information from all other surviving process. Using the 

global dependency information, the recovering process calculates a valid recovery 

line by using the Reach-ability Analysis [44]: 

 

1. include all local checkpoints and all processes’s current states (both 

surviving and failed) as a set CKPT; 

2. for any two elements in the set CKPT, ,i xI  and ,j yI , if a dependency exist 

from ,i xI  to ,j yI , draw an edge from ,i xI  to ,j yI ; 

3. Mark the failed process; 

4. while (at least one member of CKPT is marked) 

        { 

  mark all elements in CKPT that can be reached by at least one  

  dependency edge; 

  delete the marked elements; 

        } 

5. The last unmarked elements from each process in the set CKPT forms the 

recovery line. 

  

Then the failed process broadcasts the rollback information to other surviving 

processes. Upon receiving a rollback request, the surviving process quits the current 

execution and rolls back to the indicated local checkpoint. 
 

2.3.3 Causal Message Logging 
The causal message logging approach tries to combine the merits of the pessimistic 

and optimistic models [45]. It avoids the blocking of synchronous message logging 

operation, meanwhile guarantees no cascaded rollback, which is limited to the latest 

checkpoints for all processes.  

 

In particular, causal message logging guarantees no domino effect by ensuring that 

the determinant (message receiving) of every nondeterministic event (message 

sending) that causally precedes the state of a process is either stable or it is available 

locally to that process [74]. Considering the example given in Figure 5, suppose that 

 35



message  is lost due to the failure of process . However to P ,  is a 

nondeterministic event (sending message), the determinant of which, m   have 

been logged by P ,  (suppose using Sender-based Logging). Therefore P  and  

are able to guide the recovery of  by replaying the message , . 

6m 1P 1

2

5m

4m

00 2P 2P

1P 2m 4m

 

Figure 5. Causal Message Logging 

Manetho [46] presents the first implementation of a causal message logging protocol. 

Each process maintains an antecedence graph which records the message passing 

events between processes. Upon sending a message, the sender process piggypacks its 

local antecedence graph on the message, which will be recorded at the receiver end.  

 

Figure 6. Antecedence Graph 

Figure 6(a). shows the antecedence graph of process P0 in Figure 5 after receving . 

Figure 6(b) is the antecedence graph of process P

5m

2 after sending message m . As the 4
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figures show, the antecedence graph is propogated along with the message passing. At 

the time P1 crashes, the antecedence graph provides P0 with a complete history of the 

message passing events of the three processes, in which a node represents a message 

receiving event (except the first node of each process that represent the execution 

start), and the edges correspond to the message passing operation. Hence, the 

surviving process will know how to guide the failed process during recovery. 

 

When a process sends a message to another one, it does not send the complete graph 

but an incremental piggybacking: all events preceding one initially created by the 

receiver need not to be sent back to it. Another algorithm has been proposed in [47] to 

reduce the amount of piggybacking on each message. It partially reorders events from 

a log inheritance relationship. Moreover it requires no additional piggybacking 

information. This allows having some information about the causality a receiver may 

already hold. 

 

2.3.4 Summary of Uncoordinated Checkpoint 
The uncoordinated checkpoint protocol was originally introduced at a time when the 

communication overhead far exceeded the overhead of accessing the stable storage. It 

was beneficial to try to retrench the network communication as much as possible. 

Moreover, at that time the memory available to run a program tended to be small. 

These tradeoffs naturally favoured the uncoordinated checkpoint schemes over the 

coordinated ones. However, current technology trends put these tradeoffs into a 

different perspective. With the significant increase of bandwidth in recent years, the 

overhead of coordination becomes negligible compared to the overhead of saving the 

program states [46-51]. Using techniques such as concurrent and incremental 

checkpoint, the overhead of either coordinated or uncoordinated checkpoint is 

essentially the same. Therefore, the uncoordinated checkpoint is not likely to be an 

attractive option in practice given the negligible performance gains. These gains do 

not justify (a) the complexities of finding a consistent recovery line after the failure, 

(b) the susceptibility to the Domino Effect, (c) the high storage overhead of saving 

multiple checkpoints for each process, and (d) the overhead of garbage collection. 

This leads to the conclusion that the coordinated checkpoint is superior to the 

uncoordinated scheme. 
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2.4 Communication-Induced Checkpoint 
In a communication-induced checkpoint system [52], the creation of recovery line is 

uncoordinated. Processes are given the autonomy to choose when to save their 

execution states. In other words, they are independent to that of creating local 

checkpoints. However, to avoid the Domino Effect caused by uncoordinated 

checkpoints, this independence is in certain cases constrained by additional 

checkpoints that are forced in order to guarantee the eventual progress of the recovery 

line. The purpose of forced checkpoints is to break the communication and checkpoint 

patterns that may lead to invalid recovery line.  

 

We observe two types of approaches to communication-induced checkpoint: Model-

based Checkpoint and Header-based Checkpoint. Model-based checkpointing 

protocols maintain checkpoint and communication structures that prevent useless 

recovery lines or achieve some even stronger properties [77]. Header-based protocols 

assign stamps to local and forced checkpoints such that checkpoints with the same 

stamp value at all processes form a valid recovery line.  

 

2.4.1 Model-based Checkpoint 
In the model-based checkpoint, the inter-process communication pattern is restricted 

so that the danger of in-transit and orphan messages is prevented from occurrence. In 

the simplest case, a process triggers a local checkpoint following every message 

passing operation to prevent the message becoming an in-transit or orphan one. In a 

more advanced case, the MRS model [53] limits the processes in a way, in which no 

message sending operation is allowed to be performed if there is any incoming 

message that has not been received. And additional checkpoints are forced between 

any consecutive sending and receiving operations, to ensure the validity of the 

recovery line. Obviously such communication pattern adds too many constraints in 

terms of programming and introduces siginificant overhead, what make it over-

limited in the real world. 

 

2.4.2 Header-based Checkpoint 
The header-based checkpoint model piggybacks additional information onto the 

application messages to help the system identify the in-transit and orphan messages. 
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The simplest header would be one bit, which toggles between red (zero) and black 

(one) indicating the consecutive checkpoint intervals [37]. Upon detecting an 

incoming message with a header different from the local value, the receiving process 

will either trigger a new checkpoint or log the message. 

 

In some cases no marker messages are needed, because the header information may 

fully replace the marker message for the process coordination. In these cases the 

coordination overhead is converted to the header overhead. However, in order for this 

to be achieved a process must be able to initiate local checkpoints on its own. In more 

common cases, coordination message are still necessary. In certain cases processes 

may not communicate with one another in previous checkpoint interval and therefore 

not be accessed by the new recovery line. As a consequence, most existing 

communication-induced checkpoint systems employ the header as well as the 

coordination message to form the global recovery line [33, 35]. 

2.4.3 Summary of Communication-induced Checkpoint 
Theoretically, the communication-induced protocols are believed to have several 

advantages over the two other styles of checkpoint. For instance, it allows 

considerable process autonomy in deciding when to take checkpoints. Also they are 

believed to scale up well with a larger number of processes since they do not require 

the processes to participate in a global coordination. However, these advantages come 

at a price. First, the header information piggybacked on application messages 

occasionally induces processes to take forced checkpoints before they can process the 

messages, which may introduce unpredictable overheads. Second, processes have to 

pay the overhead of piggybacking information on top of application messages. 

Moreover, for each process several checkpoint files need to be maintained for the 

recovery procedure.  

 

A study has shed some light on the behaviour of communication-induced checkpoint 

[54]. It presents an analysis of these protocols based on a prototype implementation 

and a validated simulation, showing that communication-induced checkpoint does not 

scale as well as expected. This is due to application messages whose occurrence 

within the execution of forced checkpoints makes it very difficult to predict the 

amount of stable storage that will be necessary for a particular program to run. Also, 
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this unpredictability affects the policies that govern where to force local checkpoints 

and makes communication-induced protocols cumbersome to use in practice. 

Furthermore, the study shows that the benefit of autonomy in allowing processes to 

take local checkpoints at their convenience does not seem to hold. In all experiments, 

a process takes at least twice as many forced checkpoints as local, autonomous ones. 

 

2.5 Conclusion 
This chapter examined the three main protocols for checkpoint/recovery of MPI 

programs: Coordinated, Uncoordinated and Communication-induced. Each of these 

protocols offer different advantages and tradeoffs with respect to the failure free 

execution, the number of processes needed to rollback, system complexity, algorithm 

scalability, the fault rate at which the algorithm remains valid, the latency of a 

recovery line commit, the storage overhead caused by checkpointing and rollback 

extent. A summary of the comparison between the three checkpoint protocols is 

presented in Table 2. Considering all factors the non-blocking coordinated checkpoint 

is evaluated to be the most practical approach for the MPI programs running in a 

heterogeneous network of computers. 
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Chapter 3 

Event Logging: Application-level Coordinated 
Checkpoint for MPI 
 

3.1 Introduction 
The logging operation has been traditionally presented by message logging as an 

assistant mechanism to allow the use of uncoordinated checkpointing with no domino 

effect. However a system may also combine logging with coordinated checkpointing, 

yielding several benefits with respect to performance and simplicity [55]. These 

benefits include those of coordinated checkpointing —such as the simplicity of 

recovery and garbage collection, and those of message logging —such as fast output 

commit. Most prominently, this combination obviates the need for flushing the 

volatile message logs to stable storage in a sender-based logging implementation. 

Thus, there is no need for maintaining large logs on stable storage, resulting in lower 

performance overhead and simpler implementations. The combination of coordinated 

checkpointing and message logging has been shown to outperform one with 

uncoordinated checkpointing and message logging [55]. Therefore, the purpose of 

logging should no longer be to allow uncoordinated checkpointing. Rather, it should 

be the desire for the coordinated checkpoint to manage the in-transit and orphan 

messages. 

 

This chapter presents Event Logging, an application-level coordinated checkpoint 

algorithm for MPI programs running in a heterogeneous network. The main 

contribution of the Event Logging algorithm is that this algorithm is applicable to 

various MPI implementations as well as different heterogeneous platforms. 

 

In general, the Event Logging Algorithm asks both the sender and receiver processes 

to keep logs of the message envelopes, which are exchanged at the checkpoint stage 

to identify the in-transit message and orphan message envelopes. Once the process 

finds out these “trouble” messages, it saves the orphan message envelopes to avoid 

the inconsistency upon recovery. It also uses the in-transit message envelopes to log 
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the in-transit messages. Upon recovery, the process replays the logged in-transit 

messages and discards the repeated orphan messages. 

 

In this chapter we concentrate on describing the algorithm. The implementation 

details are left to the next chapter. 

3.2 Background 
3.2.1 Problem Space 
Mentioned in Section 2.2.2, the Chandy-Lamport algorithm requires the 

communication to operate in the FIFO manner. Simply put, FIFO is a property that 

asks the communication channel to behave like a tunnel, where the out-of-sequence 

message sending/receiving is forbidden. In other words, once a message is sent, it 

enters a tunnel in which the message must stay at its position. Despite the possibility 

of different routing paths over the network, the messages leave the queue always in 

the same order as they enter it. 

 

The reason why FIFO is mandatory for the Chandy-Lamport algorithm is that the 

marker used in the algorithm acts as a fence to separate the message passing around 

the local checkpoint. Considering the following scenario in Figure 7: P  sends three 

messages in the order: { ,  to . With the FIFO manner, the messages 

reach P  in the same order as they are sent. Also, at the time m  reaches ,  has 

already finished its local checkpoint. So that m  is logged as an in-transit message and 

 is an intra message according to the Chandy-Lamport Algorithm. However, if the 

underlying network does not behave in the FIFO manner, the arriving order might be 

different from the sending order. If the arrival is { , ,  will be omitted 

from logging and make the recovery line unrecoverable. Furthuremore, if the arrival is 

, the logging of  leads the recovery line inconsistent. 

0

1 , }m marker m

2m

2 1P

1

1 2 ,

1

2,

1P 1P

1

2m

{ ,

1marker m m } 1m

}m m marker

 

Being the cornerstone of the Chandy-Lamport Algorithm, the FIFO manner is a true 

statement of behaviour of message passing when looking deeply into the details of 

MPI implementations: most MPI implementations define a low level channel, which 

sits on top of the underlying network. On a low performance network such as 
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Ethernet, TCP is used, provides the FIFO property; while most high performance 

NICs (Network Interface Card) provide the FIFO reliable communications. As a 

consequence, there exist many checkpoint/recovery systems for MPI programs built 

on the pure Chandy-Lamport algorithm [15, 19, 20, 56]. However, this statement is 

false when looking at MPI from the top. From the point of view of programming it is 

valid to receive messages even in the reverse order of the sending. While this situation 

may be rare, a much more common situation is that messages are sent and received 

out of sequence. Although the MPI standard defines a priority rule to regulate the 

message sending/receiving at the application-level, called Non-overtaking property 

[6], it still cannot meet the requirement of FIFO communication.  

 

Figure 7. FIFO Message Passing 

“Conceptually, one may think of successive messages sent by a process to another 

process as ordered in a sequence. Receive operations posted by a process are also 

ordered in a sequence” [57]. A message in MPI is labelled by the envelope <rank, tag, 

communicator> (where rank is replaced by target on sending or source on receiving). 

If there are several messages with the same envelope in the receiving buffer, some 

rules must be used to solve the problem of determining which one should be picked 

up by a matching receiving post. With the non-overtaking property, MPI guarantees 

the message sequence and correct communication semantic.  

 

For example, if one process sends two successive messages { ,  that have the 

same envelope to another process. The two messages, on the receiver side, will be 

picked up in the same sending order { , , not { . On the other hand, if one 

process posts two receiving calls with the same envelope and there is only one 

matching message in the buffer, it is always the first receiving post that gets satisfied 

1 2}m m

1 2}m m 2 1,m m }
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even if it is a non-blocking operation. In this scenario where two processes both send 

a message with the same <tag, comm> to the same destination, these two messages 

are only different at the source rank. The destination process posts a matching 

receiving with the wildcard MPI_ANY_SOURCE, making it match both messages.  

The non-overtaking property does not apply to such case, since there is no sending 

order between these two messages. Therefore, the receiving post may pick either of 

them, depending on which one arrives first. A note is that this only applies to the 

single-threaded environment. As MPI sets no rules of multithread, different MPI 

implementations may have different explanations of the non-overtaking message 

passing property in their own multithreaded features. 

 

We argue that FIFO is different from the non-overtaking property. Principally, non-

overtaking applies only to the messages with identical envelopes. To the messages 

with different envelopes, the program is free to receive them in any order. However 

FIFO is more restrictive since it requires all messages to be received in their sending 

order.  

 

As the Chandy-Lamport algorithm works under the assumption of FIFO, there are 

problems when bringing the algorithm to the checkpoint of MPI because the FIFO 

assumption is not strictly required by the MPI standard at the application level. This 

one reason why most existing checkpoint/rollback-recovery systems built on Chandy-

Lamport algorithm, implement the algorithm in a non-portable way. These systems 

have to resort to the help of a low-level layer, which provides the FIFO guarantee, to 

implement the Chandy-Lamport algorithm. It is observed that either these systems are 

built on their own MPI implementations or use some special network protocol. 

However, given the portability concern, such platform-dependent systems would not 

be popular in a heterogeneous network. In this sense, the proposed solution must be 

able to release the application-level non-FIFO constraint, so as to cope with different 

MPI implementations. 
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3.2.2 Existing Approaches 
Unfortunately, although many variants that improve on the Chandy-Lamport 

algorithm have been developed in recent years [26, 27, 32-37-58, 73], only a few had 

provided supports to the application-level non-FIFO problems. 

 

A straightforward approach is to coordinated processes used loosely synchronized 

clocks [26-31]. However, as discussed in Section. 2.2.1, time-based coordination 

suffers from its scalability, which is one of the main issues in a network of computers.  

 

Message Tagging is another approach to address the application-level FIFO problem 

[37, 51, 59]. The idea behind Message Tagging is that the system wraps some 

additional information (header) onto the outgoing messages, which specifies the 

sending order. On the receiver side, the process receives the incoming messages, and 

unwraps the header information, so that system can obtain the message sending order 

so as to identify the in-transit and orphan messages. 

 

The implementation for Message Tagging can be classified into two categories: 

System-level and Application-level. With System-level Message Tagging, the 

wrapping is done at the network layer, which obviously does not fit our goals. As to 

application-level Message Tagging, the header information is piggybacked directly on 

the MPI messages. 

 

In general, we observe three approaches to implement application-level message 

tagging: 

 

1. Header Message: In this approach, the header is not actually included in the 

original message. Instead, the system sends another extra message following the 

outgoing message to pass the header information. We call the original message 

Host Message and the assistant message Header Message. Sample code looks 

like: 

 

MT_MPI_Send(buffer,…) 

 { 

  MPI_Send(buffer,…);  // send the host message 
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  MPI_Send(header,…); // send the header message 

 } 

 

Note, the header message must be sent/received using the same envelope of its 

host message, to guarantee that a header message is always received immediately 

after its host. Since the system needs to perform an extra communication 

operation with every message, this approach doubles the program’s 

communication volume. Moreover, because the header message uses the same 

envelope as the host message, all header messages are passed via user-specified 

communicators, not a global, independent communicator dedicated for the 

coordination. So, checkpoints in this pattern may be significantly delayed, when 

the target process postpones receiving messages. 

 

2. Buffered Mode: The second option is to use buffered mode communication in 

MPI. Since it is impossible to expand the application buffer, the checkpoint 

system needs to copy both the message and the header into an external buffer, and 

send the buffer instead of the original message.  A sample is:  

 

MT_MPI_Send(msg,……) 

{ 

// allocate a temporary buffer 

  buf=malloc(header_size+msg_size);  

// copy the header into the buffer 

  MPI_Pack(header,header_size…,buf,…);  

// copy the message into the buffer 

  MPI_Pack(msg,msg_size…,buf+msg_size…);  

// send the temporary buffer 

  MPI_Send(buf,header_size+msg_size,MPI_PACKED,….);  

// release the buffer 

  free(buf);   

} 

It is noted that all messages use the same datatype MPI_PACKED for 

communication.  
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3. Derived Datatype: MPI allows users to construct composite data structures from 

the simple types. Facilitated by this function, the sender and receiver processes 

agree to build up a temporary datatype upon communication, which is comprised 

of both the original message and the header, and use the temporary datatype to 

pass the message. The wrapper function looks like: 

 

MT_MPI_Send(msg,….) 

{ 

  buf=malloc(header_size+msg_size); 

// copy the header into the buffer 

memcpy(buf,header,header_size); 

// copy the message into the buffer 

  memcpy(buf+header_size,msg,msg_size); 

// build a temporary datatype; 

  MPI_Type_struct(….,temp_type);     

  MPI_Type_commit(temp_type); 

// send the buffer as temp_type datatype 

  MPI_Send(buf,1,temp_type,…); 

// free the temporary type 

  MPI_Typ_free(temp_type);      

// de-allocate the buffer 

free(buf);        

} 

 

Although the buffered mode and derived datatype options are differerent from the 

point of view of programming, we argue that in effect, they are similar. The derived 

datatype has the advantage on performance. However, the common downside of the 

two solutions is that they are not completely safe. For example, MPI_Status is a 

commonly used structure in MPI, which lets users access the information about the 

incoming message. But with message tagging, the information is changed. For 

example the length property includes not only the size of the original message, but 

also the header as well. Consider the code executed by the receiver below: 

 

 MPI_Probe(source, tag, comm., &status); 
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MPI_Get_count(&status, MPI_INT, &count); 

MTC_MPI_Recv(buf, count, MPI_INT, source, tag, comm.,&status) 

  

Suppose the incoming message contains 4 integers and the header is one additional 

integer, then the total size is 5 integers, in which the variable count equals to 5. 

However, if the target process wants to receive the message correctly, the value of 

count should be 4 when passing it to the call of MTC_MPI_Recv() function. 

Otherwise, the header is received as part of the message. In the worse case, if the 

message and the header use different datatypes, the call of MPI_Get_count()simply 

returns MPI_UNDEFINED as the parameter count. One may argue that the solution is 

to exclude the header size. However, we note the difficulty to do so at the application 

level, due to the highly implementation-dependent definition of MPI_Status. 

 

Also, as the experiment results in Section 5.7 shows, the performance of the derived 

datatype approach fluctuates with the message size. This is due to the system needing 

to manage extra buffer space for tagging the header information. With the increase of 

the message size, the memory operation costs get more and more significant.  

 

Moreover, message tagging may be very slow to output a recovery line. This is 

because that the header is bound with the message and the system is able to intercept 

an in-transit message only when the process tries to receive this message. It is 

possible that, as long as the process does not post the receiving call, the system cannot 

log the in-transit messages. Hence the recovery line would never be completed. 

