
Optimal Matrix Partitioning for Data Parallel
Computing on Hybrid Heterogeneous Platforms

1st Tania Malik
School of Computer Science (UCD)

Dublin, Ireland

tania.malik@ucd.ie

2nd Alexey Lastovetsky
School of Computer Science (UCD)

Dublin, Ireland

alexey.lastovetsky@ucd.ie

Abstract—In this paper, we study the problem of partitioning
a matrix over a small number of interconnected heterogeneous
processors. This problem is crucial for data parallel dense
linear algebra and other applications with similar communi-
cation patterns on modern hybrid servers, integrating several
heterogeneous compute devices such as CPUs, GPUs and other
accelerators. The objective is to balance the load of the hetero-
geneous devices while minimising the communication cost. While
the problem has been solved for the case of two processors, it
is still open for three and more processors. The state-of-the-art
solution for the case of three processors uses a communication
cost function, which does not accurately account for the total
amount of data moved between processors and therefore leaves
the question of its global optimality open.

In this work, we propose a cost function, which accurately
represents the total amount of data moved between processors.
Then, we formulate and solve the problem of optimal
partitioning of a square computational domain, using this
accurate communication cost function. Finally, we propose and
implement an original experimental methodology for accurate
measurement of the communication time of parallel applications
on hybrid heterogeneous servers, integrating multi-core CPUs
and various accelerators. We apply this methodology to
experimental validation of our mathematical result.

Index Terms—Matrix multiplication, data partitioning, hybrid
platforms, heterogeneous platforms, non-rectangular partition-
ing, optimal partitioning, communication optimization, data par-
allelism

I. INTRODUCTION

The problem of partitioning a matrix into a set of subma-

trices over an arbitrary number of heterogeneous processors

is crucial when considering dense linear algebra kernels and

other applications with similar communication patterns on

heterogeneous platforms. This problem has received increased

attention in the last few years. One of the reasons is that hybrid

heterogeneous platforms that include multi-core CPUs, GPUs

and other accelerators are becoming mainstream in the bid

to improve the performance and energy efficiency of parallel

applications.

This optimization problem was first introduced in [1], [2],

looking for a load-balanced partitioning of a matrix into a set

of rectangular submatrices. The communication cost of the

application was first introduced in the problem in [3], looking
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now for a load-balanced matrix partitioning that would also

minimise the communication cost. The communication cost

was defined in [3] as the sum of half-perimeters of the rect-

angular submatrices, motivated by the communication cost of

one iteration of two-dimensional parallel matrix-matrix multi-

plication algorithms such as Cannon’s and SUMMA [4]. Un-

like the original problem [1], [2], the extended communication-

aware problem was proved NP-complete [3]. A good number

of approximate sub-optimal solutions have been proposed for

this problem since its introduction.

While NP-complete in the general case of an arbitrary num-

ber of processors, the problem [3] has simple exact solutions

for some specific small numbers of processors such as two

and three. These solutions have a significant practical value for

modern hybrid compute nodes that integrate a small number of

heterogeneous compute devices such as CPUs, GPUs and other

accelerators. However, the global optimality of these solutions

was challenged in [5], [6].

In [5], the authors discovered a non-rectangular partitioning

of a square matrix, the communication cost of which for

parallel matrix-matrix multiplication on two heterogeneous

processors was smaller than that of the rectangular parti-

tioning, when the speed ratio of the processors was greater

than 3 : 1. Similarly, in [6], they designed a non-rectangular
partitioning of a square matrix between three heterogeneous

processors that was superior to any rectangular partitioning for

some ratios of the speeds of the processors. These findings mo-

tivated research in optimal communication cost-aware matrix

partitioning over a small number of heterogeneous processors,

when no assumptions about shapes of optimal partitions are

made, that is, considering any possible partition as potentially

optimal.

In the case of two processors, it was mathematically proven

in [7] that for any speed ratio between the processors either the

rectangular partition or the non-rectangular partition discov-

ered in [5] will always be optimal, that is, no other arbitrary

partition will outperform them. However, the case of three

processors appeared to be much harder. While six potentially

optimal partition shapes were identified in [8], their optimality

was not mathematically proven.

Most recently, Beaumont et al [9] proved the optimality of

three partition shapes out of the six proposed in [8]. Their

solution however does not use the total amount of data moved
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between processors to measure the communication cost of the

partition. Instead, it introduces an approximate cost function,

namely, the sum of half-perimeters (SHP) of rectangles, each

covering the elements of the domain allocated to the same

processor, and considers the partition optimal if it minimizes

this cost function. This solution does not consider all possible

partitions when proving the optimality of the shapes, thus

leaving the question of their global optimality open. In this

paper, we revisit the problem of optimal partitioning of a

square computational domain between three interconnected

heterogeneous processors, and solve the problem using the

exact measure of the communication cost of the partition,

proving thus the global optimality of the identified partition

shapes.

The major contributions of this research work are:

1) We introduce a communication cost function for parallel

computing on interconnected heterogeneous processors,

which accurately represents the total amount of data

moved between the processors.

2) We formulate and solve the problem of optimal parti-

tioning of a square computational domain between three

heterogeneous processors using this accurate communi-

cation cost function.

