
Heterogeneous PBLAS: Optimization of PBLAS for Heterogeneous 
Computational Clusters 

 
Ravi Reddy 

School of Computer 
Science and Informatics, 

University College Dublin 
manumachu.reddy@ucd.ie 

 

Alexey Lastovetsky  
School of Computer 

Science and Informatics, 
University College Dublin 
alexey.lastovetsky@ucd.ie 

 

Pedro Alonso 
Department of Information 
Systems and Computation, 
Polytechnic University of 

Valencia 
palonso@dsic.upv.es 

 
 

 

Abstract 
 

This paper presents a package, called 
Heterogeneous PBLAS (HeteroPBLAS), which is built 
on top of PBLAS and provides optimized parallel basic 
linear algebra subprograms for heterogeneous 
computational clusters. We present the user interface 
and the software hierarchy of the first research 
implementation of HeteroPBLAS. This is the first step 
towards the development of a parallel linear algebra 
package for heterogeneous computational clusters. We 
demonstrate the efficiency of the HeteroPBLAS 
programs on a homogeneous computing cluster and a 
heterogeneous computing cluster. 

1. Introduction 
Parallel Basic Linear Algebra Subprograms (PBLAS) 

[1, 2] is a parallel set of BLAS [3], which perform 
message-passing and whose interface is as similar to 
BLAS as possible. The design goal of PBLAS was to 
provide specifications of distributed kernels, which 
would simplify and encourage the development of high 
performance and portable parallel numerical software, 
as well as providing manufacturers with a small set of 
routines to be optimized. These subprograms were used 
to develop parallel libraries such as ScaLAPACK [4], 
which is a well-known standard package providing 
high-performance linear algebra routines for distributed-
memory message passing MIMD computers 
supporting PVM [5] and/or MPI [6]. 

To the best of the authors’ knowledge, there have 
only been proposals for implementation of PBLAS on 
heterogeneous computing clusters (HCC). Beaumont et 
al. [7] discuss data allocation strategies to implement 
matrix products and dense linear system solvers on 
HCCs as a basis for a successful extension of the 
ScaLAPACK library to heterogeneous platforms. They 
show that extending the standard ScaLAPACK block-
cyclic distribution to heterogeneous 2D grids is difficult. 
In most cases, a perfect balancing of the load between 
all processors cannot be achieved and deciding how to 

arrange the processors along the 2D grid is a 
challenging NP-complete problem.  

There are a few research contributions presenting 
multiprocessing approaches to solve linear algebra 
kernel on HCCs. Kalinov and Lastovetsky [8] analyze 
two strategies: 
• HeHo - heterogeneous distribution of processes 

over processors and homogeneous block cyclic 
distribution of data over the processes; 

• HoHe - homogeneous distribution of processes over 
processors with each process running on a separate 
processor and heterogeneous block cyclic 
distribution of data over the processes. 

Both strategies were implemented in the mpC 
language [9, 10]. The first strategy is implemented using 
calls to ScaLAPACK; the second strategy is 
implemented with calls to LAPACK [11] and BLAS. 
They compare the strategies using Cholesky 
factorization on a network of workstations. They show 
that for heterogeneous parallel environments both the 
strategies HeHo and HoHe are more efficient than the 
traditional homogeneous strategy HoHo (homogeneous 
distribution of processes over processors and 
homogeneous distribution of data over the processes as 
implemented in ScaLAPACK). The main disadvantage 
of the HoHe strategy is non-Cartesian nature of the data 
distribution. This leads to additional communications 
that can be expensive in the case of large networks. The 
HeHo strategy is easy to accomplish. It allows the reuse 
of high-quality software, such as ScaLAPACK, 
developed for homogeneous distributed memory 
systems in heterogeneous environments and to obtain a 
good speedup with minimal expenses. Kishimoto and 
Ichikawa [12] adopt a multiprocessing approach to 
estimate the best processing element (PE) configuration 
and process allocation based on an execution time 
model of the application. The execution time is modeled 
from the measurement results of various configurations. 
Then, a derived model is used to estimate the optimal 
PE configuration and process allocation. Kalinov and 
Klimov [13] investigate the HeHo strategy where the 
performance of the processor is given as a function of 
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the number of processes running on the processor and 
the amount of data distributed to the processor. They 
present an algorithm that computes optimal number of 
processes and their distribution over processors 
minimizing the execution time of the application. 
Cuenca et al. [14] analyse automatic optimization 
techniques in the design of parallel dynamic 
programming algorithms on heterogeneous platforms. 
The main idea is to automatically determine the optimal 
values of a number of algorithmic parameters such as 
(number of processes, number of processors, processes 
per processor). To summarize, the multiprocessing 
strategy is easy to accomplish. It allows the complete 
reuse of high-quality software such as ScaLAPACK, 
which is developed for homogeneous distributed 
memory systems, in heterogeneous environments with 
minimal expenses and good speedup.  

