
University College Dublin

Hierarchical Approach to Optimization of

MPI Collective Communication

Algorithms

Khalid Hasanov

This thesis is submitted to University College Dublin

in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science

Head of School: Pádraig Cunningham

Research Supervisor: Alexey Lastovetsky

October 2015

Acknowledgements

There are a number of people behind this thesis who deserve to be both

acknowledged and thanked here.

Words can never be enough to express my utmost gratitude to my

supervisor, Dr. Alexey Lastovetsky for giving me the opportunity to do my

PhD in the Heterogeneous Computing Laboratory; for his patience, support,

faith, and for always being there whenever I needed encouragement; for

going beyond his duties to fight my worries and frustrations. Put simply, I

cannot imagine a better supervisor than him.

Thank you to all my colleagues from the Heterogeneous Computing

Laboratory, Jean-Noël Quintin, Vladimir Rychkov, Kiril Dichev, Ashley

DeFlumere, Zhong Ziming, Ken O’Brien, David Clarke, Tania Malik, Oleg

Girko, Amani Al Onazi, Jun Zhu.

This thesis is the result of research conducted with the financial support

by IRCSET(Irish Research Council for Science, Engineering and Technology)

and IBM, grant number EPSPG/2011/188. The experiments were carried out

on Grid’5000 developed under the INRIA ALADDIN development action with

support from CNRS, RENATER and several Universities as well as other

funding bodies. Another part of the experiments were carried out using the

resources of the Supercomputing Laboratory at King Abdullah University of

Science&Technology (KAUST) in Thuwal, Saudi Arabia.

I am forever indebted to my parents, Azer and Ofelya for everything I am

and everything I will ever be. I thank my brother Vasif for always encouraging

me throughout my study.

I thank my wife Aynur for her understanding and continues support. Last

but by no means least, I am thankful to my little angel Fidan for bringing so

much happiness into our life.

i

DEDICATION

To

My Parents, My Brother, My Wife and My Daughter

ii

Abstract

A significant proportion of scientific applications developed for execution on

high-end computing systems are based on parallel algorithms proposed

between the 1970s and 1990s. These algorithms were designed with

relatively small computing systems in mind and tested on such systems.

Indeed, in 1995, the number of cores in the top 10 supercomputers ranged

from 42 to 3680 [1]. Nowadays, in mid 2015, this number ranges from

147,456 to 3,120,000. Thus, over last two decades the number of processors

in HPC systems has increased by three orders of magnitude. This drastic

increase in scale significantly increases the cost of coordination and

interaction of processes in traditional message-passing data-parallel

applications. In other words, it increases their communication cost. In these

applications, all processes are peers and the number of directly interacting

processes grows quickly with the increase of their total number.

We address the problem of reduction of the communication cost of such

traditional message-passing data-parallel applications on large-scale

distributed-memory computing systems. The approach we propose is a

traditional methodology widely used for dealing with the complexity of

coordination and management of a large number of actors, namely, the

hierarchical approach. According to this technique, thousands or millions of

actors are structured, and instead of interacting with a large number of peers,

iii

they coordinate their activities with one superior and a small number of peers

and inferiors. This way the overhead of interaction is significantly reduced.

We present in this thesis how the hierarchical approach can be applied in

a topology-oblivious way to optimize the communication cost of widely used

MPI collective communication operations. The thesis demonstrates

theoretical and experimental study of hierarchical transformations of the

state-of-the-art algorithms used to implement MPI broadcast, reduce,

allreduce, scatter and gather operations. The experimental validation of the

approach and an application study in the context of parallel matrix-matrix

multiplication on a medium-scale cluster and on a large-scale IBM

BlueGene/P machine are demonstrated. We have implemented the

hierarchical algorithms in a software library called Hierarchical MPI (HiMPI).

The HiMPI library is layered on top of the existing MPI implementations,

provides automatic estimation and selections of the optimal parameters in the

hierarchical algorithms and is portable to any parallel platforms that supports

MPI.

iv

Contents

Acknowledgements i

Abstract iii

Contents v

List of Figures viii

List of Tables xiv

1 Introduction 1

1.1 Motivation and Contributions 1

1.1.1 Motivation . 1

1.1.2 Contributions . 4

2 Background and Related Work 6

2.1 Message Passing Interface . 6

2.1.1 Alternative Parallel Programming Systems 7

2.2 Communication Performance Models 11

2.2.1 Homogeneous Communication Performance Models . . 11

2.2.2 Heterogeneous Communication Performance Models . . 12

2.2.3 Contention-Aware Communication Performance Models 13

v

2.3 Overview of MPI Collective Communication Operations 15

2.3.1 MPI Broadcast Operation 20

2.3.2 MPI Reduction Operations 28

2.3.3 MPI Scatter and Gather Operations 36

2.3.4 Conclusion . 41

3 Hierarchical Optimization of MPI Collective Operations 42

3.1 Hierarchical Transformation of MPI Broadcast Algorithms 42

3.1.1 Theoretical Analysis . 43

3.1.2 Experimental Study . 47

3.2 Hierarchical Transformation of MPI Reduction Algorithms 57

3.2.1 Hierarchical Transformation of MPI Reduce algorithms . 57

3.2.2 Hierarchical Transformation of MPI Allreduce 68

3.3 Hierarchical Transformation of MPI Scatter and Gather Operations 75

3.3.1 Theoretical Analysis . 78

3.3.2 Experiments . 79

3.3.3 Conclusion . 89

4 Applications 90

4.1 Parallel Matrix Multiplication 90

4.1.1 Serial Matrix Multiplication Optimization 91

4.1.2 Parallel Matrix Multiplication Optimization 92

4.1.3 SUMMA Algorithm . 94

4.2 Hierarchical SUMMA . 96

4.2.1 Theoretical Analysis . 100

4.2.2 Experiments on BlueGene/P 107

4.2.3 Experiments on Grid’5000 111

4.3 Conclusion . 113

vi

5 Hierarchical MPI Software Design 114

5.1 MPIBlib . 114

5.2 HiMPI - Hierarchical MPI . 116

5.2.1 The HiMPI API . 117

5.2.2 Experiments with HiMPI 122

6 Conclusion 126

6.0.3 Future Work . 127

Appendices 151

A Possible Overheads in the Hierarchical Design 151

Appendices 152

B HiMPI Configuration Parameters 152

vii

List of Figures

2.1 Communication Pattern in Recursive Doubling Allgather 27

3.1 Arrangement of processes in MPI broadcast. 43

3.2 Arrangement of processes in the hierarchical broadcast. 43

3.3 Hierarchical scatter-ring-allgather broadcast on 2048 cores of

BG/P with message sizes 512kB and 2MB 50

3.4 Hierarchical scatter-ring-allgather broadcast on 6142 cores of

BG/P with message sizes of 512kB and 2MB 51

3.5 Hierarchical native BG/P broadcast on 6142 cores with

message sizes 512kB and 2MB 51

3.7 Hierarchical native MPI broadcast. m=16kB (left) and m=16MB

(right), p=128. 53

3.8 Hierarchical chain broadcast. m=16kB (left) and m=16MB

(right), p=128. 54

3.9 Hierarchical pipeline broadcast on Grid’5000. m=16kB (left) and

m=16MB (right), p=128. 54

3.10 Speedup of hierarchical broadcast over broadcast on Grid’5000.

One process per node. 55

3.11 Hierarchical broadcast on Grid’5000, m=16kB (left) and

m=16MB (right), p=512 . 56

viii

3.12 Speedup of hierarchical broadcast over broadcast on Grid’5000.

One process per core. 56

3.13 Logical arrangement of processes in MPI reduce. 58

3.14 Logical arrangement of processes in hierarchical MPI reduce. . 59

3.15 Hierarchical native Open MPI reduce operation on 512 cores

with message sizes of 16KB (left) and 16MB (right) 63

3.16 Time spent on MPI_Comm_split and hierarchical native reduce

with a message size of 1KB (left), and time spent on

hierarchical pipeline reduce with a message size of 16KB with

1KB segments on 512 cores 65

3.17 Hierarchical pipeline reduce with a message size of 16MB,

segment sizes of 32KB (left) and 64KB (right) on 512 cores . . 65

3.19 Hierarchical native reduce on 128 cores with message sizes of

16KB (left) and 16MB (right) 66

3.18 Speedup on 256(left) and 512(right) cores, one process per core. 66

3.20 Hierarchical pipeline reduce. m=16MB, segment 32KB (left)

and 64KB (right). p=128. 67

3.21 Speedup on 64(left) and 128(right) cores. 1 process per node. . 67

3.22 Logical arrangement of processes in MPI allreduce. 68

3.23 Logical arrangement of processes in hierarchical MPI allreduce. 69

3.24 Hierarchical ring allreduce algorithm on 512 cores. Message

size: 4KB and 16MB (right). 73

3.25 Hierarchical segmented ring allreduce algorithm on 512 cores.

Message size: 4KB (left) and 16MB (right). Segment size: 1KB

and 4KB. 74

3.26 Speedup of hierarchical allreduce on 512 cores 74

3.27 Logical arrangement of processes in MPI scatter. 75

ix

3.28 Logical arrangement of processes in hierarchical MPI scatter. . 75

3.29 Logical arrangement of processes in MPI gather. 76

3.30 Logical arrangement of processes in hierarchical MPI gather. . 77

3.31 Hierarchical linear with synchronization gather algorithm on 512

cores. Total message size: 128MB (left) and 256MB (right).

Message size per point-to-point communication: 256KB (left)

and 512KB (right). Segment size: 4KB. 80

3.32 Hierarchical linear with synchronization gather algorithm on 64

cores. Total message size: 128MB (left) and 256MB (right).

Message size per point-to-point communication: 2MB (left) and

4MB (right). Segment size: 4KB. 81

3.33 Hierarchical linear with synchronization gather algorithm on 64

cores. Total message size: 128MB (left) and 256MB (right).

Message size per point-to-point communication: 2MB (left) and

4MB (right). Segment size: 32KB. 81

3.34 Hierarchical linear with synchronization gather algorithm on

512 cores. Total message size: 2MB (left) and 4MB (right).

Message size per point-to-point communication: 4KB (left) and

8KB (right). Segment size: 1KB. 82

3.35 Hierarchical linear with synchronization gather algorithm on 64

cores. Total message size: 2MB (left) and 4MB (right).

Message size per point-to-point communication: 32KB (left)

and 64KB (right). Segment size: 1KB. 82

3.36 Hierarchical binomial (left) and linear (right) gather algorithms

on 512 cores. Total message size: 128MB and 256MB.

Message size per point-to-point communication: 32KB (left)

and 64KB (right). 83

x

3.37 Hierarchical native Open MPI gather operation on 512 cores.

Total message size: 2MB and 4MB (left), 128MB and 256MB

(right). Message size per point-to-point communication: 4KB

and 8KB (left) and 32KB and 64KB (right). 83

3.38 Hierarchical linear with synchronization gather algorithm on

128 nodes (one process per node). Total message size:

128MB (left) and 256MB (right). Message size per

point-to-point communication: 1MB (left) and 2MB (right).

Segment size: 1KB. 84

3.39 Hierarchical linear with synchronization gather algorithm on

128 nodes (one process per node). Total message size:

128MB (left) and 256MB (right). Message size per

point-to-point communication: 1MB (left) and 2MB (right).

Segment size: 32KB and 64KB. 85

3.40 Hierarchical binomial scatter algorithm on 512 cores. Total

message size: 2MB and 4 MB (left), 128MB and 256MB (right).

Message size per point-to-point communication: 4KB and 8KB

(left), 256KB and 512KB (right). 85

3.41 Hierarchical linear scatter algorithm on 512 cores. Total

message size: 2MB and 4 MB (left), 128MB and 256MB (right).

Message size per point-to-point communication: 4KB and 8KB

(left), 256KB and 512KB (right). 86

3.42 Hierarchical native Open MPI scatter operation on 512 cores.

Total message size: 2MB and 4 MB (left), 128MB and 256MB

(right). Message size per point-to-point communication: 4KB

and 8KB (left), 256KB and 512KB (right). 86

xi

3.43 Hierarchical binomial scatter algorithm on 64 cores. Total

message size: 2MB and 4 MB (left), 128MB and 256MB (right).

Message size per point-to-point communication: 32KB and

64KB (left), 2MB and 4MB (right). 87

3.44 Hierarchical linear scatter algorithm on 64 cores. Total message

size: 2MB and 4 MB (left), 128MB and 256MB (right). Message

size per point-to-point communication: 32KB and 64KB (left),

2MB and 4MB (right). 87

3.45 Hierarchical native Open MPI scatter operation on 64 cores.

Total message size: 2MB and 4 MB (left), 128MB and 256MB

(right). Message size per point-to-point communication: 32KB

and 64KB (left), 2MB and 4MB (right). 88

4.1 Horizontal communications of matrix A and vertical

communications of matrix B in SUMMA. 95

4.2 SUMMA vs HSUMMA in terms of the arrangement of the

processes . 97

4.3 Horizontal communications of matrix A in HSUMMA. 99

4.4 Vertical communications of matrix B in HSUMMA. 99

4.5 Prediction of SUMMA and HSUMMA on Exascale. p=1048576. 107

4.6 Communication time in SUMMA vs communication time in

HSUMMA on BG/P . 109

4.7 Execution time of HSUMMA and SUMMA on 1024 cores on

BG/P. b =M = 256, n = 16384. 110

xii

4.8 HSUMMA on 16384 cores on BG/P. M = 256 and n = 65536.

On the left communication time is shown for a fixed block size

of 256 between groups while changing the block size inside

groups. On the right, the same setting is used to compare the

performance with a block size of 64 and 256 inside groups. . . 110

4.9 Speedup of HSUMMA over ScaLAPACK on BG/P. b =M = 256

and n = 65536. 111

4.10 Summa vs HSUMMA on Grid’5000 using Open MPI 112

4.11 Summa vs HSUMMA on Grid’5000 using MPICH 112

5.1 High-Level View of HiMPI Design 116

xiii

List of Tables

3.1 Open MPI algorithm selection in HReduce. m=16MB, p=512. . 63

5.1 Example HiMPI Configuration File 122

5.2 Execution Time of HiMPI_Init on Graphene Cluster of Grid’5000 124

5.3 Execution Time of HiMPI_Init on BG/P 125

B.1 HiMPI Configuration Parameters 152

xiv

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while

registered as a candidate for the degree stated on the Title Page, and I have

not obtained a degree elsewhere on the basis of the research presented in

this submitted work.

xv

Chapter 1

Introduction

1.1 Motivation and Contributions

1.1.1 Motivation

A significant proportion of scientific applications developed for execution on

high-end computing systems are based on parallel algorithms proposed

between the 1970s and 1990s. These algorithms were designed with

relatively small computing systems in mind and tested on such systems.

Indeed, in 1995, the number of cores in the top 10 supercomputers ranged

from 42 to 3680 [1]. Nowadays, in mid 2015, this number ranges from

115,984 to 3,120,000. Thus, over last two decades the number of processors

in HPC systems has increased by three orders of magnitude. This drastic

increase in scale significantly increases the cost of coordination and

interaction of processes in traditional message-passing data-parallel

applications. In other words, it increases their communication cost. In these

applications, all processes are peers and the number of directly interacting

processes grows quickly with the increase of their total number.

The existing works on optimization of the communication cost in

messages-passing data-parallel applications can be classified into two main

categories:

• Topology aware optimization of communication cost.

1

1.1. MOTIVATION AND CONTRIBUTIONS

• Topology oblivious optimization of communication cost.

1.1.1.1 Topology Aware Optimization of Communication Cost

The key idea in the topology aware optimization methodology is using the

topology as input to build optimal communication trees. This approach is used

both at the MPI level and the application level. The MPI level optimizations

mainly focus on the MPI collective communication operations as part of the

MPI libraries where low-level optimizations, e.g. using hardware specific data

access mechanism and tuning underlying network protocol parameters, are

hidden from the application developer.

The efficient implementation of topology aware collective communication

operations has received much attention. Such implementations mainly focus

on heterogenous platforms where the communication times between process

pairs are not equal. One of the earliest works in this area was done in the

MPI-StarT [2], an MPI implementation for a cluster of SMPs interconnected

by a high-performance interconnect. The authors demonstrate a topology

aware optimization that treats inter- and intra-cluster communications

differently and minimizes the inter-cluster communication cost of collective

operations. The similar approach was used in the MagPIe [3] library, which

assumes a two-level communication network and distinguishes between local

and wide area communication. Later introduced MPICH-G [4][5], a

grid-enabled implementation of MPI, applies the similar optimization

technique to networks having more than two levels of hierarchy. More recent

research work [6] uses similar approach and discusses hierarchical

implementation of MPI collective communication operations by taking

hardware specific data access mechanisms into consideration. That work is

implemented in a framework called Cheetah and incorporated into Open MPI.

The main idea behind all these topology and platform aware techniques is to

take the existing generic algorithms and optimize them to specific topology

and platforms.

In addition to MPI collective operations, a significant amount of research

has been done in topology aware optimization of communication cost in

2

1.1. MOTIVATION AND CONTRIBUTIONS

scientific applications. The authors in [7] discuss improving communication

cost in parallel matrix multiplication and LU factorization by topology aware

mapping of processes and as a result using effective collective

communication operations designed for IBM Blue Gene/P supercomputers. A

more recent work in [8] demonstrates a heuristic topology-aware approach to

optimization of communication cost in parallel matrix multiplication on

hierarchical heterogeneous platforms. Unlike existing methods, the authors

take into account not only the topology but also the heterogeneity of the

processors and the entire communication flow of the application.

1.1.1.2 Topology Oblivious Optimization of Communication Cost

Topology oblivious optimizations of communication cost in parallel algorithms

on distributed-memory platforms usually depend on a lesser number of

parameters in comparison to the topology or platform aware optimizations. As

an example, optimal data partitioning, which is a widely used technique to

minimize communication cost of message-passing data parallel applications,

takes the number of processes and their speeds as the only input

parameters, while ignoring the underlying topology, the underlying platform,

and the communication network parameters. Despite being quite simple,

such a model can still take into account the communication cost of a parallel

algorithm. Two widely used techniques of this kind are the constant and

functional performance models [9]. In the first case the model includes

numeric parameters, the number of processors and the speed of each

processor. While in the case of functional performance models the speed of

each processor is defined as a continuous function of the task size. Using

these performance models the fundamental optimization problem of data

partitioning can be reduced to the problem of partitioning some mathematical

objects such as sets, matrices, graphs and so forth.

The distinguished idea of the data partitioning approach is that it is very

application specific. Therefore it is necessary to design specific optimal data

partitioning algorithms for different applications. Moreover, even a single

application, for example, a parallel matrix multiplication, might need different

3

1.1. MOTIVATION AND CONTRIBUTIONS

data partitioning algorithms depending on the target platform, matrix shapes,

and problem size.

In addition to topology aware optimizations, the state-of-the-art MPI

implementations, such as MPICH and Open MPI, provide a few generic

collective communication algorithms that are not specific to any kind of

topology or platform. For instance, the broadcast operation is implemented

using flat, linear, pipeline, binary, split-binary, binomial tree,

scatter-ring-allgather, and scatter-recursive-doubling-algather algorithms. All

these algorithms are designed without taking the topology into account and

they all are widely used depending on the message size and the number of

processes in the communication operation. The same applies to other

collective communication operations as well.

1.1.2 Contributions

The existing approaches do not address the issue of scale, as they try to

optimize the traditional general-purpose algorithms for specific network

topologies and architectures. In contrast to the existing optimization

techniques, we focus on more general use cases and try to be effective on a

variety of platforms, be applicable to way more applications than the previous

techniques. We mainly focus on the scale of the platform while ignoring its

complexity. Therefore our main parameter is the number of processors, giving

us the reason to employ the simplest communication model, namely the

Hockney model [10] in our optimization techniques. The approach we

propose is a traditional methodology widely used for dealing with the

complexity of coordination and management of a large number of actors,

namely, the hierarchical approach. According to this technique, thousands or

millions of actors are structured, and instead of interacting with a large

number of peers, they coordinate their activities with one superior and a small

number of peers and inferiors. This way the overhead of interaction is

significantly reduced.

The main contributions of this thesis are topology-oblivious hierarchical

optimizations of MPI broadcast, reduce, allreduce, scatter and gather

4

1.1. MOTIVATION AND CONTRIBUTIONS

operations. We also provide an application study in the context of parallel

matrix multiplication. Finally, we discuss the design of Hierarchical MPI

software library.

The hierarchical optimizations of the MPI broadcast and reduce

operations have been published in [11] [12] [13], and the hierarchical

optimization of parallel matrix multiplication published in [14] [15].

The content of the thesis is organized as follows. The chapter 2 surveys

communication performance models, MPI collective communication

operations, algorithms and existing optimization techniques. Then, the

chapter 3 introduces our hierarchical approach to optimization of MPI

broadcast, reduce, allreduce, scatter and gather operations. Chapter 4

presents our hierarchical parallel matrix multiplication algorithm, chapter 5

discusses hierarchical MPI (HiMPI) software design and finally the chapter 6

concludes the thesis and discusses the future work.

5

Chapter 2

Background and Related Work

This chapter first reviews the history of the Message Passing Interface

(MPI) [16] and outlines alternative parallel programming systems. Then we

provide a comprehensive discussion of MPI collective communication

operations and the state-of-the-art algorithms used to implement them.

2.1 Message Passing Interface

MPI is a library specification for the message-passing programming paradigm

on distributed-memory high-performance computing systems. The

specification is defined and maintained by the MPI Forum, which is an open

group consisting of many organizations. Communication in MPI applications

is performed by message passing between processes. The communication

can either be a point-to-point between any two processes, or a collective

operation involving a specific group of processes.

The first version (1.0) of the MPI Standard was published in 1994, and

since then it is periodically being updated. In 1995 the version 1.1 and in

1997 the version 1.2 were published. In the same year, MPI version 2.0 was

published with many new features, most prominently, dynamic process

creation and management, parallel I/O and one-sided communication

routines. The latest release of MPI-1 series was the version 1.3 and approved

by the MPI Forum in 2008. Minor edits and corrected errata of MPI-2 series

6

2.1. MESSAGE PASSING INTERFACE

with version numbers of 2.1 and 2.2 were published in 2008 and 2009

accordingly.

In 2012, another major release of the MPI Standard, MPI-3 was released

and introduced new one-sided communication operations, Fortran bindings,

and particularly nonblocking collective operations. Finally, MPI-3.1 is the latest

release of the MPI standard by the time of writing this thesis and is mainly

focused on errata corrections of the previous release. This version of the MPI

standard was approved by the MPI Forum in June 2015.

2.1.1 Alternative Parallel Programming Systems

2.1.1.1 PVM

While MPI is the de facto standard communication library for running parallel

programs on distributed memory systems, PVM (Parallel Virtual

Machine) [17] existed before MPI and had been used for designing portable

parallel programs. The portability of the library was centered around the idea

of "virtual machine", which abstracts the underlying connected nodes as a

single entity. The high level abstraction of the library comes with easy to use

application programming interfaces (API). The PVM API can be used to join

or leave the virtual machine, start new processes potentially using a different

selection criteria, kill a process, send a signal to a process, testing if a

process is responding, and notify any process if some other process

disconnects from the system. Having easy process management design,

PVM also provides fault tolerance, as processes can easily join or leave the

system dynamically.

2.1.1.2 Linda

Linda [18] [19] is a programming language model used for parallel and

distributed programming where the main concept is centered around

associative shared virtual memory system, or tuple space. The tuple space is

used as the technique for process communications. Each tuple of the space

consists of an arbitrary number of ordered and typed elements. Tuples can

7

2.1. MESSAGE PASSING INTERFACE

be created by using either out() or eval() operations. The first one basically

evaluates the expressions that results in tuples in the tuple space. The eval()

operation is similar to the out(), except it is asynchronous in the sense that

each field making the tuple is evaluated in parallel. There are two more

operations defined in Linda, rd() operation reads the tuple and in() reads the

tuple and removes it from the space.

In contrast to MPI, in Linda the compiler can check the types of data being

sent through tuple space. Another difference between the two systems is that

in Linda communicating processes are loosely coupled, whereas in MPI each

sender process has to know its destination process. Moreover, the MPI

Standard provides a large number of APIs, whereas as we have seen Linda

consists of only four simple commands.

2.1.1.3 mpC

mpC [20] [21] is a parallel language that was designed for programming

high-performance parallel computations on heterogeneous networks of

computers. It allows the programmer to define at runtime all the main

features of the parallel algorithm, which affects the application performance,

namely, the total number of participating parallel processes, the total volume

of computations to be performed by each of the processes, the total volume

of data to be transferred between each pair of the processes, and how exactly

the processes interact during the execution of the algorithm. This information

is used by the mpC compiler to find the optimal configuration of the

applications minmizing its execution time. The disadvantage of mpC is that it

is not easy to learn.

2.1.1.4 HeteroMPI

HeteroMPI [22] [23] is an extension of MPI for high-performance

heterogeneous systems. It is based on the approach used in the mpC

language and shares the same design principles. The MPI standard provides

communicator and group constructs, which allow the programmer to create a

group of processes that execute together some parallel computation or

8

2.1. MESSAGE PASSING INTERFACE

communication operations of a parallel algorithm. However, the grouping of

the processes is done without taking into account the heterogeneity of the

target platform. Despite it is possible for the programmer to create optimal

groups of processes, it is not a trivial task and would require a lot of complex

code in order to measure the speeds of the processors and the performance

of the communication links.

The HeteroMPI automates the selection of the optimal group of processes

that would execute the heterogeneous algorithm faster than any other group.

2.1.1.5 Charm++

Charm++ [24] is a parallel object-oriented system based on the C++

programming language [25] and developed at the University of Illinois at

Urbana-Champaign. Charm++ provides message-driven migratable objects

which are supported by adaptive runtime system. Programs written in

Charm++ are broken down into tasks called chares. The adaptive runtime

system assigns chares to processors and the programmer can override the

automatic mapping of chares. In addition, the runtime system provides some

load balancing features. For example, if the runtime system detects that the

distribution of the chares is not balanced among the processors, it can

migrate the processes during the execution time to better balance the

computation load. Charm++ has been used to implement Adaptive MPI

(AMPI) [26], which came with some features that did not exist in the MPI-2

standard, such as asynchronous collectives. In addition, AMPI supports

automatic load balancing and adaptive overlapping of computation and

communication. MPI level malleability, the ability to shrink and grow the

number of processes at runtime, and checkpointing can be achieved with

additional code.

2.1.1.6 Partitioned Global Address Space

Partitioned Global Adress Space (PGAS) [27] is a parallel programming

model where it is assumed that the global memory space is logically

partitioned between processes. The abstraction of the shared address space

9

2.1. MESSAGE PASSING INTERFACE

provides data locality and at the same time simplifies parallel programming.

The PGAS model also offers affinity of the shared memory space to a

particular process. A number of implementations of the PGAS model exist.

High Performance Fortran (HPF) [28] appeared in 1993 and is one of the

earliest PGAS languages. It is based on Fortran 90 and designed for writing

data parallel programs for shared and distributed memory platforms. HPF

provides high level constructs/directives such as FORALL statements, data

mapping directives, intrinsic and library functions, and extrinsic procedures.

These constructs make it easy for the programmer to express the operations

that supposed to be run in parallel. The most difficult part is done by the

compiler, which analyzes the code and the constructs to generate the

appropriate parallel code.

Co-array Fortran [29] is another PGAS language which is a parallel

extension of Fortran 95 and introduces co-array as a new construct to the

language. It provides a set of participating processes similar to MPI and the

participating processes have access to local memory, while access to remote

memory is supported by explicit language constructs. Later, the extensions

were included in the Fortran 2008 [30] standard.

Unified Parallel C (UPC) [31] is a PGAS-like language, which is based on

the ISO C 99 language standard and provides a number of extensions such

as an explicit parallel execution model, communication and synchronization

primitives, shared address space support. The last one is achieved by

extending C arrays and pointers with their shared variants that maps into

global memory. The Cascade High Productivity Language (CHAPEL) [32] is a

parallel programming language developed by Cray. Chapel is a high-level

language abstracting away many low-level parallel programming primitives

and facilitates productivity. The main features of the language are

multithreading, locality-awareness, object-orientation, and generic

programming.

X10 [33] is another PGAS language being developed by IBM and supports

both task and data parallelism. It is an object-oriented, strongly typed, and

garbage-collected high-level language. The Java programming language has

been used as a basis for the serial subset of X10.

10

2.2. COMMUNICATION PERFORMANCE MODELS

2.2 Communication Performance Models

Having an analytical model for parallel communication plays an important role

in predicting and tuning the performance of parallel applications. At the same

time, there are two main issues associated with building such analytical

models. First of all, it is difficult to design a parameterized analytical model

itself. Second, accurate and efficient estimation of these parameters in a

general way for different targeted platforms is quite complex. The overall

process can be even more complicated if different factors, such as the

heterogeneity of platforms, being taken into account. In this section we

discuss the most commonly used communication models for homogeneous

and heterogeneous platforms.

2.2.1 Homogeneous Communication Performance Models

The most common and comprehensive model for point-to-point

communication is the Hockney model [10]. If α is the latency and β is the

transfer time per byte, the inverse of which is called bandwidth, then the time

T to transfer a message of size m between any two processor is given as

follows:

T (m) = α +m×β (2.1)

The parameters of the Hockney model can be estimated from point-to-point

tests for different message sizes with the help of linear regression. There are

also several benchmarking libraries and tools such as MPIBlib [34],

NetPIPE [35] and others which can be used to estimate the parameters of the

model.

The LogP model [36] is a more advanced model and consists of four

parameters; L - an upper bound on the latency, o - the overhead which is

defined as the length of time that a processor is involved in the transmission

or reception of each message, g - the gap between messages and P - the

number of processors. By using these parameters the LogP model estimates

the time spent on a point-to-point communication as L + 2×o. The model

assumes that the maximum number of messages that can be transmitted by

11

2.2. COMMUNICATION PERFORMANCE MODELS

the network is
⌊
L
g

⌋
and there is no contention in the network. An

experimental study shows that this model can be accurate only for short

messages [36] [37].

