
Scalable Dense Factorizations for Heterogeneous Computational Clusters

Ravi Reddy
School of Computer

Science and Informatics,
University College Dublin
manumachu.reddy@ucd.ie

Alexey Lastovetsky
School of Computer

Science and Informatics,
University College Dublin
alexey.lastovetsky@ucd.ie

Pedro Alonso
Department of Information
Systems and Computation,
Polytechnic University of

Valencia
palonso@dsic.upv.es

Abstract

This paper discusses the design and the
implementation of the LU factorization routines
included in the Heterogeneous ScaLAPACK library,
which is built on top of ScaLAPACK. These routines
are used in the factorization and solution of a dense
system of linear equations. They are implemented
using optimized PBLAS, BLACS and BLAS libraries
for heterogeneous computational clusters. We present
the details of the implementation as well as
performance results on a heterogeneous computing
cluster.

1. Introduction
This paper discusses the design and the

implementation of the LU factorization routines
included in the Heterogeneous ScaLAPACK library.
These routines are used in the factorization and
solution of a dense system of linear equations.

Heterogeneous ScaLAPACK [1] is a software
package providing optimized parallel linear algebra
programs for heterogeneous computational clusters
(HCCs). It is built on top of ScaLAPACK [2] and
reuses its software fully. It is currently under
development. At the moment, it contains full
implementation of Heterogeneous PBLAS, which
provides optimized parallel basic linear algebra
subprograms for HCCs. The building blocks of
Heterogeneous PBLAS are PBLAS [3], BLACS [4]
and BLAS [5].

There are a few research contributions to compute
LU factorization on heterogeneous computational
clusters (HCC). However there is only a single
proposal [6] mooting provision of LU factorization
routines in the form of a library and the issues involved
thereof. The authors discuss data allocation strategies
to implement matrix products and dense linear system
solvers on HCCs as a basis for a successful extension
of the ScaLAPACK library to heterogeneous
platforms. They show that extending the standard

ScaLAPACK block-cyclic distribution to
heterogeneous 2D grids is difficult. In most cases, a
perfect balancing of the load between all processors
cannot be achieved and deciding how to arrange the
processors along the 2D grid is a challenging NP-
complete problem.

A few contributions present multiprocessing
approaches to solve linear algebra kernel on HCCs.
The multiprocessing approach can be summarized as
follows:
• The whole computation is partitioned into a large

number of equal chunks;
• Each chunk is performed by a separate process;
• The number of processes run by each processor is

as proportional to its speed as possible.
Thus, while distributed evenly across parallel
processes, data and computations are distributed
unevenly over processors of the heterogeneous
network so that each processor performs the volume of
computations proportional to its speed.

To summarize their results, the multiprocessing
strategy is easier to accomplish. It allows the complete
reuse of high-quality software such as ScaLAPACK,
which is developed for homogeneous distributed
memory systems, in heterogeneous environments with
minimal development efforts and good speedup.
Furthermore software providing optimized parallel
linear algebra programs on HCCs must automate the
tedious and error-prone tasks of determining the
accurate platform parameters such as speeds of the
processors, latencies and bandwidths of the
communication links connecting different pairs of
processors and optimal algorithmic parameters such as
number of processes, number of processors, number of
processes per processor involved in the execution of
the parallel algorithm and the mapping of the processes
to the executing nodes of the HCC. The Heterogeneous
ScaLAPACK library performs these automations. This
paper demonstrates how they are achieved by
presenting details of the implementation of a LU
factorization routine.

2008 International Symposium on Parallel and Distributed Computing

978-0-7695-3472-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPDC.2008.10

49

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

Figure 1. Description of the performance model of the PDGETRF routine in the mpC’s performance model
definition language.

