
Heterogeneous PBLAS: Optimization of PBLAS for Heterogeneous
Computational Clusters

Ravi Reddy

School of Computer
Science and Informatics,

University College Dublin
manumachu.reddy@ucd.ie

Alexey Lastovetsky
School of Computer

Science and Informatics,
University College Dublin
alexey.lastovetsky@ucd.ie

Pedro Alonso
Department of Information
Systems and Computation,
Polytechnic University of

Valencia
palonso@dsic.upv.es

Abstract

This paper presents a package, called
Heterogeneous PBLAS (HeteroPBLAS), which is built
on top of PBLAS and provides optimized parallel basic
linear algebra subprograms for heterogeneous
computational clusters. We present the user interface
and the software hierarchy of the first research
implementation of HeteroPBLAS. This is the first step
towards the development of a parallel linear algebra
package for heterogeneous computational clusters. We
demonstrate the efficiency of the HeteroPBLAS
programs on a homogeneous computing cluster and a
heterogeneous computing cluster.

1. Introduction
Parallel Basic Linear Algebra Subprograms (PBLAS)

[1, 2] is a parallel set of BLAS [3], which perform
message-passing and whose interface is as similar to
BLAS as possible. The design goal of PBLAS was to
provide specifications of distributed kernels, which
would simplify and encourage the development of high
performance and portable parallel numerical software,
as well as providing manufacturers with a small set of
routines to be optimized. These subprograms were used
to develop parallel libraries such as ScaLAPACK [4],
which is a well-known standard package providing
high-performance linear algebra routines for distributed-
memory message passing MIMD computers
supporting PVM [5] and/or MPI [6].

To the best of the authors’ knowledge, there have
only been proposals for implementation of PBLAS on
heterogeneous computing clusters (HCC). Beaumont et
al. [7] discuss data allocation strategies to implement
matrix products and dense linear system solvers on
HCCs as a basis for a successful extension of the
ScaLAPACK library to heterogeneous platforms. They
show that extending the standard ScaLAPACK block-
cyclic distribution to heterogeneous 2D grids is difficult.
In most cases, a perfect balancing of the load between
all processors cannot be achieved and deciding how to

arrange the processors along the 2D grid is a
challenging NP-complete problem.

There are a few research contributions presenting
multiprocessing approaches to solve linear algebra
kernel on HCCs. Kalinov and Lastovetsky [8] analyze
two strategies:
• HeHo - heterogeneous distribution of processes

over processors and homogeneous block cyclic
distribution of data over the processes;

• HoHe - homogeneous distribution of processes over
processors with each process running on a separate
processor and heterogeneous block cyclic
distribution of data over the processes.

Both strategies were implemented in the mpC
language [9, 10]. The first strategy is implemented using
calls to ScaLAPACK; the second strategy is
implemented with calls to LAPACK [11] and BLAS.
They compare the strategies using Cholesky
factorization on a network of workstations. They show
that for heterogeneous parallel environments both the
strategies HeHo and HoHe are more efficient than the
traditional homogeneous strategy HoHo (homogeneous
distribution of processes over processors and
homogeneous distribution of data over the processes as
implemented in ScaLAPACK). The main disadvantage
of the HoHe strategy is non-Cartesian nature of the data
distribution. This leads to additional communications
that can be expensive in the case of large networks. The
HeHo strategy is easy to accomplish. It allows the reuse
of high-quality software, such as ScaLAPACK,
developed for homogeneous distributed memory
systems in heterogeneous environments and to obtain a
good speedup with minimal expenses. Kishimoto and
Ichikawa [12] adopt a multiprocessing approach to
estimate the best processing element (PE) configuration
and process allocation based on an execution time
model of the application. The execution time is modeled
from the measurement results of various configurations.
Then, a derived model is used to estimate the optimal
PE configuration and process allocation. Kalinov and
Klimov [13] investigate the HeHo strategy where the
performance of the processor is given as a function of

2008 International Symposium on Parallel and Distributed Computing

978-0-7695-3472-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ISPDC.2008.9

73

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

the number of processes running on the processor and
the amount of data distributed to the processor. They
present an algorithm that computes optimal number of
processes and their distribution over processors
minimizing the execution time of the application.
Cuenca et al. [14] analyse automatic optimization
techniques in the design of parallel dynamic
programming algorithms on heterogeneous platforms.
The main idea is to automatically determine the optimal
values of a number of algorithmic parameters such as
(number of processes, number of processors, processes
per processor). To summarize, the multiprocessing
strategy is easy to accomplish. It allows the complete
reuse of high-quality software such as ScaLAPACK,
which is developed for homogeneous distributed
memory systems, in heterogeneous environments with
minimal expenses and good speedup.

