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Parallel and distributed deep learning (PDNN) has become an effective strategy to reduce the long 
training times of large-scale deep neural networks. Mainstream PDNN software packages based on the 
message-passing interface (MPI) and employing synchronous stochastic gradient descent rely crucially on 
the performance of MPI allreduce collective communication routine.
In this work, we propose a novel scalable universal allreduce meta-algorithm called SUARA. In general, 
SUARA consists of L serial steps, where L ≥ 2, executed by all MPI processes involved in the allreduce 
operation. At each step, SUARA partitions this set of processes into subsets, which execute optimally 
selected library allreduce algorithms to solve sub-allreduce problems on these subsets in parallel, to 
accomplish the whole allreduce operation after completing all the L steps. We then design, theoretically 
study and implement a two-step SUARA (L = 2) called SUARA2 on top of the Open MPI library. We 
prove that the theoretical asymptotic speedup of SUARA2 executed by P processes over the base 
Open MPI routine is O(

√
P ). Our experiments on Shaheen-II supercomputer employing 1024 nodes 

demonstrate over 2x speedup of SUARA2 over native Open MPI allreduce routine, which translates into 
the performance improvement of training of ResNet-50 DNN on ImageNet by 9%.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Deep learning (DL) applications have become pervasive energiz-
ing technological innovations in several fields that include speech 
recognition [3], autonomous driving [6], medical diagnosis [12], 
and natural language processing [13].

Complex DL applications require training deep neural networks 
(DNNs) on large datasets for better predictions. However, the train-
ing times increase drastically with the size of DNN given by the 
number of parameters and the size of the training dataset. There-
fore, parallel and distributed DL (PDNN) has become a natural and 
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effective strategy to reduce the long training times of large-scale 
DNNs.

Horovod [39], Microsoft Cognitive Toolkit (CNTK) [38], and 
MXNet MPI [28] are popular PDNN packages that perform parallel 
training of a DNN using data-parallelism and synchronous model 
updates. In the data-parallel approach, the training dataset of sam-
ples is divided into small batches called mini-batches. The set of 
mini-batches is then partitioned equally between the processes. 
The complete training process typically consists of hundreds of 
epochs. An epoch comprises a loop where each process selects 
a disjoint mini-batch in an iteration. The process then executes 
the DNN code using this batch and computes a gradient. All the 
processes then collectively invoke an allreduce collective communi-
cation operation to obtain the global average gradient for the whole 
minibatch. Finally, each process then updates the local vector of 
weights using the global average gradient. The main stages of par-
allel training of a DNN are detailed in supplemental, Section 2.

Therefore, the allreduce collective communication routine is an 
essential ingredient of PDNN packages that employ data paral-
lelism and synchronous model updates [39], [38], [28].
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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The MPI standard [29], which provides a reliable and portable 
environment for developing HPC applications, offers a rich set of 
collective communication operations, including the allreduce col-
lective communication operation. Different algorithms have been 
developed and implemented for the allreduce MPI collective oper-
ation, but no algorithm proved superior in all situations. Therefore, 
MPI implementations must solve the problem of selecting the op-
timal algorithm for the collective operation depending on the plat-
form, the number of processes involved, and the message size. The 
Open MPI library [18] supports runtime selection of six different 
algorithms for the MPI allreduce collective communication opera-
tion, namely, linear (linear reduce followed by linear broadcast) [34], 
nonoverlapping (tuned reduce followed by tuned broadcast) [34], re-
cursive doubling [34], ring [34], ring with segmentation [35], Raben-
seifner [35].

Methods for performance optimization of the allreduce collec-
tive communication can be broadly classified into platform-specific
and platform-independent categories. Platform-specific methods 
aim to optimize the allreduce for performance for a specific plat-
form [42], [44], [20], [41], [27], [2], [4], [24]. In the platform-
independent category, research works include algorithms that do 
not make any assumptions about the underlying platform [35], [9], 
[33], [46], [7], [40].

The platform-independent category can be further classified 
into two sub-categories. The first sub-category comprises research 
works [35], [9], [33], [40] employing functional decomposition of 
the global allreduce operation into a serial sequence of collective 
sub-operations different from allreduce. The second sub-category 
contains research works [46], [7] that employ message decomposi-
tion/segmentation/pipelining.

In this work, we propose a novel scalable universal allreduce 
meta-algorithm called SUARA. In general, SUARA consists of sev-
eral serial steps executed by all processes involved in the allreduce 
operation. The processes contain messages of the same length for 
reduction. At each step, SUARA partitions the whole set of pro-
cesses into subsets, which execute allreduce algorithms, optimally 
selected from a given set of allreduce algorithms, A, to solve sub-
allreduce problems on these subsets in parallel, accomplishing the 
whole allreduce operation after the completion of all the serial 
steps. Furthermore, it does not use message decomposition; there-
fore, the sub-allreduce operations compute partial reductions of 
the whole message.

SUARA is a meta-algorithm since it represents a family of al-
gorithms, parameterized by the number of serial steps, L, and the 
set A of native allreduce algorithms used as building blocks. There 
are no restrictions on the native allreduce algorithms (for example, 
they can use either functional or message decomposition or both 
in their execution).

Thus, SUARA is a platform-independent multi-step allreduce 
meta-algorithm employing process decomposition to optimize the 
global allreduce operation using only native allreduce algorithms
as sub-operations. It differs from the state-of-the-art platform-
independent allreduce algorithms in two respects. First, it is based 
on process decomposition, not functional or message decompo-
sition. Second, it only employs sub-allreduce operations execut-
ing optimally selected native allreduce algorithms as its building 
blocks.

We first prove that the processes executing SUARA must nat-
urally form an L-dimensional rectangular arrangement for maxi-
mum parallelism and to ensure the correctness of the allreduce 
operation.

We then design, theoretically study and implement a two-step 
SUARA (L = 2), called SUARA2, on top of the Open MPI library. The 
processes in SUARA2 form a two-dimensional grid arrangement. 
The design and implementation of SUARA2 comprise three stages. 
At the first stage, SUARA2 determines the optimal 2D process grid 
2

arrangement and the optimal Open MPI allreduce algorithms to 
employ in the process rows and columns. In the second stage, pro-
cess rows execute library allreduce algorithms in parallel. At the 
third stage, process columns execute library allreduce algorithms 
in parallel, completing the whole allreduce operation. SUARA2 au-
tomatically selects optimal library allreduce algorithms to be ex-
ecuted by process rows and columns from the set of algorithms 
implemented by Open MPI. We prove that the optimal selection 
always uses at most two different library algorithms – one for all 
process rows and the other for all process columns. We also prove 
that the theoretical asymptotic speedup of SUARA2 executed by a 
set of P processes over the best Open MPI allreduce algorithm is 
O(

√
P ).

Our goal of the paper is not to develop an optimal allreduce 
algorithm from the total space of allreduce algorithms that em-
ploy message segmentation/pipelining, functional decomposition 
into allreduce and non-allreduce collective operations, and process 
decomposition. This endeavour is out of the scope of this work. In-
stead, we focus on finding the optimal allreduce algorithm in the 
space of allreduce algorithms employing process decomposition.

We demonstrate the practical efficiency of SUARA2 by speed-
ing up ResNet-50 DNN training on ImageNet dataset [37] on 
Shaheen-II supercomputer employing 1024 dual-socket 16-core In-
tel Haswell processors [26]. We focus only on one-process-per-
node application configuration. Other pertinent application config-
urations that include one-process-per-socket and one-process-per-
core are out of the scope of this work.

The PDNN framework used is Horovod [39] employing Open 
MPI library 4.0.3 for communication. The main stages of parallel 
training of a DNN are detailed in supplemental, Section 2. Each 
process passes a message, a vector of gradients of size m bytes, 
to MPI_Allreduce collective routine invoked during Resnet-50 DNN 
training. All the processes call the MPI_Allreduce collective routine 
during Step 3 of an epoch to obtain the same global vector of av-
erage gradients from the input vectors of gradients.

The reduction of training time due to using SUARA2 increases 
with the number of employed processes. It reaches 9% for 1024 
processes, the maximal number used in the experiments. The min-
imum, average, and maximum speedups of SUARA2 over the best 
native Open MPI allreduce routine observed in our experiments are 
1.6x, 2x, and 2.65x, respectively.

The main contributions of this work are:

• A platform-independent multi-step scalable universal allre-
duce meta-algorithm called SUARA that employs the novel ap-
proach of process decomposition to optimize the global allre-
duce operation using only native allreduce algorithms as sub-
operations;

• A detailed design and theoretical analysis of a two-step SUARA, 
called SUARA2, on top of the Open MPI set of allreduce algo-
rithms. SUARA2 exhibits a theoretical asymptotic speedup of 
O(

√
P ) over the best Open MPI allreduce algorithm;

• An Open MPI library-based portable implementation of
SUARA2;

• Using traditional calculus approach to determine the opti-
mal allreduce combination (allreduce algorithms in rows and 
columns) to employ during the execution of the MPI allreduce 
collective operation;

• Experimental demonstration of the practical efficiency of 
SUARA2 in PDNN by the 9% acceleration of the training of 
ResNet-50 DNN on ImageNet dataset on Shaheen-II super-
computer employing 1024 processes (1024 nodes). SUARA2 
outperforms the native Open MPI allreduce routine more than 
twice.
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Fig. 1. Classification of allreduce collective communication algorithms.
The rest of the paper is organized as follows. The related work 
section reviews the existing approaches to performance optimiza-
tion of collective communication operations, PDNN packages, and 
methods for acceleration of training of DNNs on ImageNet. We 
follow this with the section that presents our scalable universal 
allreduce meta-algorithm, SUARA. Then, we describe in detail a 
two-step SUARA on top of the Open MPI library. Next, the experi-
mental results section presents the practical efficiency of SUARA2. 
Finally, the conclusion section ends the paper.