/* 1 */ algorithm pdgetrf(int M, int N, int IA, int JA,
/* 2 */ int DESCA[DLEN1_], int p, int q) {
/* 3 */ coord I=p, J=q;
/* 4 */ node {I>=0 && J>=0: bench*(hscal_pdgetrf_tcomp(I, J, M, N, IA,
/* 5 */ JA, DESCA, p, q)/hscal_pdgetrf_bench(M, N));};
/* 5 */ link (K=p, L=q) {
/* 6 */ I>=0 && J>=0: length*(hscal_pdgetrf_tcomm(I, J, K, L, M,
/* 7 */ N, IA, JA, DESCA, p, q)) [I, J] -> [K, L];
/* 8 */ };
/* 9 */ parent[0,0];
/* 10 */ scheme {
/* 11 */ int bf, i__3, i__4, jb, jn; double *tcomp, *tcomm;
/* 12 */ hscal_pdgetf2_s(&M, JB_l, ..., p, q, tcomp, tcomm);
/* 13 */ if (jb+1 <= N) {
/* 14 */ hscal_pdlaswp_s(“F”, “R”, ..., p, q, tcomp, tcomm);
/* 15 */ hscal_pdtrsm_s(“L”, “L”, “N”, “U”, ..., p, q, tcomp, tcomm);
/* 16 */ if (jb+1 <= M) hscal_pdgemm_s(“N”, “N”, ..., p, q, tcomp, tcomm);
/* 17 */ }
/* 18 */ for(j = jn+1; j <= min(M, N); j += bf) {
/* 19 */ i__3 = M – j + JA;
/* 20 */ hscal_pdgetf2_s(&i__3, ..., p, q, tcomp, tcomm);
/* 21 */ hscal_pdlaswp_s(“F”, “R”, &i__3, ..., p, q, tcomp, tcomm);
/* 22 */ if (j - JA + jb + 1 <= N) {
/* 23 */ hscal_pdlaswp_s(“F”, “R”, &i__3, ..., p, q, tcomp, tcomm);
/* 24 */ hscal_pdtrsm_s(“L”, “L”, “N”, “U”, &jb, &i__3, ...,
/* 25 */ p, q, tcomp, tcomm);
/* 26 */ if (j - JA + jb + 1 <= M) {
/* 27 */ i__3 = M - j - jb + JA;
/* 28 */ i__4 = N - j - jb + JA;
/* 29 */ hscal_pdgemm_s(“N”, “N”, &i__3, &i__4, &jb, ...,
/* 30 */ p, q, tcomp, tcomm);
/* 31 */ }
/* 32 */ }
/* 33 */ }
/* 34 */ };
/* 35 */ };

 /* Simplified scheme of PDGEMM performance model */
/* 1 */ scheme hscal_pdgemm_s(char *TRANSA, char *TRANSB, int n, int b,
/* 2 */ int p, int q, double *tcomp, double *tcomm) {
/* 3 */ int i, j, k ;
/* 4 */ for(k = 0; k < n; k+=b) {
/* 5 */ par(i = 0; i < p; i++)
/* 6 */ par(j = 0; j < q; j++)
/* 7 */ if (j != ((k/b)%q))
/* 8 */ (100.0*b*b*(n/(b*p))/TCOMM(i, ((k/b)%q), i, j, p, q)
/* 9 */ %% [i,((k/b)%q)]->[i,j];
/* 10 */ par(i = 0; i < p; i++)
/* 11 */ par(j = 0; j < q; j++)
/* 12 */ if (i != ((k/b)%p))
/* 13 */ (100.0*b*b*(n/(b*q))/TCOMM(((k/b)%p), j, i, j, p, q)
/* 14 */ %% [((k/b)%p),j]->[i,j];
/* 15 */ par(i = 0; i < p; i++)
/* 16 */ par(j = 0; j < q; j++)
/* 17 */ ((100.0*2*b*b*b*(n/(b*p))*(n/(b*q)))/tcomp[i*q+j]) %% [i,j];
/* 18 */ }
/* 19 */ };

50

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows. We
start with the implementation of the LU factorization in
the Heterogeneous ScaLAPACK library. This is
followed by experimental results of execution of
Heterogeneous ScaLAPACK programs employing the
LU factorization routines on a local network of
heterogeneous computers. We conclude the paper by
outlining our future research goals.