 

Finally, we notice that the message tagging approach still needs coordination message 

to work properly. The coordination message used in message tagging is to tell 

processes the number of the in-transit message it needs to log. Otherwise, a process 

would have no idea whether there is any in-transit message left. 

 

For all these reasons, message tagging is not as attractive as it looks. An appropriate 

solution should have better performance, and fast recovery line commit. And the most 

important, it must be totally compliant with the MPI standard. 
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3.3 Event Logging 
In the following paragraphs, we present Event Logging for application-level process 

coordination. First, it is necessary to differentiate Event Logging from Message 

Logging [38]. In particular, Event Logging is a variant of the Chandy-Lamport 

algorithm that coordinates distributed processes to form recovery lines. Unlike 

message logging, it records only the message envelopes, without the message content, 

reducing much of the memory overhead introduced by message logging [60]. 

 

Also, it is noted that Event Logging is different from the event logger [19], which is 

widely used in message logging systems for tracking the process causal dependency. 

Although the function of both Event Logging and the event logger is to record the 

message passing events, the fundamental difference is that the former is a high level 

algorithm used for process coordination, while the latter is a low level module that is 

built into the message logging system.  

 

In Event Logging, every process keeps a log for the sending and the receiving events 

it performs. When a new checkpoint occurs, send logs are exchanged between sender 

and receiver. When a process gets another’s send logs, it pairs it up with the local 

receive logs to match the message envelopes. As the message envelope is logged at 

the same time as the message passing (sending and receiving), the event log also 

keeps the message’s Happen Before Relation, which determines the type of the 

message: intra, in-transit or orphan. Then, when a pair of send and receive logs are 

matched, the system finds out which category the message is in. 

 

3.3.1 Definitions and Assumption 
A process’s execution is divided into a sequence of intervals separated by 

checkpoints. A checkpoint interval starts with any instruction following a local 

checkpoint, ending upon the completion of the next local checkpoint. A checkpoint 

interval includes all statements between two successive local checkpoints. Each 

checkpoint interval is assigned a unique sequence number, which is equal to the 

number of local checkpoints that have been completed by the process. Since our 

protocol is based on coordinated checkpoint, the local checkpoints that compose a 

recovery line have the same sequence number value. 
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For any message, the message is sent in a checkpoint interval of the source, and 

received in another one of the target, regardless of whether these two intervals belong 

to the same recovery line. We mark the sending event as , which meaning the 

message m is sent in the process p’s  checkpoint interval ( S  is the general form 

for any message); and the receiving event as

, ( )p iS m

,p i
thi

, ( )q jR m , means the message is received 

in q’s thj  checkpoint interval (simplified as ,q jR ). Also, a send log is the collection of 

the outgoing message envelopes, noted by SEND  (the send log of process p’s i  

checkpoint interval). Similarly, a receive log is

,p i
th

,q jRECV . Suppose that F is the set of 

the valid message envelopes, which consist of n elements: 1 2,..., }nf f{F f ,= . The send 

and receive logs are defined as SEN  and*{ |x x=,p i }D F∈ *{ |,q j }RECV x x F= ∈ . 

Also,  (,
x

p iSEND ,
x

q jRECV ) denotes the thx  message envelope in a send (receive) log. 

 

Figure 8. p's send log and q's receive log,  

<p,i> donotes p’s ith checkpoint 

Given the existence of orphan, intra and in-transit messages (See Figure 8), we use 

 to denote the general relation between 

the sending and receiving events. As 

, ,0 ,1 , ,{ , ,..., ,..., }( 0) p i q q q j q xSEND R R R R x j≥ ≥

,q jR  denotes a receiving event happens on 

process q during the thj  checkpoint intervals, the expression means that an outgoing 

message can  be received anytime during the program life. Also the corresponding 

receive log of q’s thj  interval is denoted 
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by . Obviously there exist some matching 

relations between these two logs:  

, ,0 ,1 , ,{ , ,..., ,..., }( 0) q j p p p i p xRECV S S S S x i≥ ≥

, , , ,{ }p i q i p i q iSEND RECV SEND R RECV∩ = =

, , , ,{ }p i q i x p i q i xSEND RECV SEND R+ +∩ =

, , , ,{ }p i q i x p i q i xSEND RECV SEND R− −∩ =

, { }q jRECV −

, , 1 , , 1{ , , }q i p i p i p iRECV S S S− +

 

, {q i p iS , }

, }+

, }−

;         // intra messages 

, {q i x p iRECV S= ;  //  in-transit messages 

, {q i x p iRECV S= ; //  orphan messages 

 

Note, a send log that has no matching receive log is written as , and an 

unmatched receive log is

, { }p iSEND −

. However, since the message passing is reliable, 

these are not the final states. The counterparts must be found somewhere in the 

following checkpoint interval logs.  

 

In order to simplify the depiction of our model, we make the following assumption. 

Later, we will show how to remove such a limitation for all kinds of communication 

environment. 

 

 Assumption: The following discussion assumes any message passing finishes in 

no more than two successive checkpoint intervals.  

 

Then, the send and receive logs are of the form like: SEND  

and . 

, , 1 , , 1{ , ,p i q i q i q iR R R− + }

}+

 

Note, the format given above of send event log SEN  doesn’t 

mean that the messages are sent in the receiving order. However, with the Non-

overtaking manner, the receiving order of the messages with the same envelope is the 

same as the sending order. 

, , 1 , , 1{ , ,p i q i q i q iD R R R−

 

3.3.2 Algorithm 
The aim of Event Logging algorithm is to coordinate distributed processes by 

identifying the evnelopes of in-transit and orphan messages. A general idea to identify 

such messages in Event Logging is to ask every process to log all envelopes it has 
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sent and received. Upon checkpointing (using the Chandy-Lamport algorithm), the 

send logs are bounded with the marker messages to be exchanged between processes. 

When detecting a marker message, the process unpacks the incoming seng logs, and 

compares them with the local receive logs to identify the in-transit and orphan 

messages. 

 

To identify the in-transit and orphan messages, we start from the first checkpoint 

interval {C , }. For the first interval, a trick is that there are no orphan message 

envelopes in the send log of process p: and no in-transit message 

envelopes in the receive log of process q: 

,0p ,0qC

,0 ,0 ,1{ ,p q qSEND R R

,0 ,0{ ,q p

}

},1pRECV S S . So it is fairly easy to 

identify the in-transit and orphan message envelopes by removing the intra message 

logs: 

  

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , } { , } { ,

{ , } { }

{ }

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV
SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

}

}

And 

 

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , } { , } { ,

{ , } { }

{ }

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV
RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

 

The in-transit SEND and orphan '
,p o

'
,0qRECV

,1q

,1 ,0p qD R

 message envelopes are kept by process q 

until the next checkpoint {C , }. For the second checkpoint interval, however, 

the send log of p looks like SEN  and the receive log of q is 

. Then we can clear these logs by: 

,1p C

,1 ,2{ , ,q qR R }

},1 ,0{ ,q pRECV S ,1 ,2,p pS S
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'
,1 ,1 ,0

,1 ,0 ,1 ,2 ,1 ,0 ,1 ,2 ,0 ,1

,1 ,0 ,1 ,2 ,1 ,0

,1 ,1 ,2

'
,1

{ , , } { , , } {

{ , , } { }

{ , }

p p q

p q q q p q q q q p

p q q q p q

p q q

p

SEND SEND RECV

SEND R R R SEND R R R RECV S

SEND R R R SEND R

SEND R R

SEND

− ∩

= − ∩

= −

=

=

}

}

}

}

}

}

And 

  

'
,1 ,0 ,1

,1 ,0 ,1 ,2 ,0 ,1 ,1 ,0 ,1 ,2

,1 ,0 ,1 ,2 ,1 ,0

,1 ,1 ,2

'
,1

{ , , } { } { , ,

{ , , } { }

{ , }

q p q

q p p p p q q p p p

q p p p q p

q p p

q

RECV SEND RECV

RECV S S S SEND R RECV S S S

RECV S S S RECV S

RECV S S

RECV

− ∩

= − ∩

= −

=

=

As it shows, after the clearance, the event logs of the second checkpoint interval look 

similar to the initial interval. So, the same algorithm can be applied to identify the in-

transit and orphan message envelopes for this recovery line: 

  

' '
,1 ,1 ,1

,1 ,1 ,2 ,1 ,1 ,2 ,1 ,1 ,2

,1 ,1 ,2 ,0 ,1

,1 ,2

"
,1

{ , } { , } { ,

{ , } { }

{ }

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV

SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

And 

  

' '
,1 ,1 ,1

,1 ,1 ,2 ,1 ,1 ,2 ,1 ,1 ,2

,1 ,1 ,2 ,1 ,1

,1 ,2

''
,1

{ , } { , } { ,

{ , } { }

{ }

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV

RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

 

Simple as the above algorithm looks, it demonstrates that as long as no failure occurs, 

it is feasible to identify the in-transit and orphan message envelopes for any 

checkpoint interval. When a fault occurs, the recovery automatically guarantees the 

event log of the first post-recovery checkpoint interval cannot contain in-transit and 

orphan message envelopes of the previous interval, SEND and 

. Then after recovery, the same protocol can be applied to start a 

, , , 1{ ,p i q i q iR R +

, , , 1{ ,q i p i p iRECV S S +
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new event logging cycle. Hence, valid recovery lines can always be created 

throughout the life cycle of the MPI program. 

 

3.3.3 Formal Analysis 
In order to prove the correctness of the Event Logging algorithm, we need to prove 

two cases. The first case is that there are no messages with the same envelope in the 

log. In other words, each message is labelled uniquely. The second case is that there 

are some messages in the log with the same envelope.  

 

 Theorem: The algorithm is correct in the sense that it identifies all in-transit and 

orphan messages of the current checkpoint interval. 

 

 Case 1: no messages with the same envelope  

First, since the messages’ envelopes logged are unique, there must be one and only 

one matching send/receive pair for any event. In other word, there are two possible 

results of the matching: the counterpart of a send (receive) event can be found in the 

current or previous receive (send) log. The matching process fails if its counterpart 

cannot be found. Recalling the in-transit, orphan and intra messages defined by 

Lamport’s Happen Before Relation, the Event Logging algorithm is just trying to 

identify messages by judging the message’s Happen Before Relation.  

 

Suppose the current checkpoint interval of process p is C  and process q’s is C , 

according to the Happen Before Relation, a message m, which p sends to q in the 

current checkpoint interval can be is identified as an intra-message if and only if:  

,p i ,q j

, 1 , ,( )p i p i p iC S m C− → →  AndC R ; , 1 , ,( )q j q j q jm C− → →

As to the Event Logging algorithm, it means that a pair of , , ,{ }p i q jSEND R

, ,{q j p i}RECV S

p iSEND R

 can be matched in the current checkpoint interval 

log: , , , ,{ } {q j q j p iRECV S }= . 

 

The message, M, can be considered to be an in-transit message if and only if: 

, 1 , ,( )p i p i p iC S m C− → →  AndC R ; , , 1( )q j q j+→ m
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This means that a send log finds its matching receive log in the target’s next 

checkpoint interval log: , , 1 , 1 ,{ } {p i q j q j p iSEND R RECV S+ + }= . 

 

Finally the message, m, can be considered an orphan message if and only if  

, , 1( )p i p iC S +→ m

}

 AndC R ; , 1 , ,( )q j q j q jm C− → →

This means that a receive log finds its matching send log in the source’s previous 

checkpoint interval log: , 1 , , , 1{ } {p i q j q j p iSEND R RECV S+ += . 

 

Although it is impossible to check the future checkpoint interval logs, the trick is that 

the first checkpoint interval logs contain no in-transit and orphan messages of any 

previous checkpoint interval: SEN and ,0 ,0 ,1{ ,p q qD R R } },0 ,0 ,1{ ,q p pRECV S S

,0 ,0{ } {p q qR RECV S

. So we can 

easily clear the intra messages p sends q ( SEND ,0 ,0p }= ). for the 

unmatched send logs of p ( ,0{ }pSEND − ) and the unmatched receive logs of q 

( ), because any event log must have a counterpart somewhere and the 

message passing must be completed in the next interval, we conclude the final version 

of these unmatched event logs are SEND , 

,0{ }qRECV −

,0 ,1p R{ }q ,0 ,1{ }q pRECV S . We say the in-

transit and orphan messages have been successfully identified. This is the cornerstone 

of the following Proof by Induction. 

 

Then, assuming at the checkpoint intervals , , we have identified in-transit 

 and orphan  

,p iC

}

,q jC

, 1 ,{p i q jSEND R− } , 1 ,{q j p iRECV S−  messages of , 1p iC − , , the event logs 

of ,  look like 

, 1q jC −

,p iC ,q jC , , 1 ,{ ,p i q j q jR R R ,, q j 1}SEND − +  and . The 

algorithm can remove the counterparts of them RECV and 

, , 1{ ,p iS S

1}

, , 1,p i p iREC S−

, p iSEND R

}+q jV

, {q j p iS − , , 1{ }q j−  

from the event logs ofC ,C . After the removal, the event logs of ,  will 

look like SEN  and , containing no logs related 

withC ,C . So, the same identifying method of the first checkpoint interval can 

be applied. Then we get the in-transit and orphan messages ofC , : 

,p i

{ ,q j q jR +

,q j

, 1} q jRECV

,p iC ,qC

1}

, j SEND

j

, { }p i

, ,p i R

1

D

, 1p i− ,q j−

, ,{ ,p iS ,p iS +

,p i qC −  

and  after removing the intra messages, {q jRECV −} , ,p i q jR ,{ } {q j p iD V S , }SEN REC= . As 

for the , , it is concluded that the final version of SEND,0pC ,0qC ,p i{ }−  and , { }q jRECV −  
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must be SEN  and . Therefore, we conclude for any 

checkpoint intervalC , C  ( 0 , all in-transit, intra and orphan messages 

can be identified. 

, , 1{p i q jD R +

, 1p i−

th

} }, , 1{q j p iRECV S +

, 0)i j≥ ≥

END RECV

, 1q j−

x

SEND

{ } { }x y
q qf R f→

* *
, 1 2{ , ,...,q j

*}nV f f=

1 2{ ,

f

3,f f }=

1 2 1 1
1 1 2 3{ , , ,f f f f, 1 1 3 2 3{ , , ,p i f f f f , }f= =

 

Therefore, Case 1: no messages in the events log have the same envelope is proved. 

 

 Case 2: some messages in the log with the same envelope 

Based on what we have learned in Case.1, now we prove a more complex case, for 

which there are some messages in the event log that have the same envelopes. 

Recalling the event log definition S  and , 

we mark the 

*/ { |x x F= ∈ } 1 2{ , ,..., }nF f f f=

 message of the envelope f with xf , and x messages of the envelope f 

with f*x. For example, if process p sends n messages of the same envelope f, in the i  

checkpoint interval, the send log will be . Also according to 

the Non-overtaking message passing property, the message passing of the same 

envelope obeys the following precedence rule: If x<y then S f  

and

th

{ } {x y
p pS f→

1 2
, { , ,...,p i f f f= }n

}

R . These kinds of message logs must keep the same order. For 

the messages with different envelopes, we argue that the logging is independent. In 

other words, this kind of message can be logged in any order. We call this the 

Logging Independency Principle (LIP). 

 

With LIP, the event log can be converted into the forms: SEN  

and 

* * *
, 1 2{ , ,..., }p i nD f f f=

REC  (called LIP Transformation). Considering the 

example, where F f  and process p sends the messages with the envelopes 

in the following order: f1, f1, f3, f2, f3, the corresponding send log 

is . The LIP 

transformation would not lead to a wrong identification result because it is the 

adjustment of the log order in an interval. A log would not be placed into another 

interval after it. As the message is classified by the Lamport’s Happen Before 

Relation, a log’s place adjustment keeps the original relation. So the identification of 

messages of different envelopes is safe with LIP Transformation. 

2
3 1, } { *S f f 2 32, *1, *2}f f=END
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As we have proved that Event Logging is capable of identifying messages with 

different envelopes, we simplify the problem by considering the case that all 

messages are delivered using the same envelope: SEND . Thus, due to 

the Non-overtaking property, we can get the following rule: If x<y then 

 and

*/ {RECV f= }

} }y{ } {x y
p pS f S f→ { } {x

q qR f R f→

1 2
, { , ,..., }n

p i f f f=

, we argue that the message identification 

precedence of SEND  does not intersect. In other words, for all 

messages with the same envelope f ,  the orphan message sending must happen 

before the intra message sending, which precedes the in-transit message sending. This 

argument is true because if there is an intra message xf sent before some orphan 

message yf , there exists the following relations: C S  

and

, ,p i p i ,{ } { }x y
p if S f→ →

, 1{ }q j ,
y

q j , { }x
q jR f C− R f→ → . However, this conflicts with the Non-overtaking 

property. Also, if an in-transit message xf  precedes some intra message yf , we get: 

 and, ,{ } {x
p i p iS f S f→ ,

y
p iC→ q j} , , , 1{ }y

q j q j{ } xR f C R f+→ → . This is also 

impossible. To prove this case, we apply the same technique used in Case 1:  

 

To the first recovery line ,  the event logs look 

like ,

,0pC

,0

,0qC

,1p,0 ,0 ,1{ , } { *p q qSEND R R f n= } },0{ , } { *q pRECV S f mS = . Since the intra 

message passing stays before any others, the Max(n,m) logs must be the intra message 

logs. If n>m, the remaining (n-m) logs in SEND  are in-transit message logs. 

Otherwise, the remaining (m-n) logs in 

,0p

,0qRECV  are orphan message logs. 

 

Then, suppose that the event logs of ,  are  and ,p iC ,q jC , { * }p iSEND f n=

, { * }q jRECV f m=

, 1 ,{ }p i q jSEND R− =

 and we have identified the event logs of , : 

 and

, 1p iC − C , 1q j−

{ xf } , 1 ,{ }q j p i { y}RECV S− f= . The identification of ,   

goes as follow:  

,p iC ,q jC

 

1) Remove the first y logs from , and the first x logs from,p iSEND ,q jRECV

, 1} {p i f+ =

. Then 

they look as  and . , ,{ , { n y
p i q jSEND R −

, 1}q jR f+ = } }, ,{ , m x
q j p iRECV S S −
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2) Remove |(n-y)- (m-x)| logs from both  and,p iSEND ,q jRECV . 

3) If (n-y)>(m-x), the remaining (n-y)-(m-x) logs, SEND  

are in-transit message logs. Otherwise, the (m-x)-(n-y) logs 

 are orphan messages logs. 

( ) ( )
, { } { }n y m x

p i f − − −− =

( ) ( )
, { } { }m x n y

q jRECV f − − −− =

 

Then we conclude that Event Logging is capable of the identification of the Case 2. 

 

3.3.4 Removal of the 2-interval restriction 
In our algorithm, we suppose all message passing will finish in two successive 

intervals at most. However, in fact, it is possible that a message passing encompasses 

a larger latency, even though rarely. Therefore it is necessary to remove such a 

limitation.  

 

To illustrate the reason, let’s repeat the description of our algorithm. However, a 

change is that, without the 2-interval restriction, the event logs of process p and q’s 

first checkpoint interval will be: SEN  and .  