2. Related work

We then present an overview of the state-of-the-art meth-
ods for performance optimization of allreduce communication. We 
then overview DNN frameworks offering support for parallel and 
distributed training.

2.1. Performance optimization of allreduce collective communication

We have presented an overview of prior works in this cate-
gory in the introduction section and described how our proposed 
allreduce meta-algorithm, SUARA, differs from these works. There-
fore, we briefly cover the prior works in the platform-independent
category here with a few additional details. Fig. 1 shows the tree 
ontology of different allreduce algorithms.

The platform-independent category can be classified into two 
sub-categories. The first sub-category [35], [9], [33], [40] com-
prises research works employing functional decomposition of the 
global allreduce operation into a sequence of non-allreduce sub-
operations executed serially. The second sub-category contains re-
search works [46], [7] that employ message decomposition/seg-
mentation. This technique is also known as pipelining in the lit-
erature.

Rabenseifner et al. [35] study functional decompositions of the 
allreduce operation comprising two serial steps. One decomposi-
tion is a reduce operation followed by a broadcast operation, and 
the other involves reduce-scatter and allgather operations. They 
propose some known and novel algorithms for the two steps. For 
example, a binary tree algorithm for reduce and broadcast opera-
tions, recursive vector halving and distance doubling algorithm for 
reduce-scatter operation and recursive vector doubling combined 
with recursive distance halving algorithm for allgather operation. 
Finally, they experimentally find the fastest allreduce configura-
tion (the algorithmic combination for the two steps) on a Cray 
supercomputer depending on the number of processes and mes-
sage size.

Chan et al. [9] study specifically the MPI_Allreduce implementa-
tion in the MPICH [19] library that employs a two-step functional 
3

decomposition of the allreduce operation, reduce-scatter and all-
gather operations based on recursive-halving and doubling algo-
rithms. They propose an algorithmic enhancement to the MPICH 
implementation that performs well for a particular range of mes-
sage sizes on a Cray cluster. However, SUARA is a multi-step allre-
duce meta-algorithm based on process decomposition that opti-
mizes the global allreduce operation for any input message size.

Patarasuk et al. [33] also employ a two-step functional de-
composition of the allreduce operation involving reduce-scatter 
and allgather operations. In addition, they use logical ring-based 
algorithms for the reduce-scatter and allgather operations. How-
ever, SUARA is a multi-step allreduce meta-algorithm that employs 
process decomposition to optimize the global allreduce operation 
using only native allreduce algorithms as sub-operations. The allre-
duce algorithms for the sub-operations are optimally selected from 
a pool of available native algorithms that include linear, ring-based, 
recursive, and Rabenseifner algorithms, to name a few.

Nguyen et al. [40] present a functional decomposition of the 
allreduce operation comprising four serial steps for accelerating 
deep learning workloads on GPU clusters. The first and fourth steps 
involve parallel reduce-scatter operations and parallel allgather op-
erations involving the GPUs inside each node. The second and third 
steps contain an inter-node allreduce operation realized by a two-
step functional decomposition involving parallel reduce-scatter and 
allgather operations. A logical ring algorithm is used for the intra-
node collective operations, whereas three different algorithms (re-
cursive doubling, logical ring or Rabenseifner) are employed for the 
inter-node allreduce collective operation.

Research works [46], [7] employ message decomposition/seg-
mentation/pipelining. Zhao et al. [46] split the message into seg-
ments that are reduced using reduce and broadcast operations, 
which employ pipelining. Castello et al. [7] divide the message into 
parts that are reduced by parallel nonblocking MPI sub-allreduce 
operations. However, SUARA does not use message decomposition. 
It computes partial reductions of the whole message using sub-
allreduce operations.

2.2. Parallel and distributed machine learning packages

The mainstream PDNN packages can be classified based on the 
type of parallelism and the DNN model consistency. The forward 
evaluation and backpropagation phases of a DNN are partitioned 
between the processors in three different ways:

• Data parallelism: The work of the minibatch samples is par-
titioned between the processors. The results of the partitions 
are averaged using an allreduce collective communication op-
eration to obtain the gradient for the whole minibatch. The 
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allreduce communication operation combines values from all 
the processes and distributes the result back to all processes.

• Model parallelism: The neurons in each layer are partitioned 
between the processors. All the processors get a copy of 
the minibatch and compute different parts of a DNN. Fully 
connected layers incur all-to-all communication compared to 
allreduce communication in data parallelism.

• Layer pipelining: There are two forms of pipelining. The first 
form is to overlap computations between one layer and the 
next. For example, forward evaluation, backpropagation, and 
weight updates can be overlapped. The second form is a multi-
processor pipeline partitioning the DNN layers between the 
processors.

The surveys [5], [43] present informative descriptions of paral-
lelism in deep learning.

In the category of DNN model consistency, the consistent 
model methods are based on Bulk Synchronous Parallelism (BSP), 
where consistency is ensured by a global synchronization step be-
tween each computation and communication phase. In BSP (or 
synchronous SGD), the up-to-date model parameters (vector of 
weights) are made visible to all the processes after each global 
synchronization step. Asynchronous SGD relaxes the synchroniza-
tion criterion for an up-to-date weight vector and leads to an 
inconsistent model. A well-known instance of inconsistent SGD is 
HOGWILD algorithm [15], which allows processes to read model 
parameters and update gradients without any synchronization. 
Total Asynchronous Parallelism or Barrierless Asynchronous Par-
allelism (BAP) allows workers to communicate without synchro-
nization. However, this technique can lead to slow convergence, 
and incorrectness [23]. Stale Synchronous Parallelism (SSP) offers a 
compromise between consistent and inconsistent models and pro-
vides strong model convergence guarantees [21]. SSP performs the 
global synchronization step after only one node reaches maximal 
staleness. This technique works well in heterogeneous environ-
ments where stragglers (lagging workers) are a vital concern.

Horovod [39] is a parallel DNN framework that employs MPI 
and NVIDIA Collective Communication Library (NCCL) [32] for 
training on CPUs or GPUs. It is based on MPI allreduce communica-
tion operation, and is therefore used in this work for demonstrat-
ing the efficiency of our library. Caffe2 [25] is also a distributed 
DNN framework based on allreduce. However, it uses NCCL be-
tween the GPUs on a single node and Gloo library between the 
nodes [16], which uses the ring and recursive doubling allreduce 
algorithms. The Microsoft Cognitive Tooklit (CNTK) [38] is a dis-
tributed DNN framework that represents a DNN by a directed 
graph and is based on ring allreduce algorithm.

The following packages are based on parallel asynchronous 
SGD. DistBelief [15] combines the three types of parallelism. It 
represents a DNN by a computation graph. The graph is par-
titioned between the processors using either model parallelism 
or pipelining. Since DistBelief provides fault tolerance, there are 
model replicas. The replicas are trained in parallel on different 
samples. Project Adam [11] also combines the three types of par-
allelism. DIstributed Artificial Neural NEtworks (DIANNE) [14] is 
a java-based distributed DNN framework employing model paral-
lelism. Tensorflow framework [1] represents a DNN by a dataflow 
graph and supports data and model parallelism. MXNet [10] also 
represents a DNN by a dataflow graph. MXNet MPI [28] com-
bines asynchronous (using parameter server concept) and syn-
chronous (using MPI) implementations. The processes are divided 
into groups. Within each group, synchronous SGD is executed us-
ing MPI allreduce communication.

Petuum [45] supports data and model parallelism and is based 
on parallel stale-synchronous SGD (SSP).
4

Fig. 2. Example illustrating allreduce involving six processes with ranks in the set, 
S = {0, 1, 2, 3, 4, 5}. A circle symbolizes a process. The local value at each process is 
shown in a square. At the end of the allreduce operation, all the processes will have 
an identical result, 80.

3. SUARA: a scalable universal allreduce collective algorithm

In this section, we propose our novel scalable universal algo-
rithm called SUARA for the allreduce communication operation.

The allreduce is a collective communication operation that ap-
plies a commutative and associative operator to values from all the 
processes and distributes the final result to all the processes. The 
operators include max, min, sum, product, and logical bitwise. All 
the processes participating in the allreduce must have an identical 
result after its successful completion. The associativity and com-
mutativity of the reduction operator signify that the values of all 
the processes can be rearranged and combined to determine the fi-
nal result. Therefore, it allows ample scope for optimization where 
the whole allreduce problem can be partitioned into sub-allreduce 
problems that can be solved simultaneously. Fig. 2 illustrates the 
allreduce operation involving six processes, whose ranks are given 
by the set S = {0, 1, 2, 3, 4, 5}. A circle symbolizes each process. 
The local value at each process is shown in a square above the cir-
cle. The values are reduced using MPI_SUM operator. At the end 
of the allreduce operation, each process contains a result equal to 
80. In this example, the local value at each process is a scalar. 
However, the local data can be a vector in general. Therefore, the 
allreduce operation reduces vectors from all the processes.