2. Heterogeneous ScaLAPACK LU
Factorization

In this section, we present the implementation
details of the LU factorization routine (PDGETRF) of
a general distributed matrix, which uses partial
pivoting with row interchanges, in the Heterogeneous
ScaLAPACK library. The details are equally
applicable to other LU factorization routines supported
in ScaLAPACK. We refer the readers to [7] for the
description of the LU Factorization algorithm and the
parallel implementation of the ScaLAPACK
PDGETRF routine.

2.1 Performance model of ScaLAPACK LU
Factorization

The first step in the implementation is the
description of its performance model using a
performance model definition language (PMDL). The
performance model allows application programmer to
specify their high-level knowledge of the application
that can assist in finding the most efficient
implementation on HCCs. This model allows
specification of all the main features of the underlying
parallel algorithm that have an essential impact on
application execution performance on HCCs. These
features are
• The total number of processes executing the

algorithm (which is a output parameter);
• The total volume of computations to be performed

by each of the processes during the execution of
the algorithm;

• The total volume of data to be transferred between
each pair of processes during the execution of the
algorithm;

• The order of execution of the computations and
communications by the parallel processes, that is,
how exactly the processes interact during the
execution of the algorithm (which computations
are performed in parallel, which are serialized,
which computations and communications overlap,
etc.).

The PMDL uses most of the features in the
specification of network types of the mpC language
[8]. The mpC compiler compiles the description of this
performance model to generate a set of functions,

which make up the algorithm-specific part of the mpC
runtime system. These functions are called by the
mapping algorithms of mpC runtime to estimate of the
execution time of the parallel algorithm. This happens
during the creation of the heterogeneous context of the
ScaLAPACK routine (the steps are outlined in the
following section).

The description of the performance model has been
the most complicated and tedious effort. The key
design issues were (a) accuracy to facilitate accurate
prediction of the execution time of the ScaLAPACK
routine, (b) efficiency to execute the performance
model in reasonable execution time, (c) reusability to
reuse the performance models as building blocks for
the solution to dense linear system of equations and (d)
preservation to preserve the key design features of
underlying ScaLAPACK package.

The performance model definition of PDGETRF
ScaLAPACK routine shown in Figure 1 demonstrates
the complexity of the effort of writing a performance
model. Lines 1-2 is a header of the performance model
declaration. It introduces the name of the performance
model pdgetrf parameterized with the scalar integer
parameters M, N, IA, JA, p and q and a vector
parameter, which is the descriptor array DESCA for the
matrix A. Parameters M and N are the rows and
columns of the matrix A. Parameters IA and JA are the
row index and the column index in the matrix.
Parameters p and q are output parameters representing
the number of process rows and columns in the process
grid arrangement.

Line 3 is a coordinate declaration declaring the 2D
coordinate system to which the processor nodes of the
network are related. Lines 4-5 is a node declaration. It
associates the abstract processors with this coordinate
system to form a p×q grid. It specifies the (absolute)
volume of computations to be performed by each of the
processors. The statement bench just specifies that as
a unit of measurement, the volume of computation
performed by some benchmark code be used. The
auxiliary function hscal_pdgetrf_tcomp
calculates the absolute total volume of computations
performed by the abstract processor with coordinates
(I,J) during the execution of the PDGETRF routine.
It is presumed that the benchmark code, which is used
for estimation of speeds of processors, performs a local
GEMM update of two dense m×b and b×n matrices
where b is the optimal data distribution factor
determined by the Heterogeneous ScaLAPACK
runtime system and (m,n) are heuritics determined
based on the problem size. The auxiliary function
hscal_pdgetrf_bench calculates the absolute
total volume of computations performed by the
processor during the execution of the benchmark code,
which is 2×m×b×n. The lines of node declaration

51

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

specify that the volume of computations to be
performed by the abstract processor with coordinates
(I,J) is
(hscal_pdgetrf_tcomp(…)/hscal_pdgetrf
_bench(…)) times bigger than the volume of
computations performed by the benchmark code.