3) We propose and implement an original experimental

methodology for accurate measurement of the commu-

nication time of parallel applications on hybrid heteroge-

neous platforms integrating multi-core CPUs and various

accelerators. We apply this methodology to experimental

validation of our solution.

The paper is organized as follows. Section II presents related

work. Section III discusses the state-of-the-art solution of

the matrix partitioning problem between for three processors.

Section IV introduces the proposed exact cost communica-

tion function. Section V formulates the problem of optimal

partitioning of a square computation domain between three

heterogeneous processors, using the proposed cost function,

and gives its solution. Section VI presents the experimental

validation of the solution. Section VII concludes the paper

and presents future research directions.

II. RELATED WORK

The performance of a data-parallel application on a het-

erogeneous platform is mainly determined by the partitioning

of its computational domain between the heterogeneous pro-

cesses. The optimal partitioning would minimise the execution

time of the application.

Matrices and other rectangular computational domains are

omnipresent in computational science. The problem of parti-

tioning a matrix into set of submatrices was first introduced

in [1], [2]. The heterogeneous processors were modelled by

their constant relative speeds, and the objective was to partition

the matrix into rectangular submatrices so that to minimise

the computation time. Due to simplicity of the performance

model of the heterogeneous platform, this problem had simple

exact solutions and efficient algorithms finding these solutions.

A more realistic variant of this problem, using a smooth

functional performance model of heterogeneous processors,

where the speed of each processor was represented by a

smooth function of the problem size, was introduced in [10]

and studied in [10], [11], [12], [13], [14], [15]. The important

artefact of these optimisation problems is that any optimal so-

lution would balance the load of the heterogeneous processors.

With the advent of multicore processors, the assumption of

the smoothness of the speed function of a processor became

less realistic [16], [17], and a new variant of the problem,

using arbitrary discrete speed functions of the processors, was

introduced in [17] and studied in [18]. Unlike its predecessors,

optimal solutions of this problem does not have to balance the

load of the processors.

The execution time of a data parallel application includes

both the computation time and the communication time. The

communication cost was first introduced in the matrix parti-

tioning problem in [3], extending the original problem [1] by

looking now not just for a load-balanced matrix partitioning

but for the load-balance partitioning, also minimising the com-

munication cost. The communication cost was defined in [3]

as the sum of half-perimeters of the rectangular submatrices

and was motivated by the communication cost of one itera-

tion of two-dimensional parallel matrix-matrix multiplication

algorithms such as Cannon’s and SUMMA [4]. Unlike the

original problem of [1], the extended communication-aware

problem was proved NP-complete [3]. The first approximation

algorithm with a bounded ratio of 1.75 was also proposed

in [3]. A good number of other approximate sub-optimal

solutions have been proposed for this problem and its variants

that use the smooth and arbitrary discrete speed functions, such

as [19], [20], [21], [22], [23], [24].

In [5], it was discovered that non-rectangular partitions can

outperform rectangular. For parallel multiplication of square

matrices on two heterogeneous processors, the authors show

that if the ratio of the processors’ speeds is less than 1 : 3,

then allocation of a square area in the top left corner of the

matrix to a slower processor, and the balance of the matrix to

the faster processor, will result in a lower number of matrix

elements moved between the processors in comparison with

the straightforward rectangular partitioning.

For the same application, a non-rectangular partitioning of

a square matrix between three heterogeneous processors was

designed in [6] that appeared superior to any rectangular par-

titioning for some ratios of the speeds of the processors. This

non-rectangular partitioning allocates squares in the opposite

corners of the matrix to two slower processors, and the balance

to the faster one.

These findings motivated research in optimal

communication-aware matrix partitioning over heterogeneous

processors, when no assumptions about the shapes of optimal

partitions are made. In the case of two processors, an

original mathematical method, called the Push technique, was

developed in [7] to mathematically prove that for any speed

ratio between the processors either the rectangular partition or

the non-rectangular partition discovered in [5] will always be

optimal, that is, no other arbitrary partition will outperform
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them. In [8] and [25], the Push technique was extended

and applied to the case of three heterogeneous processors.

While it helped identify six potentially optimal shapes, three

of which were non-rectangular, their optimality was not

mathematically proven. In [26], by relaxing the restriction

of rectangular partitioning, a recursive approximation matrix

partitioning algorithm for an arbitrary number of processors

managed to reduce the approximation ratio to 2/
√
3, which

is the best known approximation.

Most recently, Beaumont et al [9] revisit the

communication-aware matrix partitioning problem for

three processors. They formulate and mathematically solve

the problem using a cost function, which has some relation

to the amount of data moved between the processors. This

way they mathematically prove the optimality of three

particular partition shapes and analyze the accuracy of best

approximate solutions against the optimal solutions. The

communication cost function of a partition used in this

work is motivated by two-dimensional data parallel matrix

multiplication algorithms, such as Cannon’s and SUMMA,

and is calculated as the sum of half-perimeters of rectangles,

each covering the elements of the matrix allocated to the

same processor. While approximating well the total amount

of data moved between processors during parallel matrix

multiplication in the case of rectangular partitions, this cost

function is inaccurate in the genaral case of arbitrary partition,

not able to discriminate many partitions, which in practice

have different communication costs. Therefore, this solution

does not consider all possible partitions when proving the

optimality of the identified shapes, leaving the question of

their global optimality open.