Our proposed algorithm SUARA is an allreduce meta-algorithm 
executed by a set S of processes of size P . The processes contain 
messages of the same length for reduction. SUARA consists of L
serial steps, executed by all processes in S . At each step, SUARA 
partitions S into subsets, which execute allreduce algorithms, op-
timally selected from a given set of allreduce algorithms, A, to 
solve sub-allreduce problems on these subsets in parallel. It ac-
complishes the whole allreduce operation after the completion of 
all L steps.

SUARA is a meta-algorithm since it represents a family of algo-
rithms, parameterized by the number of serial steps, L, and the set 
A of native allreduce algorithms used as its building blocks. There 
are no restrictions on the native allreduce algorithms.

We show that the processes of S employed in SUARA’s execu-
tion must naturally form a L-dimensional rectangular arrangement 
to ensure its correctness and for maximum parallelism.

We first illustrate the execution of SUARA, accomplishing the 
whole allreduce in two steps (L = 2). In the first step, SUARA parti-
tions S into R subsets. Each subset solves a sub-allreduce problem. 
Since the process subsets are disjoint, SUARA executes all the sub-
allreduce operations in parallel. At the end of the step, all the 
processes in a subset contain the same result. To complete the 
allreduce correctly, each process must reduce its local result with 
the result from one process in each of the other subsets. The most 
natural way that maximizes the parallelism is to compose disjoint 
subsets where each subset is assigned a unique process from each 
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Fig. 3. Example illustrating the execution of two-step SUARA by six processes in the set, S = {0, 1, 2, 3, 4, 5}. SUARA accomplishes the whole allreduce using two steps 
(L = 2). In the first step (1), SUARA partitions S into two subsets, {0, 1, 2} and {3, 4, 5}. It then executes two sub-allreduces in parallel on these subsets. In the second step, 
SUARA partitions S into three subsets, {0, 3}, {1, 4}, {2, 5}, to complete the whole allreduce correctly and executes three sub-allreduces in parallel shown in (3). Therefore, 
R = 2, C = 3. At the end of the whole allreduce operation, each process contains a result equal to 80. The final result is displayed under (4).
of the R subsets in the previous step. Therefore, SUARA composes 
C such disjoint subsets where R × C = P . SUARA then executes 
all the C sub-allreduce operations in parallel. Hence, the processes 
of S employed in SUARA’s execution must naturally form a two-
dimensional grid arrangement to ensure its correctness.

Fig. 3 illustrates the execution of two-step SUARA by six pro-
cesses in the set S = {0, 1, 2, 3, 4, 5}. The goal of SUARA here is to 
accomplish the allreduce using two steps. In the first step, SUARA 
partitions S into two subsets, {0, 1, 2} and {3, 4, 5}. It then exe-
cutes two sub-allreduces in parallel on these subsets. After the 
completion of the step, all the processes in the subset {0, 1, 2} con-
tain a result 32. All the processes in the subset {3, 4, 5} contain 48. 
In the second step, SUARA partitions S into three subsets, {0, 3}, 
{1, 4}, {2, 5}, and executes three sub-allreduces in parallel. At the 
end of the SUARA execution, each process contains a result equal 
to 80. The partitions, ({0, 1, 2}, {3, 4, 5}) and ({0, 3}, {1, 4}, {2, 5}), 
form a 2D process arrangement, 2 × 3.

Note. In this work, we do not investigate the problem of per-
forming the allreduce operation where the P processes do not 
form a multi-dimensional rectangular process arrangement. Con-
sider, for example, the execution of SUARA comprising two serial 
steps. In the first step, SUARA partitions S into R subsets and per-
forms R parallel sub-allreduce operations. In the second step, there 
will be gaps in the two-dimensional process arrangement if there 
is no C such that R × C = P . One approach adds processes dy-
namically and fills the gaps to form a two-dimensional process 
arrangement, R × C = Q , Q > P . The local value in each new pro-
cess is set to an appropriate value based on the reduction operator. 
For example, the local value is set to 0 if the reduction operator is 
a sum and 1 if the reduction operator is a product. SUARA is then 
executed using Q processes.

The number of allreduces in SUARA employing P processes and 
comprising two serial steps (L = 2) is R + C where R × C = P . 
The process partitions are visualized as a two-dimensional process 
5

arrangement, R × C . The R horizontal parallel sub-allreduce oper-
ations are followed by C vertical parallel sub-allreduce operations 
or vice versa.

For SUARA consisting of three serial steps (L = 3), the num-
ber will be R × K + C × K + R × C where R × C × K = P . Fig. 4
illustrates the three serial steps. The process partitions are visual-
ized as a three-dimensional process arrangement, R ×C × K . In the 
first step, R × K parallel sub-allreduce operations are executed hor-
izontally in the C direction. Each sub-allreduce operation involves 
C processes.

In the second step, C × K parallel sub-allreduce operations are 
executed vertically in the R direction. Each sub-allreduce operation 
involves R processes. In the final step, R × C parallel sub-allreduce 
operations take place in the K direction. Each sub-allreduce oper-
ation involves K processes. This pattern of communications holds 
for SUARA for higher dimensions.

In the next section, we design, theoretically study and imple-
ment a two-step SUARA called SUARA2 on top of the set of allre-
duce algorithms in Open MPI.

4. SUARA2: a two-step SUARA on top of the open MPI set of 
allreduce algorithms

This section describes SUARA2, a two-step SUARA on top 
of Open MPI library. The processes in SUARA2 form a two-
dimensional grid arrangement. The design and implementation of 
SUARA2 comprise three stages. At the first stage, SUARA2 deter-
mines the optimal 2D process grid arrangement and the optimal 
Open MPI allreduce algorithms to employ in the process rows and 
columns. At the second stage, process rows execute library allre-
duce algorithms in parallel. At the third stage, process columns 
execute library allreduce algorithms in parallel, completing the 
whole allreduce operation.

We first derive analytical models of six allreduce algorithms 
used in Open MPI: linear, nonoverlapping tuned reduce followed by 
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Fig. 4. SUARA consisting of three serial steps. The blue circles represent the processes arranged in a 3D grid arrangement, R × C × K . In the first step, there are R × K parallel 
sub-allreduce operations in the C direction. Each sub-allreduce operation involves C processes and is shown by a green rod joining the processes. In the second step, there 
are C × K parallel sub-allreduce operations in the R direction. Each sub-allreduce operation involves R processes and is shown by an orange rod joining the processes. In 
the final step, there are R × C parallel sub-allreduce operations in the K direction. Each sub-allreduce operation involves K processes and is shown by a red rod joining the 
processes.
tuned broadcast, recursive doubling, ring without segmentation, ring 
with segmentation, and Rabenseifner. Then, the derived models are 
used in SUARA2 for the automatic selection of optimal Open 
MPI library allreduce algorithms for horizontal and vertical sub-
allreduce operations.

4.1. Analytical models of open MPI allreduce algorithms

We present here the six allreduce algorithms provided by Open 
MPI and build their analytical performance models using the basic 
Hockney model [22] for modelling point-to-point communications.

MPI collective algorithms are commonly implemented using 
point-to-point communications where the group of processes ex-
ecuting the collective algorithm is mapped into a virtual topology. 
The virtual topologies include a linear tree, binomial tree, and bi-
nary tree, to name a few. MPI libraries use two communication 
protocols to implement point-to-point communication. They are 
called eager and rendezvous used for transferring short and large 
messages, respectively. We present analytical performance models 
for the allreduce collective algorithms only for the rendezvous pro-
tocol. We assume that each node in the network supports single-
port full-duplex communication, which means that a process exe-
cuting on a node can be involved in a single emission (send) and 
single reception (receive) simultaneously. The platform employed 
in this work, Cray XC40 with Aries packet-switched interconnect 
with Dragonfly topology, satisfies this assumption.

The basic Hockney model is used for modelling a point-to-point 
communication operation as the fundamental building block of an-
alytical models for allreduce algorithms. The model estimates the 
time T p2p(m) of sending a message of size m between two pro-
cesses as T p2p(m) = α + β · m, where α is the latency, and β is 
the reciprocal bandwidth. In an allreduce algorithm, the point-to-
point communications are followed by computations performing 
reduction operations on the local vectors. We consider the com-
putation cost per byte of the reduction operation to be γ for any 
MPI process. The constants (α, β) are considered specific to each 
allreduce algorithm. The constant γ is independent of an allreduce 
algorithm but is platform-specific. Each algorithm is executed by 
P processes in the set, {P0, · · · , P P−1}, with corresponding ranks, 
{0, · · · , P − 1}.

To summarize the analytical models that follow, the cost of 
each algorithm has a latency component given by α, a bandwidth 
component (β · m), and a computation component (γ · m). The 
algorithms that achieve the lower bound for the latency compo-
nent will have log2 P factor. Recursive doubling [34] and Raben-
6

seifner [35] are two such algorithms. The algorithms that attain the 
lower bound for the bandwidth component will have 2 · P−1

P factor. 
Rabenseifner falls in this category. Finally, the lower bound for the 
computation component is P−1

P , which is also realized by Raben-
seifner. The linear and ring without segmentation algorithms do not 
attain the lower bounds for the latency and bandwidth compo-
nents and, therefore, contain 2 · (P − 1) factor.

We represent the allreduce algorithms, linear, nonoverlapping 
tuned reduce followed by tuned broadcast, recursive doubling, ring 
without segmentation, ring with segmentation, and Rabenseifner, by 
the short-form identifiers, linear, nono, rd, rnos, rs, and rab, to aid 
the clarity of our theoretical exposition. The constants (αa, βa) cor-
respond to the allreduce algorithm a.