Lines 5-8 are a link declaration. This specifies the
links between the abstract processors, the pattern of
communication among the abstract processors, and the
total volume of data to be transferred between each
pair of abstract processors during the execution of the
algorithm. The auxiliary function
hscal_pdgetrf_tcomm calculates the total
volume of data in matrix elements transferred between
processors with coordinates (I,J) and (K,L) during the
execution of the PDGETRF routine. The total volume
of data in bytes transferred from processor PIJ to
processor PKJ will be given by
(hscal_pdgetrf_tcomm(…))×sizeof(doubl
e).

Line 10 introduces the scheme declaration. The
scheme block describes how exactly abstract
processors interact during the execution of the
algorithm. The scheme block is composed mainly of
two types of units. They are computation and
communication units. Each computation unit is of the
form]%%[ie specifying that e percent of the total
volume of computations is performed by the abstract
processor with the coordinates (i). Each
communication unit is of the form][]%%[jie →
specifying transfer of data from abstract processor with
coordinates i to the abstract processor with
coordinates j. There are two types of algorithmic
patterns in the scheme declaration, which are
sequential and parallel. The parallel algorithmic
patterns are specified by the keyword par and they
describe parallel execution of some actions (mixtures
of computations and communications). The scheme
describes the first block of b columns separately. Then
it describes min(M,N) successive steps of the
algorithm. At each step k,
• Line 20 describes the LU factorization of the

current panel by the current column of processes
using PDGETF2;

• Line 21 describes the row interchanges to the left
and right of the current panel using PDLASWP;

• Lines 24-25 describe the broadcast of L11 and
computation of block row of U12 using PDTRSM
and finally

• Lines 29-30 describes the broadcast of L21 and U12
followed by updating of trailing matrix A22 using
PDGEMM.

Due to space limitations, we would only highlight
the important points in the scheme of the PDGEMM

routine. The scheme hscal_pdgemm_s describes the
simplest case of parallel matrix-matrix multiplication
of two dense square matrices A and B of size n×n. The
reader is referred to [9,10] for more details of the
description of the performance model of PDGEMM.
This definition is an extensively stripped down version
of the actual, which can be studied from from the file
/PBLAS/SRC/pm_pdgemm.mpc in the
Heterogeneous ScaLAPACK package. The scheme
declaration describes (n/b) successive steps of the
algorithm. At each step k,
• Lines 5-9 describe vertical communications

related to matrix A. Only processors from the same
row of the processor grid send each other elements
of matrix A.
(100.×b×b×(n/(b×p))/TCOMM(…))
percent of data, that should be in total be sent from
processor PIJ to processor PKJ , will be sent at the
step. The macro TCOMM(I,J,K,L,p,q)returns
the total volume of data in bytes transferred
between processors with coordinates (I,J) and
(K,L) during the execution of the PDGETRF
routine. The par algorithmic patterns imply that
during the execution of this communication, data
transfer between different pairs of processors is
carried out in parallel;

• Lines 10-14 describe horizontal communications
related to matrix B. Only processors from the same
column of the processor grid send each other
elements of matrix B.
(100.×b×b×(n/(b×q))/TCOMM(…))
percent of data, that should be in total be sent from
processor PIJ to processor PIL , will be sent at the
step;

• Lines 15-17 describe computations. Each abstract
processor updates each its b×b block of matrix C
with one block from the pivot column and one
block from the pivot row. At each of (n/b) steps
of the algorithm, the processor will perform
(100.×2×b×b×b×(n/(b×p))×(n/(b×q))/
tcomp[i×q+j]) percent of the volume of
computations it performs during the execution of
the algorithm. The array reference
tcomp[i×q+j] returns the total volume of
computations performed by the processor with
coordinates (i,j) during the execution of the
PDGETRF routine. The third nested par
statement in the main for loop of the scheme
declaration just specifies this fact. The par
algorithmic patterns are used here to specify that
all abstract processors perform their computations
in parallel.

