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Abstract 
 

This paper discusses the design and the 
implementation of the LU factorization routines 
included in the Heterogeneous ScaLAPACK library, 
which is built on top of ScaLAPACK. These routines 
are used in the factorization and solution of a dense 
system of linear equations. They are implemented 
using optimized PBLAS, BLACS and BLAS libraries 
for heterogeneous computational clusters. We present 
the details of the implementation as well as 
performance results on a heterogeneous computing 
cluster. 

1. Introduction 
This paper discusses the design and the 

implementation of the LU factorization routines 
included in the Heterogeneous ScaLAPACK library. 
These routines are used in the factorization and 
solution of a dense system of linear equations. 

Heterogeneous ScaLAPACK [1] is a software 
package providing optimized parallel linear algebra 
programs for heterogeneous computational clusters 
(HCCs). It is built on top of ScaLAPACK [2] and 
reuses its software fully. It is currently under 
development. At the moment, it contains full 
implementation of Heterogeneous PBLAS, which 
provides optimized parallel basic linear algebra 
subprograms for HCCs. The building blocks of 
Heterogeneous PBLAS are PBLAS [3], BLACS [4] 
and BLAS [5]. 

There are a few research contributions to compute 
LU factorization on heterogeneous computational 
clusters (HCC). However there is only a single 
proposal [6] mooting provision of LU factorization 
routines in the form of a library and the issues involved 
thereof. The authors discuss data allocation strategies 
to implement matrix products and dense linear system 
solvers on HCCs as a basis for a successful extension 
of the ScaLAPACK library to heterogeneous 
platforms. They show that extending the standard 

ScaLAPACK block-cyclic distribution to 
heterogeneous 2D grids is difficult. In most cases, a 
perfect balancing of the load between all processors 
cannot be achieved and deciding how to arrange the 
processors along the 2D grid is a challenging NP-
complete problem.  

A few contributions present multiprocessing 
approaches to solve linear algebra kernel on HCCs. 
The multiprocessing approach can be summarized as 
follows: 
• The whole computation is partitioned into a large 

number of equal chunks; 
• Each chunk is performed by a separate process; 
• The number of processes run by each processor  is 

as proportional to its speed as possible.  
Thus, while distributed evenly across parallel 
processes, data and computations are distributed 
unevenly over processors of the heterogeneous 
network so that each processor performs the volume of 
computations proportional to its speed.  

To summarize their results, the multiprocessing 
strategy is easier to accomplish. It allows the complete 
reuse of high-quality software such as ScaLAPACK, 
which is developed for homogeneous distributed 
memory systems, in heterogeneous environments with 
minimal development efforts and good speedup. 
Furthermore software providing optimized parallel 
linear algebra programs on HCCs must automate the 
tedious and error-prone tasks of determining the 
accurate platform parameters such as speeds of the 
processors, latencies and bandwidths of the 
communication links connecting different pairs of 
processors and optimal algorithmic parameters such as 
number of processes, number of processors, number of 
processes per processor involved in the execution of 
the parallel algorithm and the mapping of the processes 
to the executing nodes of the HCC. The Heterogeneous 
ScaLAPACK library performs these automations. This 
paper demonstrates how they are achieved by 
presenting details of the implementation of a LU 
factorization routine. 
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Figure 1. Description of the performance model of the PDGETRF routine in the mpC’s performance model 
definition language. 