In this paper, we present Heterogeneous PBLAS
(HeteroPBLAS), which provides optimized parallel
basic linear algebra subprograms for HCCs. The design
of the package adopts the multiprocessing approach and
thus reuses the PBLAS software completely. This can
be seen as the first step towards the development of a
parallel linear algebra package for HCCs, which will be
called Heterogeneous ScaLAPACK and built on top of
ScaLAPACK.

We start with the presentation of the user interface to
the HeteroPBLAS package. Then we describe the
different software components and building blocks of
the first research implementation of the interface. This
is followed by experimental results of execution of
PBLAS programs on a homogeneous computing cluster
and a heterogeneous computing cluster. We conclude
the paper by stating our future research goals.

2. HeteroPBLAS User Interface
The main routine is the context creation function,

which provides a context for the execution of the
PBLAS routine. There is a context creation function for
each and every PBLAS routine. This function frees the
application programmer from having to specify the
process grid arrangement to be used in the execution of
the PBLAS routine. It tries to determine the optimal
process grid arrangement.

All the context creation routines have names of the
form hscal_pxyyzzz_ctxt. The second letter, x,
indicates the data type. The next two letters, yy,
indicate the type of matrix (or of the most significant
matrix). The last three letters zzz indicate the
computation performed. For example, the context
creation function for the PDGEMM routine has an
interface, which is shown below:
int hscal_pdgemm_ctxt(char* transa,
char* transb, int * m, int * n, int *
k, double * alpha, int * ia, int *

ja, int * desca, int * ib, int * jb,
int * descb, double * beta,int * ic,
int * jc, int * descc, int * ictxt)

This function call returns a handle to a HeteroMPI
[15] group of MPI processes in ictxt and a return
value of HSCAL_SUCCESS on successful execution. It
differs from the PDGEMM call in the following ways:
• It returns a context but does not actually execute the

PDGEMM routine;
• The matrices A, B and C containing the data are not

passed as arguments;
• It has an extra return argument, ictxt, which

contains the handle to a group of MPI processes
that is subsequently used in the actual execution of
the PDGEMM routine;

• A return value of HSCAL_SUCCESS indicating
successful execution or otherwise an appropriate
error code;

• The context element in the descriptor arrays
desca, descb and descc need not be filled.

hscal_pdgemm_ctxt is a collective operation and
must be called by all the processes running in the
HeteroPBLAS application. The context contains a
handle to a HeteroMPI group of MPI processes, which
tries to execute the PBLAS routine faster than any other
group of processes. This context can be reused in
multiple calls of the same routine or any routine that
uses similar parallel algorithm as PDGEMM. During the
creation of the HeteroMPI group of MPI processes, the
HeteroPBLAS runtime system tries to detect the optimal
process arrangement as well as solves the problem of
selection of the optimal set of processes running on
different computers of the heterogeneous network. It
should be noted that this problem of mapping, in
general, is a NP-complete problem. The solution to the
problem is based on the following:
• The performance model of the PBLAS routine.

This is in the form of a set of functions generated
by a compiler from the description of the
performance model of the PBLAS routine;

• The performance model of the executing network
of computers, which reflects the state of this
network just before the execution of the PBLAS
routine. This model takes into account the material
nature of communication links and their
heterogeneity [10].

The mapping algorithms used to solve the problem of
selection of processes are detailed in [10, 15]. The
reader is referred to the HeteroPBLAS programmer’s
manual for more details of the HeteroPBLAS user
interface. It also presents the essential, which are also
very few, differences between calling a homogeneous
PBLAS routine and a heterogeneous PBLAS routine
using code snapshots.

