HeteroMPI Programmers Reference and Installation Manual

HeteroM Pl Programmers Reference and I nstallation Manual

HeteroMPI Programmers Reference and Installation Manual

Heter oM PI
A Message Passing Library for Heter ogeneous

Networ ks of Computers
Version 1.0

Ravi Reddy, Alexey L astovetsky
Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

E-mail: Manumachu.Reddy@ucd.ie, Alexey.L astovetsky@ucd.ie

January 10, 2006

HeteroMPI Programmers Reference and Installation Manual

CONTENTS
1 INTRODUGCTION ..ottt st s e e stestesessessesessessesessesseseasessesease st eneasessaneasessensasessensnsessenenses 5
2 WHAT ISHETEROMPI ...ttt sttt sttt st a et st et sttt st et teste e ebesbe e esestenententenenns 5
3 HETEROMPI'SLIBRARY INTERFACEoci ittt sttt 6
31 HETEROMPI RUNTIME INITIALIZATION AND FINALIZATION...ccciiieiiieeneneeese e 6
Y/ o T SRS 6
L 1Y O I - Y 2 = T 7
3.2 HETEROMPI GROUP MANAGEMENT FUNCTIONS......cooi ittt neenens 8
[1Y I € o TU T o T = 1 SRR 8
L Y T = T | OSSR 9
[1Y/ = I © 0 101 T oo Yo] o o) SR 10
[1Y I @ o T Y o Lo 1 [T 11
[1Y o I € o 10T T o o o T 4 = SRS 12
[1Y/ I € o TU T o T o] o o e o YOS RUSTRR 13
[1Y I o YUY o T o - = 0 ST 14
[1Y o I € o TU T TR 4 = SRRSO 15
[1Y I ST o T 13 A TSSOSOt 16
L 1Y S ST o = ¥ = o 1 ST 16
[1Y T ST 012 01 0 1= RSP SPSRRURt 17
L 1Y S 0 = - S 18
[1Y I =Y S o300 0 PR 18
[1Y o B € o U T o I o g =T- 1 A TS U PP URTUPURTPRRTRT 19
[1Y I o YUY o = U Ao T o g = X =SSP 22
HVPI _Group_heuri Sti C_aUt O _Cr AL € .ottt s sb e 23
[1Y = I o 10T T == SR 24
3.3 HETEROMPI RUNTIME UPDATION FUNCTIONS.......oooiiitreeereese e 25
[177 N U= T o o] o PSR 25
3.4 HETEROMPI ESTIMATION FUNCTIONS.......ocoiiiiereene ettt sttt sttt 27
L Y/ T I o =Y o) TR 27
35 HETEROMPI PROCESSOR INFORMATION FUNCTIONS.......coceitieteeseese e 28
HVPI _Get _ NUMDET _Of PrOCESSOI S it ree e sttt st e e enaesbesnesrenneenaeneens 29
HMPI _Get _ProOCESSOrS_T N 0 ittt et e et e b ne e 29
[1Y o I € =Y i o T o Yot =E oYY == T o S 30
[1Y o I € o 1O T T =] g 0 1 1 - Y o =S 31
3.6 HETEROMPI SYNCHRONIZATION FUNCTIONS ..ottt 32
L 1Y T = = Y G T =T OSSPSR 32
[1Y o I N o A VA B =TT o] 0o =TS X = =S 33
[1Y IV VI O =TT o] o 1o =T] = T OSSPSR 33
[Y I = o 1S AR =Y o L= 4V o U OSSPSR 33
3.7 HETEROMPI DEBUGGING AND VERSION FUNCTIONS......cccootiereeeesieese et 34
11V I = T 0 S 34
[1Y S A = o] PSR 35
L Y = T =T o1 Lo ST TORR 36
[1Y =Y AV =T = o o PSSR 36