/* 1 */ algorithm pdgetrf(int M, int N, int IA, int JA, 
/* 2 */                   int DESCA[DLEN1_], int p, int q) { 
/* 3 */   coord I=p, J=q; 
/* 4 */   node {I>=0 && J>=0: bench*(hscal_pdgetrf_tcomp(I, J, M, N, IA,  
/* 5 */         JA, DESCA, p, q)/hscal_pdgetrf_bench(M, N));}; 
/* 5 */   link (K=p, L=q) { 
/* 6 */        I>=0 && J>=0: length*(hscal_pdgetrf_tcomm(I, J, K, L, M,  
/* 7 */         N, IA, JA, DESCA, p, q)) [I, J] -> [K, L]; 
/* 8 */  }; 
/* 9 */  parent[0,0]; 
/* 10 */ scheme { 
/* 11 */  int bf, i__3, i__4, jb, jn; double *tcomp, *tcomm; 
/* 12 */  hscal_pdgetf2_s(&M, JB_l, ..., p, q, tcomp, tcomm); 
/* 13 */  if (jb+1 <= N) { 
/* 14 */    hscal_pdlaswp_s(“F”, “R”, ..., p, q, tcomp, tcomm); 
/* 15 */    hscal_pdtrsm_s(“L”, “L”, “N”, “U”, ..., p, q, tcomp, tcomm); 
/* 16 */    if (jb+1 <= M) hscal_pdgemm_s(“N”, “N”, ..., p, q, tcomp, tcomm); 
/* 17 */  } 
/* 18 */  for(j = jn+1; j <= min(M, N); j += bf) { 
/* 19 */     i__3 = M – j + JA; 
/* 20 */     hscal_pdgetf2_s(&i__3, ..., p, q, tcomp, tcomm); 
/* 21 */     hscal_pdlaswp_s(“F”, “R”, &i__3, ..., p, q, tcomp, tcomm); 
/* 22 */     if (j - JA + jb + 1 <= N) { 
/* 23 */       hscal_pdlaswp_s(“F”, “R”, &i__3, ..., p, q, tcomp, tcomm); 
/* 24 */       hscal_pdtrsm_s(“L”, “L”, “N”, “U”, &jb, &i__3, ..., 
/* 25 */                       p, q, tcomp, tcomm); 
/* 26 */       if (j - JA + jb + 1 <= M) { 
/* 27 */         i__3 = M - j - jb + JA; 
/* 28 */      i__4 = N - j - jb + JA; 
/* 29 */         hscal_pdgemm_s(“N”, “N”, &i__3, &i__4, &jb, ..., 
/* 30 */                         p, q, tcomp, tcomm); 
/* 31 */       } 
/* 32 */     } 
/* 33 */  } 
/* 34 */ };    
/* 35 */ }; 
 
         /* Simplified scheme of PDGEMM performance model */ 
/* 1 */  scheme hscal_pdgemm_s(char *TRANSA, char *TRANSB, int n, int b, 
/* 2 */                        int p, int q, double *tcomp, double *tcomm) { 
/* 3 */     int i, j, k ;  
/* 4 */     for(k = 0; k < n; k+=b) { 
/* 5 */        par(i = 0; i < p; i++) 
/* 6 */           par(j = 0; j < q; j++) 
/* 7 */              if (j != ((k/b)%q)) 
/* 8 */                (100.0*b*b*(n/(b*p))/TCOMM(i, ((k/b)%q), i, j, p, q) 
/* 9 */                                    %% [i,((k/b)%q)]->[i,j]; 
/* 10 */       par(i = 0; i < p; i++) 
/* 11 */          par(j = 0; j < q; j++) 
/* 12 */             if (i != ((k/b)%p)) 
/* 13 */               (100.0*b*b*(n/(b*q))/TCOMM(((k/b)%p), j, i, j, p, q)  
/* 14 */                                   %% [((k/b)%p),j]->[i,j]; 
/* 15 */       par(i = 0; i < p; i++) 
/* 16 */          par(j = 0; j < q; j++) 
/* 17 */            ((100.0*2*b*b*b*(n/(b*p))*(n/(b*q)))/tcomp[i*q+j]) %% [i,j]; 
/* 18 */     } 
/* 19 */ };   
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The rest of the paper is organized as follows. We 
start with the implementation of the LU factorization in 
the Heterogeneous ScaLAPACK library. This is 
followed by experimental results of execution of 
Heterogeneous ScaLAPACK programs employing the 
LU factorization routines on a local network of 
heterogeneous computers. We conclude the paper by 
outlining our future research goals. 

2. Heterogeneous ScaLAPACK LU 
Factorization 

In this section, we present the implementation 
details of the LU factorization routine (PDGETRF) of 
a general distributed matrix, which uses partial 
pivoting with row interchanges, in the Heterogeneous 
ScaLAPACK library. The details are equally 
applicable to other LU factorization routines supported 
in ScaLAPACK. We refer the readers to [7] for the 
description of the LU Factorization algorithm and the 
parallel implementation of the ScaLAPACK  
PDGETRF routine.  