74

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

Figure 1. Heterogeneous PBLAS software hierarchy.

3. HeteroPBLAS Software Design
The software hierarchy of HeteroPBLAS package is

shown in Figure 1. The package can be downloaded
from the URL:
http://hcl.ucd.ie/Software/HeteroScaLAPACK. The
building blocks are HeteroMPI, BLACS [16], PBLAS
and BLAS and are not contributions of this paper. The
HeteroPBLAS context creation routines call interface
functions of HeteroMPI, which invoke the HeteroMPI
runtime. The HeteroPBLAS auxiliary functions of
PBLAS, BLACS and BLAS call the instrumented
PBLAS, BLACS and BLAS code shown in the software
hierarchy diagram as IPBLAS, IBLACS and BLAS
respectively. The instrumented code reuses the existing
code base completely. The only modifications are (a)
Replacement of the serial BLAS computation routines
and the BLACS communication routines by calls to
estimation functions determining the number of
arithmetical operations performed by each process and
number of communications in bytes performed by a pair
of processes respectively and (b) Wrapping of the
parallel regions of the code in mpC par loops. An
optimized set of BLACS for HCCs as well as a well-
defined interface of corresponding auxiliary functions
will be provided in future releases of the software.

The first step in the implementation of the context
creation routine for a PBLAS routine is the description

of its performance model using a performance model
definition language (PMDL). The performance model
allows an application programmer to specify his or her
high-level knowledge of the application that can assist
in finding the most efficient implementation on HCCs.
This model allows specification of all the main features
of the underlying parallel algorithm that have an
essential impact on application execution performance
on HCCs. These features are
• The total number of processes executing the

algorithm;
• The total volume of computations to be performed

by each of the processes in the group during the
execution of the algorithm;

• The total volume of data to be transferred between
each pair of processes in the group during the
execution of the algorithm;

• The order of execution of the computations and
communications by the parallel processes in the
group, that is, how exactly the processes interact
during the execution of the algorithm.

The PMDL uses most of the features in the
specification of network types of the mpC language [9,
10]. The mpC compiler compiles the description of this
performance model to generate a set of functions, which
make up the algorithm-specific part of the mpC runtime
system. These functions are called by the mapping
algorithms of mpC runtime to estimate of the cost of

mpC’s PMDL
compiler

Performance model in the
form of a set of functions

HeteroPBLAS
BLAS auxiliary

routines

HeteroMPI
runtime

mpC
runtime

MPI
runtime

HeteroPBLAS
PBLAS auxiliary

routines

IBLACS

User’s view

Hidden from the
user

Performance model
in PMDL

IBLAS

IPBLAS

HeteroPBLAS
Context creation

routines

HeteroMPI
routines

75

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

Figure 2. Description of the performance model of the PDGEMM routine in the mpC’s performance model
definition language.

execution of the parallel algorithm. This happens during
the creation of the context (see the steps outlined
below).

The description of performance models of all the
PBLAS routines (about 123 of them) has been the most
intricate effort in this project. The key design issues
were (a) accuracy, to facilitate accurate prediction of the
execution time of the PBLAS routine, (b) efficiency, to
execute the performance model in reasonable execution
time, (c) reusability, as these performance models are to
be used as building blocks for the performance models
of ScaLAPACK routines and (d) preservability, to
preserve the key design features of underlying PBLAS
package.

The performance model definition of PDGEMM
PBLAS routine shown in Figure 2 is used to
demonstrate the complexity of the effort of writing a
performance model. It describes the simplest case of
parallel matrix-matrix multiplication of two dense
square matrices A and B of size n×n. The reader is
referred to [10, 15] for more details of the main
constructs, namely coord, parent, node, link, and
scheme, used in a description of a performance model.
This definition is an extensively stripped down version
of the actual definition, which can be studied from the

package. The data distribution blocking factor b is
assumed to be equal to the algorithmic blocking factor.