In order to accurately measure the actual communication

cost, we need a cost function, which accounts for all matrix

elements moved between processors. Such a cost function has

been proposed in [7], counting the total number of commu-

nicated matrix elements. However, it proved to be hard to

mathematically prove the optimality of the identified partition

shapes using this discrete metric. In our work, we overcome

this difficulty by extending this discrete cost function into the

continuous space and proposing an exact real-valued com-

munication cost function for an arbitrary partition of a real-

valued square. Like the cost function of [9], our cost function

is also motivated by two-dimensional data-parallel matrix

multiplication applications [3], [27], [21]. These applications

compute the product C = A × B of two matrices A and

B, where elements of matrices A, B and C are identically

partitioned between processors in proportion to their relative

speeds. Element cij is calculated as the dot product of i-th row

of matrix A, Ai, and j-th column of matrix B, Bj . To calculate

cij , all elements of Ai and Bj , which do not belong to the

processor that owns cij , must be sent to this processor. Derived

from this, our cost function would accurately and absolutely

exactly reflect the total amount of data moved between the

processors.

III. OPTIMAL PARTITIONING A SQUARE BETWEEN THREE

HETEROGENEOUS PROCESSORS: STATE OF THE ART

In this section, we revisit the problem of optimal par-

titioning of a square computational domain between three

heterogeneous processors, which would partition the domain

in proportion to the speed of the processors (in order to balance

their load) and simultaneously minimize the total amount

of data moved between the processors. The state-of-the-art

solution of this problem proves that the three shapes shown in

Fig. 1 will be sufficient to optimally partition a square [9].

R

Q
P

Square Corner

n

n

P Q

R

Square Rectangle

PQ

R

Block Rectangle

Fig. 1: Optimal partition shapes for a square computational

domain for three heterogeneous processors. The Square Corner

partition gives processors Q and R square regions. The Square

Rectangle partition gives processor R a square region.

However, this solution of [9] does not use the total amount

of data moved between processors to measure the cost of each

partition. Instead, it introduces an approximate cost function,

namely, the sum of half-perimeters (SHP) of rectangles, each

covering the elements of the domain allocated to the same pro-

cessor, and considers the partition optimal if it minimizes this

cost function. This approximate cost function is derived from

data parallel matrix multiplication algorithms and accurately

represents their communication cost when the matrices are

partitioned into rectangles. At the same time, the cost function

of [9] will not discriminate many general partitions with

different total amounts of data moved between the processors,

resulting in the same SHP cost for them, as shown in Fig. 2,

and on the other hand can discriminate partitions characterized

by the same total amount of moved data as shown in Fig. 3.

In these figures, the exact communication cost C of a given

partition is derived as the total number of elements of matrices

A and B moved between processors P, Q, and R during their

parallel matrix-matrix multiplication, given the matrices are

identically partitioned between the processors. SX designates

the area of the region marked X (that is, the total number of

elements in this region). Thus, the solution of [9] does not

consider all possible partitions when proving the optimality

of the shapes in Fig. 1, leaving the question of their global

optimality open.

In this work, we solve the problem of optimal partitioning

using the exact measure of the communication cost of the
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Fig. 2: Two partitions of a square n×n matrix between three

heterogeneous processors P, Q, and R, with the same SHP cost

and different exact communication costs C(1) and C(2). Given

the regions marked by Q and R are all same size squares of

sizes (n3 ), we have: SHP (1) = SHP (2) = 4n+ 2
√
SR,

however, C(1) = 2n2 < C(2) = 2n2− 1
2

√
SR×n+

√
SQ×n.

SHP (1) = 2n+ 4
√

SQ + 2
√
SR < SHP (2) = 4n+ 2

√
SR

however, C(1) = C(2) = 2n2

SHP (3) = 3n+ 2n− SP

n > SHP (4) = 2n+ 2n− SP

n
however, C(3) = C(4) = 2n2 − SP

Fig. 3: Two pairs of partitions, (1) and (2), (3) and (4),

discriminated by the SHP cost function but having the same

exact communication cost C.

partition, thus proving the global optimality of the identified

partition shapes.

IV. COST FUNCTION

In this section, we mathematically define the exact cost

communication function of an arbitrary partition of a square

n × n computational domain, assuming the same cost of

communication of one data unit between different pairs of

processors.

A. Definition of Discrete Cost Function

In this subsection, we derive a discrete cost function from

the communication cost of parallel matrix-matrix multiplica-

tion. C = A×B, of two square matrices A and B, assuming

that the elements of matrices A, B and C are identically

partitioned between processors in proportion with relative

speeds of the processors. Element cij is calculated as the dot

product of i-th row of matrix A, Ai, and j-th column of matrix

B, Bj . To calculate cij , all elements of Ai and Bj , which do

not belong to the processor that owns cij , must be sent to

this processor. Derived from this observation, we define the

communication cost of a partition of a square matrix to be

equal to the total number of elements of matrices A and B
moved between the processors.

Mathematically, each partition of an n× n matrix between

three processors P, Q, and R, is represented by a mapping

[0, 1, .., n] × [0, 1, .., n] �→ {P,Q,R}, of the set of indices of

the matrix into the set of processors. The set of all possible

partitions is denoted as

M =

{
[1, .., n]× [1, .., n] �→ {P,Q,R}

}
,

and for each partition M ∈ M our cost function f c : M �→
Z≥0 returns the defined communication cost, f c(M).