Later introduced LogGP model [38] extends the LogP model for large

messages where the point-to-point time is estimated as

L+ 2×o+ (m− 1)×G. The meaning of the parameters is the same as in the

LogP model and the new G parameter represents the bandwidth for long

messages. The authors use this model to analyse a number of algorithms

including a single node scatter. The most important advantage of the LogGP

model is that it can capture the overlap of communication and computation. A

more recent extension of the LogP model is the PLogP [39] model, which

differentiates the send and the receive overheads. Unlike the previous

models this model is not linear and takes some parameters as a piecewise

linear functions of message size. The gap is defined as g(m) which is the

reciprocal value of the end-to-end bandwidth between two processors for

messages of a given size m. If os(m) and or(m) denote the send and receive

overheads respectively then it is assumed that the gap covers the overheads:

g(m) ≥ os(m) and g(m) ≥ or(m). The logp_mpi library [39] can be used to

estimate the parameters of the LogP family models including PLogP.

Despite the LogGP model handles long messages it does not take the

synchronization needed when sending long messages into account. This

issue was addressed in the LogGPS [40] model. However, this model

assumes a constant synchronization overhead independent of the message

size. The LogGOPS model [41] overcomes this limitation.

2.2.2 Heterogeneous Communication Performance Models

The mentioned point-to-point performance models do not take heterogeneity

of the target platforms into account. Therefore, prediction of collective

communication operations using those models is not accurate enough on

such platforms. On heterogeneous clusters we may have different

parameters for each point-to-point communication. As a matter of fact, more

accurate performance models have been designed with heterogeneity in

12

2.2. COMMUNICATION PERFORMANCE MODELS

mind.

In [42] a parametrized model for clusters of clusters is given and called

HiHCoHP. The model assumes that the processors are heterogeneous, the

network interconnecting the processors inside a cluster is hierarchical, the

clusters itself are hierarchical consisting of different size of clusters. The

HiHCoHP model is based on several existing models, such as the LogP,

BSP [43], the postal model [44] and few other models [45] [46] [47] [48] [49].

The authors use their model to predict broadcast and reduce operations.

The research work in [50] proposes a heterogeneous model for single-

switched clusters. The model represents the communication time of sending a

message of size m from a source processor i to a destination processor j as

Ci+m×ti+Cj+m×tj+ m
βij

. Here, Ci andCj are the fixed processing delays, ti,

tj denote the delays of processing a byte, and βij is the transmission rate. This

model reflects the heterogeneity of processors by introducing different fixed

and variable delays. Later, the authors proposes a thechnique to accurately

estimate the parameters of the model [51] [52].

2.2.3 Contention-Aware Communication Performance

Models

Heterogeneity is not the only difficulty in building analytical communication

models. There are more challenging issues if we take resource sharing on

hierarchical networks into account. The mentioned models consider neither

network resource sharing nor hierarchy in the communication.

The LoGPC [53] is yet another extension of the LogP and the LogGP

models and tries to model the impact of network contention by analyzing

k-ary n-cubes.

In [54] a performance model for many-to-one collective communications

has been proposed. The model demonstrates that for medium size messages

there is non-deterministic relationship between the execution time and the

message size. According to the authors the reason for this behaviour is the

resource contention on the root processor. The research work in [55]

proposes contention-aware communication model for multi-core clusters

13

2.2. COMMUNICATION PERFORMANCE MODELS

interconnected with an InfiniBand network. That work describes the

bandwidth distribution at the NIC level and analyses dynamic network

contention on flat star networks connected with a single switch. In [56] the

authors introduce a contention-aware communication model for

resource-constrained hierarchical Ethernet networks. This model employs

asymmetric network property [57] [58] on TCP layer for concurrent

bidirectional communications and the authors show that the symmetric

network property (i.e. when the available bandwidth is shared equally

between all concurrent communications) does not hold for complicated

hierarchical networks.

2.2.3.1 Conclusion

Despite the Hockney model is the simplest among the outlined models, it is

widely used to design algorithms in a general way on a variety of platforms.

As a matter of fact, the model has been used to design and optimize

collective communication [59], numerical linear algebra algorithms [60] [9]

and many other scientific applications on distributed memory platforms. This

model does not take any specific design and topology of the underlying

system into account. Therefore, by using the Hockney model it is possible to

design algorithms which are portable between different platforms. Moreover,

it is believed that the algorithms designed with this model can also be useful

in designing algorithms for specific topologies [61]. Thus, in this work we use

the Hockney model to design and analyze topology-oblivious optimization of

MPI collective operations.

14

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3 Overview of MPI Collective Communication

Operations

The Message Passing Interface provides two kinds of communication

operations, point-to-point and collective operations. The point-to-point

operations are expressed as a set of send and receive functions that allow

transmitting a message of the specified size and type between two

processes. On the contrary, the collective communication functions usually

involve more than two processes and provide more abstraction of parallel

processing than point-to-point operations. Some collective communication

operations offer collective computation and synchronization features besides

transmitting data among the processes. The high level of abstraction of the

collectives makes it possible to express an appropriate problem in an elegant

declarative way. This in turn improves their portability across different

platforms while hiding the implementation details. Therefore it is surely

preferable to use collectives rather than point-to-point operations where

applicable. The collective operations in MPI can be classified as follows:

• Data movement functions - broadcast, scatter, scatterv, gather, gatherv,

allgather, allgatherv, alltoall, and alltoallv.

• Collective computation functions - reduce, allreduce, reduce-scatter,

scan and exscan.

• Synchronization functions - barrier.

The definitions of these functions in the MPI standard are given below:

• Broadcast:

int MPI_Bcast(void *buffer,int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

This function broadcasts a message from a specified root process to all

processes of a given group. In the rest of the text by process we mean

MPI process which can be different from the operating system process.

15

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

• Scatter and Scatterv:

int MPI_Scatter(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

The MPI_Scatter function as the name suggests scatters the data

specified in the buffer of the root process to all processes of a given

group. During the scatter operation, ith block of the data is transmitted

to the member having rank i in the group.

The scatterv, also called irregular scatter operation, is similar to the

scatter and is used to send a varying count of data to each process.

int MPI_Scatterv(const void *sendbuf, const int sendcounts[],

const int displs[], MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm

comm)

The sendcounts and displs arrays control the varying counts of elements

sent to each process and the relative displacements from sendbuf .

• Gather and Gatherv:

int MPI_Gather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int root, MPI_Comm comm)

This routine can be seen as a reverse scatter operation where data is

gathered to the root process by the order of the ranks of all processes.

The irregular gather operation is defined as below:

int MPI_Gatherv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int

recvcounts[], const int displs[], MPI_Datatype recvtype,

int root, MPI_Comm comm)

16

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

The recvcounts array contains the counts of elements that are received

from each process, displs shows the displacements relative to the

receive buffer where the received data should be placed into.

• Reduce:

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

In the reduce operation each process i owns a vector xi of n elements.

After completion of the operation all the vectors are reduced element-

wise to a single n-element vector which is owned by a specified root

process.

• Reduce-Scatter:

int MPI_Reduce_scatter(const void *sendbuf, void *recvbuf,

const int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

This operation can be seen as a reduce operation followed by scatterv

operation.

• Allreduce:

int MPI_Allreduce(const void *sendbuf, void *recvbuf, int

count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Allreduce is very similar to the reduce operation except that all processes

receive the same copy of the result vector.

• Scan:

int MPI_Scan(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Scan is used to perform an inclusive prefix reduction on data distributed

across the calling processes.

17

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

• Exscan:

int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Exscan operation is used to perform an exclusive prefix reduction on

data distributed across the calling processes.

• Alltoall and Alltoallv:

int MPI_Alltoall(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

Alltoall operation is used to transmit the same amount of data among all

processes of the given group.

The irregular alltoall operation, which allows all processes to send and

receive different amount of data to and from all processes, is defined as

follows:

int MPI_Allgatherv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int

recvcounts[], const int displs[], MPI_Datatype recvtype,

MPI_Comm comm)

• Allgather and Allgatherv:

int MPI_Allgather(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

This routine gathers specifed data by the order of process ranks to all

processes.

The irregular allgather operation is defined as follows:

int MPI_Allgatherv(const void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf, const int

18

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

recvcounts[], const int displs[], MPI_Datatype recvtype,

MPI_Comm comm)

Allgatherv operation gathers a different count of data from each process

to the root.

• Barrier:

int MPI_Barrier(MPI_Comm comm)

This routine blocks its caller until all processes in a given group have

called it.

Recently, MPI-3 standard introduced nonblocking versions of all collective

communication operations that gives the opportunity to prevent deadlocks,

defer synchronization and overlap communication with computation. This

work does not focus on the nonblocking collectives.

19

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3.1 MPI Broadcast Operation

MPI broadcast is used in a variety of basic scientific applications and

benchmarking libraries such as parallel matrix-vector and matrix-matrix

multiplications, LU factorization, High-Performance Linpack [62] along with

others. During a broadcast operation, the root process sends a message to

all other processes in the specified group of processes.

In the rest of this paper, the amount of data to be broadcast and the number

of MPI processes will be denoted by m and p respectively. It is assumed that

the network is fully connected, bidirectional and homogeneous. The cost of

sending a message of size m between any two processes is modeled by the

Hockney’s model [10] as α + m×β. Here α is the startup cost or latency,

while β is the reciprocal bandwidth. The lower bound of the latency cost in the

broadcast operation is dα×log2pe as at each step of the broadcast the number

of processes communicating can double at most. A message of size m should

be transmitted at the end of the operation, which means that the lower bound

of the bandwidth cost is equal to β×m.

2.3.1.1 MPI Broadcast Implementation and Algorithms

The research by Johnson et al. [63] proposes n edge-disjoint spanning

binomial trees (EDST), a balanced spanning tree and a graph consisting of n

rotated spanning binomial trees for designing collective communication

operations. Namely, the authors discuss how to design optimal one-to-all

broadcasting, one-to-all personalized communication, all-to-all broadcasting,

and all-to-all personalized communication operations on Boolean n cube

architectures using the mentioned communication graphs. However, the main

limitation of the proposed algorithms is that they can only be used for a

power-of-two number of processes. Moreover, since these optimizations are

designed for n-cube networks they result in high edge contention on meshes

and other lower bandwidth networks [64].

The InterComm library [65] was one of the earliest libraries providing

high-performance implementation of commonly used collective

communication algorithms. The library was implemented for a

20

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

two-dimensional physical mesh of processes and the Hockney model was

employed in the design of the algorithms. The implementation of the

broadcast operation was presented as a minimum spanning tree scatter

followed by an allgather operation. In addition, a comparison of the

scatter/allgather algorithm with the theoretically optimal EDST algorithm was

discussed. According to the authors, the EDST algorithm outperforms the

scatter/allgather algorithm on hypercubes by a factor of two for large

messages. However, it is also noted that the EDST algorithm is difficult to

implement and lags behind the scatter/allgather algorithm when implemented

on real systems.

The CCL library [61] designed for IBM SP1 machines is another early

library implementing collective operations including broadcast. The library

employs a slightly modified version of the Hockney model taking the effect of

the congestion on the network into account. The authors discuss binomial

tree, recursive doubling and the EDST based implementations of the

broadcast operation. The MagPIe [3] library provides optimized collective

algorithms for wide area cluster systems. The optimizations in the library are

done by employing PLogP based analytical models for point-to-point

communications. The main idea is to perform more communication over fast

local-area links in order to minimize the communication over slower wide-area

links. The PACX-MPI [66] library, which is an MPI implementation for

heterogeneous metacomputing platforms, proposes optimized collective

algorithms for clusters of massively parallel processing systems (MPP). The

library is built on top of native MPI libraries, in the sense that the

communication operations inside each MPP use the communication routines

from the underlying MPI library, while the communication operations between

MPPs are optimized by employing a specialized daemon nodes on each

MPP. The daemon nodes acts like a gateway between MPPs. The library

implements the broadcast operation in a hierarchical way, where the data is

first broadcast between MPPs and then each MPP broadcasts locally. The

algorithm is not optimal as it is assumed that only one message is sent to

each machine. A library called ECO [67] offers optimized collective

operations including broadcast for heterogeneous networks. Vadhiyar et

21

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

al. [68] [69] provide a methodology for modeling and automatic tuning of

collectives on a given system by conducting a series of experiments. The

authors compare their model with the MagPIe library and show that their

approach provides better predictions for collective communication operations

on unbalanced tree topologies.

The research work in [70] introduces another theoretically optimal

broadcast algorithm based on fractional trees. The main idea of this algorithm

is being able to transform from a pipelined binary tree to a linear pipeline

algorithm when the message size increases. The work in [71] introduces a

pipelined broadcast algorithm similar to the Johnson’s algorithm when the

number of processes is a power of two and extends it to an arbitrary number

of processes.

The research work in [72] demonstrates a new broadcast algorithm for grid

environments equipped with multi-lane network interface cards (NICs). Unlike

previously proposed ones this algorithm can be used effectively both for small

and large message sizes and can leverage multi-lane NICs without switching

between different algorithms. The algorithm was validated on a simulator and

compared with chain, binary and binomial algorithms.

The implementations of the broadcast operation in MPICH [73] and Open

MPI [74] are typically based on linear, binary, binomial and pipelined

algorithms [75]. The linear algorithms are not good for larger numbers of

processes, the binary and binomial algorithms are not efficient for large data

sizes. On the other hand, pipelined algorithms are more efficient for larger

number of processes and data sizes. Other widely used broadcast algorithms

are scatter-ring-allgather and scatter-recursive-doubling-allgather [65], which

have been implemented in MPICH. In [76] the authors provide an

experimental study of several broadcast algorithms, such as round-robin,

chain, binomial, scatter-ring-allgather and pipeline algorithms. In addition,

comparision with native MPICH broadcast implementation and possible

improvements are discussed.

Another research direction in this area focuses on optimizing MPI

broadcast for some specific platforms and topologies. The TMD-MPI [77]

library provides an MPI implementation for clusters of embedded processors,

22

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

such as field-programmable gate arrays (FPGAs). The library implements

MPI collective operations including broadcast. In [78] the researchers extend

this work by adding hardware support for broadcast and reduce operations on

Multiprocessor System-on-Chip platforms. The research works in [79] and

[80] present efficient implementations of MPI broadcast, which use native

Infiniband [81] multicast. It is further optimized for SMP clusters in [82].

In [83] optimization of broadcast over multidimensional process grids on

multi-core platforms by means of optimal process to core mapping is

presented. Teng Ma et al. [84] propose an adaptive collective communication

framework, which allows one to build an optimal communication topology by

using runtime process distance and underlying hardware architecture. The

authors employ the Portable Hardware Locality (hwloc) [85] tool to build the

framework and gather the required runtime information. MPI broadcast and

allgather operations are used as example collectives. In [86] the

implementation of topology-aware MPI collectives for symmetric

multiprocessor systems in MPICH2 [87] is discussed. The authors use a

two-level hierarchical design taking the topology of the system into account.

Cheetah [6] offers a hierarchical collective communication framework that

takes advantage of the hardware-specific data-access mechanisms. IBM

BlueGene comes with its own platform specific optimizations of MPI

collectives [88]. A recent research work in [89] presents a generic framework

for optimization of the performance of MPI collectives on Intel MIC clusters.

Subramoni et al. [90] introduce topology and speed aware broadcast

algorithms for InfiniBand Clusters. A comprehensive overview of the

optimization techniques for collectives on heterogeneous HPC platforms

using broadcast as a use case can be found in [91].

In [92] implementation issues of MPI collectives in the Cloud

environments are discussed. Latency and bandwidth based network

performance metrics are used to classify the closeness of virtual machines.

Later this information is used to develop optimal MPI collective operations. A

recent research [93] work presents a collective communication layer for

data-intensive iterative MapReduce [94] applications. The authors introduce

collective operations similar to the MPI collectives such as broadcast for

23

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

iterative MapReduce [95] applications.

2.3.1.2 Theoretical Analysis of MPI Broadcast Algorithms Implemented

in MPICH and/or Open MPI

This section overviews eight MPI broadcast algorithms implemented in

MPICH and Open MPI, namely flat/linear, chain, pipeline/pipelined linear

algorithm, binary, split-binary, binomial tree, scatter-ring-allgather, and

scatter-recursive-doubling-allgather broadcast algorithms. The first six

algorithms are implemented in Open MPI and the last three algorithms are

implemented in MPICH.

• Flat tree broadcast algorithm.

Flat tree is the simplest MPI broadcast algorithm, in which the root

process sequentially sends the same message to all the processes

participating in the broadcast operation. This algorithm does not scale

well for large communicators. Its cost is estimated as below:

(p− 1)×(α +m×β) (2.2)

• Chain broadcast algorithm.

In this algorithm each process sends or receives at most one message.

The root does not receive any message and the last node (process p)

does not send any message. Theoretically, its cost is the same as that

of the flat tree algorithm:

(p− 1)×(α +m×β) (2.3)

• Pipelined linear tree broadcast algorithm.

The performance of the chain algorithm can be improved by splitting and

pipelining the message. The run time of the algorithm is the following:

(X + p− 2)×(α +
m

X
×β) (2.4)

24

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

Here, it is assumed that a broadcast message of size m is split into

X segments so that segments of size m
X

are communicated between

processes.

• Binary tree broadcast algorithm.

Consider a full and complete binary tree. Let T (h) denote the run time

of the broadcast at the height h in this tree. Then, the run time of the

broadcast on a single node is zero, T (0) = 0. The last node receiving

the message at height h will send two messages to its children at height

h + 1, therefore T (h + 1) = T (h) + 2(α +mβ). It can easily be shown

that T (h) = 2×h×(α+mβ) and the number of nodes of the binary tree

is 2h+1 − 1, therefore the overall run time will be equal to the following

function:

2×(log2(p+ 1)− 1)×(α +m×β) (2.5)

• Split-binary tree broadcast algorithm.

The split-binary tree algorithm [96] consists of forwarding and exchange

phases. In the forwarding phase, the root process splits the original

message of size m in half, then each of the halves is broadcast down

the left and right subtrees respectively using the binary tree algorithm.

In the exchange phase, each process in both subtrees will exchange

their message of size m
2

with the corresponding pairing process from

the other subtree. The time to complete a broadcast operation with this

algorithm is equal to the sum of the times spent in the forwarding and

exchange phases. Thus, if we assume a full-duplex network, then its

cost on a full and complete binary tree, where the number of processes

is one less than an exact power of two, will be as follows:

2×(log2(p+ 1)− 2)×(α +
m

2
×β) + α +

m

2
×β (2.6)

• Binomial tree broadcast algorithm.

Consider a binomial tree of height h with the number of nodes equal to

2h. The number of nodes sending and receiving will double with each

increment of the height in the algorithm. Thus, the run time T (h) will

25

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

change as follows: T (0) = 0, T (1) = α + mβ, T (2) = 2(α + mβ), ...

T (h) = h(α +mβ). For p = 2h the run time of the algorithm will be

log2 p×(α +m×β) (2.7)

• Scatter-ring-allgather broadcast algorithm.

The algorithm consists of scatter and allgather phases. The message

is scattered by a binomial tree algorithm in the first phase, and in the

next phase a ring algorithm for allgather is used to collect all segments

from all processes. The time taken by the scatter phase is log2 p×α +
p−1
p
×m×β and the ring phase takes (p − 1)×α + +p−1

p
×m×β. Thus,

the total cost of this algorithm will be as below:

(log2 p+ p− 1)×α + 2×p− 1

p
×m×β (2.8)

The algorithm is used in MPICH for large messages.

• Scatter-recursive-doubling-allgather broadcast algorithm.

This algorithm is very similar to the scatter-ring-allgather algorithm

except the allgather phase uses a recursive doubling algorithm. In each

step of the recursive doubling algorithm the distance between the

communicating processes is doubled. Figure 2.1 illustrates the concept

in a more clear way. For a power-of-two number of processes, p, the

algorithm consists of log2 p steps. The amount of data exchanged by

each process doubles in each step, so that in the first step it will be n
p
, in

the second step it will be 2×n
p
, and it continues this way until in the last

step the amount of data exchanged becomes 2log2 p−1×n
p

. If the number

of processes is not a power-of-two then at each step of the algorithm

additional communication is performed for each set of non-power-of-two

number of processes with their power-of-two number of peer set. This

additional step takes logarithmic time which means that in the case of

non-power-of-two processes the algorithm is bounded by 2×blog pc.
This algorithm is used in MPICH for medium-size messages. A

research work shows [59] that the ring algorithm is more efficient than

26

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

recursive doubling for large messages because of its nearest-neighbor

communication pattern. The time taken by this algorithm will be as

follows:

2× log2 p×α + 2×p− 1

p
×m×β (2.9)

P0 P1 P2 P3 P4 P5 P6 P7

Step 1

Step 2

Step 3

Figure 2.1: Communication Pattern in Recursive Doubling Allgather

27

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3.2 MPI Reduction Operations

Reduce is an important and commonly used collective operation in the

Message Passing Interface (MPI) [16]. According to a research study [97],

MPI reduction operations, particularly MPI reduce and allreduce, are the most

used collective operations in scientific applications. We have already briefly

outlined MPI reduction operations in Section 2.3. In this section, we focus on

MPI reduce and allreduce operations and discuss the state-of-the-art

algorithms and optimizations for those two operations. In the reduce

operation, each node i owns a vector xi of n elements. After completion of

the operation, all the vectors are reduced element-wise to a single n-element

vector, which will be owned by a specified root process. In the allreduce

operation, the result vector will be accumulated on all the processes in the

same way as it happens in the reduce. Another widely used reduction

operation is reduce-scatter, which can be seen as a reduce operation

followed by a scatter operation.

The reduce operation was implemented as an inverse broadcast in the

CCL [61] library and was not optimized for different message sizes. The

InterComm [65] library proposes a more advanced reduce implementation as

a combination of reduce-scatter and gather, and tries to be efficient for small

and large message sizes. The allreduce operation was implemented in a

similar way as a reduce-scatter followed by an allgather operation. The

MagPIe [98] library provides optimized collective algorithms, including

algorithms for reduction operations for wide area systems. The

PACX-MPI [66] library provides an MPI implementation for computational

grids, which may consist of interconnected clusters of high-performance

computers such as massively parallel processing systems (MPP). The library

implements the reduce operation similar to the broadcast operation as

discussed in the previous section. In the first phase, the operation is

performed locally inside each MPP and then the locally reduced data is

further reduced globally among MPPs. The research work in [99] proposes

two algorithms for the reduce-scatter operation, designed in the LogGP

model. The first algorithm is called RS1 and designed for associative and

28

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

commutative reduction operators. The author shows that this algorithm is

optimal within a small constant factor. The second algorithm, RS2, is not

optimal but simpler and can be used with a non-commutative operations.

Moreover, the second algorithm can be very efficient in practice for large

messages. Later, in [100] the authors discuss implementation issues of the

RS1 algorithm. Patarasuk et al. [101] propose an efficient allreduce algorithm

for large messages on tree topologies.

Design and high-performance implementation of collective communication

operations and commonly used algorithms, such as minimum-spanning tree

reduce algorithm, are discussed in [102]. The authors also discuss the lower

bounds of the reduction operations. The lower bounds on the latency and

computation costs are the same in both the reduce and allreduce operations,

and equal to dlog2(p)e and p−1
p
×n×γ respectively. On the other hand, the

lower bound on the bandwidth cost is n×β for the reduce, while it is

2×p−1
p
×n×β for the allreduce operation.

Automatic tuning of collectives for a given system by conducting a series

of experiments on the system was discussed in [69]. Rabenseifner [103]

proposes five reduction algorithms optimized for different message sizes and

numbers of processes. Implementations of MPI collectives in MPICH,

including reduction, are discussed in [59].

Algorithms for MPI broadcast, reduce and scatter, where the

communication happens concurrently over two binary trees, are presented

in [64]. Cheetah framework [6] implements MPI reduction operations in a

hierarchical way on multicore systems, which supports multiple

communication mechanisms. Unlike that work, our optimization is

topology-oblivious, and for MPI reduce optimizations in our work we do not

design new algorithms from scratch, employing the existing reduce

algorithms underneath. Therefore, our hierarchical design can be built on top

of the algorithms from the Cheetah framework as well.

In the next two sections, we consider reduce and allreduce algorithms

implemented in MPICH and Open MPI into our analysis.

29

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3.2.1 Theoretical Analysis of MPI Reduce Algorithms Implemented in

MPICH and/or Open MPI

• Flat tree reduce algorithm.

In this algorithm, the root process sequentially receives and reduces a

message of size m from all the processes participating in the reduce

operation in p− 1 steps:

(p− 1)× (α +m×β +m×γ) (2.10)

In a segmented variation of the flat tree algorithm, a message of size m

is split into X segments, in which case the number of steps becomes

X×(p− 1). Thus, the total execution time will be as follows:

X× (p− 1)×
(
α +

m

X
×β +

m

X
×γ
)

(2.11)

The flat tree reduce algorithm causes a bottleneck on the root process.

• Linear tree reduce algorithm.

Unlike the flat tree algorithm, in the linear tree each process receives or

sends at most one message. Theoretically, its cost is the same as for

the flat tree algorithm:

(p− 1)× (α +m×β +m×γ) (2.12)

• Pipeline reduce algorithm.

In the pipeline reduce algorithm, a message of size m is split into X

segments and in one step of the algorithm segments of size m
X

are

communicated between p processes. If we assume a logically reversed

linear array, in the first step of the algorithm the first segment of the

message is sent to the next process in the array. Next, while the second

process sends the first segment to the third process, the first process

sends the second segment to the second process, and the algorithm

continues this way. The first segment takes p − 1 steps and the

remaining segments take X − 1 steps to reach the end of the array. If

30

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

we also consider the computation cost in each step, then the overall

execution time of the algorithm will be as follows:

(p+X − 2)×
(
α +

m

X
×β +

m

X
×γ
)

(2.13)

• Binary tree reduce algorithms.

By employing a divide and conquer strategy in tree based algorithms,

one can improve the performance of the simple linear algorithms. As a

matter of fact, a binary tree reduce algorithm eliminates the bottleneck

on the root process. If we take a full and complete binary tree of height

h, its number of nodes will be 2h+1 − 1. In the reduce operation, a node

at the hight h will receive two messages from its children at the height

h + 1. In addition, if we divide a message of size m into X segments,

the overall run time will be as follows:

2× (log2 (p+ 1) +X − 2)×
(
α +

m

X
×β +

m

X
×γ
)

(2.14)

Open MPI uses an in-order binary tree algorithm for non-commutative

operations. It works similarly to the binary tree algorithm but enforces

order in the operations. Binary tree algorithms are efficient for small

messages where the overall communication time is dominated by the

latency term. However, these algorithms still suffer from load balancing

issues because of contention on the internal nodes. This issue can be

avoided by using a binomial tree data structure.

• Binomial tree reduce algorithm.

The binomial tree algorithm takes log2 p steps, communicating

messages of size m at each step. If each message is divided into X

segments, then the number of steps and the message size at each step

will be X× log2 p and m
X

respectively. Therefore, the overall run time will

be as follows:

log2 p× (α +m×β +m×γ) (2.15)

• Rabenseifner’s reduce algorithm.

31

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

The Rabenseifner’s algorithm [103] is designed for large messages. The

algorithm consists of reduce-scatter and gather phases. It has been

implemented in MPICH [59] and used for message sizes greater than

2KB. The reduce-scatter phase is implemented with recursive-halving,

and the gather phase is implemented with binomial tree. Therefore, the

cost of the algorithm is the sum of the costs of these two phases:

2× log2 p×α + 2×p− 1

p
×m×β +

p− 1

p
×m×γ (2.16)

The algorithm can be further optimized by recursive halving and distance

doubling. Despite the recursive algorithms naturally fit to a power-of-two

number of processes, they can be modified to support a non-power-of-

two number of processes as well. One such technique is to reduce the

number of processes to the nearest lower power-of-two (pnew = 2dlog2 pe)

number. It can be achieved by removing the remaining r = p − pnew

processes. After that, all the even ranks in the first 2×r processes send

their second half of the data to their right neighbour, while all the odd

ranks send the first half of the data to their left neighbour. Then, the

even and odd ranks perform reduction on the first and second half of

the data respectively. In the next step, the odd ranks send their reduced

results to their left neighbours and do not participate in the rest of the

algorithm. All the remaining processes form a power-of-two number and

continue the reduction operation altogether and finally send their results

back to the odd ranks. However, the recursive doubling and halving can

result in load imbalance for a non-power-of-two number of processes.

Two approaches are used to deal with that case: binary block and ring

algorithms. Before discussing those optimizations, we put together the

terminology used by the author:

– Recursive vector halving: The input buffer is split into two halves,

then one half is reduced by the process itself, and the other half is

sent to a neighbour process to be reduced. The process continues

in the same way recursively.

32

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

– Recursive vector doubling: Scattered parts of the buffer

recursiveley gathered into a larger result vector.

– Recursive distance doubling: The distance between the

communicating processes is doubled in each step (Figure 2.1).

– Recursive distance halving: The distance between the

communicating processes is halved in each step.

In the binary block algorithm, the number of processes is transformed

to a sum of power-of-two numbers which are called blocks. Then each

block performs their own reduction operation. The ring algorithm for

reduce uses p− 1 ring exchanges in the reduce-scatter phase and after

that each process sends its result to the root. The allreduce

implementation is similar to the reduce except the gather phase uses a

ring exchange as well.

2.3.2.2 Theoretical Analysis of MPI Allreduce Algorithms Implemented

in MPICH and/or Open MPI

The MPICH implementation employs two algorithms for the allreduce

operation, a recursive-doubling used for short messages and long messages

with user-defined reduction operations, and Rabensifner’s algorithm used for

long messages and native MPI reduction operations. On the other hand, the

Open MPI uses a recursive-doubling algorithm for short messages. In the

case of long messages and commutative operations, it uses linear and

segmented-ring allreduce algorithms. For non-commutative reduction

operations and long messages, a simple reduce followed by broadcast

algorithm is used.

• Linear allreduce algorithm

Open MPI implements the linear allreduce algorithm as a linear reduce

to a specified root followed by a linear broadcast from the same root.

Despite the root process faces the communication and computation

overhead, the linear algorithm can be a preferred algorithm for small

messages on a small number of processes. The time for the allreduce

33

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

will be the sum of the linear reduce (formula 2.17) and linear broadcast

(formula 2.3) times:

2× (p− 1)× (α +m×β) + (p− 1)×m×γ (2.17)

• Recursive doubling allreduce algorithm

The recursive doubling allreduce algorithm is similar to the allgather

phase of the scatter-allgather broadcast algorithm (see

Section 2.3.1.2). In each step of the algorithm, the distance between

the communicating processes is doubled. For a power-of-two number

of processes, the algorithm consists of log2 p steps. The amount of data

exchanged by each process doubles in each step. In the first step it is
m
p

, in the second step it is 2×m
p

, and it continues this way until in the

last step the amount of data exchanged becomes 2log2 p−1×m
p

. Therefore,

the total execution time of the algorithm will be as follows:

log2 p×(α +m×β +m×γ) (2.18)

• Rabensifner’s allreduce algorithm

Rabensifner’s allreduce algorithm consists of a reduce-scatter followed

by an allgather. The cost of the algorithm will be equal to the sum of

the costs of the reduce-scatter (log2 p×α + p−1
p
×m×β +m× log2 p×γ)

and the allgather part (log2 p×α + p−1
p
×m×β), which will result in the

following total cost:

2× log2 p×α + 2×p− 1

p
×m×β +

p− 1

p
×m×γ (2.19)

The main limitation of this algorithm is that it can not be applied to a user

defined operations.