Line 1 is a header of the performance model
declaration. It introduces the name of the performance
model pdgemm parameterized with the scalar integer
parameters n, b, t, p, and q. Parameter n is the size of
square matrices A, B, and C. Parameter b is the size of
the data distribution blocking factor. Parameter t is
used for the benchmark code, which is assumed to
multiply two t×b and b×t matrices. Parameters p and
q are output parameters representing the number of
processes along the row and the column in the process
grid arrangement.

Line 3 is a coordinate declaration declaring the 2D
coordinate system to which the processor nodes of the
network are related. Line 4 is a node declaration. It
associates the abstract processors with this coordinate
system to form a p×q grid. It specifies the (absolute)
volume of computations to be performed by each of the
processors. The statement bench just specifies that as a
unit of measurement, the volume of computation
performed by some benchmark code be used. It is
presumed that the benchmark code, which is used for
estimation of speed of physical processors, multiplies
two dense square t×b and b×t matrices. The line 4 of

/* 1 */ algorithm pdgemm(int n, int b, int t, int p, int q)
/* 2 */ {
/* 3 */ coord I=p, J=q;
/* 4 */ node {I>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n*b)/(t*t));};
/* 5 */ link (K=p, L=q)
/* 6 */ {
/* 7 */ I>=0 && J>=0 && I!=K :
/* 8 */ length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))
/* 9 */ [I, J]->[K, J];
/* 10 */ I>=0 && J>=0 && J!=L:
/* 11 */ length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))
/* 12 */ [I, J]->[I, L];
/* 13 */ };
/* 14 */ parent[0,0];
/* 15 */ scheme
/* 16 */ {
/* 17 */ int i, j, k;
/* 18 */ for(k = 0; k < n; k+=b)
/* 19 */ {
/* 20 */ par(i = 0; i < p; i++)
/* 21 */ par(j = 0; j < q; j++)
/* 22 */ if (j != ((k/b)%q))
/* 23 */ (100.0/(n/(b*q))) %% [i,((k/b)%q)]->[i,j];
/* 24 */ par(i = 0; i < p; i++)
/* 25 */ par(j = 0; j < q; j++)
/* 26 */ if (i != ((k/b)%p))
/* 27 */ (100.0/(n/(b*p))) %% [((k/b)%p),j]->[i,j];
/* 28 */ par(i = 0; i < p; i++)
/* 29 */ par(j = 0; j < q; j++)
/* 30 */ ((100.0×b)/n) %% [i,j];
/* 31 */ }
/* 32 */ };
/* 33 */ };

76

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

node declaration specifies that the volume of
computations to be performed by the abstract processor
with coordinates (I,J) is
((n/(b*p))*(n/(b*q))*(n*t/t*t)) times
bigger than the volume of computations performed by
the benchmark code.

Lines 5-13 are a link declaration. This specifies the
links between the abstract processors, the pattern of
communication among the abstract processors, and the
total volume of data to be transferred between each pair
of abstract processors during the execution of the
algorithm. Lines 7-9 of the link declaration describe
vertical communications related to matrix A. Only
abstract processors from the same row of the processor
grid send each other elements of matrix A. The volume
of data in one b×b block is given by
(b*b)*sizeof(double) and so the total volume
of data transferred from processor PIJ to processor PKJ
will be given by
(n/(b×p))×(n/(b×q))×b×b×sizeof(double
).

Lines 10-13 of the link declaration describe
horizontal communications related to matrix B.
Obviously, only abstract processors from the same
column of the processor grid send each other elements
of matrix B. The volume of data in one b×b block is
given by (b*b)*sizeof(double) and so the total
volume of data transferred from processor PIJ to
processor PIL will be given by
(n/(b×p))×(n/(b×q))×b×b×sizeof(double
).

