
Journal of Parallel and Distributed Computing 183 (2024) 104767

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

SUARA: A scalable universal allreduce communication algorithm for

acceleration of parallel deep learning applications ✩

Emin Nuriyev a, Ravi Reddy Manumachu a,∗, Samar Aseeri b, Mahendra K. Verma c,
Alexey L. Lastovetsky a

a School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
b Extreme Computing Research Center (ECRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
c Department of Physics, Indian Institute of Technology, Kalyanpur, Kanpur, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2023
Received in revised form 31 July 2023
Accepted 4 September 2023
Available online 15 September 2023

Keywords:
Allreduce communication algorithm
MPI
Parallel deep learning
ResNet-50
Imagenet

Parallel and distributed deep learning (PDNN) has become an effective strategy to reduce the long
training times of large-scale deep neural networks. Mainstream PDNN software packages based on the
message-passing interface (MPI) and employing synchronous stochastic gradient descent rely crucially on
the performance of MPI allreduce collective communication routine.
In this work, we propose a novel scalable universal allreduce meta-algorithm called SUARA. In general,
SUARA consists of L serial steps, where L ≥ 2, executed by all MPI processes involved in the allreduce
operation. At each step, SUARA partitions this set of processes into subsets, which execute optimally
selected library allreduce algorithms to solve sub-allreduce problems on these subsets in parallel, to
accomplish the whole allreduce operation after completing all the L steps. We then design, theoretically
study and implement a two-step SUARA (L = 2) called SUARA2 on top of the Open MPI library. We
prove that the theoretical asymptotic speedup of SUARA2 executed by P processes over the base
Open MPI routine is O(

√
P). Our experiments on Shaheen-II supercomputer employing 1024 nodes

demonstrate over 2x speedup of SUARA2 over native Open MPI allreduce routine, which translates into
the performance improvement of training of ResNet-50 DNN on ImageNet by 9%.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Deep learning (DL) applications have become pervasive energiz-
ing technological innovations in several fields that include speech
recognition [3], autonomous driving [6], medical diagnosis [12],
and natural language processing [13].

Complex DL applications require training deep neural networks
(DNNs) on large datasets for better predictions. However, the train-
ing times increase drastically with the size of DNN given by the
number of parameters and the size of the training dataset. There-
fore, parallel and distributed DL (PDNN) has become a natural and

✩ This publication has emanated from research conducted with the financial sup-
port of Science Foundation Ireland and the Sustainable Energy Authority of Ireland
under the SFI Frontiers for the Future Programme 20/FFP-P/8683. This publication
has emanated from research conducted with the financial support of Sustainable
Energy Authority of Ireland (SEAI) under Grant Number 21/RDD/664.

* Corresponding author.
E-mail addresses: nuriyevemin@gmail.com (E. Nuriyev), ravi.manumachu@ucd.ie

(R.R. Manumachu), samar.aseeri@kaust.edu.sa (S. Aseeri), mkv@iitk.ac.in
(M.K. Verma), alexey.lastovetsky@ucd.ie (A.L. Lastovetsky).
https://doi.org/10.1016/j.jpdc.2023.104767
0743-7315/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
effective strategy to reduce the long training times of large-scale
DNNs.

Horovod [39], Microsoft Cognitive Toolkit (CNTK) [38], and
MXNet MPI [28] are popular PDNN packages that perform parallel
training of a DNN using data-parallelism and synchronous model
updates. In the data-parallel approach, the training dataset of sam-
ples is divided into small batches called mini-batches. The set of
mini-batches is then partitioned equally between the processes.
The complete training process typically consists of hundreds of
epochs. An epoch comprises a loop where each process selects
a disjoint mini-batch in an iteration. The process then executes
the DNN code using this batch and computes a gradient. All the
processes then collectively invoke an allreduce collective communi-
cation operation to obtain the global average gradient for the whole
minibatch. Finally, each process then updates the local vector of
weights using the global average gradient. The main stages of par-
allel training of a DNN are detailed in supplemental, Section 2.

Therefore, the allreduce collective communication routine is an
essential ingredient of PDNN packages that employ data paral-
lelism and synchronous model updates [39], [38], [28].
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jpdc.2023.104767
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104767&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nuriyevemin@gmail.com
mailto:ravi.manumachu@ucd.ie
mailto:samar.aseeri@kaust.edu.sa
mailto:mkv@iitk.ac.in
mailto:alexey.lastovetsky@ucd.ie
https://doi.org/10.1016/j.jpdc.2023.104767
http://creativecommons.org/licenses/by/4.0/

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
The MPI standard [29], which provides a reliable and portable
environment for developing HPC applications, offers a rich set of
collective communication operations, including the allreduce col-
lective communication operation. Different algorithms have been
developed and implemented for the allreduce MPI collective oper-
ation, but no algorithm proved superior in all situations. Therefore,
MPI implementations must solve the problem of selecting the op-
timal algorithm for the collective operation depending on the plat-
form, the number of processes involved, and the message size. The
Open MPI library [18] supports runtime selection of six different
algorithms for the MPI allreduce collective communication opera-
tion, namely, linear (linear reduce followed by linear broadcast) [34],
nonoverlapping (tuned reduce followed by tuned broadcast) [34], re-
cursive doubling [34], ring [34], ring with segmentation [35], Raben-
seifner [35].

Methods for performance optimization of the allreduce collec-
tive communication can be broadly classified into platform-specific
and platform-independent categories. Platform-specific methods
aim to optimize the allreduce for performance for a specific plat-
form [42], [44], [20], [41], [27], [2], [4], [24]. In the platform-
independent category, research works include algorithms that do
not make any assumptions about the underlying platform [35], [9],
[33], [46], [7], [40].

The platform-independent category can be further classified
into two sub-categories. The first sub-category comprises research
works [35], [9], [33], [40] employing functional decomposition of
the global allreduce operation into a serial sequence of collective
sub-operations different from allreduce. The second sub-category
contains research works [46], [7] that employ message decomposi-
tion/segmentation/pipelining.

In this work, we propose a novel scalable universal allreduce
meta-algorithm called SUARA. In general, SUARA consists of sev-
eral serial steps executed by all processes involved in the allreduce
operation. The processes contain messages of the same length for
reduction. At each step, SUARA partitions the whole set of pro-
cesses into subsets, which execute allreduce algorithms, optimally
selected from a given set of allreduce algorithms, A, to solve sub-
allreduce problems on these subsets in parallel, accomplishing the
whole allreduce operation after the completion of all the serial
steps. Furthermore, it does not use message decomposition; there-
fore, the sub-allreduce operations compute partial reductions of
the whole message.

SUARA is a meta-algorithm since it represents a family of al-
gorithms, parameterized by the number of serial steps, L, and the
set A of native allreduce algorithms used as building blocks. There
are no restrictions on the native allreduce algorithms (for example,
they can use either functional or message decomposition or both
in their execution).

Thus, SUARA is a platform-independent multi-step allreduce
meta-algorithm employing process decomposition to optimize the
global allreduce operation using only native allreduce algorithms
as sub-operations. It differs from the state-of-the-art platform-
independent allreduce algorithms in two respects. First, it is based
on process decomposition, not functional or message decompo-
sition. Second, it only employs sub-allreduce operations execut-
ing optimally selected native allreduce algorithms as its building
blocks.

We first prove that the processes executing SUARA must nat-
urally form an L-dimensional rectangular arrangement for maxi-
mum parallelism and to ensure the correctness of the allreduce
operation.

We then design, theoretically study and implement a two-step
SUARA (L = 2), called SUARA2, on top of the Open MPI library. The
processes in SUARA2 form a two-dimensional grid arrangement.
The design and implementation of SUARA2 comprise three stages.
At the first stage, SUARA2 determines the optimal 2D process grid
2

arrangement and the optimal Open MPI allreduce algorithms to
employ in the process rows and columns. In the second stage, pro-
cess rows execute library allreduce algorithms in parallel. At the
third stage, process columns execute library allreduce algorithms
in parallel, completing the whole allreduce operation. SUARA2 au-
tomatically selects optimal library allreduce algorithms to be ex-
ecuted by process rows and columns from the set of algorithms
implemented by Open MPI. We prove that the optimal selection
always uses at most two different library algorithms – one for all
process rows and the other for all process columns. We also prove
that the theoretical asymptotic speedup of SUARA2 executed by a
set of P processes over the best Open MPI allreduce algorithm is
O(

√
P).

Our goal of the paper is not to develop an optimal allreduce
algorithm from the total space of allreduce algorithms that em-
ploy message segmentation/pipelining, functional decomposition
into allreduce and non-allreduce collective operations, and process
decomposition. This endeavour is out of the scope of this work. In-
stead, we focus on finding the optimal allreduce algorithm in the
space of allreduce algorithms employing process decomposition.

We demonstrate the practical efficiency of SUARA2 by speed-
ing up ResNet-50 DNN training on ImageNet dataset [37] on
Shaheen-II supercomputer employing 1024 dual-socket 16-core In-
tel Haswell processors [26]. We focus only on one-process-per-
node application configuration. Other pertinent application config-
urations that include one-process-per-socket and one-process-per-
core are out of the scope of this work.

The PDNN framework used is Horovod [39] employing Open
MPI library 4.0.3 for communication. The main stages of parallel
training of a DNN are detailed in supplemental, Section 2. Each
process passes a message, a vector of gradients of size m bytes,
to MPI_Allreduce collective routine invoked during Resnet-50 DNN
training. All the processes call the MPI_Allreduce collective routine
during Step 3 of an epoch to obtain the same global vector of av-
erage gradients from the input vectors of gradients.

The reduction of training time due to using SUARA2 increases
with the number of employed processes. It reaches 9% for 1024
processes, the maximal number used in the experiments. The min-
imum, average, and maximum speedups of SUARA2 over the best
native Open MPI allreduce routine observed in our experiments are
1.6x, 2x, and 2.65x, respectively.

The main contributions of this work are:

• A platform-independent multi-step scalable universal allre-
duce meta-algorithm called SUARA that employs the novel ap-
proach of process decomposition to optimize the global allre-
duce operation using only native allreduce algorithms as sub-
operations;

• A detailed design and theoretical analysis of a two-step SUARA,
called SUARA2, on top of the Open MPI set of allreduce algo-
rithms. SUARA2 exhibits a theoretical asymptotic speedup of
O(

√
P) over the best Open MPI allreduce algorithm;

• An Open MPI library-based portable implementation of
SUARA2;

• Using traditional calculus approach to determine the opti-
mal allreduce combination (allreduce algorithms in rows and
columns) to employ during the execution of the MPI allreduce
collective operation;

• Experimental demonstration of the practical efficiency of
SUARA2 in PDNN by the 9% acceleration of the training of
ResNet-50 DNN on ImageNet dataset on Shaheen-II super-
computer employing 1024 processes (1024 nodes). SUARA2
outperforms the native Open MPI allreduce routine more than
twice.

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Fig. 1. Classification of allreduce collective communication algorithms.
The rest of the paper is organized as follows. The related work
section reviews the existing approaches to performance optimiza-
tion of collective communication operations, PDNN packages, and
methods for acceleration of training of DNNs on ImageNet. We
follow this with the section that presents our scalable universal
allreduce meta-algorithm, SUARA. Then, we describe in detail a
two-step SUARA on top of the Open MPI library. Next, the experi-
mental results section presents the practical efficiency of SUARA2.
Finally, the conclusion section ends the paper.

2. Related work

We then present an overview of the state-of-the-art meth-
ods for performance optimization of allreduce communication. We
then overview DNN frameworks offering support for parallel and
distributed training.

2.1. Performance optimization of allreduce collective communication

We have presented an overview of prior works in this cate-
gory in the introduction section and described how our proposed
allreduce meta-algorithm, SUARA, differs from these works. There-
fore, we briefly cover the prior works in the platform-independent
category here with a few additional details. Fig. 1 shows the tree
ontology of different allreduce algorithms.

The platform-independent category can be classified into two
sub-categories. The first sub-category [35], [9], [33], [40] com-
prises research works employing functional decomposition of the
global allreduce operation into a sequence of non-allreduce sub-
operations executed serially. The second sub-category contains re-
search works [46], [7] that employ message decomposition/seg-
mentation. This technique is also known as pipelining in the lit-
erature.