Rows — Columns

aP:

Number of the rows where

all elements of a row are al-

located to a single processor

P

bP:

Number of the columns

where all elements of a col-

umn are allocated to a single

processor P

aQ:

Number of the rows where

all elements of a row are al-

located to a single processor

Q

bQ:

Number of the columns

where all elements of a col-

umn are allocated to a single

processor Q

aR:

Number of the rows where

all elements of a row are al-

located to a single processor

R

bR:

Number of the columns

where all elements of a col-

umn are allocated to a single

processor R

aPQ:

Number of the rows where

elements of a row are allo-

cated among two processors

P and Q

bPQ:

Number of the columns

where elements of a col-

umn are allocated among

two processors P and Q

aPR:

Number of the rows where

elements of a row are allo-

cated among two processors

P and R

bPR:

Number of the columns

where elements of a col-

umn are allocated among

two processors P and R

aQR:

Number of the rows where

elements of a row are allo-

cated among two processors

Q and R

bQR:

Number of the columns

where elements of a col-

umn are allocated among

two processors Q and R

aPQR:

Number of the rows where

elements of row are allo-

cated among all three pro-

cessors P , Q and R

bPQR:

Number of the columns

where elements of a col-

umn are allocated among all

three processors P , Q and

R

Σa = n Σb = n

TABLE I: Parameters for the discrete cost function.

B. Analytical Formulas for Discrete Cost Function

In this subsection, we derive two analytical formulas for the

cost f c(M) of an arbitrary partition M ∈M, characterized by

the parameters summarized in Table I.

Given X ∈ {P,Q,R}, let APQR,X be the total number of

elements allocated to processor X in the aPQR rows, elements

of which are distributed between all three processors P , Q,

and R. Similarly, let BPQR,X be the total number of elements

allocated to processor X in the bPQR columns, elements of
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which are distributed between all three processors P , Q, and

R. Then, the total number of elements moved between any pair

of processors X,Y ∈ {P,Q,R} can be calculated as follows:

CXY = (aXY × n) + (n× bXY ) + (APQR,X +APQR,Y )

+(BPQR,X +BPQR,Y )

Note that

(APQR,P +APQR,Q +APQR,R) = aPQR × n, and

(BPQR,P +BPQR,Q +BPQR,R) = bPQR × n.

Therefore,

f c(M) = CPQ + CPR + CQR

= (aPQ + bPQ + aPR + bPR + aQR + bQR)× n

+APQR,P +APQR,Q +BPQR,P +BPQR,Q

+APQR,P +APQR,R +BPQR,P +BPQR,R

+APQR,Q +APQR,R +BPQR,Q +BPQR,R

= (aPQ + bPQ + aPR + bPR + aQR + bQR)× n

+ 2× (APQR,P +APQR,Q +APQR,R)

+ 2× (BPQR,P +BPQR,Q +BPQR,R)

= (aPQ + bPQ + aPR + bPR + aQR + bQR

+2× aPQR + 2× bPQR)× n
(1)

As

(aP +aQ+aR+aPQ+aPR+aQR+aPQR)×n = n×n = n2,

(bP +bQ+bR+bPQ+bPR+bQR+bPQR)×n = n×n = n2,

the alternative formula will be

f c(M) = 2× n2 − (aP + aQ + aR + bP + bQ + bR)× n

+(aPQR + bPQR)× n
(2)

C. Continuous Extension of Discrete Cost Function

While motivated by the problem of optimal partitioning of a

square n× n matrix between three heterogeneous processors,

in this work we aim to solve a more general problem,

namely, the problem of optimal partitioning of a real-valued

[0, n] × [0, n] square. Each partition T of the [0, n] × [0, n]
square between three processors P, Q, and R, is defined

as a mapping T : [0, n] × [0, n] �→ {P,Q,R} such that

the inverse images T−1(P ),T−1(Q), and T−1(R), are all

Lebesgue-Borel measurable sets; the measure of the Lebesgue-

Borel measurable set L is here denoted by μ(L). The set of

all possible partitions is denoted as

T =

{
[0, n]× [0, n] �→ {P,Q,R}

}
,

and each partition T ∈ T is characterized by the parame-

ters summarized in Table II. Note that if we consider the

[0, n] × [0, n] square as a n × n set of unit squares, that is,

squares of size 1 × 1, then any partition T ∈ T, which is

mapping each unit square to a single processor, will represent

a matrix partition, M ∈M.