2.1 Performance model of ScaLAPACK LU 
Factorization 

The first step in the implementation is the 
description of its performance model using a 
performance model definition language (PMDL). The 
performance model allows application programmer to 
specify their high-level knowledge of the application 
that can assist in finding the most efficient 
implementation on HCCs. This model allows 
specification of all the main features of the underlying 
parallel algorithm that have an essential impact on 
application execution performance on HCCs. These 
features are 
• The total number of processes executing the 

algorithm (which is a output parameter); 
• The total volume of computations to be performed 

by each of the processes during the execution of 
the algorithm; 

• The total volume of data to be transferred between 
each pair of processes during the execution of the 
algorithm; 

• The order of execution of the computations and 
communications by the parallel processes, that is, 
how exactly the processes interact during the 
execution of the algorithm (which computations 
are performed in parallel, which are serialized, 
which computations and communications overlap, 
etc.). 

The PMDL uses most of the features in the 
specification of network types of the mpC language 
[8]. The mpC compiler compiles the description of this 
performance model to generate a set of functions, 

which make up the algorithm-specific part of the mpC 
runtime system. These functions are called by the 
mapping algorithms of mpC runtime to estimate of the 
execution time of the parallel algorithm. This happens 
during the creation of the heterogeneous context of the 
ScaLAPACK routine (the steps are outlined in the 
following section).  

The description of the performance model has been 
the most complicated and tedious effort. The key 
design issues were (a) accuracy to facilitate accurate 
prediction of the execution time of the ScaLAPACK 
routine, (b) efficiency to execute the performance 
model in reasonable execution time, (c) reusability to 
reuse the performance models as building blocks for 
the solution to dense linear system of equations and (d) 
preservation to preserve the key design features of 
underlying ScaLAPACK package.  

The performance model definition of PDGETRF 
ScaLAPACK routine shown in Figure 1 demonstrates 
the complexity of the effort of writing a performance 
model. Lines 1-2 is a header of the performance model 
declaration. It introduces the name of the performance 
model pdgetrf parameterized with the scalar integer 
parameters M, N, IA, JA, p and q and a vector 
parameter, which is the descriptor array DESCA for the 
matrix A. Parameters M and N are the rows and 
columns of the matrix A. Parameters IA and JA are the 
row index and the column index in the matrix. 
Parameters p and q are output parameters representing 
the number of process rows and columns in the process 
grid arrangement.  

Line 3 is a coordinate declaration declaring the 2D 
coordinate system to which the processor nodes of the 
network are related. Lines 4-5 is a node declaration. It 
associates the abstract processors with this coordinate 
system to form a p×q grid. It specifies the (absolute) 
volume of computations to be performed by each of the 
processors. The statement bench just specifies that as 
a unit of measurement, the volume of computation 
performed by some benchmark code be used. The 
auxiliary function hscal_pdgetrf_tcomp 
calculates the absolute total volume of computations 
performed by the abstract processor with coordinates 
(I,J) during the execution of the PDGETRF routine.  
It is presumed that the benchmark code, which is used 
for estimation of speeds of processors, performs a local 
GEMM update of two dense m×b and b×n matrices 
where b is the optimal data distribution factor 
determined by the Heterogeneous ScaLAPACK 
runtime system and (m,n) are heuritics determined 
based on the problem size. The auxiliary function 
hscal_pdgetrf_bench calculates the absolute 
total volume of computations performed by the 
processor during the execution of the benchmark code, 
which is 2×m×b×n. The lines of node declaration 

51

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:41 from IEEE Xplore.  Restrictions apply.



specify that the volume of computations to be 
performed by the abstract processor with coordinates 
(I,J) is 
(hscal_pdgetrf_tcomp(…)/hscal_pdgetrf
_bench(…)) times bigger than the volume of 
computations performed by the benchmark code. 

Lines 5-8 are a link declaration. This specifies the 
links between the abstract processors, the pattern of 
communication among the abstract processors, and the 
total volume of data to be transferred between each 
pair of abstract processors during the execution of the 
algorithm. The auxiliary function 
hscal_pdgetrf_tcomm calculates the total 
volume of data in matrix elements transferred between 
processors with coordinates (I,J) and (K,L) during the 
execution of the PDGETRF routine. The total volume 
of data in bytes transferred from processor PIJ to 
processor PKJ will be given by 
(hscal_pdgetrf_tcomm(…))×sizeof(doubl
e).  