Rabenseifner et al. [35] study functional decompositions of the
allreduce operation comprising two serial steps. One decomposi-
tion is a reduce operation followed by a broadcast operation, and
the other involves reduce-scatter and allgather operations. They
propose some known and novel algorithms for the two steps. For
example, a binary tree algorithm for reduce and broadcast opera-
tions, recursive vector halving and distance doubling algorithm for
reduce-scatter operation and recursive vector doubling combined
with recursive distance halving algorithm for allgather operation.
Finally, they experimentally find the fastest allreduce configura-
tion (the algorithmic combination for the two steps) on a Cray
supercomputer depending on the number of processes and mes-
sage size.

Chan et al. [9] study specifically the MPI_Allreduce implementa-
tion in the MPICH [19] library that employs a two-step functional
3

decomposition of the allreduce operation, reduce-scatter and all-
gather operations based on recursive-halving and doubling algo-
rithms. They propose an algorithmic enhancement to the MPICH
implementation that performs well for a particular range of mes-
sage sizes on a Cray cluster. However, SUARA is a multi-step allre-
duce meta-algorithm based on process decomposition that opti-
mizes the global allreduce operation for any input message size.

Patarasuk et al. [33] also employ a two-step functional de-
composition of the allreduce operation involving reduce-scatter
and allgather operations. In addition, they use logical ring-based
algorithms for the reduce-scatter and allgather operations. How-
ever, SUARA is a multi-step allreduce meta-algorithm that employs
process decomposition to optimize the global allreduce operation
using only native allreduce algorithms as sub-operations. The allre-
duce algorithms for the sub-operations are optimally selected from
a pool of available native algorithms that include linear, ring-based,
recursive, and Rabenseifner algorithms, to name a few.

Nguyen et al. [40] present a functional decomposition of the
allreduce operation comprising four serial steps for accelerating
deep learning workloads on GPU clusters. The first and fourth steps
involve parallel reduce-scatter operations and parallel allgather op-
erations involving the GPUs inside each node. The second and third
steps contain an inter-node allreduce operation realized by a two-
step functional decomposition involving parallel reduce-scatter and
allgather operations. A logical ring algorithm is used for the intra-
node collective operations, whereas three different algorithms (re-
cursive doubling, logical ring or Rabenseifner) are employed for the
inter-node allreduce collective operation.

Research works [46], [7] employ message decomposition/seg-
mentation/pipelining. Zhao et al. [46] split the message into seg-
ments that are reduced using reduce and broadcast operations,
which employ pipelining. Castello et al. [7] divide the message into
parts that are reduced by parallel nonblocking MPI sub-allreduce
operations. However, SUARA does not use message decomposition.
It computes partial reductions of the whole message using sub-
allreduce operations.

2.2. Parallel and distributed machine learning packages

The mainstream PDNN packages can be classified based on the
type of parallelism and the DNN model consistency. The forward
evaluation and backpropagation phases of a DNN are partitioned
between the processors in three different ways:

• Data parallelism: The work of the minibatch samples is par-
titioned between the processors. The results of the partitions
are averaged using an allreduce collective communication op-
eration to obtain the gradient for the whole minibatch. The

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
allreduce communication operation combines values from all
the processes and distributes the result back to all processes.

• Model parallelism: The neurons in each layer are partitioned
between the processors. All the processors get a copy of
the minibatch and compute different parts of a DNN. Fully
connected layers incur all-to-all communication compared to
allreduce communication in data parallelism.

• Layer pipelining: There are two forms of pipelining. The first
form is to overlap computations between one layer and the
next. For example, forward evaluation, backpropagation, and
weight updates can be overlapped. The second form is a multi-
processor pipeline partitioning the DNN layers between the
processors.

The surveys [5], [43] present informative descriptions of paral-
lelism in deep learning.

In the category of DNN model consistency, the consistent
model methods are based on Bulk Synchronous Parallelism (BSP),
where consistency is ensured by a global synchronization step be-
tween each computation and communication phase. In BSP (or
synchronous SGD), the up-to-date model parameters (vector of
weights) are made visible to all the processes after each global
synchronization step. Asynchronous SGD relaxes the synchroniza-
tion criterion for an up-to-date weight vector and leads to an
inconsistent model. A well-known instance of inconsistent SGD is
HOGWILD algorithm [15], which allows processes to read model
parameters and update gradients without any synchronization.
Total Asynchronous Parallelism or Barrierless Asynchronous Par-
allelism (BAP) allows workers to communicate without synchro-
nization. However, this technique can lead to slow convergence,
and incorrectness [23]. Stale Synchronous Parallelism (SSP) offers a
compromise between consistent and inconsistent models and pro-
vides strong model convergence guarantees [21]. SSP performs the
global synchronization step after only one node reaches maximal
staleness. This technique works well in heterogeneous environ-
ments where stragglers (lagging workers) are a vital concern.

Horovod [39] is a parallel DNN framework that employs MPI
and NVIDIA Collective Communication Library (NCCL) [32] for
training on CPUs or GPUs. It is based on MPI allreduce communica-
tion operation, and is therefore used in this work for demonstrat-
ing the efficiency of our library. Caffe2 [25] is also a distributed
DNN framework based on allreduce. However, it uses NCCL be-
tween the GPUs on a single node and Gloo library between the
nodes [16], which uses the ring and recursive doubling allreduce
algorithms. The Microsoft Cognitive Tooklit (CNTK) [38] is a dis-
tributed DNN framework that represents a DNN by a directed
graph and is based on ring allreduce algorithm.

The following packages are based on parallel asynchronous
SGD. DistBelief [15] combines the three types of parallelism. It
represents a DNN by a computation graph. The graph is par-
titioned between the processors using either model parallelism
or pipelining. Since DistBelief provides fault tolerance, there are
model replicas. The replicas are trained in parallel on different
samples. Project Adam [11] also combines the three types of par-
allelism. DIstributed Artificial Neural NEtworks (DIANNE) [14] is
a java-based distributed DNN framework employing model paral-
lelism. Tensorflow framework [1] represents a DNN by a dataflow
graph and supports data and model parallelism. MXNet [10] also
represents a DNN by a dataflow graph. MXNet MPI [28] com-
bines asynchronous (using parameter server concept) and syn-
chronous (using MPI) implementations. The processes are divided
into groups. Within each group, synchronous SGD is executed us-
ing MPI allreduce communication.

Petuum [45] supports data and model parallelism and is based
on parallel stale-synchronous SGD (SSP).
4

Fig. 2. Example illustrating allreduce involving six processes with ranks in the set,
S = {0, 1, 2, 3, 4, 5}. A circle symbolizes a process. The local value at each process is
shown in a square. At the end of the allreduce operation, all the processes will have
an identical result, 80.

3. SUARA: a scalable universal allreduce collective algorithm

In this section, we propose our novel scalable universal algo-
rithm called SUARA for the allreduce communication operation.

The allreduce is a collective communication operation that ap-
plies a commutative and associative operator to values from all the
processes and distributes the final result to all the processes. The
operators include max, min, sum, product, and logical bitwise. All
the processes participating in the allreduce must have an identical
result after its successful completion. The associativity and com-
mutativity of the reduction operator signify that the values of all
the processes can be rearranged and combined to determine the fi-
nal result. Therefore, it allows ample scope for optimization where
the whole allreduce problem can be partitioned into sub-allreduce
problems that can be solved simultaneously. Fig. 2 illustrates the
allreduce operation involving six processes, whose ranks are given
by the set S = {0, 1, 2, 3, 4, 5}. A circle symbolizes each process.
The local value at each process is shown in a square above the cir-
cle. The values are reduced using MPI_SUM operator. At the end
of the allreduce operation, each process contains a result equal to
80. In this example, the local value at each process is a scalar.
However, the local data can be a vector in general. Therefore, the
allreduce operation reduces vectors from all the processes.

Our proposed algorithm SUARA is an allreduce meta-algorithm
executed by a set S of processes of size P . The processes contain
messages of the same length for reduction. SUARA consists of L
serial steps, executed by all processes in S . At each step, SUARA
partitions S into subsets, which execute allreduce algorithms, op-
timally selected from a given set of allreduce algorithms, A, to
solve sub-allreduce problems on these subsets in parallel. It ac-
complishes the whole allreduce operation after the completion of
all L steps.

SUARA is a meta-algorithm since it represents a family of algo-
rithms, parameterized by the number of serial steps, L, and the set
A of native allreduce algorithms used as its building blocks. There
are no restrictions on the native allreduce algorithms.

We show that the processes of S employed in SUARA’s execu-
tion must naturally form a L-dimensional rectangular arrangement
to ensure its correctness and for maximum parallelism.

We first illustrate the execution of SUARA, accomplishing the
whole allreduce in two steps (L = 2). In the first step, SUARA parti-
tions S into R subsets. Each subset solves a sub-allreduce problem.
Since the process subsets are disjoint, SUARA executes all the sub-
allreduce operations in parallel. At the end of the step, all the
processes in a subset contain the same result. To complete the
allreduce correctly, each process must reduce its local result with
the result from one process in each of the other subsets. The most
natural way that maximizes the parallelism is to compose disjoint
subsets where each subset is assigned a unique process from each

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Fig. 3. Example illustrating the execution of two-step SUARA by six processes in the set, S = {0, 1, 2, 3, 4, 5}. SUARA accomplishes the whole allreduce using two steps
(L = 2). In the first step (1), SUARA partitions S into two subsets, {0, 1, 2} and {3, 4, 5}. It then executes two sub-allreduces in parallel on these subsets. In the second step,
SUARA partitions S into three subsets, {0, 3}, {1, 4}, {2, 5}, to complete the whole allreduce correctly and executes three sub-allreduces in parallel shown in (3). Therefore,
R = 2, C = 3. At the end of the whole allreduce operation, each process contains a result equal to 80. The final result is displayed under (4).
of the R subsets in the previous step. Therefore, SUARA composes
C such disjoint subsets where R × C = P . SUARA then executes
all the C sub-allreduce operations in parallel. Hence, the processes
of S employed in SUARA’s execution must naturally form a two-
dimensional grid arrangement to ensure its correctness.

Fig. 3 illustrates the execution of two-step SUARA by six pro-
cesses in the set S = {0, 1, 2, 3, 4, 5}. The goal of SUARA here is to
accomplish the allreduce using two steps. In the first step, SUARA
partitions S into two subsets, {0, 1, 2} and {3, 4, 5}. It then exe-
cutes two sub-allreduces in parallel on these subsets. After the
completion of the step, all the processes in the subset {0, 1, 2} con-
tain a result 32. All the processes in the subset {3, 4, 5} contain 48.
In the second step, SUARA partitions S into three subsets, {0, 3},
{1, 4}, {2, 5}, and executes three sub-allreduces in parallel. At the
end of the SUARA execution, each process contains a result equal
to 80. The partitions, ({0, 1, 2}, {3, 4, 5}) and ({0, 3}, {1, 4}, {2, 5}),
form a 2D process arrangement, 2 × 3.

Note. In this work, we do not investigate the problem of per-
forming the allreduce operation where the P processes do not
form a multi-dimensional rectangular process arrangement. Con-
sider, for example, the execution of SUARA comprising two serial
steps. In the first step, SUARA partitions S into R subsets and per-
forms R parallel sub-allreduce operations. In the second step, there
will be gaps in the two-dimensional process arrangement if there
is no C such that R × C = P . One approach adds processes dy-
namically and fills the gaps to form a two-dimensional process
arrangement, R × C = Q , Q > P . The local value in each new pro-
cess is set to an appropriate value based on the reduction operator.
For example, the local value is set to 0 if the reduction operator is
a sum and 1 if the reduction operator is a product. SUARA is then
executed using Q processes.

The number of allreduces in SUARA employing P processes and
comprising two serial steps (L = 2) is R + C where R × C = P .
The process partitions are visualized as a two-dimensional process
5

arrangement, R × C . The R horizontal parallel sub-allreduce oper-
ations are followed by C vertical parallel sub-allreduce operations
or vice versa.