Now for each partition T ∈ T, we define the cost function

fc(T ) as follows

fc(T ) = (aPQ + bPQ + aPR + bPR + aQR + bQR

+2× aPQR + 2× bPQR)× n
(3)

This definition guarantees that if T ∈ T represents the matrix

partition M ∈M, then fc(T ) = f c(M).
Also, as

(aP +aQ+aR+aPQ+aPR+aQR+aPQR)×n = n×n = n2,

and

(bP +bQ+bR+bPQ+bPR+bQR+bPQR)×n = n×n = n2,

the alternative formula will be

fc(T ) = 2× n2 − (aP + aQ + aR + bP + bQ + bR)× n

+(aPQR + bPQR)× n
(4)

Horizontal lines — Vertical lines

aP:

Measure of the set of the

horizontal lines where all

points of a line are mapped

to processor P

bP:

Measure of the set of

the vertical lines where all

points of a line are mapped

to processor P

aQ:

Measure of the set of the

horizontal lines where all

points of a line are mapped

to processor Q

bQ:

Measure of the set of

the vertical lines where all

points of a line are mapped

to processor Q

aR:

Measure of the set of the

horizontal lines where all

points of a line are mapped

to processor R

bR:

Measure of the set of

the vertical lines where all

points of a line are mapped

to processor R

aPQ:

Measure of the set of

the horizontal lines where

points of a line are mapped

among two processors P
and Q

bPQ:

Measure of the set of the

vertical lines where points

of a line are mapped among

two processors P and Q

aPR:

Measure of the set of

the horizontal lines where

points of a line are mapped

among two processors P
and R

bPR:

Measure of the set of the

vertical lines where points

of a line are mapped among

two processors P and R

aQR:

Measure of the set of

the horizontal lines where

points of a line are mapped

among two processors Q
and R

bQR:

Measure of the set of the

vertical lines where points

of a line are mapped among

two processors Q and R

aPQR:

Measure of the set of

the horizontal lines where

points of line are mapped

among all three processors

P , Q and R

bPQR:

Measure of the set of the

vertical lines where points

of a line are mapped among

all three processors P , Q
and R

Σa = n Σb = n

TABLE II: Parameters for the real valued cost function.

V. OPTIMAL PARTITIONS OF SQUARE

Now we formulate the problem of optimal partitioning of

a square with the cost function fc(T ) defined in the previous

subsection and give its solution.

Problem: Given a real-valued square [0, n] × [0, n]
and three positive real numbers {SP , SQ, SR} such that
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SP +SQ+SR = n2, find a partition T ∈ T of this square that

minimizes the cost function fc(T ) and SP = μ(T−1(P )),
SQ = μ(T−1(Q)), SR = μ(T−1(R)).

A. Optimal Partition Shapes

Our main result is that one of the three partition shapes

shown in Fig. 1 will always be a solution to this problem.

To formulate this result mathematically and prove it, we first

derive the cost of these three partitions. Let TSC denote the

Square Corner partition, TSR denote the Square Rectangle

partition, and TBR denote the Block Rectangle partition. Note,

that in the case of the considered partitions, the measure of

each of the regions of the square mapped to a single processor

P, Q, or R, will be equivalent to the normal area of this

region and will be equal to SP , SQ, SR respectively. Then the

following three lemmas give us formulas for the cost of these

partitions.

Lemma 1. fc(TSC) = 2× n× (
√
SR +

√
SQ).

Proof. Here, aPQR = bPQR = aQR = bQR = 0.

On the other hand, aPQ =
√

SQ × n, aPR =
√
SR × n and

bPQ = n×√
SQ and bPR = n×√SR. Therefore, according

to formula (3):

fc(TSC) = 2× n× (
√

SR +
√
SQ) (5)

Lemma 2. fc(TSR) = n2 + 2× (
√
SR × n).

Proof. Here, aPQR =
√
SR × n, aQR = aPR = 0, aPQ =

(n − √SR) × n, bPQR = bPQ = bQR = 0, and bPR =
n×√SR. Thus, according to formula (3):

fc(TSR) = n2 + 2× (
√
SR × n) (6)

Lemma 3. fc(TBR) = 2× n2 − SP .

Proof. Here, aPQR = aP = aQ = aR = 0, bPQR = bQ =
bR = 0 and n × bP = SP . Therefore, according to formula

(4):

fc(TBR) = 2× n2 − bP × n = 2× n2 − SP (7)

The following theorem formulates our main result for Prob-

lem 1.

Theorem 1. ∀T ∈ T : (fc(T ) ≥ fc(TSC)) ∨ (fc(T ) ≥
fc(TSR)) ∨ (fc(T ) ≥ fc(TBR)) .

Proof. The proof is split into lemmas, depending on the

measure of the set of horizontal and vertical lines where all

points of a line are mapped to a single processor P , Q and R
for any partition T .

Lemma 1.1. If (aP = 0) ∧ (aQ = 0) ∧ (aR = 0) ∧ (bP =
0) ∧ (bQ = 0) ∧ (bR = 0), then fc(T ) ≥ fc(TBR).

Proof. According to formula (4):

fc(T ) = 2× n2 + (aPQR × n) + (n× bPQR)

≥ 2× n2 > 2× n2 − SP = fc(TBR)

Lemma 1.2. If (aP > 0) ⊕ (aQ > 0) ⊕ (aR > 0) ⊕ (bP >
0)⊕ (bQ > 0)⊕ (bR > 0), then fc(T ) ≥ fc(TBR).

Proof. Let there exist exactly one X ∈ {P,Q,R} such that

aX > 0 and bP = bQ = bR = 0. Then, according to formula

(4), fc(T ) = 2×n2− (aX ×n)+ (aPQR×n)+ (n× bPQR),
where aX × n ≤ SX , so that fc(T ) ≥ 2× n2 − SX .

As SP ≥ SQ ≥ SR, SX ≤ max{SP , SQ, SR} = SP .