Then the algorithm is revised: 

,0 ,0 ,1{ , ,...}p q qD R R ,0 ,0 ,1{ , ,....}q p pRECV S S

  

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , ,....} { , ,....} { , ,....}

{ , ,....} { }

{ ,....}

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV
SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

And 

  

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , ,....} { , ,....} { , ,....}

{ , ,....} { }

{ ,....}

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV
RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

The in-transit SEND and orphan '
,p o

'
,0qRECV

,1q

 message envelopes are kept by process q 

until the next checkpoint {C , }. For the second checkpoint interval, however, ,1p C
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the send log of p looks like SEN  and the receive log of q is 

. Then we can clear these logs by: 

,1 ,0 ,1 ,2{ , , ,....}p q q qD R R R

'
,0

,2 ,1 ,0 ,1

,2 ,1 ,0

,....} { , ,

,....} { }

....}

q

q p q q

q p q

RECV

SEND R R

SEND R

= −

= −

,1

,2 ,0 ,1

,2 ,1 ,0

,....} { }

,....} { }

....}

q

p p q

p q p

RECV

SEND R

RECV S

= −

= −

' '
,1

,1 ,1 ,2

,0 ,1

} { , }

} { }

q

p q q

p q

RECV

SEND R R REC

SEND R

' '
,1

,1 ,1 ,2

,1 ,1

....} { , ,....}

....} { ,....}

q

p q q

q p

RECV

SEND R R

RECV S

= −

= −

,1 ,0 ,1 ,2{ , , ,....}q p p pRECV S S S

,1 ,1

,1 ,0 ,1

,1 ,0 ,1

,1 ,1 ,2

'
,1

{ , ,

{ , ,

{ ,

p p

p q q

p q q

p q q

p

SEND SEND

SEND R R

SEND R R

SEND R R

SEND

− ∩

=

=

'
,1 ,0

,1 ,0 ,1

,1 ,0 ,1

,1 ,1 ,2

'
,1

{ , ,

{ , ,

{ , ,

q p

q p p

q p p

q p p

q

RECV SEND

RECV S S

RECV S S

RECV S S

RECV

=

=

,1 ,1

,1 ,1 ,2

,1 ,1 ,2

,1 ,2

"
,1

{ ,

{ ,

{ }

p p

p q q

p q q

p q

p

SEND SEND

SEND R R

SEND R R

SEND R

SEND

− ∩

=

=

,1 ,1

,1 ,1 ,2

,1 ,1 ,2

,1 ,2

''
,1

{ , ,

{ , ,

{ ,....}

q p

q p p

q p p

q p

q

RECV SEND

RECV S S

RECV S S

RECV S

RECV

− ∩

=

=

  
,2 ,0 ,1,....} { ,....}

,

q q pR R RECV S

R

∩

And 

  
,1 ,0 ,1 ,2{ , , ,....}q p p pS RECV S S S

S

− ∩

∩

As it shows, after the clearance, the event logs of the second checkpoint interval look 

similar to the initial interval. So, the same algorithm can be applied to identify the in-

transit and orphan message envelopes for this recovery line: 

  
,1 ,1 ,2{ ,q p pV S S= − ∩

= −

}

And 

  
,1 ,1 ,2{ , ,....}q p pRECV S S∩

As it demonstrates, the algorithm can still identify the envelopes of the in-transit and 

orphan messages. The only difference is that for the i  checkpoint interval, the 

process needs to keep a log of the in-transit and orphan message envelopes that 

happened in the previous (i-1) intervals (if such exist). The clearance of the i  

interval’s logs uses all (i-1) intervals’. 

th

th
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Note that for the in-transit message the process must be able to get these messages 

upon recovery, no matter how early the sending takes place. In other words, to 

recover from the i checkpoint interval, there is no difference between in-transit 

messages sent in the (  interval to these sent in (  interval. We maintain a 

log for all the unreceived in-transit messages and append the new in-transit message 

envelopes onto it. All sending event entries are kept until the message is picked up by 

the target (then the entry will be removed from the log). In this way, our algorithm 

relies on no specific premise and can adapt to any communication demand.  

th

1)thi − )thi x−

 

Also, the Event Logging algorithm is safe though the fairness property is not 

guaranteed by MPI. Simply put, not every message in MPI must be received. The 

unfaireness allows that some messages may be never picked up even if they have 

reached the target process. In such a situation a message would eventually become an 

in-transit message. And according to non-overtaking property, this message must be 

received before passing any other messages between this pair of processes with this 

particular envelope. Although Event Logging is still able to identify and log such in-

transit messages, we note that this may not be an expected scenario from the point of 

view of both Event Logging and the user. 

3.4 Analysis and Optimization 
3.4.1 Analysis 
Being a checkpoint/recovery algorithm, Event Logging has the following three 

overheads: logging overhead, checkpoint overhead and recovery overhead. To 

optimize the performance of Event Logging, we examine them separately. 

 

Logging overhead is introduced by recording the envelope during the message 

passing. For a single send (receive), the overhead is generally constant: creating a new 

node, saving the envelope in the node and linking the new node with the log. 

However, over the whole life of a program, the total logging overhead is determined 

by the program’s communication volume. Suppose the logging overhead of a single 

message is , and there are in total N messages exchanged, the total logging 

overhead can be calculated by: T . Further can be substituted by , 

logT

log * N N * *CKPT cN T f
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where  T  is the checkpoint interval and f the message passing frequency is, N is 

the number of checkpoints taken during the program execution.  

c CKPT

 

Checkpoint overhead is comprised of the cost of identifying messages and the cost of 

creating a local checkpoint. To a process, the time of creating a local checkpoint is 

proportional to the size of data that needs to be saved. We denote this cost using 

functionT . As to the message identification cost, the matching process is 

as: 

( )local datasize

 

for x=0 to NumberOf( , 1 ,{ }q j p iRECV S− ) 

{ 

for y=0 to NumberOf( , , 1 , , 1{ , ,p i q j q j q jSEND R R R }− + ) 

          { 

     if ( , 1 ,{x
q j p i}RECV S−  == ) , , 1 , ,{ , ,y

p i q j q j q jSEND R R R− +1}

}

    { 

          remove , 1 ,{x
q j p iRECV S−  and ; , , 1 , ,{ , ,y

p i q j q j q jSEND R R R− +1}

}

}

1} 1}

          quit y loop; 

    } 

     else { 

            y=y+1; 

      } 

           }  

           x=x+1; 

        } 

 

         for x=0 to NumberOf( ) , , , 1{ ,q j p i p iRECV S S +

         { 

 for y=0 to NumberOf( ) , , , 1{ ,p i q j q jSEND R R +

 { 

         if ( ) == ) , , ,{ ,x
q j p i p iRECV S S + , , ,{ ,y

p i q j q jSEND R R +

     { 
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                   remove  and ; , , ,{ ,x
q j p i p iRECV S S +1} 1}

}

, , ,{ ,y
p i q j q jSEND R R +

        quit y loop; 

           } 

           else { 

                  y=y+1; 

           } 

        } 

       x=x+1; 

 } 

 

Note, no previous in-transit message envelopes will be logged 

. , 1 , , , 1{ } {p i q j q j p iSEND R RECV S− −=

 

Using  to denote NumberOf(, 1q jN − , 1 ,{ }q j p iRECV S−

SEN

),  to denote NumberOf( 

),  to denote NumberOf( ) and T  denotes 

the matching time cost, the overhead of the above matching process is calculated by 

,q jN

, ,{ ,i q jR, ,{ ,q j p iS , 1p iRECV S + } },p iN , 1p q jD R + m

, ,(2 ( q j
m

N N
T

− +1 )
4
q jN , 3)( q jN− −+ , 1 , )q jN+2p i . 

 

As for the recovery overhead, it is introduced by recovering the execution from the 

local checkpoint, plus replaying the in-transit messages and discarding the orphan 

messages upon the recovery. Suppose that restoring the process’s execution state costs 

, replaying an in-transit message costs T , discarding a repeated orphan message 

costs T , and there are N  in-transit messages and N  orphan messages saved in the 

local checkpoint. Also suppose N messages will be received after the process 

recovery. The recovery overhead is 

rT i

o i o

r

1

( )( 1)
(

2( (

n

i o
r oi

r o

N e N e
T T N T

N e
N

N i
=

− − +
+ +

( )

r

N i )
)N i )

o o

e
r i − − −

− + −
−

∑ , where 

( 1, )
1 1

1

r
N xxi N

i

x

xC
C

−−
+

=

= ∑
r

r

o

r

i N
N
N

C− −
Min

e  . 
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In general, among the three kinds of overheads, the checkpoint overhead caused by 

matching event logs takes the biggest part. Besides, as the logging overhead impacts 

the normal message passing operation, the user of Event Logging is advised to shorten 

the checkpoint interval. As for the recovery overhead, it is highly unpredictable and 

depends on the program itself. In the next section, we show a technique to minimize 

the logging overhead and checkpoint overhead. 

 

3.4.2 Performance Tuning 
Since the message envelope in MPI is a term consisting of three elements: <rank, tag, 

comm>, a hash function helps to reduce the memory overhead introduced by the 

logging. However, the function must be a perfect hashing function. In other words, for 

any two different message envelopes A, B, the hashing result is 

different: ( ) ( )f A f B≠ . Moreover, considering that upon checkpointing the processes 

need to exchange logs, the hashing accelerates the exchange, because after hashing 

the log size is reduced. 

 

Also, a matching optimization strategy based on the hashing can be developed. Shown 

in Section 3.4.1, and relying upon the fact that the event log is an unsorted link table, 

the matching process employs Sequential Search to pair up the send and receive logs. 

Recalling the Logging Independency Principle (LIP) discussed in Section 3.3.3, if 

there is a perfect hash function that generates numerical output, the original event log 

can be sorted by the hash value. For a sorted table, some well-known searching 

algorithms can help to reduce the average search length. For example, by applying 

Binary Search, the average search length is reduced to. 

 
, 1 ,

, 12 , 1lo ,g ( )q j q j

p i

N N
N q jP N−

+

+
−− + q jN  

Furthermore, in cases where there are messages with the same envelope, an 

optimization technique is adding an extra flag to the event log specifying the number 

of the messages. For example, if message m has been sent 100 times in the checkpoint 

interval, the number flag is set to 100 and only one log of message envelope is kept, 

instead of creating 100 logs. 
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3.5 Conclusion 
This chapter presents a new coordination checkpoint protocol Event Logging, which 

is based on the widely used Chandy-Lamport algorithm. Event Logging addresses the 

non-FIFO message passing challenge, which is the key to implement the coordinated 

checkpoint at the application-level. 

 

Event Logging combines the merits of coordinated checkpoint and message logging. 

It improves the performance by logging only the message envelopes without the 

actual content, which is the main source of the overheads introduced by message 

logging. 

 

This chapter also gives a proof of the correctness of the Event Logging algorithm. 

Analysis and performance tuning strategy are discussed as well. 
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Chapter 4 

libELC – Application-level 
Checkpoint/Recovery Library for MPI 
 

This chapter describes the design and implementation of libELC, an application-level 

checkpoint/recovery library for the C/MPI programs in a heterogeneous network. 

libELC is built from scratch to ensure the portability. 

 

4.1 Overview 
libELC is written in ANSI C language, employing Event Logging algorithm to 

provide the portable checkpoint/recovery facility for the C/MPI programs running in  

heterogeneous network of computers  

 

Being a checkpoint/recovery tool for message passing programs, libELC is comprised 

of three parts: the uniprocess checkpoint/recovery module, the multiprocess 

coordination module and the message replay module. The uniprocess 

checkpoint/recovery module deals with the portable checkpoint/recovery for each 

individual MPI process. Given the portability concern of the heterogeneous network, 

the local checkpoint is created by using the application-level checkpoint approach, 

which saves and restores the process execution state in a platform-neutral manner. 

The multiprocess coordination module is responsible for orchestrating the parallel 

processes to form valid recovery lines, by using the Event Logging algorithm. Finally, 

the message replay module is active only at the time when the program restarts from a 

previous checkpoint, to replay the message passing. 

 

4.2 Uniprocess Checkpoint/Recovery Module 
4.2.1 Background and Challenges 
Checkpointing a running program is usually considered as a low-level operation [61, 

62]. In particular, programs live in the form of a process that is an entity that actually 

runs in its own space address in the operating systems. A process is usually composed 

of a unique identifier (PID), a register set, an address space and/or other certain 
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resources such as file descriptor, network connection, peripherals, etc. In this sense, a 

straightforward checkpoint approach is to capture the states of these physical 

elements. In the homogeneous case, checkpoint/restart mechanisms can simply and 

directly manipulate the state of a process without semantic analysis of that state. For 

example, the state of a UNIX process is simply the contents of its address space, plus 

the process control blocks (register values, file descriptor table, etc.). These entities 

are already conveniently available to the UNIX kernel, making the internal state of a 

UNIX process trivial to checkpoint. As long as the process is restarted on the same 

kind of UNIX system and processor on which the checkpoint was produced, the 

contents of the address space need not be interpreted by the kernel to restore the 

process. We call such a checkpoint/recover mechanism native process checkpoint. 

 

From the point of view of implementation, the native process checkpoint facility can 

be classified into to two categories: system-level and library-level. The system-level 

solution such like EPCKPT [64], CRAK [63], CHPOX [65], provides the checkpoint 

capacity by building it into the operating system kernel. The patched operating system 

is able to save the state for a running process upon detecting some requesting signals. 

Usually the system-level approach does not require the user to manually trigger the 

checkpoint. Instead checkpoints will be generated in a preset period. Therefore, the 

checkpoint and recovery are completely transparent from the point of view of the 

users.  

 

Different from that, the library-level approach is usually managed by an external 

library. Users are required to link theirs codes with the checkpoint library. In this 

case, programs may call the checkpoint library during the execution to save their 

states. Some popular examples of this kind of solution include libckpt [62], Esky [67], 

Condor [66], etc. Compared with the system-level approach, though the library-level 

approach may not be completely transparent to the programmer, it does not ask for 

modifications on the hosting platforms, which makes it lightweight and more 

preferred.  

 

However, both of these two approaches suffer from the lack of portability given a 

heterogeneous environment. As discussed above, the idea behind the system-level 

checkpoint is based on the physical composition of a process. However, the address 
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space and kernel process control information would be meaningless if used to restart 

the process on a hetergeneous operating system implementation or architecture. 

Differences in data format, instruction sets, address space sizes (e.g. 32-bit vs. 64-bit 

addressing), and memory space structures will make the saved state completely 

unrecognizable at the restart time. In this sense, no platform-dependent solution 

would be popular in the NoC community. 

 

Unfortunately the presence of inherent heterogeneity in a network of computers 

significantly complicates the design of a portable process checkpoint/restart 

mechanism. The additional complexity inherently introduced by heterogeneity is the 

main reason why few designs for such a portable facility have been developed to date. 

In this sense the main challenge for the design of the uniprocess checkpoint/recovery 

model in libELC is to develop a portable checkpoint library for heterogeneous 

processes.  

 

4.2.2 Application-level Checkpoint 
4.2.2.1 Basic Idea  

Taking a different point of view from the native process checkpoint, the application-

level approach [68-70] inspects the logical composition of a program, instead of the 

physical elements: data segment, stack, register, etc. In this case a program’s 

execution state is co-determined by the program execution flow and program state.  

 

A program’s execution flow can be examined as a sequence of function calls. 

Supposing a C program that starts from main(), does some operations, and calls 

function1(), where the execution flow transfers to. Inside function1(), some operations 

are performed, and after these operations finish the execution flow returns to main(). 

Then, some work is done in main() until function2() is called. Similar to the call to 

function1(), the execution flow is passed to the called routine, i.e. function2(). In 

function2(), a call of checkpoint ckpt() is issued and the program state is saved.  

 

In this example, at the time ckpt() is called, the program’s execution flow is 

. However, to restore the 

program running from ckpt(), function1() is needless since no previous execution 

() 1() () 2() ()main function main function ckpt→ → → →
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should be repeated. Therefore, the correct execution flow 

is main . Upon recovery, the execution flow is reconstructed 

by skipping all instructions and directly jumping to ckpt(). For a C program, the 

jumping can be implemented by labelling every function call and using a GOTO 

statement. Suppose a new process is restarted from main(). Before executing any 

instructions, the process examines the saved failure-free execution flow and finds the 

next call is function2(). Then the process directly jumps to function2() by the 

statement: 

() 2() ()function ckpt→ →

 GOTO LABEL_function2;  

After the process is switched to function2(), it finds the target ckpt() and jumps to it: 

 GOTO LABEL_ckpt; 

When the process re-enters ckpt(), it has known that the program is recovering. Then 

the process reloads the program state from the checkpoint file and resumes the 

execution. However, this requires that all function calls in the program must be 

uniquely labelled, LABEL_function_name: function_name(). Also, a flow table can be 

setup to examine the execution flow. Upon being called the corresponding function 

label is inserted onto the flow table. When returning from a function, the label will be 

removed from the flow table, indicating the execution flow has returned to the calling 

routine: 

 LABEL1: EnterCall(LABEL1); 

   function_call_1(); 

   QuitCall(); 

Hence, at the time a checkpoint is issued, the flow table will contain the exact 

program exection flow.  

 

The program state can be seen as the composition of the values of program variables, 

the content of dynamically allocated memory (Heap) and other program-related 

properties, such like I/O descriptor, current working directory, etc. In a word, all these 

elements are presented in the form of memory blocks. So if the checkpoint library can 

locate all memory blocks and know their sizes, it is able to save and restore their 

states. In this sense, an application-level checkpoint inspects the events including 

variable definition, heap management and I/O operations. Upon detecting such an 

action, the checkpoint library records the related information in a dedicated stack, 
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called a shadow stack, to locate the corresponding memory blocks. The recorded 

information (typically the memory block address and size) serve as an index for the 

checkpoint library to save and restore the program state. For example, consider an 

integer definition statement in the C language: int i. The shadows stack records i’s 

address and size by inserting the following statement immediately after i’s definition: 

 PushOntoStack(variable_address,size); 

Upon checkpointing (recovery), the process traverses the shadow stack, using the 

address to locate and save (restore) every memory block. 

 

As it shows, the idea behind the application-level checkpoint/recovery is to apply 

some transformation onto the source code. The following pseudo code is a complete 

example of the function modification: 

 

 Original Code: 

 function_name(parameter) 

 { 

  //variable definition 

  type variable_name;  

  …… 

  //execution statement 

  … … 

  function_call_1(); 

  …… 

  function_call_2(); 

  …… 

  return; 

} 

 

 Modified Version: 

 Function_name{parameter} 

 { 

  // variable definition 

  type variable_name; 

  PushOntoStack(&variable_name,sizeof(variable_name)); 
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  …… 

 

  // execution jumping code 

  switch (execution flow table) 

   case (LABEL1): goto LABEL1; 

   case (LABEL2): goto LABEL2; 

 

  // execution statements 

  …… 

  LABEL1:  EnterCall(LABEL1); 

function_call_1(); 

QuitCall(); 

  …… 

  LABEL2: EnterCall(LABEL2); 

    function_call_2(); 

    QuitCall(); 

  …… 

  return; 

} 

 

Since the program execution flow and program state is saved and reconstructed at the 

application level, this approach is completely system-independent. It is applicable to 

any platform as long as the ANSI C language is supported. 

 

The idea of application-level checkpointing can be found in a number of efforts [68-

70], among which the PORCH project [68] presents the most comprehensive 

implementation. PORCH ships with a C pre-processor, which is responsible for 

automatically transforming the C codes into a checkpoint-able version. Also, a 

universal portable data format is developed in PORCH to store the checkpoint data. 

However, PORCH, as well as most of the above application-level checkpoint systems, 

focuses on the uniprocess checkpoint/recovery. To our best knowledge, there is not an 

application-level checkpoint library so far developed for MPI programs, which 

provides a totally portable checkpoint/recovery facility in heterogeneous 

environments. 
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The closest effort to libELC is the C system [22]. C  also uses application-level 

coordinated checkpointing. However, the difference between libELC and C  is that 

 uses Message Tagging approach to coordinate the distributed processes; while 

libELC employs Event Logging algorithm. More important, C  does not aim at the 

portable checkpoint/recovery in a heterogeneous network. As a consequence, the 

checkpoint and recovery in C  can be only made on platforms that use the same 

memory layout. 

3 3

3

3C
3

3

 

4.2.2.2 Save and Recover Execution Flow in libELC 
Section 4.2.2.1 explains the idea of the application-level checkpoint and recovery of 

the program execution flow. However, the technique described is the most simple and 

basic case. libELC takes a similar but more efficient approach.  

 

Apart from recording the program execution flow outside of the function call like:  

LABEL1:  EnterCall(LABEL1); 

function_call_1(….); 

QuitCall(); 

libELC modifies the function argument definition, registering the function itself in the 

flow table upon calling.  

LABEL1:  function_call_1(…., LABEL1);  

In other words, the execution flow is recorded by the called function, instead of the 

calling one. The definition modification reduces most of the modification work: the 

definition change is made only once, rather than for every function call. 

 

Two interfaces are provided to support the definition modification: OnCallEnter(), 

OnCallReturn(). A simple example is: 

 

 Original Code: 

 Function_name(parameter) 

 { 

  // variable definition 

  …… 
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  // execution statements 

  …… 

  return; 

} 

 

 Modified Version: 

 Function_name(parameter, LABEL) 

{ 

OnCallEnter(LABEL); 

 // variable definition 

 ……. 

  // execution switch code 

 …… 

 // execution statements 

  …… 

  OnCallReturn(LABEL); 

  Return; 

} 

 

One of the notable changes is the function parameter: the modified function has an 

additional LABEL argument. When calling the modified function, the calling label is 

passed in the parameter LABEL, which is further handed over to 

OnCallEnter(LABEL). The function OnCallEnter() records LABEL in the flow table. 

On return, LABEL will be removed by the call of OnCallReturn(). In this sense, a 

function call is modified as follow: 

 

 Source Code:  

function_name(…); 

 

 Modified Version:   

LABEL_function_name: function_name(…, LABEL_function_name); 

 

The modification of function definition not only simplifies the programming, but also 

benefits the inline calls. An inline call is the composition of multiple function calls. 
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Typically, there exist two kinds of inline call: composition by operator and 

composition by parameter. A typical composition-by-operator inline call looks like: 

 result=function1()+function2()*function3(); 

And the composition-by-parameter looks like: 

 result=function1(function2(), function3()); 

To the inline calls, however, using only one LABEL parameter is not enough to 

specify the function execution sequence. For example, consider the following 

modified inline call: 

LABEL:  result=function1(function2(LABEL),function3(LABEL),LABEL); 

 

Supposing a checkpoint is taken in the call of function2(LABEL). According to the 

discussion above, LABEL is saved along with the flow table during the checkpoint. 