For SUARA consisting of three serial steps (L = 3), the num-
ber will be R × K + C × K + R × C where R × C × K = P . Fig. 4
illustrates the three serial steps. The process partitions are visual-
ized as a three-dimensional process arrangement, R ×C × K . In the
first step, R × K parallel sub-allreduce operations are executed hor-
izontally in the C direction. Each sub-allreduce operation involves
C processes.

In the second step, C × K parallel sub-allreduce operations are
executed vertically in the R direction. Each sub-allreduce operation
involves R processes. In the final step, R × C parallel sub-allreduce
operations take place in the K direction. Each sub-allreduce oper-
ation involves K processes. This pattern of communications holds
for SUARA for higher dimensions.

In the next section, we design, theoretically study and imple-
ment a two-step SUARA called SUARA2 on top of the set of allre-
duce algorithms in Open MPI.

4. SUARA2: a two-step SUARA on top of the open MPI set of
allreduce algorithms

This section describes SUARA2, a two-step SUARA on top
of Open MPI library. The processes in SUARA2 form a two-
dimensional grid arrangement. The design and implementation of
SUARA2 comprise three stages. At the first stage, SUARA2 deter-
mines the optimal 2D process grid arrangement and the optimal
Open MPI allreduce algorithms to employ in the process rows and
columns. At the second stage, process rows execute library allre-
duce algorithms in parallel. At the third stage, process columns
execute library allreduce algorithms in parallel, completing the
whole allreduce operation.

We first derive analytical models of six allreduce algorithms
used in Open MPI: linear, nonoverlapping tuned reduce followed by

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Fig. 4. SUARA consisting of three serial steps. The blue circles represent the processes arranged in a 3D grid arrangement, R × C × K . In the first step, there are R × K parallel
sub-allreduce operations in the C direction. Each sub-allreduce operation involves C processes and is shown by a green rod joining the processes. In the second step, there
are C × K parallel sub-allreduce operations in the R direction. Each sub-allreduce operation involves R processes and is shown by an orange rod joining the processes. In
the final step, there are R × C parallel sub-allreduce operations in the K direction. Each sub-allreduce operation involves K processes and is shown by a red rod joining the
processes.
tuned broadcast, recursive doubling, ring without segmentation, ring
with segmentation, and Rabenseifner. Then, the derived models are
used in SUARA2 for the automatic selection of optimal Open
MPI library allreduce algorithms for horizontal and vertical sub-
allreduce operations.

4.1. Analytical models of open MPI allreduce algorithms

We present here the six allreduce algorithms provided by Open
MPI and build their analytical performance models using the basic
Hockney model [22] for modelling point-to-point communications.

MPI collective algorithms are commonly implemented using
point-to-point communications where the group of processes ex-
ecuting the collective algorithm is mapped into a virtual topology.
The virtual topologies include a linear tree, binomial tree, and bi-
nary tree, to name a few. MPI libraries use two communication
protocols to implement point-to-point communication. They are
called eager and rendezvous used for transferring short and large
messages, respectively. We present analytical performance models
for the allreduce collective algorithms only for the rendezvous pro-
tocol. We assume that each node in the network supports single-
port full-duplex communication, which means that a process exe-
cuting on a node can be involved in a single emission (send) and
single reception (receive) simultaneously. The platform employed
in this work, Cray XC40 with Aries packet-switched interconnect
with Dragonfly topology, satisfies this assumption.

The basic Hockney model is used for modelling a point-to-point
communication operation as the fundamental building block of an-
alytical models for allreduce algorithms. The model estimates the
time T p2p(m) of sending a message of size m between two pro-
cesses as T p2p(m) = α + β · m, where α is the latency, and β is
the reciprocal bandwidth. In an allreduce algorithm, the point-to-
point communications are followed by computations performing
reduction operations on the local vectors. We consider the com-
putation cost per byte of the reduction operation to be γ for any
MPI process. The constants (α, β) are considered specific to each
allreduce algorithm. The constant γ is independent of an allreduce
algorithm but is platform-specific. Each algorithm is executed by
P processes in the set, {P0, · · · , P P−1}, with corresponding ranks,
{0, · · · , P − 1}.

To summarize the analytical models that follow, the cost of
each algorithm has a latency component given by α, a bandwidth
component (β · m), and a computation component (γ · m). The
algorithms that achieve the lower bound for the latency compo-
nent will have log2 P factor. Recursive doubling [34] and Raben-
6

seifner [35] are two such algorithms. The algorithms that attain the
lower bound for the bandwidth component will have 2 · P−1

P factor.
Rabenseifner falls in this category. Finally, the lower bound for the
computation component is P−1

P , which is also realized by Raben-
seifner. The linear and ring without segmentation algorithms do not
attain the lower bounds for the latency and bandwidth compo-
nents and, therefore, contain 2 · (P − 1) factor.

We represent the allreduce algorithms, linear, nonoverlapping
tuned reduce followed by tuned broadcast, recursive doubling, ring
without segmentation, ring with segmentation, and Rabenseifner, by
the short-form identifiers, linear, nono, rd, rnos, rs, and rab, to aid
the clarity of our theoretical exposition. The constants (αa, βa) cor-
respond to the allreduce algorithm a.

Table 1 contains the analytical formulae for the allreduce algo-
rithms.

4.1.1. Linear
The linear allreduce algorithm is implemented using linear re-

duce algorithm followed by the linear broadcast algorithm [34].
Both algorithms transmit a whole message without message seg-
mentation.

Each receive in a linear reduce algorithm only starts after the
previous one is completed. Therefore, the execution time of the lin-
ear reduce algorithm will be equal to the sum of execution times
of (P − 1) message transmissions. Thus, the execution time of the
linear reduce algorithm is as follows:

Tlinear_reduce(P ,m) = (P − 1) · (αlinear + βlinear · m + γ · m) (1)

Each send in a linear broadcast algorithm only starts after the
previous one is completed. Therefore, the execution time of the
linear broadcast algorithm will be equal to the sum of execution
times of (P − 1) message transmissions. So, the execution time of
the linear broadcast algorithm is estimated as follows:

Tlinear_bcast(P ,m) = (P − 1) · (αlinear + βlinear · m) (2)

Thus, the execution time of the allreduce algorithm is estimated
as follows:

Tlinear(P ,m) = Tlinear_reduce(P ,m) + Tlinear_bcast(P ,m)

= (P − 1) · (2 · (αlinear + βlinear · m) + γ · m)
(3)

4.1.2. Nonoverlapping
The nonoverlapping allreduce algorithm is implemented using

the MPI_Reduce operation followed by the MPI_Bcast operation

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Table 1
The analytical formulae for the Open MPI allreduce algorithms using the Hockney performance model of communication. The
nonoverlapping allreduce algorithm has model expressions for thirty different implementations. Therefore, these expressions are
not given here due to space constraints.

Allreduce algorithm Analytical model Reference

Linear reduce followed by linear broadcast (P − 1) · (2 · (αlinear + βlinear · m) + γ · m) [34]
Recursive doubling log2 P · (αrd + βrd · m + γ · m) [34]
Ring without segmentation 2 · (P − 1) · αrnos + 2 · P−1

P · βrnos · m + P−1
P · γ · m [34]

Ring with segmentation (P + m
ms×P − 2) × (αrs + βrs · ms + γ · ms) + (P − 1) · (αrs + βrs · m

P) [34]
Rabenseifner 2 · log2 P · αrab + 2 · P−1

P · βrab · m + P−1
P · γ · m [35]
[34]. Both operations are called sequentially. Hence, the allreduce
is called nonoverlapping.

Tnono(P ,m) = Treduce(P ,m) + Tbcast(P ,m) (4)

The execution times of MPI_Reduce and MPI_Bcast operations
are estimated based on the particular collective algorithms em-
ployed in their execution. There are six collective algorithms for
the MPI_Bcast operation and five for the MPI_Reduce operation in
Open MPI. Altogether, it would result in thirty model expressions.
We do not present the models here due to space constraints.

4.1.3. Recursive doubling
We will present this allreduce algorithm for the case where

P is a power of two [34]. There are log2 P steps in the algo-
rithm. In step 1, processes separated by a rank-distance of 1 per-
form a pairwise exchange of the whole message with each other
(P0 ↔ P1, P2 ↔ P3, ...). At the end of the step, both processes in
a pairwise exchange redundantly compute the same partial reduc-
tion of the whole message. In step 2, the distance is doubled, and
the pairwise exchanges are (P0 ↔ P2, P1 ↔ P3, ...). In the last step
log2 P , the processes will be separated by distance P

2 . At the end of
the final communication step, the processes compute the final par-
tial reduction of the whole message, thereby completing the whole
allreduce operation.

Therefore, given the assumption of full-duplex communication,
the algorithm’s execution time is estimated as follows:

Trd(P ,m) = log2 P · (αrd + βrd · m + γ · m) (5)

4.1.4. Ring without segmentation
This allreduce algorithm is implemented using a reduce_scatter

operation followed by an allgather operation [34]. Both operations
are performed using a logical ring communication pattern, P0 →
P1 → P2 → ·· · → P P−1 → P0. Each process has a left neighbour
and a right neighbour. For example, process P0 has processes P P−1

and P1 as its left and right neighbours, respectively. There are P −
1 ring exchange steps in each operation. The message of size m at
each process is split into P chunks, {S0, · · · , S P−1}, each of size m

P .
The algorithm is described in detail in the supplemental, Section 4.
The algorithm’s execution time is estimated as follows:

Trnos(P ,m) = 2 · (P − 1) · αrnos + 2 · P − 1

P
· βrnos · m

+ P − 1

P
· γ · m

(6)

4.1.5. Ring with segmentation
Like the ring without segmentation algorithm, this allreduce al-

gorithm is implemented using a reduce_scatter operation followed
by an allgather operation [34]. Both operations are performed us-
ing a logical ring communication pattern. First, the message of size
m at each process is split into P chunks each of size m

P . Each chunk
is further broken into ns number of segments of size, ms = m .
ns×P

7

Therefore, instead of the chunks, the segments are communicated
by the processes in the reduce_scatter and allgather operations.

The execution time of the algorithm is estimated as follows:

Trs(P ,m,ms) = (P + m

ms × P
− 2) × (αrs + βrs · ms + γ · ms)

+ (P − 1) · (αrs + βrs · m

P
)

(7)

The Ring without segmentation allreduce algorithm is a special
case of this algorithm where ns = 1, ms = m

P .

4.1.6. Rabenseifner
The Rabenseifner algorithm involves a reduce_scatter opera-

tion followed by an allgather operation [35]. The reduce_scat-
ter operation is implemented using a recursive data halving and
rank-distance doubling algorithm. The allgather operation is im-
plemented using recursive data doubling and rank-distance halving
algorithm. The cost for the case where P is a power of two is de-
tailed in the supplemental, Section 4. The algorithm’s execution
time is estimated as follows:

Trab(P ,m) = 2 · log2 P · αrab + 2 · P − 1

P
· βrab · m

+ P − 1

P
· γ · m

(8)

4.2. SUARA2: description of the algorithm

In this section, we present SUARA2, a two-step SUARA im-
plemented on the top of the Open MPI set of allreduce algo-
rithms. The inputs to SUARA2 include the six standard arguments
to the MPI_Allreduce function, the starting address of send buffer,
sendbu f ; number of elements in send buffer, count; the MPI data
type of elements of send buffer, datatype; the MPI operation, op;
and the MPI communicator, comm. The other input parameters are
the message segment size, ms; the set of Open MPI allreduce algo-
rithms, A; the time of computation per byte, γ ; and a (α, β) pair
for each Open MPI allreduce algorithm (described in the previous
section). Each process contains a local vector of values (size equal
to m bytes) in the send buffer, sendbu f , input to SUARA2 for re-
duction. The number of available processes, P , is the size of the
input MPI communicator, comm.

SUARA2 comprises three stages. In the first stage, SUARA2 de-
termines the optimal 2D process grid arrangement of the set of P
processes, (Pr, Pc), P = Pr × Pc , and the optimal Open MPI allre-
duce algorithms to employ in the process rows and columns. The
second stage executes the horizontal sub-allreduce operations in
parallel in the Pr process rows. Finally, the third stage executes
the vertical sub-allreduce operations in parallel in the Pc process
columns, thereby completing the allreduce operation.