The complete performance model descriptions of the
routines PDGETRF, PDGETF2 and PDLASWP can be

52

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

Figure 2. Basic steps involved in calling the heterogeneous ScaLAPACK routine PDGETRF.

studied from the files pm_pdgetrf.mpc,
pm_pdgetf2.mpc and pm_pdlaswp.mpc in the
directory /SRC of the Heterogeneous ScaLAPACK
package. The performance models of the PBLAS
routines PDTRSM and PDGEMM can be found in the
directory /PBLAS/SRC.

2.2 Model of the Heterogeneous ScaLAPACK
Program

Figure 2 shows the essential steps involved in
calling the ScaLAPACK PDGETRF routine in a
Heterogeneous ScaLAPACK program. These are:
1. Initialize the heterogeneous ScaLAPACK runtime

using using the operation
int hscal_init(int * argc,
 int *** argv)
where argc and argv are the same as the
arguments passed to main. This routine must be
called before any other Heterogeneous
ScaLAPACK context management routine and
must be called once. It must be called by all the
processes running in the Heterogeneous
ScaLAPACK application;

2. Get the heterogeneous PDGETRF context using
the context constructor routine
hscal_pdgetrf_ctxt. The function call
hscal_in_ctxt returns a value of 1 for the

processes chosen to execute the PDGETRF routine
or otherwise 0;

3. Execute the homogeneous ScaLAPACK
PDGETRF routine;

4. Release the context using the context destructor
operation
int hscal_free_ctxt(int * ctxt);

5. When all the computations have been completed,
the program is exited with a call to
hscal_finalize, which finalizes the
heterogeneous ScaLAPACK runtime.

The execution of the library PDGETRF context
constructor routine hscal_pdgetrf_ctxt consists
of the following steps:
1. Updating the estimation of the speeds of the

processors using the HeteroMPI routine
HMPI_Recon. A benchmark code representing
the core computations involved in the execution of
the PBLAS routine is provided to this function call
to accurately estimate the speeds of the processors.
In this case, the benchmark code performs a local
GEMM update of m×b and b×n matrices where b
is the data distribution blocking factor and m and n
are local number of matrix rows and columns
determined based on the problem size solved;

2. Finding the optimal values of the parameters of the
parallel algorithm used in the ScaLAPACK
routine, such as the algorithmic blocking factor

 int main(int argc, char **argv) {
 int nprow, npcol, pdgetrfctxt, myrow, mycol, c__0 = 0, LLD_a;
/* Problem parameters */
 int *M, *N, *IA, *JA, *DESCA, *IPIV, INFO;
 double *A,;
/* Initialize the heterogeneous ScaLAPACK runtime */
 hscal_init(&argc, &argv);
/* Get the heterogeneous PDGETRF context */
 hscal_pdgetrf_ctxt(M, N, IA, JA, DESCA, &pdgetrfctxt);
 if (!hscal_in_ctxt(&pdgetrfctxt))
 hscal_finalize(c__0);
/* Retrieve the process grid information */
 Cblacs_gridinfo(pdgetrfctxt, &nprow, &npcol, &myrow, &mycol);
/* Initialize the array descriptor for the matrix A */
 descset_(DESCA, ..., &pdgetrfctxt, &LLDa); /* for Matrix A */
/* Distribute matrices on the process grid using user-defined pdmatgen */
 pdmatgen_(&pdgetrfctxt, ...); /* for Matrix A */
/* Call the SCALAPACK ‘pdgetrf’ routine */
 pdgetrf_(M, N, A, IA, JA, DESCA, IPIV, INFO);
/* Release the heterogeneous PDGETRF context */
 hscal_free_ctxt(&pdgetrfctxt);
/* Finalize the Heterogeneous ScaLAPACK runtime */
 hscal_finalize(c__0);
 }

53

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

and the data distribution blocking factor, using the
HeteroMPI routine HMPI_Timeof;