• Ring allreduce algorithm

The ring algorithm for allreduce uses a nearest-neighbour

communication pattern and is used for commutative operations. The

algorithm has computation and distribution phases. The send buffer is

34

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

divided into p blocks of size send_count
p

. The algorithm can be quite easily

modified to support a use case where p does not divide the send

count [96]. In each iteration i of the computation phase, rank

(r − 1 + p)%p sends block (r − i + p)%p to rank r, which in turn

receives the data using a non-blocking receive and performs the

reduction operation on the block before sending the result to rank

(r + 1)%p. In the data distribution phase, rank r receives the reduced

data from its left neighbour and sends it to its right neighbour. The

algorithm continues this way in 2×p − 1 iterations. Its total cost will be

the following:

2×(p− 1)×(α + dm
p
e×β) + (p− 1)

m

p
×γ (2.20)

The algorithm assumes that send_count > p.

• Segmented ring allreduce algorithm

In the segmented ring allreduce algorithm, all blocks is divided into

segments of X size. Then the computation phase is performed in a

block-cyclic way for each of the segment groups. The distribution phase

is executed similarly to that of the non-segmented ring algorithm. The

main limitation of the algorithm is that it can be applied only if the send

count is greater than p× block_size
X

. The cost of the algorithm is given

below:

(p+X − 2)×(α +
m

X
×β +

m

X
×γ) + (p− 1)×(α + dm

p
e×β) (2.21)

35

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3.3 MPI Scatter and Gather Operations

At the beginning of the scatter operation, the root process owns a vector x =

(x0, x1, ..., xn) of length n, where each element has the same type and the

same length. After successful execution of the operation, process with rank i

receives element xi.

The gather can be seen as a reverse scatter operation, initially each

element xi owned by process i and after successful execution of the

operation the root process owns the entire x vector. In the same way as in

scatter, each element either can be a single element or a subvector of the

original vector with all elements being of the same type and the same length.

These two operations are also called regular scatter and gather in the

Message Passing Interface(MPI) [16]. The MPI specification defines irregular

scatter and gather operations as well. The main difference between the

regular and irregular operations is that in the latter case the size of the data to

be scattered/gathered from/to the root does not have to be the same.

It has been shown that (Chan et al. [102]) the lower bounds of the scatter

and gather operations are dlog2 pe×α and p−1
p
×n×β for latency and

bandwidth respectively. The authors present a minium spanning tree (MST)

algorithm for the scatter and gather operations. In [104] three heuristic

scheduling algorithms for a gather operation on heterogeneous platforms are

introduced. According to the authors, binomial gather algorithms can be

worse than sequential (based on flat trees) gather algorithms on distributed

heterogeneous systems and their heuristic algorithms show better results

than the sequential algorithms. The performance of the algorithms validated

using simulations. The research work in [105] presents topology-aware

design of MPI collectives, employing scatter and gather as a use case on

large scale InfiniBand clusters. Träff proposes [106] binomial-tree based

scatter/gather algorithms and discusses optimization of these algorithms on

hierarchical SMP-clusters. The algorithms require a fixed small amount of

intermediate buffer where the messages are scattered/gathered in a tree-like

way. If the message size exceeds the intermediate buffer the algorithms

continue in a serial way in which the root process scatters/gathers data

36

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

to/from one process in a sequence. The author extends these algorithms to

irregular scatter and gather operations as well. Later in [107] two

model-based irregular scatter and gather algorithms proposed for

heterogeneous platforms. The algorithms modify the binomial and Träff’s

algorithms by using heterogeneous communication performance models.

2.3.3.1 Theoretical Analysis of MPI Scatter and Gather Algorithms

Implemented in MPICH and/or Open MPI

The state-of-the-art MPI implementations of the scatter and gather operations

are based on linear and binomial tree algorithms. In the linear scatter/gather

algorithm, the root process sends/receives corresponding messages to/from

the other p − 1 processes using non-blocking send operations with a

communicator of size p. In case of linear gather operation, the root process

may get overloaded when the message or the communicator size is large. To

overcome this potential issue, a variation of the linear algorithm with

synchronization implemented in Open MPI. The algorithm can be described

in the following basic steps [96]:

• All non-root processes:

– Receive a zero byte message from the root process.

– Divide the message into two segments.

– Send the first and the second segments of the message

synchronously.

• The root process:

– Posts an asynchronous receive for the first segment of the

message.

– Then sends a zero byte message to all the non-root processes.

– After that, posts an asynchronize receive for the second segment

of the message and waits for the first segment to complete.

– Finally, copies local data if necessary and waits for the second

segment to complete.

37

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

The binomial algorithm in Open MPI uses an in-order binomial tree. The total

bandwidth cost of the operation increases if the binomial tree is used, but the

latency cost reduces as there will be a smaller number of steps in comparison

with the linear algorithm. Therefore, the binomial algorithm is used for small

messages. On the other hand, the linear algorithm is better suited for large

messages.

The scatter and gather operations in MPICH use a binomial tree algorithm

for both short and long messages when used with intra-communicators. In the

case of inter-communicators, a minimum spanning tree algorithm is used for

short messages, and a linear algorithm is used for long messages. On the

other hand, Open MPI employs a binomial tree algorithm for communicators

of size larger than 10 and message sizes less than 300B. In all other cases

it uses a linear scatter algorithm. The selection of the gather algorithms in

Open MPI is more complex. Namely, if the message size is greater than 92KB

then the linear with synchronization gather algorithm with 32KB segment size

is used, else if the block size is greater than 6KB then the same algorithm with

1KB segment size is used. Otherwise, when the communicator size is greater

than 60 or for communicator sizes greater than 10 and messages less than

1KB, a binomial gather algorithm will be used. In all other cases, a basic linear

algorithm is used. Theoretical costs of all these algorithms within the Hockney

model are given below:

• Linear Scatter and Gather Algorithms

The root process in the linear algorithm for scatter/gather sends/receives

equal amount of data (sub-vectors) to/from all processes in each step.

Assuming that the total amount of data in the scatter/gather operation is

p×m the cost of the scatter/gather operation can be derived as below:

(p− 1)×(α +m×β) (2.22)

• Linear with Syncronization Gather Algorithm

The root process can send a zero byte message in α time. Let us

assume that after dividing a message of size m into two parts the size

of the first part will be X. Then the cost of this part will be α + X×β,

38

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

while the cost of the second part will be equal to α + (m − X)×β. In

the case of full-duplex network, the overall cost will be as follows:

α + (p− 1)×(2×α +m×β) (2.23)

• Binomial Scatter and Gather Algorithms

We only discuss the binomial tree gather algorithm as the algorithm for

the scatter operation has the similar design. In the binomial gather, the

leaf nodes send their data to their parent processes. Intermediate nodes

forwards data up the tree after they receive data from all their children.

Upon receipt of all data, the root node might need to perform local shift

operation to put the data in correct order. The implementation of the

algorithm in Open MPI uses in-order binomial tree topology [96]. Thus,

the cost will be

log2 p×α + (p− 1)×m×β (2.24)

• Minium-Spanning Tree Scatter and Gather Algorithms

In the minimum-spanning tree scatter algorithm, the processes are

divided into two groups. The root process reside in the first group and it

communicates with a process from the second group. During this

communication, the root process transmits the part of the data that is

ultimately should reside in the second group. Upon the receipt of the

data, the process from the second group behaves as the root of its own

group and the algorithm continues recursively and in parallel in the two

separate groups. If we assume that the number of processes is a

power-of-two and all process own equal amounts of data, then the final

cost of the MST scatter will be as follows:

log2 p×α +
p− 1

p
×m×β (2.25)

We have also mentioned that the MST algorithm achieves the lower bounds

on both the latency and the bandwidth costs of the scatter operation [102].

39

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

The MST gather algorithm can be seen as MST scatter algorithm in reverse

order. Therefore their costs are equal.

It is worth mentioning that these theoretical analysis is not the original

contribution of this thesis and an interested reader is referred to the

corresponding references [102], [96]. The main goal of this part is

establishing the fundamental background for our introduction to the

hierarchical optimizations of the MPI collective operations in the next chapter.

40

2.3. OVERVIEW OF MPI COLLECTIVE COMMUNICATION OPERATIONS

2.3.4 Conclusion

Despite there has been a lot of research in the optimization of MPI collective

operations, most of the recent works are not general purpose and very often

focus on some specific toplogy and platforms. At the same time, the

state-of-the-art MPI implementations provide a bunch of algorithms where a

decision function switches between the algorithms depending on the number

of processes, the message size and the reduce operation (for reduction

operations). However, the switching points are based mainly on

measurements which obtained on specific platforms. This in turn means that,

the decision function is not general and the selected algorithms can be far

from optimal.

With these issues in mind, we propose topology and platform oblivious

optimization of MPI collective operations. The main idea is not introducing

new algorithms from scratch but rather building a hierarchical optimization

tool on top of the existing algorithms. The approach lets us use the existing

algorithms underneath and improve their performance further. At the same

time, our hierarchical algorithms can fall back to the original algorithms if their

performance can not be improved. The next section presents the hierarchical

optimization of MPI collective algorithms.

41

Chapter 3

Hierarchical Optimization of MPI

Collective Operations

3.1 Hierarchical Transformation of MPI

Broadcast Algorithms

This section introduces a simple but general optimization of the MPI

broadcast algorithms. The proposed optimization is based on the hierarchical

arrangement of the processes, participating in the broadcast, into logical

groups. Let us denote by p the total number of MPI processes. For simplicity

we assume that the number of groups divides the number of MPI processes

and can change between one and p. Let G be the number of groups. Then

there will be p
G

MPI processes per group. Figure 3.1 shows an arrangement

of 12 processes in a non-hierarchical way and a hierarchical grouping of 12

processes into 3 groups of 4 processes. The hierarchical optimization has

two steps: in the first step a group leader is selected for each group and the

broadcast is performed between the group leaders (see Figure 3.2), and in

the next step the leaders start broadcasting inside their own group (in this

example between 4 processes). The grouping can be done by taking the

topology into account as well. However, this work focuses on the case where

the grouping is topology-oblivious and the first process in each group is

selected as the group leader. The broadcasts inside different groups are

42

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Figure 3.1: Arrangement of processes in MPI broadcast.

P0 P4 P8

P1

P2

P3

P5

P6

P7

P9

P10

P11

Figure 3.2: Arrangement of processes in the hierarchical broadcast.
Processes in the ellipses are the group leaders. The rectangles show the
processes inside groups. In the first step the broadcast is performed between
the group leaders and in the next step it is performed among the processes
inside each group.

executed in parallel. While in general different broadcast algorithms can be

used inside and between groups, this work focuses on the case where the

same broadcast algorithm is employed in both levels. Algorithm 1 shows the

pseudocode of the hierarchical broadcast; Line 4 calculates the root for the

broadcast inside the groups. Then line 5 creates a sub-communicator of G

processes among the groups and line 6 creates a sub-communicator of p
G

processes inside the groups. Our implementation uses MPI_Comm_split MPI

routine to create new sub-communicators.

3.1.1 Theoretical Analysis

3.1.1.1 Hierarchical Flat and Linear Tree Broadcast

If we group the processes in the hierarchical way and apply the flat or linear

tree broadcast algorithm among G groups and inside the groups among p
G

processes then the overall broadcast cost will be equal to their sum:

F (G) = (G−1)×(α+m×β)+(
p

G
−1)×(α+m×β) = (G+

p

G
−2)×(α+m×β)

(3.1)

43

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

Data: p - Number of processes
Data: G - Number of groups
Data: buf - Message buffer
Data: count - Number of entries in buffer (integer)
Data: datatype - Data type of buffer
Data: root - Rank of broadcast root
Data: comm - MPI Communicator
Result: All the processes have the message of size m
begin

1 MPI_Comm comm_outer /* communicator among the groups */

2 MPI_Comm comm_inner /* communicator inside the groups */

3 int root_inner /* root of broadcast inside the groups */

4 root_inner = Calculate_Root_Inner(G, p, root, comm)

5 comm_outer = Create_Comm_Between_Groups(G, p, root, comm)

6 comm_inner = Create_Comm_Inside_Groups(G, p, root_inner, comm)

7 MPI_Bcast(buf, count, datatype, root, comm_outer)
8 MPI_Bcast(buf, count, datatype, root_inner, comm_inner)

end
Algorithm 1: Hierarchical transformation of an MPI broadcast algorithm.

Here F (G) is a function of G for a fixed p. Its derivative is equal to (1 −
p
G2)×(α+m×β). It can be shown that G =

√
p is the minimum of the function

F (G) as in the interval (1,
√
p) the function decreases, and in the interval

(
√
p, p) it increases. If we take G =

√
p in the F (G) function the optimal value

of the broadcast cost will be as follows:

F (
√
p) = 2× (

√
p− 1)×(α +m×β) (3.2)

3.1.1.2 Hierarchical Pipelined Linear Tree Broadcast

In the same way, if we add two pipelined linear tree broadcast costs among G

groups and inside the groups among p
G

processes then the overall

communication cost for the hierarchical pipelined linear tree will be as follows:

F (G) = (2×X +G+
p

G
− 4)×(α +

m

X
×β) (3.3)

44

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

It can be shown that G =
√
p is the minimum point again and at this point the

cost will be as follows:

F (
√
p) = (2×X + 2×√p− 4)×(α +

m

X
×β) (3.4)

3.1.1.3 Hierarchical Binary and Binomial Tree Broadcast

Let us apply the binary tree algorithm among G groups and inside the groups

among p
G

processes. The broadcast cost among G groups and inside the

groups will be 2× log2G×(α + m×β) and 2× log2
p
G
×(α + m×β)

respectively. If we calculate the sum of these two costs then the overall cost

of the hierarchical binary broadcast algorithm will be the same as the

corresponding non-hierarchical broadcast algorithm.

Because of the same reason the hierarchical modification of the binomial

tree algorithm does not improve the non-hierarchical binomial tree algorithm.

It is worth mentioning that while we claim the cost of the hierarchical and the

corresponding original binary and binomial algorithms are the same we

assume that the overhead to create the sub-communicators is negligible or it

can be avoided by the implementation where the creation of the

sub-communicators can be done during MPI initialisation time. We

experimentally show that the first assumption holds for medium and large

message sizes. Otherwise, the implementation can fall back to the original

algorithm by using the number of groups equal to one.

3.1.1.4 Hierarchical Scatter-Ring-Allgather Broadcast

The sum of the costs of two scatter-ring-allgather algorithms inside and outside

the groups will give us the following formula:

F (G) =
(
log2 p+G+

p

G
− 2
)
×α + 2×m×

(
2− 1

G
− G

p

)
×β (3.5)

45

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

Let us find the optimal value of the F (G) function:

F ′(G) = g2−p
G2 ×

(
α− 2×m×β

p

)
. It is clear that if

α

β
>

2×m
p

(3.6)

then G =
√
p is the minimum point of the F (G) function in the interval (1, p).

The value of the function at this point will be as follows:

F (
√
p) = (log2 p+ 2×√p− 2)×α + 2×m×

(
2− 2
√
p

)
×β (3.7)

3.1.1.5 Hierarchical Scatter-Recursive-Doubling-Allgather Broadcast

The hierarchical modification of this algorithm has a higher theoretical cost

compared to the cost of the original algorithm. The latency term is increased

two times and the bandwidth term is increased as well:

F (G) = 2× log2 p×α + 2×m×
(
2− 1

G
− G

p

)
×β (3.8)

It can be shown that G =
√
p is the extremum point and the function achieves

its maximum at this point. Therefore for this algorithm a hierarchical

implementation of broadcast should use G = 1 in which case the algorithm

will fall back to the original algorithm.

3.1.1.6 Hierarchical Split-Binary Tree Broadcast

The cost of the hierarchical transformation of the split-binary broadcast can

be derived by summing up the broadcast cost inside each group among p
G

processes and that of outside the groups amoung G processes. Thus,

according to formula 2.6 the cost function will be as follows:

2× (log2 (p+G)− 4)×(α + β×m
2
) + 2×

(
α +

m

2
×β
)

(3.9)

46

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

3.1.1.7 Summary of Theoretical Analysis

We can summarise this section by saying that the hierarchical transformations

of the flat, chain, pipeline and scatter-ring-allgather algorithms theoretically

reduce the communication cost of the corresponding underlying algorithms.

The communication costs of the binary, binomial, scatter-recursive-doubling-

allgather and split-binary tree algorithms get their best performance when the

number of groups is one or equal to the number of processes.

3.1.2 Experimental Study

3.1.2.1 Experiments on BlueGene/P

Some of our experiments were carried out on the Shaheen BlueGene/P at

the Supercomputing Laboratory at King Abdullah University of

Science&Technology (KAUST) in Thuwal, Saudi Arabia. Shaheen has 16

racks with a total of 16384 nodes. Each node is equipped with four 32-bit,

850 Mhz PowerPC 450 cores and 4GB DDR memory. The BlueGene/P

(BG/P) architecture provides a three-dimensional point-to-point BlueGene/P

torus network which interconnects all compute nodes and global networks for

collective and interrupt operations. The use of this network is integrated into

the BG/P MPI implementation. BlueGene/P MPI is based on MPICH which

uses three different broadcast algorithms depending on the message size

and the number of processes in a broadcast operation [59]:

• binomial tree algorithm - when the message size is less than 12kB or

when the number of processes is less than eight.

• scatter-recursive-doubling-allgather algortihm - when the message size

is less than 512kB and the number of processes is a power-of-two.

• scatter-ring-allgather (SRGA) algorithm - otherwise, for long messages

greater than or equal to 512kB or with non power-of-two number of

processes.

47

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

Despite the referenced paper [59] was published more than a decade ago it

still reflects the current version of MPI broadcast operation implemented in

MPICH according to its source code.

In addition to the algorithms implemented in MPICH, the broadcast

operation on BG/P comes with different optimizations and algorithms

specifically for the BG/P itself. Namely, if the communicator is

MPI_COMM_WORLD it uses the BG/P collective tree network which

supports hardware accelerated collective operations such as broadcast and

all-reduce, and otherwise depending on the communicator shape either a

rectangular broadcast algorithm or the broadcast algorithms from MPICH are

used [88]. However, algorithms for some fundamental scientific applications

such as parallel matrix multiplication, LU factorization does not use

MPI_COMM_WORLD in their main communication steps, for example, it is

more typical to use sub-communicators for rows and columns in a

two-dimensional arrangement of processes. On the other hand, the

rectangular broadcast is used only for rectangular shaped

sub-communicators which strongly depends on the mapping of the processes

into the physical topology and depending on the allocated BG/P partition can

be arbitrary. Furthermore, the optimal mapping of processes to network

hardware is not a trivial task and is a separate research area itself. The

proposed optimization in this work is more general and topology-oblivious.

We present experiments with the corresponding hierarchical modifications

of the scatter-ring-allgather algorithm and the native MPI broadcast operation.

Experiments with the binomial and scatter-recursive-doubling-allgather

algorithms demonstrated only slight fluctuations as expected theoretically.

While performance modeling and analysis of the BG/P-specific broadcast

algorithms and optimizations are beyond the scope of this text, we present

some experiments with the native BG/P broadcast operation as well. The

experiments have been done with different configurations, message sizes

from 1kB up to 16MB and the number of MPI processes from 8 up to 6142.

The number of the allocated BG/P nodes was 6144, however we deliberately

excluded two of them and used 6142 nodes by creating sub-communicators

to avoid the case with MPI_COMM_WORLD. We present results mainly for

48

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

2048 and 6142 processes and message sizes of 512kB and 2MB. Figure 3.3

demonstrates experiments with the scatter-ring-allgather broadcast using

message sizes of 512kB (left) and 2MB (right). The improvement with a

message size of 512kB on 2048 nodes is 1.87 times, however with a

message size of 2MB there is a performance drop. This is an expected

behaviour according to the formula 3.6. On the other hand, because of the

same formula it is expected that if we fix the message size, and keep

increasing the number of processes the hierarchical transformation gradually

should improve the performance. This is validated with the experiments:

Figure 3.4 shows that for a message size of 512kB the speedup increases up

to 3.09 times on 6142 nodes and unlike on 2048 nodes, the hierarchical

algorithm outperforms the original algorithm with a message size of 2MB as

well. In addition, if we put the platform and algorithm parameters in

formula 3.5, we will see that the theoretically expected plots of the

hierarchical algorithm will be parabola-like as well (Figure 3.4). Experiments

with the native BG/P MPI broadcast operation are given in Figure 3.5.

It is already mentioned that during these experiments a sub-communicator

of size 6142 was deliberately created from an MPI_COMM_WORLD of size

6144 to disable BG/P optimizations for MPI_COMM_WORLD. As a result the

native BG/P MPI broadcast operation performed worse than the scatter-ring-

allgather broadcast with a message size of 2MB.

It is obvious that the time between the groups will increase if the number

of groups increases, however it is the opposite inside the groups. Figure 3.3

confirms that by showing the broadcast times separately spent inside and

between groups.

Our theoretical models do not take sub-communicator creation overheads

into account. However, MPI_Comm_split is also a collective operation and

depending on the number of groups it makes different contributions into the

overall time of the hierarchical broadcast. For example, in Figure 3.3 we do

not have the expected upside-down parabola-like shape for a message size

of 2MB because of the additional overhead from MPI_Comm_split

operations. The reason is that when the number of groups is 2 or 1024 the

total cost of creation of the two sub-communicators exceeds the gains due to

49

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

2−1 21 23 25 27 29 211
0

0.5

1

1.5

·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

2−1 21 23 25 27 29 211
0

1

2

3

·10−2

Number of groups
Ti

m
e(

S
ec

)
HBcast Bcast

Hbcast(out) Hbcast(in)

Figure 3.3: Hierarchical SRGA bcast on 2048 cores of BG/P with messages
sizes 512kB (left) and 2MB (right). The experiments with 2MB also present
the broadcast times spent inside each group and outside between groups.

the hierarchical optimization. Figure 3.3 (right) demonstrates these results. If

the reduction of the execution time due to the optimization is greater than the

overhead itself then the sub-communicator creation times will be well

compensated by the reduction. It is the case in the experiments with 512kB

(Figure 3.3).

Figure 3.6 presents the results of experiments with scatter-ring-allgather

and native MPI broadcast operations. It shows the speedup due to the

hierarchical optimization of these operations. Here the number of processes

is fixed to be equal to 6142, and the message sizes change from 1kB up to

16MB. The experiments with 2048 processes have more data points than that

of 6142 processes. The reason for that is we take only the factors of the

number of processes as group numbers.

50

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

2−1 22 25 28 211
0

1

2

3

4

5

·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast-512kB Bcast-512kB
HBcast-2MB Bcast-2MB

2−1 22 25 28 211
0

2

4

6

·10−2

Number of Groupcs
Ti

m
e(

S
ec

)
HBcast-512kB Bcast-512kB
HBcast-2MB Bcast-2MB

Figure 3.4: Hierarchical SRGA bcast on 6142 cores of BG/P with message
sizes of 512kB and 2MB (left), and theoretical prediction using the same
broadcast algorithm (right)

2−1 22 25 28 211
0

1

2

3

4
·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

2−1 22 25 28 211
0

0.05

0.1

0.15

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

Figure 3.5: Hierarchical bcast on 6142 cores with message sizes 512kB (left)
and 2MB (right)

51

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

2−1 21 23 25 27 29 211
0

1

2

3

4
·10−3

Number of groups

Ti
m

e(
S

ec
)

MPI_Comm_split

2−1 22 25 28 211 214
0

1

2

3

4

5

6

Message sizes(kB)

S
pe

ed
up

HBcast SRGA HBcast native

Figure 3.6: Time spent on MPI_comm_split time on 2048 cores (left) and
Speedup of hbcast on 6142 cores (right)

3.1.2.2 Experiments on Grid’5000

The next part of the experiments was carried out on the Graphene cluster of

the Nancy site of the Grid’5000 [108] infrastructure in France. The platform

consists of 20 clusters distributed over nine sites in France and one in

Luxembourg. The Grid’5000 web site (http://www.grid5000.fr) provides

more comprehensive information about the platform.

The experiments on Grid’5000 have been done with Open MPI 1.4.5

which provides a few broadcast implementations, such as flat, chain (linear),

pipelined, binary, binomial, split-binary tree. We present experimental study

with Open MPI native broadcast operation, the chain and pipeline broadcast

algorithms. During the experiments the hierarchical transformations of the

binary and binomial tree algorithms had the same performance as the

original algorithms. The same technique as described in MPIBlib [34] has

been used to benchmark the performance.

3.1.2.3 Experiments on Grid’5000: One Process per Node

An experimental study with the Open MPI native broadcast operation is given

in Figure 3.7. The first measurement was performed with a message size of

16kB where there is more than 3 times improvement. The experiment with

52

http://www.grid5000.fr

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

16MB showed 2.6 times reduction of the broadcast time. In the experiments

with smaller message sizes up to 1kB and 128 processes the overhead from

the two MPI_Comm_split operations was higher than the broadcast itself.

However, with message sizes larger than 1kB the overhead from the split

operations was negligible, for example, Figure 3.7 also shows the split time

on 128 nodes. We had the same trend with larger number of processes.

Figure 3.8 shows experimental results with the chain broadcast algorithm and

its hierarchical transformation for message sizes of 16kB and 16MB. The

speedup with the first setting is more than 8 times and with 16MB there is

about 3 times improvement. In such situations an implementation of the

algorithm could check the message size beforehand and fall back to use the

regular MPI_Bcast for short messages to reduce the overhead even further.

20 21 22 23 24 25 26 27
0

1

2

3

4

·10−3

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast
Communicator split time

20 21 22 23 24 25 26 27
0

2

4

6

·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

Figure 3.7: Hierarchical native MPI broadcast. m=16kB (left) and m=16MB
(right), p=128.

53

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

20 21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

20 21 22 23 24 25 26 27
0

0.1

0.2

0.3

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

Figure 3.8: Hierarchical chain broadcast. m=16kB (left) and m=16MB (right),
p=128.

Figure 3.9 show experiments with the pipeline broadcast algorithm and its

hierarchical transformation. This time the speedup is more than 30 times with

a message size of 16kB and more than 5 times with 16MB. Figure 3.10 shows

the speedup for different numbers of processes for a fixed message size of

16MB and the speedup for different message sizes on 128 nodes.

20 21 22 23 24 25 26 27
0

1

2

3

4

·10−2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

20 21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

Number of groups

Ti
m

e(
S

ec
)

HBcast Bcast

Figure 3.9: Hierarchical pipeline broadcast on Grid’5000. m=16kB (left) and
m=16MB (right), p=128.

54

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

24 25 26 27
0

1

2

3

4

5

6

Number of processes

S
pe

ed
up

Pipelined
Chain

22 24 26 28 210 212 214
0

10

20

30

40

Message size(kB)

S
pe

ed
up

Pipelined
Chain

Figure 3.10: Speedup of HBcast over Bcast on Grid’5000. On the left the
message size is fixed to 16MB, on the right the number of processes is fixed
to 128.

3.1.2.4 Experiments on Grid’5000: One Process per Core

This section presents experiments with a one process per core configuration,

or equivalently four processes per node. Figure 3.11 shows experimental

results for the chain and pipeline broadcasts on 512 cores with message

sizes of 16kB and 16MB. Figure 3.12 shows the speedup of the hierarchical

chain and the hierarchical pipeline broadcast algorithms for a fixed message

size of 16Mb and a power-of-two number of processes varying from 32 to 512

and speedup with message sizes from 16kB up to 16MB on 512 cores.

55

3.1. HIERARCHICAL TRANSFORMATION OF MPI BROADCAST
ALGORITHMS

20 22 24 26 28
0

50

100

150

·10−3

Number of groups

Ti
m

e(
S

ec
)

HBcast(chain) Bcast(chain)
Hbcast(pipeline) Bcast(pipeline)

20 22 24 26 28
0

1

2

3

4

5

Number of groups

Ti
m

e(
S

ec
)

HBcast(chain) Bcast(chain)
Hbcast(pipeline) Bcast(pipeline)

Figure 3.11: Hierarchical broadcast on Grid’5000, m=16kB (left) and m=16MB
(right), p=512

25 26 27 28 29
0

2

4

6

8

10

12

Number of processes

S
pe

ed
up

Pipeline
Chain

24 26 28 210 212 214
0

20

40

60

Message size(kB)

S
pe

ed
up

Pipeline
Chain

Figure 3.12: Speedup of Hbcast over Bcast. On the left the message size is
fixed to 16MB and on the right the number of processes is fixed to 512.

56

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

3.2 Hierarchical Transformation of MPI

Reduction Algorithms

3.2.1 Hierarchical Transformation of MPI Reduce

algorithms

Reduce is important and commonly used collective operation in the Message

Passing Interface (MPI) [16]. A five-year profiling study [97] demonstrates

that MPI reduction operations are the most used collective operations. In the

reduce operation each node i owns a vector xi of n elements. After completion

of the operation all the vectors are reduced element-wise to a single n-element

vector which is owned by a specified root process.

Optimization of MPI collective operations has been an active research

topic since the advent of MPI in 1990s. Many general and

architecture-specific collective algorithms have been proposed and

implemented in the state-of-the-art MPI implementations. As we have seen in

the previous section the hierarchical topology-oblivious transformation of

existing broadcast algorithms demonstrates as a new promising approach to

optimization of MPI collective communication algorithms and MPI-based

applications. Our study shows that by using this approach significant

multi-fold performance gains can be achieved, especially on large-scale HPC

systems.

We propose a hierarchical optimization of legacy MPI reduce algorithms

without redesigning them. The approach is simple and general, allowing for

application of the proposed optimization to any existing reduce algorithm. As

by design the original algorithm is a particular case of its hierarchically

transformed counterpart, the performance of the algorithm will either improve

or stay the same in the worst case scenario. Theoretical study of the

hierarchical transformation of six reduce algorithms which are implemented in

Open MPI is presented. The theoretical results have been experimentally

validated on a widely used Grid’5000 [109] infrastructure.