Line 15 introduces the scheme declaration. The
scheme block describes how exactly abstract
processors interact during the execution of the
algorithm. The scheme block is composed mainly of
two types of units. They are computation and
communication units. Each computation unit is of the
form]%%[ie specifying that e percent of the total
volume of computations is performed by the abstract
processor with the coordinates (i). Each communication
unit is of the form][]%%[jie → specifying transfer
of data from abstract processor with coordinates i to the
abstract processor with coordinates j. There are two
types of algorithmic patterns in the scheme declaration,
which are sequential and parallel. The parallel
algorithmic patterns are specified by the keyword par
and they describe parallel execution of some actions
(mixtures of computations and communications). The
scheme declaration describes (n/b) successive steps
of the algorithm. At each step k,
• Lines 20-23 describe vertical communications

related to matrix A. (100.*(n/(b*q)) percent
of data, that should be in total be sent from
processor PIJ to processor PKJ , will be sent at the

step. The par algorithmic patterns imply that
during the execution of this communication, data
transfer between different pairs of processors is
carried out in parallel;

• Lines 24-27 describe horizontal communications
related to matrix B. (100.*(n/(b*p)) percent
of data, that should be in total be sent from
processor PIJ to processor PIL , will be sent at the
step;

• Lines 28-30 describe computations. Each abstract
processor updates each its b×b block of matrix C
with one block from the pivot column and one
block from the pivot row. At each of (n/b) steps
of the algorithm, the processor will perform
(100×b/n) percent of the volume of
computations it performs during the execution of
the algorithm. The third nested par statement in
the main for loop of the scheme declaration just
specifies this fact. The par algorithmic patterns are
used here to specify that all abstract processors
perform their computations in parallel.

The example just described demonstrates the
complexity of performance model description of even
the simplest case of PDGEMM PBLAS routine. There
are altogether 123 such performance model definitions
covering all the PBLAS routines. They can be found in
the HeteroPBLAS package in the directory
/PBLAS/SRC. The performance model files start with
prefix pm_ followed by the name of the PBLAS routine
and have a file extension mpc.

The execution of a HeteroPBLAS context creation
routine consists of the following steps:
1. Updating the estimation of the speeds of the

processors using the HeteroMPI routine
HMPI_Recon. A benchmark code representing the
core computations involved in the execution of the
PBLAS routine is provided to this function call to
accurately estimate the speeds of the processors.
For example in the case of the PDGEMM routine,
the benchmark code provided is a local GEMM
update of m×b and b×n matrices where b is the
data distribution blocking factor and m and n are
local number of matrix rows and columns
respectively;

2. Finding the optimal values of the parameters of the
parallel algorithm used in the PBLAS routine, such
as the algorithmic blocking factor and the data
distribution blocking factor, using the HeteroMPI
routine HMPI_Timeof;

3. Creation of a HeteroMPI group of MPI processes
using the HeteroMPI’s group constructor routine
HMPI_Group_pauto_create. One of the
inputs to this function call is the handle, which
encapsulates all the features of the performance
model in the form of a set of functions generated by

77

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

the compiler from the description of the
performance model of the PBLAS routine. During
this function call, the HeteroMPI runtime system
detects the optimal process arrangement as well as
solves the problem of selection of the optimal set of
processes running on different computers of the
heterogeneous network. The selection process is
described in detail in [10, 15]. It is based on the
performance model of the PBLAS routine and the
performance model of the executing network of
computers, which reflects the state of this network
just before the execution of the PBLAS routine;

4. The handle to the HeteroMPI group is passed as
input to the HeteroMPI routine HMPI_Get_comm
to obtain the MPI communicator. This MPI
communicator is translated to a BLACS handle
using the BLACS routine
Csys2blacs_handle;

5. The BLACS handle is then passed to the BLACS
routine Cblacs_gridinit, which creates the
BLACS context. This context is returned in the
output parameter.

The HeteroPBLAS program uses the multiprocessing
approach, which allows more than one process involved
in its execution to be run on each processor. The
multiprocessing approach can be summarized as
follows:
• The whole computation is partitioned into a large

number of equal chunks;
• Each chunk is performed by a separate process;
• The number of processes run by each processor is

as proportional to its speed as possible.
Thus, while distributed evenly across parallel

processes, data and computations are distributed
unevenly over processors of the heterogeneous network
so that each processor performs the volume of
computations proportional to its speed. The number of
processes to run on each processor during the program
startup is determined automatically by the
HeteroPBLAS command-line interface tools.