However, since all three calls share the same LABEL parameter, upon recovery the 

calling function would not know which function it should jump to. Therefore the 

program has to re-evaluate the whole expression. However, if the compiler is right-

prior, function3() will be re-executed, which should not be repeated at all. Also, as the 

compiler allocates some temporary registers to save the intermediate result, it is 

impossible to access the return value of function3() upon creating a checkpoint in 

function2(). Thus, in order to guarantee the correct recovery, the checkpoint/recovery 

system needs to track the exact execution flow and save all the intermediate result for 

the inline calls.  

 

The typical approach to this problem is to use intermediate variables to decompose 

the inline call. The call is disassembled into multi-statements, each of which contains 

a function call. Functions’ return values are deposited in the intermediate variables, 

which are reassembled eventally to perform the original logic of the inline call. As 

each single function call has its own LABEL parameter, the system is able to tell the 

exact execution information. A decomposition example is shown as: 

LABEL1:  t_result1=function3(LABEL1); 

 LABEL2:  t_result2=function2(LABEL2); 

 LABEL3:  result=function1(t_result_1,t_result_2,LABEL3); 

 

As it shows, such a solution completely changes the code layout. Although the same 

program semantic is maintained, it makes the code much more difficult to read. On 
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the contrary, the proposed definition modification can avoid these problems by 

introducing another additional parameter FID, which indicates the evaluation order of 

the expression. Thus, instead of decomposing, the inline call is transformed into: 

  LABEL: result=function1(function2(LABEL,1), 

      function3(LABEL,2),  

      LABEL,0); 

With the aid of FID, the system is able to select the time for creating a checkpoint. 

Basically, in the composition-by-parameter case, the choosing criterion is the outmost 

function call. In the above statement, the checkpoint is taken in function1(). This is 

because when starting function1(), the intermediate return value of function2() and 

function3() have been available as the parameters of function1(), which can be saved 

in function1(). By contrast, if the checkpoint were created in function2(), the process 

would be unable to retrieve the return of function3(). As to the composition-by-

operator inline call, however, no call need be selected for checkpointing, since all 

returns are intermediate. For example, considering the following statement: 

 result=function1()+function2+function3(); 

None of these three functions is able to access the returns of the other two, so the 

checkpoint can be delayed until the next function call, in which OnCallEnter() will 

perform the postponed checkpoint. 

 

During the recovery, libELC first switches to the LABEL statement and starts re-

evaluating the expression. Upon entering a call, the function checks whether the 

parameter FID is 0. If not, the function quits without executing any instruction. Thus, 

the correct checkpoint/recovery of the program execution flow is guaranteed. 

 

4.2.2.3 Save and Recover Program State in libELC 
As mentioned in 4.2.2.1, the application-level checkpoint employs a dedicated 

shadow stack for all program variable, heap memory and I/O descriptors. In libELC, 

however, these elements are managed separately.  

 

Case 1: Variables 

In libELC, three interfaces are designed for the atomic datatype, pointer and structure: 

 

 void OnVarDef(void *pAddr,int size); 
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 void OnPtrDef(void **pAddr,int count); 

 void OnStrDef(void *pAddr,int size,char *pStrName); 

 void OnStructureDef(StructureDesc descTemp); 

 

Given a variable definition of basic type: type variable_name, the function is called 

with the arguments, e.g.: OnVarDef(&variable_name,sizeof(type)). In this way, the 

checkpoint library knows where is the variable (&variable_name) and how many 

bytes it spans (sizeof(variable_name)). Then, upon checkpointing, the 

sizeof(variable_name) bytes beginning from &variable_name will be written to the 

disk file, which contains the variable value. Note, in a heterogeneous NoC, some 

machines may use the little endian convention (PCs, Sun Sparc), so the variable 

bottom address is &variable_name+sizeof(variable_name)-1; however, some other 

architectures may use big endian design, in which case the variable bottom address is 

&variable-sizeof(variable_name)+1. libELC addresses this problem by detecting the 

running platform, and following the corresponding convention to calculate the 

variable bottom address. 

 

Unlike other types, a pointer is a special kind of variable, which stores not a plain 

value but a memory address. Since the memory allocation strategy is different across 

platforms, the address of a variable could be different on different platforms in 

different runs. For example, in Linux: 

 

 int i; 

 int *p=&i; 

 

The value of pointer p could be 0xbfffe5b4 in the first run, and 0xbffff834 in the 

second (Our experiments show that most systems including Windows, Solaris, BSD, 

AIX, use static memory allocation, whereas Linux adopts the dynamic allocation). So, 

in order to save (restore) pointers in a portable way, the pointers cannot be treated like 

“Save the value” as with other program variables. Instead, libELC replaces the 

address with a portable logical representation.  

 

It is a rule of both the operating system and programming language that it is illegal for 

a pointer to point to a memory space out of the program’s scope. In other words, a 
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point can only point to somewhere in the memory declared by the program. So, the 

pointer is transformed into the representation <memory_block, offset>. memory_block 

is a chunk of memory allocated either explicitly or implicitly by the program. 

Basically, there are three types of allocation: program variables, heap memory and 

function (Since a pointer can almost point to anything in a program, Section. 4.2.2.4 is 

a dedicated section discussing the checkpoint and recovery of pointers). 

memory_block is denoted by its ID: mid, and offset is calculated by 

labs(pointer_value-&memory_block). There also is the problem of little endian or big 

endian memory addressing. The selection of + or – is determined by the running 

platform.  

 

In general, upon defining a pointer, libELC issues a call to OnPtrDef(), in which the 

address of the pointer is recorded. During the checkpoint, libELC finds the pointer, 

retrieves its value, and performs a search to locate which memory block it points to. 

Then the pointer is represented by <mid, labs(pointer_value-&memory_block)>. To 

recover it, after the memory block is restored, the pointer is reset to the +/- 

labs(pointer_value-&memory_block) byte from &memory_block (details in Section. 

4.2.2.4). 

 

Among the three interfaces provided for variables, OnStrDef() is the most 

complicated. The reason is that a structure is a collection of variables: it may contain 

basic type variables, pointers, or even structures. When inline pointers exist, the 

saving and restoration of structure cannot be like the basic types. However, that 

requires the checkpoint library to locate the pointer elements defined in the structure. 

In other words, the checkpoint library needs to know the offsets of the pointers. Then, 

the location is calculated by &structure_variable+/-pointer_offset. To record the 

structure’s definition, libELC provides a data type StructureDesc and an interface: 

OnStructureDef(). Upon defining a structure, StructureDesc is filled with the 

structure’s information and passed to the following call of OnStructDef(). For 

example, some user-defined structure may look like: 

 

 struct Node { 

  int ID; 

  struct Node *next; 
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  struct Property prop; 

} 

 

StructureDesc is initialized and OnStructDef() is called like: 

 

 StructureDesc descTemp; 

  

 strcpy(descTemp.name,”struct Node”); 

 descTemp.size=sizeof(struct Node); 

 descTemp.ptrCount=1; 

 descTemp.ptrOffset=(void *)malloc(descTemp.ptrCount*sizeof(void *)); 

 descTemp.ptrOffset[0]=sizeof(int)-1; 

 descTemp.strCount=1; 

 descTemp.strOffset=(void *)malloc(descTemp.strCount*sizeof(void *)); 

 descTemp.strOffset[0]=sizeof(int)+sizeof(struct Node *)-1; 

 descTemp.strName=(char *)malloc(descTemp.strCount*sizeof(char)* 

            MAX_STRUCT_NAME_LENGTH)); 

 strcpy(descTemp.strName[0],”struct Property”); 

  

 OnStructureDef(descTemp); 

 

descTemp.name saves the structure’s name and descTemp.size is the structure size. 

The element ptrOffset is a pointer to an integer array, which contains the offsets of 

each pointer defined in the structure type. ptrCount specifies the length of this array. 

Simliarly, the array pointer strOffset tells the offsets of every inline structure element, 

and strCount is the array’s length. OnStructureDef() uses recursive calls to resolve the 

in-line structure elements. So that, by employing the StructureDesc data type and 

OnStructureDef() function, libELC is able to know the number and offsets of the 

pointer elements in the user-defined data types. Upon defining a variable of these data 

types, the function OnStrDef() uses the data type knowledge recorded by 

OnStructureDef() to locate the pointer elements. For each pointer element, OnStrDef() 

calls OnPtrDef() in order to translate the memory address to its representational 

format at the checkpointing time. Considering a variable definition of the type - struct 

Node: 
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 struct Node new_node; 

Then the function OnStrDef() is called as: 

 OnStrDef(&new_node,sizeof(new_node), “struct Node”); 

Inside of the call, OnStrDef() searches for the name “struct Node”. When found, it 

retrieves the information of the pointer elements’ number and offsets, and calculates 

the pointer address by &new_node+/-pointer_offset. Then, the address is passed to 

OnPtrDef(&new_node+/-pointer_offset), and saved for the translation.  

 

Case 2 Heap Memory 

Besides the program variables, heap memory is another important element in the 

program state. Unlike the static variables, the operating system uses the heap to 

allocate memory for a run-time request. In the C language, heap management is made 

by calling the following functions: malloc(), calloc(), realloc() and free(). Since the 

execution of these function calls is determined at the run-time, libELC defines the 

following wrapper functions to detect the dynamical allocation of the heap: 

 

 void *ELC_malloc(size_t size); 

 void *ELC_callac(size_t nmemb, size_t size); 

 void *ELC_realloc(void *ptr, size_t size); 

 void ELC_free(void *ptr); 

 

These wrappers provide the same behaviour as the original functions. However, one 

more job they do is to record the address and size of the allocated memory block. For 

example, malloc() returns the head address of a memory block from the heap. In the 

wrapper ELC_malloc(), the head address and block length size are pushed onto the 

shadow stack. Upon checkpointing, libELC locates the memory block and saves it by 

writing size bytes to the disk. Moreover, when the user tries to de-allocate a memory 

block, ELC_free() removes the corresponding entry from the shadow stack. 

ELC_realloc() updates the shadow stack with the memory adjustment. 

 

However, such wrapper functions take no consideration of pointers. They are 

incapable of saving and restoring the pointers in the heap memory (called heap 

pointers). This results from the different memory architectures of different systems. In 

order to deal with the pointers in the heap, following each wrapper function call, 
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libELC inserts a call to the corresponding variable definition interface. If the allocated 

heap memory is pointer type void **ptr=(void **)ELC_malloc(4*sizeof(void *)), 

OnPtrDef() is called after the allocation with the parameter OnPtrDef(ptr, 

4*sizeof(void *)). If the memory is allocated in some user-defined type struct 

structure_name *ptr=(struct structure_name *)malloc(sizeof(struct structure_name)), 

OnStrDef() is called as OnStrDef(“struct structure_name”, ptr, sizeof(struct 

structure_name)). In both cases, libELC records the locations of all the allocated heap 

pointers, which will be translated, saved and recovered separately from the heap 

memory. In this way, libELC creates the portable checkpoint/recovery to the 

dynamically allocated memory. 

 

Case 3 Program-related Properties 

Besides the variables and heaps, the program state is also influenced by some other 

properties, such as I/O operations, file systems and signal handlers, which are 

necessary parts of the checkpoint and recovery. However, to create portable 

checkpoints for programs running across heterogeneous platforms, the source code 

must be also portable. In other words, even if restarting the program execution on 

another machine with a different architecture, the recovery procedure should be no 

more than copying the program source, data files and the checkpoint files to the target 

machine, compiling the source to generate a local executable and simply re-launching 

the executable. In such a case, the program should contain no system-specific 

resources (like signal handlers) or environment-related property (working directory, 

process identifier PID). In this sense, the main concentration in this section is to deal 

with the program I/O state. 

 

Basically, there are three types of I/O: file (file I/O), terminal (standard I/O) and 

sockets. As the I/O operation is so ubiquitous, it is critical to reconstruct the I/O state 

upon recovery. Generally, all these three I/O types are built on files and file 

descriptors. A file descriptor is just a link between the process and the corresponding 

source. File descriptors associated with normal files should be reattached to those files 

when the application is restarted. File descriptors associated with a terminal (for 

standard IO) should be attached to the terminal upon recovery. Among the three, 

sockets pose the most serious challenge, because the recovery of a socket connection 

involves two machines. Fortunately, to the depth libELC concerns, MPI provides 
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sufficient communication facility. The socket is managed by the MPI runtime 

environment implicitly: once the MPI program restarts, the connection will be re-

established automatically. 

 

To recover the access of a normal file, the flag set of the file descriptor, the access 

mode and the file offset must be restored. libELC provides the following wrapper 

functions: 

 FILE *ELC_fopen(const char *path, const char *mode); 

 void OnFileDef(FILE *fp); 

 int ELC_fclose (FILE *fp); 

 int ELC_fcloseall(); 

 

The function ELC_fopen() records the filename and access mode. OnFileDef() 

translates the stream returned by ELC_fopen() to file descriptor. Upon checkpointing, 

the file descriptor value is associated with the filename and saved into the checkpoint 

file. In order to restore the file access, libELC uses freopen() to redirect the file 

descriptor to the file. As to the file offset, the system calls ftell() to get the current 

offset, saves the offset in the checkpoint file, and uses fseek() to relocate after 

recovery. The function ELC_fclose() will notify the system to remove the 

corresponding entry; ELC_fcloseall() clears all the file entries. However, we 

emphasize that it is the user’s responsibility to guarantee the file and directory are in 

place upon recovery. 

 

Moreover, if the program changes something in the file after a checkpoint, the 

checkpoint/recovery library should be able to rollback the file to the state of the 

checkpointing time. Since the file operation is usually non-volatile, libELC choose a 

coarse-grain solution for the rollback: when checkpointing, libELC backups all open 

files. The backup is done by closing the files, copying and reopening them. To 

rollback, the system just simply replaces the original file with the backup. 

 

As to the checkpoint/recovery of the file descriptor associated with terminal, libELC 

judges which file descriptor is connected to the terminal (by calling isatty()) and the 

name of the connected terminal (by calling ttyname()).Similarly to normal files, the 

file descriptor value is saved with the terminal name and attribute (using tcgetattr()). 
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Upon recovery, the system reattaches the same file descriptor onto the terminal, and 

resets the terminal attribute using tcsetattr(). 

 

4.2.2.4 Pointer 
Being the most knotty part, pointers pose two main challenges: (1) as a pointer can 

point to almost anywhere in the program memory space, the pointer translation must 

care for various scenarios; (2) since the pointers are saved in the order of their 

definitions, there arise problems when a pointer of pointer is recovered before its 

reference. This section is dedicated to illustrate how libELC tackles the above 

problems. 

 

First, the value of a pointer is the address of one of the following three types of 

memory block: variables, dynamically allocated memory (heap) and functions. The 

difference is which segment the memory block stays in. Generally, the variables are 

stored in the stack, where the memory allocation is done automatically by the 

operating system upon defining a new variable. On the other hand, heap is allocated at 

run time by explicit memory requests. The address of a function is static, which is 

always allocated at the text segment during the compilation. 

 

To the variables and dynamic memory, every memory block is assigned a unique ID, 

mid. The assignment is done together with the allocation of the memory block. To the 

variable, the assignment time is the time of defining a variable; to the heap, the ID is 

assigned when calling ELC_malloc() and ELC_calloc(). The result of such a scheme 

is that the ID assignment is sequential, in the same order of the variable definition and 

heap allocation. Moreover, the assignment is dynamical: on the return of a function, 

the IDs of the function’s local variables are reclaimed along with the de-allocation of 

the variable memory, and will be reassigned for the following program variables. 

However, the IDs of memory blocks in different segments, stack and heap, are 

maintained independently (stack- sid, heap- hid). As variables stay in the stack, the 

logic representation of a variable pointer is <sid, offset>, and the pointer of 

dynamically allocated memory is represented as <hid, offset>.  

 

For function pointers, libELC employs another way to represent them. Basically, the 

address of a function is determined by the compiler. In other words, the memory 
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allocation for user-defined functions is static. Therefore, it is feasible to calculate the 

memory address of a function by using the offset from the function to a known 

position in the text segment. The main() function is such an obvious example. Given 

the address of the main function &main, the function pointer is positioned by 

<pointer_value - &main>. On recovery, the system uses the offset to reset the pointer. 

However, to be compatible with the variables and dynamic memory, the function 

pointer is also set into the format <ID, offset>. But, all function pointers use the same 

default ID 0. Then a function pointer is represented as <fid=0, offset=pointer_value-

&main>. 

 

Another challenge the pointer poses is the checkpoint/recovery order. Supposing a 

program defines two pointers in the order: ptrA, ptrB. The first pointer ptrA is a 

pointer of pointer, which contains the address of the second pointer ptrB. Since the 

pointer is a type of user-defined variable that locates in the stack, libELC assigns the 

sid 1, 2 to the two pointers. During the checkpoint, ptrA is represented as <sid=2, 

offset=0> and saved before ptrB. On recovery, ptrA is also reset before ptrB. This 

creates the problem that ptrA cannot find its pointee, because ptrB has not been 

recovered at this time. Such a relation is called Recovery Dependency. According to 

Recovery Dependency, a pointer can be recovered only when its pointee has been 

restored (the dependency of the pointer is satisfied). 

 

To satisfy the dependency, libELC requires the recovery to be performed in the 

following sequence:  

 

1) Recover all variables except pointers (without the inline pointers in the structure 

types);  

2) Restore the heap memory (without the inline pointers);  

3) Reset the function pointer;  

4) Recover all other pointers except the pointer of pointer;  

5) Finally, recover the pointer of pointer. 

 

Moreover, the restoration procedures of program states are postponed until the 

recovery of execution flow finishes. To illustrate the reason, consider an example: a 

pointer ptr in the function A() points to a heap block heap allocated in function B(). 
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The execution flow is A B c . So on restart, when recovering function 

A() and the pointer ptr, function B() and heap have not yet been restored. This breaks 

the dependency between the pointer ptr and the heap block heap, because ptr is 

recovered before its pointee. Thus, libELC must perform the execution flow recovery 

before the program state recovery, in order to satisfy the dependencies. 

() () ()kpt→ →

 

4.2.2.5 A Note on Portability 

libELC can only provide the portable checkpoint/recovery facility for C/MPI 

programs, which are themselves portable. The checkpoint of a non-portable MPI 

program cannot be used for recovery on a heterogeneous machine. In other words, the 

MPI program cannot have any information or system calls, which are runtime 

environment related. 

 

Also it is necessary to note here that the application-level checkpoint approach has not 

been as mature as the system-level checkpoint mechanism. As a consequence, the 

current implementation of libELC faces several restrictions that are common to 

application-level checkpoint systems: 

 

1) Union Type: Currently libELC is unable to save and restore the value of a 

union-type variable. However, to the best knowledge of the author, PORCH [22] 

provides support to the union type. And such support will be included in the next 

version of libELC. 

 

2) Register Variable: According to the ANSI C standard, a variable can be defined 

as register variable. Such variables will be allocated on some registers, rather 

than in the memory space. libELC cannot give support to the checkpoint and 

recovery of register variables. 

 

3) Variable Definition: In a C program, variables can be defined anywhere starting 

with a curly bracket {}. However, in libELC, no variable is allowed to be defined 

during the execution. In other words, variable definitions must be placed in front 

of execution statements. Other wise, undefined errors may be caused by the 

GOTO statements upon recovery. Also, if the source program contains some 
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static variables (or global variables), corresponding calls to OnVarDef() should 

be inserted in the main() function. 

 

4) Universal Data Format: The current libELC version does not address the 

problem of heterogeneous data representation. It assumes that the checkpoint file 

generated on one machine can always be recognized on another platform. 

Obviously this is not a strong argument given a heterogeneous environment. 

 

4.3 Multiprocess Coordination Module 
This section describes the technique used in the libELC coordination module to 

implement the Event Logging algorithm. The coordination module is comprised of 

three packages: MPI Wrapper Package (MWP), Message Identification Package 

(MIP) and Message Logging Package (MLP).  

 

4.3.1 MPI Wrapper Package 
A wrapper function is a popular technique for extending the system feature. By 

including the original function, a wrapper provides users the additional functionality 

in a transparent way. Users have no knowledge about how the function is 

implemented, and do not need to worry about the details of using the extra service. In 

order to hide the checkpoint/recovery and multiprocess coordination procedure from 

the users, libELC provides a set of wrappers for the MPI routines. 

 

Although making most of the checkpoint/recovery details transparent, libELC still 

exposes one explicit function to let users invoke the checkpoint: ELC_DoCKPT(). 