In this paper, we present Heterogeneous PBLAS 
(HeteroPBLAS), which provides optimized parallel 
basic linear algebra subprograms for HCCs. The design 
of the package adopts the multiprocessing approach and 
thus reuses the PBLAS software completely. This can 
be seen as the first step towards the development of a 
parallel linear algebra package for HCCs, which will be 
called Heterogeneous ScaLAPACK and built on top of 
ScaLAPACK. 

We start with the presentation of the user interface to 
the HeteroPBLAS package. Then we describe the 
different software components and building blocks of 
the first research implementation of the interface. This 
is followed by experimental results of execution of 
PBLAS programs on a homogeneous computing cluster 
and a heterogeneous computing cluster. We conclude 
the paper by stating our future research goals. 

2. HeteroPBLAS User Interface 
The main routine is the context creation function, 

which provides a context for the execution of the 
PBLAS routine. There is a context creation function for 
each and every PBLAS routine. This function frees the 
application programmer from having to specify the 
process grid arrangement to be used in the execution of 
the PBLAS routine. It tries to determine the optimal 
process grid arrangement.  

All the context creation routines have names of the 
form hscal_pxyyzzz_ctxt. The second letter, x, 
indicates the data type. The next two letters, yy, 
indicate the type of matrix (or of the most significant 
matrix). The last three letters zzz indicate the 
computation performed. For example, the context 
creation function for the PDGEMM routine has an 
interface, which is shown below: 
int hscal_pdgemm_ctxt(char* transa, 
char* transb, int * m, int * n, int * 
k, double * alpha, int * ia, int * 

ja, int * desca, int * ib, int * jb, 
int * descb, double * beta,int * ic, 
int * jc, int * descc, int * ictxt) 

This function call returns a handle to a HeteroMPI 
[15] group of MPI processes in ictxt and a return 
value of HSCAL_SUCCESS on successful execution. It 
differs from the PDGEMM call in the following ways: 
• It returns a context but does not actually execute the 

PDGEMM routine; 
• The matrices A, B and C containing the data are not 

passed as arguments; 
• It has an extra return argument, ictxt, which 

contains the handle to a group of MPI processes 
that is subsequently used in the actual execution of 
the PDGEMM routine; 

• A return value of HSCAL_SUCCESS indicating 
successful execution or otherwise an appropriate 
error code; 

• The context element in the descriptor arrays 
desca, descb and descc need not be filled. 

hscal_pdgemm_ctxt is a collective operation and 
must be called by all the processes running in the 
HeteroPBLAS application.  The context contains a 
handle to a HeteroMPI group of MPI processes, which 
tries to execute the PBLAS routine faster than any other 
group of processes. This context can be reused in 
multiple calls of the same routine or any routine that 
uses similar parallel algorithm as PDGEMM. During the 
creation of the HeteroMPI group of MPI processes, the 
HeteroPBLAS runtime system tries to detect the optimal 
process arrangement as well as solves the problem of 
selection of the optimal set of processes running on 
different computers of the heterogeneous network. It 
should be noted that this problem of mapping, in 
general, is a NP-complete problem. The solution to the 
problem is based on the following: 
• The performance model of the PBLAS routine. 

This is in the form of a set of functions generated 
by a compiler from the description of the 
performance model of the PBLAS routine; 

• The performance model of the executing network 
of computers, which reflects the state of this 
network just before the execution of the PBLAS 
routine. This model takes into account the material 
nature of communication links and their 
heterogeneity [10]. 