3. Creation of a HeteroMPI group of MPI processes
using the HeteroMPI’s group constructor routine
HMPI_Group_pauto_create. One of the
inputs to this function call is the handle, which
encapsulates all the features of the performance
model in the form of a set of functions generated
by the compiler from the description of the
performance model of the ScaLAPACK routine.
During this function call, the HeteroMPI runtime
system detects the optimal process arrangement as
well as solves the problem of selection of the
optimal set of processes running on different
computers of the heterogeneous network. The
selection process is described in detail in [8,9]. It
is based on the performance model of the
ScaLAPACK routine and the performance model
of the executing network of computers, which
reflects the state of this network just before the
execution of the ScaLAPACK routine;

4. The handle to the HeteroMPI group is passed as
input to the HeteroMPI routine HMPI_Get_comm
to obtain the MPI communicator. This MPI
communicator is translated to a BLACS handle
using the BLACS routine
Csys2blacs_handle;

5. The BLACS handle is then passed to the BLACS
routine Cblacs_gridinit, which creates the
BLACS context. This context is returned in the
output parameter.

The Heterogeneous ScaLAPACK program uses the
multiprocessing approach, which allows more than one
process involved in its execution to be run on each
processor. The number of processes to run on each
processor during the program startup is determined
automatically by the Heterogeneous ScaLAPACK
command-line interface tools. During the creation of a
HeteroMPI group in the context creation routine, the
mapping of the parallel processes in the group is
performed such that the number of processes running
on each processor is as proportional to its speed as
possible. In other words, while distributed evenly
across parallel processes, data and computations are
distributed unevenly over processors of the
heterogeneous network, and this way each processor
performs the volume of computations as proportional
to its speed as possible. At the same time, the mapping
algorithm invoked tries to arrange the processors along
a 2D grid so as to optimally load balance the work of
the processors.

3. Experimental Results
The set of experiments is run on a small moderately

heterogeneous local network of sixteen Linux

workstations (hcl01-hcl16) whose specifications can be
studied at the URL
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The
network is based on 2 Gbit Ethernet with a switch
enabling parallel communications between the
computers. The software used is MPICH-1.2.5,
ScaLAPACK-1.8.0 and ATLAS [11].

The absolute speeds of the processors, in million
flop/s, performing a local GEMM update of two
matrices 3072×64 and 64×3072 are {8866, 7988, 8958,
8909, 9157, 9557, 8907, 8934, 2179, 5940, 3232,
7054, 6824, 3268, 3144, 3769}. Therefore, hcl06 is the
fastest processor and hcl09 is the slowest processor.
The heterogeneity of the network due to the
heterogeneity of the processors is calculated as the
ratio of the absolute speed of the fastest processor to
the absolute speed of the slowest processor, which is
4.4.

The speedup, which is shown in the figures, is
calculated as the ratio of the execution time of the
homogeneous ScaLAPACK program and the execution
time of the HeteroScaLAPACK program. Dense square
matrices of size N×N were used in the experiments.
The homogeneous ScaLAPACK programs use the
default parameters recommended by the ScaLAPACK
user’s guide which are to (a) use the best BLAS and
BLACS libraries available, (b) use a data distribution
block size of 64, (c) use a square processor grid and (d)
execute no more than one process per processor.

Figure 3 shows the execution times of the sequential
LAPACK [12], ScaLAPACK and HeteroScaLAPACK
programs solving the same LU factorization problem.
The LAPACK library employs optimized BLAS
library (ATLAS). The LAPACK program is executed
on the fastest processor hcl06. For problem sizes
(N<=3072), there are no benefits using ScaLAPACK.
This means that just a single processor (hcl06) can be
used for solving the LU factorization problem.
However for the problem sizes beyond (N>3072), the
HeteroScaLAPACK and ScaLAPACK programs
perform significantly better with HeteroScaLAPACK
being the best for reasons that are explained below.
The LAPACK program starts paging for problem sizes
(N>11264) and exhibits severe performance
degradation.