Table 1 contains the analytical formulae for the allreduce algo-
rithms.

4.1.1. Linear
The linear allreduce algorithm is implemented using linear re-

duce algorithm followed by the linear broadcast algorithm [34]. 
Both algorithms transmit a whole message without message seg-
mentation.

Each receive in a linear reduce algorithm only starts after the 
previous one is completed. Therefore, the execution time of the lin-
ear reduce algorithm will be equal to the sum of execution times 
of (P − 1) message transmissions. Thus, the execution time of the 
linear reduce algorithm is as follows:

Tlinear_reduce(P ,m) = (P − 1) · (αlinear + βlinear · m + γ · m) (1)

Each send in a linear broadcast algorithm only starts after the 
previous one is completed. Therefore, the execution time of the 
linear broadcast algorithm will be equal to the sum of execution 
times of (P − 1) message transmissions. So, the execution time of 
the linear broadcast algorithm is estimated as follows:

Tlinear_bcast(P ,m) = (P − 1) · (αlinear + βlinear · m) (2)

Thus, the execution time of the allreduce algorithm is estimated 
as follows:

Tlinear(P ,m) = Tlinear_reduce(P ,m) + Tlinear_bcast(P ,m)

= (P − 1) · (2 · (αlinear + βlinear · m) + γ · m)
(3)

4.1.2. Nonoverlapping
The nonoverlapping allreduce algorithm is implemented using 

the MPI_Reduce operation followed by the MPI_Bcast operation 
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Table 1
The analytical formulae for the Open MPI allreduce algorithms using the Hockney performance model of communication. The 
nonoverlapping allreduce algorithm has model expressions for thirty different implementations. Therefore, these expressions are 
not given here due to space constraints.

Allreduce algorithm Analytical model Reference

Linear reduce followed by linear broadcast (P − 1) · (2 · (αlinear + βlinear · m) + γ · m) [34]
Recursive doubling log2 P · (αrd + βrd · m + γ · m) [34]
Ring without segmentation 2 · (P − 1) · αrnos + 2 · P−1

P · βrnos · m + P−1
P · γ · m [34]

Ring with segmentation (P + m
ms×P − 2) × (αrs + βrs · ms + γ · ms) + (P − 1) · (αrs + βrs · m

P ) [34]
Rabenseifner 2 · log2 P · αrab + 2 · P−1

P · βrab · m + P−1
P · γ · m [35]
[34]. Both operations are called sequentially. Hence, the allreduce 
is called nonoverlapping.

Tnono(P ,m) = Treduce(P ,m) + Tbcast(P ,m) (4)

The execution times of MPI_Reduce and MPI_Bcast operations 
are estimated based on the particular collective algorithms em-
ployed in their execution. There are six collective algorithms for 
the MPI_Bcast operation and five for the MPI_Reduce operation in 
Open MPI. Altogether, it would result in thirty model expressions. 
We do not present the models here due to space constraints.

4.1.3. Recursive doubling
We will present this allreduce algorithm for the case where 

P is a power of two [34]. There are log2 P steps in the algo-
rithm. In step 1, processes separated by a rank-distance of 1 per-
form a pairwise exchange of the whole message with each other 
(P0 ↔ P1, P2 ↔ P3, ...). At the end of the step, both processes in 
a pairwise exchange redundantly compute the same partial reduc-
tion of the whole message. In step 2, the distance is doubled, and 
the pairwise exchanges are (P0 ↔ P2, P1 ↔ P3, ...). In the last step 
log2 P , the processes will be separated by distance P

2 . At the end of 
the final communication step, the processes compute the final par-
tial reduction of the whole message, thereby completing the whole 
allreduce operation.

Therefore, given the assumption of full-duplex communication, 
the algorithm’s execution time is estimated as follows:

Trd(P ,m) = log2 P · (αrd + βrd · m + γ · m) (5)

4.1.4. Ring without segmentation
This allreduce algorithm is implemented using a reduce_scatter 

operation followed by an allgather operation [34]. Both operations 
are performed using a logical ring communication pattern, P0 →
P1 → P2 → ·· · → P P−1 → P0. Each process has a left neighbour
and a right neighbour. For example, process P0 has processes P P−1

and P1 as its left and right neighbours, respectively. There are P −
1 ring exchange steps in each operation. The message of size m at 
each process is split into P chunks, {S0, · · · , S P−1}, each of size m

P . 
The algorithm is described in detail in the supplemental, Section 4. 
The algorithm’s execution time is estimated as follows:

Trnos(P ,m) = 2 · (P − 1) · αrnos + 2 · P − 1

P
· βrnos · m

+ P − 1

P
· γ · m

(6)

4.1.5. Ring with segmentation
Like the ring without segmentation algorithm, this allreduce al-

gorithm is implemented using a reduce_scatter operation followed 
by an allgather operation [34]. Both operations are performed us-
ing a logical ring communication pattern. First, the message of size 
m at each process is split into P chunks each of size m

P . Each chunk 
is further broken into ns number of segments of size, ms = m . 
ns×P

7

Therefore, instead of the chunks, the segments are communicated 
by the processes in the reduce_scatter and allgather operations.

The execution time of the algorithm is estimated as follows:

Trs(P ,m,ms) = (P + m

ms × P
− 2) × (αrs + βrs · ms + γ · ms)

+ (P − 1) · (αrs + βrs · m

P
)

(7)

The Ring without segmentation allreduce algorithm is a special 
case of this algorithm where ns = 1, ms = m

P .

4.1.6. Rabenseifner
The Rabenseifner algorithm involves a reduce_scatter opera-

tion followed by an allgather operation [35]. The reduce_scat-
ter operation is implemented using a recursive data halving and 
rank-distance doubling algorithm. The allgather operation is im-
plemented using recursive data doubling and rank-distance halving 
algorithm. The cost for the case where P is a power of two is de-
tailed in the supplemental, Section 4. The algorithm’s execution 
time is estimated as follows:

Trab(P ,m) = 2 · log2 P · αrab + 2 · P − 1

P
· βrab · m

+ P − 1

P
· γ · m

(8)

4.2. SUARA2: description of the algorithm

In this section, we present SUARA2, a two-step SUARA im-
plemented on the top of the Open MPI set of allreduce algo-
rithms. The inputs to SUARA2 include the six standard arguments 
to the MPI_Allreduce function, the starting address of send buffer, 
sendbu f ; number of elements in send buffer, count; the MPI data 
type of elements of send buffer, datatype; the MPI operation, op; 
and the MPI communicator, comm. The other input parameters are 
the message segment size, ms; the set of Open MPI allreduce algo-
rithms, A; the time of computation per byte, γ ; and a (α, β) pair 
for each Open MPI allreduce algorithm (described in the previous 
section). Each process contains a local vector of values (size equal 
to m bytes) in the send buffer, sendbu f , input to SUARA2 for re-
duction. The number of available processes, P , is the size of the 
input MPI communicator, comm.

SUARA2 comprises three stages. In the first stage, SUARA2 de-
termines the optimal 2D process grid arrangement of the set of P
processes, (Pr, Pc), P = Pr × Pc , and the optimal Open MPI allre-
duce algorithms to employ in the process rows and columns. The 
second stage executes the horizontal sub-allreduce operations in 
parallel in the Pr process rows. Finally, the third stage executes 
the vertical sub-allreduce operations in parallel in the Pc process 
columns, thereby completing the allreduce operation.

Fig. 5 illustrates the execution of SUARA2 for an example where 
P = 9 and A signifying the set of Open MPI allreduce algorithms. 
In the first stage, SUARA2 determines the optimal 2D process grid 
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Fig. 5. Execution of SUARA2 for the inputs P = 9, A, and m. Blue circles signify processes with ranks inside the circle. In the first stage, it determines the optimal 2D process 
grid arrangement (3, 3) and the optimal allreduce algorithms to employ in the process rows and columns. The second and third stages of SUARA2 involve execution of Ring 
with segmentation algorithms in the process rows and columns. The red rings represent the execution of Ring with segmentation algorithms. The sub-allreduce operations in 
the process rows occur in parallel followed by parallel sub-allreduce operations in the process columns.
arrangement ((Pr, Pc) = (3, 3)) and the optimal allreduce algo-
rithms in the process rows and columns (Ring with segmentation, 
Ring with segmentation). The second and third stages involve the 
execution of Ring with segmentation allreduce algorithms in process 
rows and columns. The whole allreduce operation is completed af-
ter the execution of all three stages.

Let us consider the first stage of the SUARA2 execution. One 
approach to determine the optimal 2D process grid arrangement 
is an exhaustive search that estimates the execution times of all 
the possible 2D process grid arrangements, (Pr, Pc), P = Pr × Pc , 
for a given set of P processes. For each 2D process grid arrange-
ment, (Pr, Pc), the sums of the execution times are estimated for 
all possible combinations of allreduce algorithms in the process 
rows and all possible combinations of allreduce algorithms in the 
process columns. Then, the allreduce algorithmic combinations in 
the process rows and columns that yield the minimum sum are 
selected for this process grid arrangement. Finally, the 2D process 
grid arrangement that results in a minimum estimated execution 
time is output from this stage. However, the exhaustive approach 
is infeasible due to the exponential number of allreduce algorith-
mic combinations.

