

libELC – A Portable Library Enabling

Fault Tolerance of MPI Programs in

Heterogeneous Environments

Peng Zhao B.Sc.

A thesis submitted for the degree of

M.Sc. in Computer Science

January 2005

Supervisor: Dr. Alexey Lastovetsky

Department of Computer Science

Faculty of Science

National University of Ireland, Dublin

 2

Abstract

It is expected that the future large-scale problem solving environment, especially

the Computational Grid, would be more heterogeneous, geographically distributed

and independently administrated. The motivation is that the ever increasing

deployment of heterogeneous Networks of Computers computers can easify solving

the computation-intensive tasks. However, all these factors make the probability of

resources failure reach a much higher figure than the traditional scenes. Fault

tolerance, as an essential feature for long-running tasks, plays a key role in putting

such systems into practice. This thesis investigates the technique to provide portable

fault tolerance facility to the MPI programs running in the heterogeneous network.

It is observed that most existing fault tolerance mechanisms for MPI programs are

not system-independent. They are either built on some particular platform or more

often, implemented as plug-in to some specific MPI distributions. However, given the

inherent heterogeneity of such environment, the first and foremost challenge in

providing fault tolerance is the software portability. As a solution, this thesis presents

a new coordinated checkpoint algorithm: Event Logging, which addresses the

application-level non-FIFO message passing problem in Chandy-Lamport algorithm.

It implements also libELC, a portable checkpoint/recovery library for C/MPI

programs that uses Event Logging for the process coordination. Moreover, compared

with the existing checkpoint/recovery systems for MPI, the ability to interoperate with

various MPI implementations is considered as a huge advantage of libELC.

Experiments results and analysis presented in this thesis have demonstrated the

efficiency of both the Event Logging algorithm and libELC library.

 3

Acknowledgements

First and foremost I would like to thank my supervisor Dr. Alexey Lastovetsky for

having provided unfailing support, feedback and ideas over the course of my research.

Without his belief in me none of this would have been possible.

I would also like to thank Prof. Li Zheying for introducing me to this topic in my

undergraduate year. Thank you also to my proofreaders, Niki, Colm, David and Rem.

I would also like to acknowledge the Eurokom gang for happy memories and much

devilment especially my roommates Colm and Niki, for filling in the ‘vast chasms’ in

my technical expertise and foreign experience.

Outside of my ‘college cocoon’ there has been a wealth of support from friends and

family; my parents, friends, college mates and everybody I met on this wonderful

island.

In particular, apologies and special recognition must go to PingPing for

(un)successfully feigning interest in the slim guy over the past 2 years, and for her

love, patience and support.

 4

Table of Concents

Abstract 3

Acknowledgements 4

Chapter 1 11

Introduction 11

1.1 Motivation 11

1.2 Heterogeneous Network of Computers 12

1.3 Fault Tolerance of Heterogeneous Network of Computers 15

1.3.1 System Model 15

1.3.2 Design Goal 17

1.3.3 Redundancy and Replication 18

1.3.4 Program Resilience 19

1.3.5 Checkpoint and Rollback Recovery 21

1.4 Conclusion and Thesis Outline 22

Chapter 2 23

Checkpoint and Recovery for MPI 23

2.1 Creating Valid Recovery Line for MPI 23

2.2 Coordinated Checkpoint 26

2.2.1 Blocking Coordination 26

2.2.2 Non-Blocking Coordination with Chandy-Lamport Algorithm 28

2.2.3 Summary of Coordinated Checkpoint 30

2.3 Uncoordinated Checkpoint and Message Logging 31

2.3.1 Pessimistic Message Logging 33

2.3.2 Optimistic Message Logging 34

2.3.3 Causal Message Logging 35

2.3.4 Summary of Uncoordinated Checkpoint 37

2.4 Communication-Induced Checkpoint 38

2.4.1 Model-based Checkpoint 38

2.4.2 Header-based Checkpoint 38

2.4.3 Summary of Communication-induced Checkpoint 39

 5

2.5 Conclusion 40

Chapter 3 42

Event Logging: Application-level Coordinated Checkpoint for MPI 42

3.1 Introduction 42

3.2 Background 43

3.2.1 Problem Space 43

3.2.2 Existing Approaches 46

3.3 Event Logging 50

3.3.1 Definitions and Assumption 50

3.3.2 Algorithm 52

3.3.3 Formal Analysis 55

3.3.4 Removal of the 2-interval restriction 59

3.4 Analysis and Optimization 61

3.4.1 Analysis 61

3.4.2 Performance Tuning 64

3.5 Conclusion 65

Chapter 4 66

libELC – Application-level Checkpoint/Recovery Library for MPI 66

4.1 Overview 66

4.2 Uniprocess Checkpoint/Recovery Module 66

4.2.1 Background and Challenges 66

4.2.2 Application-level Checkpoint 68

4.3 Multiprocess Coordination Module 85

4.3.1 MPI Wrapper Package 85

4.3.2 Message Identification Package 88

4.3.3 Message Logging Package 91

4.4 Message Replay Module 91

4.4.1 In-transit Message Replay 92

4.4.2 Orphan Message Replay 93

4.5 Support More Feature of MPI 94

4.5.1 Collective communication 94

4.5.2 Non-standard-mode Point-to-point Communication 95

 6

4.5.3 Communication Wildcard 96

4.5.4 Derived Datatype 98

4.6 Conclusion 98

Chapter 5 100

Experiments and Evaluation 100

5.1 Experiment Environment 100

5.2 Performance Model 101

5.3 Test 1: Gauss-Jordan method for solving systems of linear equations 104

5.3.1 Size: 4,000 104

5.3.2 Size: 8,000 105

5.3.3 Size: 16,000 106

5.3.4 Analysis 106

5.4 Test 2: 2-D block decomposition Laplace Solver 108

5.4.1 Number of Processes: 4; Matrix Size: 512*512 108

5.4.2 Number of Processes: 16; Matrix Size: 512*512 109

5.4.3 Number of Processes: 16; Matrix Size: 1024*1024 109

5.4.3 Analysis 110

5.5 Test 3: Parallel NeuronSys - solve a system of ODE's modelling a network

of neurons 112

5.5.1 4 Process Configuration: 112

5.5.2 8 Process Configuration 113

5.5.3 16 Process Configuration 114

5.5.4 Analysis 114

5.6 Test 4: Monte-Carlo simulation of a system of hard disks 116

5.6.1 Number of Disks: 16; Number of Sweeps: 10,000 116

5.6.2 Number of Disks: 32; Number of Sweeps: 10,000 117

5.6.3 Number of Disks: 32; Number of Sweeps: 20,000 117

5.6.4 Analysis 118

5.7 Test 5: Comparing Event Logging with Message Tagging 119

5.7.1 Matrix Size: 512*512, Message Size: 512 KB 122

5.7.2 Matrix Size: 1024*1024, Message Size: 2 MB 122

5.7.3 Matrix Size: 2048*2048, Message Size: 8 MB 123

5.7.4 Analysis 123

 7

5.8 Optimal Checkpoint Interval 124

5.9 Conclusion 126

Chapter 6 128

Conclusion and Future Work 128

6.1 Summary 128

6.2 Future Work 130

Bibography 131

Appendix A. 138

Example of libELC 138

Appendix B. 142

Source Codes of ELC_MPI Send() and ELC_MPI_Recv() 142

Appendix C. 144

APIs for Uniprocess Checkpoint 144

 8

List of Figures

2.1 In-transit Message.. 25

2.1 Orphan Message... 25

2.2.1 Time-based Coordination... 28

2.3 Domino Effect.. 32

2.3.3 Causal Message Logging ... 36

2.3.3 Antecedence Graph………………………………………………….……..36

3.2.1 FIFO Message Passing... 44

3.3.1 p's send log and q's receive log .. 51

5.3.4 Experiments results of Gauss-Jordan method.. 106

5.4.3 Experiments results of Laplace Solver .. 111

5.5.4 Experiments results of Parallel NeuronSys.. 115

5.6.4 Experiments results of Monte-Carlo Simulation 119

5.7.4 Comparison results of Matrix Multiplication .. 123

 9

List of Tables

1.2 Comparison of MPP and NoC ... 13

2.5 Comparison of Different Checkpoint Protocols .. 41

5.1 Machine configuration ... 100

5.3 Process configuration in Gauss-Jordan experiments 104

5.3.1 Gauss-Jordan experiment results for datasize: 4,000................................... 105

5.3.2 Gauss-Jordan experiment results for datasize: 8,000................................... 105

5.3.3 Gauss-Jordan experiment results for datasize: 16,000................................. 106

5.4.1 4 process configuration in Laplace Solver experiment................................ 108

5.4.1 Laplace Solver experiment results for 4 processes and matrix size 512*512

.. 108

5.4.2 16 process configuration in Laplace Solver experiment.............................. 109

5.4.2 Laplace Solver experiment results for 16 processes and matrix size 512*512

.. 109

5.4.3 Laplace Solver experiment results for 16 processes and matrix size 1024*1024

.. 110

5.5.1 4 Process configuration in Parallel NeuroSys experiment........................... 112

5.5.1 Parallel NeuroSys experiment Results for 4 processes configuration 112

5.5.2 8 Process configuration in Parallel NeuroSys experiment........................... 113

5.5.2 Parallel NeuroSys experiment results for 8 processes configuration........... 113

5.5.3 16 Process configuration in Parallel NeuroSys experiment......................... 114

5.5.3 Parallel NeuroSys experiment Results for 16 processes configuration 114

5.6 Process configuration in Monte-Carlo simulation ... 116

5.6.1 Monte-Carlo simulation results for 16 disks and 10,000 sweeps 116

5.6.2 Monte-Carlo simulation results for 32 disks and 10,000 sweeps 117

5.6.3 Monte-Carlo simulation results for 32 disks and 20,000 sweeps 117

5.7 Process configuration in 1-D decomposition matrix multiplication experiment

.. 121

5.7.1 Matrix multplication experiment result for matrix size 512*512 122

5.7.2 Matrix multplication experiment result for matrix size 1024*1024 122

5.7.3 Matrix multplication experiment result for matrix size 2048*2048 123

 10

Chapter 1

Introduction

1.1 Motivation
High performance computing is an issue permanently discussed in computer science.

It can be found in a number of fields, such as climate modelling, chemical/nuclear

reaction, biologic/gnome analysis and oil exploration. Recent advances in software

systems as well as the growing number of available higher-performance computing

and networking hardware have made the use of metasystems, namely: networks of

workstations, personal computers, and supercomputers as virtual, distributed-memory

parallel machines a common approach in solving computation-intensive problems.

The combination of distributed nodes within a single system is expected to rapidly

replace the dedicated, centralized supercomputers and is expected to become

eventually the main stream in the high performance computing community.

Moreover, as the technology like Grid Computing suggests, the future of high

performance computing would be more common and popular in heterogeneous

network of computers.

The heterogeneous architectures and operating system platforms, working within a

single high performance computing system, give rise to number of problems that are

not present in the traditional homogenous systems. The complexity of both (a)

varying architectural features, such as data representation and instruction sets, and (b)

varying operating system features, such as process management and communication

interfaces, must be masked from the application programmer. Further heterogeneity

complicates existing problems in parallel and distributed systems. For example, data

partition may depend on several factors: processor speed and architecture, operating

system and network bandwidth. Despite the complexity and challenges involved in

heterogeneous distributed computing it remains an active and promising area of

research because it promises increased performance both by the use of a larger

hardware and by mapping sub-tasks of a computation to the most appropriate

available hardware, described in mpC [1] and HMPI [2].

 11

However, as a common problem in network of computers, both the heterogeneity and

independent administration of computation node increase the probability of failures.

Unlike the RPC-based distributed system, the parallel processes that disperse in

networks of computers are usually tightly coupled. If no fault tolerance is provided,

then when one or several processes fail, the rest cannot survive to continue and the

whole program crashes. In this sense, what is needed is a technique that would enable

a system to perform fault tolerant procedures that can continue to execute even in the

presence of a fault. Therefore, support for fault tolerance is an essential feature of

heterogeneous networks of computers, because the execution time of parallel

programs is long.

This thesis focuses on fault tolerance in heterogeneous networks of computers,

providing the portable checkpoint/recovery facility to the MPI programs running in

such environment. The solution suggested here is an innovative coordination

checkpoint algorithm: Event Logging. This algorithm is designed and implemented

together with corresponding software library libELC. Finally, the thesis reports

experiment results that demonstrate the efficiency of Event Logging and libELC.

1.2 Heterogeneous Network of Computers
Networks of Computers (NoC) is the most general and popular architecture for

parallel computing nowadays. Unlike the Symmetric Multiprocessors (SMP), NoC

can be included in the volume of Distributed Memory Multiprocessors. The

Distributed Memory Multiprocessors differentiate from Symmetric Multiprocessors

by two major features. The first is that the former consist of a set of independent

processors and the second is that they share no global memory space. Rather, this type

of processors maintains local memory and is interconnected by the network.

Similar with other subsets of the Distributed Memory Multiprocessors (MPP), in NoC

the processors communicate by passing messages. However, different from the

traditional MPP, NoC is distributed, heterogeneous and autonomous.

 12

 MPP NoC

Equipment

As MPP is specially manufactured

for high performance computing,

it adopts the homogeneous

design: the identical system

architecture, similar hardware

performance and single image

software. Unlike MPP, a typical

NoC is a naturally evolving

collection of computers.

Generally, a NoC is composed

of various architectures: PCs,

workstations, SMP servers, and

even MPP supercomputers and

clusters. As the result, the

performance of these

architectures varies

significantly. NoC is

heterogeneous.

Deployment

MPP is typically located in a

small area, such as in a

computing centre or research lab.

The processors are interconnected

by special high bandwidth

networks, like Myrinet

NoC often consists of nodes

widely distributed and

connected with mixed network

equipments.

Admin

MPP is often administrated by a

small-dedicated group and

dedicated for the high

performance tasks.

NoCs are general-purpose

computer systems, each node of

which is administrated

independently by the owner.

This leads unpredictable during

a job’s execution.

 Table 1. Comparison of MPP and NoC

Table 1 is a detailed comparison between NoC with MPP. Compared with MPP, NoC

has one major advantage — scalability. It is one of the goals of NoC to enable any

computing device to join the pool. Further, the cost of building a NoC is much lower

than that of building other parallel systems of similar scale. There is, however a

downside of NoC, heterogeneity. The heterogeneity is the most significant and

inherent feature of NoC. There are three aspects, in which the heterogeneity is

evaluated.

 Hardware: In hardware, heterogeneity is due to the variety of existing

architectures and hardware standards. This problem is complicated further by

the various hardware vendors. The term “compatibility of hardware” can be in

 13

certain cases vague and in other cases confusing. For instance, sometimes two

devices may be interchangeable and compatible from the point of view of the

user, but they could be built on toally different architectures. In this sense,

writing portable codes across various machines is definitely the most necessary

requirement for the heterogeneous NoCs.

 Software: Software heterogeneity is evaluated in terms of Interoperability.

Usually, interoperability problems occur when different implementations of the

same software standard exist. An example, close to the topic of this thesis, is MPI.

Currently there are two main versions of MPI: MPICH [4] and LAM/MPI [5]. As

a well-known problem, these two distributions lack the capacity of interoperation,

which requires all joining processes to be running with the same version: either

MPICH or LAM/MPI. In this sense, a portable MPI program should not rely on

any facility provided by the underlying implementation. Otherwise the program

can be launched only at a node with the specified MPI version.

 Performance: The third heterogeneity of NoC results from the two previous

aspects. In general, differences between hardware architecture and software

implementation has lead to significant performance fluctuation among the

machines in a network. Moreover, since the processors communicate by passing

messages, the networks connecting them turn into the key factor affecting the

overall system performance. This results in a totally different problem partition

scheme for NoCs. In the homogeneous, regular environment such as MPP, the

problem is usually evenly distributed. However in NoCs, the data should be

partitioned proportional to the individual processor’s speed and the network

bandwidth among them [1]. So, in order to maximally utilize the resources, a

good NoC-oriented parallel program should take into account the irregular

machine performance.

The work in this thesis is motivated by this analysis. The review presented here shows

that heterogeneity is the most urgent and important issue to be addressed before NoCs

can be put into general practice.

 14

1.3 Fault Tolerance of Heterogeneous Network of
Computers
As a result of heterogeneities, the probability of resources failure is much greater for a

NoC. The primary reason is that there are different levels of reliability for each node.

For example, commercial supercomputers are usually highly robust, while PCs are

quite unstable. However to a parallel program running in NoC, the overall failure

probability is decided by the failure probability of the most unreliable node. A second

reason is that the network communication between separate processors in a NoC is

unstable. Since the network equipment used in a NoC is not dedicatedly manufactured

and maintained for high performance computing, communication failures occur often.

Most commonly, communication faults cause the programs to crash. However there

are some cases in which processes will be blocked by communication operations as

long as the connection is faulty. Third reason is that since the machines in a NoC are

administrated independently, any individual node might disconnect unexpectedly

from the network. The machine could be (a) switched off, (b) rebooted (c) or

rescheduled to a job with higher priority. As a result, the machine is no longer a

working node in a NoC.

All the above arguments make fault tolerance a highly desirable feature for long

running parallel programs on NoCs. There are four components that comprise fault

tolerance: fault detection, fault location, fault masking and fault recovery. Fault

tolerance can be provided to the parallel computing at three different levels [3]:

hardware level, architecture level and software level. In the hardware and architecture

levels, importance is given to fault detection and fault location. In the software level,

fault tolerance policy usually emphasizes on the fault masking and fault recovery. By

comparison, it is easier and more cost effective to provide software fault tolerance

solutions at the software level than hardware solutions.

1.3.1 System Model
So far, it was argued that the aim of this thesis is to design and implement a software-

level fault tolerant system for parallel programs in NoCs. However, the need to

specify a parallel programming model is the target here as well as the type of faults

 15

that are going to be the focus of this work. The following sections elaborate on these

two aspects.

 Parallel Programming Model

First, we focus on the MPI programs [6]. Although there are some alternatives, MPI

has the distinct scalability advantage with regards to NoCs. Conceptually, a MPI

program can be thought as a set of independent processes running in separate address

spaces. Processes are hosted on different machines, but are coupled by passing

messages. MPI is built on the assumption that communication takes place within a

known group of processes. Each group is assigned an ID. Each process within a group

is also assigned a local ID. So, a pair of <GroupID, ProcessID> uniquely identifies a

process. Messages are sent and received by the source and target process through

explicit function calls. As to each individual process, the execution is defined by a

sequence of state intervals, each started by a nondeterministic event. Execution

during every state interval is deterministic, such that if a process starts from the same

state and is subjected to the same nondeterministic events at the same locations within

the execution, it will always yield the same output.

However, a process may fail. Generally there are two common types of failures in the

community of parallel/distributed systems: Fail-stop failure [7] and Byzantine

failure [8]. In the Fail-stop failure model, a faulty process loses its volatile state and

stops responding to the rest of the system in such a way that its halting can be

detected by other processes. In comparison, Byzantine failure incurs more serious

problems, because the fault process may still communicate with the others and as a

result it is possible to send malicious messages.

In this thesis, we concentrate on the Fail-stop failure of MPI programs. The work

here is based on two assumptions. The first is that processes have access to a stable

storage device that survives faults, such that state information saved on this device

during failure-free execution is valid through process failures.

The second assumption is the existence of a secure and reliable transportation layer

for the message passing. “Reliable” means that the communication latency is arbitrary

but finite. In other words, a reliable communication layer guarantees that any message

 16

will be delivered to the destination once it is sent out. This feature is generally

supported by the network layer. Also “reliable” implies that correct semantics of

message passing must be guaranteed by the underlying communication facility. In the

context of MPI, this applies two rules:

1. No message would be altered during the communication, which includes both the

message envelope and the message content.

2. No message delivery will be dropped or duplicated during the transfer. In other

words, once a message is sent out, the underlying communication layer

guarantees the eventual delivery of that message.

Any faults within such a communication layer are hidden from the upper-level MPI

program, by either the network itself or by the MPI implementation [9]. These

assumptions release our work from the worries about the communication faults, while

helping us to concentrate on the more general software-level fault tolerance.

1.3.2 Design Goal
Given a heterogeneous network, the following sections list several criteria for

designing the fault tolerance facility.

First of all, the fault tolerance mechanism must be portable. Given an environment

comprised of various architectures and platforms, a system-independent solution has

an unparalleled advantage. More, we emphasize that the portability also applies to the

software. For MPI, we note that the fault tolerance approach should be built on top of

the standard, which in particular makes no assumption about the underlying MPI

implementations. The ability to interoperate with various MPI distributions is

considered a huge benefit.

Secondly, the portability should not result in too great a performance penalty. In other

words, the solution must provide similar performance to other lower level approaches.

Third, from the point of view of the end users, they may not want to deal with the

details of the underlying fault tolerance mechanism. Therefore, the proposed design

 17

should be transparent to the users. However, certain options should be exposed to

allow advanced tuning of the fault tolerance.

1.3.3 Redundancy and Replication
Physical redundancy is the most straightforward and widely used fault tolerance

technique [10]. By adding extra components, the fault can be made transparent to the

rest of the system. The malfunctioned element is replaced with one of the

substitutions. Usually one might think that the redundancy is implemented by means

of hardware. However, software can also provide the redundancy, more often called

replication [11].

The key technique of software replication is group membership. In the context of

MPI programs, each process is associated with a group of backups. Upon the

occurrence of a fault in a process, the backup group uses some election algorithm to

choose the replacement. Therefore, if a MPI program consists of N processes and the

failure probability of the i process is th
iP (0 i<N)≤ , without replication the overall

survival probability of the MPI program is calculated by: ∏ . However,

suppose that the i MPI process has B replications, which has the same failure

probability , then the MPI program’s survival probability is changed to∏ .

Obviously, the improvement is

1

0

(1)
N

i
i

P
−

=

−

th
i

iP
1

0

(1)i

N
B

i
i

P
−

=

−

1 1

0 0

(1) / (1)i

N N
B

i i
i i

P P
− −

= =

− −∏ ∏

1

0

(1) /(1)i

N
B

i i
i

P P
−

=

= − −∏

 (denotes the j-combination of)
11

00

(
i

i

BN
j j

B i
ji

C P
−−

==

= ∑∏)
i

j
BC iB

Generally speaking, software replication gives a MPI program a higher probability of

survival [12]. However, the downside of this type of fault tolerance technique is the

resource consumption problem. In a minimal case, N process MPI program needs to

keep 2N processes running, while each MPI process maintains only one replication. In

 18

particular a robust system built on software replication will consume a big amount of

extra resources.

Furthermore, to implement the replication on message passing programs, a key

technique is Atomic Multicast. Atomic multicast guarantees that a process always

synchronizes with its backups. However, the synchronization incurs with significant

overhead to the message-passing program. Currently, high performance MPI

implementations are literally counting every cycle in an attempt to reduce latency as

much as possible. As a result, adding overhead is unacceptable except for critical

tasks which emphasize more on the system availability, rather than the parallel

computationally extensive jobs which focus on minimizing the problem solving time.

1.3.4 Program Resilience
The research on hardware redundancy and software replication overlooks completely

faults which are hidden from the user. As a rule, when a failure occurs the system tries

to implicitly heal itself. The user need not and usually cannot detect and manage the

failures. Although ultimately this process needs to be made transparent, the tradeoffs

could be a high performance overhead and considerable cost. In this case, a

lightweight approach, which is named Program Resilience [13], is taken to release

the performance burden.

The program resilience approach emphasizes the survival of a partially

malfunctioning program. However, it does not guarantee the correct semantics of the

program execution. In this case, the program is able to continue running if failure

happens. The task of adapting or restoring program state is left to the user. The user

has the flexibility to choose different strategies to manage the errors in different

failure scenarios. Therefore the program resilience approach has less overhead

compared to the software replication.

A well-known example of program resilience in the context of MPI is taken in the FT-

MPI library [14]. In FT-MPI, the state of a communicator is extended from {VALID,

INVALID} to {OK, PROBLEM, FAILED}; while the process state is extended from

the simple {OK, FAILED} to {OK, UNAVAILABLE, JOINING, FAILED}. The

 19

enriched states give the user the opportunity to detect a failure within the time it runs.

When the user detects a failure s/he may take different actions to repair a broken

communicator: Shrink, Blank, Rebuild or Abort. Hence the program is able to survive

through the faults.

However, in the very advantage of this approach is rooted its disadvantage: in a

program resilience system, nothing is transparent. Therefore as a requirement, the

program must be able to adapt itself to various faults. However in many scenarios,

such an adaptive algorithm is very difficult to design. Consider an example of a

SPMD program which consists of N processes, and each process holds a unique

dataset. The data partition scheme determines that the failure of any process will

result in the loss of this unique dataset. In such a case, execution cannot simply

continue upon failures, even if the application may survive with the aid of resilience.

In simple cases which are data independent, a solution may re-allocate the lost dataset

to the remaining N-1 process. The N-1 will repeat the computation of the lost dataset.

Unfortunately, these are isolated examples. In the more common cases there is a

dependency between different datasets and there is not an easy solution to restore the

state that executed before failures.

Also, it must be noted here that not all types of faults can be tolerated in the program

resilience approach. Consider the example of an MPI program working in the

Master/Slave pattern. As opposed to a slave process, master process failure cannot be

easily ignored. Also in many cases there is a lower bound of the numbers for living

processes. Above the value, program resilience may cut down the malfunctioned

process to survive the execution. However, when this limit is reached, the program

cannot simply resize itself so as to continue. Some other fault tolerance mechanisms,

like employing new process, are needed as a backup solution. In this sense, a program

resilience system cannot tolerate all faults that could occur.

To conclude, although program resilience has the huge advantage of less performance

overhead and is a promising concept in the world of fault tolerance, it is far from its

mature stage.

 20

1.3.5 Checkpoint and Rollback Recovery
Fundamental to fault tolerance is recovery from an error. The whole idea behind the

rollback recovery is to replay the failed program from some pre-saved points, where

the state that executed before the failure can be restored. In this sense, there is no need

to restart the failed program from its very beginning, but resume from some

intermediate state. Resuming the execution from such intermediate points does reduce

the execution time lost due to either software or hardware failures. To do so, it is

necessary to create a checkpoint to capture the state of a running program and output

the checkpoint onto a stable storage from time to time. To restore a failed program,

the program’s execution state is reloaded from the physical checkpoint file. Once the

loading completes, the process is recovered and ready to resume the execution.

The significant advangtage of checkpoint/recovery is that it is a general method that

can handle most kinds of failures. As result, the checkpoint/recovery has become the

mainstream mechanism to provide fault tolerance for MPI programs. A substantial

body of research demonstrates the utility and desirability of such a mechanism. The

following is an overview of the applications that implement this method.

CoCheck is one of the earliest efforts to provide complete user-transparent

checkpoint/recovery service to message passing application [15]. CoCheck follows

the coordinated checkpoint flavour, using the Chandy-Lamport algorithm [16] for

process coordination. It is noted that CoCheck is built on its own MPI

implementation, known tuMPI. LAM/MPI [56] is a widely used MPI implementation.

LAM/MPI has its built-in checkpoint/recovery functionality, which also uses the

Chandy-Lamport algorithm for the coordinated checkpoint. Clip [17] is a user level

coordinated checkpoint library dedicated to the Intel Paragon Systems. This library

can be linked to MPI programs to provide semi-transparent checkpoint. The users

need to explicitly invoke the checkpoint, but are not expected to manage the recovery.

MPI-FT [18] is another fault tolerance library based on LAM/MPI, which uses the

uncoordinated checkpoint mechanism with the aid of pessimistic message logging.

MPICH-V2 [19] is one of the most recent fault tolerance solutions for the well

established MPICH distribution. MPICH-V2 implements causal message logging,

while using uncoordinated checkpointing to reduce the execution time lost. MPICH-

 21

GF [20] is another checkpoint approach, which provides multi-protocol checkpointing

to MPICH-G2 [21].

It is noted that a common of all these systems is that none is built on top of MPI. They

are either platform-dependent or more often, implemented as plug-in for some

specific MPI version. The only MPI-implementation-independent approach we notice

is the C system [22]. The merit of C is that this system can interoperate with any

MPI distribution. Our work shares the objectives of . However we are dedicated to

design a portable checkpoint/recovery facility for a heterogeneous network, which has

not been addressed in .