The mapping algorithms used to solve the problem of 
selection of processes are detailed in [10, 15]. The 
reader is referred to the HeteroPBLAS programmer’s 
manual for more details of the HeteroPBLAS user 
interface. It also presents the essential, which are also 
very few, differences between calling a homogeneous 
PBLAS routine and a heterogeneous PBLAS routine 
using code snapshots. 
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Figure 1. Heterogeneous PBLAS software hierarchy. 
 

3. HeteroPBLAS Software Design 
The software hierarchy of HeteroPBLAS package is 

shown in Figure 1. The package can be downloaded 
from the URL: 
http://hcl.ucd.ie/Software/HeteroScaLAPACK. The 
building blocks are HeteroMPI, BLACS [16], PBLAS 
and BLAS and are not contributions of this paper. The 
HeteroPBLAS context creation routines call interface 
functions of HeteroMPI, which invoke the HeteroMPI 
runtime. The HeteroPBLAS auxiliary functions of 
PBLAS, BLACS and BLAS call the instrumented 
PBLAS, BLACS and BLAS code shown in the software 
hierarchy diagram as IPBLAS, IBLACS and BLAS 
respectively. The instrumented code reuses the existing 
code base completely. The only modifications are (a) 
Replacement of the serial BLAS computation routines 
and the BLACS communication routines by calls to 
estimation functions determining the number of 
arithmetical operations performed by each process and 
number of communications in bytes performed by a pair 
of processes respectively and (b) Wrapping of the 
parallel regions of the code in mpC par loops. An 
optimized set of BLACS for HCCs as well as a well-
defined interface of corresponding auxiliary functions 
will be provided in future releases of the software.  

The first step in the implementation of the context 
creation routine for a PBLAS routine is the description 

of its performance model using a performance model 
definition language (PMDL). The performance model 
allows an application programmer to specify his or her 
high-level knowledge of the application that can assist 
in finding the most efficient implementation on HCCs. 
This model allows specification of all the main features 
of the underlying parallel algorithm that have an 
essential impact on application execution performance 
on HCCs. These features are 
• The total number of processes executing the 

algorithm; 
• The total volume of computations to be performed 

by each of the processes in the group during the 
execution of the algorithm; 

• The total volume of data to be transferred between 
each pair of processes in the group during the 
execution of the algorithm; 

• The order of execution of the computations and 
communications by the parallel processes in the 
group, that is, how exactly the processes interact 
during the execution of the algorithm. 

The PMDL uses most of the features in the 
specification of network types of the mpC language [9, 
10]. The mpC compiler compiles the description of this 
performance model to generate a set of functions, which 
make up the algorithm-specific part of the mpC runtime 
system. These functions are called by the mapping 
algorithms of mpC runtime to estimate of the cost of 
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Figure 2. Description of the performance model of the PDGEMM routine in the mpC’s performance model 
definition language. 

execution of the parallel algorithm. This happens during 
the creation of the context (see the steps outlined 
below). 

The description of performance models of all the 
PBLAS routines (about 123 of them) has been the most 
intricate effort in this project. The key design issues 
were (a) accuracy, to facilitate accurate prediction of the 
execution time of the PBLAS routine, (b) efficiency, to 
execute the performance model in reasonable execution 
time, (c) reusability, as these performance models are to 
be used as building blocks for the performance models 
of ScaLAPACK routines and (d) preservability, to 
preserve the key design features of underlying PBLAS 
package.  

The performance model definition of PDGEMM 
PBLAS routine shown in Figure 2 is used to 
demonstrate the complexity of the effort of writing a 
performance model. It describes the simplest case of 
parallel matrix-matrix multiplication of two dense 
square matrices A and B of size n×n. The reader is 
referred to [10, 15] for more details of the main 
constructs, namely coord, parent, node, link, and 
scheme, used in a description of a performance model. 
This definition is an extensively stripped down version 
of the actual definition, which can be studied from the 

package. The data distribution blocking factor b is 
assumed to be equal to the algorithmic blocking factor.  