Similar to the optimization of the broadcast operation, the proposed

57

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

P0 P1 P2 P3 P4 P5 P6 P7

MPI_Op

P0

Figure 3.13: Logical arrangement of processes in MPI reduce.

optimization technique of the reduce is also based on the arrangement of the

p processes participating in the reduce into logical groups. For simplicity, it is

assumed that the number of groups divides the number of MPI processes

and can change between one and p. Let G be the number of groups. Then

there will be p
G

MPI processes per group. Figure 3.13 shows an arrangement

of 8 processes in the original MPI reduce operation, and Figure 3.14 shows

the arrangement in the hierarchical reduce operation with 2 groups of 4

processes. The hierarchical optimization has two phases: in the first phase, a

group leader is selected for each group and the leaders start reduce

operation inside their own group in parallel (in this example among 4

processes). In the next phase, the reduce is performed among the group

leaders (in this example between 2 processes). The grouping can be done by

taking the topology into account as well. However, in this work the grouping is

topology-oblivious and the first process in each group is selected as the

group leader. In general, different algorithms can be used for reduce

operations among group leaders and within each group. This work focuses

on the case where the same algorithm is employed at both levels of hierarchy.

Algorithm 2 shows the pseudocode of the hierarchically transformed MPI

reduce operation. Line 4 calculates the root for the reduce between the groups.

Then line 5 creates a sub-communicator of G processes between the groups,

and line 6 creates a sub-communicator of p
G

processes inside the groups.

Our implementation uses the MPI_Comm_split MPI routine to create new sub-

communicators.

58

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

P0 P1 P2 P3

MPI_Op

P0

P4 P5 P6 P7

MPI_Op

P4

MPI_Op

P0

Figure 3.14: Logical arrangement of processes in hierarchical MPI reduce.

Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: recvbuf - Receive buffer
Data: count - Number of entries in send buffer (integer)
Data: datatype - Data type of elements in send buffer
Data: op - MPI reduce operation handle
Data: root - Rank of reduce root
Data: comm - MPI communicator handle
Result: The root process has the reduced message
begin

1 MPI_Comm comm_outer /* communicator between the groups */

2 MPI_Comm comm_inner /* communicator inside the groups */

3 int root_outer /* root of reduce between the groups */

4 root_outer = Calculate_Root_Outer(G, p, root, comm)

5 comm_outer = Create_Comm_Between_Groups(G, p, root_outer, comm)

6 comm_inner = Create_Comm_Inside_Groups(G, p, root, comm)

7 void* tmpbuf
8 MPI_Reduce(sendbuf, tmpbuf, count, datatype, op, root, comm_inner)
9 MPI_Reduce(tmpbuf, recvbuf, count, datatype, op, root_outer,

comm_outer)
end

Algorithm 2: Hierarchical optimization of MPI reduce operation.

59

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

3.2.1.1 Theoretical Analysis

• Hierarchical Transformation of Flat Tree Reduce Algorithm

The hierarchical transformation creates two phases of the reduce

operation: inside the groups and outside the groups. In the first phase

the reduce operations inside each group happen among p
G

processes in

parallel. Then, in the next phase the operation continues among G

processes which are leaders of their own groups. The cost of these two

reduce operations will be (G− 1)× (α +m×β +m×γ) and(
p
G
− 1
)
× (α +m×β +m×γ) respectively. Thus, the overall run time

can be seen as a function of G:

F (G) =
(
G+

p

G
− 2
)
× (α +m×β +m×γ) (3.10)

The derivative of the function is
(
1− p

G2

)
× (α +m×β +m×γ) and it is

easy to show that p =
√
G is the minimum point of the function in the

interval (1, p). Therefore, the optimal value of the F (G) function will be

as follows:

F (
√
p) = (2×√p− 2)× (α +m×β +m×γ) (3.11)

• Hierarchical Transformation of Pipeline Reduce Algorithm

If we apply the pipeline algorithm inside and outside the groups and sum

these two costs up, the overall run time will be as follows:

F (G) =
(
2×X +G+

p

G
− 4
)
×
(
α +

m

X
×β +

m

X
×γ
)

(3.12)

Similar to the previous algorithm we can show that the optimal value of

the cost function is the following:

F (
√
p) = (2×X + 2

√
p− 4)×

(
α +

m

X
×β +

m

X
×γ
)

(3.13)

• Hierarchical Transformation of Binary Reduce Algorithm

For simplicity, we will take p+ 1≈p in the formula 2.14. Then the cost of

60

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

the reduce operations among the groups and inside the groups will be

as follows respectively: 2× log2(G)×(α + m×β + mγ) and

2× log2(
p
G
)×(α + m×β + mγ). If we add these two terms, the overall

cost of the hierarchical transformation of the binary tree algorithm will

be equal to the cost of the original algorithm.

• Hierarchical Transformation of Binomial Reduce Algorithm

Similarly to the binary reduce algorithm, the cost function of the binomial

tree will not change after hierarchical transformation.

• Hierarchical Transformation of Rabenseifner’s Reduce Algorithm

By applying the formula 2.16 among G groups (G processes) and

inside each group of p
G

processes, we can find the run time of

hierarchical transformation of Rabenseifner’s algorithm. Unlike the

previous algorithms, now the theoretical cost increases in comparison

to the original Rabenseifner’s algorithm. Therefore, theoretically the

hierarchical reduce implementation should use the number of groups

equals to one, in which case the hierarchical algorithm retreats to the

original algorithm.

2× log2(p)×α + 2×m×β×
(
2− G

p
− 1

G

)
+m×γ×

(
2− G

p
− 1

G

)
(3.14)

3.2.1.2 Experimental Study

The Graphene cluster from Nancy site of the Grid’5000 infrastructure was our

main test-bed in the experiments with MPI reduce. The experiments

conducted using Open MPI 1.4.5 which comes with several reduce

algorithms such as linear (flat), chain, pipeline, binary, binomial, and in-order

binary tree algorithms. More recent versions of Open MPI provides

platform/architecture specific algorithms as well, some of which are reduce

algorithms for Infiniband networks, and the Cheetah framework for multicore

architectures. In this work, we do not consider the reduce implementations

that are optimized specifically to specific type of platforms. We used the

61

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

same approach as described in MPIBlib [34] to benchmark our experiments.

During the experiments, the mentioned reduce algorithms were selected by

using Open MPI MCA (Modular Component Architecture)

coll_tuned_use_dynamic_rules and coll_tuned_reduce_algorithm

parameters. MPI_MAX operation has been used in the experiments. We

used two experimental settings, one process per core and one process per

node with the Infiniband-20G network. A power-of-two number of processes

were used in the experiments.

Experiments: One Process per Core. The nodes in the Graphene cluster

are organized into four groups and connected to four switches. The switches

in turn are connected to the main Nancy router. We have used 10 patterns of

process to core mappings, but we will show experimental results only with

one such mappings where the processes are grouped by their rank in

increasing order. The measurements with different groupings showed similar

performance.

The theoretical and experimental results showed that the hierarchical

approach mainly improves the algorithms which assume flat arrangements of

the processes, such as linear, chain and pipeline. On the other hand native

Open MPI reduce operation consists of different algorithms where a specific

algorithm is selected depending on the message size, the count and the

number of processes sent to the MPI_Reduce function. This means the

hierarchical transformation can improve the native reduce operation as well.

The algorithms used in the Open MPI decision function are linear, chain,

binomial, binary/in-order binary and pipeline reduce algorithms which can be

used with different sizes of segmented messages.

Figure 3.15 shows experiments with default Open MPI reduce operation

with a message of size 16KB where the best performance is achieved when

the group size is 1 or p, in which case the hierarchical reduce obviously turns

into the original non-hierarchical reduce. Here for different numbers of groups

the Open MPI decision function selected different reduce algorithms. Namely,

if the number of groups is 8 or 64 then Open MPI selects the binary tree

reduce algorithm between the groups and inside the groups respectively. In

62

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

Table 3.1: Open MPI algorithm selection in HReduce. m=16MB, p=512.

Groups Inside groups Between groups

1 - Pipeline 32KB
2 Pipeline 32KB Pipeline 64KB
4 Pipeline 32KB Pipeline 64KB
8 Pipeline 32KB Pipeline 64KB

16 Pipeline 64KB Pipeline 64KB
32 Pipeline 64KB Pipeline 64KB
64 Pipeline 64KB Pipeline 32KB
128 Pipeline 64KB Pipeline 32KB
256 Pipeline 64KB Pipeline 32KB

all other cases the binomial tree reduce algorithm is used. The reduction of

the communication time can be significant, for example, in case of 16MB it is

about 30 times. This improvement does not come solely from the hierarchical

optimization itself, but also because of the number of groups in the hierarchical

reduce resulted in Open MPI decision function to select the pipeline reduce

algorithm with different segment sizes for each groups. The selection of the

algorithms for different number of groups is described in Table 3.1.

20 22 24 26 28 210
0

1

2

3

·10−3

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

20 22 24 26 28 210
0

2

4

6

8

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

Figure 3.15: Hierarchical native Open MPI reduce operation on 512 cores with
message sizes of 16KB (left) and 16MB (right)

As the MPI_Comm_split is a collective operation, it is expected that the

63

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

overhead from the split operation should affect reduce operations with smaller

message sizes. Figure 3.16 validates this with experimental results. The

hierarchical reduce operation of 1KB message with the underlying native

reduce achieved its best performance when the number of groups was one

as the overhead from the split operation itself was higher than the reduce.

It is interesting to study the pipeline algorithm with different segment sizes

as this algorithm is used for large message sizes in Open MPI. Figure 3.16

presents experiments with the hierarchical pipeline reduce with a message

size of 16KB with 1KB segmentation. We selected the segment sizes using

Open MPI coll_tuned_reduce_algorithm_segmentsize MCA parameter.

Figure 3.17 shows the performance of the pipeline algorithm with segment

sizes of 32KB and 64KB. In the first case, we see a 26.5 times improvement,

while with the 64KB the improvement is 18.5 times.

Figure 3.18 demonstrates speedup of the hierarchical transformation of

native Open MPI reduce operation, linear, chain, pipeline, binary, binomial,

and in-order binary reduce algorithms with message sizes starting from 16KB

up to 16MB. Except binary, binomial and in-order binary reduce algorithms,

there is a significant performance improvement. In the figure, NT is native

Open MPI reduce operation, LN is linear, CH is chain, PL is pipeline with

32KB segmentation, BR is binary, BL is binomial, and IBR denotes in-order

binary tree reduce algorithm. We would like to highlight one important point

that Figure 3.18 does not compare the performance of different Open MPI

reduce algorithms, it rather shows the speedup of their hierarchical

transformations. Each of these algorithms can be better than the others in

some specific settings depending on the message size, number of processes,

underlying network and so on. At the same time, the hierarchical

transformation of these algorithms will either improve their performance or be

equally fast.

64

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

20 22 24 26 28
0

1

2

3

4

5
·10−4

Number of groups

Ti
m

e(
S

ec
)

MPI_Comm_split HReduce
Reduce

20 22 24 26 28
0

5 · 10−2

0.1

0.15

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

Figure 3.16: Time spent on MPI_Comm_split and hierarchical native reduce
with a message size of 1KB (left), and time spent on hierarchical pipeline
reduce with a message size of 16KB with 1KB segments on 512 cores

20 22 24 26 28
0

2

4

6

8

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

20 22 24 26 28
0

1

2

3

4

5

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

Figure 3.17: Hierarchical pipeline reduce with a message size of 16MB,
segment sizes of 32KB (left) and 64KB (right) on 512 cores

65

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2
·10−3

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

20 21 22 23 24 25 26 27
0

1

2

3

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

Figure 3.19: Hierarchical native reduce on 128 cores with message sizes of
16KB (left) and 16MB (right)

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9
11
13
15
17
19
21
23
25
27

Reduce algorithms and their hierarchical modifications

Message size(KB)

S
pe

ed
up

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31

Reduce algorithms and their hierarchical modifications

Message size(KB)

S
pe

ed
up

Figure 3.18: Speedup on 256(left) and 512(right) cores, one process per core.

Experiments: One Processes per Node. The experiments with one

process per node showed a similar trend to that of with the one process per

core setting. The performance of linear, chain, pipeline and native Open MPI

reduce operations can be improved by the hierarchical approach. Figure 3.19

presents experiments on 128 nodes with message sizes of 16KB and 16MBy.

In the first setting, the Open MPI decision function uses the binary tree

algorithm when the number of processes is 8 between or inside groups, in all

other cases the binomial tree is used.

66

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

The pipeline algorithm has similar performance improvement to that of with

512 processes, Figure 3.20 shows experiments with a message of size 16MB

segmented by 32KB and 64KB sizes. The labels on the x axis has the same

meaning as in the previous section.

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

20 21 22 23 24 25 26 27
0

0.5

1

1.5

Number of groups

Ti
m

e(
S

ec
)

HReduce Reduce

Figure 3.20: Hierarchical pipeline reduce. m=16MB, segment 32KB (left) and
64KB (right). p=128.

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

Reduce algorithms and their hierarchical modifications

Message size(KB)

S
pe

ed
up

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1

3

5

7

9

11

13

15

17

19

Reduce algorithms and their hierarchical modifications

Message size(KB)

S
pe

ed
up

Figure 3.21: Speedup on 64(left) and 128(right) cores. 1 process per node.

Figure 3.21 presents speedup of the hierarchical transformations of all the

reduce algorihms from Open MPI "TUNED" component with message sizes

from 16KB up to 16MB on 64 (left) and 128 (right) nodes. Again, the reduce

algorithms wich have "flat" design and Open MPI default reduce operation can

be significantly improved.

67

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

P0 P1 P2

MPI_Op

P3 P4 P5 P6 P7 P8

P0 P1 P2 P3 P4 P5 P6 P7 P8

Figure 3.22: Logical arrangement of processes in MPI allreduce.

3.2.2 Hierarchical Transformation of MPI Allreduce

The allreduce operation has a more complex communication pattern than the

broadcast and reduce operations. Therefore its hierarchical transformation

is not as trivial as it was in the previous cases. The main difficulty comes

from the fact that in our design we are trying not to introduce a new allreduce

algorithm but rather use existing algorithms underneath. To be more clear, in

the case of allreduce we would only like to use the allreduce communication

operation both inside and between groups. If it was not the case, it would be

possible to design a hierarchical allreduce in very different ways. One example

of hierarchical allreduce implementation could be using a hierarchical reduce

followed by a hierarchical broadcast.

The design of the hierarchical allreduce follows a similar design philosopy

to the hierarchical broadcast and hierarchical reduce operations. Namely, the

main idea is to organize the processes into logical groups. The grouping

results in two-level hierarchy and the allreduce operation are performed in two

phases. In the first phase the operation is operated on the processes inside

each group independently. Later on, as soon as this phase finishes, the

processes at the same index position from different groups start allreduce

operation among them on the partially reduced value.

68

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

P0 P1 P2

MPI_Op

P3 P4 P5

MPI_Op

P6 P7 P8

MPI_Op

P0 P1 P2 P3 P4 P5 P6 P7 P8

MPI_Op MPI_Op MPI_Op

P0 P1 P2 P3 P4 P5 P6 P7 P8

Figure 3.23: Logical arrangement of processes in hierarchical MPI allreduce.

Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: recvbuf - Receive buffer
Data: count - Number of entries in send buffer (integer)
Data: datatype - Data type of elements in send buffer
Data: op - MPI operation handle
Data: comm - MPI Communicator
Result: All the group members have the reduced message in their receive

buffer
begin

1 MPI_Comm comm_outer /* communicator between the groups */

2 MPI_Comm comm_inner /* communicator inside the groups */

3 comm_outer = Create_Comm_Between_Groups(G, p, root_outer, comm)

4 comm_inner = Create_Comm_Inside_Groups(G, p, root, comm)

5 void* tmpbuf
6 MPI_Allreduce(sendbuf, tmpbuf, count, datatype, op, comm_inner)
7 MPI_Allreduce(tmpbuf, recvbuf, count, datatype, op, comm_outer)

end
Algorithm 3: Hierarchical transformation of MPI allreduce operation.

69

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

3.2.2.1 Hierarchical Transformation of Recursive Doubling Allreduce

Algorithm

Like most of the logarithmic algorithms the cost of the hierarchical

transformation of this algorithm is equal to the cost of the original algorithm.

Thus, an implementation of the hierarchical algorithm may use the number of

groups equal to one and fall back to the underlying algorithm in which case its

cost will be as follows:

F (p) = log2 p× (α +m×β +m×γ) (3.15)

As we can see the theoretical cost does not depend on the number of groups.

3.2.2.2 Hierarchical Transformation of Rabensifner’s Allreduce

Algorithm

After the hierarchical transformation, Rabensifner’s allreduce algorithm will

have the following theoretical cost:

F (G) = 2× log2 p×α + 2×m×β×
(
2− 1

G
− G

p

)
+m×γ×

(
2− 1

G
− G

p

)
(3.16)

The derivative of the function is given below:

F ′G(G) = 2×m×β×
(

1

G2
− 1

p

)
+m×γ×

(
1

G2
− 1

p

)
(3.17)

It is clear that G =
√
p is the critical point in (1, p) and it is the local maximum

of the function in the interval. The value of the function at this point will be the

following:

F (
√
p) = 2× log2 p×α + 4×m×β×

(
1− 1
√
p

)
+ 2×m×γ×

(
1− 1
√
p

)
(3.18)

Thus, the hierarchical transformation does not improve the original algorithm.

70

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

3.2.2.3 Hierarchical Transformation of Ring Allreduce Algorithm

We analyse the hierarchical transformation of the ring allreduce algorithm

using the same technique we have used to analyse hierarchical broadcast

and reduce algorithms. Namely, we apply the formula 2.20 among G

processes outside groups and among p
G

processes inside the groups and

assume that dm
p
e = m

p
. Then if we sum those two costs up the theoretical

cost of the hierarchical algorithm can be derived as follows:.

F (G) = 2×(G− 1)×
(
α +

m

G
×β
)
+ 2×

(p
G
− 1
)
×
(
α +m×G

p
×β
)
+

+ (G− 1)×γ×m
G

+
(p
G
− 1
)
×γ×m×G

p
(3.19)

It can easily be shown that G =
√
p is the extremum point of the F (G) function

in the interval (1, p) and the function attains its minimum at that point. Thus,

the optimal value of the function will be as follows:

F (G) = 4× (
√
p− 1)×α + 4×

(
1− 1
√
p

)
×m×β + 2×

(
1− 1
√
p

)
×m×γ

(3.20)

3.2.2.4 Hierarchical Segmented Ring Allreduce Algorithm

The theoretical cost of the hierarchical segmented ring allreduce can be

derived in a similar way. Let us assume that dm
p
e = m

p
. Then the total cost of

the algorithm will be equal to the following function:

F (G) =
(
G+

p

G
+ 2×X − 4

)
×
(
α +

m

X
×β +

m

X
×γ
)
+
(
G+

p

G
− 2
)
×α+

+

(
2− 1

G
− G

p

)
×m×β (3.21)

It is easy to find that the derivative of this function is as follows:

F ′(G) =
(G2 − p)×(2×p×X×α +m×(p−X)×β +m×p×γ)

G2×P×X
(3.22)

71

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

Thus, G =
√
p will be the local minimum point of the function in (1, p) if

2×p×X×α + m×(p − X)×β + m×p×γ > 0 and the minimum value of the

function will be as below:

F (
√
p) = (2×√p+ 2×X − 4)×

(
α +

m

X
×β +

m

X
×γ
)
+

+ (2×√p− 2)×α + 2×
(
1− 1
√
p

)
×m×β (3.23)

3.2.2.5 Experiments on Grid’5000

The experiments with allreduce have been conducted on the Graphene

cluster using Open MPI version 1.8.4 in two experimental settings, one

process per node (each node consists of four processes) and one process

per core (equivalently four process per node). Our study covers basic linear,

non-overlapping (Open MPI tuned broadcast + tuned reduce), recursive

doubling, ring, segmented ring and Open MPI default allreduce operation.

The experiments performed with different message sizes starting from 4kB up

to 16MB on multiple number of processes in the range of 8 and 512. In

addition, the experiments includes results with different segment sizes for the

segmented ring algorithm. Figure 3.24 shows experiments with the ring

algorithm for message sizes 4KB and 16MB on 512 cores. In case of large

messages there is no performance improvement over the original ring

algorithm. However, for small messages the hierarchical transformation can

improve the ring algorithm. For instance, when the message size is 4KB

there is more than 2.5 times of performance improvement. However if the

message is greater than 16KB we do not get performance improvements on

the Graphene cluster.

72

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

20 22 24 26 28
0

2

4

6

8

10

Number of groups

Ti
m

e(
S

ec
)

HAllreduce (4kB) Allreduce (4kB)

20 22 24 26 28
0

500

1,000

1,500

2,000

Number of groups

Ti
m

e(
S

ec
)

Hallreduce (16MB) Allreduce (16MB)

Figure 3.24: Hierarchical ring allreduce algorithm on 512 cores. Message size:
4KB and 16MB (right).

The tendency with the segmented ring algorithm is similar to that of the

ring algorithm, where there are performance improvements for small

messages. There is 30% improvement when the message size is 64KB, and

2 times improvement for a message size of 4KB (Figure 3.25). There is no

improvement for messages larger than 64KB. Figure 3.26 demonstrates

experiments with the linear allreduce algorithm (on the left) and speedup of

hierarchical allreduce with different message sizes and algorithms (on the

right). The abbreviations on the figure are the following: NT - native Open

MPI allreduce operation, BL - basic linear, NOV - non-overlapping, RD -

recursive doubling, RG - ring, and finally SRG - segmented ring algorithm. It

can be seen that the improvement with the basic linear and non-overlapping

algorithm can be more than 7 times. There is no improvement with the

recursive doubling algorithm, while the ring and the segmented ring

algorithms can be improved for small messages.

73

3.2. HIERARCHICAL TRANSFORMATION OF MPI REDUCTION
ALGORITHMS

20 22 24 26 28
0

5

10

15

Number of groups

Ti
m

e(
S

ec
)

Hallred. (seg 64B) Allred. (seg 64B)
Hallred. (seg 256B) Allred. (seg 256B)

20 22 24 26 28
0

500

1,000

1,500

2,000

Number of groups

Ti
m

e(
S

ec
)

Hallred. (seg 1KB) Allred. (seg 1KB)
Hallred. (seg 32KB) Allred. (seg 32KB)

Figure 3.25: Hierarchical segmented ring allreduce algorithm on 512 cores.
Message size: 4KB (left) and 16MB (right). Segment size: 1KB and 4KB.

20 22 24 26 28
0

200

400

600

800

Number of groups

Ti
m

e(
S

ec
)

NT BL NOV RD RG SRG

24
25

26
27

28
29

213
214

1

3

5

7

9

11

Allreduce algorithms and their hierarchical modifications

Message size(KB)

S
pe

ed
up

Figure 3.26: Hierarchical linear allreduce performance with a message of size
16KB (left) and speedup of hierarchical allreduce on 512 cores with different
algorithms (right), one process per core.

74

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

3.3 Hierarchical Transformation of MPI Scatter

and Gather Operations

The hierarchical transformation of the scatter operation is quite similar to that

of the broadcast operation. Namely, there are two phases again, in the first

phase the scatter operation is performed among groups and after that in the

second phase the operation is continued inside each group in parallel. The

pseudocode of hierarchical scatter is given in Algorithm 4.

P0 0 1 2 3 4 5 6 7

P0 0 P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7

Figure 3.27: Logical arrangement of processes in MPI scatter.

P0 0 1 2 3 4 5 6 7

P0 0 1 2 3 P4 4 5 6 7

P0 0 P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7

Figure 3.28: Logical arrangement of processes in hierarchical MPI scatter.

The hierarchical gather resembles the hierarchical reduce transformation

in the sense that we first do gather operation inside each group then the

locally gathered data further gathered into the final root process. Algorithm 5

illustrates the pseudocode of the hierarchical gather operation.

75

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: sendcount - Number of entries in send buffer (integer)
Data: sendtype - Data type of entries in send buffer
Data: recvbuf - Receive buffer
Data: recvcount - Number of elements in receive buffer
Data: recvtype - Data type of entries in receive buffer
Data: root - Rank of scatter root
Data: comm - MPI Communicator
Result: All the processes in the group receive recvcount elements
begin

1 MPI_Comm comm_outer /* communicator among the groups */

2 MPI_Comm comm_inner /* communicator inside the groups */

3 int root_inner /* root of broadcast inside the groups */

4 root_inner = Calculate_Root_Inner(G, p, root, comm)

5 comm_outer = Create_Comm_Between_Groups(G, p, root, comm)

6 comm_inner = Create_Comm_Inside_Groups(G, p, root_inner, comm)

void* tmpbuf
7 MPI_Scatter(sendbuf, p

G*sendcount, sendtype, tmpbuf, p
G*recvcount,

recvtype, root, comm_outer)
8 MPI_Scatter(tmpbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root_inner, comm_inner)
end
Algorithm 4: Hierarchical transformation of MPI scatter operation.

P0 0 P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7

P0 0 1 2 3 4 5 6 7

Figure 3.29: Logical arrangement of processes in MPI gather.

76

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

P0 0 P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7

P0 P40 1 2 3 4 5 6 7

P0 0 1 2 3 4 5 6 7

Figure 3.30: Logical arrangement of processes in hierarchical MPI gather.

Data: p - Number of processes
Data: G - Number of groups
Data: sendbuf - Send buffer
Data: sendcount - Number of entries in send buffer (integer)
Data: sendtype - Data type of entries in send buffer
Data: recvbuf - Receive buffer
Data: recvcount - Number of elements in receive buffer
Data: recvtype - Data type of entries in receive buffer
Data: root - Rank of gather root
Data: comm - MPI Communicator
Result: root process receives recvcount elements from all the processes in

the group
begin

1 MPI_Comm comm_outer /* communicator among the groups */

2 MPI_Comm comm_inner /* communicator inside the groups */

3 int root_inner /* root of broadcast inside the groups */

4 root_inner = Calculate_Root_Inner(G, p, root, comm)

5 comm_outer = Create_Comm_Between_Groups(G, p, root, comm)

6 comm_inner = Create_Comm_Inside_Groups(G, p, root_inner, comm)

void* tmpbuf
7 MPI_Gather(sendbuf, sendcount, sendtype, tmpbuf, recvcount, recvtype,

root, comm_outer)
8 MPI_Gather(tmpbuf, p

G*sendcount, sendtype, recvbuf, p
G*recvcount,

recvtype, root_inner, comm_inner)
end

Algorithm 5: Hierarchical transformation of MPI gather operation.

77

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

3.3.1 Theoretical Analysis

3.3.1.1 Hierarchical Linear Scatter and Gather Algorithms

As we have seen the theoretical costs of the linear scatter and gather

algorithms are equal. Therefore it is the same for their hierarchical

transformations as well. If we use the formula 2.22 in both levels of the

hierarchically transformed algorithms their cost will be as follows:

F (G) =
(
G+

p

G
− 2
)
× (α +m×β) (3.24)

The derivative of the F (G) function is
(
1− p

G2

)
× (α +m×β). Therfore, the

function gets its local minimum in (1, p) at G =
√
p and the minimum value of

the function in this interval will be as follows:

(2×√p− 2)× (α +m×β) (3.25)

3.3.1.2 Hierarchical Linear with Synchronization Algorithm

The cost of the hierarchical linear with synchronization algorithm can be

derived as below:

F (G) = 2×α +
(
G+

p

G
− 2
)
× (2×α +m×β) (3.26)

From this formula we can find the optimal value of the F (G) function for a fixed

p and it will be as follows:

2×α + (2×√p− 2)× (2×α +m×β) (3.27)

3.3.1.3 Hierarchical Binomial Gather and Scatter Algorithms

The hierarchical algorithms for binomial gather and scatter operations will have

the same theoretical cost as the original algorithms have the same cost.

F (G) = log2G×α + (G− 1)×m×β + log2
p

G
×α +

(p
G
− 1
)
×m×β (3.28)

78

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

It can be easily shown that the minium value of the F (G) function in the inerval

(1, p) is the following:

log2 p×α + (2×√p− 2)×m×β (3.29)

3.3.1.4 Hierarchical Minimum Spanning Tree Gather and Scatter

Algorithms

The hierarchical transformation does not improve the performance of the MST

scatter and gather algorithms. The performance cost of the MST algorithm for

both operations is the same, thus the hierarchical transformations will have the

same cost as well:

F (G) = log2 p×α + (2− 1

G
− G

p
)×m×β (3.30)

This function attains its maximum in the interval (1, p), and the minimums are

achieved either when G = 1 or G =
√
p.

3.3.2 Experiments

The experimental study of the MPI gather and scatter operations was

conducted on the Graphene cluster of Grid’5000 platform. We used two

experimental settings, one process per core (i.e. four processes per node)

and one process per node. Our study encompasses all the scatter and gather

algorithms implemented in Open MPI version 1.8.4. The MPICH

implementation contains only one algorithm, a binomial tree algorithm both

for scatter and gather.

3.3.2.1 Experiments with Hierarchical Gather: One Process per Core

Setting

We have studied all the mentioned gather and scatter algorithms using

different sizes of messages and number of processes. The hierarchical linear

with synchronization gather algorithm divides the message into a given

number of segments. Therefore, we show experiments with different segment

79

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

sizes for this algorithm. Figure 3.31 presents the results with the total

message sizes of 128MB and 256MB on 512 cores. In this case the message

sizes per point-to-point operation are 256KB and 512KB respectively and the

segment size is 4KB. The improvement in the best case can be up to 2.6

times when the total message size is 256MB and the segment size is 4KB.

The trend is similar on a smaller number of processes. Figure 3.32

demonstrates experimental results on 64 cores for message sizes 128MB

and 256MB with 4KB segments. Figure 3.33 presents the results with the

same setting while changing the segment sizes to 32KB and 64KB.

Experimental results with linear and binomial algorithms are given on

Figure 3.36. In the case of binomial algorithm, there is no improvement.

However the linear algorithm is improved by 30% when the message size is

128MB and by 17% when it is 256MB.

20 22 24 26 28
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 22 24 26 28
0

2

4

6

Number of groups

Ti
m

e(
S

ec
)

HGather (seg 4KB) Gather (seg 4KB)

Figure 3.31: Hierarchical linear with synchronization gather algorithm on 512
cores. Total message size: 128MB (left) and 256MB (right). Message size per
point-to-point communication: 256KB (left) and 512KB (right). Segment size:
4KB.