3 3

3C

3C

1.4 Conclusion and Thesis Outline
The purpose of this chapter is to identify the goal of the work presented here. It also

introduces the main concepts and issues discussed further on. This is achieved by

briefly examining the features of a heterogeneous NoC. Further, it identifies the needs

and requirements of the fault tolerance for MPI programs in a given heterogeneous

environment. Moreover, it introduces the three candidates for providing the fault

tolerance facility: software replication, program resilience and checkpoint/recovery. It

also highlights the advantages of the checkpoint/rollback-recovery approach over the

other two, selects it as the method that is going to be used in this work.

The following chapters present our approach to provide checkpoint/recovery facility

for an MPI program running on a heterogeneous network of computers. Chapter 2

defines the condition for creating checkpoints for MPI programs and examines the

main checkpoint models; Chapter 3 presents a new coordinated checkpoint algorithm,

Event Logging, which addresses the application-level coordination problem of the

Chandy-Lamport algorithm; Chapter 4 describes libELC, an application-level

checkpoint/recovery library for C/MPI program, using the Event Logging algorithm

for the process coordination; Chapter 5 gives the performance experiments and

analysis of Event Logging algorithm and libELC library; Chapter 6 concludes the

work and list several routes for future development of the work.

 22

Chapter 2

Checkpoint and Recovery for MPI

This chapter introduces the major approaches that are used in the literature. It is

organized as follows: Section 2.1 defines the sufficient and necessary condition for

creating checkpoints for MPI programs; Section 2.2 -- 2.4 introduce three different

protocols for checkpointing MPI programs: Coordinated, Uncoordinated and

Communication-induced, and finally Section 2.5 examines the advantage and the

disadvantage of these three checkpoint models.

2.1 Creating Valid Recovery Line for fMPI
In order to create checkpoints for a parallel program, the first step is to create

checkpoints for each individual process. Here are the types of checkpoints that are

necessary for each individual process:

 Definition 1: Local Checkpoint

The checkpoint of each separate process is called a Local Checkpoint.

Upon recovering, the parallel program state is restored from a set of local

checkpoints, which is called a recovery line.

 Definition 2: Recovery Line

A Recovery Line is a set of each process' local checkpoint that can be used to

revert to a previous execution state of the parallel program. A Recovery Line is

also called a Distributed Snapshot or Global Checkpoint.

However the recovery line of a MPI program is not as simple as merely performing a

collection of the local checkpoints of each participating process. Since MPI employs

messages in order to do the communication among multiprocesses, these messages are

part of the state of the running program. As any communication has latency, there

might be some messages in transit at the time that the individual process's state is

 23

saved. Therefore, the checkpointing algorithm of MPI must capture each state of the

communication.

Generally, there exist three types of messages in MPI: intra message, in-transit

message and orphan message. Lamport proposed a relation called Happens Before

Relation to indicate the partial order of the events in a distributed system [23]. This is

an irreflexive, antisymmetric and transitive relation that can be applied to define these

messages.

 Definition 3: Happens Before Relation

1. If events A and B happen on the same process and A happens before B, then

A → B.

2. If events A and B happen on different processes, and A is a sending event of

message M, B is the receiving event of M, then A B. →

3. If not (A → B) and not (B A), then A and B are concurrent events. →

Given the definition of Happens Before Relation, the three types of messages can be

defined as follows:

 Definition 4:

1. Intra Message: CKPT → Send CKPT' and CKPT Recv → CKPT' → →

2. In-transit Message: Send → CKPT and CKPT Recv →

3. Orphan Message: CKPT → Send and Recv CKPT →

Where CKPT and CKPT’ are two successive local checkpoints of a process.

Among these messages, intra message is harmless, because the passing of an intra

message is completed upon checkpoint. No intra messages will exist in the

communication channel upon checkpointing so the recovery line is preserved.

However, the other two types: in-transit and orphan message can impose treats on the

processes. If a failure occurs after the system has finished the recovery line{C ,

the execution of the program is then restarted from that point. However, there are

complications that can occur. Let take an example. If process P

1 2, C }

2P

1 has sent the message

 to P1m 2 without saving the communication state, and then the local checkpoint of

 24

is taken before it receives m . This can lead to the problem that P will wait for m

after recovery but m may be lost or discarded by the network during the program's

failure. In this case would never send m again. This problem is caused by in-

transit message and is referred to as Unrecoverable (See Figure 1).

1 2 1

1

1P 1

Figure 1. In-transit Message

Moreover, if as shown in Fig. 2, m is sent after 's local checkpoint and is received

before 's checkpoint, then upon recovery P will re-send a message that has

actually been received and saved in P 's checkpoint. Although the execution of

message sending can be recovered with the existence of orphan message, such a

message does not only waste the buffer space, but also breaks the communication

semantics. This type of error is referred to as Inconsistency.

2 1P

2P 1 2m

2

Figure 2. Orphan Message

Taking into account the arguments above, two conditions are prerequisite in order to

achieve a valid recovery line, they are:

 25

1. Recoverable: no existence of in-transit message or the message can be

regenerated after recovery.

2. Consistent: no existence of orphan message or the message can be eliminated

after recovery.

Given the condition to set up a valid recovery line for MPI programs, a

checkpoint/recovery system can be categorized into one of three: Coordinated

Checkpoint, Uncoordinated Checkpoint and Communication-induced Checkpoint.

The criterion for classification is based on the way in which a specific system

manages the in-transit and orphan messages. Therefore, a coordinated effort is

required in order for all processes to be synchronized upon creating the recovery line.

There are differences in the approaches. The uncoordinated systems give processes

the maximal autonomy in deciding when to create local checkpoints; while in a

communication-induced checkpoint protocol, processes are allowed to create the local

checkpoints independently. However sometimes additional checkpoints are forced in

order to guarantee the eventual process of the recovery line.

2.2 Coordinated Checkpoint
The coordinated checkpoint is the most straightforward checkpoint mechanism for

creating a recovery line for message passing programs. It orchestrates processes to

create checkpoints to ensure that the communication channels are drained before the

recovery line is setup. Similar with the checkpointing, the coordinated approach to

failure of one process involves all other surviving processes to rollback to the latest

recovery line.

2.2.1 Blocking Coordination
In its simplest form the coordinated checkpoint processes are synchronized before the

local checkpoints in order to ensure a clean communication channel [24]. A

coordinator broadcasts for every process a checkpoint request. When a process

receives such a request, it stops its execution, flushes its communication channels,

takes a local checkpoint, and sends an acknowledgment message back to the

coordinator. After that the coordinator collects acknowledgments from all processes,

 26

and broadcasts a commit message to complete the two-phase checkpoint protocol.

Upon receiving the commit message, each process marks its local checkpoint as a new

recovery line. Then the process resumes execution and exchanges messages with

other processes. Although such an approach is implemented in certain programming

models [25], the two-phase blocking operation incurs significant overheads during the

failure free execution. This conflicts with the goal to achieve high performance.

Another type of coordinated checkpoint protocols is the Time-based Coordinated

Checkpoint [26-31]. This method follows the blocking flavour, but requires no

explicit barrier operation. In this approach, the synchronization is not made through

explicit blocking, instead, all inter-process communication are cached around the

checkpoint time. This allows ensuring that when the recovery line is formed no

message is left in the communication channel. The time-based checkpoint protocol

coordinates the processes by means of a clock. However, the existence of time

deviation does not allow the clock of distributed processes to be accurately

synchronized. Given a real time interval [startT ,T] and the clock drift rateend ρ , the

clock time of any process will be in the interval of

[(1)()end startT Tρ− − , (1)()end startT Tρ+ −], if the processes are launched at the exact

time start

2 ()end startT T

T . In this case, the maximal clock deviation of two distributed processes is

ρ − . Furthermore, the checkpoint protocol assumes the existence of a

maximal and minimal message delivery latency: T , . As a result, if all

processes start from the time

max minT

startT and agree to create a recovery line at T , the clean

communication channel is taken as shown in Figure 3.):

end

1. Cache all message passing from T T2 ()end end start maxT Tρ− − − ;

2. Resume the message passing at T T2 ()end end start minT Tρ+ − − ;

 27

Figure 3. Time-based Coordination

Although the time-based coordination avoids the considerable overheads caused by

the global barrier operation, this checkpoint protocol suffers from its scalability. In a

small network, the algorithm works pretty well. However, when the network scales

are taken into account, the clock-drift rate between two distributed processes, as well

as the maximal message delivery latency, increase dramatically. It can even reach a

degree in which the message passing caching period would be unacceptable. More

important, in a heterogeneous network, it is actually not possible to accurately

measure parameters such as clock-drift rate as well as maximal and minimal

communication latency.

2.2.2 Non-Blocking Coordination with Chandy-Lamport Algorithm
The performance overheads in of the blocking coordination are difficult to avoid. That

is why in practice a non-blocking scheme is preferred. A non-blocking scheme differs

from the blocking scheme, because the former allows the process to resume its

execution as soon as it finishes the local checkpoint. In the non-blocking scheme,

although all processes are involved in creating the recovery line, processes are not

firmly synchronized. In this sense, in-transit and orphan messages may exist in the

communication channel at the time the local checkpoint is taken. However processes

employ some external facilities to manage these messages, and thus to guarantee that

the recovery line is consistent and recoverable. As a consequence, the non-blocking

 28

coordination would have significant advantages on the checkpoint overheads,

especially given the scalability concern.

Among the approaches proposed in order to manage the in-transit and orphan

message, the Chandy-Lamport algorithm [16] is the most widely used algorithm. It is

observed that it performs best when designing non-blocking coordinated checkpoint

systems for message passing programs. We note that most existing

checkpoint/recovery systems, which are built for message passing systems, employ

the Chandy-Lamport algorithm as a foundation. Further, most of the algorithms that

are proposed for checkpointing MPI programs by other researchers [26, 27, 32-37-58,

73], can be derived by relaxing various assumptions and by modifying the way each

step is carried out.

As per Chandy-Lamport's model, it is based on the following assumptions:

1. The system is comprised of finite numbers of processes and communication

channels.

2. Communication is done by passing messages through the communication

channel.

3. The Latency of communication is finite and the communication is reliable.

4. The message passing behaves in the FIFO manner.

The algorithm can be summarized as follows. Let INx and OUTx be the number of

incoming and outgoing communication channels respectively, which process x holds.

1. A process p is selected to initiate a new global checkpoint. P first creates a

local checkpoint. For i=1 to OUTp , p broadcasts a marker message along

the outgoing channel i and then resumes its execution.

2. To any other processes: upon detecting the first marker message, a process q

immediately creates a local checkpoint, and sends out its own markers along

all outgoing communication channels it holds. After that, it resumes

execution.

3. To each process x: for i=1 to INx, x logs the messages from the incoming

channel i as in-transit messages, until a marker message is received along

channel i. Once the process x receives marker messages along all incoming

channels, it marks its logging completed.

 29

4. When all processes finish logging, the recovery line is formed.

It is noted that the Chandy-Lamport algorithm is naturally immune to orphan

messages since the FIFO property guarantees marker messages always arrive and are

detected before all post-checkpoint messages. So the recovery procedure of the

Chandy-Lamport algorithm is simply to rollback all processes to their latest local

checkpoints, and replay the in-transit messages at the receiver side.

At the time when the initiating process informs the rest of the processes about the new

checkpoint, the Chandy-Lamport algorithm broadcasts marker messages along all

communication channels. However it is unnecessary to send marker messages along

every channel. Some marker messages can be safely eliminated along channels in

which there is no message exchanged between the previous and the current

checkpoint intervals [32-34]. The attempts to achieve this simplification result in

Selective Checkpoint [35, 36] approach. In it not every process participates in the

global checkpoint. Instead, a group of processes are selected to create a partial

recovery line. After that this line can be safely patched onto the latest global

checkpoint. This advances significantly the whole recovery line. Apart from reducing

the number of marker messages, another benefit of selective checkpoint is the failure

recovery cost. In the coordinated checkpoint model, the failure of any number of

processes requires the rollback of all processes. However with the selective

checkpoint, the rollback does not have to involve every process. If the failed process

can be found in a partial recovery line, only the processes that participated in creating

the partial recovery line are rolled back.

2.2.3 Summary of Coordinated Checkpoint
Being the most straightforward checkpoint/recovery protocol for message passing

systems, the coordinated checkpoint protocol has the inherent advantage of its

simplicity. This advantage is reflected both in the checkpointing and in the recovery.

A disadvantage to this protocol is its performance. The non-blocking coordination

introduces negligible overheads compared to a program, which saves its state during

the failure free run. Although there are questions raised regarding the scalability of a

coordinated checkpoint protocol, it has been demonstrated by [76] that it is the most

practical approach given all performance considerations are balanced. As a

 30

consequence, it is observed that most existing checkpoint/recovery systems for

message passing programs either are directly built on the coordinated checkpoint

model (the non-blocking flavour), or that they implement the coordinated checkpoint

as a secondary fault tolerance mechanism.

2.3 Uncoordinated Checkpoint and Message Logging
Unlike the coordinated protocol which orchestrates all processes to setup the recovery

line, the uncoordinated scheme allows processes to create the local checkpoint

independently. The main potential is that each process may choose the most

appropriate time to trigger its local checkpoint, preferably at the point of the process

that has the least amount of data for checkpointing. Another benefit of the

uncoordinated checkpoint is that the recovery procedure is also uncoordinated. In the

coordinated checkpoint once a failure occurs, all participating processes need to

rollback. However in the uncoordinated mode, when a failure occurs only the failed

processes need to rollback to the latest local checkpoint and replay the execution so

there is no need to interrupt other processes. Compared with the coordinated

mechanism, this form promises more flexibility. The reason is that it introduces less

checkpoint overheads than the coordinated form since it eliminates the need to

exchange coordination messages.

However, usage of the uncoordinated checkpoint comes at a cost. First of all, the

direct result of the lack of coordination is the possible danger of in-transit and orphan

messages. Therefore an uncoordinated checkpoint system as a rule does not create a

valid recovery line. The recovery line differs from the coordinated form in its usage of

uncoordinated checkpoints. In this model the recovery line is actually constructed

during the recovery. The system finds a set of local checkpoints that can be used for

the rollback. However, this poses several problems. The first one is that every process

needs to maintain multiple local checkpoints, rather than only the latest one. The

second is that some of the local checkpoints may become redundant if they are not

included in any recovery line and thus a garbage collection module is need. And

finally, the third problem is that even though processes keep as many local

checkpoints as they have created, they may still suffer from Domino Effect [37].

 31

Figure 4. Domino Effect

Domino Effect is formulated as a cascaded rollback, which may continue and

eventually causes the program to restart from its very beginning. Consider the

example given in Figure 4, suppose that process P1 fails after it has completed the

local checkpoint c1,2. Since processes create their local checkpoints uncoordinatedly,

there is no naturally formed recovery line. To recover P1, P0 has to restart the

execution from c0,2 to receive message m5. The rollback of P0 further forces P1 to step

back to c1,1 in order to replay message m4, which also propagates to the rollback of P2

to c2,1 due to m3. Then P is rolled back to its beginning c0 0,0, since m is invalidated

for the rollback of P

2

2.

To any checkpoint/recovery system, the possibility of the Domino Effect is intolerable

and needs to be completely eliminated. There is extensive research focused on

studying message logging [38]. Message logging relies on the piecewise deterministic

(PWD) assumption [39]. Given a message passing program, a deterministic event

refers to the receiving of an incoming message; while a nondeterministic event

denotes a message sending operation. To an MPI process, the incoming message is

the necessary condition for reproducing its outgoing message. Outgoing messages can

be replayed only if the process gets the same incoming message during the recovery

in the exactly same sequence as before the failure. Under the PWD assumption, the

message logging protocol identifies all the nondeterministic events executed by each

process. After that for each such event it logs a determinant that contains all

 32

information necessary to replay the event. Thus the protocols can recover a failed

process and replay its execution as it occurred before the failure.

From the way in which the message logging is implemented, a specific system can be

categorized into one of the three flavours: Pessimistic Message Logging, Optimistic

Message Logging and Causal Message Logging.

2.3.1 Pessimistic Message Logging
Pessimistic Message Logging [40] presents the most rigid behaviour in the guarantee

for the correctness of recovery, since it does not occupy time during the period when a

failure occurs. In contrast, the pessimistic model is founded on the presumption that

faults can occur at any time, regardless of whether an incoming message has been

written or not onto the disk. Therefore it adopts a strategy in which every incoming

message has to be logged onto the disk storage before it can be received. Hence, there

is no need to calculate global recovery lines in the pessimistic model, since the failed

process is able to reproduce its execution using the logged messages. However the

rigid behaviour introduces considerable overheads. These are due to the synchronous

logging operation during failure free execution. The tradeoff of pessimistic message

logging becomes even more significant in communication-intensive programs.

To reduce the logging overhead, a common solution is to use Sender-based Message

Logging [41]. The Send-based Message Logging has the advantage to its counterpart,

Receiver-based Message Logging, that all messages are logged in the sender’s

volatile memory rather saved in the receiver’s stable storage. However, a

disadvantage is that Sender-based Message Logging protocol tolerates only a single

failure of a receiving process [42]. If both the sender and receiver have failed at the

same time, the message necessary for the recovery of the receiver is logged in the

sender’s volatile memory, and, will be therefore lost. In such case, the rollback must

be propagated in order to find a valid recovery line. However this solution can cause

the Domino Effect.

Another optimization is to defer logging the incoming message until the process sends

some outgoing messages [43]. This solution relaxes the pessimistic logging by

 33

allowing the process to receive messages that have yet to be logged. Thus message

logging and receiving are not performed in one atomic operation. This reduces

overhead because several messages can be logged in one operation, reducing the

frequency of synchronous access to stable storage.

2.3.2 Optimistic Message Logging
In the optimistic message logging, the protocol makes the “optimistic” assumption

that no failure would occur before the messages are logged onto the stable storage

[39]. In other words, the logging operation is asynchronous with the message passing.

Messages are first saved in the memory (at either the sender or the receiver side) and

then flushed periodically onto the stable storage. In terms of the logging overhead,

the Optimistic message logging performs significantly better than the pessimistic one.

However, such logging schemes face the danger of the rollback propagation. It is

possible that at the point in which a failure occurs some of the messages have not

been actually written to the stable storage. In this sense optimistic model must employ

more elaborate recover procedures in order to calculate the recovery line.

A necessary step, in order to perform the rollback correctly, is to track the process

dependency during the failure free execution. The process dependency can be

formulated in the following model [44]: Let C be the ,i x
thx checkpoint of process P , i

,i xI denotes the checkpoint interval between checkpoints C , 1i x− and . Assuming

process at interval

,i xC

iP ,i xI sends a message m to , it piggybacks the interval value jP

,i xI onto the message. When P receives the message during interval j ,j yI , it records

the dependency from ,i xI to ,j yI . Unlike the message content, the dependency

information is recorded onto the stable storage synchronously with the message

passing. Thus, even if a volatile message log is lost due to a failure, the dependency

information will still be available to the recovering process. As a result, the rollback

in the optimistic message logging model is based on the observation that if there is an

edge from C to and a failure forces ,i x ,j yC ,i xI to be rolled back, ,j yI must be rolled

back as well.

 34

In particular, when a failure occurs the recovering process starts the rollback by trying

to collect the dependency information from all other surviving process. Using the

global dependency information, the recovering process calculates a valid recovery

line by using the Reach-ability Analysis [44]:

1. include all local checkpoints and all processes’s current states (both

surviving and failed) as a set CKPT;

2. for any two elements in the set CKPT, ,i xI and ,j yI , if a dependency exist

from ,i xI to ,j yI , draw an edge from ,i xI to ,j yI ;

3. Mark the failed process;

4. while (at least one member of CKPT is marked)

 {

 mark all elements in CKPT that can be reached by at least one

 dependency edge;

 delete the marked elements;

 }

5. The last unmarked elements from each process in the set CKPT forms the

recovery line.

Then the failed process broadcasts the rollback information to other surviving

processes. Upon receiving a rollback request, the surviving process quits the current

execution and rolls back to the indicated local checkpoint.

2.3.3 Causal Message Logging
The causal message logging approach tries to combine the merits of the pessimistic

and optimistic models [45]. It avoids the blocking of synchronous message logging

operation, meanwhile guarantees no cascaded rollback, which is limited to the latest

checkpoints for all processes.

In particular, causal message logging guarantees no domino effect by ensuring that

the determinant (message receiving) of every nondeterministic event (message

sending) that causally precedes the state of a process is either stable or it is available

locally to that process [74]. Considering the example given in Figure 5, suppose that

 35

message is lost due to the failure of process . However to P , is a

nondeterministic event (sending message), the determinant of which, m have

been logged by P , (suppose using Sender-based Logging). Therefore P and

are able to guide the recovery of by replaying the message , .

6m 1P 1

2

5m

4m

00 2P 2P

1P 2m 4m

Figure 5. Causal Message Logging

Manetho [46] presents the first implementation of a causal message logging protocol.

Each process maintains an antecedence graph which records the message passing

events between processes. Upon sending a message, the sender process piggypacks its

local antecedence graph on the message, which will be recorded at the receiver end.

Figure 6. Antecedence Graph

Figure 6(a). shows the antecedence graph of process P0 in Figure 5 after receving .

Figure 6(b) is the antecedence graph of process P

5m

2 after sending message m . As the 4

 36

figures show, the antecedence graph is propogated along with the message passing. At

the time P1 crashes, the antecedence graph provides P0 with a complete history of the

message passing events of the three processes, in which a node represents a message

receiving event (except the first node of each process that represent the execution

start), and the edges correspond to the message passing operation. Hence, the

surviving process will know how to guide the failed process during recovery.

When a process sends a message to another one, it does not send the complete graph

but an incremental piggybacking: all events preceding one initially created by the

receiver need not to be sent back to it. Another algorithm has been proposed in [47] to

reduce the amount of piggybacking on each message. It partially reorders events from

a log inheritance relationship. Moreover it requires no additional piggybacking

information. This allows having some information about the causality a receiver may

already hold.

2.3.4 Summary of Uncoordinated Checkpoint
The uncoordinated checkpoint protocol was originally introduced at a time when the

communication overhead far exceeded the overhead of accessing the stable storage. It

was beneficial to try to retrench the network communication as much as possible.

Moreover, at that time the memory available to run a program tended to be small.

These tradeoffs naturally favoured the uncoordinated checkpoint schemes over the

coordinated ones. However, current technology trends put these tradeoffs into a

different perspective. With the significant increase of bandwidth in recent years, the

overhead of coordination becomes negligible compared to the overhead of saving the

program states [46-51]. Using techniques such as concurrent and incremental

checkpoint, the overhead of either coordinated or uncoordinated checkpoint is

essentially the same. Therefore, the uncoordinated checkpoint is not likely to be an

attractive option in practice given the negligible performance gains. These gains do

not justify (a) the complexities of finding a consistent recovery line after the failure,

(b) the susceptibility to the Domino Effect, (c) the high storage overhead of saving

multiple checkpoints for each process, and (d) the overhead of garbage collection.

This leads to the conclusion that the coordinated checkpoint is superior to the

uncoordinated scheme.

 37

2.4 Communication-Induced Checkpoint
In a communication-induced checkpoint system [52], the creation of recovery line is

uncoordinated. Processes are given the autonomy to choose when to save their

execution states. In other words, they are independent to that of creating local

checkpoints. However, to avoid the Domino Effect caused by uncoordinated

checkpoints, this independence is in certain cases constrained by additional

checkpoints that are forced in order to guarantee the eventual progress of the recovery

line. The purpose of forced checkpoints is to break the communication and checkpoint

patterns that may lead to invalid recovery line.

We observe two types of approaches to communication-induced checkpoint: Model-

based Checkpoint and Header-based Checkpoint. Model-based checkpointing

protocols maintain checkpoint and communication structures that prevent useless

recovery lines or achieve some even stronger properties [77]. Header-based protocols

assign stamps to local and forced checkpoints such that checkpoints with the same

stamp value at all processes form a valid recovery line.

2.4.1 Model-based Checkpoint
In the model-based checkpoint, the inter-process communication pattern is restricted

so that the danger of in-transit and orphan messages is prevented from occurrence. In

the simplest case, a process triggers a local checkpoint following every message

passing operation to prevent the message becoming an in-transit or orphan one. In a

more advanced case, the MRS model [53] limits the processes in a way, in which no

message sending operation is allowed to be performed if there is any incoming

message that has not been received. And additional checkpoints are forced between

any consecutive sending and receiving operations, to ensure the validity of the

recovery line. Obviously such communication pattern adds too many constraints in

terms of programming and introduces siginificant overhead, what make it over-

limited in the real world.

2.4.2 Header-based Checkpoint
The header-based checkpoint model piggybacks additional information onto the

application messages to help the system identify the in-transit and orphan messages.

 38

The simplest header would be one bit, which toggles between red (zero) and black

(one) indicating the consecutive checkpoint intervals [37]. Upon detecting an

incoming message with a header different from the local value, the receiving process

will either trigger a new checkpoint or log the message.

In some cases no marker messages are needed, because the header information may

fully replace the marker message for the process coordination. In these cases the

coordination overhead is converted to the header overhead. However, in order for this

to be achieved a process must be able to initiate local checkpoints on its own. In more

common cases, coordination message are still necessary. In certain cases processes

may not communicate with one another in previous checkpoint interval and therefore

not be accessed by the new recovery line. As a consequence, most existing

communication-induced checkpoint systems employ the header as well as the

coordination message to form the global recovery line [33, 35].

2.4.3 Summary of Communication-induced Checkpoint
Theoretically, the communication-induced protocols are believed to have several

advantages over the two other styles of checkpoint. For instance, it allows

considerable process autonomy in deciding when to take checkpoints. Also they are

believed to scale up well with a larger number of processes since they do not require

the processes to participate in a global coordination. However, these advantages come

at a price. First, the header information piggybacked on application messages

occasionally induces processes to take forced checkpoints before they can process the

messages, which may introduce unpredictable overheads. Second, processes have to

pay the overhead of piggybacking information on top of application messages.

Moreover, for each process several checkpoint files need to be maintained for the

recovery procedure.

A study has shed some light on the behaviour of communication-induced checkpoint

[54]. It presents an analysis of these protocols based on a prototype implementation

and a validated simulation, showing that communication-induced checkpoint does not

scale as well as expected. This is due to application messages whose occurrence

within the execution of forced checkpoints makes it very difficult to predict the

amount of stable storage that will be necessary for a particular program to run. Also,

 39

this unpredictability affects the policies that govern where to force local checkpoints

and makes communication-induced protocols cumbersome to use in practice.

Furthermore, the study shows that the benefit of autonomy in allowing processes to

take local checkpoints at their convenience does not seem to hold. In all experiments,

a process takes at least twice as many forced checkpoints as local, autonomous ones.

2.5 Conclusion
This chapter examined the three main protocols for checkpoint/recovery of MPI

programs: Coordinated, Uncoordinated and Communication-induced. Each of these

protocols offer different advantages and tradeoffs with respect to the failure free

execution, the number of processes needed to rollback, system complexity, algorithm

scalability, the fault rate at which the algorithm remains valid, the latency of a

recovery line commit, the storage overhead caused by checkpointing and rollback

extent. A summary of the comparison between the three checkpoint protocols is

presented in Table 2. Considering all factors the non-blocking coordinated checkpoint

is evaluated to be the most practical approach for the MPI programs running in a

heterogeneous network of computers.