The user may insert calls to ELC_DoCKPT() at the place they want to start a 

checkpoint. It does not require all processes in the program to call this checkpoint 

function at the same place. libELC is responsible for broadcasting the checkpoint 

requests in the program. If multiple checkpoint requests are detected by a process at 

the same time, only one is taken, the others will be ignored. However, if two 

processes run the same code and issue a same checkpoint request but at the different 

time due to performance difference, the two checkpoint requests will be taken 

separately. In other words, two recovey lines will be created. 
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ELC_DoCKPT(): every calling process p performs a local checkpoint, broadcasts a 

checkpoint request to each of all other processes and initializes a request table. The 

checkpoint request is packaged with p’s send event log. For example, supposing 

process p is in the i  checkpoint interval. When calling ELC_DoCKPT(), p creates 

checkpoint  and send the event log SEN

th

,p iC , , 1 , , 1{ , ,p i q j q j q jD R R R }− +  to all other 

processes ( . As soon as it returns from ELC_DoCKPT, the calling 

process resumes the normal execution. 

1,q 2, , )n q...,= p≠

  

 ELC_DoCKPT() 

 { 

  do a local checkpoint; 

  for i=1 to all processes 

  { 

   if ( process i is not the calling process ) 

broadcast a checkpoint request to process i; 

  } 

  initialize a request table; 

} 

 

To the other processes that have not called ELC_DoCKPT(), they will be introduced 

to the checkpoint by the wrapper ELC_MPI_Send(), ELC_MPI_Recv(). In these two 

wrappers, before performing the original communication, the wrapper probes whether 

there is pending checkpoint request. If yes, the checkpoint requests will be received. 

Depending on whether this checkpoint request is the first request being intercepted in 

the current checkpoint interval, the process may take two different actions: 

 

 Action 1: If the checkpoint request is the first one, the process behaves in the 

same manner as when ELC_DoCKPT() is called: it creates a local checkpoint, 

broadcasts checkpoint requests containing this process’s send event log to all 

others and then invokes the MIP (details in Section. 4.3.3). In general, MIP is 

responsible for identifying the in-transit messages and orphan messages by using 

Event Logging algorithm. At the time the identification completes, the process 

will have the envelopes for in-transit and orphan messages. However, note that 
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the identification is taken only on the message passed between the checkpoint-

requests-sending process and this checkpoint-request-receiving process. The 

orphan message envelopes are written onto the disk as a part of the local 

checkpoint, and the in-transit message envelopes are handed over to MLP. Then 

the process adds the rank of the intercepted checkpoint request’s source to a 

request table, which records the rank of the processes that have sent the 

checkpoint requests. After finishing this action, the process triggers MLP. 

 

 Action 2: If the checkpoint request is not the first one detected, the process 

directly starts the MIP. The identified orphan message envelopes are saved in the 

checkpoint files. The in-transit message envelopes are passed to MLP, which 

saves the logged in-transit messages into the checkpoint files. Then the request’s 

source is marked in the request table. The process counts the number of 

checkpoint requests it has received. When the process finds it has gathered 

requests from all other processes, the process marks its local checkpoint as 

finished.  

 

In all, the wrapper function CKPT_MPI_Recv() looks like: 

 

 CKPT_MPI_Recv (incoming message envelope) 

 { 

      probe whether there is pending checkpoint request (CKPT_Request); 

      if (yes) 

   {  

receive the CKPT_Request; 

  if this CKPT_Request is the first one 

  {  

   do a local checkpoint; 

   for i=1 to N 

   { 

    if (i!=my rank) 

send a CKPT_Request with send logs to process i; 

   } 

   invoke the MIP; 
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   save the orphan message envelopes to the checkpoint file; 

   pass the in-transit message envelopes to the MLP; 

   mark the CKPT_Request source onto the request table; 

  } 

  else  { 

   invoke the MIP; 

   save the orphan message envelopes to the checkpoint file; 

   pass the in-transit message envelopes to the MLP; 

   save the logged in-transit messages into the checkpoint files; 

   mark the CKPT_Request source onto the request table; 

   count the number of CKPT_Request; 

   if (got CKPT_Request from all other processes) 

    mark the local checkpoint finished; 

  } 

  MPI_Recv(incoming message envelope); 

} 

 

4.3.2 Message Identification Package 
MIP is invoked to help the process identify the in-transit and orphan messages at the 

time when the process intercepts a checkpoint request. Recalling the algorithm 

discussed in Section. 3.3.2, the MIP tries to identify the messages by pairing up the 

send logs bound with the checkpoint request with the target’s receive logs. 

 

Supposing process q gets a checkpoint request from process p during the 

checkpoint interval (i>1). In this scenario, q holds the event logs of the messages 

received from p: , and p’s send logs are packaged in the 

checkpoint request: SEN

thi

, , 1 , , 1{ , ,q i p i p i p iRECV R R R−

, , 1 ,{ , ,p i q j q j q jD R R R

}+

}, 1− + . Also process q already has the logs of 

the in-transit and orphan messages of the last checkpoint interval: SEND  and , , 1{p i q jR − }

}, 1 ,{q i p iRECV R− . Also, in MPI a message is labelled by the tern <rank, tag, comm>. 

MIP is invoked when process p intercepts the send logs from process q, so in this case 

the sender/receiver’s ranks are known: p and q, and the message envelope is reduced 
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to <tag, comm>. Thus a pair of send/receive logs are matched if the two logs have the 

same envelope. 

 

Suppose  is the number of the logs in , ,q i rN ,q iRECV

, 1p iD

;  is the log number of 

;  is the log number of SEN

, ,p i sN

,p iSEND , 1,s−p iN − ; , 1,q i rN −  is the log number of 

;  denotes the ,q iRECV −1 ,
x
p iSEND thx  message envelope in SEND ; and REC,p i , 1

y
q iV −  

denotes the  envelope in thy ,q iV 1REC − . Then the matching process takes the following 

three steps: 

 

1) Clear the in-transit message logs: , 1 , , . 1{ } (p i q i q i p iSEND R RECV S− − )= : 

 for x=0 to , 1,p i sN −  

 { 

    for y=0 to , ,q i rN  

    { 

           if (  = =, 1
x
p iSEND − ,

y
q iRECV ) 

          { 

     remove , 1
x
p iSEND −  and ,

y
q iRECV ; 

     quit loop y; 

            } 

            else { 

      y=y+1; 

             } 

      } 

      x=x+1; 

         } 

 

(2) Remove the orphan message logs: , 1 , , , 1{ } (q i p i p i q iRECV S SEND R )− −= . 

 for x=0 to  , 1,q i rN −

 { 

  for y=0 to N  , ,p i s
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  { 

   if ( REC , 1
x

q iV −  = = ) ,
y
p iSEND

   { 

    remove xREC , 1q iV − anew ); ,
y
p iSEND

    quit loop y; 

    } 

    else { 

    y=y+1; 

    } 

    } 

    x=x+1; 

     } 

 

(3) Remove the intra message logs: , , , ,{ } (q i p i p i q i )RECV S SEND R= . 

for x=0 to  , ,p i sN  – , 1,q i rN −

{ 

 for y=0 to  , ,q i rN  – , 1,p i sN −

 { 

       if (  = = ,
x
p iSEND ,

y
q iRECV ) 

       { 

  remove SEND  and ,
x
p i ,

y
q iRECV ; 

  quit loop y; 

        } 

        else { 

   y=y+1; 

         } 

    } 

    x=x+1; 

          } 
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When the identification finishes, the remaining logs of SEND , { }p i −  and , { }q jRECV −  

are the in-transit and orphan message envelopes of the current checkpoint interval. 

 

4.3.3 Message Logging Package 
MLP logs the in-transit messages using the envelopes identified by MIP. MLP is 

implemented in two different forms. The first relies in the FIFO property of a lower 

layer of the MPI implementation, which guarantees that all in-transit messages will 

have been stored into the receive buffer, although they may not have been picked up 

yet. So in this case MLP just posts a receive (MPI_Recv) for each in-transit message 

envelope. 

 ELC_Logging() 

 { 

  For each in-transit message envelope 

  { 

   MPI_Recv(in-transit message envelope); 

   save the in-transit message into the checkpoint file; 

} 

  return; 

 } 

The second version of MLP does not rely on the FIFO property of the lower 

communication level. In that case, MLP checks if the incoming message is in-transit 

or not. If so, the message will be logged. If not, nothing happens. 

 

4.4 Message Replay Module 
Being a necessary part of the library, the message replay module helps the MPI 

program to reconstruct the previous communication state from the recovery line, by 

replaying the message passing. Considering of the difference between in-transit and 

orphan messages, the replay module consists of two elements: in-transit message 

replay and orphan message replay. 
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4.4.1 In-transit Message Replay 
Shown in Figure 1, an in-transit message is a message that is sent before the 

checkpoint, but received after it. This results in the problem that the message is lost 

after restarting from the checkpoint, since the target process’ checkpoint does not 

include this message and the source process will not repeat the sending. So the 

recovery procedure must restore the communication state by either making the source 

resend the message, or making the message re-available in the receiving buffer. Given 

that in checkpointing, the in-transit message is logged at the receiver side, libELC 

chooses the latter scheme. However, being a portable application-level 

checkpoint/recovery library, libELC cannot access neither the OS I/O buffer nor the 

MPI internal buffer to restore the in-transit message. On the contrary, the message has 

to be fed to the receiving call without system’s intervention.  

 

The solution adopted in libELC is the wrapper function. Upon recovery, the process 

loads the in-transit messages from the checkpoint and pushes them into a pending 

message queue (PMQ). For each receiving call after the recovery, the wrapper 

function first checks whether PMQ is empty. If not, the function tries to find a 

matching message in the queue. When it finds the first matching message, the 

wrapper copies the message content to the user-specified address, removes the 

message from the queue and returns without performing the real MPI receiving. 

Otherwise, the wrapper function will call MPI to do the receiving. Note, 

CKPT_MPI_Recv () is used instead of the original MPI_Recv() (shown in Section. 

4.3.2): 

  

 IN_MPI_Recv(receiving buffer, incoming message envelope)  

 { 

  if (PMQ is not empty) 

  { 

   search PMQ; 

   if (find a matching message) 

   { 

    copy the message content to receiving buffer; 

    remove the matching message from PMQ; 

    return; 
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   } 

  } 

  CKPT_MPI_Recv(receiving buffer, incoming message envelope); 

  return; 

} 

 

4.4.2 Orphan Message Replay 
As shown in Figure 2, an orphan message is sent after the source’s local checkpoint 

but received before the target’s local checkpoint. However, if the recovery line 

consists of these two checkpoints, it leads to the scenario in which the source process 

resends the orphan message after recovery, but the target would no longer need it. 

Generally, the existence of orphan message is not as serious as the in-transit message 

since the orphan messages just wastes the buffer space mostly. But in some cases, the 

orphan message may break the program’s communication semantics.  

 

Consider a case where process p sends two messages of the same envelope m in the 

order ,  to process q. Moreover, before these two sends, p has just performed a 

local checkpoint C . Furthermore, assume q receives the message in the order m , 

. In contrast to the sender, q triggers its local checkpoint C  between the two 

messages. In this scenario, m  becomes an orphan message included in q’s local 

checkpoint. Then, after recovering from < , >, p repeats these two sends, 

making ,  both available to q. But q will only post one receiving request, 

intending to get m . According to the non-overtaking property of MPI, the receiving 

request is satisfied with m , not m . As q gets another message, its subsequent 

execution might be changed. 

1m 2m

1

,p i

2

1

2m ,q i

1

,p iC ,q iC

m 2m

1 2

 

In order to guarantee the correct communication semantics, the checkpoint/recovery 

system must clear any dangers caused by the orphan message. Basically, there exist 

two approaches: banning the resending at the sender side; or discarding the resent 

orphan message from the receiving buffer. Since the event log of orphan messages is 

identified at the receiver side, libELC chooses to discard at the receiver side.  
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Upon trying to receive a message after recovery, the process first checks whether 

there is a matching entry in the orphan message queue (OMQ). If so, the process 

retrieves a message from the buffer, then discards it. The process repeats the above 

actions until no matching entry can be found in OMQ. Then the process is able to get 

the “real” message. 

 

 ELC_MPI_Recv(receiving buffer, incoming message envelope) 

 { 

  while (there is a matching entry in OMQ) 

  { 

   MPI_Recv(receiving buffer, incoming message envelope); 

  } 

  IN_MPI_Recv(receiving buffer, incoming message envelope); 

  return; 

} 

 

Note, this is the final version of the wrapper function in libELC for MPI_RECV(). 

4.5 Support More Feature of MPI 
4.5.1 Collective communication 
Besides point-to-point mode, the other important communication pattern of MPI is the 

collective. According to MPI, a collective operation requires all processes in the 

communicator to call it to finish. A natural result is that a valid recovery line must not 

have a collective operation bisecting it. For example, if p executes a barrier call after 

its local checkpoint and q calls the barrier operation before its local checkpoint, the 

recovery line comprised of these two local checkpoints is not valid. Since, upon 

recovery, p will repeat the barrier but q won’t, that makes p become a zombie process. 

To supporting the collective communication, we wrap the original collective routines, 

adding a selective procedure before it.  

• Required Data: 

seq=the local current checkpoint sequence 

sum=the sum of checkpoint sequence of all processes, 

nProc=the number of processes 
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 Selective Procedure: 

1. A reduction with the sum option is executed. 

2. As each checkpoint is assigned a monotonically increasing sequence. 

The sum of this sequence under a coordinated checkpoint algorithm 

should be N times of the number of involving processes, where N is the 

last local checkpoint sequence. The process compares the expression: 

Sum/nProc with seq. However, there are 3 possibilities: 

i. Sum/nProc=seq; this means no checkpoint is in progress at the 

time of the execution of this collective call. 

ii. Sum/nProc>seq; some other processes have started a new 

checkpoint, but this process has not received any checkpoint 

request.  

iii. Sum/nProc<seq; this process has started a new checkpoint, but 

still some processes have not completed it. 

3. If the result is i and iii, no checkpoint is started; otherwise, those 

processes that get the result of Sum/nProc>seq, need to create a 

checkpoint immediately. As in the point-to-point case, after the local 

checkpoint finishes, the process sends out current logs to all other 

processes. 

 

4.5.2 Non-standard-mode Point-to-point Communication 
Besides the standard mode point-to-point communication MPI_Send/MPI_Recv, MPI 

provides other several patterns to users to satisfy their specific requirement. Among 

them, however, buffered, synchronous and ready options need no special treatment. 

The things we care about are the non-blocking mode, MPI_Sendrecv (same as 

MPI_Sendrecv_replace) and MPI_Send_init/MPI_Recv_init.  

 

Non-blocking mode: According to the semantic of non-blocking communication, 

message might have not been sent or received even if the routine has returned success. 

Upon checkpointing, there are naturally two might results for a non-blocking call: 

finish or not. As the send (MPI_Isend), we don’t need to worry about whether the 

sending has completed or not before checkpoint. Regardless whether it is not, the 

MPI_Isend operation will not be repeated after recovery. So the message must be an 
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in-transit one to the target process. The send event log of non-blocking send is created 

in the same way as for the blocking routine. Once the target logs the message in its 

checkpoint, there need not be any further concern about a replay of the send. 

Regarding the non-blocking receive (MPI_Irecv), things are different. Supposing the 

target process posts a non-blocking receive request, and then a checkpoint is taken. 

There are two possibilities. First, the receiving buffer has been filled with the 

incoming data before the checkpoint. In this case, the data will be kept in the 

checkpoint and receiving completes before the checkpoint. On the other hand, if the 

checkpoint occurs before the buffer changes, data will not be saved. For this problem, 

our solution is that after checkpoints finish, the system still keeps an eye on the 

operation (MPI_Irecv). When the receiving completes (probe or wait return true), we 

update the checkpoint file with the current buffer’s contents (This is what the target 

needs). Therefore, the checkpoint will always contains the required data upon 

recovery. Regarding the other routines, such like 

MPI_Sendrecv/MPI_Sendrecv_replace, they are just composed of the basic non-

blocking operations. For MPI_Send_init/MPI_Recv_init, the event log will be created 

with the call of MPI_Start or MPI_Startall. 

 

Of note is the MPI_Request object. Since it is used to detect the completion of 

corresponding communications, we have to rebuild it after recovery. However, 

according the discussion above, a much simpler way is to return queries of the legacy 

request as true, since both for the sending and receiving, the data will be saved into 

the checkpoint file when the communication is done.  

 

Here, we don’t need to worry about the correct semantics of application 

communication. If another blocking point-to-point operation is executed between this 

non-blocking operation and the checkpoint, the return of blocking call has already 

implied the completion of non-blocking, according to MPI non-overtaking property. 

 

4.5.3 Communication Wildcard 
A tougher feature of MPI is the wildcard used in point-to-point communication. A 

receiver may specify MPI_ANY_SOURCE for the value: source, and/or 

MPI_ANY_TAG for the value: tag, indicating that any source and/or tag are 
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acceptable, reduces the message-passing result of wildcards sometimes run-time 

dependent. 

 

So far, relying on the non-overtaking message-passing property of MPI, we have 

successfully supported MPI_ANY_TAG by logging the in-transit messages according 

their relative sending order. In the preceding deductions, we already get the in-transit 

message list: SEN , and this log is just built up by the sending sequence in 

the source’s current checkpoint interval. Even if there is a message in the list that has 

the same envelope with the sending after the checkpoint and the target process uses 

MPI_ANY_TAG to receive, it is always the first matching message in this list is 

picked up. 

, , 1{p i q iD R + }

 

To implement MPI_ANY_SOURCE, a simple case is: if p and q send two messages to 

r, which have the same envelope (except the value of source), and r issues a receive 

with wildcard: MPI_ANY_SOURCE, the target process chooses to receive the 

message according to the relative sending order: the result of process r’s receiving 

post (MPI_Recv) fully depends on which message was sent first. Thus when p, q and r 

restart the execution from a recovery line before this message passing, the result 

might be different from execution in the absence of a failure. Unfortunately, MPI 

lacks a mechanism to retrieve the sending order of messages from different sources, 

making it impossible to reproduce the exactly same internal message-passing state 

among multiple processes, which is necessary to support the wildcard. 

 

However, since any receiving call with wildcard will return one definite message 

finally and we can get the details of the message’s envelope (rank, tag) after the 

wildcard receiving, a non-deterministic receiving event can be converted into a 

deterministic result. Put simply, after the receiving of an in-transit message with 

MPI_ANY_SOURCE completes, we retrieve the matching message’s property from 

the MPI_Status variable specified in the call and log this receiving as a deterministic 

event without wildcard. Moreover each process maintains a counter to record the 

receiving sequence number in the current checkpoint interval (the n  message 

received in the current interval). Upon receiving an in-transit message, the sequence 

number will be logged with message content and message envelope. After recovery, 

th
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the process may decide to receive the message either from the MPI buffer, or get it 

from the in-transit message log by comparing the receiving sequence counter with the 

logged message’s sequence number. 

4.5.4 Derived Datatype 
Besides the default basic datatypes bound with C and FORTRAN, MPI allows the 

programs to dynamically define/destroy their own datatype to facilitate transmitting 

complex data structures. As a very important feature of MPI, our approach should 

include the support of such datatypes.  

 

Upon a message passing, MPI matches the send and receive with not only the 

message envelope, but also the datatype specified at two sides. As to the derived 

datatype, MPI does the comparison by checking the parameter and construction mode 

(contiguous, index, vector and structure, etc). For example, a derived type that 

contains only one integer is actually as same as the default MPI_INT. So, even if the 

sender and receiver construct the same derived datatype with different names, MPI 

still can make the correct matching. As the solution to the derived datatype, when the 

process passes a message of non-default types, the field Datatype of the log entry will 

be filled with a reference which points to the entry in the list that records the currently 

existing derived datatype. Since the recovering of MPI program is in charge of 

restoring the opaque MPI property (derived datatype, communicator, group, etc), we 

don’t need to worry that the receiving of a derived-datatype message after recovery 

will encounter an undefined-datatype error.  

4.6 Conclusion 
This chapter presents the implementation detail of libELC, an application-level 

checkpoint/recovery library for MPI programs running in a heterogeneous network. 

The main challenge for developing a portable checkpoint/recovery facility is handling 

the portable uniprocess checkpoint/recovery technique and the application-level 

process coordination. For the former problem, libELC adopts the application-level 

checkpoint technique, which examines the running state of a program from its logic 

composition, rather than the physical elements. The saving and restore of the 

execution state is done by apply transformation onto the source code. The obvious 

benefit of the application-level checkpoint is the outstanding applicability of our 

library on any platforms that give supports to ANSI C language. 
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To the process coordination problem, libELC employs the Event Logging algorithm. 