Figures 4(a) and 4(b) show the experimental results
from the execution of the ScaLAPACK and
HetroScaLAPACK programs employing the routines
PDGETRF and PDPOTRF. The ScaLAPACK program
uses a 4×4 grid of processes (using one process per
node configuration) adhering to the recommendations
provided in the ScaLAPACK’s user guide. Figure 4 (a)
shows results for problem sizes where ScaLAPACK
programs do not page and Figure 4(b) for problem
sizes where ScaLAPACK programs page. For
PDGETRF at around problem size (N=18432),

54

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

LU factorization

0
50

100
150
200
250
300
350

0 3072 6144 9216 12288

Matrix size (N)

E
xe

cu
tio

n
tim

e
(s

ec
)

LAPACK
ScaLAPACK
HeteroScaLAPACK

Figure 3. Execution times of LAPACK,
ScaLAPACK and HeteroScaLAPACK programs
solving the same LU factorization problem.

ScaLAPACK programs start paging leading to very
poor performance. For PDPOTRF, paging starts
happening around problem size (N=24576). The
average speedups of HeteroScaLAPACK programs
over ScaLAPACK programs for non-paging problem
sizes are are 1.9 and 1.7 respectively. Similar speedups
are obtained for the other LU factorization routines
supporting different datatypes (PCGETRF, PSGETRF,
PZGETRF, PCPOTRF, PSPOTRF and PZPOTRF).
The ScaLAPACK programs failed for problem sizes
beyond 20480 for PDGETRF and 28672 for
PDPOTRF due to the problem sizes not fitting into one
or more nodes used for the experiments.

There are a few reasons for the good speedups
delivered by the Heterogeneous ScaLAPACK
programs on HCCs for all problem sizes. The first
reason is the better load balance achieved through
proper allocation of processes involved in the
execution of the algorithm to the processors. During
the creation of a HeteroMPI group of processes in the
context creation routine, the mapping of the parallel
processes in the group is performed such that the
number of processes running on each processor is as
proportional to its speed as possible. In other words,
while distributed evenly across parallel processes, data
and computations are distributed unevenly over
processors of the heterogeneous network, and this way
each processor performs the volume of computations
as proportional to its speed as possible.

Because the largest fraction of the work takes place
in the update of the trailing matrix A22, therefore, to
obtain maximum parallelism all processors should
participate in its update. Since A22 reduces in size as
the computation progresses, a block cyclic data
distribution is used to ensure that at any stage A22 is
evenly distributed over all processors, thus obtaining
their balanced load. Since

LU factorization (Non paging)

1

1.5

2

2.5

0 5000 10000 15000 20000 25000

Matrix size (N)

Sp
ee

du
p

PDGETRF
PDPOTRF

(a)

LU factorization (Paging)

1

6

11

16

21

26

18000 23000 28000

Matrix size (N)

Sp
ee

du
p

PDGETRF
PDPOTRF

 (b)

Figure 4. Speedup of Heterogeneous ScaLAPACK
over ScaLAPACK. (a) Problem sizes where
ScaLAPACK programs do not page and (b)
Problem sizes where ScaLAPACK programs page.

the distribution of work becomes uneven as the
computation progresses, a larger block size results in
greater load imbalance, but reduces the frequency of
communication between processors. There is,
therefore, a tradeoff between load imbalance and
communication startup cost which can be controlled by
varying the block size, b. An optimal block size of 64
is used by the HeteroScaLAPACK library.

Finally, the optimal values of the 2D grid
arrangement of processes (p,q) address the load
imbalance caused by the computational “hot spots”
where certain processors have more work to do
between synchronization points than others. This is the
case here due to partial pivoting being performed over
rows in a single column of the processor grid while the
other processors are idle. Similarly, the evaluation of
each block row of the U matrix requires the solution of
a lower triangular system across processors in a single
row of the processor grid. During the creation of a
HeteroMPI group of processes in the context creation
routine, the function HMPI_Group_pauto_create
estimates the time of execution of the algorithm for

55

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

PDGETRF (Scalability)

0
5000

10000
15000
20000
25000
30000

0 5000 10000 15000 20000

Matrix size (N)

M
flo

p/
s

16

4

8

12

Figure 5. Performance of HeteroScaLAPACK
PDGETRF as function of matrix size for different
numbers of processors.