 40

H
ea

de
r-

ba
se

d

U
np

re
di

ct
ab

le

A
ll

Po
or

Si
m

pl
e

Lo
w

H
ig

h

La
te

st
+F

or
ce

d

C
he

ck
po

in
ts

La
te

st
/F

or
ce

d

C
he

ck
po

in
t

C
om

m
un

ic
at

io
n-

in
du

ce
d

M
od

el
-b

as
ed

H
ig

h

A
ll

Ve
ry

 G
oo

d

Si
m

pl
e

H
ig

h

Ve
ry

 L
ow

La
te

st

C
he

ck
po

in
t

La
te

st

C
he

ck
po

in
t

C
au

sa
l

Lo
w

Fa
ile

d

N
or

m
al

Ve
ry

 C
om

pl
ex

H
ig

h

N
/A

La
te

st

C
he

ck
po

in
t

La
te

st

C
he

ck
po

in
t

O
pt

im
is

tic

N
or

m
al

Fa
ile

d

G
oo

d

C
om

pl
ex

Lo
w

N
/A

A
ll

C
he

ck
po

in
ts

U
np

re
di

ct
ab

le

U
nc

oo
rd

in
at

ed

Pe
ss

im
is

tic

Ve
ry

 h
ig

h

Fa
ile

d

G
oo

d

Si
m

pl
e

Ve
ry

 H
ig

h

N
/A

La
te

st

C
he

ck
po

in
t

La
te

st

C
he

ck
po

in
t

N
on

-b
lo

ck
in

g

Ve
ry

 L
ow

A
ll

N
or

m
al

Si
m

pl
e

M
ed

iu
m

Lo
w

La
te

st

C
he

ck
po

in
t

La
te

st

C
he

ck
po

in
t

C
oo

rd
in

at
ed

B
lo

ck
in

g

H
ig

h

A
ll

Po
or

Ve
ry

 S
im

pl
e

Lo
w

Ve
ry

 L
ow

La
te

st

C
he

ck
po

in
t

La
te

st

C
he

ck
po

in
t

 Fa
ilu

re
-f

re
e

O
ve

rh
ea

d

Pr
oc

es
s

R
ol

lb
ac

k

Sc
al

ab
ili

ty

A
lg

or
ith

m

C
om

pl
ex

ity

Fa
ul

t R
at

e

R
ec

ov
er

y
L

in
e

C
om

m
it

St
or

ag
e

O
ve

rh
ea

d

R
ol

lb
ac

k

E
xt

en
t

Table 2. Comparison of Different Checkpoint Protocols

 41

Chapter 3

Event Logging: Application-level Coordinated
Checkpoint for MPI

3.1 Introduction
The logging operation has been traditionally presented by message logging as an

assistant mechanism to allow the use of uncoordinated checkpointing with no domino

effect. However a system may also combine logging with coordinated checkpointing,

yielding several benefits with respect to performance and simplicity [55]. These

benefits include those of coordinated checkpointing —such as the simplicity of

recovery and garbage collection, and those of message logging —such as fast output

commit. Most prominently, this combination obviates the need for flushing the

volatile message logs to stable storage in a sender-based logging implementation.

Thus, there is no need for maintaining large logs on stable storage, resulting in lower

performance overhead and simpler implementations. The combination of coordinated

checkpointing and message logging has been shown to outperform one with

uncoordinated checkpointing and message logging [55]. Therefore, the purpose of

logging should no longer be to allow uncoordinated checkpointing. Rather, it should

be the desire for the coordinated checkpoint to manage the in-transit and orphan

messages.

This chapter presents Event Logging, an application-level coordinated checkpoint

algorithm for MPI programs running in a heterogeneous network. The main

contribution of the Event Logging algorithm is that this algorithm is applicable to

various MPI implementations as well as different heterogeneous platforms.

In general, the Event Logging Algorithm asks both the sender and receiver processes

to keep logs of the message envelopes, which are exchanged at the checkpoint stage

to identify the in-transit message and orphan message envelopes. Once the process

finds out these “trouble” messages, it saves the orphan message envelopes to avoid

the inconsistency upon recovery. It also uses the in-transit message envelopes to log

 42

the in-transit messages. Upon recovery, the process replays the logged in-transit

messages and discards the repeated orphan messages.

In this chapter we concentrate on describing the algorithm. The implementation

details are left to the next chapter.

3.2 Background
3.2.1 Problem Space
Mentioned in Section 2.2.2, the Chandy-Lamport algorithm requires the

communication to operate in the FIFO manner. Simply put, FIFO is a property that

asks the communication channel to behave like a tunnel, where the out-of-sequence

message sending/receiving is forbidden. In other words, once a message is sent, it

enters a tunnel in which the message must stay at its position. Despite the possibility

of different routing paths over the network, the messages leave the queue always in

the same order as they enter it.

The reason why FIFO is mandatory for the Chandy-Lamport algorithm is that the

marker used in the algorithm acts as a fence to separate the message passing around

the local checkpoint. Considering the following scenario in Figure 7: P sends three

messages in the order: { , to . With the FIFO manner, the messages

reach P in the same order as they are sent. Also, at the time m reaches , has

already finished its local checkpoint. So that m is logged as an in-transit message and

 is an intra message according to the Chandy-Lamport Algorithm. However, if the

underlying network does not behave in the FIFO manner, the arriving order might be

different from the sending order. If the arrival is { , , will be omitted

from logging and make the recovery line unrecoverable. Furthuremore, if the arrival is

, the logging of leads the recovery line inconsistent.

0

1 , }m marker m

2m

2 1P

1

1 2 ,

1

2,

1P 1P

1

2m

{ ,

1marker m m } 1m

}m m marker

Being the cornerstone of the Chandy-Lamport Algorithm, the FIFO manner is a true

statement of behaviour of message passing when looking deeply into the details of

MPI implementations: most MPI implementations define a low level channel, which

sits on top of the underlying network. On a low performance network such as

 43

Ethernet, TCP is used, provides the FIFO property; while most high performance

NICs (Network Interface Card) provide the FIFO reliable communications. As a

consequence, there exist many checkpoint/recovery systems for MPI programs built

on the pure Chandy-Lamport algorithm [15, 19, 20, 56]. However, this statement is

false when looking at MPI from the top. From the point of view of programming it is

valid to receive messages even in the reverse order of the sending. While this situation

may be rare, a much more common situation is that messages are sent and received

out of sequence. Although the MPI standard defines a priority rule to regulate the

message sending/receiving at the application-level, called Non-overtaking property

[6], it still cannot meet the requirement of FIFO communication.

Figure 7. FIFO Message Passing

“Conceptually, one may think of successive messages sent by a process to another

process as ordered in a sequence. Receive operations posted by a process are also

ordered in a sequence” [57]. A message in MPI is labelled by the envelope <rank, tag,

communicator> (where rank is replaced by target on sending or source on receiving).

If there are several messages with the same envelope in the receiving buffer, some

rules must be used to solve the problem of determining which one should be picked

up by a matching receiving post. With the non-overtaking property, MPI guarantees

the message sequence and correct communication semantic.

For example, if one process sends two successive messages { , that have the

same envelope to another process. The two messages, on the receiver side, will be

picked up in the same sending order { , , not { . On the other hand, if one

process posts two receiving calls with the same envelope and there is only one

matching message in the buffer, it is always the first receiving post that gets satisfied

1 2}m m

1 2}m m 2 1,m m }

 44

even if it is a non-blocking operation. In this scenario where two processes both send

a message with the same <tag, comm> to the same destination, these two messages

are only different at the source rank. The destination process posts a matching

receiving with the wildcard MPI_ANY_SOURCE, making it match both messages.

The non-overtaking property does not apply to such case, since there is no sending

order between these two messages. Therefore, the receiving post may pick either of

them, depending on which one arrives first. A note is that this only applies to the

single-threaded environment. As MPI sets no rules of multithread, different MPI

implementations may have different explanations of the non-overtaking message

passing property in their own multithreaded features.

We argue that FIFO is different from the non-overtaking property. Principally, non-

overtaking applies only to the messages with identical envelopes. To the messages

with different envelopes, the program is free to receive them in any order. However

FIFO is more restrictive since it requires all messages to be received in their sending

order.

As the Chandy-Lamport algorithm works under the assumption of FIFO, there are

problems when bringing the algorithm to the checkpoint of MPI because the FIFO

assumption is not strictly required by the MPI standard at the application level. This

one reason why most existing checkpoint/rollback-recovery systems built on Chandy-

Lamport algorithm, implement the algorithm in a non-portable way. These systems

have to resort to the help of a low-level layer, which provides the FIFO guarantee, to

implement the Chandy-Lamport algorithm. It is observed that either these systems are

built on their own MPI implementations or use some special network protocol.

However, given the portability concern, such platform-dependent systems would not

be popular in a heterogeneous network. In this sense, the proposed solution must be

able to release the application-level non-FIFO constraint, so as to cope with different

MPI implementations.

 45

3.2.2 Existing Approaches
Unfortunately, although many variants that improve on the Chandy-Lamport

algorithm have been developed in recent years [26, 27, 32-37-58, 73], only a few had

provided supports to the application-level non-FIFO problems.

A straightforward approach is to coordinated processes used loosely synchronized

clocks [26-31]. However, as discussed in Section. 2.2.1, time-based coordination

suffers from its scalability, which is one of the main issues in a network of computers.

Message Tagging is another approach to address the application-level FIFO problem

[37, 51, 59]. The idea behind Message Tagging is that the system wraps some

additional information (header) onto the outgoing messages, which specifies the

sending order. On the receiver side, the process receives the incoming messages, and

unwraps the header information, so that system can obtain the message sending order

so as to identify the in-transit and orphan messages.

The implementation for Message Tagging can be classified into two categories:

System-level and Application-level. With System-level Message Tagging, the

wrapping is done at the network layer, which obviously does not fit our goals. As to

application-level Message Tagging, the header information is piggybacked directly on

the MPI messages.

In general, we observe three approaches to implement application-level message

tagging:

1. Header Message: In this approach, the header is not actually included in the

original message. Instead, the system sends another extra message following the

outgoing message to pass the header information. We call the original message

Host Message and the assistant message Header Message. Sample code looks

like:

MT_MPI_Send(buffer,…)

 {

 MPI_Send(buffer,…); // send the host message

 46

 MPI_Send(header,…); // send the header message

 }

Note, the header message must be sent/received using the same envelope of its

host message, to guarantee that a header message is always received immediately

after its host. Since the system needs to perform an extra communication

operation with every message, this approach doubles the program’s

communication volume. Moreover, because the header message uses the same

envelope as the host message, all header messages are passed via user-specified

communicators, not a global, independent communicator dedicated for the

coordination. So, checkpoints in this pattern may be significantly delayed, when

the target process postpones receiving messages.

2. Buffered Mode: The second option is to use buffered mode communication in

MPI. Since it is impossible to expand the application buffer, the checkpoint

system needs to copy both the message and the header into an external buffer, and

send the buffer instead of the original message. A sample is:

MT_MPI_Send(msg,……)

{

// allocate a temporary buffer

 buf=malloc(header_size+msg_size);

// copy the header into the buffer

 MPI_Pack(header,header_size…,buf,…);

// copy the message into the buffer

 MPI_Pack(msg,msg_size…,buf+msg_size…);

// send the temporary buffer

 MPI_Send(buf,header_size+msg_size,MPI_PACKED,….);

// release the buffer

 free(buf);

}

It is noted that all messages use the same datatype MPI_PACKED for

communication.

 47

3. Derived Datatype: MPI allows users to construct composite data structures from

the simple types. Facilitated by this function, the sender and receiver processes

agree to build up a temporary datatype upon communication, which is comprised

of both the original message and the header, and use the temporary datatype to

pass the message. The wrapper function looks like:

MT_MPI_Send(msg,….)

{

 buf=malloc(header_size+msg_size);

// copy the header into the buffer

memcpy(buf,header,header_size);

// copy the message into the buffer

 memcpy(buf+header_size,msg,msg_size);

// build a temporary datatype;

 MPI_Type_struct(….,temp_type);

 MPI_Type_commit(temp_type);

// send the buffer as temp_type datatype

 MPI_Send(buf,1,temp_type,…);

// free the temporary type

 MPI_Typ_free(temp_type);

// de-allocate the buffer

free(buf);

}

Although the buffered mode and derived datatype options are differerent from the

point of view of programming, we argue that in effect, they are similar. The derived

datatype has the advantage on performance. However, the common downside of the

two solutions is that they are not completely safe. For example, MPI_Status is a

commonly used structure in MPI, which lets users access the information about the

incoming message. But with message tagging, the information is changed. For

example the length property includes not only the size of the original message, but

also the header as well. Consider the code executed by the receiver below:

 MPI_Probe(source, tag, comm., &status);

 48

MPI_Get_count(&status, MPI_INT, &count);

MTC_MPI_Recv(buf, count, MPI_INT, source, tag, comm.,&status)

Suppose the incoming message contains 4 integers and the header is one additional

integer, then the total size is 5 integers, in which the variable count equals to 5.

However, if the target process wants to receive the message correctly, the value of

count should be 4 when passing it to the call of MTC_MPI_Recv() function.

Otherwise, the header is received as part of the message. In the worse case, if the

message and the header use different datatypes, the call of MPI_Get_count()simply

returns MPI_UNDEFINED as the parameter count. One may argue that the solution is

to exclude the header size. However, we note the difficulty to do so at the application

level, due to the highly implementation-dependent definition of MPI_Status.

Also, as the experiment results in Section 5.7 shows, the performance of the derived

datatype approach fluctuates with the message size. This is due to the system needing

to manage extra buffer space for tagging the header information. With the increase of

the message size, the memory operation costs get more and more significant.

Moreover, message tagging may be very slow to output a recovery line. This is

because that the header is bound with the message and the system is able to intercept

an in-transit message only when the process tries to receive this message. It is

possible that, as long as the process does not post the receiving call, the system cannot

log the in-transit messages. Hence the recovery line would never be completed.

Finally, we notice that the message tagging approach still needs coordination message

to work properly. The coordination message used in message tagging is to tell

processes the number of the in-transit message it needs to log. Otherwise, a process

would have no idea whether there is any in-transit message left.

For all these reasons, message tagging is not as attractive as it looks. An appropriate

solution should have better performance, and fast recovery line commit. And the most

important, it must be totally compliant with the MPI standard.

 49

3.3 Event Logging
In the following paragraphs, we present Event Logging for application-level process

coordination. First, it is necessary to differentiate Event Logging from Message

Logging [38]. In particular, Event Logging is a variant of the Chandy-Lamport

algorithm that coordinates distributed processes to form recovery lines. Unlike

message logging, it records only the message envelopes, without the message content,

reducing much of the memory overhead introduced by message logging [60].

Also, it is noted that Event Logging is different from the event logger [19], which is

widely used in message logging systems for tracking the process causal dependency.

Although the function of both Event Logging and the event logger is to record the

message passing events, the fundamental difference is that the former is a high level

algorithm used for process coordination, while the latter is a low level module that is

built into the message logging system.

In Event Logging, every process keeps a log for the sending and the receiving events

it performs. When a new checkpoint occurs, send logs are exchanged between sender

and receiver. When a process gets another’s send logs, it pairs it up with the local

receive logs to match the message envelopes. As the message envelope is logged at

the same time as the message passing (sending and receiving), the event log also

keeps the message’s Happen Before Relation, which determines the type of the

message: intra, in-transit or orphan. Then, when a pair of send and receive logs are

matched, the system finds out which category the message is in.

3.3.1 Definitions and Assumption
A process’s execution is divided into a sequence of intervals separated by

checkpoints. A checkpoint interval starts with any instruction following a local

checkpoint, ending upon the completion of the next local checkpoint. A checkpoint

interval includes all statements between two successive local checkpoints. Each

checkpoint interval is assigned a unique sequence number, which is equal to the

number of local checkpoints that have been completed by the process. Since our

protocol is based on coordinated checkpoint, the local checkpoints that compose a

recovery line have the same sequence number value.

 50

For any message, the message is sent in a checkpoint interval of the source, and

received in another one of the target, regardless of whether these two intervals belong

to the same recovery line. We mark the sending event as , which meaning the

message m is sent in the process p’s checkpoint interval (S is the general form

for any message); and the receiving event as

, ()p iS m

,p i
thi

, ()q jR m , means the message is received

in q’s thj checkpoint interval (simplified as ,q jR). Also, a send log is the collection of

the outgoing message envelopes, noted by SEND (the send log of process p’s i

checkpoint interval). Similarly, a receive log is

,p i
th

,q jRECV . Suppose that F is the set of

the valid message envelopes, which consist of n elements: 1 2,..., }nf f{F f ,= . The send

and receive logs are defined as SEN and*{ |x x=,p i }D F∈ *{ |,q j }RECV x x F= ∈ .

Also, (,
x

p iSEND ,
x

q jRECV) denotes the thx message envelope in a send (receive) log.

Figure 8. p's send log and q's receive log,

<p,i> donotes p’s ith checkpoint

Given the existence of orphan, intra and in-transit messages (See Figure 8), we use

 to denote the general relation between

the sending and receiving events. As

, ,0 ,1 , ,{ , ,..., ,..., }(0) p i q q q j q xSEND R R R R x j≥ ≥

,q jR denotes a receiving event happens on

process q during the thj checkpoint intervals, the expression means that an outgoing

message can be received anytime during the program life. Also the corresponding

receive log of q’s thj interval is denoted

 51

by . Obviously there exist some matching

relations between these two logs:

, ,0 ,1 , ,{ , ,..., ,..., }(0) q j p p p i p xRECV S S S S x i≥ ≥

, , , ,{ }p i q i p i q iSEND RECV SEND R RECV∩ = =

, , , ,{ }p i q i x p i q i xSEND RECV SEND R+ +∩ =

, , , ,{ }p i q i x p i q i xSEND RECV SEND R− −∩ =

, { }q jRECV −

, , 1 , , 1{ , , }q i p i p i p iRECV S S S− +

, {q i p iS , }

, }+

, }−

; // intra messages

, {q i x p iRECV S= ; // in-transit messages

, {q i x p iRECV S= ; // orphan messages

Note, a send log that has no matching receive log is written as , and an

unmatched receive log is

, { }p iSEND −

. However, since the message passing is reliable,

these are not the final states. The counterparts must be found somewhere in the

following checkpoint interval logs.

In order to simplify the depiction of our model, we make the following assumption.

Later, we will show how to remove such a limitation for all kinds of communication

environment.

 Assumption: The following discussion assumes any message passing finishes in

no more than two successive checkpoint intervals.

Then, the send and receive logs are of the form like: SEND

and .

, , 1 , , 1{ , ,p i q i q i q iR R R− + }

}+

Note, the format given above of send event log SEN doesn’t

mean that the messages are sent in the receiving order. However, with the Non-

overtaking manner, the receiving order of the messages with the same envelope is the

same as the sending order.

, , 1 , , 1{ , ,p i q i q i q iD R R R−

3.3.2 Algorithm
The aim of Event Logging algorithm is to coordinate distributed processes by

identifying the evnelopes of in-transit and orphan messages. A general idea to identify

such messages in Event Logging is to ask every process to log all envelopes it has

 52

sent and received. Upon checkpointing (using the Chandy-Lamport algorithm), the

send logs are bounded with the marker messages to be exchanged between processes.

When detecting a marker message, the process unpacks the incoming seng logs, and

compares them with the local receive logs to identify the in-transit and orphan

messages.

To identify the in-transit and orphan messages, we start from the first checkpoint

interval {C , }. For the first interval, a trick is that there are no orphan message

envelopes in the send log of process p: and no in-transit message

envelopes in the receive log of process q:

,0p ,0qC

,0 ,0 ,1{ ,p q qSEND R R

,0 ,0{ ,q p

}

},1pRECV S S . So it is fairly easy to

identify the in-transit and orphan message envelopes by removing the intra message

logs:

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , } { , } { ,

{ , } { }

{ }

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV
SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

}

}

And

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , } { , } { ,

{ , } { }

{ }

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV
RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

The in-transit SEND and orphan '
,p o

'
,0qRECV

,1q

,1 ,0p qD R

 message envelopes are kept by process q

until the next checkpoint {C , }. For the second checkpoint interval, however,

the send log of p looks like SEN and the receive log of q is

. Then we can clear these logs by:

,1p C

,1 ,2{ , ,q qR R }

},1 ,0{ ,q pRECV S ,1 ,2,p pS S

 53

'
,1 ,1 ,0

,1 ,0 ,1 ,2 ,1 ,0 ,1 ,2 ,0 ,1

,1 ,0 ,1 ,2 ,1 ,0

,1 ,1 ,2

'
,1

{ , , } { , , } {

{ , , } { }

{ , }

p p q

p q q q p q q q q p

p q q q p q

p q q

p

SEND SEND RECV

SEND R R R SEND R R R RECV S

SEND R R R SEND R

SEND R R

SEND

− ∩

= − ∩

= −

=

=

}

}

}

}

}

}

And

'
,1 ,0 ,1

,1 ,0 ,1 ,2 ,0 ,1 ,1 ,0 ,1 ,2

,1 ,0 ,1 ,2 ,1 ,0

,1 ,1 ,2

'
,1

{ , , } { } { , ,

{ , , } { }

{ , }

q p q

q p p p p q q p p p

q p p p q p

q p p

q

RECV SEND RECV

RECV S S S SEND R RECV S S S

RECV S S S RECV S

RECV S S

RECV

− ∩

= − ∩

= −

=

=

As it shows, after the clearance, the event logs of the second checkpoint interval look

similar to the initial interval. So, the same algorithm can be applied to identify the in-

transit and orphan message envelopes for this recovery line:

' '
,1 ,1 ,1

,1 ,1 ,2 ,1 ,1 ,2 ,1 ,1 ,2

,1 ,1 ,2 ,0 ,1

,1 ,2

"
,1

{ , } { , } { ,

{ , } { }

{ }

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV

SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

And

' '
,1 ,1 ,1

,1 ,1 ,2 ,1 ,1 ,2 ,1 ,1 ,2

,1 ,1 ,2 ,1 ,1

,1 ,2

''
,1

{ , } { , } { ,

{ , } { }

{ }

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV

RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

Simple as the above algorithm looks, it demonstrates that as long as no failure occurs,

it is feasible to identify the in-transit and orphan message envelopes for any

checkpoint interval. When a fault occurs, the recovery automatically guarantees the

event log of the first post-recovery checkpoint interval cannot contain in-transit and

orphan message envelopes of the previous interval, SEND and

. Then after recovery, the same protocol can be applied to start a

, , , 1{ ,p i q i q iR R +

, , , 1{ ,q i p i p iRECV S S +

 54

new event logging cycle. Hence, valid recovery lines can always be created

throughout the life cycle of the MPI program.

3.3.3 Formal Analysis
In order to prove the correctness of the Event Logging algorithm, we need to prove

two cases. The first case is that there are no messages with the same envelope in the

log. In other words, each message is labelled uniquely. The second case is that there

are some messages in the log with the same envelope.

 Theorem: The algorithm is correct in the sense that it identifies all in-transit and

orphan messages of the current checkpoint interval.

 Case 1: no messages with the same envelope

First, since the messages’ envelopes logged are unique, there must be one and only

one matching send/receive pair for any event. In other word, there are two possible

results of the matching: the counterpart of a send (receive) event can be found in the

current or previous receive (send) log. The matching process fails if its counterpart

cannot be found. Recalling the in-transit, orphan and intra messages defined by

Lamport’s Happen Before Relation, the Event Logging algorithm is just trying to

identify messages by judging the message’s Happen Before Relation.

Suppose the current checkpoint interval of process p is C and process q’s is C ,

according to the Happen Before Relation, a message m, which p sends to q in the

current checkpoint interval can be is identified as an intra-message if and only if:

,p i ,q j

, 1 , ,()p i p i p iC S m C− → → AndC R ; , 1 , ,()q j q j q jm C− → →

As to the Event Logging algorithm, it means that a pair of , , ,{ }p i q jSEND R

, ,{q j p i}RECV S

p iSEND R

 can be matched in the current checkpoint interval

log: , , , ,{ } {q j q j p iRECV S }= .

The message, M, can be considered to be an in-transit message if and only if:

, 1 , ,()p i p i p iC S m C− → → AndC R ; , , 1()q j q j+→ m

 55

This means that a send log finds its matching receive log in the target’s next

checkpoint interval log: , , 1 , 1 ,{ } {p i q j q j p iSEND R RECV S+ + }= .

Finally the message, m, can be considered an orphan message if and only if

, , 1()p i p iC S +→ m

}

 AndC R ; , 1 , ,()q j q j q jm C− → →

This means that a receive log finds its matching send log in the source’s previous

checkpoint interval log: , 1 , , , 1{ } {p i q j q j p iSEND R RECV S+ += .

Although it is impossible to check the future checkpoint interval logs, the trick is that

the first checkpoint interval logs contain no in-transit and orphan messages of any

previous checkpoint interval: SEN and ,0 ,0 ,1{ ,p q qD R R } },0 ,0 ,1{ ,q p pRECV S S

,0 ,0{ } {p q qR RECV S

. So we can

easily clear the intra messages p sends q (SEND ,0 ,0p }=). for the

unmatched send logs of p (,0{ }pSEND −) and the unmatched receive logs of q

(), because any event log must have a counterpart somewhere and the

message passing must be completed in the next interval, we conclude the final version

of these unmatched event logs are SEND ,

,0{ }qRECV −

,0 ,1p R{ }q ,0 ,1{ }q pRECV S . We say the in-

transit and orphan messages have been successfully identified. This is the cornerstone

of the following Proof by Induction.

Then, assuming at the checkpoint intervals , , we have identified in-transit

 and orphan

,p iC

}

,q jC

, 1 ,{p i q jSEND R− } , 1 ,{q j p iRECV S− messages of , 1p iC − , , the event logs

of , look like

, 1q jC −

,p iC ,q jC , , 1 ,{ ,p i q j q jR R R ,, q j 1}SEND − + and . The

algorithm can remove the counterparts of them RECV and

, , 1{ ,p iS S

1}

, , 1,p i p iREC S−

, p iSEND R

}+q jV

, {q j p iS − , , 1{ }q j−

from the event logs ofC ,C . After the removal, the event logs of , will

look like SEN and , containing no logs related

withC ,C . So, the same identifying method of the first checkpoint interval can

be applied. Then we get the in-transit and orphan messages ofC , :

,p i

{ ,q j q jR +

,q j

, 1} q jRECV

,p iC ,qC

1}

, j SEND

j

, { }p i

, ,p i R

1

D

, 1p i− ,q j−

, ,{ ,p iS ,p iS +

,p i qC −

and after removing the intra messages, {q jRECV −} , ,p i q jR ,{ } {q j p iD V S , }SEN REC= . As

for the , , it is concluded that the final version of SEND,0pC ,0qC ,p i{ }− and , { }q jRECV −

 56

must be SEN and . Therefore, we conclude for any

checkpoint intervalC , C (0 , all in-transit, intra and orphan messages

can be identified.

, , 1{p i q jD R +

, 1p i−

th

} }, , 1{q j p iRECV S +

, 0)i j≥ ≥

END RECV

, 1q j−

x

SEND

{ } { }x y
q qf R f→

* *
, 1 2{ , ,...,q j

*}nV f f=

1 2{ ,

f

3,f f }=

1 2 1 1
1 1 2 3{ , , ,f f f f, 1 1 3 2 3{ , , ,p i f f f f , }f= =

Therefore, Case 1: no messages in the events log have the same envelope is proved.

 Case 2: some messages in the log with the same envelope

Based on what we have learned in Case.1, now we prove a more complex case, for

which there are some messages in the event log that have the same envelopes.

Recalling the event log definition S and ,

we mark the

*/ { |x x F= ∈ } 1 2{ , ,..., }nF f f f=

 message of the envelope f with xf , and x messages of the envelope f

with f*x. For example, if process p sends n messages of the same envelope f, in the i

checkpoint interval, the send log will be . Also according to

the Non-overtaking message passing property, the message passing of the same

envelope obeys the following precedence rule: If x<y then S f

and

th

{ } {x y
p pS f→

1 2
, { , ,...,p i f f f= }n

}

R . These kinds of message logs must keep the same order. For

the messages with different envelopes, we argue that the logging is independent. In

other words, this kind of message can be logged in any order. We call this the

Logging Independency Principle (LIP).

With LIP, the event log can be converted into the forms: SEN

and

* * *
, 1 2{ , ,..., }p i nD f f f=

REC (called LIP Transformation). Considering the

example, where F f and process p sends the messages with the envelopes

in the following order: f1, f1, f3, f2, f3, the corresponding send log

is . The LIP

transformation would not lead to a wrong identification result because it is the

adjustment of the log order in an interval. A log would not be placed into another

interval after it. As the message is classified by the Lamport’s Happen Before

Relation, a log’s place adjustment keeps the original relation. So the identification of

messages of different envelopes is safe with LIP Transformation.