Line 10 introduces the scheme declaration. The 
scheme block describes how exactly abstract 
processors interact during the execution of the 
algorithm. The scheme block is composed mainly of 
two types of units. They are computation and 
communication units. Each computation unit is of the 
form ]%%[ie  specifying that e percent of the total 
volume of computations is performed by the abstract 
processor with the coordinates (i). Each 
communication unit is of the form ][]%%[ jie →  
specifying transfer of data from abstract processor with 
coordinates i to the abstract processor with 
coordinates j. There are two types of algorithmic 
patterns in the scheme declaration, which are 
sequential and parallel. The parallel algorithmic 
patterns are specified by the keyword par and they 
describe parallel execution of some actions (mixtures 
of computations and communications).  The scheme 
describes the first block of b columns separately. Then 
it describes min(M,N) successive steps of the 
algorithm. At each step k,  
• Line 20 describes the LU factorization of the 

current panel by the current column of processes 
using PDGETF2; 

• Line 21 describes the row interchanges to the left 
and right of the current panel using PDLASWP; 

• Lines 24-25 describe the broadcast of L11 and 
computation of block row of U12 using PDTRSM 
and finally 

• Lines 29-30 describes the broadcast of L21 and U12 
followed by updating of trailing matrix A22 using 
PDGEMM. 

Due to space limitations, we would only highlight 
the important points in the scheme of the PDGEMM 

routine. The scheme hscal_pdgemm_s describes the 
simplest case of parallel matrix-matrix multiplication 
of two dense square matrices A and B of size n×n. The 
reader is referred to [9,10] for more details of the 
description of the performance model of PDGEMM. 
This definition is an extensively stripped down version 
of the actual, which can be studied from from the file 
/PBLAS/SRC/pm_pdgemm.mpc in the 
Heterogeneous ScaLAPACK package. The scheme 
declaration describes (n/b) successive steps of the 
algorithm. At each step k,  
• Lines 5-9 describe vertical communications 

related to matrix A. Only processors from the same 
row of the processor grid send each other elements 
of matrix A. 
(100.×b×b×(n/(b×p))/TCOMM(…)) 
percent of data, that should be in total be sent from 
processor PIJ to processor PKJ , will be sent at the 
step. The macro TCOMM(I,J,K,L,p,q)returns 
the total volume of data in bytes transferred 
between processors with coordinates (I,J) and 
(K,L) during the execution of the PDGETRF 
routine. The par algorithmic patterns imply that 
during the execution of this communication, data 
transfer between different pairs of processors is 
carried out in parallel; 

• Lines 10-14 describe horizontal communications 
related to matrix B. Only processors from the same 
column of the processor grid send each other 
elements of matrix B. 
(100.×b×b×(n/(b×q))/TCOMM(…)) 
percent of data, that should be in total be sent from 
processor PIJ to processor PIL , will be sent at the 
step; 

• Lines 15-17 describe computations. Each abstract 
processor updates each its b×b block of matrix C 
with one block from the pivot column and one 
block from the pivot row. At each of (n/b) steps 
of the algorithm, the processor will perform 
(100.×2×b×b×b×(n/(b×p))×(n/(b×q))/
tcomp[i×q+j]) percent of the volume of 
computations it performs during the execution of 
the algorithm. The array reference 
tcomp[i×q+j] returns the total volume of 
computations performed by the processor with 
coordinates (i,j) during the execution of the 
PDGETRF routine. The third nested par 
statement in the main for loop of the scheme 
declaration just specifies this fact. The par 
algorithmic patterns are used here to specify that 
all abstract processors perform their computations 
in parallel. 

The complete performance model descriptions of the 
routines PDGETRF, PDGETF2 and PDLASWP can be  
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Figure 2. Basic steps involved in calling the heterogeneous ScaLAPACK routine PDGETRF. 
 
studied from the files pm_pdgetrf.mpc, 
pm_pdgetf2.mpc and pm_pdlaswp.mpc in the 
directory /SRC of the Heterogeneous ScaLAPACK 
package. The performance models of the PBLAS 
routines PDTRSM and PDGEMM can be found in the 
directory /PBLAS/SRC. 