Therefore, fc(T ) ≥ 2× n2 − SX ≥ 2× n2 − SP = fc(TBR).
Similarly, fc(T ) ≥ fc(TBR) when there exists exactly one

X ∈ {P,Q,R} such that bX > 0 and aP = aQ = aR = 0.

Lemma 1.3. If [(aP > 0) ∧ (bP > 0)] ⊕ [(aQ > 0) ∧ (bQ >
0)]⊕ [(aR > 0) ∧ (bR > 0)] , then fc(T ) ≥ fc(TSC).

Proof. In this case, we assume that there is exactly one

processor X ∈ {P,Q,R} such that aX > 0 and bX > 0 and

for remaining processors Y and Z, aY = aZ = bY = bZ = 0.

Also, as any horizontal line and any vertical line contain a

point mapped to X , therefore, aY Z = bY Z = 0.

Then, according to formula (3),

fc(T ) = (aXY +bXY +aXZ+bXZ+2×aXY Z+2×bXY Z)×n.

The measure of the set of all horizontal and vertical lines

containing points mapped to Y will be equal to (aXY +
aXY Z + bXY + bXY Z) and cannot be less than the half-

perimeter of a square with the area of SY . Therefore, aXY +
aXY Z + bXY + bXY Z ≥ 2×√SY . Similarly, aXZ +aXY Z +
bXZ + bXY Z ≥ 2×√SZ .

Thus, fc(T ) =
(aXY + bXY + aXZ + bXZ + 2× aXY Z + 2× bXY Z)× n =
((aXY + aXY Z + bXY + bXY Z)+
(aXZ + aXY Z + bXZ + bXY Z))× n ≥
2× (

√
SY +

√
SZ)×n ≥ 2× (

√
SQ+

√
SR)×n = fc(TSC).

Lemma 1.4. If [(aP > 0) ∧ (aQ > 0)] ⊕ [(aP > 0) ∧ (aR >
0)]⊕ [(aQ > 0) ∧ (aR > 0)]⊕ [(bP > 0) ∧ (bQ > 0)]⊕ [(bP >
0)∧ (bR > 0)]⊕ [(bQ > 0)∧ (bR > 0)] , then fc(T ) ≥ fc(TSR)

Proof. Let X , Y ∈ {P,Q,R}, aX > 0 and aY > 0 while

bX = bY = 0. Note that for the remaining processor Z
∈ {P,Q,R}, aZ = bZ = 0, Then, according to formula (3),

fc(T ) = (aXY +aXZ+aY Z+bXY +bXZ+bY Z+2(aXY Z+
bXY Z))× n.

The measure of the set of all horizontal and vertical lines

containing points mapped to Z will be equal to (aXZ+aY Z+
aXY Z + bXZ + bY Z + bXY Z) and cannot be less than the

half-perimeter of a square with the area of SZ . Therefore,
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aXZ + aY Z + aXY Z + bXZ + bY Z + bXY Z ≥ 2 × √SZ .

Also, all vertical lines contain points from X and Y , therefore,

bXY + bXY Z = n. Thus,

fc(T ) = (aXY + aXZ + aY Z + bXY + bXZ + bY Z+

2(aXY Z + bXY Z))× n

≥ (aXY + aXY Z + bXY + bXY Z)× n+ 2(
√

SZ × n)

≥ n× (bXY + bXY Z) + 2(
√
SZ × n)

≥ n2 + 2(
√
SZ × n)

≥ n2 + 2(
√
SR × n) = fc(TSR).

Similarly, fc(T ) ≥ fc(TSR) when there exist X , Y
∈ {P,Q,R} such that bX > 0 and bY > 0.

Lemma 1.5. If [(aP > 0) ∧ (aQ > 0) ∧ (aR > 0)] ⊕ [(bP >
0) ∧ (bQ > 0) ∧ (bR > 0)] , then fc(T ) ≥ fc(TBR)

Proof. Let (aP > 0) ∧ (aQ > 0) ∧ (aR > 0). Then, bP = bQ =
bR = 0 and bPQR = n × n = n2. Therefore, according to

formula (4),

fc(T ) ≥ 2× n2 − ((aP + aQ + aR)× n) + (aPQR × n) + n2

≥ 2× n2

> 2× n2 − SP = fc(TBR).

Similarly, fc(T ) ≥ fc(TBR) when (bP > 0)∧(bQ > 0)∧(bR >
0).

Thus, we have proved that for any feasible combination of the

partition parameters from Table II, there is always an optimal

solution to Problem 1 with a shape from Fig. 1. The last lemma

in this section proves that all possible combinations of the

partition parameters are covered by lemmas 1.1 – 1.5.

Lemma 1.6. For any partition T ∈ T, its parameters from
Table II will satisfy at least one of the cases of lemmas 1.1 –
1.5.

Proof. Let us denote AP ≡ (aP > 0),AQ ≡ (aQ > 0),AR ≡
(aR > 0),BP ≡ (bP > 0),BQ ≡ (bQ > 0),BR ≡ (bR > 0).