Fig. 5 illustrates the execution of SUARA2 for an example where
P = 9 and A signifying the set of Open MPI allreduce algorithms.
In the first stage, SUARA2 determines the optimal 2D process grid

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Fig. 5. Execution of SUARA2 for the inputs P = 9, A, and m. Blue circles signify processes with ranks inside the circle. In the first stage, it determines the optimal 2D process
grid arrangement (3, 3) and the optimal allreduce algorithms to employ in the process rows and columns. The second and third stages of SUARA2 involve execution of Ring
with segmentation algorithms in the process rows and columns. The red rings represent the execution of Ring with segmentation algorithms. The sub-allreduce operations in
the process rows occur in parallel followed by parallel sub-allreduce operations in the process columns.
arrangement ((Pr, Pc) = (3, 3)) and the optimal allreduce algo-
rithms in the process rows and columns (Ring with segmentation,
Ring with segmentation). The second and third stages involve the
execution of Ring with segmentation allreduce algorithms in process
rows and columns. The whole allreduce operation is completed af-
ter the execution of all three stages.

Let us consider the first stage of the SUARA2 execution. One
approach to determine the optimal 2D process grid arrangement
is an exhaustive search that estimates the execution times of all
the possible 2D process grid arrangements, (Pr, Pc), P = Pr × Pc ,
for a given set of P processes. For each 2D process grid arrange-
ment, (Pr, Pc), the sums of the execution times are estimated for
all possible combinations of allreduce algorithms in the process
rows and all possible combinations of allreduce algorithms in the
process columns. Then, the allreduce algorithmic combinations in
the process rows and columns that yield the minimum sum are
selected for this process grid arrangement. Finally, the 2D process
grid arrangement that results in a minimum estimated execution
time is output from this stage. However, the exhaustive approach
is infeasible due to the exponential number of allreduce algorith-
mic combinations.

Fortunately, we do not have to consider all the possible combi-
nations. Indeed, suppose algorithm a is estimated to be the fastest
allreduce algorithm for one row of Pc processes. In that case, it
will also be fastest for all other rows as the estimated time of any
allreduce algorithm given by formulae (1)–(8) only depends on the
number of processes in the row, the message size, and possibly
the segment size, and the values of these parameters are the same
for all rows. Therefore, using algorithm a in all rows will give us
the fastest parallel execution of row-wise allreduce sub-operations.
Any other combination will be slower as the time of parallel execu-
tion equals the time of the slowest algorithm in the combination.
Similarly, using the same, fastest, algorithm in all columns will
give us the fastest parallel execution of column-wise allreduce sub-
operations.

Thus, in its first stage, SUARA2 must only examine allreduce
combinations given by a pair of identifiers, (ar, ac), represent-
ing the allreduce algorithms employed in the process rows and
columns, respectively. The identifiers, ar and ac , take values in the
set, {linear, nono, rd, rnos, rs, rab}, which are the short forms for
the Open MPI allreduce algorithms. Hence, there will be only 36
combinations to examine, six with the same algorithm in process
rows and columns and thirty with different algorithms.

Next, for each of the thirty-six allreduce combinations we de-
rive a cost analytical model, which allows us to calculate the 2D
grid arrangement of processes, (Pr, Pc), optimal for this combi-
8

nation, as well as the execution time of the combined allreduce
operation using this arrangement and algorithmic combination.

We proceed as follows. For given P , Pc , m, ms , ar , and ac , the
execution time of the combined allreduce operation can be ex-
pressed as follows:

T SU AR A2(P , Pc,m,ms,ar,ac) = Tar (Pc,m,ms) + Tac (
P

Pc
,m,ms)

(9)

Here, Tar gives the cost of the allreduce operations in the pro-
cess rows using the allreduce algorithm given by the identifier, ar .
Tac represents the cost of the allreduce operations in the process
columns employing the allreduce algorithm given by the identifier,
ac .

For given P , m, ms , ar , and ac , T SU AR A2 is a discrete function of
Pc with the domain, Pc ∈ {1, 2, · · · , P }. We analyze the extension
of this function in the real domain, Pc ∈ [1, P], represented by the
same analytical expression for T SU AR A2.

By its definition, the extended T SU AR A2 has the following prop-
erties:

• Since the input parameters, P , m, ms, γ and the (α, β) pairs,
are positive, T SU AR A2 is a positive function of Pc , T SU AR A2 :
[1, P] →R>0.

• T SU AR A2 is a sum of logarithmic, linear, and reciprocal func-
tions of Pc . Therefore, it is continuous and has continuous first
and second derivatives in the interval, [1, P].

Consider the values of T SU AR A2 at the endpoints, {1, P }.
T SU AR A2(P , 1, m, ms, ar, ac) gives the estimated execution time of
the ac allreduce algorithm employing a linear arrangement of
P processes. T SU AR A2(P , P , m, ms, ar, ac) gives the estimated ex-
ecution time of the ar allreduce algorithm employing a linear
arrangement of P processes. Therefore, if ar = ac , then T SU AR A2(P ,

1, m, ms, ar, ac) and T SU AR A2(P , P , m, ms, ar, ac) are equal.
If message segmentation is not employed, then m is equal to ms

and T SU AR A2(P , Pc, m, ms, ar, ac) is equal to T SU AR A2(P , Pc, m, m,

ar, ac).
To derive the formula calculating the optimal (Pr, Pc) for a

given (ar, ac), we analyze T SU AR A2 using the traditional calculus
approach to determine the optimal value of Pc that minimizes the
function. The main steps of this analysis follow:

• If T SU AR A2 is a constant function of Pc , then the estimated ex-
ecution time is the same for all process arrangements. There-

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
fore, we select one of the process arrangements, (Pr, Pc) =
(1, P). The analytical formula returns (1, P), and the estimated
execution time, T SU AR A2(P , P , m, ms, ar, ac).

• To determine the stationary point (P∗
c) of T SU AR A2 in the in-

terval [1, P], we obtain its first and second derivatives as fol-
lows:

∂T SU AR A2

∂ Pc
= ∂Tar (Pc,m,ms)

∂ Pc
+ ∂Tac (

P
Pc

,m,ms)

∂ Pc

∂2T SU AR A2

∂ P 2
c

= ∂2Tar (Pc,m,ms)

∂ P 2
c

+ ∂2Tac (
P
Pc

,m,ms)

∂ P 2
c

(10)

• We solve the equation ∂T SU AR A2
∂ Pc

= 0 to determine the station-
ary point (P∗

c).

• We found that the sign of the second derivative ∂2 T SU AR A2
∂ P 2

c
does

not depend on Pc but only depends on the input parameters,
(P , m, ms, γ , αar , βar , αac , βac). We illustrate this for the vari-
ous allreduce combinations that we analyze below. Therefore,
∂2 T SU AR A2

∂ P 2
c

is either positive or negative or zero in the interval
[1, P].

• If ∂2 T SU AR A2
∂ P 2

c
> 0, then P∗

c minimizes T SU AR A2. We then con-

sider two integer approximations of P∗
c , �P∗

c 	 and
P∗
c �

(the floor and ceiling). If T SU AR A2(P , �P∗
c 	, m, ms, ar, ac) <

T SU AR A2(P ,
P∗
c �, m, ms, ar, ac), then (Pr, Pc) = (P

�P∗
c 	 , �P∗

c)
and T SU AR A2(P , �P∗

c 	, m, ms, ar, ac). Otherwise, (Pr, Pc) =
(P

P∗
c � ,
P∗

c �) and T SU AR A2(P ,
P∗
c �, m, ms, ar, ac).

• If ∂2 T SU AR A2
∂ P 2

c
≤ 0, the value of Pc that minimizes T SU AR A2 is one

of or both the endpoints, {1, P }. Therefore, the optimal process
grid arrangement is a linear arrangement of P processes.
– If the allreduce algorithms employed in the process rows

(ar) and columns (ac) are the same (ar = ac), then either of
the endpoints minimize T SU AR A2. Therefore, we select one
of the process arrangements, (Pr , Pc) = (1, P). The analytical
formula returns (1, P), and the estimated execution time,
T SU AR A2(P , P , m, ms, ar, ac).

– If the allreduce algorithms employed in the process rows
(ar) and columns (ac) are different (ar = ac), then the es-
timated execution times for the two endpoints are con-
sidered. If T SU AR A2(P , 1, m, ms, ar, ac) < T SU AR A2(P , P , m,

ms, ar, ac), then the analytical formula returns (P , 1) and
T SU AR A2(P , 1, m, ms, ar, ac). Otherwise, it returns (1, P) and
T SU AR A2(P , P , m, ms, ar, ac).

We demonstrate how the method works using one particular
allreduce combination, {Ring with segmentation, Ring with segmen-
tation}. We chose this combination for illustration because it ap-
peared optimal in our experimental setup. In the supplemental file,
we present derivations for six other allreduce combinations.

4.2.1. Ring with segmentation, ring with segmentation

T SU AR A2(P , Pc,m,ms, rs, rs) = Trs(Pc,m,ms) + Trs(
P

Pc
,m,ms)

= (Pc + m

ms · P
− 2) · (αrs + βrs · ms + γ · ms)

+ (Pc − 1) · (αrs + βrs · m

Pc
)

+ (
P

Pc
+ m

ms · P
− 2) · (αrs + βrs · ms + γ · ms)

+ (P/Pc − 1) · (αrs + βrs · m · Pc
)

∂

∂

∂

a
e
rs
ra

e
O

o
m
(

th
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
ru
ti
o

4

o
th
th
d
p
o
d
S

n
ti
N
G

ti
ra
S

o
g
e
A

P

9

T SU AR A2

∂ Pc
= (1 − P

P 2
c
) · (2 · αrs + βrs · ms + γ · ms − βrs · m

P
)

T SU AR A2

∂ Pc
= 0 =⇒ Pc = √

P

if (A1 = (2 · αrs + βrs · ms + γ · ms − βrs · m

P
) = 0)

2T SU AR A2

∂ P 2
c

= 2 · A1

P 3
c

(11)

Therefore, if A1 > 0, Pc = √
P minimizes T SU AR A2. The integer

pproximation (�√P	 or
√P�) that gives the least estimated ex-
cution time is then chosen. Therefore, if T SU AR A2(P , �√P	, m, m,

, rs) < T SU AR A2(P ,
√P�, m, m, rs, rs), the chosen process ar-
ngement will be (Pr, Pc) = (P

�√P	 , �
√

P), and the corresponding

stimated execution time will be T SU AR A2(P , �√P	, m, m, rs, rs).
therwise, it will be (Pr, Pc) = (P

√P� ,

√

P�) and T SU AR A2(P ,√
P�, m, m, rs, rs).
If A1 ≤ 0, the value of Pc that minimizes T SU AR A2 is either

f the endpoints, {1, P }. Therefore, the chosen process arrange-
ent and the corresponding estimated execution time will be

Pr, Pc) = (1, P) and T SU AR A2(P , P , m, m, rs, rs) respectively. Thus,
e derived analytical formula will be as follows:

if A1 > 0

if T SU AR A2(P , �√P	,m,m, rs, rs)

< T SU AR A2(P ,
√P�,m,m, rs, rs)

(Pr, Pc) = (P
�√P	 , �

√
P), T SU AR A2(P , �√P	,m,m, rs, rs)

else (Pr, Pc) = (P

√P� ,

√
P�), T SU AR A2(P ,
√P�,m,m, rs, rs)

else (Pr, Pc) = (1, P), T SU AR A2(P , P ,m,m, rs, rs)

(12)

In total, thirty-six analytical formulae for all algorithmic com-
inations are derived this way. These formulae are then used at
ntime for efficient selection of the optimal algorithmic combina-

on and the optimal 2D process arrangement corresponding to the
ptimal algorithmic combination.

.3. SUARA2: pseudocode

Algorithm 1 illustrates the execution of the three main stages
f SUARA2. The first six parameters are the standard parameters of
e MPI_Allreduce function. The input parameter, Hαβ , represents
e set of Hockney model (α, β) pairs for each Open MPI allre-

uce algorithm in the set of allreduce algorithms, A. The output
arameters are the starting address of receive buffer, recvbu f ; the
ptimal 2D process grid arrangement, (Pr, Pc); the optimal allre-
uce combination, (ar, ac), the optimal estimated executed time of
UARA2, T SU AR A2, and the MPI return code, status.