2
3 1, } { *S f f 2 32, *1, *2}f f=END

 57

As we have proved that Event Logging is capable of identifying messages with

different envelopes, we simplify the problem by considering the case that all

messages are delivered using the same envelope: SEND . Thus, due to

the Non-overtaking property, we can get the following rule: If x<y then

 and

*/ {RECV f= }

} }y{ } {x y
p pS f S f→ { } {x

q qR f R f→

1 2
, { , ,..., }n

p i f f f=

, we argue that the message identification

precedence of SEND does not intersect. In other words, for all

messages with the same envelope f , the orphan message sending must happen

before the intra message sending, which precedes the in-transit message sending. This

argument is true because if there is an intra message xf sent before some orphan

message yf , there exists the following relations: C S

and

, ,p i p i ,{ } { }x y
p if S f→ →

, 1{ }q j ,
y

q j , { }x
q jR f C− R f→ → . However, this conflicts with the Non-overtaking

property. Also, if an in-transit message xf precedes some intra message yf , we get:

 and, ,{ } {x
p i p iS f S f→ ,

y
p iC→ q j} , , , 1{ }y

q j q j{ } xR f C R f+→ → . This is also

impossible. To prove this case, we apply the same technique used in Case 1:

To the first recovery line , the event logs look

like ,

,0pC

,0

,0qC

,1p,0 ,0 ,1{ , } { *p q qSEND R R f n= } },0{ , } { *q pRECV S f mS = . Since the intra

message passing stays before any others, the Max(n,m) logs must be the intra message

logs. If n>m, the remaining (n-m) logs in SEND are in-transit message logs.

Otherwise, the remaining (m-n) logs in

,0p

,0qRECV are orphan message logs.

Then, suppose that the event logs of , are and ,p iC ,q jC , { * }p iSEND f n=

, { * }q jRECV f m=

, 1 ,{ }p i q jSEND R− =

 and we have identified the event logs of , :

 and

, 1p iC − C , 1q j−

{ xf } , 1 ,{ }q j p i { y}RECV S− f= . The identification of ,

goes as follow:

,p iC ,q jC

1) Remove the first y logs from , and the first x logs from,p iSEND ,q jRECV

, 1} {p i f+ =

. Then

they look as and . , ,{ , { n y
p i q jSEND R −

, 1}q jR f+ = } }, ,{ , m x
q j p iRECV S S −

 58

2) Remove |(n-y)- (m-x)| logs from both and,p iSEND ,q jRECV .

3) If (n-y)>(m-x), the remaining (n-y)-(m-x) logs, SEND

are in-transit message logs. Otherwise, the (m-x)-(n-y) logs

 are orphan messages logs.

() ()
, { } { }n y m x

p i f − − −− =

() ()
, { } { }m x n y

q jRECV f − − −− =

Then we conclude that Event Logging is capable of the identification of the Case 2.

3.3.4 Removal of the 2-interval restriction
In our algorithm, we suppose all message passing will finish in two successive

intervals at most. However, in fact, it is possible that a message passing encompasses

a larger latency, even though rarely. Therefore it is necessary to remove such a

limitation.

To illustrate the reason, let’s repeat the description of our algorithm. However, a

change is that, without the 2-interval restriction, the event logs of process p and q’s

first checkpoint interval will be: SEN and .

Then the algorithm is revised:

,0 ,0 ,1{ , ,...}p q qD R R ,0 ,0 ,1{ , ,....}q p pRECV S S

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , ,....} { , ,....} { , ,....}

{ , ,....} { }

{ ,....}

p p q

p q q p q q q p p

p q q p q

p q

p

SEND SEND RECV
SEND R R SEND R R RECV S S

SEND R R SEND R

SEND R

SEND

− ∩

= − ∩

= −

=

=

And

,0 ,0 ,0

,0 ,0 ,1 ,0 ,0 ,1 ,0 ,0 ,1

,0 ,0 ,1 ,0 ,0

,0 ,1

'
,0

{ , ,....} { , ,....} { , ,....}

{ , ,....} { }

{ ,....}

q p q

q p p p q q q p p

q p p q p

q p

q

RECV SEND RECV
RECV S S SEND R R RECV S S

RECV S S RECV S

RECV S

RECV

− ∩

= − ∩

= −

=

=

The in-transit SEND and orphan '
,p o

'
,0qRECV

,1q

 message envelopes are kept by process q

until the next checkpoint {C , }. For the second checkpoint interval, however, ,1p C

 59

the send log of p looks like SEN and the receive log of q is

. Then we can clear these logs by:

,1 ,0 ,1 ,2{ , , ,....}p q q qD R R R

'
,0

,2 ,1 ,0 ,1

,2 ,1 ,0

,....} { , ,

,....} { }

....}

q

q p q q

q p q

RECV

SEND R R

SEND R

= −

= −

,1

,2 ,0 ,1

,2 ,1 ,0

,....} { }

,....} { }

....}

q

p p q

p q p

RECV

SEND R

RECV S

= −

= −

' '
,1

,1 ,1 ,2

,0 ,1

} { , }

} { }

q

p q q

p q

RECV

SEND R R REC

SEND R

' '
,1

,1 ,1 ,2

,1 ,1

....} { , ,....}

....} { ,....}

q

p q q

q p

RECV

SEND R R

RECV S

= −

= −

,1 ,0 ,1 ,2{ , , ,....}q p p pRECV S S S

,1 ,1

,1 ,0 ,1

,1 ,0 ,1

,1 ,1 ,2

'
,1

{ , ,

{ , ,

{ ,

p p

p q q

p q q

p q q

p

SEND SEND

SEND R R

SEND R R

SEND R R

SEND

− ∩

=

=

'
,1 ,0

,1 ,0 ,1

,1 ,0 ,1

,1 ,1 ,2

'
,1

{ , ,

{ , ,

{ , ,

q p

q p p

q p p

q p p

q

RECV SEND

RECV S S

RECV S S

RECV S S

RECV

=

=

,1 ,1

,1 ,1 ,2

,1 ,1 ,2

,1 ,2

"
,1

{ ,

{ ,

{ }

p p

p q q

p q q

p q

p

SEND SEND

SEND R R

SEND R R

SEND R

SEND

− ∩

=

=

,1 ,1

,1 ,1 ,2

,1 ,1 ,2

,1 ,2

''
,1

{ , ,

{ , ,

{ ,....}

q p

q p p

q p p

q p

q

RECV SEND

RECV S S

RECV S S

RECV S

RECV

− ∩

=

=

,2 ,0 ,1,....} { ,....}

,

q q pR R RECV S

R

∩

And

,1 ,0 ,1 ,2{ , , ,....}q p p pS RECV S S S

S

− ∩

∩

As it shows, after the clearance, the event logs of the second checkpoint interval look

similar to the initial interval. So, the same algorithm can be applied to identify the in-

transit and orphan message envelopes for this recovery line:

,1 ,1 ,2{ ,q p pV S S= − ∩

= −

}

And

,1 ,1 ,2{ , ,....}q p pRECV S S∩

As it demonstrates, the algorithm can still identify the envelopes of the in-transit and

orphan messages. The only difference is that for the i checkpoint interval, the

process needs to keep a log of the in-transit and orphan message envelopes that

happened in the previous (i-1) intervals (if such exist). The clearance of the i

interval’s logs uses all (i-1) intervals’.

th

th

 60

Note that for the in-transit message the process must be able to get these messages

upon recovery, no matter how early the sending takes place. In other words, to

recover from the i checkpoint interval, there is no difference between in-transit

messages sent in the (interval to these sent in (interval. We maintain a

log for all the unreceived in-transit messages and append the new in-transit message

envelopes onto it. All sending event entries are kept until the message is picked up by

the target (then the entry will be removed from the log). In this way, our algorithm

relies on no specific premise and can adapt to any communication demand.

th

1)thi −)thi x−

Also, the Event Logging algorithm is safe though the fairness property is not

guaranteed by MPI. Simply put, not every message in MPI must be received. The

unfaireness allows that some messages may be never picked up even if they have

reached the target process. In such a situation a message would eventually become an

in-transit message. And according to non-overtaking property, this message must be

received before passing any other messages between this pair of processes with this

particular envelope. Although Event Logging is still able to identify and log such in-

transit messages, we note that this may not be an expected scenario from the point of

view of both Event Logging and the user.

3.4 Analysis and Optimization
3.4.1 Analysis
Being a checkpoint/recovery algorithm, Event Logging has the following three

overheads: logging overhead, checkpoint overhead and recovery overhead. To

optimize the performance of Event Logging, we examine them separately.

Logging overhead is introduced by recording the envelope during the message

passing. For a single send (receive), the overhead is generally constant: creating a new

node, saving the envelope in the node and linking the new node with the log.

However, over the whole life of a program, the total logging overhead is determined

by the program’s communication volume. Suppose the logging overhead of a single

message is , and there are in total N messages exchanged, the total logging

overhead can be calculated by: T . Further can be substituted by ,

logT

log * N N * *CKPT cN T f

 61

where T is the checkpoint interval and f the message passing frequency is, N is

the number of checkpoints taken during the program execution.

c CKPT

Checkpoint overhead is comprised of the cost of identifying messages and the cost of

creating a local checkpoint. To a process, the time of creating a local checkpoint is

proportional to the size of data that needs to be saved. We denote this cost using

functionT . As to the message identification cost, the matching process is

as:

()local datasize

for x=0 to NumberOf(, 1 ,{ }q j p iRECV S−)

{

for y=0 to NumberOf(, , 1 , , 1{ , ,p i q j q j q jSEND R R R }− +)

 {

 if (, 1 ,{x
q j p i}RECV S− ==) , , 1 , ,{ , ,y

p i q j q j q jSEND R R R− +1}

}

 {

 remove , 1 ,{x
q j p iRECV S− and ; , , 1 , ,{ , ,y

p i q j q j q jSEND R R R− +1}

}

}

1} 1}

 quit y loop;

 }

 else {

 y=y+1;

 }

 }

 x=x+1;

 }

 for x=0 to NumberOf() , , , 1{ ,q j p i p iRECV S S +

 {

 for y=0 to NumberOf() , , , 1{ ,p i q j q jSEND R R +

 {

 if () ==) , , ,{ ,x
q j p i p iRECV S S + , , ,{ ,y

p i q j q jSEND R R +

 {

 62

 remove and ; , , ,{ ,x
q j p i p iRECV S S +1} 1}

}

, , ,{ ,y
p i q j q jSEND R R +

 quit y loop;

 }

 else {

 y=y+1;

 }

 }

 x=x+1;

 }

Note, no previous in-transit message envelopes will be logged

. , 1 , , , 1{ } {p i q j q j p iSEND R RECV S− −=

Using to denote NumberOf(, 1q jN − , 1 ,{ }q j p iRECV S−

SEN

), to denote NumberOf(

), to denote NumberOf() and T denotes

the matching time cost, the overhead of the above matching process is calculated by

,q jN

, ,{ ,i q jR, ,{ ,q j p iS , 1p iRECV S + } },p iN , 1p q jD R + m

, ,(2 (q j
m

N N
T

− +1)
4
q jN , 3)(q jN− −+ , 1 ,)q jN+2p i .

As for the recovery overhead, it is introduced by recovering the execution from the

local checkpoint, plus replaying the in-transit messages and discarding the orphan

messages upon the recovery. Suppose that restoring the process’s execution state costs

, replaying an in-transit message costs T , discarding a repeated orphan message

costs T , and there are N in-transit messages and N orphan messages saved in the

local checkpoint. Also suppose N messages will be received after the process

recovery. The recovery overhead is

rT i

o i o

r

1

()(1)
(

2((

n

i o
r oi

r o

N e N e
T T N T

N e
N

N i
=

− − +
+ +

()

r

N i)
)N i)

o o

e
r i − − −

− + −
−

∑ , where

(1,)
1 1

1

r
N xxi N

i

x

xC
C

−−
+

=

= ∑
r

r

o

r

i N
N
N

C− −
Min

e .

 63

In general, among the three kinds of overheads, the checkpoint overhead caused by

matching event logs takes the biggest part. Besides, as the logging overhead impacts

the normal message passing operation, the user of Event Logging is advised to shorten

the checkpoint interval. As for the recovery overhead, it is highly unpredictable and

depends on the program itself. In the next section, we show a technique to minimize

the logging overhead and checkpoint overhead.

3.4.2 Performance Tuning
Since the message envelope in MPI is a term consisting of three elements: <rank, tag,

comm>, a hash function helps to reduce the memory overhead introduced by the

logging. However, the function must be a perfect hashing function. In other words, for

any two different message envelopes A, B, the hashing result is

different: () ()f A f B≠ . Moreover, considering that upon checkpointing the processes

need to exchange logs, the hashing accelerates the exchange, because after hashing

the log size is reduced.

Also, a matching optimization strategy based on the hashing can be developed. Shown

in Section 3.4.1, and relying upon the fact that the event log is an unsorted link table,

the matching process employs Sequential Search to pair up the send and receive logs.

Recalling the Logging Independency Principle (LIP) discussed in Section 3.3.3, if

there is a perfect hash function that generates numerical output, the original event log

can be sorted by the hash value. For a sorted table, some well-known searching

algorithms can help to reduce the average search length. For example, by applying

Binary Search, the average search length is reduced to.

, 1 ,

, 12 , 1lo ,g ()q j q j

p i

N N
N q jP N−

+

+
−− + q jN

Furthermore, in cases where there are messages with the same envelope, an

optimization technique is adding an extra flag to the event log specifying the number

of the messages. For example, if message m has been sent 100 times in the checkpoint

interval, the number flag is set to 100 and only one log of message envelope is kept,

instead of creating 100 logs.

 64

3.5 Conclusion
This chapter presents a new coordination checkpoint protocol Event Logging, which

is based on the widely used Chandy-Lamport algorithm. Event Logging addresses the

non-FIFO message passing challenge, which is the key to implement the coordinated

checkpoint at the application-level.

Event Logging combines the merits of coordinated checkpoint and message logging.

It improves the performance by logging only the message envelopes without the

actual content, which is the main source of the overheads introduced by message

logging.

This chapter also gives a proof of the correctness of the Event Logging algorithm.

Analysis and performance tuning strategy are discussed as well.

 65

Chapter 4

libELC – Application-level
Checkpoint/Recovery Library for MPI

This chapter describes the design and implementation of libELC, an application-level

checkpoint/recovery library for the C/MPI programs in a heterogeneous network.

libELC is built from scratch to ensure the portability.

4.1 Overview
libELC is written in ANSI C language, employing Event Logging algorithm to

provide the portable checkpoint/recovery facility for the C/MPI programs running in

heterogeneous network of computers

Being a checkpoint/recovery tool for message passing programs, libELC is comprised

of three parts: the uniprocess checkpoint/recovery module, the multiprocess

coordination module and the message replay module. The uniprocess

checkpoint/recovery module deals with the portable checkpoint/recovery for each

individual MPI process. Given the portability concern of the heterogeneous network,

the local checkpoint is created by using the application-level checkpoint approach,

which saves and restores the process execution state in a platform-neutral manner.

The multiprocess coordination module is responsible for orchestrating the parallel

processes to form valid recovery lines, by using the Event Logging algorithm. Finally,

the message replay module is active only at the time when the program restarts from a

previous checkpoint, to replay the message passing.

4.2 Uniprocess Checkpoint/Recovery Module
4.2.1 Background and Challenges
Checkpointing a running program is usually considered as a low-level operation [61,

62]. In particular, programs live in the form of a process that is an entity that actually

runs in its own space address in the operating systems. A process is usually composed

of a unique identifier (PID), a register set, an address space and/or other certain

 66

resources such as file descriptor, network connection, peripherals, etc. In this sense, a

straightforward checkpoint approach is to capture the states of these physical

elements. In the homogeneous case, checkpoint/restart mechanisms can simply and

directly manipulate the state of a process without semantic analysis of that state. For

example, the state of a UNIX process is simply the contents of its address space, plus

the process control blocks (register values, file descriptor table, etc.). These entities

are already conveniently available to the UNIX kernel, making the internal state of a

UNIX process trivial to checkpoint. As long as the process is restarted on the same

kind of UNIX system and processor on which the checkpoint was produced, the

contents of the address space need not be interpreted by the kernel to restore the

process. We call such a checkpoint/recover mechanism native process checkpoint.

From the point of view of implementation, the native process checkpoint facility can

be classified into to two categories: system-level and library-level. The system-level

solution such like EPCKPT [64], CRAK [63], CHPOX [65], provides the checkpoint

capacity by building it into the operating system kernel. The patched operating system

is able to save the state for a running process upon detecting some requesting signals.

Usually the system-level approach does not require the user to manually trigger the

checkpoint. Instead checkpoints will be generated in a preset period. Therefore, the

checkpoint and recovery are completely transparent from the point of view of the

users.

Different from that, the library-level approach is usually managed by an external

library. Users are required to link theirs codes with the checkpoint library. In this

case, programs may call the checkpoint library during the execution to save their

states. Some popular examples of this kind of solution include libckpt [62], Esky [67],

Condor [66], etc. Compared with the system-level approach, though the library-level

approach may not be completely transparent to the programmer, it does not ask for

modifications on the hosting platforms, which makes it lightweight and more

preferred.

However, both of these two approaches suffer from the lack of portability given a

heterogeneous environment. As discussed above, the idea behind the system-level

checkpoint is based on the physical composition of a process. However, the address

 67

space and kernel process control information would be meaningless if used to restart

the process on a hetergeneous operating system implementation or architecture.

Differences in data format, instruction sets, address space sizes (e.g. 32-bit vs. 64-bit

addressing), and memory space structures will make the saved state completely

unrecognizable at the restart time. In this sense, no platform-dependent solution

would be popular in the NoC community.

Unfortunately the presence of inherent heterogeneity in a network of computers

significantly complicates the design of a portable process checkpoint/restart

mechanism. The additional complexity inherently introduced by heterogeneity is the

main reason why few designs for such a portable facility have been developed to date.

In this sense the main challenge for the design of the uniprocess checkpoint/recovery

model in libELC is to develop a portable checkpoint library for heterogeneous

processes.

4.2.2 Application-level Checkpoint
4.2.2.1 Basic Idea

Taking a different point of view from the native process checkpoint, the application-

level approach [68-70] inspects the logical composition of a program, instead of the

physical elements: data segment, stack, register, etc. In this case a program’s

execution state is co-determined by the program execution flow and program state.

A program’s execution flow can be examined as a sequence of function calls.

Supposing a C program that starts from main(), does some operations, and calls

function1(), where the execution flow transfers to. Inside function1(), some operations

are performed, and after these operations finish the execution flow returns to main().

Then, some work is done in main() until function2() is called. Similar to the call to

function1(), the execution flow is passed to the called routine, i.e. function2(). In

function2(), a call of checkpoint ckpt() is issued and the program state is saved.

In this example, at the time ckpt() is called, the program’s execution flow is

. However, to restore the

program running from ckpt(), function1() is needless since no previous execution

() 1() () 2() ()main function main function ckpt→ → → →

 68

should be repeated. Therefore, the correct execution flow

is main . Upon recovery, the execution flow is reconstructed

by skipping all instructions and directly jumping to ckpt(). For a C program, the

jumping can be implemented by labelling every function call and using a GOTO

statement. Suppose a new process is restarted from main(). Before executing any

instructions, the process examines the saved failure-free execution flow and finds the

next call is function2(). Then the process directly jumps to function2() by the

statement:

() 2() ()function ckpt→ →

 GOTO LABEL_function2;

After the process is switched to function2(), it finds the target ckpt() and jumps to it:

 GOTO LABEL_ckpt;

When the process re-enters ckpt(), it has known that the program is recovering. Then

the process reloads the program state from the checkpoint file and resumes the

execution. However, this requires that all function calls in the program must be

uniquely labelled, LABEL_function_name: function_name(). Also, a flow table can be

setup to examine the execution flow. Upon being called the corresponding function

label is inserted onto the flow table. When returning from a function, the label will be

removed from the flow table, indicating the execution flow has returned to the calling

routine:

 LABEL1: EnterCall(LABEL1);

 function_call_1();

 QuitCall();

Hence, at the time a checkpoint is issued, the flow table will contain the exact

program exection flow.

The program state can be seen as the composition of the values of program variables,

the content of dynamically allocated memory (Heap) and other program-related

properties, such like I/O descriptor, current working directory, etc. In a word, all these

elements are presented in the form of memory blocks. So if the checkpoint library can

locate all memory blocks and know their sizes, it is able to save and restore their

states. In this sense, an application-level checkpoint inspects the events including

variable definition, heap management and I/O operations. Upon detecting such an

action, the checkpoint library records the related information in a dedicated stack,

 69

called a shadow stack, to locate the corresponding memory blocks. The recorded

information (typically the memory block address and size) serve as an index for the

checkpoint library to save and restore the program state. For example, consider an

integer definition statement in the C language: int i. The shadows stack records i’s

address and size by inserting the following statement immediately after i’s definition:

 PushOntoStack(variable_address,size);

Upon checkpointing (recovery), the process traverses the shadow stack, using the

address to locate and save (restore) every memory block.

As it shows, the idea behind the application-level checkpoint/recovery is to apply

some transformation onto the source code. The following pseudo code is a complete

example of the function modification:

 Original Code:

 function_name(parameter)

 {

 //variable definition

 type variable_name;

 ……

 //execution statement

 … …

 function_call_1();

 ……

 function_call_2();

 ……

 return;

}

 Modified Version:

 Function_name{parameter}

 {

 // variable definition

 type variable_name;

 PushOntoStack(&variable_name,sizeof(variable_name));

 70

 ……

 // execution jumping code

 switch (execution flow table)

 case (LABEL1): goto LABEL1;

 case (LABEL2): goto LABEL2;

 // execution statements

 ……

 LABEL1: EnterCall(LABEL1);

function_call_1();

QuitCall();

 ……

 LABEL2: EnterCall(LABEL2);

 function_call_2();

 QuitCall();

 ……

 return;

}

Since the program execution flow and program state is saved and reconstructed at the

application level, this approach is completely system-independent. It is applicable to

any platform as long as the ANSI C language is supported.

The idea of application-level checkpointing can be found in a number of efforts [68-

70], among which the PORCH project [68] presents the most comprehensive

implementation. PORCH ships with a C pre-processor, which is responsible for

automatically transforming the C codes into a checkpoint-able version. Also, a

universal portable data format is developed in PORCH to store the checkpoint data.

However, PORCH, as well as most of the above application-level checkpoint systems,

focuses on the uniprocess checkpoint/recovery. To our best knowledge, there is not an

application-level checkpoint library so far developed for MPI programs, which

provides a totally portable checkpoint/recovery facility in heterogeneous

environments.

 71

The closest effort to libELC is the C system [22]. C also uses application-level

coordinated checkpointing. However, the difference between libELC and C is that

 uses Message Tagging approach to coordinate the distributed processes; while

libELC employs Event Logging algorithm. More important, C does not aim at the

portable checkpoint/recovery in a heterogeneous network. As a consequence, the

checkpoint and recovery in C can be only made on platforms that use the same

memory layout.

3 3

3

3C
3

3

4.2.2.2 Save and Recover Execution Flow in libELC
Section 4.2.2.1 explains the idea of the application-level checkpoint and recovery of

the program execution flow. However, the technique described is the most simple and

basic case. libELC takes a similar but more efficient approach.

Apart from recording the program execution flow outside of the function call like:

LABEL1: EnterCall(LABEL1);

function_call_1(….);

QuitCall();

libELC modifies the function argument definition, registering the function itself in the

flow table upon calling.

LABEL1: function_call_1(…., LABEL1);

In other words, the execution flow is recorded by the called function, instead of the

calling one. The definition modification reduces most of the modification work: the

definition change is made only once, rather than for every function call.

Two interfaces are provided to support the definition modification: OnCallEnter(),

OnCallReturn(). A simple example is:

 Original Code:

 Function_name(parameter)

 {

 // variable definition

 ……

 72

 // execution statements

 ……

 return;

}

 Modified Version:

 Function_name(parameter, LABEL)

{

OnCallEnter(LABEL);

 // variable definition

 …….

 // execution switch code

 ……

 // execution statements

 ……

 OnCallReturn(LABEL);

 Return;

}

One of the notable changes is the function parameter: the modified function has an

additional LABEL argument. When calling the modified function, the calling label is

passed in the parameter LABEL, which is further handed over to

OnCallEnter(LABEL). The function OnCallEnter() records LABEL in the flow table.

On return, LABEL will be removed by the call of OnCallReturn(). In this sense, a

function call is modified as follow:

 Source Code:

function_name(…);

 Modified Version:

LABEL_function_name: function_name(…, LABEL_function_name);

The modification of function definition not only simplifies the programming, but also

benefits the inline calls. An inline call is the composition of multiple function calls.

 73

Typically, there exist two kinds of inline call: composition by operator and

composition by parameter. A typical composition-by-operator inline call looks like:

 result=function1()+function2()*function3();

And the composition-by-parameter looks like:

 result=function1(function2(), function3());

To the inline calls, however, using only one LABEL parameter is not enough to

specify the function execution sequence. For example, consider the following

modified inline call:

LABEL: result=function1(function2(LABEL),function3(LABEL),LABEL);

Supposing a checkpoint is taken in the call of function2(LABEL). According to the

discussion above, LABEL is saved along with the flow table during the checkpoint.

However, since all three calls share the same LABEL parameter, upon recovery the

calling function would not know which function it should jump to. Therefore the

program has to re-evaluate the whole expression. However, if the compiler is right-

prior, function3() will be re-executed, which should not be repeated at all. Also, as the

compiler allocates some temporary registers to save the intermediate result, it is

impossible to access the return value of function3() upon creating a checkpoint in

function2(). Thus, in order to guarantee the correct recovery, the checkpoint/recovery

system needs to track the exact execution flow and save all the intermediate result for

the inline calls.

The typical approach to this problem is to use intermediate variables to decompose

the inline call. The call is disassembled into multi-statements, each of which contains

a function call. Functions’ return values are deposited in the intermediate variables,

which are reassembled eventally to perform the original logic of the inline call. As

each single function call has its own LABEL parameter, the system is able to tell the

exact execution information. A decomposition example is shown as:

LABEL1: t_result1=function3(LABEL1);

 LABEL2: t_result2=function2(LABEL2);

 LABEL3: result=function1(t_result_1,t_result_2,LABEL3);

As it shows, such a solution completely changes the code layout. Although the same

program semantic is maintained, it makes the code much more difficult to read. On

 74

the contrary, the proposed definition modification can avoid these problems by

introducing another additional parameter FID, which indicates the evaluation order of

the expression. Thus, instead of decomposing, the inline call is transformed into:

 LABEL: result=function1(function2(LABEL,1),

 function3(LABEL,2),

 LABEL,0);

With the aid of FID, the system is able to select the time for creating a checkpoint.

Basically, in the composition-by-parameter case, the choosing criterion is the outmost

function call. In the above statement, the checkpoint is taken in function1(). This is

because when starting function1(), the intermediate return value of function2() and

function3() have been available as the parameters of function1(), which can be saved

in function1(). By contrast, if the checkpoint were created in function2(), the process

would be unable to retrieve the return of function3(). As to the composition-by-

operator inline call, however, no call need be selected for checkpointing, since all

returns are intermediate. For example, considering the following statement:

 result=function1()+function2+function3();

None of these three functions is able to access the returns of the other two, so the

checkpoint can be delayed until the next function call, in which OnCallEnter() will

perform the postponed checkpoint.

During the recovery, libELC first switches to the LABEL statement and starts re-

evaluating the expression. Upon entering a call, the function checks whether the

parameter FID is 0. If not, the function quits without executing any instruction. Thus,

the correct checkpoint/recovery of the program execution flow is guaranteed.

4.2.2.3 Save and Recover Program State in libELC
As mentioned in 4.2.2.1, the application-level checkpoint employs a dedicated

shadow stack for all program variable, heap memory and I/O descriptors. In libELC,

however, these elements are managed separately.

Case 1: Variables

In libELC, three interfaces are designed for the atomic datatype, pointer and structure:

 void OnVarDef(void *pAddr,int size);

 75

 void OnPtrDef(void **pAddr,int count);

 void OnStrDef(void *pAddr,int size,char *pStrName);

 void OnStructureDef(StructureDesc descTemp);

Given a variable definition of basic type: type variable_name, the function is called

with the arguments, e.g.: OnVarDef(&variable_name,sizeof(type)). In this way, the

checkpoint library knows where is the variable (&variable_name) and how many

bytes it spans (sizeof(variable_name)). Then, upon checkpointing, the

sizeof(variable_name) bytes beginning from &variable_name will be written to the

disk file, which contains the variable value. Note, in a heterogeneous NoC, some

machines may use the little endian convention (PCs, Sun Sparc), so the variable

bottom address is &variable_name+sizeof(variable_name)-1; however, some other

architectures may use big endian design, in which case the variable bottom address is

&variable-sizeof(variable_name)+1. libELC addresses this problem by detecting the

running platform, and following the corresponding convention to calculate the

variable bottom address.