The implementation of Event Logging uses wrapper functions. The advantage of 

Event Logging algorithm is its inter-operablity with various MPI implementations.  

 

Also, note that libELC is the first checkpoint/recovery library so far that is built on 

top of the MPI standard and provides a portable checkpoint/recovery facility in a 

heterogeneous network. Although C  [22] also uses the application-level checkpoint 

technique, the implementation is not totally portable due to the lack of pointer 

translation. 
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Chapter 5 

Experiments and Evaluation 
 

This chapter is dedicated to experimental evaluation of the libELC library and the 

Event Logging algorithm.  

5.1  Experiment Environment 
Since the main goal of the design of Event Logging and libELC is portability across 

various MPI implementations, we chose two popular MPI distributions for the 

following experiments: MPICH-1.2.6 and LAM/MPI 7.0.4, running on various 

machines and OSes.  

 

Table 3 shows the configuration of the heterogeneous network of computers used in 

the tests: 

Machine OS CPUs (Mhz) 

csserver.ucd.ie Linux 2.4.18-10bigmem  4@498 

csultra01.ucd.ie SunOS 5.8 1@440 

csultra02.ucd.ie SunOS 5.8 1@440 

pg1cluster01.ucd.ie Linux 2.4.18-10smp  2@1977 

pg1cluster02.ucd.ie Linux 2.4.18-10smp  2@1977 

pg1cluster03.ucd.ie Linux 2.4.18-10smp  2@1977 

pg1cluster04.ucd.ie Linux 2.4.18-10smp  2@1977 

csa007b4pc5.ucd.ie Linux 2.6.0 1@930 

csa007b3p2ucd.ie FreeBSD 5.2.1 1@500 

Table 3. Machine configuration. 

Note, not all of these machines were involved in every test. The configuration of each 

test run is listed with the used machine and number of processes. Also, all computers 

were connected by 100 Mbits Ethernet with switches enabling parallel 

communications. 

 

In general, each test program was run in three modes: source mode, protocol mode, 

and checkpoint mode. In source mode, the original program was executed. While in 
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the protocol mode, we applied the libELC protocol to the test program, however no 

checkpoint is taken. And in the checkpoint mode, not only was the libELC protocol 

applied, physical checkpoints were also created. 

 

Except for the Monte-Carlo simulation and 1-D decomposition Matrix Multiplication 

experiments, in the other three programs (Gauss-Jordan method, Laplace Solver and 

Parallel NeuroSys), four checkpoints were triggered by the checkpoint function: 

ELC_DoCKPT(). Generally, we picked four positions in the program to insert the 

calls. The Monte-Carlo simulation program used the Time Interval mechanism to 

create the checkpoints. However, in the 1-D decomposition Matrix Multiplication 

experiments, no checkpoints are taken (See Section 5.7).  

 

Also, we used a range of different data sets and numbers of processes for each test. 

Moreover, the figures shown in the following tests are collected from a number of 

runs, discarding the outliers.  

5.2 Performance Model 
In this section, we present a performance model of libELC. Although the model has 

included all possible factors that may affect the performance of libELC, it is necessary 

to claim that, for different programs, different parameters and modifications need to 

be applied to the performance model. 

 

First, we give an expression that defines the relation between a program’s execution 

time and the input data size and performance volume: 

 ( )
exe

i

f DataSizeT
Speed

=
∑

 

In which, T  is the program execution time, is the total volume of the input 

data, 

exe

(

DataSize

)f DataSize  is the computation volume, and iSpeed∑  is the total process 

capacity. Note ( )f DataSize  may be different functions for different programs. Also 

in a heterogeneous network, the data may be not evenly distributed. Instead, the data 

volume allocated for each process depends on the process performance. However, if 

the data volume is kept proportional to the process speed, the cost of each sub task is 
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equal to the overall program execution time, although this optimization may not be 

practicable in some cases. 

 

Second, we calculate the overhead introduced by libELC. Generally, the overhead of 

libELC consists of two parts: Protocol Overhead (PO) and Checkpoint Overhead 

(CO). The protocol overhead (PO) is mainly caused during the program execution: a 

process needs to maintain its shadow stack, which inspects the program’s execution 

flow; locates the variable address and records the heap allocation/release. Also it 

needs to log message envelopes upon the sending/receiving. The checkpoint overhead 

(CO) is the cost of process coordination to and checkpoint creation. Note that in the 

following experiments, the overhead of the protocol mode (with the libELC protocol 

but without triggering checkpoints) is PO and the difference between the results of the 

checkpoint mode and the protocol mode is CO. Generally, PO is proportional to the 

number of show stack operations, and it is expressed by: 

  * pp oPO C N=

In which, Cp is the average cost for each show stack operation, and N  is total 

number of operations that a process performs during its execution. Moreover, N  is 

associated with three parameters: the number of messages 

OP

OP

MN , the number of 

variables in the program N  and the complexity of data structure used in the 

program : 

VAR

* VARNƒ OP MN N= + ƒ  (Thus *( *p M RPO C N N )VA= + ƒ ). The reason we 

concern about the data structure complexity is that in most cases, a simple composite 

datatype costs the system more much time to analyze and locate its members, than 

managing the same number of common variables (See Section. 4.2.2.3). Our 

experience shows that this is a key performance factor of the uniprocess checkpoint. 

 

As to CO, the overhead of creating checkpoint files depends mainly on the checkpoint 

data size and the I/O system performance, in which the checkpoint data size is usually 

a function of the program’s input data size: g . Furthermore, the 

coordination overhead relies on the in-transit and orphan message number.

 

(DataSize)

( )*( * )
_CKPT m MSG

g DataSizeCO N C N
IO Speed

= + ; 
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In which,  is the number of checkpoints, and CKPTN _IO Speed is the speed of the I/O 

system, is the cost on identifying and logging in-transit and orphan message 

envelopes, and 

mC

MSGN  is the total number of in-transit and orphan message. 

 

Given the above expressions, we can define libELC’s performance model as: 

 
1exe

exe

CO PO TOverhead
T

+ +
= −

 

       
exe

PO CO
T
+

=  

        

( )*( * ) *( * )
_

( )

CKPT m MSG p M VAR

i

g DataSizeN C N C N
IO Speed

f DataSize
Speed

+ + + ƒ

∑

N
=  

Note the above expression denotes libELC’s overhead in the checkpoint mode. As to 

the overhead of the protocol mode, it is simplified to: 

 
1exe

exe

PO TOverhead
T
+

= −
 

                  
exe

PO
T

=  

       
*( * )

( )
p M VAR

i

C N N
f DataSize

Speed

+ ƒ

∑
=  

As mentioned above, this model is generic but very basic. In the following four tests, 

we will study it with more case-specific parameters. 
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5.3  Test 1: Gauss-Jordan method for solving systems of 
linear equations 
The first experiment is an MPI implementation of the Gauss-Jordan method for 

solving systems of linear equations, which was written by J. Meyer at University of 

Nebraska at Omaha. The linear system is evenly distributed by row among N-1 

processes, from which the results are collected to the rank 0 process by the 

MPI_Allreduce function call.  

 

Four checkpoint calls are inserted in the program: the first checkpoint is taken after 

the rank 0 process completes the linear equation initialization; the second checkpoint 

is called when the master process distributes the equations to the other N-1 processes; 

the third call is made during the solving procedure (the halfway); the last one happens 

when the solving is finished.  

 

We ran the program on LAM/MPI 7.0.4 with three different linear equation sizes: 

4,000, 8,000 and 16,000. The program was tested with a four processor configuration 

(Table 4). 

 

Machines used Number of Processes 

csserver.ucd.ie 1 

csultra01.ucd.ie 1 

csultra02.ucd.ie 1 

csa007b4pc5.ucd.ie 1 

Table 4. Process configuration in Gauss-Jordan experiments. 

 

5.3.1 Size: 4,000 
In the protocol mode, libELC introduces an overhead of about 12.25%, which 

includes the cost of logging message envelopes, recording program execution flow 

and inspecting program state. However, in the checkpoint mode, the overhead 

increases to 34.45%, which is mainly caused by the I/O operations. 
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Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 431.8440 357.5612 415.3793 

2 361.7256 406.4668 450.9052 

3 376.1245 408.6260 513.4520 

4 307.3733 386.1419 492.6780 

5 269.9916 459.8315 365.2496 

Average. 349.4118 392.2147 469.7841 

Overhead  12.25% 34.45% 

Table 5. Gauss-Jordan experiment results for datasize: 4,000. 

 

5.3.2 Size: 8,000 
Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 1099.844 1368.3343 1229.488 

2 1215.651 1174.8286 1175.125 

3 1193.014 1246.8299 1438.118 

4 1274.838 1152.7711 1395.019 

5 1017.824 1288.9251 1215.101 

Average. 1160.234 1246.338 1285.170 

Overhead  7.42% 11.25% 

Table 6. Gauss-Jordan experiment results for datasize: 8,000. 

 

When the problem size grows up to 8,000, the overhead of the protocol drops to 

7.42%. The slight improvement of the protocol-mode result is due to the increase of 

data size, which causes more operations on saving the program state. A significant 

decrease in the overhead of the checkpoint mode was observed (to 11.25%). This is 

because the I/O is no longer the main performance factor compared with the 

computation. 
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5.3.3 Size: 16,000 
Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 5462.419 5482.5624 5822.543 

2 5456.314 5459.0973 5519.292 

3 5469.852 5558.52 5517.689 

4 5473.408 5436.624 5576.047 

5 5477.924 5465.9402 5492.715 

Average. 5467.984 5480.549 5585.654 

Overhead  0.2% 2.15% 

Table 7. Gauss-Jordan experiment results for datasize: 16,000. 

In the case of a problem size of 16,000, we observed the best performance of libELC, 

whose overheads are only 0.2% in the protocol mode, and 2.15% in the checkpoint 

mode.  

 

5.3.4 Analysis 

 

Figure 9. Experiments results of Gauss-Jordan method,  

 in which the x-axis scale is the size of the linear system. 
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We ran the Gauss-Jordan Elimination program with three data sizes. The performance 

of libELC is shown in the following figure (See Figure 9). In this test, the program’s 

computation volume is denoted by the expression 2( )f DataSize DataSize=

( )DataSize =

 and the 

checkpoint data size is the same as the input data size: g . 

Increasing the data volume did not change the data structure and the number of 

variables in the program, which determines PO. Also, more data incurs no extra 

coordination overhead. The impact of a larger data size is that it increases the program 

execution time T , as well as the checkpoint file creation time 

DataSize

exe _
DataSize

IO Speed
. 

Applying to the performance model, if all other parameters are fixed except DataSize. 

2

*( * ) *( * )
_CKPT m MSG p M VAR

i

DataSizeN C N C N
IO SpeedOverhead

DataSize
Speed

+ + + ƒ
=

∑

N
 

2

* * *( **
_ *

CKPT m MSG p M VARCKPT i

i

N C N C N NN Speed
DataSizeIO Speed DataSize

Speed
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= +∑

∑

)
 

It is obvious from the model that an increase of DataSize will cause less overhead of 

libELC, which is exactly the desired result since fault tolerance is only of interest for 

large long-lived executions. 
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5.4 Test 2: 2-D block decomposition Laplace Solver 
The Laplace Solver program we tested was first developed by Robb Newman, and 

converted to MPI by Xianneng Shen. This program uses a finite difference scheme to 

solve Laplace's equation for a square matrix distributed over a square process 

topology, in which each matrix element is updated based on the values of the four 

neighbouring matrix elements.  This procedure is repeated until the average change in 

any matrix element is smaller than a specified value. Similar with the Gauss-Jordan 

method experiment, in this test the first checkpoint is taken when the matrix is 

initialized and the last one is made when the computation finishes. The other two 

checkpoints are trigger every 2,500 iterations ( 5,000 in total). We adopted two 

configurations for running this test: 4 and 16 processes with MPICH-1.2.6. 

 

5.4.1 Number of Processes: 4; Matrix Size: 512*512 
Machine used Number of processes 

csserver.ucd.ie 1 

csultra01.ucd.ie 1 

csultra02.ucd.ie 1 

csa007b4pc5.ucd.ie 1 

Table 8. 4 process configuration in Laplace Solver experiment. 

 

In this scenario, we ran the test with 4 processes and a 512*512 matrix with 48 node 

edges (Table 9): 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 473.271 502.125 530.720 

2 489.628 496.933 534.606 

3 467.290 504.978 554.885 

4 493.735 568.046 551.169 

5 469.644 492.173 533.683 

Average. 496.353 517.951 540.952 

Overhead.  4.35% 8.98% 

Table 9. Laplace Solver experiment results for 4 processes and matrix size 512*512. 
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5.4.2 Number of Processes: 16; Matrix Size: 512*512 
Machines used Number of Processes 

csserver.ucd.ie 2 

csultra01.ucd.ie 2 

csultra02.ucd.ie 2 

pg1cluster01.ucd.ie 2 

pg1cluster02.ucd.ie 2 

pg1cluster03.ucd.ie 2 

pg1cluster04.ucd.ie 2 

csa007b4pc5.ucd.ie 2 

Table 10. 16 process configuration in Laplace Solver experiment. 

 

In the first run, we used 16 processes to solve the same matrix as the 4 process 

configuration: size of 512*512 with 24 node edges: 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 603.259 600.584 604.555 

2 600.544 602.439 618.515 

3 594.183 640.861 640.113 

4 579.079 615.563 610.396 

5 584.251 608.003 680.321 

Average. 592.263 613.490 630.780 

Overhead.  3.58% 6.50% 

Table 11. Laplace Solver experiment results for 16 processes and matrix size 512*512. 

 

5.4.3 Number of Processes: 16; Matrix Size: 1024*1024 
Then, we increase the matrix size to 1024*1024 (48 node edges) with the same 16 

process configuration. The results are: 
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Runs Source Mode (sec) Protocol Mod (sec) Checkpoint Mode (sec) 

1 1654.477 1631.159 1560.790 

2 1567.377 1695.699 1608.597 

3 1687.606 1773.178 1762.854 

4 1695.908 1592.223 1772.727 

5 1764.140 1778.471 1860.225 

Average. 1673.901 1694.146 1713.038 

Overhead.  1.21% 2.43% 

Table 12. Laplace Solver experiment results  

for 16 processes and matrix size 1024*1024 

From the above tables, we observe a significant increase of the execution time caused 

by the increase of number of processes and data size. However, the overhead of 

libELC drops steadily, 3.58%, 6.50% for the matrix size 512*512, and 1.21%, 2,43% 

for the 1024*1024 matrix. 

 

5.4.3 Analysis 
In this experiment we observe the best protocol-mode performacve of libELC: 3.05%. 

As discussed in Section 5.2 and 4.2.2.3, the complexity f  of the data structure 

employed in an MPI program plays a significant role in determining libELC’s 

protocol overhead PO: . Among the five test programs, the 

data structure used in the Laplace Solver program is the simplest, which could be used 

to explain the outstanding performance in the protocol-mode runs (Figure 10). 

*( *p M VARPO C N N= + ƒ )

 

Moreover, given the parameters that have the impact on CO 

( )*( * )
_
( )

CKPT m MSG

i

g DataSizeN C
IO Speed

f DataSize
Speed

+

∑

N
,  it is noted that increasing the number of 

processes does not introduce extra checkpoint overheads (in the second run 16 

processes with a 512*512 matrix) . It looks the results conflict with the performance 

model, however it is explainable. 
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Figure 10.  Experimental results from the Laplace Solver, in which  

tests are carried out with different sizes of linear equatations. 

As mentioned above, this Laplace Solver program uses a square process topology to 

solve the equation for a square matrix. And for each matrix element, it is updated 

based on the values of the four neighbouring matrix elements. Thus, when employing 

more processes, the extra communication cost for exchanging data among distributed 

matrix blocks counteracts, and even overweighs the potential (compare the source-

mode results between Table 10 and 11).   
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5.5 Test 3: Parallel NeuronSys - solve a system of ODE's 
modelling a network of neurons 
Parallel Neuronsys is a neuron simulator program publically available at 

http://www.cs.usfca.edu/neurosys/. Generally, it is used to solve a system of Ordinary 

Differential Equation's (ODE) modelling a network of biologically realistic neurons 

on parallel computers. The current version uses a fourth order Runge-Kutta method to 

solve the equation. Neurons are evenly distributed over processes and form a graph in 

which neurons excite and inhibit each other via their connections. Inter-process 

communication contains five MPI_Allgather and one MPI_Gather function calls in 

each of a total of 10,000 iterations. We conducted experiments to model a network of 

64 randomly interconnected neurons and a checkpoint is taken every 2,500 iterations.   

The equations modelling one neuron are based on a model presented in [75]. In our 

experiments, we ran the Parallel NeuroSys with MPICH-1.2.6. 

 

5.5.1 4 Process Configuration 
This test was launched with a four process configuration, as can be seen in Table 13. 

Machine used Number of Processes 

csserver.ucd.ie 1 

csultra01.ucd.ie 1 

csultra02.ucd.ie 1 

csultra03.ucd.ie 1 

Table 13. 4 process configuration in Parallel NeuroSys experiment. 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 607.2415 771.7847 787.7825 

2 602.9916 777.6131 796.7314 

3 606.4636 770.2838 815.5689 

4 604.6494 771.3599 791.9368 

5 616.2382 768.0574 785.3921 

Average 607.5169 771.8198 786.4258 

Overhead  27.04% 29.44% 

Table 14. Parallel NeuroSys experiment results for 4 processes configuration. 
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In the 4 process configuration, libELC protocol causes 27.04% overhead. This can be 

explained by the complex data structure the 64 randomly interconnected neuron 

network uses, which libELC needs to disassemble to locate the structure elements. 

And the checkpoint overhead is 29.44%.  

 

5.5.2 8 Process Configuration 
Machines used Number of Processes 

csserver.ucd.ie 1 

csultra01.ucd.ie 1 

csultra02.ucd.ie 1 

pg1cluster01.ucd.ie 1 

pg1cluster02.ucd.ie 1 

pg1cluster03.ucd.ie 1 

pg1cluster04.ucd.ie 1 

csa007b4pc5.ucd.ie 1 

Table 15. 8 process configuration in Parallel NeuroSys experiment. 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 212.2723 221.8225 231.2935 

2 196.9984 212.1979 230.1724 

3 192.6401 218.2799 232.4861 

4 221.5995 222.0529 226.4064 

5 219.1607 222.4031 225.9673 

Average 208.5342 219.3512 229.2652 

Overhead  5.18% 9.94% 

Table 16. Parallel NeuroSys experiment results for 8 processes configuration. 

 

We observed significant improved performance in the 8 process configuration: 5.18% 

overhead for libELC protocol and 9.94% overhead for checkpointing.  
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5.5.3 16 Process Configuration 
Finally, we tested with 16 processes: 

Machines used Number of Processes 

csserver.ucd.ie 2 

csultra01.ucd.ie 2 

csultra02.ucd.ie 2 

csultra03.ucd.ie 2 

pg1cluster01.ucd.ie 2 

pg1cluster02.ucd.ie 2 

pg1cluster03.ucd.ie 2 

pg1cluster04.ucd.ie 2 

Table 17. 16 process configuration in Parallel NeuroSys experiment. 

 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 73.0123 72.4537 77.7428 

2 67.3325 65.7690 71.4936 

3 70.6295 70.3439 73.6690 

4 66.8718 69.9402 78.1830 

5 71.3673 75.2425 73.9286 

Average 69.8427 70.7498 75.0034 

Overhead  1.30% 7.38% 

Table 18. Parallel NeuroSys experiment results for 16 processes configuration. 

Since the testing machines share the same file system in our test, the I/O operation 

became the main performance bottleneck when the number of processes was 

increased. However, as the previous experiment data showed, the overheads drop 

from 27.04% to 5.18%, to 1.30% for libELC protocol, and 29.44% to 9.94% to 7.38% 

for checkpointing, for 4, 8 and 16 process configuration respectively. 

5.5.4 Analysis 
In the tests of the Parallel NeuronSys environment (See Figure 11), we concentrated 

on the scalability of libELC. One immediate observation is that employing extra 

processes reduces the amount of time required to solve a particular problem, which 

should causes more checkpoint overhead. However, as the experiment results 
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demonstrate, the performance of libELC gets better with the increase of number of 

processes. To illustrate the results, we investigated the checkpoint files, in which we 

found that the reduced program execution significantly reduces the occurrence of in-

transit and orphan messages ( MSGN ). Fewer in-transit and orphan messages mean that 

upon checkpointing, libELC spends much less time on the message identification and 

logging. Recalling the performance model: 

( )*( * ) *( * )
_

( )

CKPT m MSG p M VAR

i

g DataSizeN C N C N
IO SpeedOverhead f DataSize

Speed

+ + + ƒ
=

∑

N
 

Although the increase of computing capacity would augment the proportion of 

overhead, the message cost saving counteracts this effect and lowers the overall 

overhead. Moreover, in the experiments, we observe that if multiple processes share 

the same storage system, the I/O cost of creating the physical checkpoint file increases 

significantly as the system expands. 