The future versions of the HeteroPBLAS software
would support three execution models. The first
execution model, which is currently supported, is the
simplest. Only the estimation of the cost of execution
(execution time) of the PBLAS routines is provided.
The cost of redistribution of data between the slaves are
not taken into consideration. The second execution
model supports the master-slave pattern. In this model,
the master distributes data amongst the slaves. The
results are returned to the master. The cost of
distribution of data by the master amongst the slaves
and the cost of accumulation of results at the master
from the slaves will be taken into consideration. The
third model is the most complicated allowing a mixture
of master-slave and slave-to-slave models. In this

model, the master distributes data amongst the slaves.
The slaves execute one or more calls to a PBLAS
routine. The slaves then communicate the results to a
different group of slaves, which execute one or more
calls of a different PBLAS routine. Finally, the results
are returned to the master. So in this model, the cost of
redistribution of data between the slaves in addition to
the costs of distribution of data amongst the slaves by
the master and the cost of accumulation of results at the
master from the slaves will be taken into consideration.

4. Experimental Results
We present three sets of experiments. The first set of

experiments is run on a homogeneous computing cluster
(https://www.cs.utk.edu/help/doku.php?id=clusters)
consisting of 64 Linux nodes with 2 processors per node
with Myrinet interconnect. The processor type is Intel
EM64T. The software used is MPICH-1.2.7,
ScaLAPACK-1.8.0 and ATLAS [17], which is an
optimized BLAS library. Only 32 nodes (64 processors)
are used in the experiments.

The speedup, which is shown in the figures, is
calculated as the ratio of the execution time of the
homogeneous PBLAS program and the execution time
of the HeteroPBLAS program. Dense matrices of size
N×N and vectors of size N were used in the
experiments. The homogeneous PBLAS programs uses
the default parameters recommended by the
ScaLAPACK user’s guide [3]. We chose two level-3
routines, which are PDGEMM and PDTRSM, for
demonstration because they exhibit two different
algorithmic patterns. In the case of PDGEMM, the size
of the problem solved at each step of its execution, that
is number of updates of the resulting matrix, is constant
whereas in the execution of PDTRSM, the size of the
problem (number of updates of the trailing sub-matrix)
decreases with each step.

The first set of experiments is composed of two parts.
Figures 3(a) and 3(b) show the experimental results of
the first part. Figure 3(a) shows the experimental results
from the execution of the PBLAS level-1 routine
PDAXPY and level-2 routine PDGEMV on the
homogeneous cluster. The homogeneous PBLAS
programs use a 1×64 grid of processes (using one
process per processor configuration). Figure 3(b) show
the experimental results from the execution of the
PBLAS level-3 routines PDGEMM and PDTRSM
respectively. The homogeneous PBLAS program uses
an 8×8 grid of processes (using one process per
processor configuration). In the second part, we used the
optimal data distribution blocking factor and the optimal
process grid arrangement, determined by the
HeteroPBLAS program, in the execution of the
corresponding homogeneous PBLAS program. From
both the parts, it was observed that there is no

78

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

1.54
1.56
1.58
1.6

1.62
1.64
1.66
1.68
1.7

0 20000 40000 60000

Problem size (N)

Sp
ee

du
p PDAXPY

PDGEMV

(a)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 10000 20000 30000 40000

Problem size (N)

Sp
ee

du
p

PDTRSM
PDGEMM

(b)

Figure 3. The network used is the homogeneous Grig
cluster. N is the size of the vector/matrix.

0

1

2

3

4

5

0 10000 20000 30000

Problem size (N)

Sp
ee

du
p

PDAXPY
PDGEMV

(a)

0

10

20

30

40

50

0 5000 10000 15000 20000

Problem size (N)

S
pe

ed
up

PDTRSM
PDGEMM

(b)

Figure 4. The network used is the heterogeneous
cluster. N is the size of the vector/matrix.