Unlike other types, a pointer is a special kind of variable, which stores not a plain

value but a memory address. Since the memory allocation strategy is different across

platforms, the address of a variable could be different on different platforms in

different runs. For example, in Linux:

 int i;

 int *p=&i;

The value of pointer p could be 0xbfffe5b4 in the first run, and 0xbffff834 in the

second (Our experiments show that most systems including Windows, Solaris, BSD,

AIX, use static memory allocation, whereas Linux adopts the dynamic allocation). So,

in order to save (restore) pointers in a portable way, the pointers cannot be treated like

“Save the value” as with other program variables. Instead, libELC replaces the

address with a portable logical representation.

It is a rule of both the operating system and programming language that it is illegal for

a pointer to point to a memory space out of the program’s scope. In other words, a

 76

point can only point to somewhere in the memory declared by the program. So, the

pointer is transformed into the representation <memory_block, offset>. memory_block

is a chunk of memory allocated either explicitly or implicitly by the program.

Basically, there are three types of allocation: program variables, heap memory and

function (Since a pointer can almost point to anything in a program, Section. 4.2.2.4 is

a dedicated section discussing the checkpoint and recovery of pointers).

memory_block is denoted by its ID: mid, and offset is calculated by

labs(pointer_value-&memory_block). There also is the problem of little endian or big

endian memory addressing. The selection of + or – is determined by the running

platform.

In general, upon defining a pointer, libELC issues a call to OnPtrDef(), in which the

address of the pointer is recorded. During the checkpoint, libELC finds the pointer,

retrieves its value, and performs a search to locate which memory block it points to.

Then the pointer is represented by <mid, labs(pointer_value-&memory_block)>. To

recover it, after the memory block is restored, the pointer is reset to the +/-

labs(pointer_value-&memory_block) byte from &memory_block (details in Section.

4.2.2.4).

Among the three interfaces provided for variables, OnStrDef() is the most

complicated. The reason is that a structure is a collection of variables: it may contain

basic type variables, pointers, or even structures. When inline pointers exist, the

saving and restoration of structure cannot be like the basic types. However, that

requires the checkpoint library to locate the pointer elements defined in the structure.

In other words, the checkpoint library needs to know the offsets of the pointers. Then,

the location is calculated by &structure_variable+/-pointer_offset. To record the

structure’s definition, libELC provides a data type StructureDesc and an interface:

OnStructureDef(). Upon defining a structure, StructureDesc is filled with the

structure’s information and passed to the following call of OnStructDef(). For

example, some user-defined structure may look like:

 struct Node {

 int ID;

 struct Node *next;

 77

 struct Property prop;

}

StructureDesc is initialized and OnStructDef() is called like:

 StructureDesc descTemp;

 strcpy(descTemp.name,”struct Node”);

 descTemp.size=sizeof(struct Node);

 descTemp.ptrCount=1;

 descTemp.ptrOffset=(void *)malloc(descTemp.ptrCount*sizeof(void *));

 descTemp.ptrOffset[0]=sizeof(int)-1;

 descTemp.strCount=1;

 descTemp.strOffset=(void *)malloc(descTemp.strCount*sizeof(void *));

 descTemp.strOffset[0]=sizeof(int)+sizeof(struct Node *)-1;

 descTemp.strName=(char *)malloc(descTemp.strCount*sizeof(char)*

 MAX_STRUCT_NAME_LENGTH));

 strcpy(descTemp.strName[0],”struct Property”);

 OnStructureDef(descTemp);

descTemp.name saves the structure’s name and descTemp.size is the structure size.

The element ptrOffset is a pointer to an integer array, which contains the offsets of

each pointer defined in the structure type. ptrCount specifies the length of this array.

Simliarly, the array pointer strOffset tells the offsets of every inline structure element,

and strCount is the array’s length. OnStructureDef() uses recursive calls to resolve the

in-line structure elements. So that, by employing the StructureDesc data type and

OnStructureDef() function, libELC is able to know the number and offsets of the

pointer elements in the user-defined data types. Upon defining a variable of these data

types, the function OnStrDef() uses the data type knowledge recorded by

OnStructureDef() to locate the pointer elements. For each pointer element, OnStrDef()

calls OnPtrDef() in order to translate the memory address to its representational

format at the checkpointing time. Considering a variable definition of the type - struct

Node:

 78

 struct Node new_node;

Then the function OnStrDef() is called as:

 OnStrDef(&new_node,sizeof(new_node), “struct Node”);

Inside of the call, OnStrDef() searches for the name “struct Node”. When found, it

retrieves the information of the pointer elements’ number and offsets, and calculates

the pointer address by &new_node+/-pointer_offset. Then, the address is passed to

OnPtrDef(&new_node+/-pointer_offset), and saved for the translation.

Case 2 Heap Memory

Besides the program variables, heap memory is another important element in the

program state. Unlike the static variables, the operating system uses the heap to

allocate memory for a run-time request. In the C language, heap management is made

by calling the following functions: malloc(), calloc(), realloc() and free(). Since the

execution of these function calls is determined at the run-time, libELC defines the

following wrapper functions to detect the dynamical allocation of the heap:

 void *ELC_malloc(size_t size);

 void *ELC_callac(size_t nmemb, size_t size);

 void *ELC_realloc(void *ptr, size_t size);

 void ELC_free(void *ptr);

These wrappers provide the same behaviour as the original functions. However, one

more job they do is to record the address and size of the allocated memory block. For

example, malloc() returns the head address of a memory block from the heap. In the

wrapper ELC_malloc(), the head address and block length size are pushed onto the

shadow stack. Upon checkpointing, libELC locates the memory block and saves it by

writing size bytes to the disk. Moreover, when the user tries to de-allocate a memory

block, ELC_free() removes the corresponding entry from the shadow stack.

ELC_realloc() updates the shadow stack with the memory adjustment.

However, such wrapper functions take no consideration of pointers. They are

incapable of saving and restoring the pointers in the heap memory (called heap

pointers). This results from the different memory architectures of different systems. In

order to deal with the pointers in the heap, following each wrapper function call,

 79

libELC inserts a call to the corresponding variable definition interface. If the allocated

heap memory is pointer type void **ptr=(void **)ELC_malloc(4*sizeof(void *)),

OnPtrDef() is called after the allocation with the parameter OnPtrDef(ptr,

4*sizeof(void *)). If the memory is allocated in some user-defined type struct

structure_name *ptr=(struct structure_name *)malloc(sizeof(struct structure_name)),

OnStrDef() is called as OnStrDef(“struct structure_name”, ptr, sizeof(struct

structure_name)). In both cases, libELC records the locations of all the allocated heap

pointers, which will be translated, saved and recovered separately from the heap

memory. In this way, libELC creates the portable checkpoint/recovery to the

dynamically allocated memory.

Case 3 Program-related Properties

Besides the variables and heaps, the program state is also influenced by some other

properties, such as I/O operations, file systems and signal handlers, which are

necessary parts of the checkpoint and recovery. However, to create portable

checkpoints for programs running across heterogeneous platforms, the source code

must be also portable. In other words, even if restarting the program execution on

another machine with a different architecture, the recovery procedure should be no

more than copying the program source, data files and the checkpoint files to the target

machine, compiling the source to generate a local executable and simply re-launching

the executable. In such a case, the program should contain no system-specific

resources (like signal handlers) or environment-related property (working directory,

process identifier PID). In this sense, the main concentration in this section is to deal

with the program I/O state.

Basically, there are three types of I/O: file (file I/O), terminal (standard I/O) and

sockets. As the I/O operation is so ubiquitous, it is critical to reconstruct the I/O state

upon recovery. Generally, all these three I/O types are built on files and file

descriptors. A file descriptor is just a link between the process and the corresponding

source. File descriptors associated with normal files should be reattached to those files

when the application is restarted. File descriptors associated with a terminal (for

standard IO) should be attached to the terminal upon recovery. Among the three,

sockets pose the most serious challenge, because the recovery of a socket connection

involves two machines. Fortunately, to the depth libELC concerns, MPI provides

 80

sufficient communication facility. The socket is managed by the MPI runtime

environment implicitly: once the MPI program restarts, the connection will be re-

established automatically.

To recover the access of a normal file, the flag set of the file descriptor, the access

mode and the file offset must be restored. libELC provides the following wrapper

functions:

 FILE *ELC_fopen(const char *path, const char *mode);

 void OnFileDef(FILE *fp);

 int ELC_fclose (FILE *fp);

 int ELC_fcloseall();

The function ELC_fopen() records the filename and access mode. OnFileDef()

translates the stream returned by ELC_fopen() to file descriptor. Upon checkpointing,

the file descriptor value is associated with the filename and saved into the checkpoint

file. In order to restore the file access, libELC uses freopen() to redirect the file

descriptor to the file. As to the file offset, the system calls ftell() to get the current

offset, saves the offset in the checkpoint file, and uses fseek() to relocate after

recovery. The function ELC_fclose() will notify the system to remove the

corresponding entry; ELC_fcloseall() clears all the file entries. However, we

emphasize that it is the user’s responsibility to guarantee the file and directory are in

place upon recovery.

Moreover, if the program changes something in the file after a checkpoint, the

checkpoint/recovery library should be able to rollback the file to the state of the

checkpointing time. Since the file operation is usually non-volatile, libELC choose a

coarse-grain solution for the rollback: when checkpointing, libELC backups all open

files. The backup is done by closing the files, copying and reopening them. To

rollback, the system just simply replaces the original file with the backup.

As to the checkpoint/recovery of the file descriptor associated with terminal, libELC

judges which file descriptor is connected to the terminal (by calling isatty()) and the

name of the connected terminal (by calling ttyname()).Similarly to normal files, the

file descriptor value is saved with the terminal name and attribute (using tcgetattr()).

 81

Upon recovery, the system reattaches the same file descriptor onto the terminal, and

resets the terminal attribute using tcsetattr().

4.2.2.4 Pointer
Being the most knotty part, pointers pose two main challenges: (1) as a pointer can

point to almost anywhere in the program memory space, the pointer translation must

care for various scenarios; (2) since the pointers are saved in the order of their

definitions, there arise problems when a pointer of pointer is recovered before its

reference. This section is dedicated to illustrate how libELC tackles the above

problems.

First, the value of a pointer is the address of one of the following three types of

memory block: variables, dynamically allocated memory (heap) and functions. The

difference is which segment the memory block stays in. Generally, the variables are

stored in the stack, where the memory allocation is done automatically by the

operating system upon defining a new variable. On the other hand, heap is allocated at

run time by explicit memory requests. The address of a function is static, which is

always allocated at the text segment during the compilation.

To the variables and dynamic memory, every memory block is assigned a unique ID,

mid. The assignment is done together with the allocation of the memory block. To the

variable, the assignment time is the time of defining a variable; to the heap, the ID is

assigned when calling ELC_malloc() and ELC_calloc(). The result of such a scheme

is that the ID assignment is sequential, in the same order of the variable definition and

heap allocation. Moreover, the assignment is dynamical: on the return of a function,

the IDs of the function’s local variables are reclaimed along with the de-allocation of

the variable memory, and will be reassigned for the following program variables.

However, the IDs of memory blocks in different segments, stack and heap, are

maintained independently (stack- sid, heap- hid). As variables stay in the stack, the

logic representation of a variable pointer is <sid, offset>, and the pointer of

dynamically allocated memory is represented as <hid, offset>.

For function pointers, libELC employs another way to represent them. Basically, the

address of a function is determined by the compiler. In other words, the memory

 82

allocation for user-defined functions is static. Therefore, it is feasible to calculate the

memory address of a function by using the offset from the function to a known

position in the text segment. The main() function is such an obvious example. Given

the address of the main function &main, the function pointer is positioned by

<pointer_value - &main>. On recovery, the system uses the offset to reset the pointer.

However, to be compatible with the variables and dynamic memory, the function

pointer is also set into the format <ID, offset>. But, all function pointers use the same

default ID 0. Then a function pointer is represented as <fid=0, offset=pointer_value-

&main>.

Another challenge the pointer poses is the checkpoint/recovery order. Supposing a

program defines two pointers in the order: ptrA, ptrB. The first pointer ptrA is a

pointer of pointer, which contains the address of the second pointer ptrB. Since the

pointer is a type of user-defined variable that locates in the stack, libELC assigns the

sid 1, 2 to the two pointers. During the checkpoint, ptrA is represented as <sid=2,

offset=0> and saved before ptrB. On recovery, ptrA is also reset before ptrB. This

creates the problem that ptrA cannot find its pointee, because ptrB has not been

recovered at this time. Such a relation is called Recovery Dependency. According to

Recovery Dependency, a pointer can be recovered only when its pointee has been

restored (the dependency of the pointer is satisfied).

To satisfy the dependency, libELC requires the recovery to be performed in the

following sequence:

1) Recover all variables except pointers (without the inline pointers in the structure

types);

2) Restore the heap memory (without the inline pointers);

3) Reset the function pointer;

4) Recover all other pointers except the pointer of pointer;

5) Finally, recover the pointer of pointer.

Moreover, the restoration procedures of program states are postponed until the

recovery of execution flow finishes. To illustrate the reason, consider an example: a

pointer ptr in the function A() points to a heap block heap allocated in function B().

 83

The execution flow is A B c . So on restart, when recovering function

A() and the pointer ptr, function B() and heap have not yet been restored. This breaks

the dependency between the pointer ptr and the heap block heap, because ptr is

recovered before its pointee. Thus, libELC must perform the execution flow recovery

before the program state recovery, in order to satisfy the dependencies.

() () ()kpt→ →

4.2.2.5 A Note on Portability

libELC can only provide the portable checkpoint/recovery facility for C/MPI

programs, which are themselves portable. The checkpoint of a non-portable MPI

program cannot be used for recovery on a heterogeneous machine. In other words, the

MPI program cannot have any information or system calls, which are runtime

environment related.

Also it is necessary to note here that the application-level checkpoint approach has not

been as mature as the system-level checkpoint mechanism. As a consequence, the

current implementation of libELC faces several restrictions that are common to

application-level checkpoint systems:

1) Union Type: Currently libELC is unable to save and restore the value of a

union-type variable. However, to the best knowledge of the author, PORCH [22]

provides support to the union type. And such support will be included in the next

version of libELC.

2) Register Variable: According to the ANSI C standard, a variable can be defined

as register variable. Such variables will be allocated on some registers, rather

than in the memory space. libELC cannot give support to the checkpoint and

recovery of register variables.

3) Variable Definition: In a C program, variables can be defined anywhere starting

with a curly bracket {}. However, in libELC, no variable is allowed to be defined

during the execution. In other words, variable definitions must be placed in front

of execution statements. Other wise, undefined errors may be caused by the

GOTO statements upon recovery. Also, if the source program contains some

 84

static variables (or global variables), corresponding calls to OnVarDef() should

be inserted in the main() function.

4) Universal Data Format: The current libELC version does not address the

problem of heterogeneous data representation. It assumes that the checkpoint file

generated on one machine can always be recognized on another platform.

Obviously this is not a strong argument given a heterogeneous environment.

4.3 Multiprocess Coordination Module
This section describes the technique used in the libELC coordination module to

implement the Event Logging algorithm. The coordination module is comprised of

three packages: MPI Wrapper Package (MWP), Message Identification Package

(MIP) and Message Logging Package (MLP).

4.3.1 MPI Wrapper Package
A wrapper function is a popular technique for extending the system feature. By

including the original function, a wrapper provides users the additional functionality

in a transparent way. Users have no knowledge about how the function is

implemented, and do not need to worry about the details of using the extra service. In

order to hide the checkpoint/recovery and multiprocess coordination procedure from

the users, libELC provides a set of wrappers for the MPI routines.

Although making most of the checkpoint/recovery details transparent, libELC still

exposes one explicit function to let users invoke the checkpoint: ELC_DoCKPT().

The user may insert calls to ELC_DoCKPT() at the place they want to start a

checkpoint. It does not require all processes in the program to call this checkpoint

function at the same place. libELC is responsible for broadcasting the checkpoint

requests in the program. If multiple checkpoint requests are detected by a process at

the same time, only one is taken, the others will be ignored. However, if two

processes run the same code and issue a same checkpoint request but at the different

time due to performance difference, the two checkpoint requests will be taken

separately. In other words, two recovey lines will be created.

 85

ELC_DoCKPT(): every calling process p performs a local checkpoint, broadcasts a

checkpoint request to each of all other processes and initializes a request table. The

checkpoint request is packaged with p’s send event log. For example, supposing

process p is in the i checkpoint interval. When calling ELC_DoCKPT(), p creates

checkpoint and send the event log SEN

th

,p iC , , 1 , , 1{ , ,p i q j q j q jD R R R }− + to all other

processes (. As soon as it returns from ELC_DoCKPT, the calling

process resumes the normal execution.

1,q 2, ,)n q...,= p≠

 ELC_DoCKPT()

 {

 do a local checkpoint;

 for i=1 to all processes

 {

 if (process i is not the calling process)

broadcast a checkpoint request to process i;

 }

 initialize a request table;

}

To the other processes that have not called ELC_DoCKPT(), they will be introduced

to the checkpoint by the wrapper ELC_MPI_Send(), ELC_MPI_Recv(). In these two

wrappers, before performing the original communication, the wrapper probes whether

there is pending checkpoint request. If yes, the checkpoint requests will be received.

Depending on whether this checkpoint request is the first request being intercepted in

the current checkpoint interval, the process may take two different actions:

 Action 1: If the checkpoint request is the first one, the process behaves in the

same manner as when ELC_DoCKPT() is called: it creates a local checkpoint,

broadcasts checkpoint requests containing this process’s send event log to all

others and then invokes the MIP (details in Section. 4.3.3). In general, MIP is

responsible for identifying the in-transit messages and orphan messages by using

Event Logging algorithm. At the time the identification completes, the process

will have the envelopes for in-transit and orphan messages. However, note that

 86

the identification is taken only on the message passed between the checkpoint-

requests-sending process and this checkpoint-request-receiving process. The

orphan message envelopes are written onto the disk as a part of the local

checkpoint, and the in-transit message envelopes are handed over to MLP. Then

the process adds the rank of the intercepted checkpoint request’s source to a

request table, which records the rank of the processes that have sent the

checkpoint requests. After finishing this action, the process triggers MLP.

 Action 2: If the checkpoint request is not the first one detected, the process

directly starts the MIP. The identified orphan message envelopes are saved in the

checkpoint files. The in-transit message envelopes are passed to MLP, which

saves the logged in-transit messages into the checkpoint files. Then the request’s

source is marked in the request table. The process counts the number of

checkpoint requests it has received. When the process finds it has gathered

requests from all other processes, the process marks its local checkpoint as

finished.

In all, the wrapper function CKPT_MPI_Recv() looks like:

 CKPT_MPI_Recv (incoming message envelope)

 {

 probe whether there is pending checkpoint request (CKPT_Request);

 if (yes)

 {

receive the CKPT_Request;

 if this CKPT_Request is the first one

 {

 do a local checkpoint;

 for i=1 to N

 {

 if (i!=my rank)

send a CKPT_Request with send logs to process i;

 }

 invoke the MIP;

 87

 save the orphan message envelopes to the checkpoint file;

 pass the in-transit message envelopes to the MLP;

 mark the CKPT_Request source onto the request table;

 }

 else {

 invoke the MIP;

 save the orphan message envelopes to the checkpoint file;

 pass the in-transit message envelopes to the MLP;

 save the logged in-transit messages into the checkpoint files;

 mark the CKPT_Request source onto the request table;

 count the number of CKPT_Request;

 if (got CKPT_Request from all other processes)

 mark the local checkpoint finished;

 }

 MPI_Recv(incoming message envelope);

}

4.3.2 Message Identification Package
MIP is invoked to help the process identify the in-transit and orphan messages at the

time when the process intercepts a checkpoint request. Recalling the algorithm

discussed in Section. 3.3.2, the MIP tries to identify the messages by pairing up the

send logs bound with the checkpoint request with the target’s receive logs.

Supposing process q gets a checkpoint request from process p during the

checkpoint interval (i>1). In this scenario, q holds the event logs of the messages

received from p: , and p’s send logs are packaged in the

checkpoint request: SEN

thi

, , 1 , , 1{ , ,q i p i p i p iRECV R R R−

, , 1 ,{ , ,p i q j q j q jD R R R

}+

}, 1− + . Also process q already has the logs of

the in-transit and orphan messages of the last checkpoint interval: SEND and , , 1{p i q jR − }

}, 1 ,{q i p iRECV R− . Also, in MPI a message is labelled by the tern <rank, tag, comm>.

MIP is invoked when process p intercepts the send logs from process q, so in this case

the sender/receiver’s ranks are known: p and q, and the message envelope is reduced

 88

to <tag, comm>. Thus a pair of send/receive logs are matched if the two logs have the

same envelope.

Suppose is the number of the logs in , ,q i rN ,q iRECV

, 1p iD

; is the log number of

; is the log number of SEN

, ,p i sN

,p iSEND , 1,s−p iN − ; , 1,q i rN − is the log number of

; denotes the ,q iRECV −1 ,
x
p iSEND thx message envelope in SEND ; and REC,p i , 1

y
q iV −

denotes the envelope in thy ,q iV 1REC − . Then the matching process takes the following

three steps:

1) Clear the in-transit message logs: , 1 , , . 1{ } (p i q i q i p iSEND R RECV S− −)= :

 for x=0 to , 1,p i sN −

 {

 for y=0 to , ,q i rN

 {

 if (= =, 1
x
p iSEND − ,

y
q iRECV)

 {

 remove , 1
x
p iSEND − and ,

y
q iRECV ;

 quit loop y;

 }

 else {

 y=y+1;

 }

 }

 x=x+1;

 }

(2) Remove the orphan message logs: , 1 , , , 1{ } (q i p i p i q iRECV S SEND R)− −= .

 for x=0 to , 1,q i rN −

 {

 for y=0 to N , ,p i s

 89

 {

 if (REC , 1
x

q iV − = =) ,
y
p iSEND

 {

 remove xREC , 1q iV − anew); ,
y
p iSEND

 quit loop y;

 }

 else {

 y=y+1;

 }

 }

 x=x+1;

 }

(3) Remove the intra message logs: , , , ,{ } (q i p i p i q i)RECV S SEND R= .

for x=0 to , ,p i sN – , 1,q i rN −

{

 for y=0 to , ,q i rN – , 1,p i sN −

 {

 if (= = ,
x
p iSEND ,

y
q iRECV)

 {

 remove SEND and ,
x
p i ,

y
q iRECV ;

 quit loop y;

 }

 else {

 y=y+1;

 }

 }

 x=x+1;

 }

 90

When the identification finishes, the remaining logs of SEND , { }p i − and , { }q jRECV −

are the in-transit and orphan message envelopes of the current checkpoint interval.

4.3.3 Message Logging Package
MLP logs the in-transit messages using the envelopes identified by MIP. MLP is

implemented in two different forms. The first relies in the FIFO property of a lower

layer of the MPI implementation, which guarantees that all in-transit messages will

have been stored into the receive buffer, although they may not have been picked up

yet. So in this case MLP just posts a receive (MPI_Recv) for each in-transit message

envelope.

 ELC_Logging()

 {

 For each in-transit message envelope

 {

 MPI_Recv(in-transit message envelope);

 save the in-transit message into the checkpoint file;

}

 return;

 }

The second version of MLP does not rely on the FIFO property of the lower

communication level. In that case, MLP checks if the incoming message is in-transit

or not. If so, the message will be logged. If not, nothing happens.

4.4 Message Replay Module
Being a necessary part of the library, the message replay module helps the MPI

program to reconstruct the previous communication state from the recovery line, by

replaying the message passing. Considering of the difference between in-transit and

orphan messages, the replay module consists of two elements: in-transit message

replay and orphan message replay.

 91

4.4.1 In-transit Message Replay
Shown in Figure 1, an in-transit message is a message that is sent before the

checkpoint, but received after it. This results in the problem that the message is lost

after restarting from the checkpoint, since the target process’ checkpoint does not

include this message and the source process will not repeat the sending. So the

recovery procedure must restore the communication state by either making the source

resend the message, or making the message re-available in the receiving buffer. Given

that in checkpointing, the in-transit message is logged at the receiver side, libELC

chooses the latter scheme. However, being a portable application-level

checkpoint/recovery library, libELC cannot access neither the OS I/O buffer nor the

MPI internal buffer to restore the in-transit message. On the contrary, the message has

to be fed to the receiving call without system’s intervention.

The solution adopted in libELC is the wrapper function. Upon recovery, the process

loads the in-transit messages from the checkpoint and pushes them into a pending

message queue (PMQ). For each receiving call after the recovery, the wrapper

function first checks whether PMQ is empty. If not, the function tries to find a

matching message in the queue. When it finds the first matching message, the

wrapper copies the message content to the user-specified address, removes the

message from the queue and returns without performing the real MPI receiving.

Otherwise, the wrapper function will call MPI to do the receiving. Note,

CKPT_MPI_Recv () is used instead of the original MPI_Recv() (shown in Section.

4.3.2):

 IN_MPI_Recv(receiving buffer, incoming message envelope)

 {

 if (PMQ is not empty)

 {

 search PMQ;

 if (find a matching message)

 {

 copy the message content to receiving buffer;

 remove the matching message from PMQ;

 return;

 92

 }

 }

 CKPT_MPI_Recv(receiving buffer, incoming message envelope);

 return;

}

4.4.2 Orphan Message Replay
As shown in Figure 2, an orphan message is sent after the source’s local checkpoint

but received before the target’s local checkpoint. However, if the recovery line

consists of these two checkpoints, it leads to the scenario in which the source process

resends the orphan message after recovery, but the target would no longer need it.

Generally, the existence of orphan message is not as serious as the in-transit message

since the orphan messages just wastes the buffer space mostly. But in some cases, the

orphan message may break the program’s communication semantics.

Consider a case where process p sends two messages of the same envelope m in the

order , to process q. Moreover, before these two sends, p has just performed a

local checkpoint C . Furthermore, assume q receives the message in the order m ,

. In contrast to the sender, q triggers its local checkpoint C between the two

messages. In this scenario, m becomes an orphan message included in q’s local

checkpoint. Then, after recovering from < , >, p repeats these two sends,

making , both available to q. But q will only post one receiving request,

intending to get m . According to the non-overtaking property of MPI, the receiving

request is satisfied with m , not m . As q gets another message, its subsequent

execution might be changed.

1m 2m

1

,p i

2

1

2m ,q i

1

,p iC ,q iC

m 2m

1 2

In order to guarantee the correct communication semantics, the checkpoint/recovery

system must clear any dangers caused by the orphan message. Basically, there exist

two approaches: banning the resending at the sender side; or discarding the resent

orphan message from the receiving buffer. Since the event log of orphan messages is

identified at the receiver side, libELC chooses to discard at the receiver side.

 93

Upon trying to receive a message after recovery, the process first checks whether

there is a matching entry in the orphan message queue (OMQ). If so, the process

retrieves a message from the buffer, then discards it. The process repeats the above

actions until no matching entry can be found in OMQ. Then the process is able to get

the “real” message.

 ELC_MPI_Recv(receiving buffer, incoming message envelope)

 {

 while (there is a matching entry in OMQ)

 {

 MPI_Recv(receiving buffer, incoming message envelope);

 }

 IN_MPI_Recv(receiving buffer, incoming message envelope);

 return;

}

Note, this is the final version of the wrapper function in libELC for MPI_RECV().

4.5 Support More Feature of MPI
4.5.1 Collective communication
Besides point-to-point mode, the other important communication pattern of MPI is the

collective. According to MPI, a collective operation requires all processes in the

communicator to call it to finish. A natural result is that a valid recovery line must not

have a collective operation bisecting it. For example, if p executes a barrier call after

its local checkpoint and q calls the barrier operation before its local checkpoint, the

recovery line comprised of these two local checkpoints is not valid. Since, upon

recovery, p will repeat the barrier but q won’t, that makes p become a zombie process.

To supporting the collective communication, we wrap the original collective routines,

adding a selective procedure before it.

• Required Data:

seq=the local current checkpoint sequence

sum=the sum of checkpoint sequence of all processes,

nProc=the number of processes

 94

 Selective Procedure:

1. A reduction with the sum option is executed.

2. As each checkpoint is assigned a monotonically increasing sequence.

The sum of this sequence under a coordinated checkpoint algorithm

should be N times of the number of involving processes, where N is the

last local checkpoint sequence. The process compares the expression:

Sum/nProc with seq. However, there are 3 possibilities:

i. Sum/nProc=seq; this means no checkpoint is in progress at the

time of the execution of this collective call.

ii. Sum/nProc>seq; some other processes have started a new

checkpoint, but this process has not received any checkpoint

request.

iii. Sum/nProc<seq; this process has started a new checkpoint, but

still some processes have not completed it.