Lines 3–6 contain the main stage 1 steps of SUARA2. First, the
umber of available processes, P , is obtained using the MPI func-
on, M P I_Comm_size, using the input MPI communicator, comm.
ext, the message size m is calculated using the user function,
etMessageSize, based on the inputs, count and datatype.

The user function, SU AR A2_ f ind_optimals, determines the op-
mal allreduce combination, (ar , ac), the optimal 2D process ar-
ngement, (Pr, Pc), and the optimal estimated execution time of

UARA2, T SU AR A2, given the inputs, P , m, ms, A, Hαβ and γ .
The Algorithm 2 depicts the main steps of SU AR A2_ f ind_

ptimals. For each (ar, ac) combination, the optimal 2D process
rid arrangement (Pr, Pc) and the optimal estimated SUARA2
xecution time, T , are obtained using the analytical formula,
F ormula. The manual derivation of the analytical formula for

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
Algorithm 1 Pseudocode illustrating the three main stages of
SUARA2.

1: procedure SUARA2(sendbu f , recvbu f , count, datatype, op, comm,
ms, A, Hαβ , γ , Pr , Pc , ar , ac , T SU AR A2, status)

Input:
Starting address of send buffer, sendbu f
Number of elements in send buffer, count
MPI Data type of elements of send buffer, datatype
MPI Operation, op
MPI communicator, comm
Message segment size, ms

Set of Open MPI allreduce algorithms, A = {linear, · · · , rab}
Set of (α, β) pairs for the allreduce algorithms, Hαβ = {(αlinear , βlinear), · · · ,

(αrab, βrab)}
Time of computation per byte, γ

Output:
Starting address of receive buffer, recvbu f
Optimal 2D process grid arrangement, (Propt , Pcopt)

Optimal allreduce combination, (aropt , acopt)

Optimal estimated executed time of SUARA2, T SU AR A2

Return code, status

2: /* First stage of SUARA2 */
3: Iam ← M P I_Comm_rank(comm)

4: P ← M P I_Comm_size(comm)

5: m ← GetMessageSize(count, datatype)
6: (Pr , Pc , ar , ac, T SU AR A2) ← SU AR A2_ f ind_optimals(P , m, ms, A, Hαβ , γ)

7: /* Second stage of SUARA2 */
8: (myr, myc) ← Get RowColRanks(Iam, P , Pr , Pc)

9: Set Allreduce AlgorithmParams(ar , ms)

10: status ← M P I_Comm_split(comm, myr, myc, rowcomm)

11: status ← M P I_Allreduce(sendbu f , count, datatype, op, rowcomm)

12: status ← M P I_Comm_ f ree(rowcomm)

13: /* Final stage of SUARA2 */
14: SetM P I AllreduceRuntimeParams(ac , ms)

15: status ← M P I_Comm_split(comm, myc, myr, colcomm)

16: status ← M P I_Allreduce(sendbu f , count, datatype, op, colcomm)

17: status ← M P I_Comm_ f ree(colcomm)

18: return (Pr , Pc , ar , ac , T SU AR A2, status)
19: end procedure

an allreduce combination is described in detail in the previous
section. Thus, the function, SU AR A2_ f ind_optimals, determines
and returns the best allreduce combination, (aropt , acopt), and the
optimal 2D process arrangement, (Propt , Pcopt), corresponding to
(aropt, acopt) that results in minimal estimated SUARA2 execution
time, T SU AR A2.

Lines 8–12 present the second stage steps of SUARA2. In
Line 8, each process obtains its coordinates, (myr, myc), in the
2D process grid arrangement, (Pr, Pc), using the user
function, Get RowColRanks. Line 9 invokes the user function,
SetM P I AllreduceRuntime Params, that calls the MPI library imple-
mentation-specific runtime functions to set the allreduce algorithm
ar to be employed during the execution of M P I_Allreduce and
message segment size to use if the allreduce algorithm is Ring
with segmentation. The row communicators employed for the hori-
zontal sub-allreduce operations are obtained using the MPI library
function, M P I_Comm_split , in Line 10. There will be Pr row sub-
communicators created in Line 10 because Pr different colours,
myr, are passed in the second argument to M P I_Comm_split . At
Line 11, Pr horizontal sub-allreduce operations employing the ar

allreduce algorithm happen in parallel in the process rows using
the Pr row subcommunicators.

Lines 14–17 show the final stage steps of SUARA2, com-
pleting the whole allreduce operation. First, the user function,
SetM P I AllreduceRuntime Params, sets the allreduce algorithm
ac and message segment size to use during the execution of
M P I_Allreduce (Line 14). Next, the column communicators em-
ployed for the vertical sub-allreduce operations are created us-
ing the MPI library function, M P I_Comm_split , in Line 15. There
will be Pc column subcommunicators created in Line 17 since
Pc different colours, myc, are passed in the second argument to
10
Algorithm 2 Algorithm to determine the optimal allreduce combi-
nation, 2D process arrangement, and the estimated execution time
of SUARA2.

1: procedure SUARA2_find_optimals(P , m, ms, A, Hαβ , γ , Propt , Pcopt , aropt ,
acopt , T SU AR A2)

Input:
Number of processes, P
Message size, m
Message segment size, ms

Set of Open MPI allreduce algorithms, A = {linear, · · · , rab}
Set of (α, β) pairs for the allreduce algorithms, Hαβ = {(αlinear , βlinear), · · · ,

(αrab, βrab)}
Time of computation per byte, γ

Output:
Optimal 2D process grid arrangement, (Propt , Pcopt)

Optimal allreduce combination, (aropt , acopt)

Optimal estimated executed time of SUARA2, T SU AR A2

2: T SU AR A2 ← ∞
3: for ar ∈ A do
4: for ac ∈ A do
5: (Pr , Pc , T) ← A F ormula(P , m, ms, ar , ac, Hαβ , γ)

6: if (T < T SU AR A2) then
7: Propt ← Pr ; Pcopt ← Pc

8: aropt ← ar ; acopt ← ac

9: T SU AR A2 ← T
10: end if
11: end for
12: end for
13: return (Propt , Pcopt , aropt , acopt , T SU AR A2)

14: end procedure

M P I_Comm_split . Finally, at Line 18, Pc vertical sub-allreduce op-
erations employing the ac allreduce algorithm occur in parallel
in the process columns using the Pc column subcommunicators
thereby completing the allreduce operation.

4.4. Accuracy of estimation using theoretical models

Castelló et al. [8] highlight the factors that negatively affect the
accuracy of estimation of execution times of Open MPI allreduce
algorithms using theoretical models.

We make sure we minimize the negative impact on the accu-
racy of selection of the optimal allreduce combination in SUARA2
using theoretical models by following the steps below:

• Deriving analytical models for the different Open MPI allre-
duce algorithms from the Open MPI code implementing the
algorithms rather than from high-level mathematical defini-
tions. The analytical models consider the algorithms’ proper-
ties, which significantly impact their performance and can only
be extracted from the implementation code. Such properties
include blocking or non-blocking, rendezvous or eager proto-
col, and segmentation/pipelining.

• Employing a different pair (αa, βa) for a collective algorithm,
a, and accurately estimating each pair using careful design of
the communication experiments. Nuriyev et al. [30,31] found
that using different (αa, βa) for a collective algorithm, a, im-
proves the accuracy of selection of the best performing col-
lective algorithm from the set of native MPI collective algo-
rithms for a collective operation. The insight behind using
algorithmic-specific (αa, βa) pairs is that the estimated val-
ues of the αa and βa capture, not just network characteristics
but also algorithm-specific traits. More specifically, a specific
communication experiment is designed for each collective al-
gorithm so that the algorithm itself would be involved in the
execution of the experiment. Moreover, the execution time of
this experiment must be dominated by the execution time of
this collective algorithm.

• Determining the optimal 2D process arrangement using the
traditional calculus approach for each allreduce combination

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
employing different native allreduce algorithms in process
rows and columns. SUARA2 then selects the optimal allreduce
combination out of the thirty-six allreduce combinations us-
ing the optimal 2D process arrangement determined for each
allreduce combination and employs this optimal combination
for the execution of the MPI allreduce collective operation.

• Nuriyev et al. [31] demonstrate that the basic Hockney model
is inaccurate and needs to be revised for one-process-per-core
application configuration on multicore clusters since it does
not consider network congestion (contention). Therefore, we
focus on only one-process-per-node application configuration
in this work. Based on experiments on our experimental plat-
form (Shaheen-II Cray CX40), we observed that the basic Hock-
ney model, by following the above steps, is accurate for this
application configuration.

4.5. SUARA2: runtime efficiency, implementation specifics, and
portability

The runtime efficiency of SUARA2 is determined by the effi-
ciency of the SU AR A2_ f ind_optimals function (Algorithm 1, Line
6), which selects the optimal algorithmic combination, the creation
of the row and column subcommunicators (Lines 10 and 15), and
the freeing of row and column subcommunicators (Lines 12 and
17). The SU AR A2_ f ind_optimals function is very efficient since
it uses only thirty-six analytical formulae to select the optimal
algorithmic combination where each formula evaluates a simple
condition and an analytical expression. Furthermore, we found that
the creation of the row and column subcommunicators using the
MPI library function, M P I_Comm_split , and the freeing of the sub-
communicators using M P I_Comm_ f ree are not expensive on our
experimental platform, a Cray XC40 supercomputer, even for large
P . The execution times of SU AR A2_ f ind_optimals observed in our
experiments are in microseconds compared to the execution times
of SUARA2, which range from milliseconds to a few seconds for
large P .

The message segment size, ms , input to SUARA2 is typically
obtained from the set of recommended values from practice for
Open MPI. For example, the default value of the MCA parameter,
btl_sm_max_send_size, is known to give good performance. The set
of Open MPI algorithms, A, is determined by querying the Open
MPI Modular Component Architecture (MCA) tuning interface func-
tions. The Hockney model pairs, {(αlinear, βlinear), · · · , (αrab, βrab)},
for the allreduce algorithms in A and the time of computation per
byte, γ , are determined offline and input to SUARA2.

The function, SetM P I AllreduceRuntime Params, employs the
M P I_T interface functions to set the allreduce algorithm and seg-
ment size at the runtime. M P I_T interface functions are intro-
duced in MPI 3.0 that allow getting and setting performance and
control variables exposed by an MPI implementation. The imple-
mentation of SetM P I AllreduceRuntime Params is provided in the
supplemental.

This section described the design and implementation of
SUARA2 on top of the Open MPI set of allreduce algorithms. How-
ever, this process is highly portable to other open-source MPI
implementations that provide a set of allreduce algorithms whose
analytical models are either published or can be derived from their
sources.

4.6. Theoretical speedup of SUARA2 over the best open MPI native
allreduce algorithm

We analyse the theoretical speedup of SUARA2 over the best
Open MPI native allreduce algorithm.

The best Open MPI native allreduce algorithm is specific to a
platform and depends on many parameters, that include the num-
11
ber of processes executing the algorithm, P , the message size, m,
the message segment size, ms , the time of computation per byte,
γ , and the (α, β) pair that is specific to an allreduce algorithm.
Based on our experiments, we find that this algorithm on our
experimental platform, a Cray XC40 supercomputer, is Ring with
segmentation algorithm for P > 64. We also observe that SUARA2
employs the allreduce combination, (rs, rs), that uses ring with seg-
mentation algorithm in the process rows and columns for P > 64.
SUARA2 uses the 2D process arrangement P√

P
× √

P , which is op-

timal for this allreduce combination.
Therefore, we illustrate the speedup for the case where the best

Open MPI native allreduce algorithm is Ring with segmentation al-
gorithm, and SUARA2 employs Ring with segmentation algorithm in
the process rows and columns and A1 > 0. The speedup is equal
to the ratio of the cost of the Open MPI algorithm executed by P
processes and the cost of SUARA2 employing the allreduce combi-
nation (rs, rs) and 2D process grid arrangement, P√

P
× √

P .