 

Figure 11. Experiment results of Parallel NeuronSys, in which  

tests are carried out with different numbers of processes. 
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5.6 Test 4: Monte-Carlo simulation of a system of hard 
disks 
This program does a Monte-Carlo simulation of a system of hard disks. The fraction 

of the total area that is covered by disks (area fraction) is set to 0.5 and the user has 

control over the size of the system that will be simulated. The disks start from a 

triangular lattice and the simulation works in a master-slave pattern, in which the size 

of the system is determined by specifying the number of disks along an edge of the 

initial lattice. Due to limitations imposed by the program, all tests were performed 

with the same machine configuration with MPICH-1.2.6: 

Machine used Number of Processes 

csserver.ucd.ie 1 

csa007b4pc5.ucd.ie 1 

Table 19. Process configuration in Monte-Carlo simulation. 

To exercise the Time Interval method of triggering checkpoints, we deployed it in the 

Monte-Carlo simulation; the checkpoints were generated every 150 seconds. Also, we 

conducted three experiments by changing the simulation input parameters to vary the 

execution time. 

 

5.6.1 Number of Disks: 16; Number of Sweeps: 10,000 
In the first experiment, we ran a simulation of 16 disks, with 10,000 sweeps. The 

libELC protocol adds about 24.87% overhead, and checkpointing increases the 

overhead to 33.15%. 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 134.316 165.668 193.546 

2 134.026 172.971 178.596 

3 133.762 163.933 191.569 

4 132.600 169.208 170.963 

5 137.608 167.749 160.538 

Average 134.462 167.905 179.042 

Overhead  24.87% 33.15% 

Table 20. Monte-Carlo simulation results for 16 disks and 10,000 sweeps. 
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5.6.2 Number of Disks: 32; Number of Sweeps: 10,000 
In the following two tests, we increased the computation by increasing the simulation 

parameters. We observed a steady decrease of the overheads of both the protocol 

mode and the checkpoint mode. In the second test this dropped to 15.86 % (protocol 

mode) and 23.83% (checkpoint mode). 

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec) 

1 1007.543 1127.36 1111.139 

2 1012.864 1121.27 1114.899 

3 957.016 1112.925 1267.157 

4 925.707 1115.312 1262.268 

5 921.590 1113.149 1219.235 

Average 964.944 1118.003 1194.939 

Overhead  15.86% 23.83% 

Table 21. Monte-Carlo simulation results for 32 disks and 10,000 sweeps. 

 

5.6.3 Number of Disks: 32; Number of Sweeps: 20,000 
The third experiment was run with the largest simulation size, 32 disks and 20,000 

sweeps. However, the best performance obtained was 11.77% overhead for protocol 

mode and 14.32% for the checkpoint mode. 

 

 

Runs Source Mode Protocol Mode Checkpoint Mode 

1 1808.593 2225.312 2503.654 

2 2092.401 2303.537 2241.002 

3 2284.970 2252.679 2225.032 

4 1895.911 2239.588 2236.935 

5 1989.446 2236.644 2307.413 

Average 2014.262 2251.523 2302.837 

Overhead  11.77% 14.32% 

Table 22. Monte-Carlo simulation results for 32 disks and 20,000 sweeps. 
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5.6.4 Analysis 
The Monte-Carlo Simulation test shows the performance of libELC with a time 

interval of 150 seconds. In these tests, three different volumes of simulation were 

performed, varying the program’s execution time. In keeping with the experimental 

results reported earlier, as the data size increased, the overhead due to libELC reduced 

(See Figure 12). 

 

Figure 12. Experiments results of Monte-Carlo Simulation, in which  

the x-axis is the number of disks and sweeps in the simulation. 

Recalling the performance model: given the other parameters fixed, the overhead of 

libELC will increase with the number of checkpoints. However, with the Time 

Interval Checkpoint mechanism, the checkpoint is triggered at regular intervals. So, 

the number of checkpoints created during the program execution is proportional to the 

program’s execution time, in which case the parameter N  is denoted by: CKPT

exe
CKPT

interval

TN
T

= , in which T  is the checkpoint interval set by the user. Then, the 

performance model becomes: 

interval
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As we can see, using the Time Interval Checkpoint mechanism, although the number 

of checkpoints is proportional of the program execution time, the overall overhead 

does not increase. Therefore, long running tasks benefit more from the checkpoint 

mode. 

5.7 Test 5: Comparing Event Logging with Message Tagging 
Given the existence of other coordinated checkpoint algorithms, it is necessary to 

compare Event Logging to its competitors. In this section we present the results of a 

comparision between Event Logging and Message Tagging.  

 

Being coordination algorithms, Event Logging and Message Tagging aim to 

orchestrate multiple processes so as to create a valid recovery line. Neither of them 

deals with single process checkpoint and recovery. Thus in this test we concentrate on 

the communication overhead introduced by the two algorithms (no checkpoints 

taken).  

 

As to the implementation, we chose the derived datatype approach (see Section. 3.2.2) 

for tagging the header information onto the message. It is noted that libELC (Event 

Logging) and libMTC (Message Tagging) are both constructed on top of the Chandy-

Lamport algorithm.  They share the codes for trigger local checkpoints, logging and 

replaying messages in our implementations. The differences rely in how a particular 

algorithm identifies the in-transit and orphan messages, which are summarized below: 

 

Event Logging:  
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(1) For each message sending/receiving operation, the process saves the message 

envelope in a structure of <tag, rank, communicatior>, and append the envelope onto 

the send/receive logs. 

(2) Upon a process finishes its local checkpoint, it sends out the sending logs instead 

of marker messages to the corresponding processes. 

(3) Upon receiving a send log, a process compares the send log with the local receive 

log to identify the in-transit message and orphan message envlopes (the process may 

trigger a new local checkpoint depending on whether it is the first send log it 

receives). Using the identified envelopes, the process can detect and save the trouble 

messages. 

 

Message Tagging: 

(1) For each message sending operation, the process copies the message content and 

header information into a buffer and defines a new derived datatype (orginal datatype 

plus header datatype). The temporary buffer and derived datatype are used instead of 

the original in the communication.  

(2) For receiving a message, a process also needs to prepare the derived datatype 

and a temporary buffer.  The tagged message is saved in the buffer, where the header 

is unpacked and checked to see wether the message is intransit or orphan. 

(3) Note, the above two steps only help a process to identify the trouble messages. 

Coordination message is still necessary to notify the finish of a local checkpoint. In 

libMTC, a process p counts the numbers of the incoming/outgoing messages ( ,p iIN , 

) for the process i. OU will be sent to process i upon checkpointing as 

marker messages to let i know how many in-transit messages to be logged before 

closing the checkpoint (OUT ). 

,p iOUT ,p iT

p i iIN−, , p

 

It is observed from the above comparision tht the performance of Message Tagging is 

heavily affected by the message size; Event Logging, on the other hand, is not:

 
* *

( )
tag M

MT

i

C N MessageSize
O f DataSize

Speed

=

∑
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( )

M
EL

i

C N
O f DataSize

Speed

=

∑
 

MTO , O  denote the overheads of Message Tagging and Event Logging. C , C  

respectively denote the cost for tagging messages tagging and logging message 

envelopes. 

EL tag log

MN  is the total number of messages and MessageSize  is the average 

message size. (
i

)f DataSize
Speed∑

 denotes the average execution time in source mode with 

outliers removed. 

 

To compare the two methods, we ran a simple 1-D decomposition matrix 

multiplication program on the following machines with MPICH-1.2.6: 

Machine used Number of Processes 

csserver.ucd.ie 2 

csultra01.ucd.ie 1 

csa007b4pc5.ucd.ie 1 

csa007b3pc2.ucd.ie 1 

Table 23. Process configuration in 1-D Decomposition matrix multiplication experiment. 

Since we wanted to examine the communication overhead, we were concerned with 

the performance of the message passing between both homogeneous and 

heterogeneous processes. In particular we started the master process on a Linux 2.4 

machine (csserver.ucd.ie), and launched the slaves on four different platforms: Linux 

2.4 (csserver.ucd.ie), Solaris 5.8 (csultra01.ucd.ie), Linux 2.6 (csa007b4pc5.ucd.ie) 

and FreeBSD 5.2.1 (csa007b3pc2.ucd.ie). 

 

In this program, the master process (rank 0) distributes the matrix to the slaves in a 

cyclic manner. These slave processes do the multiplication job and return the result to 

the master. The distribution unit is set to 4 columns so that the overall message 

number is 
4

nColum  and the message size is 4* Row , in which Column and Row 

represent the number of columns and rows respectively. In this case, the performance 

model for message tagging becomes: 
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5.7.1 Matrix Size: 512*512, Message Size: 512 KB 
The first run used a matrix of 512*512, in which the message size was 512 KB. 

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec) 

1 32.423 32.756 33.784 

2 32.838 32.212 34.349 

3 32.564 31.853 34.347 

4 32.582 32.439 33.260 

5 32.341 32.439 35.059 

Average 32.579 33.340 34.160 

Overhead  2.33% 4.85% 

Table 24. Matrix multplication experiment result for matrix size 512*512. 

 

5.7.2 Matrix Size: 1024*1024, Message Size: 2 MB 
We then increased the matrix size to 1024*1024, and the message size increased to 2 

MB. 

 

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec) 

1 123.243 125.380 131.566 

2 124.056 126.373 127.262 

3 118.744 125.438 130.939 

4 118.289 122.868 132.458 

5 122.494 124.113 129.518 

Average 121.365 124.834 130.348 

Overhead  2.85% 7.40% 
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Table 25. Matrix multplication experiment result for matrix size 1024*1024. 

 

5.7.3 Matrix Size: 2048*2048, Message Size: 8 MB 
Finally, two 2048*2048 matrix were multiplied. The message size was 8 MB. 

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec) 

1 554.479 535.848 589.596 

2 533.030 556.435 578.466 

3 569.116 541.447 584.748 

4 554.758 617.252 602.031 

5 517.098 553.635 593.42 

Average 545.696 560.923 589.652 

Overhead  2.79% 8.05% 

Table 26. Matrix multplication experiment result for matrix size 2048*2048. 

 

5.7.4 Analysis 
In this test, we ran a 1-D decomposition matrix multiplication program with three 

sizes: 512*512, 1024*1024, and 2048*2048 (See Figure 13). 
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Figure 13. Comparison results of matrix multiplication, in which  

the message sizes in the three tests are 512KB, 2MB and 8MB. 

In general, we observe more overheads introduced by Message Tagging than Event 

Logging. Moreover, in the derived datatype approach, processes need to build a new 

datatype and copy the header and the message into a temporary buffer for every 

outgoing message. Event Logging processes, on the other hand, only log the message 

envelopes.  In this sense, Message Tagging is influenced by the message size, while 

Event Logging is not. This can be used to explain the above experiment results. When 

the message size increases with the matrix size, Message Tagging introduces more 

overhead but that of Event Logging remains approximately the same. 

5.8 Optimal Checkpoint Interval 
The reason for creating checkpoints for a long running program is to reduce the 

execution time lost due to failures. However in failure-free time, checkpointing 

prolongs the program’s execution. We therefore need to find out the program’s 

optimal checkpoint scheme, which minimizes the execution time, without weakening 

fault tolerance.  
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Take, for example, a program whose original execution time is 100 minutes. Creating 

a checkpoint for the program takes 4 minutes and the recovery costs 2 minutes. 

Moreover, assume a checkpoint is taken every 20 minutes throughout the program’s 

life. Given the above conditions, the failure-free execution time of the program with 

checkpoints is: 

 100100 4* 120
20

+ =  (minutes); 

Moreover, suppose the program’s MTBF (Mean Time Between Failure) is 50 

minutes, so during its execution the possible number of failures is 100/50=2. Taking 

into account the recovery time, the expectation of the program execution time is 

( minutes), in which Lo  is the execution time 

lost due to the i  failure. The expectation of ∑ is 

2

1
120 2*2 i

i
Lost

=

+ +∑ 0 20iLost< ≤

th

ist

2

1
i

i

Lost
=

(1 2 ...20)2* 21
20

+ +
= (minutes). Then the expectation of the program execution time 

with checkpointing (EPET) is 145 minutes. 

 

In this section, we present an approach trying to minimize EPET. From the above 

example, we can construct a generic expression to denote a program’s EPET. Suppose 

the program’s original execution time is T , the checkpoint cost is T , the recovery 

cost is T  and the checkpoint interval is

O

t

C

R ∆ . Also, suppose the program’s average 

uptime is T  and the execution time lost due to the i failure’s execution time lost is 

. Then EPET is calculated by 

UP
th

iLost

 * *O O
O C R

UP

T TEPET T T T Lost
t T

= + + +
∆ ∑ i ; 

The expectation of ∑ is iLost 1*
2

O

UP

T t
T

+ ∆ . EPET then becomes

 1*
2

O
C

UP UP

T tEPET T T
T

* *O O
O R

T TT
T t

+ ∆
= + ++

∆
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Moreover, for a specific program the parameters T ,T ,T ,T  are usually constants. 

So, when 

O C R UP

1* *
2

O O
C

UP

tT
t T

+ ∆
+

∆
T T  is minimized, in which 2* *C UPT Tt∆ = , EPET has 

the minimal value 
2 *

UP

T2**
2*

O O
O R

UP UP

T T
T T

+ + + O

T
CTT T . 

 

So, we conclude for a program with the Time Interval mechanism, the optimal 

checkpoint interval is 2* *C UPT T . 

5.9 Conclusion 
In this chapter, we described several experiments conducted with libELC. The five 

different MPI programs were the Gauss-Jordan method for solving systems of linear 

equations; 2-D block decomposition Laplace Solver; Parallel NeuronSys and a 

Monte-Carlo simulation. In general, each program was run with either different input 

data sizes or different process scale. Moreover, the test of every data size and 

configuration was conducted with 3 modes: source, protocol and checkpoint modes. 

The protocol mode incorporates only the libELC protocol without triggering any 

checkpoints; and checkpoint mode creates four physical checkpoint files using 

libELC. 

 

The experimental results demonstrate the portability of libELC in heterogeneous 

networks. Using a shared filesystem, machines with different architectures and data 

representation were able to generate uniform checkpoint files, which could be used to 

recover the MPI program’s running state on other heterogeneous, non-compatible 

platforms. It is noted that we have performed severl recovery tests internally. 

However such testing results have not been included in this chapter. The formal 

experiments work is in progress and would be finished soon. 

 

As to the performance, we observed that libELC’s overhead is influenced by the data 

structure complexity, the data size and the process scale. In the test of the 2-D block 

decomposition Laplace Solver, we note that better performance was gained with 

simpler data structures in the MPI program use. As the data structure gets complex, it 

costs libELC more to locate the structure elements. Also, the more pointers the 
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program uses, the more time libELC spends on transforming the pointers’ physical 

address to the logic representation.  

 

Another performance factor is the data size. In the same program, for example, the 

Gauss-Jordan method for solving systems of linear equations), libELC introduces less 

overhead with large data sets than small ones. This becomes very significant when the 

machine is fully loaded, in which case the overhead of libELC becomes insignificant. 

 

The third factor is the number of processes. Due to the significantly reduced number 

of in-transit and orphan messages, better performance results are obtained as the 

process scale increases. However, in our experiments, we also observe that if multiple 

processes share a single storage system (NFS), the concurrent I/O operations caused 

by creating the physical checkpoint files became a bottleneck for libELC.  

 

Furthuremore, we tested libELC with the Time Interval mechanism. We observed that 

no significant performance descrease occured as the program’s execution time 

increased. The advantage of the Time Interval mechanism is that it is transparent to 

the user. By comparision, the checkpoint function requires users to manage the 

checkpointing explicitly. However, the advantage of using the checkpoint function is 

that the user may manually control and select the most approapriate time for 

checkpointing. 

 

We also presented the comparison between Event Logging and Message Tagging in 

this chapter. The experiments demonstrated that the performance of Message Tagging 

fluctuates with the message size. And more important, as discussed in Section. 3.2.2, 

the Message Tagging approach is not completely compliant with the MPI standard. 

By comparion, Event Logging introduces fewer overheads, and the performance of 

Event Logging is not affected by message size. And Event Logging is designed totally 

on top of MPI. From the point of view of implementation, another advantage of Event 

Logging over Message Tagging is that Event Logging enables fast recovery line 

commit. At the time message identification finishes, Event Logging has found out the 

envelopes for the in-transit messages, so a process can simply post receive requests to 

log these in-transit messages (note that FIFO communication is commonly supported 

by the lower layer of MPI implementations). However, in Message Tagging, the 
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process has to wait as long as the messages are received by the program. This is 

because the process has no knowledge of an in-transit message until it checks a 

message's header. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6  

Conclusion and Future Work 
 

6.1 Summary 
This thesis presents Event Logging, a high level coordination algorithm for the 

checkpoint/recovery of MPI programs in heterogeneous networks of computers. The 

main contribution of Event Logging is that it addresses the application-level non-

FIFO challenge of the Chandy-Lamport algorithm, which is a key problem for a 

portable implementation of coordinated checkpointing in MPI programs. As a 

consequence, Event Logging is highly portable given a heterogeneous environment in 
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that it is totally built on top of the MPI standard. This makes Event Logging rely on 

no particular assumption of the underlying MPI implementation or the running 

platform. The portability significantly benefits Event Logging given the inherent 

heterogeneity of a network of computers. 

 

From the point of the technique, Event Logging combines the merits of both 

coordinated checkpointing and message logging. However, it reduces most of the 

overheads of message logging since Event Logging records only the message 

envelope without the actual content. The message envelopes will be exchanged upon 

checkpointing for the message identification. The in-transit messages and orphan 

message envelopes will be identified and saved as part of the recovery line. The 

combination of coordinated checkpoint and message logging brings significant 

benefits including small failure-free overheads, fast recovery line commit, a simple 

recovery procedure and one-checkpoint rollback extent. 

 

This thesis also presents the implementation of Event Logging: libELC. libELC is a 

portable checkpoint and recovery library for C/MPI programs. It employs Event 

Logging for distributed process coordination. As to the checkpoint/recovery for each 

individual heterogeneous process, libELC captures the snapshots at the application 

level. Unlike the traditional system-level or library-level checkpoint mechanisms, the 

application-level checkpoint examines the logic composition of a running process. 

This mainly consists of program variables, heap memory and execution flow. Thus, 

the state saving is done by recording the variable value, the heap content and program 

function calls. Upon recovery, the same sequence of functions is issued so the 

execution flow will be exactly reconstructed. Repetition of instructions executed 

before checkpoints is avoided by using GOTO statement. The value of a program 

variable is re-assigned following the variable’s definition. The heap is reallocated and 

the saved content is restored in the new memory space. The advantage of such an 

application-level checkpoint/recovery approach is that it is totally system-

independent. As long as a platform supports for ANSI C language, libELC is able to 

capture the snapshot for any C programs running on it. 

 

Besides the uniprocess checkpoint/recovery facility, libELC integrates Event Logging 

by providing a set of wrapper functions for the MPI interface. These wrapper 
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functions hide the event logging operations completely from the point of view of the 

user. The user is given two options to trigger a global checkpoint in libELC, either by 

an explicit function call: ELC_DoCKPT() or by  setting the Checkpoint Time Interval, 

which generates checkpoints in a preset period. 

 

The experiments carried out to evaluate Event Logging are also presented in this 

thesis. Five programs were tested with two main MPI distributions: LAM/MPI-7.0.4 

and MPICH-1.2.6. The experiment results demonstrate the efficiency of the Event 

Logging algorithm. 

6.2 Future Work 
Message Identification Optimization: The current version of libELC implements 

message identification by using the “plain” sequential search. However, as discussed 

in Section. 3.4.2, a fast search algorithm, like binary search, helps reduce the 

identification cost. Unfortunately, using such algorithm requires change to the data 

structure used to organize the event logs. Currently, libELC uses the link table to store 

the message envelope. In order to implement the fast search, changes will be 

necessary to use a sorted table to organize the envelopes. 

 

Selective Checkpoint: One criticism of the coordinated checkpoint model is the lack 

of independence for each individual process to create local checkpoints. It mandates 

that all processes must participate in the checkpoint as well as the rollback. Given a 

small or medium network, the tradeoff is worthwhile. However, with an increase of 

the process number, as within a Computational Grid, such a penalty would be 

considerable. This is especially true of the involvement of all processes in recovery 

even if only one fails. To alleviate this constraint, the next step is to implement 

Selective Checkpoint [35, 36] to minimize the scale of checkpointing processes in 

libELC. Event Logging provides the ability to implement Selective Checkpoint since 

the inter-process message passing has already been logged upon checkpointing. 