PDGETRF (Isogranularity)

0
5000

10000
15000
20000
25000
30000

0 5 10 15 20

Number of processors

M
flo

p/
s

(0.5)

(25)
(18)

(8)

(2)

Figure 6. Isogranularity curves. The numbers in
brackets represent the granularity in Mbytes per
processor.

each process arrangement evaluated. For each such
estimation, it invokes mapping algorithm, which tries
to arrange the processors along a 2D grid so as to
optimally load balance the work of the processors. It
returns the process arrangement that results in the least
estimated time of execution of the algorithm. There is
thus an optimal aspect ratio, p/q, which depends on the
communications characteristics of the network and
determines the overlap of the communication with the
computation. The optimal aspect ratios observed were
in the range (1/5,1).

The performance results in Figures 5 and 6 is used to
assess the scalability of the HeteroScaLAPACK
factorization routine PDGETRF. Measured execution
times are converted to million flop/s by assuming an
operation count of 2N3/3, where N is the matrix size.
The heterogeneity of the experimental network is
maintained constant by retaining the fastest and
slowest processors hcl06 and hcl09 in each set of
processors. Figure 6 shows the isogranularity plots

where the efficiency is investigated by observing how
the performance per processor degrades as the number
of processors increases for a fixed grain size, which is
N2/Np where Np is the number of processors. The
scalability is assessed by the extent to which the
isogranularity curves differ from linearity. The near-
linearity of these plots show that the factorization
routines are quite scalable on this network.

4. Conclusions and Future Work
We have presented the details of implementation of

the LU factorization routines in the Heterogeneous
ScaLAPACK library, which provides a subset of
optimized LAPACK routines for heterogeneous
computational clusters. Our future work would involve
the writing of performance models of the routines for
the factorization and solution of dense system of linear
equations (PXYYSV) in ScaLAPACK. These would
employ the performance models of the LU
factorization routines described in this paper.

REFERENCES
[1] Heterogeneus ScaLAPACK.
http://hcl.ucd.ie/project/HeteroScaLAPACK/.
[2] Scalable LAPACK. http://www.netlib.org/scalapack/.
[3] Parallel Basic Linear Algebra Subprograms (PBLAS).
http://www.netlib.org/scalapack/pblas_qref.html.
[4] Basic Linear Algebra Communication Subprograms
(BLACS). http://www.netlib.org/blacs/.
[5] Basic Linear Algebra Subprograms (BLAS).
http://www.netlib.org/blas/.
[6] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y.
Robert, “A Proposal for a Heterogeneous Cluster
ScaLAPACK (Dense Linear Solvers),” IEEE Transactions on
Computers, Volume 50, No. 10, pp.1052-1070, October
2001.
[7] A. Lastovetsky and R. Reddy, “Data distribution for
dense factorization on computers with memory
heterogeneity,” Parallel Computing, Volume 33, No. 12,
pp.757-779, December 2007.
[8] A. Lastovetsky, “Adaptive Parallel Computing on
Heterogeneous Networks with mpC,” Parallel Computing,
Volume 28, No.10, pp.1369-1407, October 2002.
[9] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a
Message-Passing Library for Heterogeneous Networks of
Computers,” Journal of Parallel and Distributed Computing
(JPDC), Volume 66, No. 2, pp.197-220, Elsevier, 2006.
[10] R. Reddy and A. Lastovetsky,
“HeteroMPI+ScaLAPACK: Towards a ScaLAPACK (Dense
Linear Solvers) on Heterogeneous Networks of Computers,”
Proceedings of the 13th IEEE International Conference on
High Performance Computing (HiPC 2006), Bangalore,
India, LNCS Volume 4297, pp.242-253, December 2006.
[11] Automatically Tuned Linear Algebra Software
(ATLAS). http://math-atlas.sourceforge.net/.
[12] Linear Algebra PACKage (LAPACK).
http://www.netlib.org/lapack/.

56

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore. Restrictions apply.