Line 1 is a header of the performance model 
declaration. It introduces the name of the performance 
model pdgemm parameterized with the scalar integer 
parameters n, b, t, p, and q. Parameter n is the size of 
square matrices A, B, and C. Parameter b is the size of 
the data distribution blocking factor. Parameter t is 
used for the benchmark code, which is assumed to 
multiply two t×b and b×t matrices. Parameters p and 
q are output parameters representing the number of 
processes along the row and the column in the process 
grid arrangement.  

Line 3 is a coordinate declaration declaring the 2D 
coordinate system to which the processor nodes of the 
network are related. Line 4 is a node declaration. It 
associates the abstract processors with this coordinate 
system to form a p×q grid. It specifies the (absolute) 
volume of computations to be performed by each of the 
processors. The statement bench just specifies that as a 
unit of measurement, the volume of computation 
performed by some benchmark code be used. It is 
presumed that the benchmark code, which is used for 
estimation of speed of physical processors, multiplies 
two dense square t×b and b×t matrices. The line 4 of 

/* 1 */ algorithm pdgemm(int n, int b, int t, int p, int q) 
/* 2 */ { 
/* 3 */   coord I=p, J=q; 
/* 4 */   node {I>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n*b)/(t*t));}; 
/* 5 */   link (K=p, L=q) 
/* 6 */   { 
/* 7 */      I>=0 && J>=0 && I!=K : 
/* 8 */        length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 9 */              [I, J]->[K, J]; 
/* 10 */     I>=0 && J>=0 && J!=L: 
/* 11 */       length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 12 */             [I, J]->[I, L]; 
/* 13 */   }; 
/* 14 */   parent[0,0]; 
/* 15 */   scheme 
/* 16 */   { 
/* 17 */     int i, j, k; 
/* 18 */     for(k = 0; k < n; k+=b) 
/* 19 */     { 
/* 20 */       par(i = 0; i < p; i++) 
/* 21 */          par(j = 0; j < q; j++) 
/* 22 */             if (j != ((k/b)%q)) 
/* 23 */               (100.0/(n/(b*q))) %% [i,((k/b)%q)]->[i,j]; 
/* 24 */       par(i = 0; i < p; i++) 
/* 25 */          par(j = 0; j < q; j++) 
/* 26 */             if (i != ((k/b)%p)) 
/* 27 */               (100.0/(n/(b*p))) %% [((k/b)%p),j]->[i,j]; 
/* 28 */       par(i = 0; i < p; i++) 
/* 29 */         par(j = 0; j < q; j++) 
/* 30 */           ((100.0×b)/n) %% [i,j]; 
/* 31 */     } 
/* 32 */   };    
/* 33 */ }; 
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node declaration specifies that the volume of 
computations to be performed by the abstract processor 
with coordinates (I,J) is 
((n/(b*p))*(n/(b*q))*(n*t/t*t)) times 
bigger than the volume of computations performed by 
the benchmark code. 

Lines 5-13 are a link declaration. This specifies the 
links between the abstract processors, the pattern of 
communication among the abstract processors, and the 
total volume of data to be transferred between each pair 
of abstract processors during the execution of the 
algorithm. Lines 7-9 of the link declaration describe 
vertical communications related to matrix A. Only 
abstract processors from the same row of the processor 
grid send each other elements of matrix A. The volume 
of data in one b×b block is given by 
(b*b)*sizeof(double) and so the total volume 
of data transferred from processor PIJ to processor PKJ 
will be given by 
(n/(b×p))×(n/(b×q))×b×b×sizeof(double
).  

Lines 10-13 of the link declaration describe 
horizontal communications related to matrix B. 
Obviously, only abstract processors from the same 
column of the processor grid send each other elements 
of matrix B. The volume of data in one b×b block is 
given by (b*b)*sizeof(double) and so the total 
volume of data transferred from processor PIJ to 
processor PIL will be given by 
(n/(b×p))×(n/(b×q))×b×b×sizeof(double
). 