Then, the case of lemma 1.1 can be expressed as follows,

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

The case of lemma 1.2:

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧BQ)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧BP)⊕
(¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AQ ∧ AR)⊕
(¬BP ∧ ¬BQ ∧ ¬BZ ∧ ¬AP ∧ ¬AR ∧ AQ)⊕
(¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AQ ∧ ¬AR ∧ AP)

The case of lemma 1.3:

(¬AP ∧ ¬AQ ∧ ¬BP ∧ ¬BQ ∧ AR ∧BR)⊕
(¬AP ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧ AQ ∧BQ)⊕

(¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧ AP ∧BP)

The case of lemma 1.4:

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧BP ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BR ∧BP ∧BQ)⊕
(¬AP ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AQ ∧ AR)⊕
(¬AQ ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AR)⊕
(¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AQ)

The case of lemma 1.5:

(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR)⊕
(AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)]∨
[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧BQ)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧BP)⊕
(¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AQ ∧ AR)⊕
(¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AR ∧ AQ)⊕
(¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AQ ∧ ¬AR ∧ AP)]∨
[(¬AP ∧ ¬AR ∧ ¬BP¬BQ ∧ AR ∧BR)⊕
(¬AP ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧ AQ ∧BQ)⊕
(¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧ AP ∧BP)]∨
[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧BP ∧BR)⊕
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BR ∧BP ∧BQ)⊕
(¬AP ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AQ ∧ AR)⊕
(¬AQ ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AR)⊕
(¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AQ)]∨
[(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR)⊕
(AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)],

and its disjunctive normal form will be

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧ ¬BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧ ¬BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧ ¬BR) ∨
(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR) ∨
(¬AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(¬AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧BR) ∨
(¬AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(¬AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧ ¬BR) ∨
(¬AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧ ¬BR) ∨
(AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) ∨
(AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) = TRUE
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Now, we are ready to propose the algorithm, solving the

problem of optimal partitioning of a square with the cost

function fc(T ), formulated in the beginning of this section.

B. Selection of Optimal Parition

So far, we have identified three optimal partition shapes.

For each of these shapes, there exist six possible mappings

of three processors to the three parts of the shape, and these

mappings have different costs. Therefore, for given problem

parameters n, SP , SQ, and SR, the straightforward algorithm

would have to calculate costs of 6 mappings for each of the 3

partition shapes, resulting in a total of 18 potentially optimal

partitions, and return the partition with the lowest cost.

Fortunately, we do not have to consider all possible map-

pings to find the optimal one. This follows from lemmas

1 – 3, which give us formulas for the cost of the optimal

partition shapes. From formula (5), it is clear that for the

Square Corner shape, any feasible mapping will have the

fastest processor mapped to the P part. From formula (6),

we can easily conclude that for the Square Rectangle shape

any mapping, which maps the slowest processor to the R
part, will be optimal. Similarly, for the Block Rectangle shape,

formula (7) clearly indicates that any mapping, which maps

the fastest processor to the P part, will be optimal. Therefore,

instead of eighteen, our algorithm only calculates the cost of

three parturitions, selecting the one with the lowest cost as the

optimal.

VI. EXPERIMENTAL VALIDATION

In this section, we present experiments validating our

mathematical results. The main problem in the design of the

experiments is how to accurately measure the contribution

of data movements between the memories of the tightly

coupled compute devices of our hybrid heterogeneous server

in the total executing time. To the best of our knowledge, the

experimental methodology proposed in the paper is the first

that managed to solve this problem, at least, in the context of

hybrid data-parallel applications. Solutions, which we found in

literature, typically underestimate the contribution of the data

movement and often give unstable results.

The main goal of the experiments is to validate the predic-

tive accuracy of our theoretical model, thus demonstrating its

usefulness in making practical decisions on partitioning square

computational domains between tightly integrated compute

devices in hybrid heterogeneous servers.

A. Experimental Methodology

We use a hybrid heterogeneous server, HCLServer01, in our

experiments. HCLServer01 integrates an Intel Haswell multi-

core CPU, having 24 physical cores with 64 GB main memory,

and two accelerators – one Nvidia K40c GPU and one Intel

Xeon Phi 3120P. Detailed specifications of HCLServer01 are

shown in Table.III.

HCLServer01 is the ideal platform for modelling a hybrid

data-parallel application using three abstract interconnected

heterogeneous processors. We abstract the GPU component

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

TABLE III: HCLServer1 specifications

of the application as abstract processor 1, the multi-core CPU

component as processor 2 and the Xeon Phi component as

processor 3. Each abstract processor thus represents a kernel

of the data-parallel application running on the corresponding

compute device and using both its and probably some CPU

resources. The CPU abstract processor represents 22 cores of

the multi-core CPU processor and DRAM involved in the

execution of the CPU kernel. The GPU and PHI abstract

processors each represents a CPU host-core and the accelerator

together with its memory. We denote the GPU, CPU and

PHI abstract processors by P, Q, R, which represents fast,

medium, and slow processors respectively, and by SP , SQ, SR

– their relative speeds normalised to the square domain area.

Assuming that the workload is optimally balanced between

the processors according to their relative speeds, we focus

exclusively on the communication cost in our experiments. We

present three scenarios with different assumed relative speeds

of the GPU, CPU and PHI abstract processors, resulting in a

different SP : SQ : SR ratio for each case.

We carefully design our experiments to accurately measure

the time of the main-memory-to-main-memory data transfer

between these heterogeneous processors, and consider this

transfer time as communication time. This approach pro-

vides more realistic communication times as compared to

approaches, which consider the communication time as the

time of data transfer between virtual memories of the pro-

cesses. We use a parallel matrix multiplication application,

which computes the product of two dense square matrices.