4.2

4.3

4.4

5.1
52
53

6.1
6.2
6.3
6.3.1
6.3.2
6.4
6.5
6.6
6.7

HeteroMPI Programmers Reference and Installation Manual

HETEROGENEOUSDATA PARTITIONING INTERFACE (HETERODPI).....ccocoovirrrineenerieee 37
S S TSROSO 37
Parti ti 0N _UNOT eI €U S et et et te e st e s be e s be e s eeeteeaeesaeesreesreenseenreans 37
[U I Y o J o] e [T Yo [= APPSR 38
L€ Y S Y =Y S o] o Yo =1 = o 1 PSR 39
(€] A 04 V2 o - U g G T S o] o SRS 39
DENSE MATRICES... ..ottt sttt sttt st e et s te et s te e ebe st e e e besteneetesbeneatestenententeneans 39
L= L AT I T T 2> LS TG o SR 39
= U I I] T = U G o e | o RSOOSR 40
Partition mAtri X 1d T eI ati Ve ettt sttt s s sre e re e reenneens 41
Partition matri X _1d Fefi Ni Mgt r e aennens 42
(€) A 0= L I O o g o o =21 o 1 SRRSO 42
L€ = O 01 V2LV S o OSSPSR 43
(€] A 04 V2 L= o | 1 SRRSO 43
(€= o L= Vo o 4 -1 SRS 43
(€ A V2 = = 011 0 =R 44
(€] A V2 O =1 =Y 011 0L =R 44
LT TN 1 TSRS 44
L= L T A] T =1 o SR 44
Partiti on_Di partit @ _gr aph . b 45
Part it ON_ Y PEI GF @Mttt s b et ae e b et ae b e e e 46
TREES ..ottt R Rt R R e R e Rt Rt e Rt R e A e Rt R et e Rt R et e Rt RenteneeRentennnnn 47
= L T A o T A= - S 47
HETEROMPI COMMAND-LINE USER'SINTERFACE ..ot 48
HETEROMPI ENVIRONMENT ..ottt st sttt sttt sttt st sttt st st 48
VIRTUAL PARALLEL MAGCHINE ..ottt sttt e 48
BUILDING AND RUNNING HETEROMPI APPLICATION ..ottt 49
HETEROMPI INSTALLATION GUIDE FOR UNIX.....cciiiiiirieisinieesiinieesieseeesesseessesseessessesessessesssses 51
SYSTEM REQUIREMENT S .. .ottt sttt sttt sttt ste st ste et stesaetesteaesesaessesessesensessensnsessesensens 51
CONTENTSOF HETEROMPI FOR UNIX DISTRIBUTION......ccccotiirieiiieieieseneeiesieseeesieseeeseesensens 52
BEFORE INSTALLATION ...ttt sttt sttt st sttt sae e tesae e tesae e tesaesestesaesestesaesestessenessessenenes 52
ST 1Y I 1 L1V 1 = SRS 52
MAKING RSH/SSH WORKING ..ottt sttt sttt st sttt st st 53
BEGINNING INSTALLATION ..ottt sttt st sttt sttt st st see st st st sbeneeneees 54
FINISHING INSTALLATION ..ttt sttt sttt sttt et st b e st se et sttt e s 55
CONTENTSOF HETEROMPI INSTALLATION ..ottt st st s ennens 55
TESTING YOUR INSTALLATION ...ttt ettt nse st naenennas 56

HeteroMPI Programmers Reference and Installation Manual

1 Introduction

The tools designed for programming high-performance computations on HNOCs must provide
mechanisms to automate the following tedious and error-prone tasks:

e Parameter determination characterizing the computational requirements of the parallel

application and the capabilities of the machines,

* Data partitioning,

* Matching and Scheduling, and

» Task execution.

Ideally a tool must supply mechanisms to the programmer so that he or she can provide
information to it that can assist in finding the most efficient implementation on HNOC:s.
Combining the system’s detailed analysis with the programmer’s high-level knowledge of the
application is essential in finding more efficient mappings than either one alone is capable of
achieving. The performance models used by the tools must take into account all the essential
features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects
of paging and the speed and the bandwidth of the communication links between the processors.
The model of the executing network of computers must take into consideration the essential set
of machine characteristics such as computing bandwidth, communication latency,
communication overhead, communication bandwidth, network contention effects and the
memory hierarchy. Such a model must have enough parameters for it to be effective and
accurate.

HeteroMPI is such a tool, which is an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. The main idea of HeteroMPI is to
automate the process of selection of a group of processes, which would execute the
heterogeneous algorithm faster than any other group. HeteroMPI provides features that allow the
user to carefully design their parallel applications that can run efficiently on HNOC:s.

The rest of the manual is organized as follows. Section 2 describes HeteroMPI. Section 3
presents the HeteroMPI API, which are extensions to MPI. Section 4 presents the library of data
partitioning functions. Section 5 provides the HeteroMPI command-line user’s interface. This is
followed by installation instructions for HeteroMPI on UNIX platforms in section 6.