Line 15 introduces the scheme declaration. The 
scheme block describes how exactly abstract 
processors interact during the execution of the 
algorithm. The scheme block is composed mainly of 
two types of units. They are computation and 
communication units. Each computation unit is of the 
form ]%%[ie  specifying that e percent of the total 
volume of computations is performed by the abstract 
processor with the coordinates (i). Each communication 
unit is of the form ][]%%[ jie →  specifying transfer 
of data from abstract processor with coordinates i to the 
abstract processor with coordinates j. There are two 
types of algorithmic patterns in the scheme declaration, 
which are sequential and parallel. The parallel 
algorithmic patterns are specified by the keyword par 
and they describe parallel execution of some actions 
(mixtures of computations and communications). The 
scheme declaration describes (n/b) successive steps 
of the algorithm. At each step k,  
• Lines 20-23 describe vertical communications 

related to matrix A. (100.*(n/(b*q)) percent 
of data, that should be in total be sent from 
processor PIJ to processor PKJ , will be sent at the 

step. The par algorithmic patterns imply that 
during the execution of this communication, data 
transfer between different pairs of processors is 
carried out in parallel; 

• Lines 24-27 describe horizontal communications 
related to matrix B. (100.*(n/(b*p)) percent 
of data, that should be in total be sent from 
processor PIJ to processor PIL , will be sent at the 
step; 

• Lines 28-30 describe computations. Each abstract 
processor updates each its b×b block of matrix C 
with one block from the pivot column and one 
block from the pivot row. At each of (n/b) steps 
of the algorithm, the processor will perform 
(100×b/n) percent of the volume of 
computations it performs during the execution of 
the algorithm. The third nested par statement in 
the main for loop of the scheme declaration just 
specifies this fact. The par algorithmic patterns are 
used here to specify that all abstract processors 
perform their computations in parallel. 

The example just described demonstrates the 
complexity of performance model description of even 
the simplest case of PDGEMM PBLAS routine. There 
are altogether 123 such performance model definitions 
covering all the PBLAS routines. They can be found in 
the HeteroPBLAS package in the directory 
/PBLAS/SRC. The performance model files start with 
prefix pm_ followed by the name of the PBLAS routine 
and have a file extension mpc. 

The execution of a HeteroPBLAS context creation 
routine consists of the following steps: 
1. Updating the estimation of the speeds of the 

processors using the HeteroMPI routine 
HMPI_Recon. A benchmark code representing the 
core computations involved in the execution of the 
PBLAS routine is provided to this function call to 
accurately estimate the speeds of the processors. 
For example in the case of the PDGEMM routine, 
the benchmark code provided is a local GEMM 
update of m×b and b×n matrices where b is the 
data distribution blocking factor and m and n are 
local number of matrix rows and columns 
respectively; 

2. Finding the optimal values of the parameters of the 
parallel algorithm used in the PBLAS routine, such 
as the algorithmic blocking factor and the data 
distribution blocking factor, using the HeteroMPI 
routine HMPI_Timeof; 

3. Creation of a HeteroMPI group of MPI processes 
using the HeteroMPI’s group constructor routine 
HMPI_Group_pauto_create. One of the 
inputs to this function call is the handle, which 
encapsulates all the features of the performance 
model in the form of a set of functions generated by 
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the compiler from the description of the 
performance model of the PBLAS routine. During 
this function call, the HeteroMPI runtime system 
detects the optimal process arrangement as well as 
solves the problem of selection of the optimal set of 
processes running on different computers of the 
heterogeneous network. The selection process is 
described in detail in [10, 15]. It is based on the 
performance model of the PBLAS routine and the 
performance model of the executing network of 
computers, which reflects the state of this network 
just before the execution of the PBLAS routine; 

4. The handle to the HeteroMPI group is passed as 
input to the HeteroMPI routine HMPI_Get_comm 
to obtain the MPI communicator. This MPI 
communicator is translated to a BLACS handle 
using the BLACS routine 
Csys2blacs_handle; 

5. The BLACS handle is then passed to the BLACS 
routine Cblacs_gridinit, which creates the 
BLACS context. This context is returned in the 
output parameter. 

The HeteroPBLAS program uses the multiprocessing 
approach, which allows more than one process involved 
in its execution to be run on each processor. The 
multiprocessing approach can be summarized as 
follows: 
• The whole computation is partitioned into a large 

number of equal chunks; 
• Each chunk is performed by a separate process; 
• The number of processes run by each processor  is 

as proportional to its speed as possible.  
Thus, while distributed evenly across parallel 

processes, data and computations are distributed 
unevenly over processors of the heterogeneous network 
so that each processor performs the volume of 
computations proportional to its speed. The number of 
processes to run on each processor during the program 
startup is determined automatically by the 
HeteroPBLAS command-line interface tools. 