2.2 Model of the Heterogeneous ScaLAPACK 
Program 

Figure 2 shows the essential steps involved in 
calling the ScaLAPACK PDGETRF routine in a 
Heterogeneous ScaLAPACK program. These are: 
1. Initialize the heterogeneous ScaLAPACK runtime 

using using the operation  
int hscal_init(int * argc,  
               int *** argv) 
where argc and argv are the same as the 
arguments passed to main. This routine must be 
called before any other Heterogeneous 
ScaLAPACK context management routine and 
must be called once.  It must be called by all the 
processes running in the Heterogeneous 
ScaLAPACK application; 

2. Get the heterogeneous PDGETRF context using 
the context constructor routine 
hscal_pdgetrf_ctxt. The function call 
hscal_in_ctxt returns a value of 1 for the 

processes chosen to execute the PDGETRF routine 
or otherwise 0; 

3. Execute the homogeneous ScaLAPACK 
PDGETRF routine; 

4. Release the context using the context destructor 
operation  
int hscal_free_ctxt(int * ctxt); 

5. When all the computations have been completed, 
the program is exited with a call to 
hscal_finalize, which finalizes the 
heterogeneous ScaLAPACK runtime. 

The execution of the library PDGETRF context 
constructor routine hscal_pdgetrf_ctxt consists 
of the following steps: 
1. Updating the estimation of the speeds of the 

processors using the HeteroMPI routine 
HMPI_Recon. A benchmark code representing 
the core computations involved in the execution of 
the PBLAS routine is provided to this function call 
to accurately estimate the speeds of the processors. 
In this case, the benchmark code performs a local 
GEMM update of m×b and b×n matrices where b 
is the data distribution blocking factor and m and n 
are local number of matrix rows and columns 
determined based on the problem size solved; 

2. Finding the optimal values of the parameters of the 
parallel algorithm used in the ScaLAPACK 
routine, such as the algorithmic blocking factor 

   int main(int argc, char **argv) { 
      int nprow, npcol, pdgetrfctxt, myrow, mycol, c__0 = 0, LLD_a; 
/* Problem parameters */ 
      int  *M, *N, *IA, *JA, *DESCA, *IPIV, INFO; 
      double *A,; 
/* Initialize the heterogeneous ScaLAPACK runtime */ 
      hscal_init(&argc, &argv); 
/* Get the heterogeneous PDGETRF context */ 
      hscal_pdgetrf_ctxt(M, N, IA, JA, DESCA, &pdgetrfctxt);    
      if (!hscal_in_ctxt(&pdgetrfctxt)) 
         hscal_finalize(c__0); 
/* Retrieve the process grid information */ 
      Cblacs_gridinfo(pdgetrfctxt, &nprow, &npcol, &myrow, &mycol); 
/* Initialize the array descriptor for the matrix A */ 
      descset_(DESCA, ..., &pdgetrfctxt, &LLDa);  /* for Matrix A */ 
/* Distribute matrices on the process grid using user-defined pdmatgen */ 
      pdmatgen_(&pdgetrfctxt, ...); /* for Matrix A */ 
/* Call the SCALAPACK ‘pdgetrf’ routine */ 
      pdgetrf_(M, N, A, IA, JA, DESCA, IPIV, INFO); 
/* Release the heterogeneous PDGETRF context */ 
      hscal_free_ctxt(&pdgetrfctxt); 
/* Finalize the Heterogeneous ScaLAPACK runtime */ 
      hscal_finalize(c__0); 
   } 
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and the data distribution blocking factor, using the 
HeteroMPI routine HMPI_Timeof; 

3. Creation of a HeteroMPI group of MPI processes 
using the HeteroMPI’s group constructor routine 
HMPI_Group_pauto_create. One of the 
inputs to this function call is the handle, which 
encapsulates all the features of the performance 
model in the form of a set of functions generated 
by the compiler from the description of the 
performance model of the ScaLAPACK routine. 
During this function call, the HeteroMPI runtime 
system detects the optimal process arrangement as 
well as solves the problem of selection of the 
optimal set of processes running on different 
computers of the heterogeneous network. The 
selection process is described in detail in [8,9]. It 
is based on the performance model of the 
ScaLAPACK routine and the performance model 
of the executing network of computers, which 
reflects the state of this network just before the 
execution of the ScaLAPACK routine; 

4. The handle to the HeteroMPI group is passed as 
input to the HeteroMPI routine HMPI_Get_comm 
to obtain the MPI communicator. This MPI 
communicator is translated to a BLACS handle 
using the BLACS routine 
Csys2blacs_handle; 

5. The BLACS handle is then passed to the BLACS 
routine Cblacs_gridinit, which creates the 
BLACS context. This context is returned in the 
output parameter. 