2 What isHeteroMPI

Heterogeneous MPI (HeteroMPI) is an extension of MPI for programming high-
performance computations on heterogeneous networks of computers. It allows the application
programmer to describe the performance model of the implemented algorithm in a generic form.
This model allows for all the main features of the underlying parallel algorithm, which have an
impact on its execution performance, such as the total number of parallel processes, the total
volume of computations to be performed by each process, the total volume of data to be
transferred between each pair of the processes, and how exactly the processes interact during the
execution of the algorithm. Given the description of the performance model, HeteroMPI tries to
create a group of processes that executes the algorithm faster than any other group of processes.

HeteroMPI provides all the features to the user to write portable and efficient parallel
applications on HNOCs. These features automate all the essential steps involved in application
development on HNOC:s:

HeteroMPI Programmers Reference and Installation Manual

1). Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous system. The
machine capabilities are determined before the application execution and supplied to the model
of executing network of computers. The model of the executing network of computers is
implementation-dependent. We use a static structure automatically obtained by HeteroMPI
environment and saved in the form of an ASCII file. However, the parameters of the model can
be updated at runtime taking into account the changing network loads.

2). Decomposition of the whole problem into a set of sub-problems that can be solved in
parallel by interacting processes. This step of heterogeneous decomposition is parameterized by
the number and speeds of processors and the speeds and bandwidths of the communication links
between them. The Heterogeneous Data Partitioning Interface (HeteroDPI) is developed to
automate this step of heterogeneous decomposition. HeteroDPI provides API that allows the
application programmers to specify simple and basic partitioning criteria in the form of
parameters and functions to partition the mathematical objects used in their parallel applications.

3). Selection of the optimal set of processes running on different computers of the
heterogeneous network by taking into account the speeds of the processors, and the speeds and
the bandwidths of the communications links between them. During the creation of this set of
optimal processes, HeteroMPI runtime system solves the problem of selection of the optimal set
of processes running on different computers of the heterogeneous network using an advanced
mapping algorithm. The mapping algorithm is based on the performance model of the parallel
algorithm in the form of the set of functions generated by the compiler from the description of
the performance model, and the performance model of the executing network of computers,
which reflects the state of this network just before the execution of the parallel algorithm.

4). Application program execution on the HNOCs. The command line user interface of
HeteroMPI developed consists of a number of shell commands supporting the creation of a
virtual parallel machine and the execution of the HeteroMPI application programs on the virtual
parallel machine. The notion of virtual parallel machine enables a collection of heterogeneous
computers to be used as single large parallel computer.

3 HeteroMPI'sLibrary Interface

In this section, we describe the interfaces to the routines provided by HeteroMPI as extensions to
MPI and the interfaces to the routines in the heterogeneous data partitioning interface (HPDI).

3.1 HeteroMPI runtimeinitialization and finalization

HVPl | nit

Initializes HeteroMPI runtime system

Synopsis:

i nt
HVPI | nit
(

int* argc,

HeteroMPI Programmers Reference and Installation Manual

char*** argv

)

Parameters.
ar gc --- Number of arguments supplied to mai n
ar gv --- Values of arguments supplied to mai n

Description: All processes must call this routine to initialize HeteroMPI runtime system. This

routine must be called before any other HeteroMPI routine. It must be called at most once;
subsequent calls are erroneous.

Usage:

int main(int argc, char** argv)

{
int rc = HWI _Init(
&ar gc,
&ar gv
)
if (rc !'= HWI _SUCCESS)
{
//Error has occurred
}
}

Return values: HMPlI _ SUCCESS on success and an error in case of failure.

HWPI _Finalize
Finalizes HeteroMPI runtime system

Synopsis:
i nt
HWPI _Finalize
(
i nt exitcode
)
Parameters:

exi t code --- code to be returned to the command shell

Description: This routine cleans up all HeteroMPI state. All processes must call this routine at
the end of processing tasks. Once this routine is called, no HeteroMPI routine (even
HVPI _| ni t) may be called.

HeteroMPI Programmers Reference and Installation Manual

Usage:

int main(int argc, char** argv)

{
int rc = HWI _Init(
&ar gc,
&ar gv
)
if (rc !'= HWI _SUCCESS)
{
//Error has occurred
}
rc = HWI _Finalize(0);
if (rc !'= HWI _SUCCESS)
{
//Error has occurred
}
}

Return values: HVPI _ SUCCESS on success and an error in case of failure.

3.2 HeteroMPI Group Management Functions

HWPI G oup_rank

Returns rank of the calling process

Synopsis:
i nt
HVWPI _G oup_r ank
(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes

Description: This routine returns the rank of the process calling it. Only processes that are
members of the group represented by the handle gi d can call this routine.