The future versions of the HeteroPBLAS software 
would support three execution models. The first 
execution model, which is currently supported, is the 
simplest. Only the estimation of the cost of execution 
(execution time) of the PBLAS routines is provided. 
The cost of redistribution of data between the slaves are 
not taken into consideration. The second execution 
model supports the master-slave pattern. In this model, 
the master distributes data amongst the slaves. The 
results are returned to the master. The cost of 
distribution of data by the master amongst the slaves 
and the cost of accumulation of results at the master 
from the slaves will be taken into consideration. The 
third model is the most complicated allowing a mixture 
of master-slave and slave-to-slave models. In this 

model, the master distributes data amongst the slaves. 
The slaves execute one or more calls to a PBLAS 
routine. The slaves then communicate the results to a 
different group of slaves, which execute one or more 
calls of a different PBLAS routine. Finally, the results 
are returned to the master. So in this model, the cost of 
redistribution of data between the slaves in addition to 
the costs of distribution of data amongst the slaves by 
the master and the cost of accumulation of results at the 
master from the slaves will be taken into consideration. 

4. Experimental Results 
We present three sets of experiments. The first set of 

experiments is run on a homogeneous computing cluster 
(https://www.cs.utk.edu/help/doku.php?id=clusters) 
consisting of 64 Linux nodes with 2 processors per node 
with Myrinet interconnect. The processor type is Intel 
EM64T. The software used is MPICH-1.2.7, 
ScaLAPACK-1.8.0 and ATLAS [17], which is an 
optimized BLAS library. Only 32 nodes (64 processors) 
are used in the experiments.  

The speedup, which is shown in the figures, is 
calculated as the ratio of the execution time of the 
homogeneous PBLAS program and the execution time 
of the HeteroPBLAS program. Dense matrices of size 
N×N and vectors of size N were used in the 
experiments. The homogeneous PBLAS programs uses 
the default parameters recommended by the 
ScaLAPACK user’s guide [3]. We chose two level-3 
routines, which are PDGEMM and PDTRSM, for 
demonstration because they exhibit two different 
algorithmic patterns. In the case of PDGEMM, the size 
of the problem solved at each step of its execution, that 
is number of updates of the resulting matrix, is constant 
whereas in the execution of PDTRSM, the size of the 
problem (number of updates of the trailing sub-matrix) 
decreases with each step. 

The first set of experiments is composed of two parts. 
Figures 3(a) and 3(b) show the experimental results of 
the first part. Figure 3(a) shows the experimental results 
from the execution of the PBLAS level-1 routine 
PDAXPY and level-2 routine PDGEMV on the 
homogeneous cluster. The homogeneous PBLAS 
programs use a 1×64 grid of processes (using one 
process per processor configuration). Figure 3(b) show 
the experimental results from the execution of the 
PBLAS level-3 routines PDGEMM and PDTRSM 
respectively. The homogeneous PBLAS program uses 
an 8×8 grid of processes (using one process per 
processor configuration). In the second part, we used the 
optimal data distribution blocking factor and the optimal 
process grid arrangement, determined by the 
HeteroPBLAS program, in the execution of the 
corresponding homogeneous PBLAS program. From 
both the parts, it was observed that there is no  
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Figure 3. The network used is the homogeneous Grig 
cluster. N is the size of the vector/matrix. 
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discernible overhead during the execution of 
HeteroPBLAS programs. The maximum overhead of 
about 7% incurred in the case of level-3 routines occurs 
during the creation of the context. The execution times 
of HeteroPBLAS programs for level-1 and level-2 
routines are the same if one process is executed per 
computer/node and not per processor. In the case of first 
part, one can notice that the HeteroPBLAS programs 
perform better than the homogeneous PBLAS programs. 
This is because the homogeneous PBLAS programs use 
the default parameters but not the optimized parameters 
whereas the HeteroPBLAS programs use accurate 
platform parameters and the optimal algorithmic 
parameters such as the optimal block factor and the 
optimal process arrangement. The parameters for the 
homogeneous PBLAS programs must be tweaked for 
just comparision with the HeteroPBLAS programs but 
this process is tedious and is automated by 
HeteroPBLAS, which is one of the results of this work. 