Fortunately, we do not have to consider all the possible combi-
nations. Indeed, suppose algorithm a is estimated to be the fastest 
allreduce algorithm for one row of Pc processes. In that case, it 
will also be fastest for all other rows as the estimated time of any 
allreduce algorithm given by formulae (1)–(8) only depends on the 
number of processes in the row, the message size, and possibly 
the segment size, and the values of these parameters are the same 
for all rows. Therefore, using algorithm a in all rows will give us 
the fastest parallel execution of row-wise allreduce sub-operations. 
Any other combination will be slower as the time of parallel execu-
tion equals the time of the slowest algorithm in the combination. 
Similarly, using the same, fastest, algorithm in all columns will 
give us the fastest parallel execution of column-wise allreduce sub-
operations.

Thus, in its first stage, SUARA2 must only examine allreduce 
combinations given by a pair of identifiers, (ar, ac), represent-
ing the allreduce algorithms employed in the process rows and 
columns, respectively. The identifiers, ar and ac , take values in the 
set, {linear, nono, rd, rnos, rs, rab}, which are the short forms for 
the Open MPI allreduce algorithms. Hence, there will be only 36 
combinations to examine, six with the same algorithm in process 
rows and columns and thirty with different algorithms.

Next, for each of the thirty-six allreduce combinations we de-
rive a cost analytical model, which allows us to calculate the 2D 
grid arrangement of processes, (Pr, Pc), optimal for this combi-
8

nation, as well as the execution time of the combined allreduce 
operation using this arrangement and algorithmic combination.

We proceed as follows. For given P , Pc , m, ms , ar , and ac , the 
execution time of the combined allreduce operation can be ex-
pressed as follows:

T SU AR A2(P , Pc,m,ms,ar,ac) = Tar (Pc,m,ms) + Tac (
P

Pc
,m,ms)

(9)

Here, Tar gives the cost of the allreduce operations in the pro-
cess rows using the allreduce algorithm given by the identifier, ar . 
Tac represents the cost of the allreduce operations in the process 
columns employing the allreduce algorithm given by the identifier, 
ac .

For given P , m, ms , ar , and ac , T SU AR A2 is a discrete function of 
Pc with the domain, Pc ∈ {1, 2, · · · , P }. We analyze the extension 
of this function in the real domain, Pc ∈ [1, P ], represented by the 
same analytical expression for T SU AR A2.

By its definition, the extended T SU AR A2 has the following prop-
erties:

• Since the input parameters, P , m, ms, γ and the (α, β) pairs, 
are positive, T SU AR A2 is a positive function of Pc , T SU AR A2 :
[1, P ] →R>0.

• T SU AR A2 is a sum of logarithmic, linear, and reciprocal func-
tions of Pc . Therefore, it is continuous and has continuous first 
and second derivatives in the interval, [1, P ].

Consider the values of T SU AR A2 at the endpoints, {1, P }. 
T SU AR A2(P , 1, m, ms, ar, ac) gives the estimated execution time of 
the ac allreduce algorithm employing a linear arrangement of 
P processes. T SU AR A2(P , P , m, ms, ar, ac) gives the estimated ex-
ecution time of the ar allreduce algorithm employing a linear 
arrangement of P processes. Therefore, if ar = ac , then T SU AR A2(P ,

1, m, ms, ar, ac) and T SU AR A2(P , P , m, ms, ar, ac) are equal.
If message segmentation is not employed, then m is equal to ms

and T SU AR A2(P , Pc, m, ms, ar, ac) is equal to T SU AR A2(P , Pc, m, m,

ar, ac).
To derive the formula calculating the optimal (Pr, Pc) for a 

given (ar, ac), we analyze T SU AR A2 using the traditional calculus 
approach to determine the optimal value of Pc that minimizes the 
function. The main steps of this analysis follow:

• If T SU AR A2 is a constant function of Pc , then the estimated ex-
ecution time is the same for all process arrangements. There-
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fore, we select one of the process arrangements, (Pr, Pc) =
(1, P ). The analytical formula returns (1, P ), and the estimated 
execution time, T SU AR A2(P , P , m, ms, ar, ac).

• To determine the stationary point (P∗
c ) of T SU AR A2 in the in-

terval [1, P ], we obtain its first and second derivatives as fol-
lows:

∂T SU AR A2

∂ Pc
= ∂Tar (Pc,m,ms)

∂ Pc
+ ∂Tac (

P
Pc

,m,ms)

∂ Pc

∂2T SU AR A2

∂ P 2
c

= ∂2Tar (Pc,m,ms)

∂ P 2
c

+ ∂2Tac (
P
Pc

,m,ms)

∂ P 2
c

(10)

• We solve the equation ∂T SU AR A2
∂ Pc

= 0 to determine the station-
ary point (P∗

c ).

• We found that the sign of the second derivative ∂2 T SU AR A2
∂ P 2

c
does 

not depend on Pc but only depends on the input parameters, 
(P , m, ms, γ , αar , βar , αac , βac ). We illustrate this for the vari-
ous allreduce combinations that we analyze below. Therefore, 
∂2 T SU AR A2

∂ P 2
c

is either positive or negative or zero in the interval 
[1, P ].

• If ∂2 T SU AR A2
∂ P 2

c
> 0, then P∗

c minimizes T SU AR A2. We then con-

sider two integer approximations of P∗
c , �P∗

c 	 and 
P∗
c �

(the floor and ceiling). If T SU AR A2(P , �P∗
c 	, m, ms, ar, ac) <

T SU AR A2(P , 
P∗
c �, m, ms, ar, ac), then (Pr, Pc) = ( P

�P∗
c 	 , �P∗

c 	)
and T SU AR A2(P , �P∗

c 	, m, ms, ar, ac). Otherwise, (Pr, Pc) =
( P


P∗
c � , 
P∗

c �) and T SU AR A2(P , 
P∗
c �, m, ms, ar, ac).

• If ∂2 T SU AR A2
∂ P 2

c
≤ 0, the value of Pc that minimizes T SU AR A2 is one 

of or both the endpoints, {1, P }. Therefore, the optimal process 
grid arrangement is a linear arrangement of P processes.
– If the allreduce algorithms employed in the process rows 

(ar ) and columns (ac ) are the same (ar = ac), then either of 
the endpoints minimize T SU AR A2. Therefore, we select one 
of the process arrangements, (Pr , Pc) = (1, P ). The analytical 
formula returns (1, P ), and the estimated execution time, 
T SU AR A2(P , P , m, ms, ar, ac).

– If the allreduce algorithms employed in the process rows 
(ar ) and columns (ac ) are different (ar = ac), then the es-
timated execution times for the two endpoints are con-
sidered. If T SU AR A2(P , 1, m, ms, ar, ac) < T SU AR A2(P , P , m,

ms, ar, ac), then the analytical formula returns (P , 1) and 
T SU AR A2(P , 1, m, ms, ar, ac). Otherwise, it returns (1, P ) and 
T SU AR A2(P , P , m, ms, ar, ac).

We demonstrate how the method works using one particular 
allreduce combination, {Ring with segmentation, Ring with segmen-
tation}. We chose this combination for illustration because it ap-
peared optimal in our experimental setup. In the supplemental file, 
we present derivations for six other allreduce combinations.

4.2.1. Ring with segmentation, ring with segmentation

T SU AR A2(P , Pc,m,ms, rs, rs) = Trs(Pc,m,ms) + Trs(
P

Pc
,m,ms)

= (Pc + m

ms · P
− 2) · (αrs + βrs · ms + γ · ms)

+ (Pc − 1) · (αrs + βrs · m

Pc
)

+ (
P

Pc
+ m

ms · P
− 2) · (αrs + βrs · ms + γ · ms)

+ (P/Pc − 1) · (αrs + βrs · m · Pc
)

∂

∂
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T SU AR A2

∂ Pc
= (1 − P

P 2
c
) · (2 · αrs + βrs · ms + γ · ms − βrs · m

P
)

T SU AR A2

∂ Pc
= 0 =⇒ Pc = √

P

if (A1 = (2 · αrs + βrs · ms + γ · ms − βrs · m

P
) = 0)

2T SU AR A2

∂ P 2
c

= 2 · A1

P 3
c

(11)

Therefore, if A1 > 0, Pc = √
P minimizes T SU AR A2. The integer 

pproximation (�√P	 or 
√P�) that gives the least estimated ex-
cution time is then chosen. Therefore, if T SU AR A2(P , �√P	, m, m,

, rs) < T SU AR A2(P , 
√P�, m, m, rs, rs), the chosen process ar-
ngement will be (Pr, Pc) = ( P

�√P	 , �
√

P	), and the corresponding 

stimated execution time will be T SU AR A2(P , �√P	, m, m, rs, rs). 
therwise, it will be (Pr, Pc) = ( P


√P� , 

√

P�) and T SU AR A2(P ,√
P�, m, m, rs, rs).
If A1 ≤ 0, the value of Pc that minimizes T SU AR A2 is either 

f the endpoints, {1, P }. Therefore, the chosen process arrange-
ent and the corresponding estimated execution time will be 

Pr, Pc) = (1, P ) and T SU AR A2(P , P , m, m, rs, rs) respectively. Thus, 
e derived analytical formula will be as follows:

if A1 > 0

if T SU AR A2(P , �√P	,m,m, rs, rs)

< T SU AR A2(P , 
√P�,m,m, rs, rs)

(Pr, Pc) = ( P
�√P	 , �

√
P	), T SU AR A2(P , �√P	,m,m, rs, rs)

else (Pr, Pc) = ( P

√P� , 


√
P�), T SU AR A2(P , 
√P�,m,m, rs, rs)

else (Pr, Pc) = (1, P ), T SU AR A2(P , P ,m,m, rs, rs)

(12)

In total, thirty-six analytical formulae for all algorithmic com-
inations are derived this way. These formulae are then used at 
ntime for efficient selection of the optimal algorithmic combina-

on and the optimal 2D process arrangement corresponding to the 
ptimal algorithmic combination.