PDGEMM Optimality Test

0
200

400
600
800

0 5000 10000 15000
Problem size (N)

Ex
ec

ut
io

n
tim

e
(s

ec
)

HeteroPBLAS (HeHo)
HeteroMPI (HoHe)

Figure 5. Execution times of the HeteroPBLAS and
the HeteroMPI programs on the heterogeneous
cluster. HeteroMPI program employs heterogeneous
2D block-cyclic distribution of matrices.

discernible overhead during the execution of
HeteroPBLAS programs. The maximum overhead of
about 7% incurred in the case of level-3 routines occurs
during the creation of the context. The execution times
of HeteroPBLAS programs for level-1 and level-2
routines are the same if one process is executed per
computer/node and not per processor. In the case of first
part, one can notice that the HeteroPBLAS programs
perform better than the homogeneous PBLAS programs.
This is because the homogeneous PBLAS programs use
the default parameters but not the optimized parameters
whereas the HeteroPBLAS programs use accurate
platform parameters and the optimal algorithmic
parameters such as the optimal block factor and the
optimal process arrangement. The parameters for the
homogeneous PBLAS programs must be tweaked for
just comparision with the HeteroPBLAS programs but
this process is tedious and is automated by
HeteroPBLAS, which is one of the results of this work.

The second set of experiments is run on a small
heterogeneous local network of sixteen different Linux
workstations (hcl01-hcl16) whose specifications can be
read at the URL
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The
network is based on 2 Gbit Ethernet with a switch
enabling parallel communications between the
computers. The software used is MPICH-1.2.5,
ScaLAPACK-1.8.0 and ATLAS. The absolute speeds of
the processors, in million flop/s, performing a local
GEMM update of two matrices 3072×64 and 64×3072
are {8866, 7988, 8958, 8909, 9157, 9557, 8907, 8934,
2179, 5940, 3232, 7054, 6824, 3268, 3144, 3769}.
Therefore, hcl06 is the fastest processor and hcl09 is the
slowest processor. The heterogeneity of the network due
to the heterogeneity of the processors is calculated as
the ratio of the absolute speed of the fastest processor to
the absolute speed of the slowest processor, which is
4.4. Figure 4(a) shows the experimental results from the
execution of the PBLAS level-1 routine PDAXPY and

79

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

level-2 routine PDGEMV. The homogeneous PBLAS
programs use a 1×25 grid of processes (using one
process per processor configuration). Figure 4(b) shows
the experimental results from the execution of the
PBLAS level-3 routines PDGEMM and PDTRSM
respectively. The homogeneous PBLAS program uses a
5×5 grid of processes (using one process per processor
configuration).

There are a few reasons behind the super-linear
speedups achieved in the case of PDGEMM and
eventually for very large problem sizes in the case of
PDTRSM not shown in the figure. The first reason is
the better load balance achieved through proper
allocation of processes involved in the execution of the
algorithm to the processors. During the creation of a
HeteroMPI group of processes in the context creation
routine, the mapping of the parallel processes in the
group is performed such that the number of processes
running on each processor is as proportional to its speed
as possible. The second reason is the optimal 2D grid
arrangement of processes. During the creation of a
HeteroMPI group of processes in the context creation
routine, the function HMPI_Group_pauto_create
estimates the time of execution of the algorithm for each
process arrangement evaluated. For each such
estimation, it invokes the mapping algorithm, which
tries to arrange the processors along a 2D grid so as to
optimally load balance the work of the processors. It
returns the process arrangement that results in the least
estimated time of execution of the algorithm.

The third set of experiments shown in Figure 5
demonstrates the efficiency of the HeteroPBLAS
program employing the level-3 PDGEMM routine. Its
efficiency is compared to that of the HeteroMPI
program, which adopts the HoHe strategy using
heterogeneous 2D block-cyclic distribution of matrices
[8]. We use the experimental approach to analysis of the
performance of heterogeneous algorithms presented in
[18]. The HeteroMPI program is close to optimal on the
heterogeneous computing cluster. Since the execution
time of the HeteroPBLAS program is practically the
same as the HeteroMPI program, we can conclude that
the efficiency of the HeteroPBLAS program is also
close to optimal on this network.

We would present experimental results on multicore
architectures in our future work.