80

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 21 22 23 24 25 26
0

0.5

1

1.5

2

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 21 22 23 24 25 26
0

1

2

3

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

Figure 3.32: Hierarchical linear with synchronization gather algorithm on 64
cores. Total message size: 128MB (left) and 256MB (right). Message size per
point-to-point communication: 2MB (left) and 4MB (right). Segment size: 4KB.

20 21 22 23 24 25 26
0

0.5

1

1.5

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 21 22 23 24 25 26
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

Figure 3.33: Hierarchical linear with synchronization gather algorithm on 64
cores. Total message size: 128MB (left) and 256MB (right). Message size
per point-to-point communication: 2MB (left) and 4MB (right). Segment size:
32KB.

81

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 22 24 26 28
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 22 24 26 28
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

Figure 3.34: Hierarchical linear with synchronization gather algorithm on 512
cores. Total message size: 2MB (left) and 4MB (right). Message size per
point-to-point communication: 4KB (left) and 8KB (right). Segment size: 1KB.

20 21 22 23 24 25 26
0

1

2

3

·10−2

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 21 22 23 24 25 26
0

1

2

3

4

5

·10−2

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

Figure 3.35: Hierarchical linear with synchronization gather algorithm on 64
cores. Total message size: 2MB (left) and 4MB (right). Message size per
point-to-point communication: 32KB (left) and 64KB (right). Segment size:
1KB.

82

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 22 24 26 28
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HGather(128MB) Gather(128MB)
HGather(256MB) Gather(256MB)

20 22 24 26 28
0

1

2

3

Number of groups

Ti
m

e(
S

ec
)

HGather(128MB) Gather(128MB)
HGather(256MB) Gather(256MB)

Figure 3.36: Hierarchical binomial (left) and linear (right) gather algorithms on
512 cores. Total message size: 128MB and 256MB. Message size per point-
to-point communication: 32KB (left) and 64KB (right).

20 22 24 26 28
0

5 · 10−2

0.1

Number of groups

Ti
m

e(
S

ec
)

HGather(2MB) Gather(2MB)
HGather(4MB) Gather(4MB)

20 22 24 26 28
0

1

2

3

4

5

Number of groups

Ti
m

e(
S

ec
)

HGather(128MB) Gather(128MB)
HGather(256MB) Gather(256MB)

Figure 3.37: Hierarchical native Open MPI gather operation on 512 cores.
Total message size: 2MB and 4MB (left), 128MB and 256MB (right). Message
size per point-to-point communication: 4KB and 8KB (left) and 32KB and 64KB
(right).

3.3.2.2 Experiments with Hierarchical Gather: One Process per Node

Setting

The overall tendency with one process per node setting is quite similar to that

of the one process per core setting. The performance of linear with

83

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 21 22 23 24 25 26 27
0

0.5

1

1.5

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

20 21 22 23 24 25 26 27
0

1

2

3

Number of groups

Ti
m

e(
S

ec
)

HGather Gather

Figure 3.38: Hierarchical linear with synchronization gather algorithm on 128
nodes (one process per node). Total message size: 128MB (left) and 256MB
(right). Message size per point-to-point communication: 1MB (left) and 2MB
(right). Segment size: 1KB.

synchronization and simple linear algorithm is improved, while the binomial

tree gather algorithm can not be improved with our hierarchical

transformation. The improvement of the linear with synchronization algorithm

on 128 nodes with a message size of 128MB and 1KB of segment size is

27.5% . The improvement with 256MB is 30% (Figure 3.38). Our observation

shows that the segment size can change the behaviour significantly. For

example, if we change the segment size in the experimental settings to 32KB

and 64KB, we can see that despite there is more than 38% improvement in

the first case, there is no improvement in the second case (Figure 3.39).

3.3.2.3 Experiments with Hierarchical Scatter: One Process per Core

Setting

The hierarchical transformation improves scatter algorithms as well, however,

the improvement is not significant as it was in the other MPI collective

operations. In this section we present experimental study with linear, binomial

and native Open MPI scatter operation. Figure 3.40 shows the results on 512

cores using messages of sizes 2MB, 4MB, 128MB and 256MB. The

improvements are 10%, 17%, 24% and 24% respectively.

84

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 21 22 23 24 25 26 27
0

0.5

1

1.5

2

Number of groups

Ti
m

e(
S

ec
)

HGather (seg 32KB) Gather (seg 32KB)
HGather (seg 64KB) Gather (seg 64KB)

20 21 22 23 24 25 26 27
0

1

2

3

Number of groups

Ti
m

e(
S

ec
)

HGather (seg 32KB) Gather (seg 32KB)
HGather (seg 64KB) Gather (seg 64KB)

Figure 3.39: Hierarchical linear with synchronization gather algorithm on 128
nodes (one process per node). Total message size: 128MB (left) and 256MB
(right). Message size per point-to-point communication: 1MB (left) and 2MB
(right). Segment size: 32KB and 64KB.

20 22 24 26 28
0

0.02

0.04

0.06

0.08

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 22 24 26 28
0

1

2

3

4

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.40: Hierarchical binomial scatter algorithm on 512 cores. Total
message size: 2MB and 4 MB (left), 128MB and 256MB (right). Message
size per point-to-point communication: 4KB and 8KB (left), 256KB and 512KB
(right).

Figure 3.41 demonstrates experiments with the same setting as before

but using linear scatter algorithm. This time the improvement with a message

size of 2MB is 21%, there is about 9% improvement when the message is

4MB and 256MB. The performance does not improve when the message is

85

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

128MB. The results are the similar with the native scatter operation (see

Figure 3.42). The same tendency continues on smaller number of processes.

Figures 3.43 3.44 3.45 show experimental results on 64 processes using

binomial, linear and native scatter operation respectively.

20 22 24 26 28
0

0.01

0.02

0.03

0.04

0.05

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 22 24 26 28
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.41: Hierarchical linear scatter algorithm on 512 cores. Total message
size: 2MB and 4 MB (left), 128MB and 256MB (right). Message size per point-
to-point communication: 4KB and 8KB (left), 256KB and 512KB (right).

20 22 24 26 28
0

0.01

0.02

0.03

0.04

0.05

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 22 24 26 28
0

0.5

1

1.5

2

2.5

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.42: Hierarchical native Open MPI scatter operation on 512 cores.
Total message size: 2MB and 4 MB (left), 128MB and 256MB (right). Message
size per point-to-point communication: 4KB and 8KB (left), 256KB and 512KB
(right).

86

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 21 22 23 24 25 26
0

0.02

0.04

0.06

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 21 22 23 24 25 26
0

1

2

3

4

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.43: Hierarchical binomial scatter algorithm on 64 cores. Total
message size: 2MB and 4 MB (left), 128MB and 256MB (right). Message
size per point-to-point communication: 32KB and 64KB (left), 2MB and 4MB
(right).

20 21 22 23 24 25 26
0

0.01

0.02

0.03

0.04

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 21 22 23 24 25 26
0

0.5

1

1.5

2

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.44: Hierarchical linear scatter algorithm on 64 cores. Total message
size: 2MB and 4 MB (left), 128MB and 256MB (right). Message size per point-
to-point communication: 32KB and 64KB (left), 2MB and 4MB (right).

87

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

20 21 22 23 24 25 26
0

0.01

0.02

0.03

0.04

Number of groups

Ti
m

e(
S

ec
)

HScatter(2MB) Scatter(2MB)
HScatter(4MB) Scatter(2MB)

20 21 22 23 24 25 26
0

0.5

1

1.5

2

Number of groups

Ti
m

e(
S

ec
)

HScatter (128MB) Scatter(128MB)
HScatter(256MB) Scatter(256MB)

Figure 3.45: Hierarchical native Open MPI scatter operation on 64 cores. Total
message size: 2MB and 4 MB (left), 128MB and 256MB (right). Message size
per point-to-point communication: 32KB and 64KB (left), 2MB and 4MB (right).

88

3.3. HIERARCHICAL TRANSFORMATION OF MPI SCATTER AND
GATHER OPERATIONS

3.3.3 Conclusion

This section has presented the topology-oblivious hierarchical optimization of

MPI broadcast, reduce, allreduce, scatter and gather operations. The

approach we propose is a traditional methodology widely used for dealing

with the complexity of coordination and management of a large number of

actors. According to this hierarchical technique, thousands or millions of

actors are structured, and instead of interacting with a large number of peers,

they coordinate their activities with one superior and a small number of peers

and inferiors. This way the overhead of interaction is significantly reduced.

Most existing optimization methodologies are not general purpose

because their main focus are specific applications, topologies or platforms.

Therefore, such approaches have to rely on sophisticated analytical models

and techniques to achieve highly accurate performance prediction. We try to

balance the trade-off between the accuracy and generality of performance

prediction of our optimization technique on a variety of platforms. In light of

this goal, we mainly focus on the scale of the platform while ignoring its

complexity by employing the simplest communication performance model in

our optimization techniques. The in-detail experimental study with its

theoretical basis shows that our hierarchical approach can bring multi-fold

performance gains.

In the next section we study optimization of a state-of-the-art parallel

matrix multiplication algorithm using the same approach we demonstrated in

this section.

89

Chapter 4

Applications

4.1 Parallel Matrix Multiplication

In this chapter we demonstrate how the hierarchical approach can be applied

to optimization of the execution of parallel matrix-matrix multiplication on

large-scale HPC platforms. We choose matrix multiplication for two reasons.

First of all, it is important in its own right as a computational kernel of many

scientific applications. Secondly, it is a popular representative for other

scientific applications. It is widely accepted that if an optimization method

works well for matrix multiplication, it will also work well for many other

scientific applications.

The contributions of this chapter are as follows:

• We introduce a new design to parallel matrix multiplication algorithm by

introducing a two-level virtual hierarchy into the two-dimensional

arrangement of processors. We apply our approach to the SUMMA

algorithm [60], which is a state of the art algorithm.

• We theoretically prove that hierarchical SUMMA (HSUMMA) reduces

the communication cost of SUMMA and then provide experimental

results on a cluster of Grid’5000 and BlueGene/P, which are reasonably

representative and span a good spectrum of loosely and tightly coupled

platforms. We compare HSUMMA with SUMMA because it is the most

general and scalable parallel matrix multiplication algorithm, which

90

4.1. PARALLEL MATRIX MULTIPLICATION

decreases its per-processor memory footprint with the increase of the

number of processors for a given problem size, and is widely used in

modern parallel numerical linear algebra packages such as

ScaLAPACK. In addition, because of its practicality SUMMA is used as

a starting point for implementation of parallel matrix multiplication on

specific platforms. As a matter of fact, the most used parallel matrix

multiplication algorithms for heterogeneous platforms [110] [9] are

based on SUMMA as well. Therefore, despite being introduced in the

mid-1990s, SUMMA is still a state-of-the-art algorithm.

• Despite the study presented here has been conducted in the context of

parallel matrix multiplication, according to the previous chapters the

proposed optimization technique is not application-bound and can be

applied to other parallel applications intensively using collective

communication operations such as broadcast, reduction and

scatter/gather operations.

4.1.1 Serial Matrix Multiplication Optimization

Matrix multiplication is a very important kernel in many numerical linear

algebra algorithms and is one of the most studied problems in

high-performance computing. Different approaches have been proposed to

optimize matrix multiplication through the improvement of spatial and

temporal locality. Blocking (or tiling) [111] is one such basic technique.

Despite its generality, blocking is architecture dependent. Cache-oblivious

algorithms [112], on the other hand, offer an architecture independent

alternative to the blocked algorithms by using the divide-and-conquer

paradigm. However, a recent study [113] shows that even highly optimized

cache-oblivious programs perform considerably slower than their

cache-conscious (i.e. based on blocking) counterparts. A related idea to the

cache-oblivious methods is to use a recursive structure for the matrices [114].

However, traditional implementations of the Basic Linear Algebra Subroutines

(BLAS) library [115] are mainly based on the blocking approach and thus

need optimization on a specific hardware platform. Therefore, automatic

91

4.1. PARALLEL MATRIX MULTIPLICATION

optimization of matrix multiplication on a range of platforms has been an

active research area. One such example is ATLAS [116] which provides C

and Fortran77 interfaces to a portably efficient BLAS implementation and

automatically generates optimized numerical software for a given processor

architecture as a part of the software installation process. The

GotoBLAS [117] library offers another high-performance implementation of

matrix multiplication for a variety of architectures.

4.1.2 Parallel Matrix Multiplication Optimization

Parallel matrix multiplication has also been thoroughly investigated over the

past three decades. As a result, many parallel matrix multiplication algorithms

have been developed for distributed memory, shared memory and hybrid

platforms. In this section, we only outline the algorithms designed for

distributed memory platforms.

Cannon’s algorithm [118], which was introduced in 1967, was the first

efficient algorithm for parallel matrix multiplication providing theoretically

optimal communication cost. However, this algorithm requires a square

number of processors which makes it impossible to be used in a general

purpose library. Fox’s algorithm [119], which was introduced later, has the

same restriction. PUMMA [120] and BiMMeR [121] extend Fox’s algorithm for

a general 2-D processor grid by using block-cyclic data distribution and

torus-wrap data layout respectively.

The 3D algorithm [122], which dates back to the 1990s, organizes the p

processors as p
1
3×p 1

3×p 1
3 3D mesh and achieves a factor of p

1
6 less

communication cost than 2D parallel matrix multiplication algorithms.

However, in order to get this improvement the 3D algorithm requires p
1
3 extra

copies of the matrices. That means that on one million cores the 3D

algorithm will require 100 extra copies of the matrices which would be a

significant problem on some platforms. Therefore, the 3D algorithm is only

practical for relatively small matrices.

Another method to improve the performance of parallel matrix

multiplication is overlapping communication and computation. That approach

92

4.1. PARALLEL MATRIX MULTIPLICATION

was introduced by Agarwal et al. [123] in 1994 and according to the authors

this optimization hides almost all of the communication cost with the

computation for larger matrices.

In the mid-1990s, SUMMA [60] was introduced for a general P×Q
processor grid. Like PUMMA and BiMMeR, SUMMA also solves the difficulty

of Cannon’s and Fox’s algorithms and perfectly balances the computation

load. However, SUMMA is simpler, more general and more efficient than the

previous algorithms. For these reasons, it is used in ScaLAPACK [124], the

most popular parallel numerical linear algebra package. The implementation

of SUMMA in ScaLAPACK uses block-cyclic distribution and a modified

communication scheme to overlap the communication and computation. The

version of SUMMA modified this way was introduced as DIMMA [125].

Depending on the shape of the processor grid and matrix size, the

performance of DIMMA can be better or worse than that of SUMMA. In its

best case, the performance improvement of DIMMA over SUMMA was 10%

on Intel Paragon [125].

A more recent algorithm, SRUMMA [126], was proposed in 2004 and has

algorithmic efficiency equivalent to that of Cannon’s algorithm on clusters and

shared memory systems. This algorithm uses block-checkerboard distribution

of the matrices and overlaps communication with computations by using

remote memory access (RMA) communication rather than message passing.

A recently introduced 2.5D algorithm [127] generalizes the 3D algorithm

by parameterizing the extent of the third dimension of the processor

arrangement: p
c

1
2×p

c

1
2×c, c ∈ [1, p

1
3]. While reducing the memory footprint

compared with the 3D algorithm, it will still be efficient only if there is free

amount of extra memory to store c copies of the matrices. At the same time, it

is expected that exascale systems will have a dramatically shrinking memory

space per core [128]. Therefore, the 2.5D algorithm cannot be scalable on

future exascale systems.

93

4.1. PARALLEL MATRIX MULTIPLICATION

4.1.3 SUMMA Algorithm

SUMMA [60] implements the matrix multiplication C = A × B over a two-

dimensional p = s × t processor grid. For simplicity, we assume that the

matrices are square n × n matrices. These matrices are distributed over the

processor grid by block-checkerboard distribution.

We can see the size of the matrices as n
b
×n

b
by introducing a block of size

b. Then each element in A, B, and C is a square b×b block, and the algorithm

operates on blocks rather than on scalar elements. For simplicity, we assume

that n is a multiple of b. SUMMA can be formulated as follows: The algorithm

consists of n
b

steps. At each step

• Each processor holding part of the pivot column of the matrix A

horizontally broadcasts its part of the pivot column along the processor

row.

• Each processor holding part of the pivot row of the matrix B vertically

broadcasts its part of the pivot row along the processor column.

• Each processor updates each block in its C rectangle with one block

from the pivot column and one block from the pivot row, so that each

block cij, (i, j) ∈ (1, ..., n
b
) of matrix C will be updated as cij = cij +

aik×bkj .

• After n
b

steps of the algorithm, each block cij of matrix C will be equal to∑n
b
k=1 aik × bkj

Figure 4.1 shows the communication patterns in SUMMA on 6×6 processors

grid.

4.1.3.1 SUMMA Algorithm on Heterogeneous Platforms

On heterogeneous platforms the processors run at different speeds.

Therefore, the traditional homogeneous algorithms can not be efficient as

they distribute data equally to every processor in the system. In order to use

the heterogeneity efficiently the input data should be partitioned according to

94

4.1. PARALLEL MATRIX MULTIPLICATION

P00 P01 P02 P03 P04 P05

P10 P11 P12 P13 P14 P15

P20 P21 P22 P23 P24 P25

P30 P31 P32 P33 P34 P35

P40 P41 P42 P43 P44 P45

P50 P51 P52 P53 P54 P55

Ab•k

P00 P01 P02 P03 P04 P05

P10 P11 P12 P13 P14 P15

P20 P21 P22 P23 P24 P25

P30 P31 P32 P33 P34 P35

P40 P41 P42 P43 P44 P45

P50 P51 P52 P53 P54 P55

Bb
k•

Figure 4.1: Horizontal communications of matrix A and vertical
communications of matrix B in SUMMA. The pivot column Ab•k of n√

P
×b

blocks of matrix A is broadcast horizontally. The pivot row Bb
k• of b× n√

P
blocks

of matrix B is broadcast vertically.

the processors speed. The simplest performance model, capturing this

feature and abstracting from the others, sees a heterogeneous network of

computers as a set of interconnected processors, each of which is

characterized by a single positive constant representing its speed. Two main

parameters of this model include:

• p, the number of processors

• S = s1, s2, ..., sp, the speeds of the processors.

The speed of the processors can be either absolute or relative. The absolute

speed of the processors is the number of computational units performed by

the processor per one time unit. The relative speed of the processor can be

obtained by the normalization of its absolute speed so that
∑p

i=1 si = 1.

Despite this performance model does not have any parameter to describe

communication network, it has been proved that the communication cost of

parallel matrix algorithms can be taken into account by using this simple

model [9]. Beaumont [110] proposed an algorithm which finds an optimal

distribution for n independent units of computation over p processors of

speeds s1, ...sp. Modifications of SUMMA for heterogeneous platforms

typically use the following general design [129].

95

4.2. HIERARCHICAL SUMMA

• Matrices A, B, and C are identically partitioned into equal rectangular

generalized blocks

• The generalized blocks are identically partitioned into rectangles so that

– There is a one-to-one mapping between the rectangles and the

processors

– The area of each rectangle is (approximately) proportional to the

speed of the processor that has the rectangle.

• Then, the algorithm follows the steps of its homogeneous prototype;

namely, at each step

– The pivot column of b×b blocks of matrix A is broadcast horizontally

– The pivot row of b×b blocks of matrix B is broadcast vertically

– Each processor updates each block in its C partition with one block

from the pivot column and one block from the pivot row.

It is obvious that, on the heterogeneous platforms, the efficiency of the

algorithms highly depends on the data partitioning as it affects the

communication cost.

A vast amount of research have been conducted into data partitioning on

heterogeneous platforms to minimize communication cost such as in

[110][130]. The studies in [131][132][133] focus on data partitioning on

multicore and multi-GPU systems using functional performance

models [134][135]. In [136][137] the authors demonstrate that on real-life

heterogeneous platforms optimal non-rectangular partitioning can

significantly outperform the traditional optimal rectangular one.

4.2 Hierarchical SUMMA

Let p = s× t processors be distributed over the same two-dimensional virtual

processor grid as in SUMMA, the matrices be square n× n matrices, b be the

block size. Let the distribution of the matrices be the same as in SUMMA.

96

4.2. HIERARCHICAL SUMMA

P00 P01 P02 P03 P04 P05

P10 P11 P12 P13 P14 P15

P20 P21 P22 P23 P24 P25

P30 P31 P32 P33 P34 P35

P40 P41 P42 P43 P44 P45

P50 P51 P52 P53 P54 P55

SUMMA

P00 P01

P10 P11

P02 P03

P12 P13

P04 P05

P14 P15

P20 P21

P30 P31

P22 P23

P32 P33

P24 P25

P34 P35

P40 P41

P50 P51

P42 P43

P52 P53

P44 P45

P54 P55

HSUMMA

Figure 4.2: SUMMA and HSUMMA. HSUMMA groups 6×6 processors into
3×3 groups, 2×2 processors per group.

Hierarchical SUMMA (HSUMMA) partitions the virtual s × t processor grid

into a higher level I × J arrangement of rectangular groups of processors, so

that inside each group there will be a two-dimensional s
I
× t

J
grid of

processors. Figure 4.2 compares the arrangement of processors in SUMMA

with HSUMMA. In this example, a 6×6 grid of processors is arranged into

two-level 3×3 grids of groups and 2×2 grid of processors inside a group.

Let P(x,y)(i,j) denote the processor (i,j) inside the group (x,y). HSUMMA

splits the communication phase of the SUMMA algorithm into two phases and

consists of n
b

steps. The pseudocode for HSUMMA is Algorithm 6 and it can

be summarized as follows:

• Horizontal broadcast of the pivot column of the matrix A is performed as

follows:

1. First, each processor P(k,y)(i,j), k ∈ (1, ..., I) holding part of the

pivot column of the matrix A horizontally broadcasts its part of the

pivot column to the processors P(k,z)(i,j), z 6=y, z ∈ (1, ..., I) in the

other groups. (Line 6 - 9)

2. Now, inside each group (x, y) processor P(x,y)(i,j) has the required

part of the pivot column of the matrix A and it further horizontally

broadcasts it to the processors P(x,y)(i,c), c 6=j, c ∈ (1, ..., s
I
) inside

the group. (Line 15 - 17)

97

4.2. HIERARCHICAL SUMMA

• Vertical broadcast of the pivot row of the matrix B is performed as

follows:

1. First, each processor P(x,k)(i,j), k ∈ (1, ..., I) holding part of the

pivot row of the matrix B vertically broadcasts its part of the pivot

row to the processors P(z,k)(i,j), z 6=k, z ∈ (1, ..., I) in the other

groups. (Line 10 - 13)

2. Now, inside each group (x, y) processor P(x,y)(i,j) has the required

part of the pivot row of the matrix B and it further vertically

broadcast it to the processors P(x,y)(r,j), r 6=j, r ∈ (1, ..., t
J
) inside

the group. (Line 18 - 20)

• Each processor inside a group updates each block in its C rectangle

with one block from the pivot column and one block from the pivot row,

so that each block cij, (i, j) ∈ (1, ..., n
b
) of matrix C will be updated as

cij = cij + aik×bkj . (Line 21)

• After n
b

steps (Line 5) of the algorithm, each block cij of matrix C will be

equal to
∑n

b
k=1 aik × bkj

It is assumed that only one broadcast algorithm is used in all the steps of the

algorithm and there is no barrier between the communications at the

hierarchies. The communication phases described above are illustrated in

Figure 4.3 and Figure 4.4. In general the block size between groups, M , and

the block size inside a group, b, are different. In this case the size of sent data

between the groups is at least the same as the size of data sent inside a

group. Apparently, b≤M . Then, the number of steps at the higher level will be

equal to the number of blocks between groups: n
M

. In each iteration between

the groups, the number of steps inside a group will be M
b

, so the total number

of steps of HSUMMA, n
M
×M

b
, will be the same as the number of steps of

SUMMA. The amount of data sent will be also the same as in SUMMA.

In addition, SUMMA is a special case of HSUMMA. Indeed, when the

number of groups, G, is equal to one or to the total number of processors, p,

HSUMMA and SUMMA become equivalent. This means that even if there

appears a highly efficient broadcast algorithm, the use of which makes

98

4.2. HIERARCHICAL SUMMA

P00 P01

P10 P11

P02 P03

P12 P13

P04 P05

P14 P15

P20 P21

P30 P31

P22 P23

P32 P33

P24 P25

P34 P35

P40 P41

P50 P51

P42 P43

P52 P53

P44 P45

P54 P55

AM•k

Communication between groups

P00 P01

P10 P11

P02 P03

P12 P13

P04 P05

P14 P15

P20 P21

P30 P31

P22 P23

P32 P33

P24 P25

P34 P35

P40 P41

P50 P51

P42 P43

P52 P53

P44 P45

P54 P55

Ab•k Ab•k Ab•k

Communications inside groups

Figure 4.3: Horizontal communications of matrix A in HSUMMA. The pivot
column AM•k of n√

P
×M blocks of matrix A is broadcast horizontally between

groups. Upon receipt of the pivot column data from the other groups, the local
pivot column Ab•k, (b≤M) of n√

P
×b blocks of matrix A is broadcast horizontally

inside each group.

P00 P01

P10 P11

P02 P03

P12 P13

P04 P05

P14 P15

P20 P21

P30 P31

P22 P23

P32 P33

P24 P25

P34 P35

P40 P41

P50 P51

P42 P43

P52 P53

P44 P45

P54 P55

BM
k•

Communication between groups

P00 P01

P10 P11

P02 P03

P12 P13

P04 P05

P14 P15

P20 P21

P30 P31

P22 P23

P32 P33

P24 P25

P34 P35

P40 P41

P50 P51

P42 P43

P52 P53

P44 P45

P54 P55

Bb
k•

Bb
k•

Bb
k•

Communications inside groups

Figure 4.4: Vertical communications of matrix B in HSUMMA. The pivot row
BM
k• ofM× n√

P
blocks of matrix B is broadcast vertically between groups. Upon

receipt of the pivot row data from the other groups, the local pivot row Bb
k• of

b× n√
P
, (b≤M) blocks of matrix B is broadcast vertically inside each group.

99

4.2. HIERARCHICAL SUMMA

SUMMA outperform HSUMMA for any G ∈ (1, p), we should just use

HSUMMA with G = 1.

4.2.1 Theoretical Analysis

4.2.1.1 Analysis of SUMMA

Let the n × n matrices be distributed over a two-dimensional
√
p×√p grid of

processors and let the block size be b. After distributing the matrices over the

processors grid each processor will have a n√
p
× n√

p
part of the matrices. This

algorithm has n
b

steps. In each step, the processors broadcast a pivot row of

matrix B and a pivot column of matrix A. In our analysis, we assume that

these two communications steps are serialized. The computation cost of one

step is O(2× n2

p
×b). Hence, the overall computation cost will be O(2n

3

p
).

For this analysis the network congestion is neglected. Broadcasting a

pivot row (column) is broken down into a set of parallel broadcasts along the

processor columns (rows). The size of data transferred by each such

individual broadcast is n√
p
× b. The total communication cost of SUMMA can

be computed by multiplying the communication cost of each step by the

number of steps depending on the broadcast algorithm.

• The communication cost of broadcasting a pivot row or a pivot column

with the pipelined linear tree broadcast in one step will be as follows:(
X +

√
p− 1

)
×
(
α + β× n√

pX
×b
)

• The communication cost of broadcasting a pivot row or a pivot column

with the scatter-algather broadcast in one step will be as follows:

(log2
(√

p
)
+
√
p− 1)×α + 2(1− 1√

p
)β× n√

p
×b

If we sum the costs of the vertical and horizontal communications, and take

into account that there are n
b

steps in total, then the overall communication

costs will be as follows:

• Communication cost of SUMMA with the pipelined linear tree broadcast:

2
(
X +

√
p− 1

)
×
(
α×n

b
+ β× n2

√
pX

)

100

4.2. HIERARCHICAL SUMMA

/*The A,B,C matrices are distributed on a virtual 2-D grid of

p = s×t processors.

Here are the instructions executed by the processor P(x,y)(i,j)
(this is the processor (i,j) inside the group (x,y)).*/

Data: NBBlock_Group: Number of steps in the higher level
Data: NBBlock_Inside: Number of steps in the lower level
Data: (M,L,N): Matrix dimensions
Data: A,B: two input sub-matrices of size (Ms ×

L
t ,

L
s ×

N
t)

Result: C: result sub-matrix of size M
s ×

N
t

begin
1 MPI_Comm group_col_comm /* communicator between P(∗,y)(i,j)

processors */

2 MPI_Comm group_row_comm /* communicator between P(x,∗)(i,j)
processors */

3 MPI_Comm col_comm /* communicator of P(x,y)(∗,j) processors */

4 MPI_Comm row_comm /* communicator of P(x,y)(i,∗) processors */

5 for itergroup = 0; itergroup < NBBlock_Group; itergroup ++ do
6 if i == Pivot_inside_group_col(itergroup) then
7 if x == Pivot_group_col(itergroup) then
8 Copy_Block_group(Blockgroup_A, A, itergroup)

end
9 MPI_Bcast(Blockgroup_A, TypeBlock_group_A,

Pivot_group_col(itergroup), group_row_comm)

end
10 if j == Pivot_inside_group_row(itergroup) then
11 if y == Pivot_group_row(itergroup) then
12 Copy_Block_group(Blockgroup_B, B, itergroup)

end
13 MPI_Bcast(Blockgroup_B, TypeBlock_group_B,

Pivot_group_row(itergroup), group_col_comm)

end
14 for iter = 0; iter < NBBlock_Inside; iter ++ do
15 if i == Pivot_inside_group_col(iter) then
16 Copy_Block_A(BlockA, Blockgroup_A, iter)

end
17 MPI_Bcast(BlockA, TypeBlock_A, Pivot_col(iter), row_comm)

18 if j == Pivot_inside_group_row(iter) then
19 Copy_Block_B(BlockB, Blockgroup_B, iter)

end
20 MPI_Bcast(BlockB, TypeBlock_B, Pivot_row(iter), col_comm)

21 DGemm(BlockA, BlockB, C)

end
end

end
Algorithm 6: Hierarchical SUMMA algorithm.

101

4.2. HIERARCHICAL SUMMA

• Communication cost of SUMMA with the scatter-allgather broadcast:

(log2 (p) + 2(
√
p− 1))α×n

b
+ 4(1− 1√

p
)β× n2

√
p

4.2.1.2 Analysis of HSUMMA

To simplify the analysis, let us assume that there are G groups arranged as a√
G ×

√
G grid of processors groups. Let M denote the block size between

groups (we also call such a block an outer block), b be the block size inside a

group, and n×n be the size of the matrices.