3. If the result is i and iii, no checkpoint is started; otherwise, those

processes that get the result of Sum/nProc>seq, need to create a

checkpoint immediately. As in the point-to-point case, after the local

checkpoint finishes, the process sends out current logs to all other

processes.

4.5.2 Non-standard-mode Point-to-point Communication
Besides the standard mode point-to-point communication MPI_Send/MPI_Recv, MPI

provides other several patterns to users to satisfy their specific requirement. Among

them, however, buffered, synchronous and ready options need no special treatment.

The things we care about are the non-blocking mode, MPI_Sendrecv (same as

MPI_Sendrecv_replace) and MPI_Send_init/MPI_Recv_init.

Non-blocking mode: According to the semantic of non-blocking communication,

message might have not been sent or received even if the routine has returned success.

Upon checkpointing, there are naturally two might results for a non-blocking call:

finish or not. As the send (MPI_Isend), we don’t need to worry about whether the

sending has completed or not before checkpoint. Regardless whether it is not, the

MPI_Isend operation will not be repeated after recovery. So the message must be an

 95

in-transit one to the target process. The send event log of non-blocking send is created

in the same way as for the blocking routine. Once the target logs the message in its

checkpoint, there need not be any further concern about a replay of the send.

Regarding the non-blocking receive (MPI_Irecv), things are different. Supposing the

target process posts a non-blocking receive request, and then a checkpoint is taken.

There are two possibilities. First, the receiving buffer has been filled with the

incoming data before the checkpoint. In this case, the data will be kept in the

checkpoint and receiving completes before the checkpoint. On the other hand, if the

checkpoint occurs before the buffer changes, data will not be saved. For this problem,

our solution is that after checkpoints finish, the system still keeps an eye on the

operation (MPI_Irecv). When the receiving completes (probe or wait return true), we

update the checkpoint file with the current buffer’s contents (This is what the target

needs). Therefore, the checkpoint will always contains the required data upon

recovery. Regarding the other routines, such like

MPI_Sendrecv/MPI_Sendrecv_replace, they are just composed of the basic non-

blocking operations. For MPI_Send_init/MPI_Recv_init, the event log will be created

with the call of MPI_Start or MPI_Startall.

Of note is the MPI_Request object. Since it is used to detect the completion of

corresponding communications, we have to rebuild it after recovery. However,

according the discussion above, a much simpler way is to return queries of the legacy

request as true, since both for the sending and receiving, the data will be saved into

the checkpoint file when the communication is done.

Here, we don’t need to worry about the correct semantics of application

communication. If another blocking point-to-point operation is executed between this

non-blocking operation and the checkpoint, the return of blocking call has already

implied the completion of non-blocking, according to MPI non-overtaking property.

4.5.3 Communication Wildcard
A tougher feature of MPI is the wildcard used in point-to-point communication. A

receiver may specify MPI_ANY_SOURCE for the value: source, and/or

MPI_ANY_TAG for the value: tag, indicating that any source and/or tag are

 96

acceptable, reduces the message-passing result of wildcards sometimes run-time

dependent.

So far, relying on the non-overtaking message-passing property of MPI, we have

successfully supported MPI_ANY_TAG by logging the in-transit messages according

their relative sending order. In the preceding deductions, we already get the in-transit

message list: SEN , and this log is just built up by the sending sequence in

the source’s current checkpoint interval. Even if there is a message in the list that has

the same envelope with the sending after the checkpoint and the target process uses

MPI_ANY_TAG to receive, it is always the first matching message in this list is

picked up.

, , 1{p i q iD R + }

To implement MPI_ANY_SOURCE, a simple case is: if p and q send two messages to

r, which have the same envelope (except the value of source), and r issues a receive

with wildcard: MPI_ANY_SOURCE, the target process chooses to receive the

message according to the relative sending order: the result of process r’s receiving

post (MPI_Recv) fully depends on which message was sent first. Thus when p, q and r

restart the execution from a recovery line before this message passing, the result

might be different from execution in the absence of a failure. Unfortunately, MPI

lacks a mechanism to retrieve the sending order of messages from different sources,

making it impossible to reproduce the exactly same internal message-passing state

among multiple processes, which is necessary to support the wildcard.

However, since any receiving call with wildcard will return one definite message

finally and we can get the details of the message’s envelope (rank, tag) after the

wildcard receiving, a non-deterministic receiving event can be converted into a

deterministic result. Put simply, after the receiving of an in-transit message with

MPI_ANY_SOURCE completes, we retrieve the matching message’s property from

the MPI_Status variable specified in the call and log this receiving as a deterministic

event without wildcard. Moreover each process maintains a counter to record the

receiving sequence number in the current checkpoint interval (the n message

received in the current interval). Upon receiving an in-transit message, the sequence

number will be logged with message content and message envelope. After recovery,

th

 97

the process may decide to receive the message either from the MPI buffer, or get it

from the in-transit message log by comparing the receiving sequence counter with the

logged message’s sequence number.

4.5.4 Derived Datatype
Besides the default basic datatypes bound with C and FORTRAN, MPI allows the

programs to dynamically define/destroy their own datatype to facilitate transmitting

complex data structures. As a very important feature of MPI, our approach should

include the support of such datatypes.

Upon a message passing, MPI matches the send and receive with not only the

message envelope, but also the datatype specified at two sides. As to the derived

datatype, MPI does the comparison by checking the parameter and construction mode

(contiguous, index, vector and structure, etc). For example, a derived type that

contains only one integer is actually as same as the default MPI_INT. So, even if the

sender and receiver construct the same derived datatype with different names, MPI

still can make the correct matching. As the solution to the derived datatype, when the

process passes a message of non-default types, the field Datatype of the log entry will

be filled with a reference which points to the entry in the list that records the currently

existing derived datatype. Since the recovering of MPI program is in charge of

restoring the opaque MPI property (derived datatype, communicator, group, etc), we

don’t need to worry that the receiving of a derived-datatype message after recovery

will encounter an undefined-datatype error.

4.6 Conclusion
This chapter presents the implementation detail of libELC, an application-level

checkpoint/recovery library for MPI programs running in a heterogeneous network.

The main challenge for developing a portable checkpoint/recovery facility is handling

the portable uniprocess checkpoint/recovery technique and the application-level

process coordination. For the former problem, libELC adopts the application-level

checkpoint technique, which examines the running state of a program from its logic

composition, rather than the physical elements. The saving and restore of the

execution state is done by apply transformation onto the source code. The obvious

benefit of the application-level checkpoint is the outstanding applicability of our

library on any platforms that give supports to ANSI C language.

 98

To the process coordination problem, libELC employs the Event Logging algorithm.

The implementation of Event Logging uses wrapper functions. The advantage of

Event Logging algorithm is its inter-operablity with various MPI implementations.

Also, note that libELC is the first checkpoint/recovery library so far that is built on

top of the MPI standard and provides a portable checkpoint/recovery facility in a

heterogeneous network. Although C [22] also uses the application-level checkpoint

technique, the implementation is not totally portable due to the lack of pointer

translation.

3

 99

Chapter 5

Experiments and Evaluation

This chapter is dedicated to experimental evaluation of the libELC library and the

Event Logging algorithm.

5.1 Experiment Environment
Since the main goal of the design of Event Logging and libELC is portability across

various MPI implementations, we chose two popular MPI distributions for the

following experiments: MPICH-1.2.6 and LAM/MPI 7.0.4, running on various

machines and OSes.

Table 3 shows the configuration of the heterogeneous network of computers used in

the tests:

Machine OS CPUs (Mhz)

csserver.ucd.ie Linux 2.4.18-10bigmem 4@498

csultra01.ucd.ie SunOS 5.8 1@440

csultra02.ucd.ie SunOS 5.8 1@440

pg1cluster01.ucd.ie Linux 2.4.18-10smp 2@1977

pg1cluster02.ucd.ie Linux 2.4.18-10smp 2@1977

pg1cluster03.ucd.ie Linux 2.4.18-10smp 2@1977

pg1cluster04.ucd.ie Linux 2.4.18-10smp 2@1977

csa007b4pc5.ucd.ie Linux 2.6.0 1@930

csa007b3p2ucd.ie FreeBSD 5.2.1 1@500

Table 3. Machine configuration.

Note, not all of these machines were involved in every test. The configuration of each

test run is listed with the used machine and number of processes. Also, all computers

were connected by 100 Mbits Ethernet with switches enabling parallel

communications.

In general, each test program was run in three modes: source mode, protocol mode,

and checkpoint mode. In source mode, the original program was executed. While in

 100

the protocol mode, we applied the libELC protocol to the test program, however no

checkpoint is taken. And in the checkpoint mode, not only was the libELC protocol

applied, physical checkpoints were also created.

Except for the Monte-Carlo simulation and 1-D decomposition Matrix Multiplication

experiments, in the other three programs (Gauss-Jordan method, Laplace Solver and

Parallel NeuroSys), four checkpoints were triggered by the checkpoint function:

ELC_DoCKPT(). Generally, we picked four positions in the program to insert the

calls. The Monte-Carlo simulation program used the Time Interval mechanism to

create the checkpoints. However, in the 1-D decomposition Matrix Multiplication

experiments, no checkpoints are taken (See Section 5.7).

Also, we used a range of different data sets and numbers of processes for each test.

Moreover, the figures shown in the following tests are collected from a number of

runs, discarding the outliers.

5.2 Performance Model
In this section, we present a performance model of libELC. Although the model has

included all possible factors that may affect the performance of libELC, it is necessary

to claim that, for different programs, different parameters and modifications need to

be applied to the performance model.

First, we give an expression that defines the relation between a program’s execution

time and the input data size and performance volume:

 ()
exe

i

f DataSizeT
Speed

=
∑

In which, T is the program execution time, is the total volume of the input

data,

exe

(

DataSize

)f DataSize is the computation volume, and iSpeed∑ is the total process

capacity. Note ()f DataSize may be different functions for different programs. Also

in a heterogeneous network, the data may be not evenly distributed. Instead, the data

volume allocated for each process depends on the process performance. However, if

the data volume is kept proportional to the process speed, the cost of each sub task is

 101

equal to the overall program execution time, although this optimization may not be

practicable in some cases.

Second, we calculate the overhead introduced by libELC. Generally, the overhead of

libELC consists of two parts: Protocol Overhead (PO) and Checkpoint Overhead

(CO). The protocol overhead (PO) is mainly caused during the program execution: a

process needs to maintain its shadow stack, which inspects the program’s execution

flow; locates the variable address and records the heap allocation/release. Also it

needs to log message envelopes upon the sending/receiving. The checkpoint overhead

(CO) is the cost of process coordination to and checkpoint creation. Note that in the

following experiments, the overhead of the protocol mode (with the libELC protocol

but without triggering checkpoints) is PO and the difference between the results of the

checkpoint mode and the protocol mode is CO. Generally, PO is proportional to the

number of show stack operations, and it is expressed by:

 * pp oPO C N=

In which, Cp is the average cost for each show stack operation, and N is total

number of operations that a process performs during its execution. Moreover, N is

associated with three parameters: the number of messages

OP

OP

MN , the number of

variables in the program N and the complexity of data structure used in the

program :

VAR

* VARNƒ OP MN N= + ƒ (Thus *(*p M RPO C N N)VA= + ƒ). The reason we

concern about the data structure complexity is that in most cases, a simple composite

datatype costs the system more much time to analyze and locate its members, than

managing the same number of common variables (See Section. 4.2.2.3). Our

experience shows that this is a key performance factor of the uniprocess checkpoint.

As to CO, the overhead of creating checkpoint files depends mainly on the checkpoint

data size and the I/O system performance, in which the checkpoint data size is usually

a function of the program’s input data size: g . Furthermore, the

coordination overhead relies on the in-transit and orphan message number.

(DataSize)

()*(*)
_CKPT m MSG

g DataSizeCO N C N
IO Speed

= + ;

 102

In which, is the number of checkpoints, and CKPTN _IO Speed is the speed of the I/O

system, is the cost on identifying and logging in-transit and orphan message

envelopes, and

mC

MSGN is the total number of in-transit and orphan message.

Given the above expressions, we can define libELC’s performance model as:

1exe

exe

CO PO TOverhead
T

+ +
= −

exe

PO CO
T
+

=

()*(*) *(*)
_

()

CKPT m MSG p M VAR

i

g DataSizeN C N C N
IO Speed

f DataSize
Speed

+ + + ƒ

∑

N
=

Note the above expression denotes libELC’s overhead in the checkpoint mode. As to

the overhead of the protocol mode, it is simplified to:

1exe

exe

PO TOverhead
T
+

= −

exe

PO
T

=

*(*)

()
p M VAR

i

C N N
f DataSize

Speed

+ ƒ

∑
=

As mentioned above, this model is generic but very basic. In the following four tests,

we will study it with more case-specific parameters.

 103

5.3 Test 1: Gauss-Jordan method for solving systems of
linear equations
The first experiment is an MPI implementation of the Gauss-Jordan method for

solving systems of linear equations, which was written by J. Meyer at University of

Nebraska at Omaha. The linear system is evenly distributed by row among N-1

processes, from which the results are collected to the rank 0 process by the

MPI_Allreduce function call.

Four checkpoint calls are inserted in the program: the first checkpoint is taken after

the rank 0 process completes the linear equation initialization; the second checkpoint

is called when the master process distributes the equations to the other N-1 processes;

the third call is made during the solving procedure (the halfway); the last one happens

when the solving is finished.

We ran the program on LAM/MPI 7.0.4 with three different linear equation sizes:

4,000, 8,000 and 16,000. The program was tested with a four processor configuration

(Table 4).

Machines used Number of Processes

csserver.ucd.ie 1

csultra01.ucd.ie 1

csultra02.ucd.ie 1

csa007b4pc5.ucd.ie 1

Table 4. Process configuration in Gauss-Jordan experiments.

5.3.1 Size: 4,000
In the protocol mode, libELC introduces an overhead of about 12.25%, which

includes the cost of logging message envelopes, recording program execution flow

and inspecting program state. However, in the checkpoint mode, the overhead

increases to 34.45%, which is mainly caused by the I/O operations.

 104

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 431.8440 357.5612 415.3793

2 361.7256 406.4668 450.9052

3 376.1245 408.6260 513.4520

4 307.3733 386.1419 492.6780

5 269.9916 459.8315 365.2496

Average. 349.4118 392.2147 469.7841

Overhead 12.25% 34.45%

Table 5. Gauss-Jordan experiment results for datasize: 4,000.

5.3.2 Size: 8,000
Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 1099.844 1368.3343 1229.488

2 1215.651 1174.8286 1175.125

3 1193.014 1246.8299 1438.118

4 1274.838 1152.7711 1395.019

5 1017.824 1288.9251 1215.101

Average. 1160.234 1246.338 1285.170

Overhead 7.42% 11.25%

Table 6. Gauss-Jordan experiment results for datasize: 8,000.

When the problem size grows up to 8,000, the overhead of the protocol drops to

7.42%. The slight improvement of the protocol-mode result is due to the increase of

data size, which causes more operations on saving the program state. A significant

decrease in the overhead of the checkpoint mode was observed (to 11.25%). This is

because the I/O is no longer the main performance factor compared with the

computation.

 105

5.3.3 Size: 16,000
Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 5462.419 5482.5624 5822.543

2 5456.314 5459.0973 5519.292

3 5469.852 5558.52 5517.689

4 5473.408 5436.624 5576.047

5 5477.924 5465.9402 5492.715

Average. 5467.984 5480.549 5585.654

Overhead 0.2% 2.15%

Table 7. Gauss-Jordan experiment results for datasize: 16,000.

In the case of a problem size of 16,000, we observed the best performance of libELC,

whose overheads are only 0.2% in the protocol mode, and 2.15% in the checkpoint

mode.

5.3.4 Analysis

Figure 9. Experiments results of Gauss-Jordan method,

 in which the x-axis scale is the size of the linear system.

 106

We ran the Gauss-Jordan Elimination program with three data sizes. The performance

of libELC is shown in the following figure (See Figure 9). In this test, the program’s

computation volume is denoted by the expression 2()f DataSize DataSize=

()DataSize =

 and the

checkpoint data size is the same as the input data size: g .

Increasing the data volume did not change the data structure and the number of

variables in the program, which determines PO. Also, more data incurs no extra

coordination overhead. The impact of a larger data size is that it increases the program

execution time T , as well as the checkpoint file creation time

DataSize

exe _
DataSize

IO Speed
.

Applying to the performance model, if all other parameters are fixed except DataSize.

2

*(*) *(*)
_CKPT m MSG p M VAR

i

DataSizeN C N C N
IO SpeedOverhead

DataSize
Speed

+ + + ƒ
=

∑

N

2

* * *(**
_ *

CKPT m MSG p M VARCKPT i

i

N C N C N NN Speed
DataSizeIO Speed DataSize

Speed

+ + ƒ
= +∑

∑

)

It is obvious from the model that an increase of DataSize will cause less overhead of

libELC, which is exactly the desired result since fault tolerance is only of interest for

large long-lived executions.

 107

5.4 Test 2: 2-D block decomposition Laplace Solver
The Laplace Solver program we tested was first developed by Robb Newman, and

converted to MPI by Xianneng Shen. This program uses a finite difference scheme to

solve Laplace's equation for a square matrix distributed over a square process

topology, in which each matrix element is updated based on the values of the four

neighbouring matrix elements. This procedure is repeated until the average change in

any matrix element is smaller than a specified value. Similar with the Gauss-Jordan

method experiment, in this test the first checkpoint is taken when the matrix is

initialized and the last one is made when the computation finishes. The other two

checkpoints are trigger every 2,500 iterations (5,000 in total). We adopted two

configurations for running this test: 4 and 16 processes with MPICH-1.2.6.

5.4.1 Number of Processes: 4; Matrix Size: 512*512
Machine used Number of processes

csserver.ucd.ie 1

csultra01.ucd.ie 1

csultra02.ucd.ie 1

csa007b4pc5.ucd.ie 1

Table 8. 4 process configuration in Laplace Solver experiment.

In this scenario, we ran the test with 4 processes and a 512*512 matrix with 48 node

edges (Table 9):

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 473.271 502.125 530.720

2 489.628 496.933 534.606

3 467.290 504.978 554.885

4 493.735 568.046 551.169

5 469.644 492.173 533.683

Average. 496.353 517.951 540.952

Overhead. 4.35% 8.98%

Table 9. Laplace Solver experiment results for 4 processes and matrix size 512*512.

 108

5.4.2 Number of Processes: 16; Matrix Size: 512*512
Machines used Number of Processes

csserver.ucd.ie 2

csultra01.ucd.ie 2

csultra02.ucd.ie 2

pg1cluster01.ucd.ie 2

pg1cluster02.ucd.ie 2

pg1cluster03.ucd.ie 2

pg1cluster04.ucd.ie 2

csa007b4pc5.ucd.ie 2

Table 10. 16 process configuration in Laplace Solver experiment.

In the first run, we used 16 processes to solve the same matrix as the 4 process

configuration: size of 512*512 with 24 node edges:

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 603.259 600.584 604.555

2 600.544 602.439 618.515

3 594.183 640.861 640.113

4 579.079 615.563 610.396

5 584.251 608.003 680.321

Average. 592.263 613.490 630.780

Overhead. 3.58% 6.50%

Table 11. Laplace Solver experiment results for 16 processes and matrix size 512*512.

5.4.3 Number of Processes: 16; Matrix Size: 1024*1024
Then, we increase the matrix size to 1024*1024 (48 node edges) with the same 16

process configuration. The results are:

 109

Runs Source Mode (sec) Protocol Mod (sec) Checkpoint Mode (sec)

1 1654.477 1631.159 1560.790

2 1567.377 1695.699 1608.597

3 1687.606 1773.178 1762.854

4 1695.908 1592.223 1772.727

5 1764.140 1778.471 1860.225

Average. 1673.901 1694.146 1713.038

Overhead. 1.21% 2.43%

Table 12. Laplace Solver experiment results

for 16 processes and matrix size 1024*1024

From the above tables, we observe a significant increase of the execution time caused

by the increase of number of processes and data size. However, the overhead of

libELC drops steadily, 3.58%, 6.50% for the matrix size 512*512, and 1.21%, 2,43%

for the 1024*1024 matrix.

5.4.3 Analysis
In this experiment we observe the best protocol-mode performacve of libELC: 3.05%.

As discussed in Section 5.2 and 4.2.2.3, the complexity f of the data structure

employed in an MPI program plays a significant role in determining libELC’s

protocol overhead PO: . Among the five test programs, the

data structure used in the Laplace Solver program is the simplest, which could be used

to explain the outstanding performance in the protocol-mode runs (Figure 10).

*(*p M VARPO C N N= + ƒ)

Moreover, given the parameters that have the impact on CO

()*(*)
_
()

CKPT m MSG

i

g DataSizeN C
IO Speed

f DataSize
Speed

+

∑

N
, it is noted that increasing the number of

processes does not introduce extra checkpoint overheads (in the second run 16

processes with a 512*512 matrix) . It looks the results conflict with the performance

model, however it is explainable.

 110

Figure 10. Experimental results from the Laplace Solver, in which

tests are carried out with different sizes of linear equatations.

As mentioned above, this Laplace Solver program uses a square process topology to

solve the equation for a square matrix. And for each matrix element, it is updated

based on the values of the four neighbouring matrix elements. Thus, when employing

more processes, the extra communication cost for exchanging data among distributed

matrix blocks counteracts, and even overweighs the potential (compare the source-

mode results between Table 10 and 11).

 111

5.5 Test 3: Parallel NeuronSys - solve a system of ODE's
modelling a network of neurons
Parallel Neuronsys is a neuron simulator program publically available at

http://www.cs.usfca.edu/neurosys/. Generally, it is used to solve a system of Ordinary

Differential Equation's (ODE) modelling a network of biologically realistic neurons

on parallel computers. The current version uses a fourth order Runge-Kutta method to

solve the equation. Neurons are evenly distributed over processes and form a graph in

which neurons excite and inhibit each other via their connections. Inter-process

communication contains five MPI_Allgather and one MPI_Gather function calls in

each of a total of 10,000 iterations. We conducted experiments to model a network of

64 randomly interconnected neurons and a checkpoint is taken every 2,500 iterations.

The equations modelling one neuron are based on a model presented in [75]. In our

experiments, we ran the Parallel NeuroSys with MPICH-1.2.6.

5.5.1 4 Process Configuration
This test was launched with a four process configuration, as can be seen in Table 13.

Machine used Number of Processes

csserver.ucd.ie 1

csultra01.ucd.ie 1

csultra02.ucd.ie 1

csultra03.ucd.ie 1

Table 13. 4 process configuration in Parallel NeuroSys experiment.

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 607.2415 771.7847 787.7825

2 602.9916 777.6131 796.7314

3 606.4636 770.2838 815.5689

4 604.6494 771.3599 791.9368

5 616.2382 768.0574 785.3921

Average 607.5169 771.8198 786.4258

Overhead 27.04% 29.44%

Table 14. Parallel NeuroSys experiment results for 4 processes configuration.

 112

http://www.cs.usfca.edu/neurosys/

In the 4 process configuration, libELC protocol causes 27.04% overhead. This can be

explained by the complex data structure the 64 randomly interconnected neuron

network uses, which libELC needs to disassemble to locate the structure elements.

And the checkpoint overhead is 29.44%.

5.5.2 8 Process Configuration
Machines used Number of Processes

csserver.ucd.ie 1

csultra01.ucd.ie 1

csultra02.ucd.ie 1

pg1cluster01.ucd.ie 1

pg1cluster02.ucd.ie 1

pg1cluster03.ucd.ie 1

pg1cluster04.ucd.ie 1

csa007b4pc5.ucd.ie 1

Table 15. 8 process configuration in Parallel NeuroSys experiment.

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 212.2723 221.8225 231.2935

2 196.9984 212.1979 230.1724

3 192.6401 218.2799 232.4861

4 221.5995 222.0529 226.4064

5 219.1607 222.4031 225.9673

Average 208.5342 219.3512 229.2652

Overhead 5.18% 9.94%

Table 16. Parallel NeuroSys experiment results for 8 processes configuration.

We observed significant improved performance in the 8 process configuration: 5.18%

overhead for libELC protocol and 9.94% overhead for checkpointing.

 113

5.5.3 16 Process Configuration
Finally, we tested with 16 processes:

Machines used Number of Processes

csserver.ucd.ie 2

csultra01.ucd.ie 2

csultra02.ucd.ie 2

csultra03.ucd.ie 2

pg1cluster01.ucd.ie 2

pg1cluster02.ucd.ie 2

pg1cluster03.ucd.ie 2

pg1cluster04.ucd.ie 2

Table 17. 16 process configuration in Parallel NeuroSys experiment.

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 73.0123 72.4537 77.7428

2 67.3325 65.7690 71.4936

3 70.6295 70.3439 73.6690

4 66.8718 69.9402 78.1830

5 71.3673 75.2425 73.9286

Average 69.8427 70.7498 75.0034

Overhead 1.30% 7.38%

Table 18. Parallel NeuroSys experiment results for 16 processes configuration.

Since the testing machines share the same file system in our test, the I/O operation

became the main performance bottleneck when the number of processes was

increased. However, as the previous experiment data showed, the overheads drop

from 27.04% to 5.18%, to 1.30% for libELC protocol, and 29.44% to 9.94% to 7.38%

for checkpointing, for 4, 8 and 16 process configuration respectively.

5.5.4 Analysis
In the tests of the Parallel NeuronSys environment (See Figure 11), we concentrated

on the scalability of libELC. One immediate observation is that employing extra

processes reduces the amount of time required to solve a particular problem, which

should causes more checkpoint overhead. However, as the experiment results

 114

demonstrate, the performance of libELC gets better with the increase of number of

processes. To illustrate the results, we investigated the checkpoint files, in which we

found that the reduced program execution significantly reduces the occurrence of in-

transit and orphan messages (MSGN). Fewer in-transit and orphan messages mean that

upon checkpointing, libELC spends much less time on the message identification and

logging. Recalling the performance model:

()*(*) *(*)
_

()

CKPT m MSG p M VAR

i

g DataSizeN C N C N
IO SpeedOverhead f DataSize

Speed

+ + + ƒ
=

∑

N

Although the increase of computing capacity would augment the proportion of

overhead, the message cost saving counteracts this effect and lowers the overall

overhead. Moreover, in the experiments, we observe that if multiple processes share

the same storage system, the I/O cost of creating the physical checkpoint file increases

significantly as the system expands.

Figure 11. Experiment results of Parallel NeuronSys, in which

tests are carried out with different numbers of processes.

 115

5.6 Test 4: Monte-Carlo simulation of a system of hard
disks
This program does a Monte-Carlo simulation of a system of hard disks. The fraction

of the total area that is covered by disks (area fraction) is set to 0.5 and the user has

control over the size of the system that will be simulated. The disks start from a

triangular lattice and the simulation works in a master-slave pattern, in which the size

of the system is determined by specifying the number of disks along an edge of the

initial lattice. Due to limitations imposed by the program, all tests were performed

with the same machine configuration with MPICH-1.2.6:

Machine used Number of Processes

csserver.ucd.ie 1

csa007b4pc5.ucd.ie 1

Table 19. Process configuration in Monte-Carlo simulation.

To exercise the Time Interval method of triggering checkpoints, we deployed it in the

Monte-Carlo simulation; the checkpoints were generated every 150 seconds. Also, we

conducted three experiments by changing the simulation input parameters to vary the

execution time.

5.6.1 Number of Disks: 16; Number of Sweeps: 10,000
In the first experiment, we ran a simulation of 16 disks, with 10,000 sweeps. The

libELC protocol adds about 24.87% overhead, and checkpointing increases the

overhead to 33.15%.

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 134.316 165.668 193.546

2 134.026 172.971 178.596

3 133.762 163.933 191.569

4 132.600 169.208 170.963

5 137.608 167.749 160.538

Average 134.462 167.905 179.042

Overhead 24.87% 33.15%

Table 20. Monte-Carlo simulation results for 16 disks and 10,000 sweeps.

 116

5.6.2 Number of Disks: 32; Number of Sweeps: 10,000
In the following two tests, we increased the computation by increasing the simulation

parameters. We observed a steady decrease of the overheads of both the protocol

mode and the checkpoint mode. In the second test this dropped to 15.86 % (protocol

mode) and 23.83% (checkpoint mode).