5. Conclusions and Future Work
In this paper, we have presented a package, called

Heterogeneous PBLAS (HeteroPBLAS), providing
parallel basic linear algebra subprograms for
Heterogeneous Networks of Computers (HCCs). Our
future work will involve the development of the
Heterogeneous ScaLAPACK package. The contents of
this package will include: (a) The heterogeneous

PBLAS package presented in this paper (b) The context
creation and auxiliary routines for the ScaLAPACK
routines (c) An optimized set of Basic Linear Algebra
Communication Subprograms (BLACS) for HCCs and
(d) A tool that would automatically transform
ScaLAPACK programs to heterogeneous ScaLAPACK
programs designed to run efficiently on HCCs.

References
[1] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker and
R. C. Whaley, “A Proposal for a Set of Parallel Basic Linear Algebra
Subprograms,” In Proceedings of the Second Workshop on Parallel
Scientific Computing, Lyngby, Denmark, LNCS Volume 1041,
Springer-Verlag, pp.107-114, 1996.
[2] Parallel Basic Linear Algebra Subprograms (PBLAS).
http://www.netlib.org/scalapack/pblas_qref.html.
[3] Basic Linear Algebra Subprograms (BLAS).
http://www.netlib.org/blas/.
[4] Scalable LAPACK. http://www.netlib.org/scalapack/.
[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
S. Sunderam. PVM: Parallel Virtual Machine, Users’ Guide and
Tutorial for Networked Parallel Computing. MIT Press: Cambridge,
MA, 1994.
[6] J. Dongarra, S. H. Lederman, S. Otto, M. Snir, and D. Walker.
MPI: The Complete Reference. The MIT Press, 1996.
[7] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A
Proposal for a Heterogeneous Cluster ScaLAPACK (Dense Linear
Solvers),” In IEEE Transactions on Computers, Volume 50, No. 10,
pp.1052-1070, October 2001.
[8] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of
Computations Solving Linear Algebra Problems on Networks of
Heterogeneous Computers,” In Journal of Parallel and Distributed
Computing, Volume 61, No. 4, pp.520-535, April 2001.
[9] A. Lastovetsky, D. Arapov, A. Kalinov, and I. Ledovskih, “A
Parallel Language and Its Programming System for Heterogeneous
Networks,” In Concurrency: Practice and Experience, Volume 12, No.
13, pp.1317-1343, November 2000.
[10] A. Lastovetsky, “Adaptive Parallel Computing on Heterogeneous
Networks with mpC,” In Parallel Computing, Volume 28, No.10,
pp.1369-1407, October 2002.
[11] Linear Algebra PACKage (LAPACK).
http://www.netlib.org/lapack/.
[12] Y. Kishimoto and S. Ichikawa, “An Execution-Time Estimation
Model for Heterogeneous Clusters,” In 13th Heterogeneous
Computing Workshop (HCW 2004), in Proceedings of 18th
International Parallel and Distributed Processing Symposium
(IPDPS'04), IEEE Computer Society (2004).
[13] A. Kalinov and S. Klimov, “Optimal mapping of a parallel
application processes onto heterogeneous platform,” In 14th
Heterogeneous Computing Workshop (HCW 2005), in Proceedings of
19th International Parallel and Distributed Processing Symposium
(IPDPS'05), IEEE Computer Society (2005).
[14] J. Cuenca, D. Giménez, and J-P. Martinez, “Heuristics for work
distribution of a homogeneous parallel dynamic programming scheme
on heterogeneous systems,” in Parallel Computing, Volume 31, No. 7,
pp.711-735, Elsevier, 2006.
[15] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a Message-
Passing Library for Heterogeneous Networks of Computers,” in
Journal of Parallel and Distributed Computing (JPDC), Volume 66,
No. 2, pp.197-220, Elsevier, 2006.
[16] Basic Linear Algebra Communication Subprograms (BLACS).
http://www.netlib.org/blacs/.
[17] Automatically Tuned Linear Algebra Software (ATLAS).
http://math-atlas.sourceforge.net/.
[18] A. Lastovetsky and R. Reddy, “On Performance Analysis of
Heterogeneous Parallel Algorithms,” In Parallel Computing, Volume
30, No. 11, pp.1195-1216, 2004.

80

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on January 27, 2009 at 12:34 from IEEE Xplore. Restrictions apply.