.3. SUARA2: pseudocode

Algorithm 1 illustrates the execution of the three main stages 
f SUARA2. The first six parameters are the standard parameters of 
e MPI_Allreduce function. The input parameter, Hαβ , represents 
e set of Hockney model (α, β) pairs for each Open MPI allre-

uce algorithm in the set of allreduce algorithms, A. The output 
arameters are the starting address of receive buffer, recvbu f ; the 
ptimal 2D process grid arrangement, (Pr, Pc); the optimal allre-
uce combination, (ar, ac), the optimal estimated executed time of 
UARA2, T SU AR A2, and the MPI return code, status.

Lines 3–6 contain the main stage 1 steps of SUARA2. First, the 
umber of available processes, P , is obtained using the MPI func-
on, M P I_Comm_size, using the input MPI communicator, comm. 
ext, the message size m is calculated using the user function, 
etMessageSize, based on the inputs, count and datatype.

The user function, SU AR A2_ f ind_optimals, determines the op-
mal allreduce combination, (ar , ac), the optimal 2D process ar-
ngement, (Pr, Pc), and the optimal estimated execution time of 

UARA2, T SU AR A2, given the inputs, P , m, ms, A, Hαβ and γ .
The Algorithm 2 depicts the main steps of SU AR A2_ f ind_

ptimals. For each (ar, ac) combination, the optimal 2D process 
rid arrangement (Pr, Pc) and the optimal estimated SUARA2 
xecution time, T , are obtained using the analytical formula, 
F ormula. The manual derivation of the analytical formula for 
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Algorithm 1 Pseudocode illustrating the three main stages of 
SUARA2.

1: procedure SUARA2(sendbu f , recvbu f , count, datatype, op, comm,
ms, A, Hαβ , γ , Pr , Pc , ar , ac , T SU AR A2, status)

Input:
Starting address of send buffer, sendbu f
Number of elements in send buffer, count
MPI Data type of elements of send buffer, datatype
MPI Operation, op
MPI communicator, comm
Message segment size, ms

Set of Open MPI allreduce algorithms, A = {linear, · · · , rab}
Set of (α, β) pairs for the allreduce algorithms, Hαβ = {(αlinear , βlinear), · · · ,

(αrab, βrab)}
Time of computation per byte, γ

Output:
Starting address of receive buffer, recvbu f
Optimal 2D process grid arrangement, (Propt , Pcopt )

Optimal allreduce combination, (aropt , acopt )

Optimal estimated executed time of SUARA2, T SU AR A2

Return code, status

2: /* First stage of SUARA2 */
3: Iam ← M P I_Comm_rank(comm)

4: P ← M P I_Comm_size(comm)

5: m ← GetMessageSize(count, datatype)
6: (Pr , Pc , ar , ac, T SU AR A2) ← SU AR A2_ f ind_optimals(P , m, ms, A, Hαβ , γ )

7: /* Second stage of SUARA2 */
8: (myr, myc) ← Get RowColRanks(Iam, P , Pr , Pc)

9: Set Allreduce AlgorithmParams(ar , ms)

10: status ← M P I_Comm_split(comm, myr, myc, rowcomm)

11: status ← M P I_Allreduce(sendbu f , count, datatype, op, rowcomm)

12: status ← M P I_Comm_ f ree(rowcomm)

13: /* Final stage of SUARA2 */
14: SetM P I AllreduceRuntimeParams(ac , ms)

15: status ← M P I_Comm_split(comm, myc, myr, colcomm)

16: status ← M P I_Allreduce(sendbu f , count, datatype, op, colcomm)

17: status ← M P I_Comm_ f ree(colcomm)

18: return (Pr , Pc , ar , ac , T SU AR A2, status)
19: end procedure

an allreduce combination is described in detail in the previous 
section. Thus, the function, SU AR A2_ f ind_optimals, determines 
and returns the best allreduce combination, (aropt , acopt ), and the 
optimal 2D process arrangement, (Propt , Pcopt ), corresponding to 
(aropt, acopt ) that results in minimal estimated SUARA2 execution 
time, T SU AR A2.

Lines 8–12 present the second stage steps of SUARA2. In
Line 8, each process obtains its coordinates, (myr, myc), in the
2D process grid arrangement, (Pr, Pc), using the user
function, Get RowColRanks. Line 9 invokes the user function, 
SetM P I AllreduceRuntime Params, that calls the MPI library imple-
mentation-specific runtime functions to set the allreduce algorithm 
ar to be employed during the execution of M P I_Allreduce and 
message segment size to use if the allreduce algorithm is Ring 
with segmentation. The row communicators employed for the hori-
zontal sub-allreduce operations are obtained using the MPI library 
function, M P I_Comm_split , in Line 10. There will be Pr row sub-
communicators created in Line 10 because Pr different colours, 
myr, are passed in the second argument to M P I_Comm_split . At 
Line 11, Pr horizontal sub-allreduce operations employing the ar

allreduce algorithm happen in parallel in the process rows using 
the Pr row subcommunicators.

Lines 14–17 show the final stage steps of SUARA2, com-
pleting the whole allreduce operation. First, the user function, 
SetM P I AllreduceRuntime Params, sets the allreduce algorithm 
ac and message segment size to use during the execution of 
M P I_Allreduce (Line 14). Next, the column communicators em-
ployed for the vertical sub-allreduce operations are created us-
ing the MPI library function, M P I_Comm_split , in Line 15. There 
will be Pc column subcommunicators created in Line 17 since 
Pc different colours, myc, are passed in the second argument to 
10
Algorithm 2 Algorithm to determine the optimal allreduce combi-
nation, 2D process arrangement, and the estimated execution time 
of SUARA2.

1: procedure SUARA2_find_optimals(P , m, ms, A, Hαβ , γ , Propt , Pcopt , aropt ,
acopt , T SU AR A2)

Input:
Number of processes, P
Message size, m
Message segment size, ms

Set of Open MPI allreduce algorithms, A = {linear, · · · , rab}
Set of (α, β) pairs for the allreduce algorithms, Hαβ = {(αlinear , βlinear), · · · ,

(αrab, βrab)}
Time of computation per byte, γ

Output:
Optimal 2D process grid arrangement, (Propt , Pcopt )

Optimal allreduce combination, (aropt , acopt )

Optimal estimated executed time of SUARA2, T SU AR A2

2: T SU AR A2 ← ∞
3: for ar ∈ A do
4: for ac ∈ A do
5: (Pr , Pc , T ) ← A F ormula(P , m, ms, ar , ac, Hαβ , γ )

6: if (T < T SU AR A2) then
7: Propt ← Pr ; Pcopt ← Pc

8: aropt ← ar ; acopt ← ac

9: T SU AR A2 ← T
10: end if
11: end for
12: end for
13: return (Propt , Pcopt , aropt , acopt , T SU AR A2)

14: end procedure

M P I_Comm_split . Finally, at Line 18, Pc vertical sub-allreduce op-
erations employing the ac allreduce algorithm occur in parallel 
in the process columns using the Pc column subcommunicators 
thereby completing the allreduce operation.

4.4. Accuracy of estimation using theoretical models

Castelló et al. [8] highlight the factors that negatively affect the 
accuracy of estimation of execution times of Open MPI allreduce 
algorithms using theoretical models.

We make sure we minimize the negative impact on the accu-
racy of selection of the optimal allreduce combination in SUARA2 
using theoretical models by following the steps below:

• Deriving analytical models for the different Open MPI allre-
duce algorithms from the Open MPI code implementing the 
algorithms rather than from high-level mathematical defini-
tions. The analytical models consider the algorithms’ proper-
ties, which significantly impact their performance and can only 
be extracted from the implementation code. Such properties 
include blocking or non-blocking, rendezvous or eager proto-
col, and segmentation/pipelining.

• Employing a different pair (αa, βa) for a collective algorithm, 
a, and accurately estimating each pair using careful design of 
the communication experiments. Nuriyev et al. [30,31] found 
that using different (αa, βa) for a collective algorithm, a, im-
proves the accuracy of selection of the best performing col-
lective algorithm from the set of native MPI collective algo-
rithms for a collective operation. The insight behind using 
algorithmic-specific (αa, βa) pairs is that the estimated val-
ues of the αa and βa capture, not just network characteristics 
but also algorithm-specific traits. More specifically, a specific 
communication experiment is designed for each collective al-
gorithm so that the algorithm itself would be involved in the 
execution of the experiment. Moreover, the execution time of 
this experiment must be dominated by the execution time of 
this collective algorithm.

• Determining the optimal 2D process arrangement using the 
traditional calculus approach for each allreduce combination 
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employing different native allreduce algorithms in process 
rows and columns. SUARA2 then selects the optimal allreduce 
combination out of the thirty-six allreduce combinations us-
ing the optimal 2D process arrangement determined for each 
allreduce combination and employs this optimal combination 
for the execution of the MPI allreduce collective operation.