The Heterogeneous ScaLAPACK program uses the 
multiprocessing approach, which allows more than one 
process involved in its execution to be run on each 
processor. The number of processes to run on each 
processor during the program startup is determined 
automatically by the Heterogeneous ScaLAPACK 
command-line interface tools. During the creation of a 
HeteroMPI group in the context creation routine, the 
mapping of the parallel processes in the group is 
performed such that the number of processes running 
on each processor is as proportional to its speed as 
possible. In other words, while distributed evenly 
across parallel processes, data and computations are 
distributed unevenly over processors of the 
heterogeneous network, and this way each processor 
performs the volume of computations as proportional 
to its speed as possible. At the same time, the mapping 
algorithm invoked tries to arrange the processors along 
a 2D grid so as to optimally load balance the work of 
the processors. 

3. Experimental Results 
The set of experiments is run on a small moderately 

heterogeneous local network of sixteen Linux 

workstations (hcl01-hcl16) whose specifications can be 
studied at the URL 
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The 
network is based on 2 Gbit Ethernet with a switch 
enabling parallel communications between the 
computers. The software used is MPICH-1.2.5, 
ScaLAPACK-1.8.0 and ATLAS [11].  

The absolute speeds of the processors, in million 
flop/s, performing a local GEMM update of two 
matrices 3072×64 and 64×3072 are {8866, 7988, 8958, 
8909, 9157, 9557, 8907, 8934, 2179, 5940, 3232, 
7054, 6824, 3268, 3144, 3769}. Therefore, hcl06 is the 
fastest processor and hcl09 is the slowest processor. 
The heterogeneity of the network due to the 
heterogeneity of the processors is calculated as the 
ratio of the absolute speed of the fastest processor to 
the absolute speed of the slowest processor, which is 
4.4.  

The speedup, which is shown in the figures, is 
calculated as the ratio of the execution time of the 
homogeneous ScaLAPACK program and the execution 
time of the HeteroScaLAPACK program. Dense square 
matrices of size N×N were used in the experiments. 
The homogeneous ScaLAPACK programs use the 
default parameters recommended by the ScaLAPACK 
user’s guide which are to (a) use the best BLAS and 
BLACS libraries available, (b) use a data distribution 
block size of 64, (c) use a square processor grid and (d) 
execute no more than one process per processor. 

Figure 3 shows the execution times of the sequential 
LAPACK [12], ScaLAPACK and HeteroScaLAPACK 
programs solving the same LU factorization problem. 
The LAPACK library employs optimized BLAS 
library (ATLAS). The LAPACK program is executed 
on the fastest processor hcl06. For problem sizes 
(N<=3072), there are no benefits using ScaLAPACK. 
This means that just a single processor (hcl06) can be 
used for solving the LU factorization problem. 
However for the problem sizes beyond (N>3072), the 
HeteroScaLAPACK and ScaLAPACK programs 
perform significantly better with HeteroScaLAPACK 
being the best for reasons that are explained below. 
The LAPACK program starts paging for problem sizes 
(N>11264) and exhibits severe performance 
degradation. 

Figures 4(a) and 4(b) show the experimental results 
from the execution of the ScaLAPACK and 
HetroScaLAPACK programs employing the routines 
PDGETRF and PDPOTRF. The ScaLAPACK program 
uses a 4×4 grid of processes (using one process per 
node configuration) adhering to the recommendations 
provided in the ScaLAPACK’s user guide. Figure 4 (a) 
shows results for problem sizes where ScaLAPACK 
programs do not page and Figure 4(b) for problem 
sizes where ScaLAPACK programs page. For 
PDGETRF at around problem size (N=18432),  
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Figure 3. Execution times of LAPACK, 
ScaLAPACK and HeteroScaLAPACK programs 
solving the same LU factorization problem.  
 
ScaLAPACK programs start paging leading to very 
poor performance. For PDPOTRF, paging starts 
happening around problem size (N=24576). The 
average speedups of HeteroScaLAPACK programs 
over ScaLAPACK programs for non-paging problem 
sizes are are 1.9 and 1.7 respectively. Similar speedups 
are obtained for the other LU factorization routines 
supporting different datatypes (PCGETRF, PSGETRF, 
PZGETRF, PCPOTRF, PSPOTRF and PZPOTRF). 
The ScaLAPACK programs failed for problem sizes 
beyond 20480 for PDGETRF and 28672 for 
PDPOTRF due to the problem sizes not fitting into one 
or more nodes used for the experiments. 