 

Minimize Checkpoint Datasize: Significant potential for optimization lies in 

minimizing the checkpoint datasize. Since the application-level approach takes the 

point of view of the program semantic, it is possible to use some compiler techniques 

[71, 72] to exclude the unnecessary data upon checkpointing. Given the dramatically 
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increasing problem size in the real world, such a benefit is scheduled in the future 

plan of libELC. 

 

Local/Shared File System Support:  Although the current libELC implementation 

allows the users to save the checkpoint files on the local disks, a shared file system is 

desired in most cases. The advantage of the shared file system is that it tolerates the 

faults such as disk corruption or machine physical damage, which make the local file 

system inaccessible upon recovery.  However, the main drawback for using the shared 

file system is that the file system itself becomes a single point of failure. To avoid this 

problem, we consider adding supports to combine the merits of the local file system 

and the shared storage in the next version of libELC. 
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Appendix A.  

Example of libELC 
 
/********************** FILE: mm.c ******************************************* 
* DESCRIPTION:   
*   In this template code, the master task distributes a matrix multiply 
*   operation to numtasks-1 worker tasks. 
*   NOTE1:  C and Fortran versions of this code differ because of the way 
*     arrays are stored/passed.  C arrays are row-major order but Fortran 
*     arrays are column-major order. 
* AUTHOR for MPL version: Ros Leibensperger / Blaise Barney 
* LAST MPL REVISED: 09/14/93 for latest API changes.  Blaise Barney 
* CONVERTED TO MPI: 11/12/94 by Xianneng Shen  
*****************************************************************************/ 
 
#include <stdio.h> 
#include <mpi.h> 
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#include <libELC.h> 
 
#define SIZE 1024 
#define NRA SIZE   /* number of rows in matrix A */ 
#define NCA SIZE   /* number of columns in matrix A */ 
#define NCB SIZE      /* number of columns in matrix B */ 
#define MASTER 0   /* taskid of first task */ 
#define FROM_MASTER 1  /* setting a message type */ 
#define FROM_WORKER 2  /* setting a message type */ 
 
main(int argc, char **argv)  
{ 
/**************** Program Variable Definition *********************/ 

int numtasks,   /* number of tasks in partition */       
      taskid,   /* a task identifier */ 
      numworkers,  /* number of worker tasks */ 

       source,   /* task id of message source */ 
       dest,   /* task id of message destination */ 
       nbytes,   /* number of bytes in message */ 
       mtype,   /* message type */ 
       intsize,   /* size of an integer in bytes */ 
       dbsize,   /* size of a double float in bytes */ 
       rows,               /* rows of matrix A sent to each worker */ 
       averow,  
        extra,  
                  offset,     /* determine rows sent to each worker */ 
       i, j, k,   /* misc */ 
       count; 
  
 double *a,    /* matrix A to be multiplied */ 
              *b,   /* matrix B to be multiplied */ 
   *c;   /* result matrix C */ 
 MPI_Status status; 
 
/**************  Records Execution Flow in the Flow Table *************/ 
 OnCallEnter(0,0); // this is the main() function; 
 
/***************** Records Variables in Shadow Stack **************/ 
 OnVarDef(&numtasks,sizeof(int)); 
 OnVarDef(&taskid,sizeof(int)); 
 OnVarDef(&numworkers,sizeof(int)); 
 OnVarDef(&source,sizeof(int)); 
 OnVarDef(&dest,sizeof(int)); 
 OnVarDef(&nbytes,sizeof(int)); 
 OnVarDef(&mbyte,sizeof(int)); 
 OnVarDef(&insize,sizeof(int)); 
 OnVarDef(&dbsize,sizeof(int)); 
 OnVarDef(&rows,sizeof(int)); 
 OnVarDef(&averow,sizeof(int)); 
 OnVarDef(&extra,sizeof(int)); 
 OnVarDef(&offset,sizeof(int)); 
 OnVarDef(&i,sizeof(int)); 
 OnVarDef(&j,sizeof(int)); 
 OnVarDef(&k,sizeof(int)); 
 OnVarDef(&count,sizeof(int)); 
  
 OnPtrDef(&a,1); 
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 OnPtrDef(&b,1); 
 OnPtrDef(&c,1); 
 
 OnVarDef(&status,sizeof(MPI_Status)); 
 
/**************  Execution  Jump in the Recovery*************/ 
        if (STATE_FLAG==ELC_RECOVERY) 
         { 
     ELC_MPI_Init(&argc, &argv); // re-init MPI runtime environment 
                switch (g_flowTail->LABEL) 
                { 
                        case (-1):   goto K1; 
                        case (-2):   goto K2; 
                        case (-3):   goto K3; 
                        case (-4):   goto K4; 
                        case (-5):   goto K5; 
                        case (-6):   goto K6; 
                        case (-7):   goto K7; 
                        case (-8):   goto K8; 
                        case (-9):   goto K9; 
                        case (-10):  goto K10; 
                        case (-11):  goto K11; 
                        case (-12):  goto K12; 
                        case (-13):  goto K13; 
                        case (-14):  goto K14; 
                        case (-15):  goto K15; 
                } 
         } 
 
/****************** Execution Statement ***************************/ 
 intsize = sizeof(int); 
 dbsize = sizeof(double); 
 
 ELC_MPI_Init(&argc, &argv); // wrapper MPI_Init() 
 

// Record the Heap Allocation 
 a=ELC_malloc(NRA*NCA*sizeof(double)); 
 b=ELC_malloc(NCA*NCB*sizeof(double)); 
 c=ELC_malloc(NRA*NCB*sizeof(double)); 
 
 MPI_Comm_rank(MPI_COMM_WORLD, &taskid); 
 MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 
 numworkers = numtasks-1; 
 
/***************** Master Task  ***********************************/ 
 if (taskid == MASTER) { 
   for (i=0; i<NRA; i++) 
     for (j=0; j<NCA; j++) 
                  *(a+i*SIZE+j)= i+j; 
   for (i=0; i<NCA; i++) 
     for (j=0; j<NCB; j++) 
       *(b+i*SIZE+j)= i*j; 
 
   /* send matrix data to the worker tasks */ 
   averow = NRA/numworkers; 
   extra = NRA%numworkers; 
   offset = 0; 
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   mtype = FROM_MASTER; 
   for (dest=1; dest<=numworkers; dest++) {    
     rows = (dest <= extra) ? averow+1 : averow;     
K1:     ELC_MPI_Send(&offset, 1, MPI_INT, dest,  
                                              mtype, MPI_COMM_WORLD,-1,0); 
K2:     ELC_MPI_Send(&rows, 1, MPI_INT, dest,  

          mtype, MPI_COMM_WORLD,-2,0); 
     count = rows*NCA; 
  
K3:     ELC_MPI_Send(a+offset*SIZE+0, count, MPI_DOUBLE, dest,  
                                              mtype, MPI_COMM_WORLD,-3,0); 
     count = NCA*NCB; 
K4:     ELC_MPI_Send(b, count, MPI_DOUBLE, dest,  
                                              mtype, MPI_COMM_WORLD,-4,0); 
  
     offset = offset + rows; 
   } 
 
K5:   ELC_DoCKPT(-5,0); 
 
   /* wait for results from all worker tasks */ 
   mtype = FROM_WORKER; 
   for (i=1; i<=numworkers; i++) {    
      source = i; 
K6:      ELC_MPI_Recv(&offset, 1, MPI_INT, source,  
                                               mtype, MPI_COMM_WORLD, &status,-6,0); 
K7:      ELC_MPI_Recv(&rows, 1, MPI_INT, source,  
                                               mtype, MPI_COMM_WORLD, &status,-7,0); 
      count = rows*NCB;  
K8:      ELC_MPI_Recv(c+offset*SIZE+0, count, MPI_DOUBLE, source,  
                                              mtype, MPI_COMM_WORLD, &status,-8,0);  
              } 
         }  /* end of master section */ 
 
/******************* Worker Task *******************************/ 
 if (taskid > MASTER) { 
     mtype = FROM_MASTER; 
     source = MASTER; 
K9:     ELC_MPI_Recv(&offset, 1, MPI_INT, source,  
                                              mtype, MPI_COMM_WORLD, &status,-9,0); 
K10:     ELC_MPI_Recv(&rows, 1, MPI_INT, source,  
                                              mtype, MPI_COMM_WORLD, &status,-10,0); 
     count = rows*NCA; 
K11:     ELC_MPI_Recv(a, count, MPI_DOUBLE, source,  
                                             mtype, MPI_COMM_WORLD, &status,-11,0); 
     count = NCA*NCB; 
K12:     ELC_MPI_Recv(b, count, MPI_DOUBLE, source,  

         mtype, MPI_COMM_WORLD, &status,-12,0); 
 
     for (k=0; k<NCB; k++) 

      for (i=0; i<rows; i++) { 
         *(c+i*SIZE+k) = 0.0; 
         for (j=0; j<NCA; j++) 
           *(c+i*SIZE+k) = *(c+i*SIZE+k) +  
                                                    *(a+i*SIZE+j) *  
                                                    (*(b+j*SIZE+k)); 
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       } 
 
     mtype = FROM_WORKER; 
 
K13:     ELC_MPI_Send(&offset, 1, MPI_INT, MASTER,  
                                              mtype, MPI_COMM_WORLD,-13,0); 
K14:     ELC_MPI_Send(&rows, 1, MPI_INT, MASTER,  
                                              mtype, MPI_COMM_WORLD,-14,0); 
K15:     ELC_MPI_Send(c, rows*NCB, MPI_DOUBLE, MASTER,  
                                              mtype, MPI_COMM_WORLD,-15,0); 
   }  /* end of worker */ 
 
   ELC_MPI_Finalize(); 
   OnCallReturn(); // the end of main() function 
} /* of main */ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B.  

Source Codes of ELC_MPI Send() and  
         ELC_MPI_Recv() 
 
#include <stdio.h> 
#include "mpi.h" 
#include "event.h" 
 
int ELC_MPI_Send(void *buf,int count,MPI_Datatype datatype,int target, 
          int tag,MPI_Comm comm,int LABEL,int FID) 
{ 
   int ierr; 
   LOG *t_logTemp; 
  
   // if CKPT is ongoing, probe CKPT request from other processes 
   if (g_CKPT_FLAG==YES) Probe_Request();    
   
   // locate the event log for the target process 
   t_logTemp=Seek_Log(target); 
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   //create the send event log (ELC_SEND) 
   log_envelope(t_logTemp,tag,comm,ELC_SEND);   
 
   ierr=MPI_Send(buf,count,datatype,target,tag,comm); 
 
   return ierr; 
} 
 
int ELC_MPI_Recv(void *buf,int count,MPI_Datatype datatype,int source, 
          int tag,MPI_Comm comm,MPI_Status *pStatus,int LABEL,int FID) 
{ 
   int ierr; 
   LOG *t_logTemp; 
 
   // ---------------------------------- RECOVER ------------------------------------------------ 
   if (g_RECOVER_FLAG==YES) 
   { 
     if (source==MPI_ANY_SOURCE) 
     { // for WILDCARD Communication 
        t_logTemp=g_logHead->next; 
        while (t_logTemp!=NULL) 
        { 
 if (t_logTemp->IntransitCounter>0)  
    // if find in in-transit message logs, return; 
    if (Search_Intransit(t_logTemp,tag,comm,buf))  return; 
  
 if (t_logTemp->OrphanCounter>0)  
               // if find orphan message, discard the repeated orphan message 
    if (Search_Orphan(t_logTemp,source,tag,comm)) break; 
 
 t_logTemp=t_logTemp->next; 
         } 
      } 
      else { // for non WILDCARD Communication 
         t_logTemp=Seek_Log(source); 
          
         // if there are in-tranist message logs 
         if (t_logTemp->IntransitCounter>0)  
 // if find in in-transit message logs, return; 
 if (Search_Intranit(t_logTemp,tag,comm,buf))  return; 
      // if find orphan message, discard the repeated orphan message 
    if (t_logTemp->OrphanCounter>0)  
       Search_Orphan(t_logTemp,tag,comm) break; 
  
 // check the finish of recovery 
 if (t_logTemp->IntransitCounter==0 &&  
                 t_logTemp->OrphanCounter==0)  
 { 
    if (++g_RECOVER_COUNT==g_Process_NUM-1)  
                  g_RECOVER_FLAG=NO; 
 } 
        } 
 
// ---------------------------------- Receive ----------------------------------------------------- 
   ierr=MPI_Recv(buf,count,datatype,source,tag,comm,pStatus); 
   if (source==MPI_ANY_SOURCE || tag==MPI_ANY_TAG) 
   { 

 143



      source=pStatus->MPI_SOURCE; 
      tag=pStatus->MPI_TAG; 
    } 
    // create the receive event log (ELC_RECV) 
    t_logTemp=Seek_Log(source); 
    log_envelope(t_logTemp,tag,comm,ELC_RECV); 
 
// ---------------------------------- CKPT -------------------------------------------------------- 
    if (g_CKPT_FLAG==YES) 
    { 
       Probe_Request(); 
   
       switch (t_logTemp->flag) 
       { 
          // if all IN-TRANSIT messages have been logged, break 
          case (LOG_DONE): break; 
          // if has received the CKPT request from THIS source process 
          case (ENV_YES): { 
  // log all in-transit messages 
  log_intransit_message(buf,count,datatype,source,tag,comm,t_logTemp); 
  break; 
          } 
          // if haven't gotten the CKPT request from this source 
          case (ENV_NO): { 
  // log this message in case of an in-transit message 
  log_message(buf,count,datatype,source,tag,comm,t_logTemp); 
          } 
      } 
   } 
 
   return ierr; 
} 
 
 

Appendix C.  

APIs for Uniprocess Checkpoint 
 
/*************************** Checkpoint API ******************************/ 
void ELC_DoCKPT(int LABEL,int FID); 
Parameters: 
 LABEL: the label of calling statement. 
 FID: the evaluation sequence of an inline call 
Description: 
 This routine is called by user explicitly to trigger a new global checkpoint.  
Example: 
 C7: ELC_DoCKPT(7,0); 
 
/************************* Program Variable API ******************************/ 
void OnVarDef(void *pAddr,int size); 
Parameters: 
 pAddr: the starting address of the variable, e.g. &variable_name. 
 size: the size of the variable. 
Description: 
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 This routine is called immediately after a variable's definition statement to record the 
 starting address and length of the variable. 
Example: 
 int a; 
 OnVarDef(&i,sizeof(int)); 
 
 double b[5]; 
 OnVarDef(b,sizeof(double)*5); 
 
void OnPtrDef(void **pAddr,int count); 
Parameters: 
 pAddr: the address of the pointer, e.g. &pointer_name. 
 count: the number of pointers. 
Description: 
 This routine is called immediately after a pointer's definition statement to record the 
 address of the pointer. 
Example: 
 int *a; 
 OnPtrDef(&a,1); 
 
 double *b[5]; 
 OnPtrDef(b,5); 
 
void OnStructureDef(StructureDesc descTemp); 
Parameters: 
 descTemp:   a descriptor of the structure composition. 
Description: 
 This routine is called immediately after a structure's definition statement 
 to record the structure's composition, which will be used by OnStrDef() to 
 locate the inline pointers. 
Example: 
 struct Node { 
     int ID; 
     struct Node *next; 
     struct Property prop; 
 } 
 
 StructureDesc descTemp; 
  
 descTemp.name="struct Node"; 
 strcpy(descTemp.name,"struct Node"); 
 descTemp.ptrCount=1; 
 descTemp.ptrOffset=(void *)malloc(descTemp.ptrCount*sizeof(void *)); 
 descTemp.ptrOffset[0]=sizeof(int)-1; 
 descTemp.strCount=1; 
 descTemp.strOffset=(void *)malloc(descTemp.strCount*sizeof(void *)); 
 descTemp.strOffset[0]=sizeof(int)+sizeof(struct Node *)-1; 
 descTemp.strName=(char *)malloc(descTemp.strCount*sizeof(char *)* 
         MAX_STRUCT_NAME_LENGTH); 
 strcpy(descTemp.strName,"struct Property"); 
 
 OnStructureDef(descTemp); 
 
typedef struct StructureDesc { 
    char name[MAX_STRUCT_NAME_LENGTH]; 
    int  ptrCount; 
    int  *ptrDisp; 
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    int  strCount; 
    int  *strDisp; 
    char *strName; 
} 
 
Items: 
 name:      the structure name. 
 ptrCount: the number of inline pointers. 
 ptrDisp:      an array contains the offsets of each inline pointer from the starting  
   address of the strucutre. 
 strCount:   the number of inline structure items. 
 strDisp:    an array contains the offsets of each inline structure item from  
      the starting address of the structure. 
 strName:    an array contains the names of each inline structure item. 
 
void OnStrDef(void *pAddr,int size,char *pStrName); 
Parameters: 
 pAddr:      the starting address of the structure variable. 
 size:      the size of the structure variable. 
 pStrName:  the structure name. 
Description: 
 This routine is called immediately after a structure variable's definition to resolve the   
 inline pointers. 
Example: 
 struct NODE my_node; 
 OnStrDef(&my_node,sizeof(struct NODE),"struct NODE"); 
 
 struct CARD his_node[5]; 
 OnStrDef(his_node,sizeof(struct NODE)*5,"struct NODE"); 
 
 
 
 
 
 
/********************** Program Execution Flow API ***************************/ 
void OnCallEnter(int LABEL,int FID) 
Parameters: 
 LABEL: the label of calling statement. 
 FID: the evaluation sequence of an inline call 
Description: 
 This routine is called at the entry of a function to record the program execution flow. 
Example: 
 void function(..., int LABEL, int FID) 
 { 
    // Variable Definition 
    .... 
 
    // Record Execution Flow 
    OnCallEnter(LABEL,FID); 
 
    // Source Code 
    .... 
 
    // Remove Execution Flow 
    OnCallReturn(); 
    return; 
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 } 
 
void OnCallReturn() 
Parameters: 
 N/A 
Description: 
 This routine is called before every RETURN statement in a function to tell libELC the 
execution 
 flow has returned to the calling function. 
Example: 
 void function() 
 { 
    .... 
 
    if (err) { 
       OnCallReturn(); 
       return; 
    } 
 
    .... 
 
    OnCallReturn(); 
    return; 
 } 
 
 
 
 
 
 
 
 
 
 
 
/****************************** Heap Memory API ******************************/ 
void *ELC_malloc(size_t size) 
Parameters: 
 size: the size of the allocated heap memory. 
Description: 
 A wrapper function for malloc(). ELC_malloc() records the address and size of the 
 allocated heap memory. 
Example: 
 int *p=ELC_malloc(5*sizeof(int)); 
 
void *ELC_calloc(size_t nmemb,size_t size) 
Parameters: 
 nmemb: the number of allocated heap memories. 
 size: the size of each allocated heap memory. 
Description: 
 A wrapper function for calloc(). ELC_calloc() records the address and size of each 
 allocated heap memory. 
 
void *ELC_realloc(void *ptr, size_t size); 
Parameters: 
 ptr the address of the heap memory to be re-allocated. 
 size the new size of the heap memory pointed by ptr. 
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Description: 
 A wrapper function for realloc(). ELC_realloc() also alters its record of the heap memory 
 pointed by ptr. 
Example: 
 p=realloc(p,10*sizeof(int)); 
  
void ELC_free(void *ptr); 
Parameters: 
 ptr: the address to the heap memory to be released. 
Description: 
 A wrapper function for ELC_free(). ELC_free() deletes the record of the heap memory 
 pointed by ptr. 
Example: 
 ELC_free(p); 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/****************************** File I/O API ******************************/ 
FILE *ELC_fopen(const char *path, const char *mode) 
Parameters: 
 path: the file path. 
 mode: file access mode. 
Description: 
 A wrapper function for fopen(). ELC_fopen() records the file path and access mode to 
reconstruct the file 
 descriptor during recovery. 
Example: 
 fp=ELC_fopen("path/to/file","r+"); 
 
void OnFileDef(FILE **pAddr) 
Parameters: 
 pAddr: the address of the file descriptor. 
Description: 
 This routine is called immediately after the definition statement of a file descriptor to 
record its  
 address. 
Example: 
 FILE *my_fp; 
 OnFileDef(&my_fp); 
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int ELC_fclose (FILE *fp) 
Parameters: 
 fp: the file descriptor to be closed. 
Description: 
 A wrapper function for fclose(). ELC_fclose() deletes the record of the file descriptor 
pointed by fp. 
Example: 
 err=ELC_fclose(my_fp); 
 
int ELC_fcloseall() 
Parameters:  
 N/A 
Description: 
 A wrapper function for fcloseall(). ELC_fcloseall() deletes all file descriptor records. 
Example: 
 err=ELC_fcloseall(); 
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