• Nuriyev et al. [31] demonstrate that the basic Hockney model 
is inaccurate and needs to be revised for one-process-per-core 
application configuration on multicore clusters since it does 
not consider network congestion (contention). Therefore, we 
focus on only one-process-per-node application configuration 
in this work. Based on experiments on our experimental plat-
form (Shaheen-II Cray CX40), we observed that the basic Hock-
ney model, by following the above steps, is accurate for this 
application configuration.

4.5. SUARA2: runtime efficiency, implementation specifics, and 
portability

The runtime efficiency of SUARA2 is determined by the effi-
ciency of the SU AR A2_ f ind_optimals function (Algorithm 1, Line 
6), which selects the optimal algorithmic combination, the creation 
of the row and column subcommunicators (Lines 10 and 15), and 
the freeing of row and column subcommunicators (Lines 12 and 
17). The SU AR A2_ f ind_optimals function is very efficient since 
it uses only thirty-six analytical formulae to select the optimal 
algorithmic combination where each formula evaluates a simple 
condition and an analytical expression. Furthermore, we found that 
the creation of the row and column subcommunicators using the 
MPI library function, M P I_Comm_split , and the freeing of the sub-
communicators using M P I_Comm_ f ree are not expensive on our 
experimental platform, a Cray XC40 supercomputer, even for large 
P . The execution times of SU AR A2_ f ind_optimals observed in our 
experiments are in microseconds compared to the execution times 
of SUARA2, which range from milliseconds to a few seconds for 
large P .

The message segment size, ms , input to SUARA2 is typically 
obtained from the set of recommended values from practice for 
Open MPI. For example, the default value of the MCA parameter, 
btl_sm_max_send_size, is known to give good performance. The set 
of Open MPI algorithms, A, is determined by querying the Open 
MPI Modular Component Architecture (MCA) tuning interface func-
tions. The Hockney model pairs, {(αlinear, βlinear), · · · , (αrab, βrab)}, 
for the allreduce algorithms in A and the time of computation per 
byte, γ , are determined offline and input to SUARA2.

The function, SetM P I AllreduceRuntime Params, employs the 
M P I_T interface functions to set the allreduce algorithm and seg-
ment size at the runtime. M P I_T interface functions are intro-
duced in MPI 3.0 that allow getting and setting performance and 
control variables exposed by an MPI implementation. The imple-
mentation of SetM P I AllreduceRuntime Params is provided in the 
supplemental.

This section described the design and implementation of 
SUARA2 on top of the Open MPI set of allreduce algorithms. How-
ever, this process is highly portable to other open-source MPI 
implementations that provide a set of allreduce algorithms whose 
analytical models are either published or can be derived from their 
sources.

4.6. Theoretical speedup of SUARA2 over the best open MPI native 
allreduce algorithm

We analyse the theoretical speedup of SUARA2 over the best 
Open MPI native allreduce algorithm.

The best Open MPI native allreduce algorithm is specific to a 
platform and depends on many parameters, that include the num-
11
ber of processes executing the algorithm, P , the message size, m, 
the message segment size, ms , the time of computation per byte, 
γ , and the (α, β) pair that is specific to an allreduce algorithm. 
Based on our experiments, we find that this algorithm on our 
experimental platform, a Cray XC40 supercomputer, is Ring with 
segmentation algorithm for P > 64. We also observe that SUARA2 
employs the allreduce combination, (rs, rs), that uses ring with seg-
mentation algorithm in the process rows and columns for P > 64. 
SUARA2 uses the 2D process arrangement P√

P
× √

P , which is op-

timal for this allreduce combination.
Therefore, we illustrate the speedup for the case where the best 

Open MPI native allreduce algorithm is Ring with segmentation al-
gorithm, and SUARA2 employs Ring with segmentation algorithm in 
the process rows and columns and A1 > 0. The speedup is equal 
to the ratio of the cost of the Open MPI algorithm executed by P
processes and the cost of SUARA2 employing the allreduce combi-
nation (rs, rs) and 2D process grid arrangement, P√

P
× √

P .

The cost of SUARA2 is

T SU AR A2(P ,
√

P ,m,ms, rs, rs)

= 2 · (αrs + βrs · ms + γ · ms) · (√P + m

ms · √P
− 2)

+ 2 · (√P − 1) · (αrs + βrs · m√
P

)

(13)

The cost of the Open MPI algorithm is,

T OpenM P I (P ,m,ms, rs)

= (αrs + βrs · ms + γ · ms) · (P + m

ms · P
− 2)

+ (P − 1) · (αrs + βrs · m

P
)

(14)

Expressing asymptotically for large P , the costs become

T SU AR A2(P ,
√

P ,m,ms, rs, rs) = 2(A2
√

P − A3√
P

+ A4)

= O(
√

P )

T OpenM P I (P ,m,ms, rs) = A2 P − A3

P
− A4

= O(P )

(15)

where A2 and A3 are expressions without P ,

A2 = 2 · αrs + βrs · ms + γ · ms

A3 = (αrs + γ · ms) · m

ms

A4 = (αrs + βrs · ms + γ · ms) · 2 + αrs − βrs · m

(16)

The asymptotic theoretical speedup of SUARA2 is,

T OpenM P I (P ,m,ms, rs)

T SU AR A2(P ,
√

P ,m,ms, rs, rs)
= O(P )

O(
√

P )

= O(
√

P )

(17)

5. Experimental results

We demonstrate the practical efficiency of SUARA2 in this sec-
tion. Our experimental platform is Shaheen II, a Cray XC40 su-
percomputer. The supercomputer has 6,174 compute nodes, and 
each node comprises a dual-socket 16-core Intel Haswell proces-
sor running at 2.3 GHz. In addition, each node has 128 GB of 
DDR4 memory running at 2300 MHz. Only 1024 nodes are used 
for our experiments. The supercomputer does not contain graph-
ics processing units (GPUs). Therefore, only CPUs are used in our 
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Table 2
Specification of Cray XC40 Shaheen-II.

Specification Description

Node Processor type: Intel Haswell, 2 CPU sockets per node, 16 processor cores per CPU, 2.3 GHz
No. of nodes 6174
Memory 128 GB per node, Over 790 TB total memory
Network Cray Aries interconnect with Dragonfly topology
Storage Sonexion 2000 Lustre, 17.6 PB of usable storage, Over 500 GB/s bandwidth
Table 3
The settings used for ResNet-50 
training.

Parameter Value

Training batch size 32
Validation batch size 32
No. of Epochs 90
SGD momentum 0.9
Weight decay 0.00005

experiments. The compute nodes are connected via the Cray Aries 
High Speed Network. Aries is a packet-switched interconnect with 
a dragonfly topology comprising 18 groups of nodes where nodes 
within a group are interconnected with a 2D all-to-all structure. 
The data storage is a Lustre Parallel file system based on Cray 
Sonexion 2000 with a storage capacity of 17.2 PB delivering around 
500 GB/s of I/O throughput. The specification of the supercomputer 
is shown in Table 2.

We got access to use Shaheen-II only for a short duration, 
which limited the extent and scope of our experiments.

Horovod with Open MPI is used for training ResNet-50 DNN 
using ImageNet ILSVRC2010 dataset [37]. The Horovod and Open 
MPI versions are 0.19.2 and 4.0.3. The steps to install them on 
Shaheen-II are given in the supplemental. Open MPI is configured 
with “–with-slurm” option to interface with Slurm job scheduler.

To determine the execution times of SUARA2, Horovod is com-
piled by replacing the invocation to the native Open MPI allreduce 
routine with our Open MPI wrapper containing the SUARA2 im-
plementation. The Slurm Open MPI script deployed to execute the 
Horovod ResNet-50 MPI application is given in the supplemental.

The MPI application is multi-threaded that executes one process 
per node employing a number of threads equal to the number of 
cores in a node. While the basic Hockney model employed in the 
design and implementation of SUARA2 is accurate for one-process-
per-node application configuration, it is inaccurate for one-process-
per-core application configuration on multicore clusters since it 
does not consider network congestion (contention). Hence, the ba-
sic Hockney model must be either revised or a more accurate an-
alytical model must be employed [31]. Therefore, application config-
urations that include one-process-per-socket and one-process-per-core 
are out of the scope of this work.

The settings employed for ResNet-50 training [17] are given in 
Table 3. The ResNet-50 is a deep convolutional network containing 
50 layers described in detail in the supplemental. The ImageNet 
dataset is a large collection of images organized according to the 
WordNet hierarchy. Each meaningful concept in WordNet, possibly 
described by multiple words or word phrases, is called a “synonym 
set” or “synset.” There are more than 100,000 synsets in WordNet, 
and the majority of them are nouns (80,000+).

The ImageNet dataset used for the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) in this work contains 1,261,406 
training images, 50,000 validation images, and 150,000 test im-
ages. There are 1000 synsets, and the number of images for each 
synset ranges from 668 to 3047. The 50,000 validation images are 
divided into 50 images per synset. The steps to install the Ima-
geNet dataset on Shaheen-II are presented in the supplemental. 
Briefly, the file quota must be increased to allow the user to store 
12
Table 4
The values of (α, β) experimen-
tally obtained on Shaheen-II for 
the allreduce algorithm, ring with 
segmentation. The parameter, γ , 
is the time of summation reduc-
tion computation per byte.