HSUMMA has two communication phases: communication between

groups (i.e. outer communication) and inside groups (i.e. inner

communication). The outer communication phase has n
M

steps which are

called outer steps. Each outer block belongs to
√
p processors. Thus, in one

outer step each processor, which owns a part of the pivot column,

horizontally broadcasts this part (of size n×M√
p

) to
√
G processors. Similarly,

each processor, owning a part of the pivot row, will vertically broadcast its

part (of size n×M√
p

) to
√
G processors.

Inside one group, processors are arranged in a grid of size
√
p√
G
×
√
p√
G

.

Upon the receipt of the outer block, in the same way horizontal and vertical

brodcasts are performed inside each group. The communications inside

different groups happen in parallel as they are completely independent of

each other. Inside a group there will be M
b

steps which we call inner steps. In

each inner step, a data block of matrix A of size n×b√
p

is broadcast horizontally

to
√
p√
G

processors, and a data block of matrix B of size n×b√
p

is broadcast

vertically to
√
p√
G

processors. Upon the receipt of the required data, each

processor updates its result by using a dgemm routine.

The total number of steps is n
b
, and the overall computation cost again will

be O(2n
3

p
) as the computation cost in one inner step is O(2× n2

p
×b).

The overall communication cost inside a group will be the sum of the

horizontal and vertical communication costs inside the group, multiplied by

the number of inner steps. In the same way, the overall communication cost

between the groups will be equal to the sum of the horizontal and vertical

communication costs between the groups, multiplied by the number of outer

102

4.2. HIERARCHICAL SUMMA

steps. The total communication cost of HSUMMA will be the sum of the

overall inner and outer communication costs. If we put the corresponding

amount of communicated data and the number of communicating processors

in the formulas for the costs of the pipelined linear tree algorithm and the

scatter-allgather algorithm, the resulting communication costs will be as

follows:

• Inner Communication cost (inside groups):

– Pipelined Linear Tree:

2
(
X +

√
p
G
− 1
)
×
(
α×n

b
+ β× n2

√
pX

)
– Scatter-allgather broadcast:(

log2
(
p
G

)
+ 2

(√
p√
G
− 1
))
×α×n

b
+ 4(1−

√
G√
p
)× n2
√
p
β

• Outer Communication cost (between groups):

– Pipelined Linear Tree:

2
(
X +

√
G− 1

)
×
(
α× n

M
+ β× n2

√
pX

)
– Scatter-allgather broadcast:(

log2 (G) + 2
(√

G− 1
))
×α× n

M
+ 4(1− 1√

G
)× n2
√
p
β

4.2.1.3 Theoretical Prediction

One of the goals of this section is to demonstrate that independent of the

broadcast algorithm employed by SUMMA, HSUMMA will either outperform

SUMMA, or be at least equally fast. This section introduces a general model

for broadcast algorithms, and theoretically predicts SUMMA and HSUMMA.

In the model we assume no contention and assume all the links are

homogeneous. We show that even this simple model can predict the

extremums of the communication cost function.

Again, we assume that the time taken to send a message of size m

between any two processors is modeled as T (m) = α+m×β, where α is the

latency and β is the reciprocal bandwidth.

We model a broadcast time for a message of size m among p processors

by formula (4.1). This model generalizes all homogeneous broadcast

103

4.2. HIERARCHICAL SUMMA

algorithms, such as flat, binary, binomial, linear, and scatter/allgather

broadcast algorithms:

Tbcast(m, p) = L(p)×α +m×W (p)×β (4.1)

In (4.1) we assume that L(1) = 0 and W (1) = 0. It is also assumed that L(p)

and W (p) are monotonic and differentiable functions in the interval (1, p) and

their first derivatives are constants or monotonic in the interval (1, p).

By using this general broadcast model the communication cost of

HSUMMA can be expressed as a sum of the latency cost and the bandwidth

cost:

THS(n, p,G) = THSl
(n, p,G) + THSb

(n, p,G) (4.2)

Here G ∈ [1, p] and b≤M . The latency cost THSl
(n, p,G) and the bandwidth

cost THSb
(n, p,G) will be given by the following formulas:

THSl
(n, p,G) = 2n

(
1

M
×L(
√
G) +

1

b
×L(

√
p
√
G
)

)
α (4.3)

THSb
(n, p,G) = 2

n2

√
p
×
(
W (
√
G) +W (

√
p
√
G
)

)
β (4.4)

If we take b = M the latency cost THSl
(n, p,G) changes and becomes as

follows:

THSl
(n, p,G) = 2n

(
1

M
×L(
√
G) +

1

M
×L(

√
p
√
G
)

)
α (4.5)

However, the bandwidth cost will not change as it does not depend on the

block sizes.

The comparison of Formula 4.3 and Formula 4.5 suggests that with

decrease of b the latency cost will increase. This means that b = M will be

the optimal value for b. We will validate this prediction in the experimental

part. Therefore, in the following analysis we take M = b.

It is clear that TS(n, p) (i.e. SUMMA) is a special case of THS(n, p,G) (i.e.

HSUMMA) when G = 1 or G = p.

Let us investigate extremums of THS as a function of G for a fixed p and n.

104

4.2. HIERARCHICAL SUMMA

Then, for M = b we can get the following derivatives:

∂THS
∂G

=
n

b
×L1(p,G)α +

n2

√
p
×W1(p,G)β (4.6)

Here, L1(p,G) and W1(p,G) are defined as follows:

L1(p,G) =

(
∂L(
√
G)

∂
√
G
× 1√

G
−
∂L(

√
p√
G
)

∂
√
p√
G

×
√
p

G
√
G

)
(4.7)

W1(p,G) =

(
∂W (

√
G)

∂
√
G
× 1√

G
−
∂W (

√
p√
G
)

∂
√
p√
G

×
√
p

G
√
G

)
(4.8)

It can be easily shown that, if G =
√
p then L1(p,G) = 0 and W1(p,G) =

0, thus, ∂THS

∂G
= 0. In addition, ∂THS

∂G
changes the sign in the interval (1, p)

depending on the value of G. That means that THS(n, p,G) has extremum at

G =
√
p for fixed n and p. The expression of ∂THS

∂G
shows that, depending on

the ratio of α and β the extremum can be either minimum or maximum in the

interval (1, p). If G =
√
p is the minimum point it means that with G =

√
p

HSUMMA will outperform SUMMA, otherwise HSUMMA with G = 1 or G = p

will have the same performance as SUMMA.

Now let us apply this analysis to the HSUMMA communication cost

function obtained for scatter-allgather broadcast algorithm (see

Section 4.2.1.2) again assuming b =M for simplicity. We will have:

∂THS
∂G

=
G−√p
G
√
G
×
(
nα

b
− 2

n2

p
×β
)

(4.9)

It is clear that if G =
√
p then ∂THS

∂G
= 0. Depending on the ratio of α and β,

the communication cost as a function of G has either minimum or maximum in

the interval (1, p).

• If
α

β
> 2

nb

p
(4.10)

then ∂THS

∂G
< 0 in the interval (1,

√
p) and ∂THS

∂G
> 0 in (

√
p, p). Thus THS

105

4.2. HIERARCHICAL SUMMA

has the minimum in the interval (1, p) and the minimum point is G =
√
p.

• If
α

β
< 2

nb

p
(4.11)

then THS has the maximum in the interval (1, p) and the maximum point

is G =
√
p. The function gets its minimum at either G = 1 or G = p.

If we take G =
√
p in the HSUMMA communication cost function (see

Section 4.2.1.2) and assume the above conditions, the optimal

communication cost function will be as follows:

(log2 (p) + 4 (4
√
p− 1))×n

b
×α + 8

(
1− 1

4
√
p

)
× n2

√
p
×β (4.12)

We will use the scatter-allgather model to predict the performance on future

exascale platforms.

Now, let us take the communication cost function of HSUMMA with the

pipelined-linear tree broadcast(see Section 4.2.1.2) and find the extremum of

the function in (1, p).

∂THS
∂G

=
G−√p
G
√
G
×
(
n

b
×α +

n2

√
pX
×β
)

(4.13)

In the same way it can be proved that with the pipelined linear tree broadcast,

independent of α and β, G =
√
p is the minimum point of the communication

function in (1, p). A theoretical analysis of HSUMMA with the binomial tree

broadcast can be found in [14].

4.2.1.4 Prediction on Exascale

We use parameters obtained from a recent report on exascale architecture

roadmap[138] to predict performance of HSUMMA on exascale platforms.

106

4.2. HIERARCHICAL SUMMA

2−2 22 26 210 214 218 222

5

10

15

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA SUMMA

• Total flop rate (γ): 1E18 flops

• Latency: 500 ns,

• Bandwidth: 100 GB/s

• Problem size: n = 222,

• Number of processors: p = 220

• Block size: b =M = 256

Figure 4.5: Prediction of SUMMA and HSUMMA on Exascale. p=1048576.

Figure 4.5 shows that, theoretically, HSUMMA with any number of groups,

outperforms SUMMA. It is worth mentioning that if the number of groups is

equal to 1 or p, then HSUMMA will be equivalent to SUMMA, as in that case

there is no hierarchy. Thus, theoretically, the communication cost function of

HSUMMA has a parabola-like shape. In the next sections we will see that

experimental results validate this theoretical prediction.

4.2.2 Experiments on BlueGene/P

Some of our experiments were carried out on the Shaheen BlueGene/P at

the Supercomputing Laboratory at King Abdullah University of

Science&Technology (KAUST) in Thuwal, Saudi Arabia. Shaheen is a

16-rack BlueGene/P. Each node is equipped with four 32-bit, 850 Mhz

PowerPC 450 cores and 4GB DDR memory. VN (Virtual Node) mode with

torus connection was used for the experiments. The Blue Gene/P

architecture provides a three-dimensional point-to-point Blue Gene/P torus

network which interconnects all compute nodes and global networks for

collective and interrupt operations. Use of this network is integrated into the

BlueGene/P MPI implementation.

All the sequential computations in our experiments were performed by

using the DGEMM routine from the IBM ESSL library. We have implemented

107

4.2. HIERARCHICAL SUMMA

SUMMA with block-checkerboard and block-cyclic distributions for

comparison with HSUMMA. However, the data distribution in SUMMA does

not change its performance on the BG/P. It may improve its performance if a

modified communication pattern is used, as proposed in the DIMMA [125]

algorithm. DIMMA was implemented in ScaLAPACK as a slight optimization

of SUMMA, therefore, we also use ScaLAPACK(version 1.8.0) for the

comparison with HSUMMA.

The benefit of HSUMMA comes from the optimal number of groups.

Therefore, it is interesting to see how different numbers of groups affect the

communication cost of HSUMMA on a large platform. Figure 4.6 shows

HSUMMA on 16384 cores. In order to have a fair comparison again we use

the same block size inside a group and between the groups. The figure

shows that the execution time of SUMMA is 50.2 seconds. On the other

hand, the minimum execution time of HSUMMA is 21.26 when G=512. Thus,

the execution time of HSUMMA is 2.36 times less than that of SUMMA on

16384 cores. It is worth noting that different number of groups in HSUMMA

does not affect the computation time, so all these reductions in the execution

time come solely from the reduction of the communication time. In addition,

according to our experiments, the improvement is 1.2 times on 2048 cores

and the performance of HSUMMA and SUMMA are almost the same on

BlueGene/P cores smaller than 2048. The zigzags in the figure can be

explained by the fact that mapping communication layouts to network

hardware on BlueGene/P impacts the communication performance, which

was observed by P. Balaji et al. [139] as well. When we group processors we

do not take into account the network topology. However, according to our

preliminary observations these zigzags can be eliminated by taking the

topology into account while grouping. Figure 4.6 represents scalability

comparison of HSUMMA with SUMMA from communication point of view.

Here, we use SUMMA both with block-checkerboard and block-cyclic

distributions. It can be seen that HSUMMA is more scalable than SUMMA,

and this pattern suggests that the communication performance of HSUMMA

rapidly improves compared to that of SUMMA as the number of cores

increases.

108

4.2. HIERARCHICAL SUMMA

2−1 22 25 28 211 214
0

10

20

30

40

50

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA SUMMA

211 212 213 214
0

10

20

30

40

Number of Cores

C
om

m
un

ic
at

io
n

Ti
m

e(
S

ec
)

HSUMMA SUMMA
Block-cyclic SUMMA

Figure 4.6: On the left execution times of SUMMA and HSUMMA on BG/P are
given. On the right communication times of SUMMA, block-cyclic SUMMA and
HSUMMA are given. b =M = 256, n = 65536.

According to the theoretical predictions, with some application/platform

settings HSUMMA may not reduce the communication cost of SUMMA. We

experimentally observed these phenomena on a smaller number of cores on

the BG/P. Figure 4.7 illustrates one such experiment on 1024 cores, where

the best performance of HSUMMA was achieved with G=1 and G=p. In this

experiment, the interconnect type used between base partitions of the BG/P

was a mesh as the minimum number of cores to use a torus interconnect is

2048.

4.2.2.1 Effect of Different Block Sizes

Theoretically the increase of the block size inside the groups should decrease

the communication cost of HSUMMA. This section validates that by

experimental results.

Figure 4.8 shows experimental results of HSUMMA with different block

sizes inside the groups while the block size between the groups is fixed to

256 and the number of groups is fixed to 4. It can be seen that the

communication time slightly decreases as the block size increases. Another

interesting result is that, the relative performance of HSUMMA for different

numbers of groups does not depend on the block size inside the groups. In

109

4.2. HIERARCHICAL SUMMA

2−1 21 23 25 27 29 211
0

2

4

6

8

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA SUMMA

Figure 4.7: Execution time of HSUMMA and SUMMA on 1024 cores on BG/P.
b =M = 256, n = 16384.

25 26 27 28
0

2

4

6

8

10

Block size inside groups

C
om

m
un

ic
at

io
n

Ti
m

e(
S

ec
)

HSUMMA communication time.

2−1 22 25 28 211 214
0

10

20

30

40

50

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA b=64
HSUMMA b=256

Figure 4.8: HSUMMA on 16384 cores on BG/P. M = 256 and n = 65536.
On the left communication time is shown for a fixed block size of 256 between
groups while changing the block size inside groups. On the right, the same
setting is used to compare the performance with a block size of 64 and 256
inside groups.

particular, this means that the optimal value of G does not depend on the

block size inside the groups, and therefore, any block size can be used in the

procedure searching for the optimal value of G.

4.2.2.2 Comparison with ScaLAPACK

This section compares HSUMMA with the PDGEMM routine from the

ScaLAPACK (ver. 1.8.0) library. The results of the corresponding experiments

110

4.2. HIERARCHICAL SUMMA

211 212 214 216
0

0.5

1

1.5

Number of Cores

S
pe

ed
up

Figure 4.9: Speedup of HSUMMA over ScaLAPACK on BG/P. b = M = 256
and n = 65536.

are shown in Figure 4.9. Unfortunately, IBM PESSL is not available on the

BG/P and therefore we cannot provide experimental results with PDGEMM

from the PESSL library. However, it is known [140] that, unlike LU

decomposition, PDGEMM from PESSL does not have any improvement over

PDGEMM from ScaLAPACK. Moreover, the ScaLAPACK library on the BG/P

uses a DGEMM from the IBM ESSL library which is optimized for Blue Gene.

4.2.3 Experiments on Grid’5000

Some of our experiments were carried out on the Grid’5000 infrastructure in

France. Our experiments were performed on the Nancy site which is

composed of three clusters: Graphene, Griffon and Graphite. We used the

Graphene cluster for the experiments. The cluster is equipped with 144

nodes and each node has a disk of 320 GB storage, 16GB of memory and

4-cores of CPU Intel Xeon X3440. The nodes in the Graphene cluster have

one 20GB Infiniband and are interconnected via Gigabyte Ethernet. We used

multi-threaded dgemm from the GotoBlas2 library [117] for the sequential

operations, MPICH 3.0.1 and OpenMPI 1.4.5 for MPI implementation, and

our implementations of the matrix multiplication algorithms. The size of the

matrices in our experiments on Grid’5000 was 8192×8192. The experiments

with OpenMPI have been done with both Ethernet and Infiniband networks.

Here, we are not trying to compare different MPI implementations. Instead,

111

4.2. HIERARCHICAL SUMMA

1 2 4 8 16 32 64 128
0

1

2

3

4

5

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA execution time
SUMMA execution time

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA execution time
SUMMA execution time

Figure 4.10: Experiments with OpenMPI on Grid’5000 with Ethernet (left) and
Infiniband (right) networks. b =M = 256, n = 8192 and p = 128.

we show that the benefit of HSUMMA over SUMMA does not depend on the

MPI implementation. Figure 4.10 shows that HSUMMA reduces the execution

time of SUMMA by 16.8 percent on 128 nodes with an Ethernet network. The

improvement with an Infiniband network is 24 percent.

1 2 4 8 16 32 64 128
0

10

20

30

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA execution time SUMMA execution time

1 2 4 8 16 32 64 128
0

2

4

6

8

10

Number of Groups

E
xe

cu
tio

n
Ti

m
e(

S
ec

)

HSUMMA execution time SUMMA execution time

Figure 4.11: Experiments with MPICH on Grid’5000 with Ethernet network.
n = 8192, p = 128, b = 64 (left) and b = 256 (right)

On the other hand, the improvement with MPICH is 7.75 times with a

block size of 64 (see Figure 4.11) and 2.96 times with a block size of 256.

This big difference comes from the MPI broadcast algorithm selection in

MPICH depending on the message size and the number of processes. We

did not fix the broadcast algorithm and allowed MPICH to decide which one to

112

4.3. CONCLUSION

use. In these experiments, the default values of MPICH parameters (e.g.

BCAST_SHORT_MSG_SIZE, BCAST_MIN_PROCS) were used.

4.3 Conclusion

We can conclude that our two-level hierarchical approach to parallel matrix

multiplication significantly reduces the communication cost on large platforms

such as BlueGene/P. The experiments show that HSUMMA achieves 2.08

times and 5.89 times less communication time than SUMMA on 2048 cores

and on 16384 cores respectively. Moreover, the overall execution time of

HSUMMA is 1.2 times less than the overall execution time of SUMMA on

2048 cores, and 2.36 times less on 16384 cores. This trend suggests that,

while the number of processors increases, HSUMMA will be more scalable

than SUMMA. In addition, our experiments on Grid’5000 show that HSUMMA

can be effective on small platforms as well.

113

Chapter 5

Hierarchical MPI Software Design

The hierarchical design of the MPI collective operations introduce the number

of groups as a parameter. Despite we have studied analytical methods to

estimate the optimal number of groups in the hierarchical algorithms, it is not

always trivial to come up with a general model which can be accurate on all

kinds of platforms. Therefore we have designed a software called Hierarchical

MPI (HiMPI) that can automatically select the optimal number of groups during

run time from multiple iterations of the given collective operation.

The current version of HiMPI supports MPI broadcast, reduce, allreduce,

scatter, and gather operations. At the same time, we are actively developing

the software to improve it and planning to incorporate the other MPI collective

operations into the library.

HiMPI employs and extends MPIBlib [34] as the underlying benchmarking

library.

5.1 MPIBlib

MPIBlib is an MPI benchmarking library that provides several methods of

measurement both for point-to-point and collective communication

operations. Unlike many other MPI benchmarking tools, MPIBlib supports

both operation-specific and operation-independent measurements. The

operation-specific timing methods can be particularly efficient in self-adaptive

114

5.1. MPIBLIB

applications.

The communication experiments in each benchmark can be performed in

two ways using either fixed or variable number of repetitions. The user can

control the accuracy of the estimations in the case of variable number of

repetitions by providing the following inputs:

• The minimum (min_reps) and maximum (max_reps) number of

iterations.

• The maximum error, ε, (0 < ε < 1).

The output of the measurements will be the actual number of repetitions and

the error. If min_reps equals to max_reps then the benchmark will have a

fixed number of repetitions and the estimation can be done within a confidence

interval (1−ε). When min_reps≤max_reps, the experiments will continue until

the sample satisfies the Student’s t-test or the number of repetitions reaches

its maximum.

Three timing methods, global, maximum and root timings, are provided in

MPIBlib. The GNU Scientific Library (GSL) [141] is used for statistical analysis.

The library consists of mainly three libraries:

• mpiblib - benchmarking library

• mpiblib_p2p - point-to-point communication algorithms

• mpiblib_coll - collective communication algorithms

HiMPI excludes the communication libraries and only uses the benchmarking

part of MPIBlib. Another main feature of MPIBlib is that it is open for extensions

in such a way that the user can add new communication operations into the set

of operations that can be benchmarked by the library. We especially benefit

from this feature of MPIBlib and extend it to add our hierarchical collective

algorithms for MPI broadcast, reduce, allreduce, scatter, and gather into the

set of operations that can be benchmarked.

115

5.2. HIMPI - HIERARCHICAL MPI

HiMPI

MPIBlib GNU GSL

MPI Implementation (eg. Open MPI,
MPICH, etc.)

Figure 5.1: High-Level View of HiMPI Design

5.2 HiMPI - Hierarchical MPI

Finding the optimal number of groups in HiMPI is the vital part of its design.

The trivial method would be running few iterations of benchmarking at the

start of each hierarchical collective operation. However, in this case the

overhead of the benchmarking can be significant. Therefore, we introduce

HiMPI software tool to optimize automatic finding of the best number of

groups during run time. HiMPI is designed as a GNU Autotools [142] project,

implemented in the C programming language [143] and uses the MPIBlib

library for benchmarking. A high level design of HiMPI is given in Figure 5.1.

Finding the optimal number of groups incorporated mainly into the HiMPI

initialization (HiMPI_Init function) where we do statistically rigorous

benchmarking by means of the MPIBlib library for configurable range of

message sizes and number of processes starting from some configurable

initial value and up to the maximal number of MPI processes. The results of

these measurements are saved in configuration files and the same

measurements are not performed in future runs if the application is launched

with a message size and number of processes that already exist in the

configuration file. This behaviour is fully flexible and can be controlled by the

user through configuration flags during installation time or environment

116

5.2. HIMPI - HIERARCHICAL MPI

variables before each run. In addition, the user has a choice to disable the

measurements in HiMPI_Init and do measurements in the first call to each

HiMPI collective operation. In this case the benchmarking is performed only

for the message size and the number of processes of the collective operation

and the result again is saved in a configuration file. This method can be faster

if the same setting is going to be used over again. Another configuration

option provided to the users is that generation of configuration files can be

completely disabled and be given manually. This method may not sound

attractive to end users but it gives more flexibility to users who would like to

do some research on top of HiMPI. The other duty of the HiMPI_Init is to

define the required internal data structures which will be released by

HiMPI_Finalize function call.

Currently, the only way to integrate HiMPI into an application is by inserting

calls to HiMPI APIs, then compile and link with the library at build time. We

are planning to add the interposition feature in near future, which will let the

application developers to use HiMPI without changing a single line of code.

5.2.1 The HiMPI API

The HiMPI API is designed to be compatible with the MPI standard. It means

that the APIs for HiMPI collective operations, HiMPI initialization and

finalization have exactly the same method signatures. That being said, using

HiMPI follows the same template as using MPI.

5.2.1.1 The HiMPI Initialization and Finalization

In order to use the HiMPI collective operations the application should initialize

HiMPI. After finishing all the operations HiMPI should be finalized. The

following code fragment shows a simple example how it can be done:

Listing 5.1: Finding the Optimal Number of Groups

/* Include the HiMPI header */

#include "himpi.h"

117

5.2. HIMPI - HIERARCHICAL MPI

...

/* HiMPI initialisation */

HiMPI_Init(...);

...

/* HiMPI finalisation */

HiMPI_Finalize();

It is worth mentioning that an application should not call MPI_Init and

MPI_Finalize if it uses HiMPI_Init and HiMPI_Finalize.

5.2.1.2 The HiMPI Collective Operations

• HiMPI Broadcast:

int HiMPI_Bcast(void *buffer, int count, MPI_Datatype

datatype, int root, MPI_Comm comm)

• HiMPI Reduce:

int HiMPI_Reduce(void *snd_buffer, void* rcv_buffer, int

count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm

comm)

• HiMPI Allreduce

int HiMPI_Allreduce(void *sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

• HiMPI Gather

int HiMPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

118

5.2. HIMPI - HIERARCHICAL MPI

• HiMPI Scatter

int HiMPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype

sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

The meanings of the parameters in these functions are exactly the same in

their corresponding MPI collective operations. We can see that the number of

groups is not provided as input and it is transparent to application developers.

Internally HiMPI uses get_himpi_group function to find the optimal number of

groups. The method has been implemented as in Listing 5.2.

Listing 5.2: Finding Optimal Number of Groups

1 int get_himpi_group(int msg_size, int root, MPI_Comm comm_world,

int num_levels, int alg_in, int alg_out, himpi_operations op_id)

{

2 MPIB_result result;

3 MPIB_precision precision;

4 MPIB_getopt_precision_default(&precision);

5 int num_procs;

6 MPI_Comm_size(comm_world, &num_procs);

7 int g, num_groups = 0;

8 for (g = 1; g < num_procs; g++) {

9 if (num_procs % g == 0)

10 num_groups++;

11 }

12 double* g_times = (double*) calloc(num_groups, sizeof(double));

13 if (g_times == NULL) {

14 fprintf(stderr, "[get_hbcast_group]:Can't allocate memory for

g_times\n");

15 return -1;

16 }

17 int i = 0;

18 for (g = 1; g < num_procs; g++) {

19 if (num_procs % g == 0) {

119

5.2. HIMPI - HIERARCHICAL MPI

20 MPIB_coll_container* container;

21 switch (op_id) {

22 case op_bcast:

23 container = (MPIB_coll_container*)

MPIB_HBcast_container_alloc(hierarchical_broadcast,

g, num_levels, alg_in, alg_out);

24 break;

25 case op_reduce:

26 container = (MPIB_coll_container*)

MPIB_HReduce_container_alloc(hierarchical_reduce, g,

num_levels, alg_in, alg_out);

27 break;

28 case op_allreduce:

29 container = (MPIB_coll_container*)

MPIB_HAllreduce_container_alloc(hierarchical_allreduce,

g, num_levels, alg_in, alg_out);

30 break;

31 case op_scatter:

32 container = (MPIB_coll_container*)

MPIB_HScatter_container_alloc(hierarchical_scatter,

g, num_levels, alg_in, alg_out);

33 break;

34 case op_gather:

35 container = (MPIB_coll_container*)

MPIB_HGather_container_alloc(hierarchical_gather, g,

num_levels, alg_in, alg_out);

36 break;

37 default:

38 fprintf(stdout, "Unknown operation id: %d\n", op_id);

39 MPI_Abort(MPI_COMM_WORLD, 201);

40 break;

41 }

42 int err = MPIB_measure_max(container, comm_world, root,

msg_size, precision, &result);

43 g_times[i++] = result.T;

120

5.2. HIMPI - HIERARCHICAL MPI

44 }

45 }

46 int min_idx = gsl_stats_min_index(g_times, 1, num_groups);

47 int group = get_specific_factor(num_procs, min_idx + 1);

48 free(g_times);

49 return group;

50 }

The variables needed by MPIBlib are defined between Line 2 and Line 4.

After the benchmarking finishes, MPIB_result will consist of the message

size, execution time, resolution of MPI_Wtime, number of repetitions the

benchmark has actually taken and confidence interval. MPIB_precision

contains minimum and maximum number of repetitions, confidence level and

relative error that the benchmarking should take into account. We use the

default values for the precision, namely, minimum and maximum repetitions

are set to 5 and 100 respectively, and confidence level and relative error are

set to 0.95 and 0.025 accordingly. Lines 45- 46 create appropriate MPIB

container depending on the op_id and uses MPIB_measure_max routine to

benchmark the collective operation for each number of groups from one up to

the total number of processes. The current implementation supports only

number of groups which are factors of the number of processes. It is planned

that HiMPI will support any number of groups in future. After finishing

benchmarking for all different number of groups, the group which results in

the minimum execution time for the given collective operation is found on

Line 46 and Line 47.

An example configuration file is given in Table B.1. The first column is the

number of processes in an HiMPI collective operation, the second one is the

optimal number of groups for this settings of row. Currently, HiMPI supports

only one level of hierarchy. The third column shows the number of hierarchies.

In each hierarchy of the collective operations it is possible to use different

algorithms. This feature is not completely implemented at the moment and

is planned to be done in near future. Alg_in shows the collective algorithm

id inside groups, Alg_out shows that of between the groups. Finally, the last

column shows HiMPI collective operation id, it is defined as follows in himpi.h

121

5.2. HIMPI - HIERARCHICAL MPI

file and can be any number between 0 and 5:

typedef enum himpi_operations {

op_bcast, op_reduce, op_allreduce, op_scatter, op_gather, op_all

} himpi_operations;

The operation id can be set during installation time via –with-himpi-opid

option or can be set before each run via HIMPI_OPID environment variable.

The environment variables always overwrite any corresponding variable

defined during installation time. Environment variables are read in HiMPI_Init.

If operation id is op_all then the measurements will be performed for all the

collective operations and appropriate configuration file will be generated per

operation id.

Table 5.1: Example HiMPI Configuration File

Num_procs Num_groups Num_levels Msg_size Alg_in Alg_out Operation_id

128 16 1 1024 0 0 0

128 16 1 2048 0 0 0

128 8 1 4048 0 0 0

64 8 1 1024 0 0 0

64 8 1 2048 0 0 0

64 4 1 4048 0 0 0

...

The HiMPI build and run time configuration parameters are explained in

appendix B.

5.2.2 Experiments with HiMPI

This section presents an experimental study that investigates HiMPI

performance and tradeoffs between the performance and overhead of the

automatic selection of the number of groups.

The main idea of HiMPI is centered around finding the optimal number of

groups which can be performed either during HiMPI_Init or inside the

122

5.2. HIMPI - HIERARCHICAL MPI

hierarchical communication operations itself. The first option can cover a wide

range of different configurations for different number of processes and/or

message sizes. While the second option is only for the number of processes

and the message size that the communication operation supposed to be

executed on. Only one of this options can be employed for the given

collective operation. As the first option is more general and it is the superset

of the second option, the experimental study will cover only the first option,

i.e. studying the overhead of HiMPI_Init.