The cost of SUARA2 is

T SU AR A2(P ,
√

P ,m,ms, rs, rs)

= 2 · (αrs + βrs · ms + γ · ms) · (√P + m

ms · √P
− 2)

+ 2 · (√P − 1) · (αrs + βrs · m√
P

)

(13)

The cost of the Open MPI algorithm is,

T OpenM P I (P ,m,ms, rs)

= (αrs + βrs · ms + γ · ms) · (P + m

ms · P
− 2)

+ (P − 1) · (αrs + βrs · m

P
)

(14)

Expressing asymptotically for large P , the costs become

T SU AR A2(P ,
√

P ,m,ms, rs, rs) = 2(A2
√

P − A3√
P

+ A4)

= O(
√

P)

T OpenM P I (P ,m,ms, rs) = A2 P − A3

P
− A4

= O(P)

(15)

where A2 and A3 are expressions without P ,

A2 = 2 · αrs + βrs · ms + γ · ms

A3 = (αrs + γ · ms) · m

ms

A4 = (αrs + βrs · ms + γ · ms) · 2 + αrs − βrs · m

(16)

The asymptotic theoretical speedup of SUARA2 is,

T OpenM P I (P ,m,ms, rs)

T SU AR A2(P ,
√

P ,m,ms, rs, rs)
= O(P)

O(
√

P)

= O(
√

P)

(17)

5. Experimental results

We demonstrate the practical efficiency of SUARA2 in this sec-
tion. Our experimental platform is Shaheen II, a Cray XC40 su-
percomputer. The supercomputer has 6,174 compute nodes, and
each node comprises a dual-socket 16-core Intel Haswell proces-
sor running at 2.3 GHz. In addition, each node has 128 GB of
DDR4 memory running at 2300 MHz. Only 1024 nodes are used
for our experiments. The supercomputer does not contain graph-
ics processing units (GPUs). Therefore, only CPUs are used in our

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767

Table 2
Specification of Cray XC40 Shaheen-II.

Specification Description

Node Processor type: Intel Haswell, 2 CPU sockets per node, 16 processor cores per CPU, 2.3 GHz
No. of nodes 6174
Memory 128 GB per node, Over 790 TB total memory
Network Cray Aries interconnect with Dragonfly topology
Storage Sonexion 2000 Lustre, 17.6 PB of usable storage, Over 500 GB/s bandwidth
Table 3
The settings used for ResNet-50
training.

Parameter Value

Training batch size 32
Validation batch size 32
No. of Epochs 90
SGD momentum 0.9
Weight decay 0.00005

experiments. The compute nodes are connected via the Cray Aries
High Speed Network. Aries is a packet-switched interconnect with
a dragonfly topology comprising 18 groups of nodes where nodes
within a group are interconnected with a 2D all-to-all structure.
The data storage is a Lustre Parallel file system based on Cray
Sonexion 2000 with a storage capacity of 17.2 PB delivering around
500 GB/s of I/O throughput. The specification of the supercomputer
is shown in Table 2.

We got access to use Shaheen-II only for a short duration,
which limited the extent and scope of our experiments.

Horovod with Open MPI is used for training ResNet-50 DNN
using ImageNet ILSVRC2010 dataset [37]. The Horovod and Open
MPI versions are 0.19.2 and 4.0.3. The steps to install them on
Shaheen-II are given in the supplemental. Open MPI is configured
with “–with-slurm” option to interface with Slurm job scheduler.

To determine the execution times of SUARA2, Horovod is com-
piled by replacing the invocation to the native Open MPI allreduce
routine with our Open MPI wrapper containing the SUARA2 im-
plementation. The Slurm Open MPI script deployed to execute the
Horovod ResNet-50 MPI application is given in the supplemental.

The MPI application is multi-threaded that executes one process
per node employing a number of threads equal to the number of
cores in a node. While the basic Hockney model employed in the
design and implementation of SUARA2 is accurate for one-process-
per-node application configuration, it is inaccurate for one-process-
per-core application configuration on multicore clusters since it
does not consider network congestion (contention). Hence, the ba-
sic Hockney model must be either revised or a more accurate an-
alytical model must be employed [31]. Therefore, application config-
urations that include one-process-per-socket and one-process-per-core
are out of the scope of this work.

The settings employed for ResNet-50 training [17] are given in
Table 3. The ResNet-50 is a deep convolutional network containing
50 layers described in detail in the supplemental. The ImageNet
dataset is a large collection of images organized according to the
WordNet hierarchy. Each meaningful concept in WordNet, possibly
described by multiple words or word phrases, is called a “synonym
set” or “synset.” There are more than 100,000 synsets in WordNet,
and the majority of them are nouns (80,000+).

The ImageNet dataset used for the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) in this work contains 1,261,406
training images, 50,000 validation images, and 150,000 test im-
ages. There are 1000 synsets, and the number of images for each
synset ranges from 668 to 3047. The 50,000 validation images are
divided into 50 images per synset. The steps to install the Ima-
geNet dataset on Shaheen-II are presented in the supplemental.
Briefly, the file quota must be increased to allow the user to store
12
Table 4
The values of (α, β) experimen-
tally obtained on Shaheen-II for
the allreduce algorithm, ring with
segmentation. The parameter, γ ,
is the time of summation reduc-
tion computation per byte.

Parameter Value

αrs 1.5e-06
βrs 6.25e-11
γ 2e-10

around 1.2 million images. Then, a script in the dataset package
installation prepares the training and test directories for the im-
ages. Finally, as per the recommendation to use the dataset, some
images are patched using a script to avoid training and test errors.

The main stages of parallel training of a DNN are detailed in
supplemental, Section 2. All the processes call the MPI_Allreduce
collective routine during Step 3 of an epoch. Each process passes
a message, a vector of gradients of size m bytes, to the MPI_Allre-
duce collective routine to obtain the same global vector of average
gradients from the input vectors of gradients.

We follow a strict statistical methodology to ensure the exper-
imental results are reliable. For each data point, the experiment is
repeated until the sample mean lies in the 95% confidence inter-
val and a precision of 0.025 (2.5%) is achieved. For this purpose,
Student’s t-test is used, assuming that the individual observations
are independent and their population follows the normal distribu-
tion. The validity of these assumptions is verified by plotting the
distributions of observations and using Pearson’s Test.

The inputs to SUARA2 are the number of processes, P ; the
message size, m; the message segment size, ms; the time of com-
putation per byte, γ ; and a (α, β) pair for each Open MPI allreduce
algorithm. Each process contains a local vector of values (size equal
to m bytes) that is reduced. In our experiments, the message seg-
ment size, ms , is set to 8 KB, which is also commonly used in Open
MPI.

The parameter γ is algorithm-independent and is estimated
using separate communication experiments. The Hockney model
parameters αa and βa specific to each allreduce algorithm, a, and
used in the Open MPI analytical models of the allreduce collec-
tive algorithms are estimated using the best practices outlined in
[36], [30]. For each allreduce algorithm a, a separate communica-
tion experiment is designed so that the algorithm itself would be
involved in the execution of the experiment. Moreover, the execu-
tion time of this experiment is dominated by the execution time
of this allreduce algorithm. Therefore, each allreduce algorithm a
is executed by employing diverse sets of P and m and the ex-
ecution times are measured. Then, a system of linear equations
with αa and βa as unknowns is derived from these experiments.
Finally, linear regression is applied to find αa and βa . The values
of (αrs, βrs) obtained for the allreduce algorithm, ring with segmen-
tation, on Shaheen-II are given in Table 4.

For a given P , the optimal Open MPI allreduce algorithm in
the process rows and columns can vary depending on the message
size m. Fig. 6 shows the message sizes employed in MPI_Allreduce
during an epoch in the DNN training on ImageNet ILSVRC2010

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
Fig. 6. A timeline fragment during a training epoch showing the message sizes em-
ployed in MPI_Allreduce calls of ResNet-50 DNN on ImageNet ILSVRC2010 dataset
for P = 1024.

Fig. 7. Execution times per epoch of MPI_Allreduce for P = 512 employing ring with
segmentation algorithm in the process rows and columns during ResNet-50 training
using ImageNet. The x-axis shows the number of process columns (Pc) used in the
2D process grid arrangement, (P

Pc
, Pc). The optimal value of Pc is 32.

dataset. The message sizes range from 4 KB to 52 MB. For message
sizes less than or equal to 1 MB, the SUARA2 Open MPI wrapper
invokes the best native Open MPI algorithm to fulfil the allre-
duce operation. For message sizes greater than 1 MB, the SUARA2
Open MPI wrapper employs the Algorithm 1 described in the Sec-
tion, “SUARA2: Pseudocode.” The algorithm finds the optimal allre-
duce combination from thirty-six allreduce combinations using the
SU AR A2_ f ind_optimals function. An allreduce combination is a
pair of identifiers representing the allreduce algorithms employed
in the process rows and columns.

Fig. 7 shows for different (Pr, Pc) combinations of P = 512, the
execution time per epoch of SUARA2 during the ResNet-50 train-
ing. The allreduce algorithm employed in the process rows and the
columns is ring with segmentation. One can see that the optimal
process grid arrangement is (P

Pc
, Pc) where Pc is the best integer

approximation to
√

P confirming the results from our theoretical
analysis.

We check the execution time of SUARA2 with the actual exper-
imental times for the thirty-six different allreduce combinations
for representative sets of message sizes (m) and the number of
processes (P) on our experimental platform. We observe that the
optimal allreduce combination determined by SUARA2 is always
the same as the best allreduce combination out of the different
allreduce combinations that are experimentally evaluated. We also
observe through our experiments that SUARA2 outperforms allre-
duce algorithms employing 2-step decomposition (reduce_scatter,
allgather) and 3-step decomposition (reduce_scatter, allreduce, all-
gather) for a representative range of large message sizes and P
(P ≤ 1024) on the Shaheen-II supercomputer (Cray CX40).
13
Fig. 8. The speedup of SUARA2 over the native Open MPI allreduce routine against
the number of processes (P).

Fig. 8 shows the speedup of SUARA2 over the native Open
MPI allreduce routine for the values of P , {16, 32, 64, 128, 256,
512, 1024}. The speedup is the ratio of the execution time of
the native Open MPI allreduce routine divided by the execution
time of SUARA2. For P ≤ 64, the allreduce algorithm employed
in the process rows and columns is ring without segmentation. For
64 < P ≤ 1024, the allreduce algorithm employed in the process
rows and columns is ring with segmentation. In addition, the opti-
mal 2D process grid arrangement is (P

Pc
, Pc), where Pc is the best

integer approximation to
√

P . The average and maximum speedups
are 2x and 2.65x. One can observe that the speedup graph dis-
plays the trend that asymptotically (for large P) approaches the
behaviour of

√
P validating our theoretical analysis.

We observe that the optimal allreduce combination found by
SUARA2 has the same allreduce algorithm in the process rows
and columns in all our experiments employing message sizes,
m ∈ {4 KB, ..., 52 MB}, and P ∈ {1, ..., 1024}. However, in theory,
the optimal allreduce algorithms employed in the process rows
and columns can be different.

The maximum reduction of training times of ResNet-50 DNN
on the ImageNet ILSVRC2010 dataset is 9% for P = 1024 processes.
This experimental finding was the best we could accomplish given
the limited access and duration of our experiments on Shaheen-II,
which narrowed their extent and scope.

6. Conclusion

Deep neural networks (DNNs) have fuelled impressive inno-
vations in computer vision, speech recognition, natural language
processing, bioinformatics, drug design, medical image analysis,
and climate science. However, accelerating the training of DNNs is
a formidable challenge that is overcome by parallelization strate-
gies. The efficiency of parallel deep learning packages employing
synchronous stochastic gradient descent relies crucially on the per-
formance of MPI allreduce collective communication operation.

MPI implementations provide many algorithms for the allre-
duce collective routine that can be selected using four approaches,
exhaustive experimentation, empirical automatic selection, imple-
mentation-independent analytical performance modelling, and
implementation-aware analytical performance modelling com-
bined with accurate model parameter estimation. State-of-the-
art platform-independent methods for performance optimization
of the allreduce collective communication employ either func-
tional decomposition of the global allreduce operation into sub-
operations that are not allreduce operations or message decompo-
sition/segmentation.