Parameter Value

αrs 1.5e-06
βrs 6.25e-11
γ 2e-10

around 1.2 million images. Then, a script in the dataset package 
installation prepares the training and test directories for the im-
ages. Finally, as per the recommendation to use the dataset, some 
images are patched using a script to avoid training and test errors.

The main stages of parallel training of a DNN are detailed in 
supplemental, Section 2. All the processes call the MPI_Allreduce 
collective routine during Step 3 of an epoch. Each process passes 
a message, a vector of gradients of size m bytes, to the MPI_Allre-
duce collective routine to obtain the same global vector of average 
gradients from the input vectors of gradients.

We follow a strict statistical methodology to ensure the exper-
imental results are reliable. For each data point, the experiment is 
repeated until the sample mean lies in the 95% confidence inter-
val and a precision of 0.025 (2.5%) is achieved. For this purpose, 
Student’s t-test is used, assuming that the individual observations 
are independent and their population follows the normal distribu-
tion. The validity of these assumptions is verified by plotting the 
distributions of observations and using Pearson’s Test.

The inputs to SUARA2 are the number of processes, P ; the 
message size, m; the message segment size, ms; the time of com-
putation per byte, γ ; and a (α, β) pair for each Open MPI allreduce 
algorithm. Each process contains a local vector of values (size equal 
to m bytes) that is reduced. In our experiments, the message seg-
ment size, ms , is set to 8 KB, which is also commonly used in Open 
MPI.

The parameter γ is algorithm-independent and is estimated 
using separate communication experiments. The Hockney model 
parameters αa and βa specific to each allreduce algorithm, a, and 
used in the Open MPI analytical models of the allreduce collec-
tive algorithms are estimated using the best practices outlined in 
[36], [30]. For each allreduce algorithm a, a separate communica-
tion experiment is designed so that the algorithm itself would be 
involved in the execution of the experiment. Moreover, the execu-
tion time of this experiment is dominated by the execution time 
of this allreduce algorithm. Therefore, each allreduce algorithm a
is executed by employing diverse sets of P and m and the ex-
ecution times are measured. Then, a system of linear equations 
with αa and βa as unknowns is derived from these experiments. 
Finally, linear regression is applied to find αa and βa . The values 
of (αrs, βrs) obtained for the allreduce algorithm, ring with segmen-
tation, on Shaheen-II are given in Table 4.

For a given P , the optimal Open MPI allreduce algorithm in 
the process rows and columns can vary depending on the message 
size m. Fig. 6 shows the message sizes employed in MPI_Allreduce 
during an epoch in the DNN training on ImageNet ILSVRC2010 
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Fig. 6. A timeline fragment during a training epoch showing the message sizes em-
ployed in MPI_Allreduce calls of ResNet-50 DNN on ImageNet ILSVRC2010 dataset 
for P = 1024.

Fig. 7. Execution times per epoch of MPI_Allreduce for P = 512 employing ring with 
segmentation algorithm in the process rows and columns during ResNet-50 training 
using ImageNet. The x-axis shows the number of process columns (Pc ) used in the 
2D process grid arrangement, ( P

Pc
, Pc ). The optimal value of Pc is 32.

dataset. The message sizes range from 4 KB to 52 MB. For message 
sizes less than or equal to 1 MB, the SUARA2 Open MPI wrapper 
invokes the best native Open MPI algorithm to fulfil the allre-
duce operation. For message sizes greater than 1 MB, the SUARA2 
Open MPI wrapper employs the Algorithm 1 described in the Sec-
tion, “SUARA2: Pseudocode.” The algorithm finds the optimal allre-
duce combination from thirty-six allreduce combinations using the 
SU AR A2_ f ind_optimals function. An allreduce combination is a 
pair of identifiers representing the allreduce algorithms employed 
in the process rows and columns.

Fig. 7 shows for different (Pr, Pc) combinations of P = 512, the 
execution time per epoch of SUARA2 during the ResNet-50 train-
ing. The allreduce algorithm employed in the process rows and the 
columns is ring with segmentation. One can see that the optimal 
process grid arrangement is ( P

Pc
, Pc) where Pc is the best integer 

approximation to 
√

P confirming the results from our theoretical 
analysis.

We check the execution time of SUARA2 with the actual exper-
imental times for the thirty-six different allreduce combinations 
for representative sets of message sizes (m) and the number of 
processes (P ) on our experimental platform. We observe that the 
optimal allreduce combination determined by SUARA2 is always 
the same as the best allreduce combination out of the different 
allreduce combinations that are experimentally evaluated. We also 
observe through our experiments that SUARA2 outperforms allre-
duce algorithms employing 2-step decomposition (reduce_scatter, 
allgather) and 3-step decomposition (reduce_scatter, allreduce, all-
gather) for a representative range of large message sizes and P
(P ≤ 1024) on the Shaheen-II supercomputer (Cray CX40).
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Fig. 8. The speedup of SUARA2 over the native Open MPI allreduce routine against 
the number of processes (P ).

Fig. 8 shows the speedup of SUARA2 over the native Open 
MPI allreduce routine for the values of P , {16, 32, 64, 128, 256, 
512, 1024}. The speedup is the ratio of the execution time of 
the native Open MPI allreduce routine divided by the execution 
time of SUARA2. For P ≤ 64, the allreduce algorithm employed 
in the process rows and columns is ring without segmentation. For 
64 < P ≤ 1024, the allreduce algorithm employed in the process 
rows and columns is ring with segmentation. In addition, the opti-
mal 2D process grid arrangement is ( P

Pc
, Pc), where Pc is the best 

integer approximation to 
√

P . The average and maximum speedups 
are 2x and 2.65x. One can observe that the speedup graph dis-
plays the trend that asymptotically (for large P ) approaches the 
behaviour of 

√
P validating our theoretical analysis.

We observe that the optimal allreduce combination found by 
SUARA2 has the same allreduce algorithm in the process rows 
and columns in all our experiments employing message sizes, 
m ∈ {4 KB, ..., 52 MB}, and P ∈ {1, ..., 1024}. However, in theory, 
the optimal allreduce algorithms employed in the process rows 
and columns can be different.

The maximum reduction of training times of ResNet-50 DNN 
on the ImageNet ILSVRC2010 dataset is 9% for P = 1024 processes. 
This experimental finding was the best we could accomplish given 
the limited access and duration of our experiments on Shaheen-II, 
which narrowed their extent and scope.

6. Conclusion

Deep neural networks (DNNs) have fuelled impressive inno-
vations in computer vision, speech recognition, natural language 
processing, bioinformatics, drug design, medical image analysis, 
and climate science. However, accelerating the training of DNNs is 
a formidable challenge that is overcome by parallelization strate-
gies. The efficiency of parallel deep learning packages employing 
synchronous stochastic gradient descent relies crucially on the per-
formance of MPI allreduce collective communication operation.

MPI implementations provide many algorithms for the allre-
duce collective routine that can be selected using four approaches, 
exhaustive experimentation, empirical automatic selection, imple-
mentation-independent analytical performance modelling, and 
implementation-aware analytical performance modelling com-
bined with accurate model parameter estimation. State-of-the-
art platform-independent methods for performance optimization 
of the allreduce collective communication employ either func-
tional decomposition of the global allreduce operation into sub-
operations that are not allreduce operations or message decompo-
sition/segmentation.

In this work, we proposed SUARA, a novel scalable universal 
allreduce meta-algorithm comprising L serial steps executed by P
MPI processes. At each step, SUARA partitions the set of processes 
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into subsets that execute optimally selected library algorithms to 
solve sub-allreduce problems on these subsets in parallel to ac-
complish the whole allreduce operation after completing all the L
steps.

Therefore, SUARA is a platform-independent multi-step allre-
duce meta-algorithm employing process decomposition to opti-
mize the global allreduce operation using native allreduce algo-
rithms as sub-operations. Thus, it differs from the state-of-the-art 
platform-independent allreduce algorithms in two respects. First, it 
is based on process decomposition, not functional or message de-
composition. Second, it only employs sub-allreduce operations that 
execute optimally selected native allreduce algorithms.

We proved that the processes executing SUARA must naturally 
form a L-dimensional rectangular arrangement for maximum par-
allelism and to ensure the correctness of the allreduce operation.

We then designed, theoretically studied and implemented a 
two-step SUARA called SUARA2 on top of the Open MPI library. 
We use the traditional calculus approach to determine the opti-
mal 2D process arrangement for each allreduce combination em-
ploying different native allreduce algorithms in process rows and 
columns. SUARA2 then selects the optimal allreduce combination 
out of the thirty-six allreduce combinations using the optimal 2D 
process arrangement determined for each allreduce combination 
and employs this optimal combination for the execution of the MPI 
allreduce collective operation.

We proved that SUARA2 exhibits a theoretical asymptotic 
speedup O(

√
P ) over the best Open MPI allreduce algorithm. Fur-

thermore, we demonstrated the practical efficiency of SUARA2 by 
accelerating ResNet-50 deep neural network training by 9% on the 
ImageNet dataset on Shaheen-II supercomputer employing 1024 
nodes. SUARA2 exhibited an average speedup of over 2x over the 
native Open MPI allreduce routine (the maximum being 2.65x).

In our future work, we will pursue two research directions. 
The first research direction will look into the design and imple-
mentation of SUARA, comprising more than two steps. The second 
research direction will focus on the efficiency of the optimized 
routine for training ResNet-50 DNN on GPUs employing the NCCL 
communication library.
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