The experiments have been done for the number of processes in the range

of 16 and 128 on the Graphene cluster of the Grid’5000 platform. For each

number of processes, different message sizes from 16B up to 16MB were

used. In all the experiments we have configured the HIMPI_OPID be equal

to zero, which means the broadcast operation. The results are based on the

flat, chain, pipeline broadcast algorithms and the native Open MPI broadcast

operation. In addition, we have conducted experiments on the BlueGene/P

platform for number of processes within the range of 256 and 2048 using the

linear, scatter-ring-allgather (SRG) and the native BG/P broadcast operation.

Table 5.2 summarizes the time taken by HiMPI_Init for one or several

numbers of processes (Num. Processes) and messages starting from 16B

(Min Msg. Size) and increasing by twice (Msg. Stride) until 16MB (Max Msg.

Size). The fifth column shows the algorithm used for the broadcast operation.

The results demonstrate that the execution time of the HiMPI_Init can vary

drastically depending on the underlying broadcast algorithm. The hierarchical

flat tree algorithm takes the longest benchmarking time in order to find the

optimal number of groups, while the hierarchical native broadcast operation

takes the shortest time.

123

5.2. HIMPI - HIERARCHICAL MPI

Table 5.2: Execution Time of HiMPI_Init on Graphene Cluster of Grid’5000

Num. Processes
Min

Msg.

Size

Max

Msg.

Size

Msg.

Stride
Algorithm Time (sec)

128 16B 16MB 2 Native 132.96

128 16B 16MB 2 Flat 1508.63

128 16B 16MB 2 Chain 356.65

128 16B 16MB 2 Pipeline 1309.11

64 16B 16MB 2 Native 34.28

64 16B 16MB 2 Flat 624.18

64 16B 16MB 2 Chain 170.92

64 16B 16MB 2 Pipeline 554.03

32 16B 16MB 2 Native 30.99

32 16B 16MB 2 Flat 224.47

32 16B 16MB 2 Chain 80.91

32 16B 16MB 2 Pipeline 228.90

16; 32; 64; 128 16B 1MB 2 Native 53.27

16; 32; 64; 128 16B 1MB 2 Flat 127.01

16; 32; 64; 128 16B 1MB 2 Chain 44.26

16; 32; 64; 128 16B 1MB 2 Pipeline 141.88

16; 32; 64; 128 16B 64kB 2 Native 20.11

16; 32; 64; 128 16B 64kB 2 Flat 18.12

16; 32; 64; 128 16B 64kB 2 Chain 10.78

16; 32; 64; 128 16B 64kB 2 Pipeline 27.95

As we can see the time spent in the initialization does not take too long for

small messages. For instance, the HiMPI_Init time for messages in the range

of 16B and 1MB on 16, 32, 64, and 128 processes on the Graphene cluster

using the pipeline broadcast algorithm is only 141.88 seconds altogether. On

the other hand, initialization using messages ranging from 16B and 16MB just

on 128 processes with the same algorithm is 1309.11 seconds (or 21.8 mins).

The trends are similar on the BG/P (see Table 5.3). The initialization time can

vary depending on the underlying collective algorithm, the message size and

the number of processes. Despite in some cases the initialization of the HiMPI

can take up to 20 minutes (with the flat tree broadcast) on Grid’5000, and up to

124

5.2. HIMPI - HIERARCHICAL MPI

90 minutes (with the linear tree broadcast) on BG/P, this process needs to be

done only once for a specific setting on a given cluster and thus the overhead

can completely be avoided in any subsequent execution. The initialization

time can be very fast in case of the native broadcast operation (which is used

if the user does not request any non-default brodcast algorithm). For example,

the initialization for messages ranging from 1kB up to 16MB and the number

of processes from 16 up to 2048 (only a power-of-two numbers) takes about

3.5 minutes on the BG/P. This time can be reduced further if the initialization

process is performed for a lesser number of processes or smaller message

sizes.

Table 5.3: Execution Time of HiMPI_Init on BG/P

Num. Processes
Min

Msg.

Size

Max

Msg.

Size

Msg.

Stride
Algorithm Time (sec)

16; 32; 64; 128; 256; 512; 1024; 2048 1kB 16MB 2 Native 214.7679

16; 32; 64; 128; 256; 512; 1024; 2048 1kB 16MB 2 Linear 5560.959

16; 32; 64; 128; 256; 512; 1024; 2048 1kB 16MB 2 SRG 226.066

16; 32; 64; 128; 256; 512; 1024 1kB 16MB 2 Native 104.521

16; 32; 64; 128; 256; 512; 1024 1kB 16MB 2 Linear 2758.090

16; 32; 64; 128; 256; 512; 1024 1kB 16MB 2 SRG 126.981

16; 32; 64; 128; 256; 512 1kB 16MB 2 Native 61.829

16; 32; 64; 128; 256; 512 1kB 16MB 2 Linear 1496.145

16; 32; 64; 128; 256; 512 1kB 16MB 2 SRG 82.974

16; 32; 64; 128; 256 1kB 16MB 2 Native 42.427

16; 32; 64; 128; 256 1kB 16MB 2 Linear 656.237

16; 32; 64; 128; 256 1kB 16MB 2 SRG 53.578

125

Chapter 6

Conclusion

The proposed hierarchical approach to optimize the communication cost of

MPI collective operations is simple, general and effective in many cases.

Being topology-oblivious makes it applicable to a variety of platforms.

Moreover, the transformation uses existing algorithms underneath which

means that any lower-level platform dependent optimization of the underlying

algorithm can still be effective after the hierarchical transformation. If for any

reason depending on the topology or some other platform restrictions the

transformation breaks the underlying algorithm, the hierarchical algorithm can

fall back into the original algorithm through parametrized number of groups

and be equally fast as the underlying algorithm. The experimental study

demonstrates that the hierarchical broadcast, reduce, allreduce, scatter, and

gather algorithms provide significant reduction in the communication time.

The multifold improvement of performance is achieved especially for

algorithms which use fully or partly flat arrangement of processes. Some of

these algorithms are widely used and implemented (e.g. pipeline and

scatter-ring-algather broadcast) in the state-of-the-art MPI implementations.

The gain can be up to 30 times in some cases. Our application study in the

context of dense parallel matrix multiplication on distributed memory

platforms shows that the optimization technique can be applied to any

application that uses MPI broadcast, or other collective operations.

126

6.0.3 Future Work

Our study of the hierarchical transformation of MPI collective operations opens

up several promising research questions in this direction. Here we discuss

these research questions as part of our future research work. The hierarchical

approach can be applied to the other MPI collective operations and scientific

applications employing collective communication patterns in their design.

For the time being, HiMPI is a reference implementation and provides only

basic functionality and does not support using different collective algorithms

at the different levels of the hierarchy. The state-of-the-art MPI

implementations, Open MPI and MPICH, do not provide APIs to use a

specific collective algorithm. Despite they provide configuration parameters

(for example, Open MPI MCA parameters) to force a specific collective

algorithm depending on the message and communicator size, this option is

not flexible enough to be incorporated into our general-purpose library. Open

MPI supports a rule based configuration file to be specified as MCA

parameter in order to select a desired collective algorithm. Since the

hierarchical algorithms can have the number of groups as parameter and the

value of this parameter can change between 1 and the number of processes,

p, the generation of the rule based configuration files for each possible values

of the number of groups and its combination with different message sizes

would require playing with lots of different configuration files. MPI-3 comes

with tools interface, MPI_T, which lets users access and modify MPI

performance and control variables. Control variables are able to control the

behaviour of the MPI implementation (e.g. Open MPI mca parameters). After

this feature is fully supported in near future, the employment of different Open

MPI collective algorithms in each hierarchy of the hierarchical collectives can

be realized in better and more reliable way.

Non-blocking collective communication operations are another new feature

of the MPI-3 standard that we believe can be used to optimize the hierarchical

algorithms further by overlapping the communications at the different levels of

the hierarchy.

Despite our study focuses on one-level hierarchical optimization, the

127

approach can be applied in a multilevel hierarchical way.

128

Bibliography

[1] Top 500 supercomputer sites. [Online]. Available:

http://www.top500.org/ (cit. on pp. iii, 1).

[2] P. Husbands and J. C. Hoe, “Mpi-start: Delivering network performance

to numerical applications,” in Supercomputing, 1998. SC98. IEEE/ACM

Conference on, IEEE, 1998, pp. 17–17 (cit. on p. 2).

[3] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and

R. A. F. Bhoedjang, “Magpie: Mpi’s collective communication

operations for clustered wide area systems,” in Proceedings of the

Seventh ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, ser. PPoPP ’99, ACM, 1999, pp. 131–140,

ISBN: 1-58113-100-3. DOI: 10.1145/301104.301116 (cit. on pp. 2,

21).

[4] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and

J. Bresnahan, “Exploiting hierarchy in parallel computer networks to

optimize collective operation performance,” in Parallel and Distributed

Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th

International, 2000, pp. 377–384. DOI: 10.1109/IPDPS.2000.846009

(cit. on p. 2).

[5] I. Foster and N. Karonis, “A grid-enabled mpi: Message passing in

heterogeneous distributed computing systems,” in Supercomputing,

1998.SC98. IEEE/ACM Conference on, 1998, pp. 46–46. DOI:

10.1109/SC.1998.10051 (cit. on p. 2).

129

http://www.top500.org/
http://dx.doi.org/10.1145/301104.301116
http://dx.doi.org/10.1109/IPDPS.2000.846009
http://dx.doi.org/10.1109/SC.1998.10051

BIBLIOGRAPHY

[6] R. Graham, M. Venkata, J. Ladd, P. Shamis, I. Rabinovitz, V. Filipov,

and G. Shainer, “Cheetah: A framework for scalable hierarchical

collective operations,” in Cluster, Cloud and Grid Computing (CCGrid),

2011 11th IEEE/ACM International Symposium on, 2011, pp. 73–83.

DOI: 10.1109/CCGrid.2011.42 (cit. on pp. 2, 23, 29).

[7] E. Solomonik, A. Bhatele, and J. Demmel, “Improving communication

performance in dense linear algebra via topology aware collectives,” in

Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC ’11, ACM,

2011, 77:1–77:11. DOI: 10.1145/2063384.2063487 (cit. on p. 3).

[8] T. Malik, V. Rychkov, A. Lastovetsky, and J.-N. Quintin,

“Topology-aware optimization of communications for parallel matrix

multiplication on hierarchical heterogeneous hpc platform,” in Parallel

Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE

International, 2014, pp. 39–47. DOI: 10 . 1109 / IPDPSW . 2014 . 10

(cit. on p. 3).

[9] Lastovetsky A. and Dongarra J., High Performance Heterogeneous

Computing. Wiley, 2009, p. 267 (cit. on pp. 3, 14, 91, 95).

[10] Hockney R. W., “The communication challenge for mpp: intel paragon

and meiko cs-2,” Parallel Computing, vol. 20, no. 3, pp. 389–398, 1994

(cit. on pp. 4, 11, 20).

[11] K. Hasanov, J.-N. Quintin, and A. Lastovetsky, “High-level

topology-oblivious optimization of mpi broadcast algorithms on

extreme-scale platforms,” in Euro-Par 2014: Parallel Processing

Workshops, ser. Lecture Notes in Computer Science, vol. 8806,

Springer International Publishing, 2014, pp. 412–424, ISBN:

978-3-319-14312-5. DOI: 10.1007/978-3-319-14313-2_35 (cit. on

p. 5).

[12] K. Hasanov, J.-N. Quintin, and A. Lastovetsky, “Topology-oblivious

optimization of mpi broadcast algorithms on extreme-scale platforms,”

Simulation Modelling Practice and Theory, vol. 58, pp. 30 –39, 2015,

130

http://dx.doi.org/10.1109/CCGrid.2011.42
http://dx.doi.org/10.1145/2063384.2063487
http://dx.doi.org/10.1109/IPDPSW.2014.10
http://dx.doi.org/10.1007/978-3-319-14313-2_35

BIBLIOGRAPHY

ISSN: 1569-190X. DOI: 10.1016/j.simpat.2015.03.005 (cit. on

p. 5).

[13] K. Hasanov and A. Lastovetsky, “Hierarchical optimization of mpi

reduce algorithms,” in Parallel Computing Technologies, ser. Lecture

Notes in Computer Science, vol. 9251, Springer International

Publishing, 2015, pp. 21–34, ISBN: 978-3-319-21908-0. DOI:

10.1007/978-3-319-21909-7_3 (cit. on p. 5).

[14] J.-N. Quintin, K. Hasanov, and A. Lastovetsky, “Hierarchical parallel

matrix multiplication on large-scale distributed memory platforms,” in

Proceedings of the 2013 42Nd International Conference on Parallel

Processing, ser. ICPP ’13, IEEE Computer Society, 2013, pp. 754–762,

ISBN: 978-0-7695-5117-3. DOI: 10.1109/ICPP.2013.89 (cit. on pp. 5,

106).

[15] K. Hasanov, J.-N. Quintin, and A. Lastovetsky, “Hierarchical approach

to optimization of parallel matrix multiplication on large-scale

platforms,” The Journal of Supercomputing, vol. 71, no. 11, pp. 3991

–4014, 2014, ISSN: 0920-8542. DOI: 10.1007/s11227-014-1133-x

(cit. on p. 5).

[16] (). Message passing interface forum, [Online]. Available: http://www.

mpi-forum.org/ (cit. on pp. 6, 28, 36, 57).

[17] V. S. Sunderam, “Pvm: a framework for parallel distributed computing,”

Concurrency: Practice and Experience, vol. 2, no. 4, pp. 315–339, Nov.

1990, ISSN: 1040-3108. DOI: 10.1002/cpe.4330020404 (cit. on p. 7).

[18] D. Gelernter, “Generative communication in linda,” ACM Trans.

Program. Lang. Syst., vol. 7, no. 1, pp. 80–112, Jan. 1985, ISSN:

0164-0925. DOI: 10.1145/2363.2433 (cit. on p. 7).

[19] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman, “The

linda alternative to message-passing systems,” Parallel Computing,

vol. 20, no. 4, pp. 633–655, Apr. 1994, ISSN: 0167-8191. DOI:

10.1016/0167-8191(94)90032-9 (cit. on p. 7).

131

http://dx.doi.org/10.1016/j.simpat.2015.03.005
http://dx.doi.org/10.1007/978-3-319-21909-7_3
http://dx.doi.org/10.1109/ICPP.2013.89
http://dx.doi.org/10.1007/s11227-014-1133-x
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://dx.doi.org/10.1002/cpe.4330020404
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1016/0167-8191(94)90032-9

BIBLIOGRAPHY

[20] D. Arapov, A. Kalinov, A. Lastovetsky, I. Ledovskih, and T. Lewis, “A

programming environment for heterogeneous distributed memory

machines,” in Proceedings of the 6th Heterogeneous Computing

Workshop (HCW’97), IEEE, 1997, pp. 32–45 (cit. on p. 8).

[21] A. Lastovetsky, “Adaptive parallel computing on heterogeneous

networks with mpc,” Parallel Computing, vol. 28, no. 10,

pp. 1369–1407, 2002, ISSN: 0167-8191. DOI:

10.1016/S0167-8191(02)00159-X (cit. on p. 8).

[22] A. Lastovetsky and R. Reddy, “Hmpi: Towards a message-passing

library for heterogeneous networks of computers,” in Proceedings of

the 17th International Parallel and Distributed Processing Symposium

(IPDPS 2003), IEEE Computer Society, 2003 (cit. on p. 8).

[23] A. Lastovetsky and R. Reddy, “Heterompi: Towards a

message-passing library for heterogeneous networks of computers,”

Journal of Parallel and Distributed Computing, vol. 66, no. 2,

pp. 197–220, 2006 (cit. on p. 8).

[24] L. V. Kale and S. Krishnan, “Charm++: a portable concurrent object

oriented system based on c++,” in Proceedings of the Eighth Annual

Conference on Object-oriented Programming Systems, Languages,

and Applications, ser. OOPSLA ’93, Washington, D.C., USA, 1993,

pp. 91–108, ISBN: 0-89791-587-9. DOI: 10 . 1145 / 165854 . 165874

(cit. on p. 9).

[25] B. Stroustrup, The C++ programming language. Pearson Education,

2013 (cit. on p. 9).

[26] C. Huang, O. Lawlor, and L. KalÃl’, “Adaptive mpi,” English, in

Languages and Compilers for Parallel Computing, ser. Lecture Notes

in Computer Science, vol. 2958, Springer Berlin Heidelberg, 2004,

pp. 306–322, ISBN: 978-3-540-21199-0. DOI:

10.1007/978-3-540-24644-2_20 (cit. on p. 9).

[27] (). Pgas forum, [Online]. Available: http://www.pgas.org/ (cit. on

p. 9).

132

http://dx.doi.org/10.1016/S0167-8191(02)00159-X
http://dx.doi.org/10.1145/165854.165874
http://dx.doi.org/10.1007/978-3-540-24644-2_20
http://www.pgas.org/

BIBLIOGRAPHY

[28] H. Richardson, “High performance fortran: History, overview and

current developments,” 1.4 TMC-261, Thinking Machines Corporation,

Tech. Rep., 1996 (cit. on p. 10).

[29] R. W. Numrich and J. Reid, “Co-array fortran for parallel programming,”

SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, Aug. 1998, ISSN:

1061-7264. DOI: 10.1145/289918.289920 (cit. on p. 10).

[30] ——, “Co-arrays in the next fortran standard,” SIGPLAN Fortran Forum,

vol. 24, no. 2, pp. 4–17, Aug. 2005, ISSN: 1061-7264. DOI: 10.1145/

1080399.1080400 (cit. on p. 10).

[31] D. C. K. Y. E. B. W. Carlson J. Draper and K. Warren, “Introduction to

upc and language specification,” IDA Center for Computing Sciences,

Tech. Rep. CCS-TR-99-157, 1999 (cit. on p. 10).

[32] D. Callahan, B. Chamberlain, and H. Zima, “The cascade high

productivity language,” in High-Level Parallel Programming Models

and Supportive Environments, 2004. Proceedings. Ninth International

Workshop on, 2004, pp. 52–60. DOI: 10.1109/HIPS.2004.1299190

(cit. on p. 10).

[33] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,

K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented

approach to non-uniform cluster computing,” SIGPLAN Not., vol. 40,

no. 10, pp. 519–538, Oct. 2005, ISSN: 0362-1340. DOI:

10.1145/1103845.1094852 (cit. on p. 10).

[34] A. Lastovetsky, V. Rychkov, and M. O’Flynn, “Mpiblib: Benchmarking

mpi communications for parallel computing on homogeneous and

heterogeneous clusters,” in Proceedings of the 15th European

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel

Virtual Machine and Message Passing Interface, Springer-Verlag,

2008, pp. 227–238, ISBN: 978-3-540-87474-4. DOI:

10.1007/978-3-540-87475-1_32 (cit. on pp. 11, 52, 62, 114).

133

http://dx.doi.org/10.1145/289918.289920
http://dx.doi.org/10.1145/1080399.1080400
http://dx.doi.org/10.1145/1080399.1080400
http://dx.doi.org/10.1109/HIPS.2004.1299190
http://dx.doi.org/10.1145/1103845.1094852
http://dx.doi.org/10.1007/978-3-540-87475-1_32

BIBLIOGRAPHY

[35] Q. O. Snell, A. R. Mikler, and J. L. Gustafson, “Netpipe: A network

protocol independent performance evaluator,” in In IASTED

International Conference on Intelligent Information Management and

Systems, 1996 (cit. on p. 11).

[36] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken, “Logp: Towards a realistic model

of parallel computation,” in Proceedings of the Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, ser.

PPOPP ’93, ACM, 1993, pp. 1–12, ISBN: 0-89791-589-5. DOI:

10.1145/155332.155333 (cit. on pp. 11, 12).

[37] D. Culler, A. C. Dusseau, R. P. Martin, and K. E. Schauser, “Fast

parallel sorting under logp: From theory to practice,” Portability and

Performance for Parallel Processing, 1994 (cit. on p. 12).

[38] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,

“Loggp: Incorporating long messages into the logp model—one

step closer towards a realistic model for parallel computation,” in

Proceedings of the Seventh Annual ACM Symposium on Parallel

Algorithms and Architectures, ser. SPAA ’95, ACM, 1995, pp. 95–105,

ISBN: 0-89791-717-0. DOI: 10.1145/215399.215427 (cit. on p. 12).

[39] T. Kielmann, H. Bal, and K. Verstoep, “Fast measurement of logp

parameters for message passing platforms,” in Proceedings of the 15

IPDPS 2000 Workshops on Parallel and Distributed Processing, ser.

Lecture Notes in Computer Science, vol. 1800, Springer Berlin

Heidelberg, 2000, pp. 1176–1183, ISBN: 978-3-540-67442-9. DOI:

10.1007/3-540-45591-4_162 (cit. on p. 12).

[40] F. Ino, N. Fujimoto, and K. Hagihara, “Loggps: A parallel

computational model for synchronization analysis,” in Proceedings of

the Eighth ACM SIGPLAN Symposium on Principles and Practices of

Parallel Programming, ser. PPoPP ’01, Snowbird, Utah, USA: ACM,

2001, pp. 133–142, ISBN: 1-58113-346-4. DOI:

10.1145/379539.379592 (cit. on p. 12).

134

http://dx.doi.org/10.1145/155332.155333
http://dx.doi.org/10.1145/215399.215427
http://dx.doi.org/10.1007/3-540-45591-4_162
http://dx.doi.org/10.1145/379539.379592

BIBLIOGRAPHY

[41] T. Hoefler, T. Schneider, and A. Lumsdaine, “Loggopsim: Simulating

large-scale applications in the loggops model,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10, Chicago, Illinois: ACM, 2010, pp. 597–604,

ISBN: 978-1-60558-942-8. DOI: 10.1145/1851476.1851564 (cit. on

p. 12).

[42] F. Cappello, P. Fraigniaud, B. Mans, and A. Rosenberg,

“Hihcohp-toward a realistic communication model for hierarchical

hyperclusters of heterogeneous processors,” in Parallel and

Distributed Processing Symposium., Proceedings 15th International,

2001, 6 pp.–. DOI: 10.1109/IPDPS.2001.924978 (cit. on p. 13).

[43] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990, ISSN: 0001-0782. DOI:

10.1145/79173.79181 (cit. on p. 13).

[44] A. Bar-Noy and S. Kipnis, “Designing broadcasting algorithms in the

postal model for message-passing systems,” Mathematical systems

theory, vol. 27, no. 5, pp. 431–452, 1994, ISSN: 0025-5661. DOI:

10.1007/BF01184933 (cit. on p. 13).

[45] M. Banikazemi, V. Moorthy, and D. Panda, “Efficient collective

communication on heterogeneous networks of workstations,” in

Parallel Processing, 1998. Proceedings. 1998 International

Conference on, 1998, pp. 460–467. DOI:

10.1109/ICPP.1998.708518 (cit. on p. 13).

[46] A. L. Rosenberg, “Optimal sharing of partitionable workloads in

heterogeneous networks of workstations (extended abstract),” in Intl.

Wkshp. on Cluster Computing – Technologies, Environments, and

Applications (CC-TEA’2000). In Intl. Conf. on Parallel and Distr.

Processing Techniques and Applications (PDPTA’2000), 2000,

pp. 413–419 (cit. on p. 13).

[47] C. Lin, “Efficient broadcast in a heterogeneous network of

workstations using two sub-networks,” in Parallel Architectures,

135

http://dx.doi.org/10.1145/1851476.1851564
http://dx.doi.org/10.1109/IPDPS.2001.924978
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1007/BF01184933
http://dx.doi.org/10.1109/ICPP.1998.708518

BIBLIOGRAPHY

Algorithms and Networks, 2004. Proceedings. 7th International

Symposium on, 2004, pp. 273–279. DOI:

10.1109/ISPAN.2004.1300492 (cit. on p. 13).

[48] P. Bhat, V. Prasanna, and C. Raghavendra, “Adaptive communication

algorithms for distributed heterogeneous systems,” in High

Performance Distributed Computing, 1998. Proceedings. The Seventh

International Symposium on, 1998, pp. 310–321 (cit. on p. 13).

[49] P. Bhat, C. Raghavendra, and V. Prasanna, “Efficient collective

communication in distributed heterogeneous systems,” in Distributed

Computing Systems, 1999. Proceedings. 19th IEEE International

Conference on, 1999, pp. 15–24. DOI: 10.1109/ICDCS.1999.776502

(cit. on p. 13).

[50] A. Lastovetsky, I.-H. Mkwawa, and M. O’Flynn, “An accurate

communication model of a heterogeneous cluster based on a

switch-enabled ethernet network,” in Parallel and Distributed Systems,

2006. ICPADS 2006. 12th International Conference on, vol. 2, 2006, 6

pp.–. DOI: 10.1109/ICPADS.2006.24 (cit. on p. 13).

[51] A. Lastovetsky and V. Rychkov, “Building the communication

performance model of heterogeneous clusters based on a switched

network,” in Cluster Computing, 2007 IEEE International Conference

on, 2007, pp. 568–575. DOI: 10.1109/CLUSTR.2007.4629284 (cit. on

p. 13).

[52] A. L. Lastovetsky, V. Rychkov, and M. O’Flynn, “Revisiting

communication performance models for computational clusters,” in

23rd IEEE International Symposium on Parallel and Distributed

Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009, 2009,

pp. 1–11. DOI: 10.1109/IPDPS.2009.5160918 (cit. on p. 13).

[53] C. A. Moritz and M. I. Frank, “Logpc: Modeling network contention in

message-passing programs,” IEEE Trans. Parallel Distrib. Syst., vol.

12, no. 4, pp. 404–415, Apr. 2001, ISSN: 1045-9219. DOI: 10.1109/

71.920589 (cit. on p. 13).

136

http://dx.doi.org/10.1109/ISPAN.2004.1300492
http://dx.doi.org/10.1109/ICDCS.1999.776502
http://dx.doi.org/10.1109/ICPADS.2006.24
http://dx.doi.org/10.1109/CLUSTR.2007.4629284
http://dx.doi.org/10.1109/IPDPS.2009.5160918
http://dx.doi.org/10.1109/71.920589
http://dx.doi.org/10.1109/71.920589

BIBLIOGRAPHY

[54] A. Lastovetsky and M. O’Flynn, “A performance model of many-to-one

collective communications for parallel computing,” in Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, 2007, pp. 1–8. DOI: 10 . 1109 / IPDPS . 2007 . 370574

(cit. on p. 13).

[55] M. Martinasso and J.-F. Mï£¡haut, “A contention-aware performance

model for hpc-based networks: A case study of the infiniband

network,” in Euro-Par 2011 Parallel Processing, ser. Lecture Notes in

Computer Science, vol. 6852, Springer Berlin Heidelberg, 2011,

pp. 91–102, ISBN: 978-3-642-23399-9. DOI:

10.1007/978-3-642-23400-2_10 (cit. on p. 13).

[56] J. Zhu, A. Lastovetsky, S. Ali, R. Riesen, and K. Hasanov, “Asymmetric

communication models for resource-constrained hierarchical ethernet

networks,” Concurrency and Computation: Practice and Experience,

vol. 27, pp. 1575–1590, 2015. DOI: 10.1002/cpe.3343 (cit. on p. 14).

[57] J. Zhu, A. Lastovetsky, S. Ali, and R. Riesen, “Communication models

for resource constrained hierarchical ethernet networks,” in Euro-Par

2013: Parallel Processing Workshops, ser. Lecture Notes in Computer

Science, vol. 8374, Springer Berlin Heidelberg, 2014, pp. 259–269,

ISBN: 978-3-642-54419-4. DOI: 10.1007/978-3-642-54420-0_26

(cit. on p. 14).

[58] P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, “On the validity

of flow-level tcp network models for grid and cloud simulations,” ACM

Transactions on Modeling and Computer Simulation, vol. 23, no. 4,

Dec. 2013, ISSN: 1049-3301. DOI: 10.1145/2517448 (cit. on p. 14).

[59] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective

communication operations in mpich,” International Journal of High

Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

DOI: 10.1177/1094342005051521 (cit. on pp. 14, 26, 29, 32, 47, 48).

[60] R. A. Van De Geijn and J. Watts, “Summa: Scalable universal matrix

multiplication algorithm,” Concurrency: Practice and Experience, vol.

137

http://dx.doi.org/10.1109/IPDPS.2007.370574
http://dx.doi.org/10.1007/978-3-642-23400-2_10
http://dx.doi.org/10.1002/cpe.3343
http://dx.doi.org/10.1007/978-3-642-54420-0_26
http://dx.doi.org/10.1145/2517448
http://dx.doi.org/10.1177/1094342005051521

BIBLIOGRAPHY

9, no. 4, pp. 255–274, 1997, ISSN: 1096-9128. DOI: 10.1002/(SICI)

1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2 (cit. on

pp. 14, 90, 93, 94).

[61] V. Bala, J. Bruck, R. Cypher, P. Elustondo, C.-T. Ho, C.-T. Ho,

S. Kipnis, and M. Snir, “Ccl: A portable and tunable collective

communication library for scalable parallel computers,” in Parallel

Processing Symposium, 1994. Proceedings., Eighth International,

1994, pp. 835–844. DOI: 10.1109/IPPS.1994.288208 (cit. on pp. 14,

21, 28).

[62] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack benchmark:

Past, present and future,” Concurrency and Computation: Practice and

Experience, vol. 15, no. 9, pp. 803–820, 2003, ISSN: 1532-0634. DOI:

10.1002/cpe.728. [Online]. Available: http://dx.doi.org/10.

1002/cpe.728 (cit. on p. 20).

[63] S. Johnsson and C.-T. Ho, “Optimum broadcasting and personalized

communication in hypercubes,” Computers, IEEE Transactions on, vol.

38, no. 9, pp. 1249–1268, 1989, ISSN: 0018-9340. DOI: 10.1109/12.

29465 (cit. on p. 20).

[64] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for full

bandwidth broadcast, reduction and scan,” Parallel Comput., vol. 35,

no. 12, pp. 581–594, Dec. 2009, ISSN: 0167-8191. DOI:

10.1016/j.parco.2009.09.001 (cit. on pp. 20, 29).

[65] M. Barnett, L. Shuler, R. Van De Geijn, S. Gupta, D. Payne, and

J. Watts, “Interprocessor collective communication library (intercom),”

in Scalable High-Performance Computing Conference, 1994.,

Proceedings of the, 1994, pp. 357–364. DOI:

10.1109/SHPCC.1994.296665 (cit. on pp. 20, 22, 28).

[66] E. Gabriel, M. Resch, and R. Rühle, “Implementing MPI with

optimized algorithms for metacomputing,” in Message Passing

Interface Developer’s and Users Conference (MPIDC’99), 1999,

pp. 31–41 (cit. on pp. 21, 28).