In this work, we proposed SUARA, a novel scalable universal
allreduce meta-algorithm comprising L serial steps executed by P
MPI processes. At each step, SUARA partitions the set of processes

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
into subsets that execute optimally selected library algorithms to
solve sub-allreduce problems on these subsets in parallel to ac-
complish the whole allreduce operation after completing all the L
steps.

Therefore, SUARA is a platform-independent multi-step allre-
duce meta-algorithm employing process decomposition to opti-
mize the global allreduce operation using native allreduce algo-
rithms as sub-operations. Thus, it differs from the state-of-the-art
platform-independent allreduce algorithms in two respects. First, it
is based on process decomposition, not functional or message de-
composition. Second, it only employs sub-allreduce operations that
execute optimally selected native allreduce algorithms.

We proved that the processes executing SUARA must naturally
form a L-dimensional rectangular arrangement for maximum par-
allelism and to ensure the correctness of the allreduce operation.

We then designed, theoretically studied and implemented a
two-step SUARA called SUARA2 on top of the Open MPI library.
We use the traditional calculus approach to determine the opti-
mal 2D process arrangement for each allreduce combination em-
ploying different native allreduce algorithms in process rows and
columns. SUARA2 then selects the optimal allreduce combination
out of the thirty-six allreduce combinations using the optimal 2D
process arrangement determined for each allreduce combination
and employs this optimal combination for the execution of the MPI
allreduce collective operation.

We proved that SUARA2 exhibits a theoretical asymptotic
speedup O(

√
P) over the best Open MPI allreduce algorithm. Fur-

thermore, we demonstrated the practical efficiency of SUARA2 by
accelerating ResNet-50 deep neural network training by 9% on the
ImageNet dataset on Shaheen-II supercomputer employing 1024
nodes. SUARA2 exhibited an average speedup of over 2x over the
native Open MPI allreduce routine (the maximum being 2.65x).

In our future work, we will pursue two research directions.
The first research direction will look into the design and imple-
mentation of SUARA, comprising more than two steps. The second
research direction will focus on the efficiency of the optimized
routine for training ResNet-50 DNN on GPUs employing the NCCL
communication library.

Declaration of competing interest

Alexey L. Lastovetsky reports financial support was provided
by Science Foundation Ireland. Ravi Reddy Manumachu reports fi-
nancial support was provided by Sustainable Energy Authority of
Ireland.

Data availability

Data will be made available on request.

Acknowledgment

For computer time, this research used the resources of the Su-
percomputing Laboratory at King Abdullah University of Science &
Technology (KAUST) in Thuwal, Saudi Arabia.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .jpdc .2023 .104767.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, Ten-
sorFlow: a system for large-scale machine learning, in: Proceedings of the 12th
14
USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
USENIX Association, 2016, pp. 265–283.

[2] G. Almási, P. Heidelberger, C.J. Archer, X. Martorell, C.C. Erway, J.E. Moreira, B.
Steinmacher-Burow, Y. Zheng, Optimization of MPI collective communication
on BlueGene/L systems, in: Proceedings of the 19th Annual International Con-
ference on Supercomputing, ICS’05, ACM, 2005, pp. 253–262.

[3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M.
Chrzanowski, A. Coates, G. Diamos, K. Ding, N. Du, E. Elsen, J. Engel, W. Fang,
L. Fan, C. Fougner, L. Gao, C. Gong, A. Hannun, T. Han, L.V. Johannes, B. Jiang,
C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang,
A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V. Rao, S.
Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang, L. Tang, C.
Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao,
W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, Z. Zhu, Deep speech 2: end-to-
end speech recognition in English and Mandarin, in: Proceedings of the 33rd
International Conference on International Conference on Machine Learning –
vol. 48, ICML’16, 2016, pp. 173–182, JMLR .org.

[4] M. Bayatpour, J. Maqbool Hashmi, S. Chakraborty, H. Subramoni, P. Kousha,
D.K. Panda, SALaR: scalable and adaptive designs for large message reduc-
tion collectives, in: Proceedings of the IEEE International Conference on Cluster
Computing, 2018, pp. 12–23.

[5] T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed deep learning: an
in-depth concurrency analysis, ACM Comput. Surv. 52 (4) (Aug. 2019).

[6] M. Bojarski, D.D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zieba, End to end learning
for self-driving cars, CoRR, arXiv:1604 .07316 [abs], 2016.

[7] A. Castelló, E.S. Quintana-Ortí, J. Duato, Accelerating distributed deep neural
network training with pipelined MPI allreduce, Clust. Comput. 24 (2021) 1–17.

[8] A. Castelló, M. Catalán, M.F. Dolz, E.S. Quintana-Ortí, J. Duato, Analyzing the
impact of the MPI allreduce in distributed training of convolutional neural net-
works, Computing 105 (5) (2023) 1101–1119.

[9] E.W. Chan, M.F. Heimlich, A. Purkayastha, R.A. Van De Geijn, On optimizing
collective communication, in: Proceedings of the 2004 IEEE International Con-
ference on Cluster Computing, IEEE, 2004, pp. 145–155.

[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z.
Zhang, MXNet: a flexible and efficient machine learning library for heteroge-
neous distributed systems, CoRR, arXiv:1512 .01274 [abs], 2015.

[11] T. Chilimbi, Y. Suzue, J. Apacible, K. Kalyanaraman, Project adam: building an
efficient and scalable deep learning training system, in: Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI’14,
USENIX Association, 2014, pp. 571–582.

[12] D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection
in breast cancer histology images with deep neural networks, in: K. Mori,
I. Sakuma, Y. Sato, C. Barillot, N. Navab (Eds.), Medical Image Computing
and Computer-Assisted Intervention, MICCAI 2013, Springer Berlin Heidelberg,
2013, pp. 411–418.

[13] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natu-
ral language processing (almost) from scratch, J. Mach. Learn. Res. 12 (2011)
2493–2537.

[14] E.D. Coninck, S. Bohez, S. Leroux, T. Verbelen, B. Vankeirsbilck, P. Simoens, B.
Dhoedt, DIANNE: a modular framework for designing, training and deploy-
ing deep neural networks on heterogeneous distributed infrastructure, J. Syst.
Softw. 141 (2018) 52–65.

[15] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, A.Y. Ng, Large scale distributed deep
networks, in: Proceedings of the 25th International Conference on Neural In-
formation Processing Systems – vol. 1, NIPS’12, Curran Associates Inc., 2012,
pp. 1223–1231.

[16] Facebook, Gloo: collective communications library, https://github .com /
facebookincubator /gloo .git, 2020.

[17] P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tul-
loch, Y. Jia, K. He, Accurate, large minibatch SGD: training imagenet in 1 hour,
CoRR, arXiv:1706 .02677 [abs], 2017.

[18] R.L. Graham, T.S. Woodall, J.M. Squyres, Open MPI: a flexible high performance
MPI, in: Proceedings of the 6th International Conference on Parallel Processing
and Applied Mathematics, PPAM’05, Springer-Verlag, 2005, pp. 228–239.

[19] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable imple-
mentation of the MPI message passing interface standard, Parallel Comput.
22 (6) (1996) 789–828.

[20] R. Gupta, P. Balaji, D. Panda, J. Nieplocha, Efficient collective operations using
remote memory operations on VIA-based clusters, in: Proceedings of the 17th
International Parallel and Distributed Processing Symposium, IEEE Computer
Society, 2003, 9 pp.

[21] Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, P.B. Gibbons, G.A. Gibson, G.R. Ganger,
E.P. Xing, More effective distributed ML via a stale synchronous parallel pa-
rameter server, in: Proceedings of the 26th International Conference on Neural
Information Processing Systems – vol. 1, NIPS’13, Curran Associates Inc., 2013,
pp. 1223–1231.

[22] R.W. Hockney, The communication challenge for MPP: Intel Paragon and Meiko
CS-2, Parallel Comput. 20 (3) (1994) 389–398.

https://doi.org/10.1016/j.jpdc.2023.104767
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2C39BC19B761AC36DC046245D1D47FE6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A3D6BDB805EC763B0DD8BA230E07DD4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A3D6BDB805EC763B0DD8BA230E07DD4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A3D6BDB805EC763B0DD8BA230E07DD4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A3D6BDB805EC763B0DD8BA230E07DD4s1
https://JMLR.org
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6798BE0F303D8A720533E78BFCC14831s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6798BE0F303D8A720533E78BFCC14831s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6798BE0F303D8A720533E78BFCC14831s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6798BE0F303D8A720533E78BFCC14831s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibE15424F67F383EE5734D590F3A529D87s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibE15424F67F383EE5734D590F3A529D87s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0F41EBFF349AE2E5E15DA3DB0EC8B73Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0F41EBFF349AE2E5E15DA3DB0EC8B73Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0F41EBFF349AE2E5E15DA3DB0EC8B73Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAFAA919E8C88FD7AAA89C52DFC47ABB8s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAFAA919E8C88FD7AAA89C52DFC47ABB8s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib73D0FDE585CB4C00FA4C3B243056570Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib73D0FDE585CB4C00FA4C3B243056570Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib73D0FDE585CB4C00FA4C3B243056570Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib8886462AF0908E9432DCF7ADC41E6944s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib8886462AF0908E9432DCF7ADC41E6944s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib8886462AF0908E9432DCF7ADC41E6944s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCFE70B93FCDBC2C3532DBC6B654B16D2s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCFE70B93FCDBC2C3532DBC6B654B16D2s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCFE70B93FCDBC2C3532DBC6B654B16D2s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib04128EF316AC9C2F1E9A89EC0ED1D4FCs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib04128EF316AC9C2F1E9A89EC0ED1D4FCs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib04128EF316AC9C2F1E9A89EC0ED1D4FCs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib04128EF316AC9C2F1E9A89EC0ED1D4FCs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibB00EAEF2362FEA9C9EA533AFFCD5E0B5s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibB00EAEF2362FEA9C9EA533AFFCD5E0B5s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibB00EAEF2362FEA9C9EA533AFFCD5E0B5s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibB00EAEF2362FEA9C9EA533AFFCD5E0B5s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibB00EAEF2362FEA9C9EA533AFFCD5E0B5s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1E92299B2CD9270374CF817F781F6EFBs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1E92299B2CD9270374CF817F781F6EFBs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1E92299B2CD9270374CF817F781F6EFBs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib30CEAC22009CE20254D3B7590357759Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib30CEAC22009CE20254D3B7590357759Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib30CEAC22009CE20254D3B7590357759Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib30CEAC22009CE20254D3B7590357759Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibD07812666A7B3387DD9A9B59D0123B5Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibD07812666A7B3387DD9A9B59D0123B5Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibD07812666A7B3387DD9A9B59D0123B5Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibD07812666A7B3387DD9A9B59D0123B5Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibD07812666A7B3387DD9A9B59D0123B5Cs1
https://github.com/facebookincubator/gloo.git
https://github.com/facebookincubator/gloo.git
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7EE9B39D8213F31228A2A2469E19439Fs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7EE9B39D8213F31228A2A2469E19439Fs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7EE9B39D8213F31228A2A2469E19439Fs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3758619984B8964C226BD794BAF51DE4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3758619984B8964C226BD794BAF51DE4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3758619984B8964C226BD794BAF51DE4s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEBD5C3F667B5777B5DB9CB3C03CB52F0s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEBD5C3F667B5777B5DB9CB3C03CB52F0s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEBD5C3F667B5777B5DB9CB3C03CB52F0s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib89FBC569F7E77804D177C0848B6AA430s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib89FBC569F7E77804D177C0848B6AA430s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib89FBC569F7E77804D177C0848B6AA430s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib89FBC569F7E77804D177C0848B6AA430s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4DC1DDFF474E1105BA8E1A42D27E7D7Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4DC1DDFF474E1105BA8E1A42D27E7D7Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4DC1DDFF474E1105BA8E1A42D27E7D7Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4DC1DDFF474E1105BA8E1A42D27E7D7Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4DC1DDFF474E1105BA8E1A42D27E7D7Cs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2B9E427D4A3EABBCD28ED4B0DB073370s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2B9E427D4A3EABBCD28ED4B0DB073370s1

E. Nuriyev, R.R. Manumachu, S. Aseeri et al. Journal of Parallel and Distributed Computing 183 (2024) 104767
[23] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G.R. Ganger, P.B. Gibbons, O.
Mutlu, Gaia: geo-distributed machine learning approaching LAN speeds, in:
Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation, NSDI’17, USENIX Association, 2017, pp. 629–647.