There are a few reasons for the good speedups 
delivered by the Heterogeneous ScaLAPACK 
programs on HCCs for all problem sizes. The first 
reason is the better load balance achieved through 
proper allocation of processes involved in the 
execution of the algorithm to the processors. During 
the creation of a HeteroMPI group of processes in the 
context creation routine, the mapping of the parallel 
processes in the group is performed such that the 
number of processes running on each processor is as 
proportional to its speed as possible. In other words, 
while distributed evenly across parallel processes, data 
and computations are distributed unevenly over 
processors of the heterogeneous network, and this way 
each processor performs the volume of computations 
as proportional to its speed as possible.  

Because the largest fraction of the work takes place 
in the update of the trailing matrix A22, therefore, to 
obtain maximum parallelism all processors should 
participate in its update. Since A22 reduces in size as 
the computation progresses, a block cyclic data 
distribution is used to ensure that at any stage A22 is 
evenly distributed over all processors, thus obtaining 
their balanced load. Since  
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Figure 4. Speedup of Heterogeneous ScaLAPACK 
over ScaLAPACK. (a) Problem sizes where 
ScaLAPACK programs do not page and (b) 
Problem sizes where ScaLAPACK programs page. 
 
the distribution of work becomes uneven as the 
computation progresses, a larger block size results in 
greater load imbalance, but reduces the frequency of 
communication between processors. There is, 
therefore, a tradeoff between load imbalance and 
communication startup cost which can be controlled by 
varying the block size, b. An optimal block size of 64 
is used by the HeteroScaLAPACK library. 

Finally, the optimal values of the 2D grid 
arrangement of processes (p,q) address the load 
imbalance caused by the computational “hot spots” 
where certain processors have more work to do 
between synchronization points than others. This is the 
case here due to partial pivoting being performed over 
rows in a single column of the processor grid while the 
other processors are idle. Similarly, the evaluation of 
each block row of the U matrix requires the solution of 
a lower triangular system across processors in a single 
row of the processor grid. During the creation of a 
HeteroMPI group of processes in the context creation 
routine, the function HMPI_Group_pauto_create 
estimates the time of execution of the algorithm for  
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Figure 5. Performance of HeteroScaLAPACK 
PDGETRF as function of matrix size for different 
numbers of processors. 
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Figure 6. Isogranularity curves.  The numbers in 
brackets represent the granularity in Mbytes per 
processor. 
 
each process arrangement evaluated. For each such 
estimation, it invokes mapping algorithm, which tries 
to arrange the processors along a 2D grid so as to 
optimally load balance the work of the processors. It 
returns the process arrangement that results in the least 
estimated time of execution of the algorithm. There is 
thus an optimal aspect ratio, p/q, which depends on the 
communications characteristics of the network and 
determines the overlap of the communication with the 
computation. The optimal aspect ratios observed were 
in the range (1/5,1). 

The performance results in Figures 5 and 6 is used to 
assess the scalability of the HeteroScaLAPACK 
factorization routine PDGETRF. Measured execution 
times are converted to million flop/s by assuming an 
operation count of 2N3/3, where N is the matrix size. 
The heterogeneity of the experimental network is 
maintained constant by retaining the fastest and 
slowest processors hcl06 and hcl09 in each set of 
processors. Figure 6 shows the isogranularity plots 

where the efficiency is investigated by observing how 
the performance per processor degrades as the number 
of processors increases for a fixed grain size, which is 
N2/Np where Np is the number of processors. The 
scalability is assessed by the extent to which the 
isogranularity curves differ from linearity. The near-
linearity of these plots show that the factorization 
routines are quite scalable on this network. 

4. Conclusions and Future Work 
We have presented the details of implementation of 

the LU factorization routines in the Heterogeneous 
ScaLAPACK library, which provides a subset of 
optimized LAPACK routines for heterogeneous 
computational clusters. Our future work would involve 
the writing of performance models of the routines for 
the factorization and solution of dense system of linear 
equations (PXYYSV) in ScaLAPACK. These would 
employ the performance models of the LU 
factorization routines described in this paper. 
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