The second set of experiments is run on a small 
heterogeneous local network of sixteen different Linux 
workstations (hcl01-hcl16) whose specifications can be 
read at the URL 
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The 
network is based on 2 Gbit Ethernet with a switch 
enabling parallel communications between the 
computers. The software used is MPICH-1.2.5, 
ScaLAPACK-1.8.0 and ATLAS. The absolute speeds of 
the processors, in million flop/s, performing a local 
GEMM update of two matrices 3072×64 and 64×3072 
are {8866, 7988, 8958, 8909, 9157, 9557, 8907, 8934, 
2179, 5940, 3232, 7054, 6824, 3268, 3144, 3769}. 
Therefore, hcl06 is the fastest processor and hcl09 is the 
slowest processor. The heterogeneity of the network due 
to the heterogeneity of the processors is calculated as 
the ratio of the absolute speed of the fastest processor to 
the absolute speed of the slowest processor, which is 
4.4. Figure 4(a) shows the experimental results from the 
execution of the PBLAS level-1 routine PDAXPY and 
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level-2 routine PDGEMV. The homogeneous PBLAS 
programs use a 1×25 grid of processes (using one 
process per processor configuration). Figure 4(b) shows 
the experimental results from the execution of the 
PBLAS level-3 routines PDGEMM and PDTRSM 
respectively. The homogeneous PBLAS program uses a 
5×5 grid of  processes (using one process per processor 
configuration). 

There are a few reasons behind the super-linear 
speedups achieved in the case of PDGEMM and 
eventually for very large problem sizes in the case of 
PDTRSM not shown in the figure. The first reason is 
the better load balance achieved through proper 
allocation of processes involved in the execution of the 
algorithm to the processors. During the creation of a 
HeteroMPI group of processes in the context creation 
routine, the mapping of the parallel processes in the 
group is performed such that the number of processes 
running on each processor is as proportional to its speed 
as possible. The second reason is the optimal 2D grid 
arrangement of processes. During the creation of a 
HeteroMPI group of processes in the context creation 
routine, the function HMPI_Group_pauto_create 
estimates the time of execution of the algorithm for each 
process arrangement evaluated. For each such 
estimation, it invokes the mapping algorithm, which 
tries to arrange the processors along a 2D grid so as to 
optimally load balance the work of the processors. It 
returns the process arrangement that results in the least 
estimated time of execution of the algorithm. 

The third set of experiments shown in Figure 5 
demonstrates the efficiency of the HeteroPBLAS 
program employing the level-3 PDGEMM routine. Its 
efficiency is compared to that of the HeteroMPI 
program, which adopts the HoHe strategy using 
heterogeneous 2D block-cyclic distribution of matrices 
[8]. We use the experimental approach to analysis of the 
performance of heterogeneous algorithms presented in 
[18].  The HeteroMPI program is close to optimal on the 
heterogeneous computing cluster. Since the execution 
time of the HeteroPBLAS program is practically the 
same as the HeteroMPI program, we can conclude that 
the efficiency of the HeteroPBLAS program is also 
close to optimal on this network. 

We would present experimental results on multicore 
architectures in our future work. 

5. Conclusions and Future Work 
In this paper, we have presented a package, called 

Heterogeneous PBLAS (HeteroPBLAS), providing 
parallel basic linear algebra subprograms for 
Heterogeneous Networks of Computers (HCCs). Our 
future work will involve the development of the 
Heterogeneous ScaLAPACK package. The contents of 
this package will include: (a) The heterogeneous 

PBLAS package presented in this paper (b) The context 
creation and auxiliary routines for the ScaLAPACK 
routines (c) An optimized set of Basic Linear Algebra 
Communication Subprograms (BLACS) for HCCs and 
(d) A tool that would automatically transform 
ScaLAPACK programs to heterogeneous ScaLAPACK 
programs designed to run efficiently on HCCs.  
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