[24] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu, T.
Chen, G. Hu, S. Shi, X. Chu, Highly scalable deep learning training system with
mixed-precision: training ImageNet in four minutes, CoRR, arXiv:1807.11205
[abs], 2018.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: convolutional architecture for fast feature embedding, in: Pro-
ceedings of the 22nd ACM International Conference on Multimedia, MM’14,
ACM, 2014, pp. 675–678.

[26] KAUST Supercomputing Lab, Specification of Cray XC40 Shaheen-II, https://
www.hpc .kaust .edu .sa /content /shaheen -ii, 2022.

[27] A. Mamidala, J. Liu, D. Panda, Efficient barrier and allreduce on infiniband
clusters using multicast and adaptive algorithms, in: Proceedings of IEEE In-
ternational Conference on Cluster Computing (IEEE Cat. No. 04EX935), IEEE
Computer Society, 2004, pp. 135–144.

[28] A.R. Mamidala, G. Kollias, C. Ward, F. Artico, MXNET-MPI: embedding MPI
parallelism in parameter server task model for scaling deep learning, CoRR,
arXiv:1801.03855 [abs], 2018.

[29] Message Passing Interface Forum, MPI: A message-passing interface standard,
https://www.mpi -forum .org /docs /mpi -1.1 /mpi -11 -html /mpi -report .html, 1995.

[30] E. Nuriyev, A. Lastovetsky, Efficient and accurate selection of optimal collective
communication algorithms using analytical performance modeling, IEEE Access
9 (2021) 109355–109373.

[31] E. Nuriyev, J.-A. Rico-Gallego, A. Lastovetsky, Model-based selection of optimal
MPI broadcast algorithms for multi-core clusters, J. Parallel Distrib. Comput.
165 (2022) 1–16.

[32] NVIDIA, NVIDIA collective communications library, https://developer.nvidia .
com /nccl, 2020.

[33] P. Patarasuk, X. Yuan, Bandwidth optimal all-reduce algorithms for clusters of
workstations, J. Parallel Distrib. Comput. 69 (2) (2009) 117–124.

[34] J. Pjesivac-Grbovic, Towards automatic and adaptive optimizations of MPI col-
lective operations, Ph.D. thesis, University of Tennessee, Knoxville, 2007.

[35] R. Rabenseifner, Optimization of collective reduction operations, in: M. Bubak,
G.D. van Albada, P.M.A. Sloot, J. Dongarra (Eds.), Computational Science, ICCS
2004, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1–9.

[36] J.A. Rico-Gallego, J.C. Díaz-Martín, R.R. Manumachu, A.L. Lastovetsky, A survey
of communication performance models for high-performance computing, ACM
Comput. Surv. 51 (6) (jan 2019).

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual
recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252.

[38] F. Seide, A. Agarwal, CNTK: Microsoft’s open-source deep-learning toolkit, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’16, ACM, 2016, p. 2135.

[39] A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep learning in
tensorflow, CoRR, arXiv:1802 .05799 [abs], 2018.

[40] T. Thao Nguyen, M. Wahib, R. Takano, Efficient MPI-allreduce for large-scale
deep learning on GPU-clusters, Concurr. Comput. 33 (12) (2021) e5574.

[41] V. Tipparaju, J. Nieplocha, D. Panda, Fast collective operations using shared
and remote memory access protocols on clusters, in: Proceedings of the 17th
International Parallel and Distributed Processing Symposium, IEEE Computer
Society, 2003, 10 pp.

[42] R. Vandegeijn, On global combine operations, J. Parallel Distrib. Comput. 22 (2)
(1994) 324–328.

[43] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J.S. Rellermeyer,
A survey on distributed machine learning, ACM Comput. Surv. 53 (2) (Mar.
2020).

[44] J. Worringen, Pipelining and overlapping for MPI collective operations, in: Pro-
ceedings of the 28th Annual IEEE International Conference on Local Computer
Networks, 2003, pp. 548–557.

[45] E.P. Xing, Q. Ho, W. Dai, J.K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, Y.
Yu, Petuum: a new platform for distributed machine learning on big data, IEEE
Trans. Big Data 1 (2) (2015) 49–67.
15
[46] Y. Zhao, L. Wang, W. Wu, G. Bosilca, R. Vuduc, J. Ye, W. Tang, Z. Xu, Efficient
communications in training large scale neural networks, in: Proceedings of the
on Thematic Workshops of ACM Multimedia 2017, Thematic Workshops’17,
ACM, 2017, pp. 110–116.

Emin Nuriyev received a PhD degree from the
School of Computer Science, University College Dublin
in 2021. He received BSc and MSc degrees in Applied
Mathematics from the Baku State University in 2005
and 2007 respectively. His main research interests in-
clude algorithms and models for High-Performance
Computing.

Ravi Reddy Manumachu received a B.Tech degree
from I.I.T, Madras in 1997 and a PhD degree from
the School of Computer Science, University College
Dublin in 2005. He is currently an assistant profes-
sor in the School of Computer Science, University Col-
lege Dublin. His main research interests include high
performance heterogeneous computing and energy-
efficient computing.

Samar Aseeri is a computational scientist with
over 10 years of experience in the field of high perfor-
mance computing (HPC). She is currently a member
of the Extreme Computing Center at KAUST, where
she works on developing and using HPC resources to
solve complex scientific problems. Her PhD is in Ap-
plied Mathematics from the Umm Al-Qurra University,
Makkah in 2009. She spent a year and a half at IB-
M’s T.J. Watson Research Center, where she worked

on HPC applications for a variety of scientific domains.
Dr. Aseeri is an active member of the HPC community. She has pub-

lished over 10 papers in top academic journals and conferences, and she
is a frequent speaker at HPC events. She is also a member of the IEEE and
the ACM.

Mahendra Verma received his Ph.D. degree from
University of Maryland, College Park. Presently, he is a
Professor at the Physics Department of IIT Kanpur, In-
dia. He is a recipient of Swarnajayanti fellowship, and
author of an introductory book “Introduction to Me-
chanics”. Mahendra’s research interests include tur-
bulence, nonlinear dynamics, and high-performance
computing. He is a lead developer of the spectral code
TARANG that can simulate variety of fluid flows in-

cluding fluids, magnetohydrodynamics, and thermal convection.

Alexey L. Lastovetsky received a Ph.D. degree from
the Moscow Aviation Institute in 1986, and a Doc-
tor of Science degree from the Russian Academy of
Sciences in 1997. His main research interests include
algorithms, models, and programming tools for high
performance heterogeneous computing. He is cur-
rently Associate Professor in the School of Computer
Science at University College Dublin (UCD). At UCD,
he is also the founding Director of the Heterogeneous

Computing Laboratory.

http://refhub.elsevier.com/S0743-7315(23)00137-5/bib66785791BC286925963460799BAB6892s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib66785791BC286925963460799BAB6892s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib66785791BC286925963460799BAB6892s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib66785791BC286925963460799BAB6892s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCB0F838B1A14A22AAD740B9F76D108C3s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCB0F838B1A14A22AAD740B9F76D108C3s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCB0F838B1A14A22AAD740B9F76D108C3s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibCB0F838B1A14A22AAD740B9F76D108C3s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7702F7B203DBC3BD5F54CBE784BE342As1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7702F7B203DBC3BD5F54CBE784BE342As1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7702F7B203DBC3BD5F54CBE784BE342As1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7702F7B203DBC3BD5F54CBE784BE342As1
https://www.hpc.kaust.edu.sa/content/shaheen-ii
https://www.hpc.kaust.edu.sa/content/shaheen-ii
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib55AE7C4C2340D6363C23929AD032728Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib55AE7C4C2340D6363C23929AD032728Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib55AE7C4C2340D6363C23929AD032728Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib55AE7C4C2340D6363C23929AD032728Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1C7D59BEB931CA209DCDFC0A943BDF81s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1C7D59BEB931CA209DCDFC0A943BDF81s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1C7D59BEB931CA209DCDFC0A943BDF81s1
https://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEC934441C329907951804C780524FB81s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEC934441C329907951804C780524FB81s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibEC934441C329907951804C780524FB81s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2571A92DD426A57AC36898E4447F1633s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2571A92DD426A57AC36898E4447F1633s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib2571A92DD426A57AC36898E4447F1633s1
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1D813DB88274F42DCC1C8C819660E986s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib1D813DB88274F42DCC1C8C819660E986s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4D61D9B4B2298205C6013B714E1A1D79s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib4D61D9B4B2298205C6013B714E1A1D79s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6E02485A1E1C56F013E3DBDA4DFF301Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6E02485A1E1C56F013E3DBDA4DFF301Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6E02485A1E1C56F013E3DBDA4DFF301Es1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAB6B573F1BC70955DD9CB865DFEB19ABs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAB6B573F1BC70955DD9CB865DFEB19ABs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAB6B573F1BC70955DD9CB865DFEB19ABs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A19330E1245252F8EBCC41D307B2A20s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A19330E1245252F8EBCC41D307B2A20s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib0A19330E1245252F8EBCC41D307B2A20s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibF723B20FD98F0F00B24DACB48CD8E6C9s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibF723B20FD98F0F00B24DACB48CD8E6C9s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibF723B20FD98F0F00B24DACB48CD8E6C9s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibF5F1C35A78D5584CDB787D4E3B6B10B6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibF5F1C35A78D5584CDB787D4E3B6B10B6s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibE1B16CA4A49D0938C33BD592E0B7FD2Fs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibE1B16CA4A49D0938C33BD592E0B7FD2Fs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6701D36F8EE86454E7F850F0A424F468s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6701D36F8EE86454E7F850F0A424F468s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6701D36F8EE86454E7F850F0A424F468s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib6701D36F8EE86454E7F850F0A424F468s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAB951878AAA3A4B70A4A6657334CE940s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bibAB951878AAA3A4B70A4A6657334CE940s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib5883731F9A74566CC9C1F0E40704AC99s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib5883731F9A74566CC9C1F0E40704AC99s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib5883731F9A74566CC9C1F0E40704AC99s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib977A287677FC83A2D447ABE080DF8794s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib977A287677FC83A2D447ABE080DF8794s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib977A287677FC83A2D447ABE080DF8794s1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3AEFC052268935E0B698B89A1D4B390Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3AEFC052268935E0B698B89A1D4B390Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib3AEFC052268935E0B698B89A1D4B390Ds1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7F9F458F60C560D8BECD51F083135DBAs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7F9F458F60C560D8BECD51F083135DBAs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7F9F458F60C560D8BECD51F083135DBAs1
http://refhub.elsevier.com/S0743-7315(23)00137-5/bib7F9F458F60C560D8BECD51F083135DBAs1

	SUARA: A scalable universal allreduce communication algorithm for acceleration of parallel deep learning applications
	1 Introduction
	2 Related work
	2.1 Performance optimization of allreduce collective communication
	2.2 Parallel and distributed machine learning packages

	3 SUARA: a scalable universal allreduce collective algorithm
	4 SUARA2: a two-step SUARA on top of the open MPI set of allreduce algorithms
	4.1 Analytical models of open MPI allreduce algorithms
	4.1.1 Linear
	4.1.2 Nonoverlapping
	4.1.3 Recursive doubling
	4.1.4 Ring without segmentation
	4.1.5 Ring with segmentation
	4.1.6 Rabenseifner

	4.2 SUARA2: description of the algorithm
	4.2.1 Ring with segmentation, ring with segmentation

	4.3 SUARA2: pseudocode
	4.4 Accuracy of estimation using theoretical models
	4.5 SUARA2: runtime efficiency, implementation specifics, and portability
	4.6 Theoretical speedup of SUARA2 over the best open MPI native allreduce algorithm

	5 Experimental results
	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A Supplementary material
	References