138

http://dx.doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
http://dx.doi.org/10.1109/IPPS.1994.288208
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1002/cpe.728
http://dx.doi.org/10.1109/12.29465
http://dx.doi.org/10.1109/12.29465
http://dx.doi.org/10.1016/j.parco.2009.09.001
http://dx.doi.org/10.1109/SHPCC.1994.296665

BIBLIOGRAPHY

[67] B. Lowekamp and A. Beguelin, “Eco: Efficient collective operations for

communication on heterogeneous networks,” in Parallel Processing

Symposium, 1996., Proceedings of IPPS ’96, The 10th International,

1996, pp. 399–405. DOI: 10.1109/IPPS.1996.508087 (cit. on p. 21).

[68] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra, “Towards an accurate

model for collective communications,” International Journal of High

Performance Computing Applications, vol. 18, no. 1, pp. 159–167,

2004. DOI: 10.1177/1094342004041297 (cit. on p. 22).

[69] S. Vadhiyar, G. Fagg, and J. Dongarra, “Automatically tuned collective

communications,” in Supercomputing, ACM/IEEE 2000 Conference,

2000, pp. 3–3. DOI: 10.1109/SC.2000.10024 (cit. on pp. 22, 29).

[70] P. Sanders and J. F. Sibeyn, “A bandwidth latency tradeoff for broadcast

and reduction,” Information Processing Letters, vol. 86, no. 1, pp. 33

–38, 2003, ISSN: 0020-0190. DOI: http://dx.doi.org/10.1016/

S0020-0190(02)00473-8 (cit. on p. 22).

[71] J. L. Trï£¡ff and A. Ripke, “Optimal broadcast for fully connected

processor-node networks,” Journal of Parallel and Distributed

Computing, vol. 68, no. 7, pp. 887 –901, 2008, ISSN: 0743-7315. DOI:

http://dx.doi.org/10.1016/j.jpdc.2007.12.001 (cit. on p. 22).

[72] T. Chiba, T. Endo, and S. Matsuoka, “High-performance mpi

broadcast algorithm for grid environments utilizing multi-lane nics,” in

Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE

International Symposium on, 2007, pp. 487–494. DOI:

10.1109/CCGRID.2007.59 (cit. on p. 22).

[73] (). Mpich - a portable implementation of mpi, [Online]. Available: http:

//www.mpich.org/ (cit. on p. 22).

[74] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain,

D. Daniel, R. Graham, and T. Woodall, “Open mpi: Goals, concept,

and design of a next generation mpi implementation,” in Recent

Advances in Parallel Virtual Machine and Message Passing Interface,

139

http://dx.doi.org/10.1109/IPPS.1996.508087
http://dx.doi.org/10.1177/1094342004041297
http://dx.doi.org/10.1109/SC.2000.10024
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0190(02)00473-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0190(02)00473-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2007.12.001
http://dx.doi.org/10.1109/CCGRID.2007.59
http://www.mpich.org/
http://www.mpich.org/

BIBLIOGRAPHY

ser. Lecture Notes in Computer Science, vol. 3241, Springer Berlin

Heidelberg, 2004, pp. 97–104, ISBN: 978-3-540-23163-9. DOI:

10.1007/978-3-540-30218-6_19 (cit. on p. 22).

[75] J. WATTS and R. VAN DE GEIJN, “A pipelined broadcast for

multidimensional meshes,” Parallel Processing Letters, vol. 05, no. 02,

pp. 281–292, 1995. DOI: 10.1142/S0129626495000266 (cit. on p. 22).

[76] D. Wadsworth and Z. Chen, “Performance of mpi broadcast

algorithms,” in Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, 2008, pp. 1–7. DOI:

10.1109/IPDPS.2008.4536478 (cit. on p. 22).

[77] M. Saldana and P. Chow, “Tmd-mpi: An mpi implementation for

multiple processors across multiple fpgas,” in Field Programmable

Logic and Applications, 2006. FPL ’06. International Conference on,

2006, pp. 1–6. DOI: 10.1109/FPL.2006.311233 (cit. on p. 22).

[78] Y. Peng, M. Saldana, and P. Chow, “Hardware support for broadcast

and reduce in mpsoc,” in Field Programmable Logic and Applications

(FPL), 2011 International Conference on, 2011, pp. 144–150. DOI: 10.

1109/FPL.2011.34 (cit. on p. 23).

[79] J. Liu, A. Mamidala, and D. Panda, “Fast and scalable mpi-level

broadcast using infiniband’s hardware multicast support,” in Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th

International, 2004, pp. 10–. DOI: 10.1109/IPDPS.2004.1302912

(cit. on p. 23).

[80] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time mpi

broadcast algorithm for large-scale infiniband clusters with multicast,”

in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.

IEEE International, 2007, pp. 1–8. DOI: 10.1109/IPDPS.2007.370475

(cit. on p. 23).

[81] (). Infiniband trade association, [Online]. Available:

http://www.infinibandta.org/ (cit. on p. 23).

140

http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1142/S0129626495000266
http://dx.doi.org/10.1109/IPDPS.2008.4536478
http://dx.doi.org/10.1109/FPL.2006.311233
http://dx.doi.org/10.1109/FPL.2011.34
http://dx.doi.org/10.1109/FPL.2011.34
http://dx.doi.org/10.1109/IPDPS.2004.1302912
http://dx.doi.org/10.1109/IPDPS.2007.370475
http://www.infinibandta.org/

BIBLIOGRAPHY

[82] A. Mamidala, L. Chai, H.-W. Jin, and D. Panda, “Efficient smp-aware

mpi-level broadcast over infiniband’s hardware multicast,” in Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th

International, 2006, 8 pp.–. DOI: 10 . 1109 / IPDPS . 2006 . 1639562

(cit. on p. 23).

[83] C. Karlsson, T. Davies, C. Ding, H. Liu, and Z. Chen, “Optimizing

process-to-core mappings for two dimensional broadcast/reduce on

multicore architectures,” in Parallel Processing (ICPP), 2011

International Conference on, 2011, pp. 404–413. DOI:

10.1109/ICPP.2011.26 (cit. on p. 23).

[84] T. Ma, T. Herault, G. Bosilca, and J. Dongarra, “Process

distance-aware adaptive mpi collective communications,” in Cluster

Computing (CLUSTER), 2011 IEEE International Conference on,

2011, pp. 196–204. DOI: 10.1109/CLUSTER.2011.30 (cit. on p. 23).

[85] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst, “Hwloc: A generic framework

for managing hardware affinities in hpc applications,” in Parallel,

Distributed and Network-Based Processing (PDP), 2010 18th

Euromicro International Conference on, 2010, pp. 180–186. DOI:

10.1109/PDP.2010.67 (cit. on p. 23).

[86] H. Zhu, D. Goodell, W. Gropp, and R. Thakur, “Hierarchical collectives

in mpich2,” in Recent Advances in Parallel Virtual Machine and

Message Passing Interface, ser. Lecture Notes in Computer Science,

vol. 5759, Springer Berlin Heidelberg, 2009, pp. 325–326, ISBN:

978-3-642-03769-6. DOI: 10.1007/978-3-642-03770-2_41 (cit. on

p. 23).

[87] W. Gropp, “Mpich2: a new start for mpi implementations,” English, in

Recent Advances in Parallel Virtual Machine and Message Passing

Interface, ser. Lecture Notes in Computer Science, vol. 2474, Springer

Berlin Heidelberg, 2002, pp. 7–7, ISBN: 978-3-540-44296-7. DOI: 10.

1007/3-540-45825-5_5 (cit. on p. 23).

141

http://dx.doi.org/10.1109/IPDPS.2006.1639562
http://dx.doi.org/10.1109/ICPP.2011.26
http://dx.doi.org/10.1109/CLUSTER.2011.30
http://dx.doi.org/10.1109/PDP.2010.67
http://dx.doi.org/10.1007/978-3-642-03770-2_41
http://dx.doi.org/10.1007/3-540-45825-5_5
http://dx.doi.org/10.1007/3-540-45825-5_5

BIBLIOGRAPHY

[88] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen,

M. E. Giampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman,

B. Smith, and C. J. Archer, “The deep computing messaging

framework: Generalized scalable message passing on the blue

gene/p supercomputer,” in Proceedings of the 22Nd Annual

International Conference on Supercomputing, ser. ICS ’08, ACM,

2008, pp. 94–103, ISBN: 978-1-60558-158-3. DOI:

10.1145/1375527.1375544 (cit. on pp. 23, 48).

[89] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy,

and D. Panda, “Designing optimized mpi broadcast and allreduce for

many integrated core (mic) infiniband clusters,” in High-Performance

Interconnects (HOTI), 2013 IEEE 21st Annual Symposium on, 2013,

pp. 63–70. DOI: 10.1109/HOTI.2013.26 (cit. on p. 23).

[90] H. Subramoni, K. Kandalla, J. Vienne, S. Sur, B. Barth, K. Tomko, R.

Mclay, K. Schulz, and D. Panda, “Design and evaluation of network

topology-/speed- aware broadcast algorithms for infiniband clusters,” in

Cluster Computing (CLUSTER), 2011 IEEE International Conference

on, 2011, pp. 317–325. DOI: 10 . 1109 / CLUSTER . 2011 . 43 (cit. on

p. 23).

[91] K. Dichev and A. Lastovetsky, “Optimization of collective

communication for heterogeneous hpc platforms,” in

High-Performance Computing on Complex Environments. John Wiley

and Sons, Inc., 2014, pp. 95–114, ISBN: 9781118711897. DOI:

10.1002/9781118711897.ch6 (cit. on p. 23).

[92] Y. Gong, B. He, and J. Zhong, “Network performance aware mpi

collective communication operations in the cloud,” Parallel and

Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1,

2013, ISSN: 1045-9219. DOI: 10.1109/TPDS.2013.96 (cit. on p. 23).

[93] T. Gunarathne, J. Qiu, and D. Gannon, “Towards a collective layer in the

big data stack,” in Cluster, Cloud and Grid Computing (CCGrid), 2014

14th IEEE/ACM International Symposium on, 2014, pp. 236–245. DOI:

10.1109/CCGrid.2014.123 (cit. on p. 23).

142

http://dx.doi.org/10.1145/1375527.1375544
http://dx.doi.org/10.1109/HOTI.2013.26
http://dx.doi.org/10.1109/CLUSTER.2011.43
http://dx.doi.org/10.1002/9781118711897.ch6
http://dx.doi.org/10.1109/TPDS.2013.96
http://dx.doi.org/10.1109/CCGrid.2014.123

BIBLIOGRAPHY

[94] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008,

ISSN: 0001-0782. DOI: 10.1145/1327452.1327492 (cit. on p. 23).

[95] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G.

Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, ser. HPDC ’10, Chicago, Illinois: ACM, 2010, pp. 810–818,

ISBN: 978-1-60558-942-8. DOI: 10.1145/1851476.1851593 (cit. on

p. 24).

[96] Pjes̆ivac-Grbović J., “Towards automatic and adaptive optimizations of

mpi collective operations,” PhD thesis, University of Tennessee,

Knoxville, December, 2007 (cit. on pp. 25, 35, 37, 39, 40).

[97] R. Rabenseifner, “Automatic profiling of mpi applications with

hardware performance counters,” in Recent Advances in Parallel

Virtual Machine and Message Passing Interface, ser. Lecture Notes in

Computer Science, vol. 1697, Springer Berlin Heidelberg, 1999,

pp. 35–42, ISBN: 978-3-540-66549-6. DOI:

10.1007/3-540-48158-3_5 (cit. on pp. 28, 57).

[98] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and

R. A. F. Bhoedjang, “Mpi’s reduction operations in clustered wide area

systems,” in In Proc. MPIDC’99, Message Passing Interface

Developer’s and User’s Conference, 1999, pp. 43–52 (cit. on p. 28).

[99] G. Iannello, “Efficient algorithms for the reduce-scatter operation in

loggp,” Parallel and Distributed Systems, IEEE Transactions on, vol. 8,

no. 9, pp. 970–982, 1997, ISSN: 1045-9219. DOI: 10.1109/71.615442

(cit. on p. 28).

[100] M. Bernaschi, G. Iannello, and M. Lauria, “Efficient implementation of

reduce-scatter in mpi,” in Parallel, Distributed and Network-based

Processing, 2002. Proceedings. 10th Euromicro Workshop on, 2002,

pp. 301–308. DOI: 10.1109/EMPDP.2002.994296 (cit. on p. 29).

143

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1851476.1851593
http://dx.doi.org/10.1007/3-540-48158-3_5
http://dx.doi.org/10.1109/71.615442
http://dx.doi.org/10.1109/EMPDP.2002.994296

BIBLIOGRAPHY

[101] P. Patarasuk and X. Yuan, “Bandwidth efficient all-reduce operation on

tree topologies,” in Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International, 2007, pp. 1–8. DOI:

10.1109/IPDPS.2007.370405 (cit. on p. 29).

[102] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “On

optimizing collective communication,” in Cluster Computing, 2004

IEEE International Conference on, 2004, pp. 145–155. DOI:

10.1109/CLUSTR.2004.1392612 (cit. on pp. 29, 36, 39, 40).

[103] R. Rabenseifner, “Optimization of collective reduction operations,” in

Computational Science - ICCS 2004, ser. Lecture Notes in Computer

Science, vol. 3036, Springer Berlin Heidelberg, 2004, pp. 1–9, ISBN:

978-3-540-22114-2. DOI: 10.1007/978-3-540-24685-5_1 (cit. on

pp. 29, 32).

[104] J. Hatta and S. Shibusawa, “Scheduling algorithms for efficient gather

operations in distributed heterogeneous systems,” in Parallel

Processing, 2000. Proceedings. 2000 International Workshops on,

2000, pp. 173–180. DOI: 10.1109/ICPPW.2000.869101 (cit. on p. 36).

[105] K. Kandalla, H. Subramoni, A. Vishnu, and D. Panda, “Designing

topology-aware collective communication algorithms for large scale

infiniband clusters: Case studies with scatter and gather,” in Parallel

Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010

IEEE International Symposium on, 2010, pp. 1–8. DOI:

10.1109/IPDPSW.2010.5470853 (cit. on p. 36).

[106] J. Traff, “Hierarchical gather/scatter algorithms with graceful

degradation,” in Parallel and Distributed Processing Symposium,

2004. Proceedings. 18th International, 2004, pp. 80–. DOI:

10.1109/IPDPS.2004.1303019 (cit. on p. 36).

[107] K. Dichev, V. Rychkov, and A. Lastovetsky, “Two algorithms of

irregular scatter/gather operations for heterogeneous platforms,” in

Recent Advances in the Message Passing Interface, ser. Lecture

Notes in Computer Science, vol. 6305, Springer Berlin Heidelberg,

144

http://dx.doi.org/10.1109/IPDPS.2007.370405
http://dx.doi.org/10.1109/CLUSTR.2004.1392612
http://dx.doi.org/10.1007/978-3-540-24685-5_1
http://dx.doi.org/10.1109/ICPPW.2000.869101
http://dx.doi.org/10.1109/IPDPSW.2010.5470853
http://dx.doi.org/10.1109/IPDPS.2004.1303019

BIBLIOGRAPHY

2010, pp. 289–293, ISBN: 978-3-642-15645-8. DOI:

10.1007/978-3-642-15646-5_31 (cit. on p. 37).

[108] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet,

E. Jeannot, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,

B. Quetier, and O. Richard, “Grid’5000: A large scale and highly

reconfigurable grid experimental testbed,” in Grid Computing, 2005.

The 6th IEEE/ACM International Workshop on, 2005, 8 pp.–. DOI:

10.1109/GRID.2005.1542730 (cit. on p. 52).

[109] (). Grid5000, [Online]. Available: http://www.grid5000.fr (cit. on

p. 57).

[110] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix

multiplication on heterogeneous platforms,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 12, no. 10, pp. 1033–1051, 2001,

ISSN: 1045-9219. DOI: 10.1109/71.963416 (cit. on pp. 91, 95, 96).

[111] F. G. Gustavson, “Cache blocking for linear algebra algorithms,” in

Parallel Processing and Applied Mathematics, ser. Lecture Notes in

Computer Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and

J. Wa?niewski, Eds., vol. 7203, Springer Berlin Heidelberg, 2012,

pp. 122–132, ISBN: 978-3-642-31463-6. DOI:

10.1007/978-3-642-31464-3_13 (cit. on p. 91).

[112] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,

“Cache-oblivious algorithms,” in Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, ser. FOCS ’99,

IEEE Computer Society, 1999, pp. 285–297, ISBN: 0-7695-0409-4.

DOI: 10.1109/SFFCS.1999.814600 (cit. on p. 91).

[113] Yotov K., Roeder T., Pingali K., Gunnels J., and Gustavson F., “An

experimental comparison of cache-oblivious and cache-conscious

programs,” in Proceedings of the Nineteenth Annual ACM Symposium

on Parallel Algorithms and Architectures, ser. SPAA ’07, ACM, 2007,

pp. 93–104. DOI: 10.1145/1248377.1248394 (cit. on p. 91).

145

http://dx.doi.org/10.1007/978-3-642-15646-5_31
http://dx.doi.org/10.1109/GRID.2005.1542730
http://www.grid5000.fr
http://dx.doi.org/10.1109/71.963416
http://dx.doi.org/10.1007/978-3-642-31464-3_13
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1145/1248377.1248394

BIBLIOGRAPHY

[114] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thottethodi, “Recursive

array layouts and fast matrix multiplication,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 13, no. 11, pp. 1105–1123, 2002,

ISSN: 1045-9219. DOI: 10.1109/TPDS.2002.1058095 (cit. on p. 91).

[115] (). Basic linear algebra routines (blas), [Online]. Available: http://

www.netlib.org/blas/ (cit. on p. 91).

[116] Clint W. R. and Dongarra J. J., “Automatically tuned linear algebra

software,” in Proceedings of the 1998 ACM/IEEE Conference on

Supercomputing, ser. Supercomputing ’98, Washington, DC, USA:

IEEE Computer Society, 1998, pp. 1–27 (cit. on p. 92).

[117] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix

multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, 12:1–12:25,

May 2008, ISSN: 0098-3500. DOI: 10.1145/1356052.1356053 (cit. on

pp. 92, 111).

[118] L. E. Cannon, “A cellular computer to implement the kalman filter

algorithm,” AAI7010025, PhD thesis, Bozeman, MT, USA, 1969

(cit. on p. 92).

[119] G. Fox, S. Otto, and A. Hey, “Matrix algorithms on a hypercube i: Matrix

multiplication,” Parallel Computing, vol. 4, no. 1, pp. 17 –31, 1987, ISSN:

0167-8191. DOI: http://dx.doi.org/10.1016/0167- 8191(87)

90060-3 (cit. on p. 92).

[120] J. Choi, D. W. Walker, and J. J. Dongarra, “Pumma: Parallel universal

matrix multiplication algorithms on distributed memory concurrent

computers,” Concurrency: Practice and Experience, vol. 6, no. 7,

pp. 543–570, 1994, ISSN: 1096-9128. DOI: 10.1002/cpe.4330060702

(cit. on p. 92).

[121] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang, “Matrix

multiplication on the intel touchstone delta,” Concurrency: Practice and

Experience, vol. 6, no. 7, pp. 571–594, 1994, ISSN: 1096-9128. DOI:

10.1002/cpe.4330060703 (cit. on p. 92).

146

http://dx.doi.org/10.1109/TPDS.2002.1058095
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://dx.doi.org/10.1145/1356052.1356053
http://dx.doi.org/http://dx.doi.org/10.1016/0167-8191(87)90060-3
http://dx.doi.org/http://dx.doi.org/10.1016/0167-8191(87)90060-3
http://dx.doi.org/10.1002/cpe.4330060702
http://dx.doi.org/10.1002/cpe.4330060703

BIBLIOGRAPHY

[122] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,

“A three-dimensional approach to parallel matrix multiplication,” IBM

Journal of Research and Development, vol. 39, no. 5, pp. 575–582,

Sep. 1995, ISSN: 0018-8646. DOI: 10.1147/rd.395.0575 (cit. on

p. 92).

[123] Agarwal. R. C., Gustavson. F. G., and Zubair. M., “A high-performance

matrix-multiplication algorithm on a distributed-memory parallel

computer, using overlapped communication,” IBM Journal of

Research and Development, vol. 38, no. 6, pp. 673–681, Nov. 1994.

DOI: 10.1147/rd.386.0673 (cit. on p. 93).

[124] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.

Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

and R. Whaley, ScaLAPACK Users’ Guide. Society for Industrial and

Applied Mathematics, 1997. DOI: 10.1137/1.9780898719642 (cit. on

p. 93).

[125] J. Choi, “A new parallel matrix multiplication algorithm on

distributed-memory concurrent computers,” in High Performance

Computing on the Information Superhighway, 1997. HPC Asia ’97,

1997, pp. 224–229. DOI: 10.1109/HPC.1997.592151 (cit. on pp. 93,

108).

[126] M. Krishnan and J. Nieplocha, “Srumma: A matrix multiplication

algorithm suitable for clusters and scalable shared memory systems,”

in Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International, 2004, pp. 70–. DOI:

10.1109/IPDPS.2004.1303000 (cit. on p. 93).

[127] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d

matrix multiplication and lu factorization algorithms,” in Euro-Par 2011

Parallel Processing, ser. Lecture Notes in Computer Science,

vol. 6853, Springer Berlin Heidelberg, 2011, pp. 90–109, ISBN:

978-3-642-23396-8. DOI: 10.1007/978-3-642-23397-5_10 (cit. on

p. 93).

147

http://dx.doi.org/10.1147/rd.395.0575
http://dx.doi.org/10.1147/rd.386.0673
http://dx.doi.org/10.1137/1.9780898719642
http://dx.doi.org/10.1109/HPC.1997.592151
http://dx.doi.org/10.1109/IPDPS.2004.1303000
http://dx.doi.org/10.1007/978-3-642-23397-5_10

BIBLIOGRAPHY

[128] U.S.Department of Energy, “Exascale programming challenges. ascr

exascale programming challenges workshop,” 2011 (cit. on p. 93).

[129] A. Kolinov and A. Lastovetsky, “Heterogeneous distribution of

computations while solving linear algebra problems on networks of

heterogeneous computers,” in High-Performance Computing and

Networking, P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger,

Eds., ser. Lecture Notes in Computer Science, vol. 1593, Springer

Berlin Heidelberg, 1999, pp. 189–200, ISBN: 978-3-540-65821-4. DOI:

10.1007/BFb0100580 (cit. on p. 95).

[130] A. Lastovetsky, “On grid-based matrix partitioning for heterogeneous

processors,” in Parallel and Distributed Computing, 2007. ISPDC’07.

Sixth International Symposium on, IEEE, 2007, pp. 51–51 (cit. on

p. 96).

[131] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on

heterogeneous multicore platforms,” in Cluster Computing

(CLUSTER), 2011 IEEE International Conference on, IEEE, 2011,

pp. 580–584 (cit. on p. 96).

[132] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on

heterogeneous multicore and multi-gpu systems using functional

performance models of data-parallel applications,” in Cluster

Computing (CLUSTER), 2012 IEEE International Conference on,

2012, pp. 191–199. DOI: 10.1109/CLUSTER.2012.34 (cit. on p. 96).

[133] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa, “Hierarchical

partitioning algorithm for scientific computing on highly heterogeneous

cpu+ gpu clusters,” in Euro-Par 2012 Parallel Processing, Springer,

2012, pp. 489–501 (cit. on p. 96).

[134] A. Lastovetsky and J. Twamley, “Towards a realistic performance

model for networks of heterogeneous computers,” in High

Performance Computational Science and Engineering, Springer,

2005, pp. 39–57 (cit. on p. 96).

148

http://dx.doi.org/10.1007/BFb0100580
http://dx.doi.org/10.1109/CLUSTER.2012.34

BIBLIOGRAPHY

[135] A. Lastovetsky and R. Reddy, “Data partitioning with a functional

performance model of heterogeneous processors,” International

Journal of High Performance Computing Applications, vol. 21, no. 1,

pp. 76–90, 2007 (cit. on p. 96).

[136] A. DeFlumere, A. Lastovetsky, and B. A. Becker, “Partitioning for

parallel matrix-matrix multiplication with heterogeneous processors:

the optimal solution,” in Proceedings of the 2012 IEEE 26th

International Parallel and Distributed Processing Symposium

Workshops & PhD Forum, ser. IPDPSW ’12, IEEE Computer Society,

2012, pp. 125–139, ISBN: 978-0-7695-4676-6. DOI:

10.1109/IPDPSW.2012.12 (cit. on p. 96).

[137] A. DeFlumere and A. Lastovetsky, “Optimal data partitioning shape for

matrix multiplication on three fully connected heterogeneous

processors,” in Euro-Par 2014: Parallel Processing Workshops,

Springer, 2014, pp. 201–214 (cit. on p. 96).

[138] M. Kondo, “Report on exascale architecture. iesp meeting. japan.,”

2012 (cit. on p. 106).

[139] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman, “Mapping

communication layouts to network hardware characteristics on

massive-scale blue gene systems,” Computer Science - Research and

Development, vol. 26, no. 3-4, pp. 247–256, 2011, ISSN: 1865-2034.

DOI: 10.1007/s00450-011-0168-y (cit. on p. 108).

[140] Blackford L. S. and Whaley R. C., “ scalapack evaluation and

performance at the dod msrcs,” University of Tennessee, Knoxville,

TN, Tech. Rep. LAPACK Working Note No. 136, Technical Report UT

CS-98-388, 1998 (cit. on p. 111).

[141] (). The gnu scientific library (gsl), [Online]. Available: http://www.

gnu.org/software/gsl/ (cit. on p. 115).

[142] J. Calcote, Autotools: A Practitioner’s Guide to GNU Autoconf,

Automake, and Libtool. No Starch Press, 2010 (cit. on p. 116).

149

http://dx.doi.org/10.1109/IPDPSW.2012.12
http://dx.doi.org/10.1007/s00450-011-0168-y
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

BIBLIOGRAPHY

[143] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint, The C programming

language. prentice-Hall Englewood Cliffs, 1988, vol. 2 (cit. on p. 116).

[144] P. Sack and W. Gropp, “A scalable mpi_comm_split algorithm for

exascale computing,” in Recent Advances in the Message Passing

Interface, ser. Lecture Notes in Computer Science, vol. 6305, Springer

Berlin Heidelberg, 2010, pp. 1–10, ISBN: 978-3-642-15645-8. DOI:

10.1007/978-3-642-15646-5_1 (cit. on p. 151).

[145] A. Moody, D. H. Ahn, and B. R. de Supinski, “Exascale algorithms for

generalized mpi_comm_split,” in Recent Advances in the Message

Passing Interface, ser. Lecture Notes in Computer Science, vol. 6960,

Springer Berlin Heidelberg, 2011, pp. 9–18, ISBN: 978-3-642-24448-3.

DOI: 10.1007/978-3-642-24449-0_4 (cit. on p. 151).

150

http://dx.doi.org/10.1007/978-3-642-15646-5_1
http://dx.doi.org/10.1007/978-3-642-24449-0_4

Appendix A

Possible Overheads in the

Hierarchical Design

Our implementations of the hierarchical collective operations use

MPI_Comm_split operation to create groups of processes. The obvious

questions would be to which extent the split operation can affect the

scalability of the hierarchical algorithms. Recent research works show

different approaches to improve the scalability of MPI communicator creation

operations in terms of run time and memory footprint. The research in [144]

introduces a new MPI_Comm_split algorithm, which scales well to millions of

cores. The memory usage of the algorithm is O(p
g
) and the time is

O(g log2(p) + log22(p) +
p
g
log2(g)), where p is the number of MPI processes, g

is the number of processes in the group that perform sorting. More recent

research work in [145] improves the previous algorithm with two variants. The

first one, which uses a bitonic sort, needs O(log2(p)) memory and O(log22(p))

time. The second one is a hash-based algorithm and requires O(1) memory

and O(log2(p)) time. Having these algorithms, we can utilize

MPI_Comm_split operation in our hierarchical design with negligible

overhead of creating MPI sub-communicators. There will not be any

overhead at all for large messages as the split operation does not depend on

the message size.

151

Appendix B

HiMPI Configuration Parameters

Table B.1: HiMPI Configuration Parameters

Name Default Value Description

HIMPI_MIN_MSG 1kB The minium message size that will

be used to generate configuration

file

HIMPI_MAX_MSG 16MB The maxium message size

HIMPI_MSG_STRIDE 2 The step size in the min and max

interval

HIMPI_NUM_LEVELS 1 The number of hierarchies

HIMPI_GENERATE_CONFIG 0 Whether generate configuration

file or not

HIMPI_OPID 5 Operations ids specify which

collective should be benchmarked

during HiMPI_Init. Default value

is 5 (op_all) which means all the

collectives will be benchmarked.

HIMPI_DEBUG 0 Enable debug mode to see debug

information during run time

HIMPI_CONF_FILE None If specified the optimal number of

groups will be read from that file

152

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Contributions
	Motivation
	Contributions

	Background and Related Work
	Message Passing Interface
	Alternative Parallel Programming Systems

	Communication Performance Models
	Homogeneous Communication Performance Models
	Heterogeneous Communication Performance Models
	Contention-Aware Communication Performance Models

	Overview of MPI Collective Communication Operations
	MPI Broadcast Operation
	MPI Reduction Operations
	MPI Scatter and Gather Operations
	Conclusion

	Hierarchical Optimization of MPI Collective Operations
	Hierarchical Transformation of MPI Broadcast Algorithms
	Theoretical Analysis
	Experimental Study

	Hierarchical Transformation of MPI Reduction Algorithms
	Hierarchical Transformation of MPI Reduce algorithms
	Hierarchical Transformation of MPI Allreduce

	Hierarchical Transformation of MPI Scatter and Gather Operations
	Theoretical Analysis
	Experiments
	Conclusion

	Applications
	Parallel Matrix Multiplication
	Serial Matrix Multiplication Optimization
	Parallel Matrix Multiplication Optimization
	SUMMA Algorithm

	Hierarchical SUMMA
	Theoretical Analysis
	Experiments on BlueGene/P
	Experiments on Grid'5000

	Conclusion

	Hierarchical MPI Software Design
	MPIBlib
	HiMPI - Hierarchical MPI
	The HiMPI API
	Experiments with HiMPI

	Conclusion
	Future Work

	Appendices
	Possible Overheads in the Hierarchical Design
	Appendices
	HiMPI Configuration Parameters