Runs Source Mode (sec) Protocol Mode (sec) Checkpoint Mode (sec)

1 1007.543 1127.36 1111.139

2 1012.864 1121.27 1114.899

3 957.016 1112.925 1267.157

4 925.707 1115.312 1262.268

5 921.590 1113.149 1219.235

Average 964.944 1118.003 1194.939

Overhead 15.86% 23.83%

Table 21. Monte-Carlo simulation results for 32 disks and 10,000 sweeps.

5.6.3 Number of Disks: 32; Number of Sweeps: 20,000
The third experiment was run with the largest simulation size, 32 disks and 20,000

sweeps. However, the best performance obtained was 11.77% overhead for protocol

mode and 14.32% for the checkpoint mode.

Runs Source Mode Protocol Mode Checkpoint Mode

1 1808.593 2225.312 2503.654

2 2092.401 2303.537 2241.002

3 2284.970 2252.679 2225.032

4 1895.911 2239.588 2236.935

5 1989.446 2236.644 2307.413

Average 2014.262 2251.523 2302.837

Overhead 11.77% 14.32%

Table 22. Monte-Carlo simulation results for 32 disks and 20,000 sweeps.

 117

5.6.4 Analysis
The Monte-Carlo Simulation test shows the performance of libELC with a time

interval of 150 seconds. In these tests, three different volumes of simulation were

performed, varying the program’s execution time. In keeping with the experimental

results reported earlier, as the data size increased, the overhead due to libELC reduced

(See Figure 12).

Figure 12. Experiments results of Monte-Carlo Simulation, in which

the x-axis is the number of disks and sweeps in the simulation.

Recalling the performance model: given the other parameters fixed, the overhead of

libELC will increase with the number of checkpoints. However, with the Time

Interval Checkpoint mechanism, the checkpoint is triggered at regular intervals. So,

the number of checkpoints created during the program execution is proportional to the

program’s execution time, in which case the parameter N is denoted by: CKPT

exe
CKPT

interval

TN
T

= , in which T is the checkpoint interval set by the user. Then, the

performance model becomes:

interval

 118

()
()*(*) *(*)

_
()

i
m MSG p M VAR

interval

i

f DataSize
Speed g DataSize C N C N N

T IO SpeedOverhead f DataSize
Speed

+ + + ƒ
=

∑

∑

()(*) *(*)_
()

m MSG
p M VAR

interval

i

g DataSize C N C N NIO Speed
f DataSizeT

Speed

+ + ƒ

∑
= +

As we can see, using the Time Interval Checkpoint mechanism, although the number

of checkpoints is proportional of the program execution time, the overall overhead

does not increase. Therefore, long running tasks benefit more from the checkpoint

mode.

5.7 Test 5: Comparing Event Logging with Message Tagging
Given the existence of other coordinated checkpoint algorithms, it is necessary to

compare Event Logging to its competitors. In this section we present the results of a

comparision between Event Logging and Message Tagging.

Being coordination algorithms, Event Logging and Message Tagging aim to

orchestrate multiple processes so as to create a valid recovery line. Neither of them

deals with single process checkpoint and recovery. Thus in this test we concentrate on

the communication overhead introduced by the two algorithms (no checkpoints

taken).

As to the implementation, we chose the derived datatype approach (see Section. 3.2.2)

for tagging the header information onto the message. It is noted that libELC (Event

Logging) and libMTC (Message Tagging) are both constructed on top of the Chandy-

Lamport algorithm. They share the codes for trigger local checkpoints, logging and

replaying messages in our implementations. The differences rely in how a particular

algorithm identifies the in-transit and orphan messages, which are summarized below:

Event Logging:

 119

(1) For each message sending/receiving operation, the process saves the message

envelope in a structure of <tag, rank, communicatior>, and append the envelope onto

the send/receive logs.

(2) Upon a process finishes its local checkpoint, it sends out the sending logs instead

of marker messages to the corresponding processes.

(3) Upon receiving a send log, a process compares the send log with the local receive

log to identify the in-transit message and orphan message envlopes (the process may

trigger a new local checkpoint depending on whether it is the first send log it

receives). Using the identified envelopes, the process can detect and save the trouble

messages.

Message Tagging:

(1) For each message sending operation, the process copies the message content and

header information into a buffer and defines a new derived datatype (orginal datatype

plus header datatype). The temporary buffer and derived datatype are used instead of

the original in the communication.

(2) For receiving a message, a process also needs to prepare the derived datatype

and a temporary buffer. The tagged message is saved in the buffer, where the header

is unpacked and checked to see wether the message is intransit or orphan.

(3) Note, the above two steps only help a process to identify the trouble messages.

Coordination message is still necessary to notify the finish of a local checkpoint. In

libMTC, a process p counts the numbers of the incoming/outgoing messages (,p iIN ,

) for the process i. OU will be sent to process i upon checkpointing as

marker messages to let i know how many in-transit messages to be logged before

closing the checkpoint (OUT).

,p iOUT ,p iT

p i iIN−, , p

It is observed from the above comparision tht the performance of Message Tagging is

heavily affected by the message size; Event Logging, on the other hand, is not:

* *

()
tag M

MT

i

C N MessageSize
O f DataSize

Speed

=

∑

 120

 log *
()

M
EL

i

C N
O f DataSize

Speed

=

∑

MTO , O denote the overheads of Message Tagging and Event Logging. C , C

respectively denote the cost for tagging messages tagging and logging message

envelopes.

EL tag log

MN is the total number of messages and MessageSize is the average

message size. (
i

)f DataSize
Speed∑

 denotes the average execution time in source mode with

outliers removed.

To compare the two methods, we ran a simple 1-D decomposition matrix

multiplication program on the following machines with MPICH-1.2.6:

Machine used Number of Processes

csserver.ucd.ie 2

csultra01.ucd.ie 1

csa007b4pc5.ucd.ie 1

csa007b3pc2.ucd.ie 1

Table 23. Process configuration in 1-D Decomposition matrix multiplication experiment.

Since we wanted to examine the communication overhead, we were concerned with

the performance of the message passing between both homogeneous and

heterogeneous processes. In particular we started the master process on a Linux 2.4

machine (csserver.ucd.ie), and launched the slaves on four different platforms: Linux

2.4 (csserver.ucd.ie), Solaris 5.8 (csultra01.ucd.ie), Linux 2.6 (csa007b4pc5.ucd.ie)

and FreeBSD 5.2.1 (csa007b3pc2.ucd.ie).

In this program, the master process (rank 0) distributes the matrix to the slaves in a

cyclic manner. These slave processes do the multiplication job and return the result to

the master. The distribution unit is set to 4 columns so that the overall message

number is
4

nColum and the message size is 4* Row , in which Column and Row

represent the number of columns and rows respectively. In this case, the performance

model for message tagging becomes:

 121

* *

()
tag M

MT

i

C N MessageSize
O f DataSize

Speed

=

∑

* * 4 * * *4

* *
tag

tag

i i

ColumnC Row C Column Row
Column Row Column Row

Speed Speed

= =

∑ ∑

5.7.1 Matrix Size: 512*512, Message Size: 512 KB
The first run used a matrix of 512*512, in which the message size was 512 KB.

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec)

1 32.423 32.756 33.784

2 32.838 32.212 34.349

3 32.564 31.853 34.347

4 32.582 32.439 33.260

5 32.341 32.439 35.059

Average 32.579 33.340 34.160

Overhead 2.33% 4.85%

Table 24. Matrix multplication experiment result for matrix size 512*512.

5.7.2 Matrix Size: 1024*1024, Message Size: 2 MB
We then increased the matrix size to 1024*1024, and the message size increased to 2

MB.

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec)

1 123.243 125.380 131.566

2 124.056 126.373 127.262

3 118.744 125.438 130.939

4 118.289 122.868 132.458

5 122.494 124.113 129.518

Average 121.365 124.834 130.348

Overhead 2.85% 7.40%

 122

Table 25. Matrix multplication experiment result for matrix size 1024*1024.

5.7.3 Matrix Size: 2048*2048, Message Size: 8 MB
Finally, two 2048*2048 matrix were multiplied. The message size was 8 MB.

Runs Source Mode (sec) Event Logging (sec) Message Tagging (sec)

1 554.479 535.848 589.596

2 533.030 556.435 578.466

3 569.116 541.447 584.748

4 554.758 617.252 602.031

5 517.098 553.635 593.42

Average 545.696 560.923 589.652

Overhead 2.79% 8.05%

Table 26. Matrix multplication experiment result for matrix size 2048*2048.

5.7.4 Analysis
In this test, we ran a 1-D decomposition matrix multiplication program with three

sizes: 512*512, 1024*1024, and 2048*2048 (See Figure 13).

 123

Figure 13. Comparison results of matrix multiplication, in which

the message sizes in the three tests are 512KB, 2MB and 8MB.

In general, we observe more overheads introduced by Message Tagging than Event

Logging. Moreover, in the derived datatype approach, processes need to build a new

datatype and copy the header and the message into a temporary buffer for every

outgoing message. Event Logging processes, on the other hand, only log the message

envelopes. In this sense, Message Tagging is influenced by the message size, while

Event Logging is not. This can be used to explain the above experiment results. When

the message size increases with the matrix size, Message Tagging introduces more

overhead but that of Event Logging remains approximately the same.

5.8 Optimal Checkpoint Interval
The reason for creating checkpoints for a long running program is to reduce the

execution time lost due to failures. However in failure-free time, checkpointing

prolongs the program’s execution. We therefore need to find out the program’s

optimal checkpoint scheme, which minimizes the execution time, without weakening

fault tolerance.

 124

Take, for example, a program whose original execution time is 100 minutes. Creating

a checkpoint for the program takes 4 minutes and the recovery costs 2 minutes.

Moreover, assume a checkpoint is taken every 20 minutes throughout the program’s

life. Given the above conditions, the failure-free execution time of the program with

checkpoints is:

 100100 4* 120
20

+ = (minutes);

Moreover, suppose the program’s MTBF (Mean Time Between Failure) is 50

minutes, so during its execution the possible number of failures is 100/50=2. Taking

into account the recovery time, the expectation of the program execution time is

(minutes), in which Lo is the execution time

lost due to the i failure. The expectation of ∑ is

2

1
120 2*2 i

i
Lost

=

+ +∑ 0 20iLost< ≤

th

ist

2

1
i

i

Lost
=

(1 2 ...20)2* 21
20

+ +
= (minutes). Then the expectation of the program execution time

with checkpointing (EPET) is 145 minutes.

In this section, we present an approach trying to minimize EPET. From the above

example, we can construct a generic expression to denote a program’s EPET. Suppose

the program’s original execution time is T , the checkpoint cost is T , the recovery

cost is T and the checkpoint interval is

O

t

C

R ∆ . Also, suppose the program’s average

uptime is T and the execution time lost due to the i failure’s execution time lost is

. Then EPET is calculated by

UP
th

iLost

 * *O O
O C R

UP

T TEPET T T T Lost
t T

= + + +
∆ ∑ i ;

The expectation of ∑ is iLost 1*
2

O

UP

T t
T

+ ∆ . EPET then becomes

 1*
2

O
C

UP UP

T tEPET T T
T

* *O O
O R

T TT
T t

+ ∆
= + ++

∆
;

 125

Moreover, for a specific program the parameters T ,T ,T ,T are usually constants.

So, when

O C R UP

1* *
2

O O
C

UP

tT
t T

+ ∆
+

∆
T T is minimized, in which 2* *C UPT Tt∆ = , EPET has

the minimal value
2 *

UP

T2**
2*

O O
O R

UP UP

T T
T T

+ + + O

T
CTT T .

So, we conclude for a program with the Time Interval mechanism, the optimal

checkpoint interval is 2* *C UPT T .

5.9 Conclusion
In this chapter, we described several experiments conducted with libELC. The five

different MPI programs were the Gauss-Jordan method for solving systems of linear

equations; 2-D block decomposition Laplace Solver; Parallel NeuronSys and a

Monte-Carlo simulation. In general, each program was run with either different input

data sizes or different process scale. Moreover, the test of every data size and

configuration was conducted with 3 modes: source, protocol and checkpoint modes.

The protocol mode incorporates only the libELC protocol without triggering any

checkpoints; and checkpoint mode creates four physical checkpoint files using

libELC.

The experimental results demonstrate the portability of libELC in heterogeneous

networks. Using a shared filesystem, machines with different architectures and data

representation were able to generate uniform checkpoint files, which could be used to

recover the MPI program’s running state on other heterogeneous, non-compatible

platforms. It is noted that we have performed severl recovery tests internally.

However such testing results have not been included in this chapter. The formal

experiments work is in progress and would be finished soon.

As to the performance, we observed that libELC’s overhead is influenced by the data

structure complexity, the data size and the process scale. In the test of the 2-D block

decomposition Laplace Solver, we note that better performance was gained with

simpler data structures in the MPI program use. As the data structure gets complex, it

costs libELC more to locate the structure elements. Also, the more pointers the

 126

program uses, the more time libELC spends on transforming the pointers’ physical

address to the logic representation.

Another performance factor is the data size. In the same program, for example, the

Gauss-Jordan method for solving systems of linear equations), libELC introduces less

overhead with large data sets than small ones. This becomes very significant when the

machine is fully loaded, in which case the overhead of libELC becomes insignificant.

The third factor is the number of processes. Due to the significantly reduced number

of in-transit and orphan messages, better performance results are obtained as the

process scale increases. However, in our experiments, we also observe that if multiple

processes share a single storage system (NFS), the concurrent I/O operations caused

by creating the physical checkpoint files became a bottleneck for libELC.

Furthuremore, we tested libELC with the Time Interval mechanism. We observed that

no significant performance descrease occured as the program’s execution time

increased. The advantage of the Time Interval mechanism is that it is transparent to

the user. By comparision, the checkpoint function requires users to manage the

checkpointing explicitly. However, the advantage of using the checkpoint function is

that the user may manually control and select the most approapriate time for

checkpointing.

We also presented the comparison between Event Logging and Message Tagging in

this chapter. The experiments demonstrated that the performance of Message Tagging

fluctuates with the message size. And more important, as discussed in Section. 3.2.2,

the Message Tagging approach is not completely compliant with the MPI standard.

By comparion, Event Logging introduces fewer overheads, and the performance of

Event Logging is not affected by message size. And Event Logging is designed totally

on top of MPI. From the point of view of implementation, another advantage of Event

Logging over Message Tagging is that Event Logging enables fast recovery line

commit. At the time message identification finishes, Event Logging has found out the

envelopes for the in-transit messages, so a process can simply post receive requests to

log these in-transit messages (note that FIFO communication is commonly supported

by the lower layer of MPI implementations). However, in Message Tagging, the

 127

process has to wait as long as the messages are received by the program. This is

because the process has no knowledge of an in-transit message until it checks a

message's header.

Chapter 6

Conclusion and Future Work

6.1 Summary
This thesis presents Event Logging, a high level coordination algorithm for the

checkpoint/recovery of MPI programs in heterogeneous networks of computers. The

main contribution of Event Logging is that it addresses the application-level non-

FIFO challenge of the Chandy-Lamport algorithm, which is a key problem for a

portable implementation of coordinated checkpointing in MPI programs. As a

consequence, Event Logging is highly portable given a heterogeneous environment in

 128

that it is totally built on top of the MPI standard. This makes Event Logging rely on

no particular assumption of the underlying MPI implementation or the running

platform. The portability significantly benefits Event Logging given the inherent

heterogeneity of a network of computers.

From the point of the technique, Event Logging combines the merits of both

coordinated checkpointing and message logging. However, it reduces most of the

overheads of message logging since Event Logging records only the message

envelope without the actual content. The message envelopes will be exchanged upon

checkpointing for the message identification. The in-transit messages and orphan

message envelopes will be identified and saved as part of the recovery line. The

combination of coordinated checkpoint and message logging brings significant

benefits including small failure-free overheads, fast recovery line commit, a simple

recovery procedure and one-checkpoint rollback extent.

This thesis also presents the implementation of Event Logging: libELC. libELC is a

portable checkpoint and recovery library for C/MPI programs. It employs Event

Logging for distributed process coordination. As to the checkpoint/recovery for each

individual heterogeneous process, libELC captures the snapshots at the application

level. Unlike the traditional system-level or library-level checkpoint mechanisms, the

application-level checkpoint examines the logic composition of a running process.

This mainly consists of program variables, heap memory and execution flow. Thus,

the state saving is done by recording the variable value, the heap content and program

function calls. Upon recovery, the same sequence of functions is issued so the

execution flow will be exactly reconstructed. Repetition of instructions executed

before checkpoints is avoided by using GOTO statement. The value of a program

variable is re-assigned following the variable’s definition. The heap is reallocated and

the saved content is restored in the new memory space. The advantage of such an

application-level checkpoint/recovery approach is that it is totally system-

independent. As long as a platform supports for ANSI C language, libELC is able to

capture the snapshot for any C programs running on it.

Besides the uniprocess checkpoint/recovery facility, libELC integrates Event Logging

by providing a set of wrapper functions for the MPI interface. These wrapper

 129

functions hide the event logging operations completely from the point of view of the

user. The user is given two options to trigger a global checkpoint in libELC, either by

an explicit function call: ELC_DoCKPT() or by setting the Checkpoint Time Interval,

which generates checkpoints in a preset period.

The experiments carried out to evaluate Event Logging are also presented in this

thesis. Five programs were tested with two main MPI distributions: LAM/MPI-7.0.4

and MPICH-1.2.6. The experiment results demonstrate the efficiency of the Event

Logging algorithm.

6.2 Future Work
Message Identification Optimization: The current version of libELC implements

message identification by using the “plain” sequential search. However, as discussed

in Section. 3.4.2, a fast search algorithm, like binary search, helps reduce the

identification cost. Unfortunately, using such algorithm requires change to the data

structure used to organize the event logs. Currently, libELC uses the link table to store

the message envelope. In order to implement the fast search, changes will be

necessary to use a sorted table to organize the envelopes.

Selective Checkpoint: One criticism of the coordinated checkpoint model is the lack

of independence for each individual process to create local checkpoints. It mandates

that all processes must participate in the checkpoint as well as the rollback. Given a

small or medium network, the tradeoff is worthwhile. However, with an increase of

the process number, as within a Computational Grid, such a penalty would be

considerable. This is especially true of the involvement of all processes in recovery

even if only one fails. To alleviate this constraint, the next step is to implement

Selective Checkpoint [35, 36] to minimize the scale of checkpointing processes in

libELC. Event Logging provides the ability to implement Selective Checkpoint since

the inter-process message passing has already been logged upon checkpointing.

Minimize Checkpoint Datasize: Significant potential for optimization lies in

minimizing the checkpoint datasize. Since the application-level approach takes the

point of view of the program semantic, it is possible to use some compiler techniques

[71, 72] to exclude the unnecessary data upon checkpointing. Given the dramatically

 130

increasing problem size in the real world, such a benefit is scheduled in the future

plan of libELC.

Local/Shared File System Support: Although the current libELC implementation

allows the users to save the checkpoint files on the local disks, a shared file system is

desired in most cases. The advantage of the shared file system is that it tolerates the

faults such as disk corruption or machine physical damage, which make the local file

system inaccessible upon recovery. However, the main drawback for using the shared

file system is that the file system itself becomes a single point of failure. To avoid this

problem, we consider adding supports to combine the merits of the local file system

and the shared storage in the next version of libELC.

Bibography

[1] A. Lastovetsky. “Parallel Computing on Heterogeneous Networks”. John
 Wiley & Sons, 2003.

[2] Alexey L. Lastovetsky, Ravi Reddy, “HMPI: Towards a Message-Passing
 Library for Heterogeneous Networks of Computers”, In Proceedings of
 IPDPS, 2003.

[3] A. Y. Zomaya and H. B. Diab, “Dependable Computing Systems:
 Paradigms, Performance Issues, and Applications”, Wiley Series on
 Parallel and Distributed Computing, Wiley-Interscience, 2005.

 [4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high performance,
 portable implementation of the MPI message passing interface standard”,
 Parallel Computing, Volume 22(6), pp.789-828, 1996.

 131

[5] G. Burns, R. Daoud and J. Vaigl, “LAM: An open cluster environment
 for MPI”, Proceeding of Supercomputing Symposium, pp.379--386, 1994,
 Toronto, Canada.

[6] M. P. I. Forum. “MPI: A message-passing interface standard”, Technical
 report, May, 1994.

[7] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: an approach
 to designing fault-tolerant computing systems”, ACM Transactions of
 Computer System, Volume 1(3), pp.222-238, ACM Press, 1983.

[8] L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals
 Problem”, ACM Transactions of Programming Language System, Volume
 4(3), pp.382-401, ACM Press, 1982.

[9] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D. Risinger, M.
 A. Taylor, T. S. Woodall and M. W. Sukalski, “Architecture of LA-MPI,
 A Network-Fault-Tolerant MPI.”, IPDPS, 2004.

[10] B. Johnson, “An Introduction to the Design and Analysis of Fault-
 Tolerant Systems”, In Pradhan, D.K (ed.), Fault-Tolerant Computer
 System Design, pp.1-87. Upper Saddle River, NJ: Prentice Hall, 1995.

[11] R. Guerraoui and A. Schiper, “Software-Based Replication for Fault
 Tolerance”, Journal of Computer, Volume 30(4), pp.68-74, IEEE
 Computer Society Press, 1997.

[12] R. Batchu, A. Skjellum, Z. Cui, M. Beddhu, J. P. Neelamegam,Y. Dandass
 and M. Apte, “MPI/FT: Architecture and Taxonomies for Fault-Tolerant,
 Message-Passing Middleware for Performance-Portable Parallel
 Computing”, 1st International Symposium on Cluster Computing and the
 Grid, May, 2001.

[13] G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-

Grbovic, J. Dongarra, “Process Fault-Tolerance: Semantics, Design and
Applications for High Performance Computing”, International Journal for
High Performance Applications and Supercomputing, April, 2004.

[14] G. Fagg, J. Dongarra, “Building and using a Fault Tolerant MPI
 implementation", International Journal of High Performance Applications
 and Supercomputing, 2004.

[15] G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI”,
 Proceedings of the International Parallel Processing Symposium, pp.526-
 531, Apr. 1996.

[16] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining
 Global States of Distributed Systems”, ACM Transactions on Computing

 132

 Systems, Volume 3(1), pp.63-75, Aug. 1985.

[17] Y. Chen, K. Li and J. S. Plank, “CLIP: A Checkpointing Tool for
 Message-passing Parallel Programs”, Proceedings of SC97: High
 Performance Networking Computing, Nov. 1997.

[18] S. Louca, N. Neophytou, A. Lachanas and P. Evripidou, “Portable Fault
 Tolerance Scheme for MPI”, Parallel Processing Letters, Volume 10(4),
 pp.371-382, 2000.

[19] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier and F.
 Magniette, “MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based
 on the Pessimistic Sender Based Message Logging”, In proceedings of The
 IEEE/ACM SC2003 Conference, Phoenix USA, Nov. 2003.

[20] N. Woo, S. Choi, H. Jung, J. Moon, H. Y. Yeom, T. Park and H. Park,
 “MPICH-GF: Providing Fault Tolerance on Grid Environments”, The
 3rd IEEE/ACM International Symposium on Cluster Computing and the
 Grid (CCGrid2003), the poster and research demo session, May. 2003.

[21] N. T. Karonis, B. Toonen and Ian Foster, “MPICH-G2: A Grid-Enabled
 Implementation of the Message Passing Interface”, Journal of Parallel and
 Distributed Computing, Volume 63(5), pp.551-563, May. 2003.

[22] G. Bronevetsky, D. Marques, K. Pingali and P. Stodghill, “C3: A System
 for Automating Application-level Checkpointing of MPI Programs”,
 International Workshop on Languages and Compilers for Parallel
 Computing, Oct. 2003.

[23] L. Lamport, “Time, clocks, and the ordering of events in a distributed
 system”, Communications of the ACM, Volume 21(7), pp.588-565, Jul.
 1978.

[24] Y. Tamir and C. H. Séquin, “Error recovery in multicomputers using
 global checkpoints”, In Proceedings of the International Conference on
 Parallel Processing, pp. 32-41, Aug. 1984.

[25] L. Valiant, “A bridging model for parallel computation”, Communications
 of the ACM, Volume 33(8), pp.103-111, 1990.

[26] Z. Tong, R. Y. Kain and W. T. Tsai, “Rollback-recovery in distributed
 systems using loosely synchronized clocks”, In IEEE Transactions on
 Parallel and Distributed Systems, Volume 3(2), pp.246-251, Mar. 1992.

[27] F. Cristian and F. Jahanian, “A Timestamp-Based Checkpointing
 Protocol for Long-Lived Distributed Computation”, 10th Symposium on
 Reliable Distributed Systems, Sep. 1991.

[28] P. Ramanathan and K. G. Shin, “Use of Common Time Base for

Checkpointing and Rollback Recovery in a Distributed System”, IEEE

 133

http://greg.bronevetsky.com/papers/LCPC2003.pdf
http://greg.bronevetsky.com/papers/LCPC2003.pdf

Transactions on Software Engineering, Volume 19(6), pp.571-583, Jun.
1993.

[29] N. Neves and W. K. Fuchs, “Using Time to Improve the Performance of
 Coordinated Checkpointing”, IEEE International Computer Performance
 and Dependability Symposium, Sep. 1996.

[30] N. Neves and W. K. Fuchs, “Coordinated Checkpointing without Direct
 Coordination”, Proceedings of IEEE International Computer Performance
 and Dependability Symposium, pp.23-31, Sep. 1998.

[31] G. P. Kavanaugh and W. H. Sanders, “Performance Analysis of Two
 Time-based Coordinated Checkpointing Protocols", Pacific Rim
 International Symposium on Fault-Tolerant Systems, Dec. 1997.

[32] R. Koo, S. Toueg, “Checkpointing and rollback recovery for distributed
 systems”, IEEE Transaction of Software Engeneering Special Edition,
 Volume 13, pp. 23-31, 1987.

[33] K. Li, J. F. Naughton and S. Plank, “Checkpointing multicomputer
 applications”, In Proceedings of IEEE Conference On Reliable Distributed
 System, pp.2-11, 1991.

[34] S. Venkatesan, “Message optimal incremental snapshots”, In Proceedings
 of IEEE 9th International Conference of Distributed Computer System, pp
 53-60, 1991.

[35] P. J. Leu and B. Bhargava, “Concurrent robust checkpointing and
 recovery in distributed systems”, In Proceedings of International
 Conference on Data Engineering, pp.154-163, 1988.

[36] J. L. Kim and T. Park, “An efficient protocol for checkpointing recovery
 in distributed systems”, IEEE Transactions of Parallel Distributed System,
Volume 4, pp.955-960, 1993.

[37] B. Randell, “System structure for software fault-tolerance”, IEEE
 Transactions on Software Engineering Special Edition, Volume 1(2), pp.220-
 232, Jun. 1975.

[38] L. Alvisi and K. Marzullo, “Message Logging: Pessimistic, Optimistic and
 Causal”, Proceedings of the 15th International Conference on Distributed
 Computing Systems, pp.229-236, 1995.

[39] R. Strom and S. Yemini, “Optimistic recovery in distributed systems.”
 ACM Transactions on Computer Systems, Volume 3(3), pp. 204-226, Aug.
 1985.

[40] R.E. Strom, D.F. Bacon, and S.A. Yemini, “Volatile Logging in n-Fault-
 Tolerant Distributed Systems,” Proceedings of 18th International
 Symposium of Fault-Tolerant Computing, pp. 44-49, 1988.

 134

[41] B. Bieker, G. Deoninck, E. Maehle and J. Vounckx, “Reconfiguration and
 checkpointing in massively parallel systems”, In Proceedings of the 1st
 European Dependant Computing Conference, EDCC-1, pp. 353-370, Oct.
 1994.

[42] T. T-Y. Juang and S. Venkatesan, “Crash recovery with little overhead”,
 In Proceedings of the International Conference on Distributed Computing
 Systems, pp. 454-461, May 1991.

[43] K. Bhatia, K. Marzullo and L. Alvisi, “The relative overhead of
 piggybacking in causal message logging protocols”, In Proceedings of the
 Seventeenth Symposium on Reliable Distributed Systems, pp. 348-353, 1998.