We comment out in this application the computation code to

exclude the computation time from its execution time. For each

scenario, matrices are partitioned between CPU, GPU and PHI

in proportion to their assumed relative speeds and according to

the three optimal partitioning shapes – Square Corner, Square

Rectangle and Block Rectangle, as well as the commonly used

1D partitioning shape called Straight Line, and the execution

time of the application for each partitioning shape is measured.

The communication time of real experiments is then compared

with the predicted communication time, calculated by using

the accurate communication cost function and the average
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communication bandwidth between the devices.

In our experimental platform, there are three communication

links - between CPU and GPU, between CPU and PHI, and

between PHI and GPU. Our model considers these links as

homogeneous. In reality, the links between these processors

are heterogeneous in nature, so we use the average bandwidth

to calculate the model-predicted communication time.

We follow a statistical methodology to ensure reliability of

our experimental results. For that, we make sure that the server

is fully reserved and dedicated to these experiments only. We

also monitor its load and check for any drastic fluctuation

due to any abnormal event in the server. The application is

repeatedly executed to obtain a data point, until the sample

mean lies in the 95% confidence interval and a precision

of 0.025 (2.5%) has been achieved. Student’s t-test is used

to determine the sample mean. The test assumes that the

individual observations are independent and their population

follows the normal distribution. We also allowed sufficient

time to elapse between successive runs to make sure that

cache effects and pipelining do not happen. We ensure that

the problem size used for our experiments does not exceed

the main memory of the compute devices and that paging does

not occur.

B. Experimental Results

While our cost function assumes synchronous

communications, we also experiment with asynchronous

communications to demonstrate its predictive ability in this

case. In all experiments, the problem size N × N is set to

22528 × 22528. The measured bandwidth of the CPU-GPU

link is 9.7 GBps, the CPU-PHI link is 6.3 GBps, and the

GPU-PHI link is 3.6 GBps. The calculated average bandwidth

is 6.6 GBps.

In the first set of experiments, the speed ratio between GPU,

CPU and PHI is assumed 1.0 : 0.5 : 2.5. For this speed ratio,

the model predicts Block Rectangle (BR) to be the optimal

partition. Both synchronous and asynchronous communication

experiments also validate that the Block Rectangle shape

reports the lowest communication time as shown in Fig. 4.

For the second set of experiments, SP : SQ : SR is assumed

1.0 : 0.15 : 0.10. The model predicts Square Corner (SC) to

be optimal, and the real measurements also show that for both

synchronous and asynchronous experiments, Square Corner is

optimal Fig. 5. In the last set of experiments, SP : SQ : SR is

assumed 1 : 0.7 : 0.10. As shown in Fig. 6, both the model and

the experiments identify Square Rectangle (SR) as optimal.

It is also evident from all the experiments that in the case

of synchronous communications, the model predictions are

sufficiently close to the real measurements in order to use

them for accurate pairwise comparison of different partitions.

Our model predicts that Straight Line (SL) will never

outperform any of the three optimal partitions. At the same

time, its theoretical cost will be equal to the cost of Square

Corner when
√
SR +

√
SQ = n, as it is in Scenario 1.

In our experiments, we do see that the model predicted

Fig. 4: Model-predicted and measured communication times

of synchronous and asynchronous communication experiments

for problem size 22528×22528 and speed ratio SP : SQ : SR

= 1.0 : 0.5 : 0.25.

Fig. 5: Model-predicted and measured communication times

of synchronous and asynchronous communication experiments

for problem size 22528×22528 and speed ratio SP : SQ : SR

= 1.0 : 0.15 : 0.10.

communication time and the measured time of these two

shapes in the case of synchronous communications are very

close.

All together, the experimental results with synchronous

communications demonstrate the accuracy of the proposed

accurate communication cost function. The minor differences

between the predicted communication times and the mea-

sured times are due to the use of the average bandwidth

in the theoretical calculations. We believe that our model

will accurately predict the time when the bandwidth of the

communication links is the same. Unfortunately, we cannot

validate it experimentally as in our experimental platform the

communication links have different bandwidths because the

execution of hybrid applications that use CPU, GPU and Xeon

Phi will involve the CPU host-core, DRAM and PCIe’s to

transfer the data between CPU, GPU and Intel Xeon Phi. For

example, data transfer between GPU and PHI passes through

the CPU DRAM and PCIe’s and will be slower than the data
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Fig. 6: Model-predicted and measured communication times

of synchronous and asynchronous communication experiments

for problem size 22528×22528 and speed ratio SP : SQ : SR

= 1.0 : 0.7 : 0.10.

transfer between GPU and CPU.

VII. ONGOING WORK AND FUTURE DIRECTION

In this work, we solved the problem of optimal load -

balanced partitioning of a square computation domain, which

minimizes the total amount of data moved between three in-

terconnected heterogeneous processors. The natural extension

of this work is to solve the problem of optimal partitioning of

a square computational domain between three heterogeneous

processors interconnected by heterogeneous communication

links. This is our ongoing research, and currently, we are

working on this extended problem taking into account the

bandwidth of communication links between the heterogeneous

processors.
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