[44] B. Bhargava and S. R. Lian. “Independent checkpointing and concurrent
 Rllback for recovery - An optimistic approach”, In Proceedings of the
 Symposium on Reliable Distributed Systems, pp. 3-12, 1988.

[45] A. Acharya and B. R. Badrinath, “Recording distributed snapshots based
 on causal order of message delivery”, In Information Processing Letters,
 Volume 44(6), Dec. 1992.

[46] E. N. Elnozahy, “Manetho: Fault tolerance in distributed systems using
 rollback recovery and process replication”, Ph.D. Thesis, Rice University,
 Oct. 1993. Also available as Technical Report 93-212, Department of
 Computer Science, Rice University.

[47] L. Alvisi, “Understanding the message logging paradigm for masking
 process crashes”, Ph.D. Thesis, Department of Computer Science, Cornell
 University, Jan. 1996. Also available as Technical Report TR-96-1577.

[48] D. B. Johnson, “Distributed system fault tolerance using message
 logging and checkpointing”, Ph.D. Thesis, Rice University, Departmen of
 Computer Science, 1989.

[49] G. Muller, M. Hue and N. Peyrouz, “Performance of consistent
 checkpointing in a modular operating system: Results of the FTM
 experiment”, In Lecture Notes in Compute Science: Dependable
 Computing, EDDC-1, pp.491-508, 1994.

[50] J. S. Plank, “Efficient checkpointing on MIMD architectures”, Ph.D.
 Thesis, Princeton University, Department of Computer Science, 1993.

[51] L. M. Silva, “Checkpointing mechanisms for scientific parallel
 applications”, Ph.D. Thesis, University of Coimbra, Department of
 Computer Science, 1997.

[52] D. Briatico, A. Ciuffoletti and L. Simoncini, “A distributed domino-
 effect free recovery algorithm”, In Proceedings of the IEEE
 International Symposium on Reliability, Distributed Software, and Databases,

 135

 pp. 207-215, Dec. 1984.

[53] D. L. Russell, “State restoration in systems of communicating processes”,

In IEEE Transactions on Software Engineering Special Edition, Volume 6(2),
183-194, Mar. 1980.

[54] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain and A. D. Mel, “An
 analysis of communication-induced checkpointing”, In Digest of
 Papers, FTCS-29, The Twenty Nineth Annual International Symposium on
 Fault Ttolerant Computing, pp.242-249, Madison, Wisconsin, 1999.

[55] Elnozahy and W. Zwaenepoel, “On the use and implementing of
 message logging”, In Digest of Papers, FTCS-24, The Twenty Fourth
 International Symposium on Fault-Tolerant Computing, pp.298-307, 1994.

[56] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P.
 Hargrove and E. Roman, “The LAM/MPI Checkpoint/Restart
 framework: System- initiated checkpointing”. In Proceedings, LACSI
 Symposium, Sante Fe, New Mexico, USA, October 2003.

[57] J. Dongarra, S. Huss-Lederman, S. Otto, M. Snir, and D. Walker, “MPI:
 The Complete Reference”, The MIT Press, 1996.

[58] L. Silva, J. Silva, “Global checkpointing for distributed programs”, In
 Proceedings of. IEEE 11th Symposium On Reliable Distributed System,
 pp.155-162, 1992.

[59] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance
 of consistent checkpointing”, In Proceedings of the Eleventh Symposium on
 Reliable Distributed Systems, pp. 39-47, Oct. 1992.

[60] S. Rao, L. Alvisi, and H. M. Vin, “Egida: An extensible toolkit for low-
 overhead fault-tolerance”, In Symposium on Fault-Tolerant Computing,
 pp.48–55, 1999.

[61] M. J. Litzkow and M. Solomon, “Supporting Checkpointing and
 Process Migration Outside the UNIX Kernel”, USENIX Conference
 Proceedings, pp.283-290, Jan. 1992, San Francisco, CA.

[62] J. S. Plank, M. Beck, G. Kingsley and K. Li, “Libckpt: Transparent
 Checkpointing under Unix", USENIX Winter 1995 Technical
 Conference, pp.213-224, Jan. 1995.

[63] H. Zhong and J. Nieh, “CRAK: Linux Checkpoint / Restart As a Kernel
 Module”, Technical Report CUCS-014-01, Department of Computer
 Science, Columbia University, Nov. 2002.

[64] E. Pinheiro, EPCKPT, http://www.research.rutgers.edu/~edpin/epckpt/

[65] O. O. Sudakov, E. S. Meshcheryakov, CHPOX,

 136

 http://www.cluster.kiev.ua/tasks/chpx_eng.html

[66] M. Litzkow, T. Tannenbaum, J. Basney and M. Livny, “Checkpoint and
 Migration of UNIX Processes in the Condor Distributed System”,
 University of Wisconsin-Madison Computer Sciences Technical Report
 #1346, April 1997.

[67] D. Gibson, Esky, http://cap.anu.edu.au/cap/projects/esky/index.html

[68] B. Ramkumar and V. Strumpen, “Portable Checkpointing for
 Heterogeneous Architectures”, In 27th International Symposium on
 Fault-Tolerant Computing - Digest of Papers, Seattle, WA, pages 58-67,
 June 1997.

[69] A. Ferrari, “Process Introspection: A Checkpoint Mechanism for High
 Performance Heterogeneous Distributed Systems”, Technical Report: CS-
 96-15, Department of Computer Science, University of Virginia, 1996.

[70] V. C. Zandy, B. P. Miller and M. Livny, “Process Hijacking”, HPDC '99:
 Proceedings of the The Eighth IEEE International Symposium on High
 Performance Distributed Computing, pp.32, IEEE Computer Society,
 1999.

[71] J. S. Plank, M. Beck, and G. Kingsley, “Compiler-assisted memory
 exclusion for fast checkpointing”, IEEE Technical Committee on Operating
 Systems and Application Environments, Volume 7(4), pp.10-14, Winter
 1995.

[72] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
 exclusion: optimizing the performance of checkpointing systems”,
 Software Practice and Experience, Volume 29(2), pp.125–142, 1999.

[73] K. Venkatesh, T. Radhakrishnan, H. F. Li, “Optimal checkpointing and
 local recording for domino free rollback recovery”, Inf. Process. Lett.
 Volume 25, pp.295-303, 1987.

[74] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A survey of
 rollback-recovery protocols in message-passing systems”, ACM
 Computer Survey, Volume 34(3), pp.375-408, ACM Press, 2002.

[75] J White, et al, Journal of Computational Neuroscience, Volume 5, pp.5- 16,
 1998.

[76] N. Woo, H. Jung, D. Shin, H. Han, H. Y. Yeom, “Performance Evaluation
 of Consistent Recovery Protocols using MPICH GF”, to appear.

[77] Y. M. Wang, E. Chung, Y. Huang and E. N. Elnozahy, “Integrating

checkpointing with transaction processing”, In Digest of Papers, FTCS-27,
The Twenty Seventh Annual International Symposium on Fault-Tolerant
Computing, pp.304-308, 1997

 137

Appendix A.

Example of libELC

/********************** FILE: mm.c ***
* DESCRIPTION:
* In this template code, the master task distributes a matrix multiply
* operation to numtasks-1 worker tasks.
* NOTE1: C and Fortran versions of this code differ because of the way
* arrays are stored/passed. C arrays are row-major order but Fortran
* arrays are column-major order.
* AUTHOR for MPL version: Ros Leibensperger / Blaise Barney
* LAST MPL REVISED: 09/14/93 for latest API changes. Blaise Barney
* CONVERTED TO MPI: 11/12/94 by Xianneng Shen
***/

#include <stdio.h>
#include <mpi.h>

 138

#include <libELC.h>

#define SIZE 1024
#define NRA SIZE /* number of rows in matrix A */
#define NCA SIZE /* number of columns in matrix A */
#define NCB SIZE /* number of columns in matrix B */
#define MASTER 0 /* taskid of first task */
#define FROM_MASTER 1 /* setting a message type */
#define FROM_WORKER 2 /* setting a message type */

main(int argc, char **argv)
{
/**************** Program Variable Definition *********************/

int numtasks, /* number of tasks in partition */
 taskid, /* a task identifier */
 numworkers, /* number of worker tasks */

 source, /* task id of message source */
 dest, /* task id of message destination */
 nbytes, /* number of bytes in message */
 mtype, /* message type */
 intsize, /* size of an integer in bytes */
 dbsize, /* size of a double float in bytes */
 rows, /* rows of matrix A sent to each worker */
 averow,
 extra,
 offset, /* determine rows sent to each worker */
 i, j, k, /* misc */
 count;

 double *a, /* matrix A to be multiplied */
 b, / matrix B to be multiplied */
 c; / result matrix C */
 MPI_Status status;

/************** Records Execution Flow in the Flow Table *************/
 OnCallEnter(0,0); // this is the main() function;

/***************** Records Variables in Shadow Stack **************/
 OnVarDef(&numtasks,sizeof(int));
 OnVarDef(&taskid,sizeof(int));
 OnVarDef(&numworkers,sizeof(int));
 OnVarDef(&source,sizeof(int));
 OnVarDef(&dest,sizeof(int));
 OnVarDef(&nbytes,sizeof(int));
 OnVarDef(&mbyte,sizeof(int));
 OnVarDef(&insize,sizeof(int));
 OnVarDef(&dbsize,sizeof(int));
 OnVarDef(&rows,sizeof(int));
 OnVarDef(&averow,sizeof(int));
 OnVarDef(&extra,sizeof(int));
 OnVarDef(&offset,sizeof(int));
 OnVarDef(&i,sizeof(int));
 OnVarDef(&j,sizeof(int));
 OnVarDef(&k,sizeof(int));
 OnVarDef(&count,sizeof(int));

 OnPtrDef(&a,1);

 139

 OnPtrDef(&b,1);
 OnPtrDef(&c,1);

 OnVarDef(&status,sizeof(MPI_Status));

/************** Execution Jump in the Recovery*************/
 if (STATE_FLAG==ELC_RECOVERY)
 {
 ELC_MPI_Init(&argc, &argv); // re-init MPI runtime environment
 switch (g_flowTail->LABEL)
 {
 case (-1): goto K1;
 case (-2): goto K2;
 case (-3): goto K3;
 case (-4): goto K4;
 case (-5): goto K5;
 case (-6): goto K6;
 case (-7): goto K7;
 case (-8): goto K8;
 case (-9): goto K9;
 case (-10): goto K10;
 case (-11): goto K11;
 case (-12): goto K12;
 case (-13): goto K13;
 case (-14): goto K14;
 case (-15): goto K15;
 }
 }

/****************** Execution Statement ***************************/
 intsize = sizeof(int);
 dbsize = sizeof(double);

 ELC_MPI_Init(&argc, &argv); // wrapper MPI_Init()

// Record the Heap Allocation
 a=ELC_malloc(NRA*NCA*sizeof(double));
 b=ELC_malloc(NCA*NCB*sizeof(double));
 c=ELC_malloc(NRA*NCB*sizeof(double));

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
 numworkers = numtasks-1;

/***************** Master Task ***********************************/
 if (taskid == MASTER) {
 for (i=0; i<NRA; i++)
 for (j=0; j<NCA; j++)
 *(a+i*SIZE+j)= i+j;
 for (i=0; i<NCA; i++)
 for (j=0; j<NCB; j++)
 *(b+i*SIZE+j)= i*j;

 /* send matrix data to the worker tasks */
 averow = NRA/numworkers;
 extra = NRA%numworkers;
 offset = 0;

 140

 mtype = FROM_MASTER;
 for (dest=1; dest<=numworkers; dest++) {
 rows = (dest <= extra) ? averow+1 : averow;
K1: ELC_MPI_Send(&offset, 1, MPI_INT, dest,
 mtype, MPI_COMM_WORLD,-1,0);
K2: ELC_MPI_Send(&rows, 1, MPI_INT, dest,

 mtype, MPI_COMM_WORLD,-2,0);
 count = rows*NCA;

K3: ELC_MPI_Send(a+offset*SIZE+0, count, MPI_DOUBLE, dest,
 mtype, MPI_COMM_WORLD,-3,0);
 count = NCA*NCB;
K4: ELC_MPI_Send(b, count, MPI_DOUBLE, dest,
 mtype, MPI_COMM_WORLD,-4,0);

 offset = offset + rows;
 }

K5: ELC_DoCKPT(-5,0);

 /* wait for results from all worker tasks */
 mtype = FROM_WORKER;
 for (i=1; i<=numworkers; i++) {
 source = i;
K6: ELC_MPI_Recv(&offset, 1, MPI_INT, source,
 mtype, MPI_COMM_WORLD, &status,-6,0);
K7: ELC_MPI_Recv(&rows, 1, MPI_INT, source,
 mtype, MPI_COMM_WORLD, &status,-7,0);
 count = rows*NCB;
K8: ELC_MPI_Recv(c+offset*SIZE+0, count, MPI_DOUBLE, source,
 mtype, MPI_COMM_WORLD, &status,-8,0);
 }
 } /* end of master section */

/******************* Worker Task *******************************/
 if (taskid > MASTER) {
 mtype = FROM_MASTER;
 source = MASTER;
K9: ELC_MPI_Recv(&offset, 1, MPI_INT, source,
 mtype, MPI_COMM_WORLD, &status,-9,0);
K10: ELC_MPI_Recv(&rows, 1, MPI_INT, source,
 mtype, MPI_COMM_WORLD, &status,-10,0);
 count = rows*NCA;
K11: ELC_MPI_Recv(a, count, MPI_DOUBLE, source,
 mtype, MPI_COMM_WORLD, &status,-11,0);
 count = NCA*NCB;
K12: ELC_MPI_Recv(b, count, MPI_DOUBLE, source,

 mtype, MPI_COMM_WORLD, &status,-12,0);

 for (k=0; k<NCB; k++)

 for (i=0; i<rows; i++) {
 *(c+i*SIZE+k) = 0.0;
 for (j=0; j<NCA; j++)
 *(c+i*SIZE+k) = *(c+i*SIZE+k) +
 *(a+i*SIZE+j) *
 (*(b+j*SIZE+k));

 141

 }

 mtype = FROM_WORKER;

K13: ELC_MPI_Send(&offset, 1, MPI_INT, MASTER,
 mtype, MPI_COMM_WORLD,-13,0);
K14: ELC_MPI_Send(&rows, 1, MPI_INT, MASTER,
 mtype, MPI_COMM_WORLD,-14,0);
K15: ELC_MPI_Send(c, rows*NCB, MPI_DOUBLE, MASTER,
 mtype, MPI_COMM_WORLD,-15,0);
 } /* end of worker */

 ELC_MPI_Finalize();
 OnCallReturn(); // the end of main() function
} /* of main */

Appendix B.

Source Codes of ELC_MPI Send() and
 ELC_MPI_Recv()

#include <stdio.h>
#include "mpi.h"
#include "event.h"

int ELC_MPI_Send(void *buf,int count,MPI_Datatype datatype,int target,
 int tag,MPI_Comm comm,int LABEL,int FID)
{
 int ierr;
 LOG *t_logTemp;

 // if CKPT is ongoing, probe CKPT request from other processes
 if (g_CKPT_FLAG==YES) Probe_Request();

 // locate the event log for the target process
 t_logTemp=Seek_Log(target);

 142

 //create the send event log (ELC_SEND)
 log_envelope(t_logTemp,tag,comm,ELC_SEND);

 ierr=MPI_Send(buf,count,datatype,target,tag,comm);

 return ierr;
}

int ELC_MPI_Recv(void *buf,int count,MPI_Datatype datatype,int source,
 int tag,MPI_Comm comm,MPI_Status *pStatus,int LABEL,int FID)
{
 int ierr;
 LOG *t_logTemp;

 // ---------------------------------- RECOVER --
 if (g_RECOVER_FLAG==YES)
 {
 if (source==MPI_ANY_SOURCE)
 { // for WILDCARD Communication
 t_logTemp=g_logHead->next;
 while (t_logTemp!=NULL)
 {
 if (t_logTemp->IntransitCounter>0)
 // if find in in-transit message logs, return;
 if (Search_Intransit(t_logTemp,tag,comm,buf)) return;

 if (t_logTemp->OrphanCounter>0)
 // if find orphan message, discard the repeated orphan message
 if (Search_Orphan(t_logTemp,source,tag,comm)) break;

 t_logTemp=t_logTemp->next;
 }
 }
 else { // for non WILDCARD Communication
 t_logTemp=Seek_Log(source);

 // if there are in-tranist message logs
 if (t_logTemp->IntransitCounter>0)
 // if find in in-transit message logs, return;
 if (Search_Intranit(t_logTemp,tag,comm,buf)) return;
 // if find orphan message, discard the repeated orphan message
 if (t_logTemp->OrphanCounter>0)
 Search_Orphan(t_logTemp,tag,comm) break;

 // check the finish of recovery
 if (t_logTemp->IntransitCounter==0 &&
 t_logTemp->OrphanCounter==0)
 {
 if (++g_RECOVER_COUNT==g_Process_NUM-1)
 g_RECOVER_FLAG=NO;
 }
 }

// ---------------------------------- Receive ---
 ierr=MPI_Recv(buf,count,datatype,source,tag,comm,pStatus);
 if (source==MPI_ANY_SOURCE || tag==MPI_ANY_TAG)
 {

 143

 source=pStatus->MPI_SOURCE;
 tag=pStatus->MPI_TAG;
 }
 // create the receive event log (ELC_RECV)
 t_logTemp=Seek_Log(source);
 log_envelope(t_logTemp,tag,comm,ELC_RECV);

// ---------------------------------- CKPT --
 if (g_CKPT_FLAG==YES)
 {
 Probe_Request();

 switch (t_logTemp->flag)
 {
 // if all IN-TRANSIT messages have been logged, break
 case (LOG_DONE): break;
 // if has received the CKPT request from THIS source process
 case (ENV_YES): {
 // log all in-transit messages
 log_intransit_message(buf,count,datatype,source,tag,comm,t_logTemp);
 break;
 }
 // if haven't gotten the CKPT request from this source
 case (ENV_NO): {
 // log this message in case of an in-transit message
 log_message(buf,count,datatype,source,tag,comm,t_logTemp);
 }
 }
 }

 return ierr;
}

Appendix C.

APIs for Uniprocess Checkpoint

/*************************** Checkpoint API ******************************/
void ELC_DoCKPT(int LABEL,int FID);
Parameters:
 LABEL: the label of calling statement.
 FID: the evaluation sequence of an inline call
Description:
 This routine is called by user explicitly to trigger a new global checkpoint.
Example:
 C7: ELC_DoCKPT(7,0);

/************************* Program Variable API ******************************/
void OnVarDef(void *pAddr,int size);
Parameters:
 pAddr: the starting address of the variable, e.g. &variable_name.
 size: the size of the variable.
Description:

 144

 This routine is called immediately after a variable's definition statement to record the
 starting address and length of the variable.
Example:
 int a;
 OnVarDef(&i,sizeof(int));

 double b[5];
 OnVarDef(b,sizeof(double)*5);

void OnPtrDef(void **pAddr,int count);
Parameters:
 pAddr: the address of the pointer, e.g. &pointer_name.
 count: the number of pointers.
Description:
 This routine is called immediately after a pointer's definition statement to record the
 address of the pointer.
Example:
 int *a;
 OnPtrDef(&a,1);

 double *b[5];
 OnPtrDef(b,5);

void OnStructureDef(StructureDesc descTemp);
Parameters:
 descTemp: a descriptor of the structure composition.
Description:
 This routine is called immediately after a structure's definition statement
 to record the structure's composition, which will be used by OnStrDef() to
 locate the inline pointers.
Example:
 struct Node {
 int ID;
 struct Node *next;
 struct Property prop;
 }

 StructureDesc descTemp;

 descTemp.name="struct Node";
 strcpy(descTemp.name,"struct Node");
 descTemp.ptrCount=1;
 descTemp.ptrOffset=(void *)malloc(descTemp.ptrCount*sizeof(void *));
 descTemp.ptrOffset[0]=sizeof(int)-1;
 descTemp.strCount=1;
 descTemp.strOffset=(void *)malloc(descTemp.strCount*sizeof(void *));
 descTemp.strOffset[0]=sizeof(int)+sizeof(struct Node *)-1;
 descTemp.strName=(char *)malloc(descTemp.strCount*sizeof(char *)*
 MAX_STRUCT_NAME_LENGTH);
 strcpy(descTemp.strName,"struct Property");

 OnStructureDef(descTemp);

typedef struct StructureDesc {
 char name[MAX_STRUCT_NAME_LENGTH];
 int ptrCount;
 int *ptrDisp;

 145

 int strCount;
 int *strDisp;
 char *strName;
}

Items:
 name: the structure name.
 ptrCount: the number of inline pointers.
 ptrDisp: an array contains the offsets of each inline pointer from the starting
 address of the strucutre.
 strCount: the number of inline structure items.
 strDisp: an array contains the offsets of each inline structure item from
 the starting address of the structure.
 strName: an array contains the names of each inline structure item.

void OnStrDef(void *pAddr,int size,char *pStrName);
Parameters:
 pAddr: the starting address of the structure variable.
 size: the size of the structure variable.
 pStrName: the structure name.
Description:
 This routine is called immediately after a structure variable's definition to resolve the
 inline pointers.
Example:
 struct NODE my_node;
 OnStrDef(&my_node,sizeof(struct NODE),"struct NODE");

 struct CARD his_node[5];
 OnStrDef(his_node,sizeof(struct NODE)*5,"struct NODE");

/********************** Program Execution Flow API ***************************/
void OnCallEnter(int LABEL,int FID)
Parameters:
 LABEL: the label of calling statement.
 FID: the evaluation sequence of an inline call
Description:
 This routine is called at the entry of a function to record the program execution flow.
Example:
 void function(..., int LABEL, int FID)
 {
 // Variable Definition

 // Record Execution Flow
 OnCallEnter(LABEL,FID);

 // Source Code

 // Remove Execution Flow
 OnCallReturn();
 return;

 146

 }

void OnCallReturn()
Parameters:
 N/A
Description:
 This routine is called before every RETURN statement in a function to tell libELC the
execution
 flow has returned to the calling function.
Example:
 void function()
 {

 if (err) {
 OnCallReturn();
 return;
 }

 OnCallReturn();
 return;
 }

/****************************** Heap Memory API ******************************/
void *ELC_malloc(size_t size)
Parameters:
 size: the size of the allocated heap memory.
Description:
 A wrapper function for malloc(). ELC_malloc() records the address and size of the
 allocated heap memory.
Example:
 int *p=ELC_malloc(5*sizeof(int));

void *ELC_calloc(size_t nmemb,size_t size)
Parameters:
 nmemb: the number of allocated heap memories.
 size: the size of each allocated heap memory.
Description:
 A wrapper function for calloc(). ELC_calloc() records the address and size of each
 allocated heap memory.

void *ELC_realloc(void *ptr, size_t size);
Parameters:
 ptr the address of the heap memory to be re-allocated.
 size the new size of the heap memory pointed by ptr.

 147

Description:
 A wrapper function for realloc(). ELC_realloc() also alters its record of the heap memory
 pointed by ptr.
Example:
 p=realloc(p,10*sizeof(int));

void ELC_free(void *ptr);
Parameters:
 ptr: the address to the heap memory to be released.
Description:
 A wrapper function for ELC_free(). ELC_free() deletes the record of the heap memory
 pointed by ptr.
Example:
 ELC_free(p);

/****************************** File I/O API ******************************/
FILE *ELC_fopen(const char *path, const char *mode)
Parameters:
 path: the file path.
 mode: file access mode.
Description:
 A wrapper function for fopen(). ELC_fopen() records the file path and access mode to
reconstruct the file
 descriptor during recovery.
Example:
 fp=ELC_fopen("path/to/file","r+");

void OnFileDef(FILE **pAddr)
Parameters:
 pAddr: the address of the file descriptor.
Description:
 This routine is called immediately after the definition statement of a file descriptor to
record its
 address.
Example:
 FILE *my_fp;
 OnFileDef(&my_fp);

 148

 149

int ELC_fclose (FILE *fp)
Parameters:
 fp: the file descriptor to be closed.
Description:
 A wrapper function for fclose(). ELC_fclose() deletes the record of the file descriptor
pointed by fp.
Example:
 err=ELC_fclose(my_fp);

int ELC_fcloseall()
Parameters:
 N/A
Description:
 A wrapper function for fcloseall(). ELC_fcloseall() deletes all file descriptor records.
Example:
 err=ELC_fcloseall();

	Abstract
	Acknowledgements
	Table of Concents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1Motivation
	1.2Heterogeneous Network of Computers
	1.3Fault Tolerance of Heterogeneous Network of Computers
	System Model
	Design Goal
	1.3.3Redundancy and Replication
	1.3.4Program Resilience
	1.3.5Checkpoint and Rollback Recovery

	Conclusion and Thesis Outline

	Chapter 2
	Checkpoint and Recovery for MPI
	2.1Creating Valid Recovery Line for fMPI
	2.2Coordinated Checkpoint
	2.2.1Blocking Coordination
	2.2.2Non-Blocking Coordination with Chandy-Lamport Algorithm
	2.2.3Summary of Coordinated Checkpoint

	2.3Uncoordinated Checkpoint and Message Logging
	2.3.1Pessimistic Message Logging
	2.3.2Optimistic Message Logging
	2.3.3Causal Message Logging
	2.3.4Summary of Uncoordinated Checkpoint

	2.4Communication-Induced Checkpoint
	2.4.1Model-based Checkpoint
	2.4.2Header-based Checkpoint
	2.4.3Summary of Communication-induced Checkpoint

	2.5Conclusion

	Chapter 3
	Event Logging: Application-level Coordinated Checkpoint for MPI
	3.1Introduction
	3.2Background
	3.2.1Problem Space
	3.2.2Existing Approaches

	3.3Event Logging
	3.3.1Definitions and Assumption
	Algorithm
	3.3.3Formal Analysis
	3.3.4Removal of the 2-interval restriction

	3.4Analysis and Optimization
	3.4.1Analysis
	3.4.2Performance Tuning

	3.5Conclusion

	Chapter 4
	libELC – Application-level Checkpoint/Recovery Li
	4.1Overview
	4.2Uniprocess Checkpoint/Recovery Module
	4.2.1Background and Challenges
	4.2.2Application-level Checkpoint

	4.3Multiprocess Coordination Module
	4.3.1MPI Wrapper Package
	4.3.2Message Identification Package
	4.3.3Message Logging Package

	4.4Message Replay Module
	4.4.1In-transit Message Replay
	4.4.2Orphan Message Replay

	4.5Support More Feature of MPI
	4.5.1Collective communication
	4.5.2Non-standard-mode Point-to-point Communication
	4.5.3Communication Wildcard
	4.5.4Derived Datatype

	4.6Conclusion

	Chapter 5
	Experiments and Evaluation
	5.1 Experiment Environment
	5.2Performance Model
	5.3 Test 1: Gauss-Jordan method for solving systems of linear equations
	Size: 4,000
	Size: 8,000
	Size: 16,000
	5.3.4Analysis

	5.4Test 2: 2-D block decomposition Laplace Solver
	5.4.1Number of Processes: 4; Matrix Size: 512*512
	5.4.2Number of Processes: 16; Matrix Size: 512*512
	5.4.3Number of Processes: 16; Matrix Size: 1024*1024
	5.4.3Analysis

	5.5Test 3: Parallel NeuronSys - solve a system of ODE's modelling a network of neurons
	4 Process Configuration
	8 Process Configuration
	16 Process Configuration
	5.5.4Analysis

	5.6Test 4: Monte-Carlo simulation of a system of hard disks
	5.6.1Number of Disks: 16; Number of Sweeps: 10,000
	5.6.2Number of Disks: 32; Number of Sweeps: 10,000
	5.6.3Number of Disks: 32; Number of Sweeps: 20,000
	5.6.4Analysis

	5.7 Test 5: Comparing Event Logging with Message Tagging
	5.7.1Matrix Size: 512*512, Message Size: 512 KB
	5.7.2Matrix Size: 1024*1024, Message Size: 2 MB
	5.7.3Matrix Size: 2048*2048, Message Size: 8 MB
	5.7.4Analysis

	5.8Optimal Checkpoint Interval
	5.9Conclusion

	Chapter 6
	Conclusion and Future Work
	6.1Summary
	6.2Future Work

	Bibography
	Appendix A.
	Example of libELC
	Appendix B.
	Source Codes of ELC_MPI Send() and ELC_MPI_Recv()
	Appendix C.
	APIs for Uniprocess Checkpoint