HeteroMPI Programmers Reference and Installation Manual

Usage:

/1 HWPI _HOST _GROUP is a predefined group handl e
/'l containing the host process.
HWI G oup* gid = HWI _HOST_ GROUP;

if (HWPI _I's nmenber(gid))

{
int rank = HWI _G oup_rank(

gid
);

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _Rank
Returns rank of the process with the coordinates specified

Synopsis:
i nt
HVPI _Rank

(
const HWPI _Group* gid,

const int* coordi nates

)

Parameters:

gid --- handle to the HeteroMPI group of processes
coor di nat es --- coordinates representing a process in the group represented by
the handle gi d

Description: This routine returns the rank of the process in the group represented by the handle
gi d and the coordinates of the process being coor di nat es. Only processes that are members
of the group represented by the handle gi d can call this routine.

Usage:

/| HeteroMPl target program
HWI G oup gid;

i nt coordinates = 3;

if (HWPI _Is_nenber(&gid))

HeteroMPI Programmers Reference and Installation Manual

{
int rank = HWPI _Rank(
&gi d,
&coor di nat es
)
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _G oup_coor dof
Returns the coordinates of the process

Synopsis:
i nt
HWPI _G oup_coor dof

(
const HWPI _Group* gid,

int* nuntc,
i nt** coordi nat es

)
Parameters:

gi d --- Handle to the HeteroMPI group of processes. This is an input parameter.
nunt --- Output parameter giving the number of coordinates representing the
calling process in the group represented by the handle gi d.
coor di nat es --- The values of the coordinates of the calling process in the
group represented by the handle gi d.

Description: If the process calling this routine is a member of the group given by the handle
gi d, then its coordinates are returned in coor di nat es, the initial element of which points to
an integer array containing the coordinates with size nunt. Only processes that are members of
the group represented by the handle gi d can call this routine.

Usage:

HWI _G oup gi d;

if (HWPI _I's nmenber(&gid))
{

i nt nuntc;
i nt* coordi nat es;

10

}

HeteroMPI Programmers Reference and Installation Manual

int rc = HWI_G oup_coordof (

&gi d,
&nunrc,
&coor di nat es
)
if (rc !'= HWI _SUCCESS)
{
[/ Failure
}

free(coordi nates);

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HVPI _ SUCCESS is returned on success.

HWPI _Coor dof

Returns the coordinates of the process with a specified rank.

Synopsis:
i nt
HWPI _Coor dof
(
const HWPI _Group* gid,
i nt rank,
int* nunt,
int** coordi nates
)
Parameters:

gi d --- Handle to the HeteroMPI group of processes. This is an input parameter.
r ank --- The rank of the process whose coordinates are returned.

This is an input parameter.

nunt --- Output parameter giving the number of coordinates of the process

whose rank is r ank in the group represented by the handle gi d.

coor di nat es --- The values of the coordinates of the process whose rank is

r ank in the group represented by the handle gi d.

Description: The coordinates of the process whose rank is r ank in the group represented by the
handle gi d are returned in coor di nat es, the initial element of which points to an integer
array containing the coordinates with size nunt. Only processes that are members of the group
represented by the handle gi d can call this routine.

11

HeteroMPI Programmers Reference and Installation Manual

Usage:
HWI G oup gid;

if (HWPI _Is_nmenber(gid))
{

int rank = 0O;
i nt nuntc;
i nt* coordi nat es;

int rc = HWI _Coor dof (
&gi d,
rank,
&nunt,
&coor di nat es

)
if (rc !'= HVPl _SUCCESS)

[/ Failure

}

free(coordi nates);

}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HVPI _ SUCCESS is returned on success.

HWPlI G oup_t opo_si ze
Returns the number of coordinates that can specify a process in a group

Synopsis:
i nt
HWPI G oup_t opo_si ze
(

)

Parameters:

const HWI _Goup* gid

gi d --- handle to the HeteroMPI group of processes

12

HeteroMPI Programmers Reference and Installation Manual

Description: This routine returns the number of coordinates used to specify a process, which is a
member of the group represented by the handle gi d. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:

HWI G oup gid;

if (HWPI _I's nmenber(&gid))
{
int nunt = HWI_Goup_topo_size(
&gi d
);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _G oup_t opol ogy
Returns the number of processes in the group in each dimension of the topology of the group.

Synopsis:

i nt
HWPI _G oup_t opol ogy

(
const HWPI _Group* gid,

i nt* nunc,
int** coordi nat es

)

Parameters:

gi d --- handle to the HeteroMPI group of processes.
nunt --- Output parameter giving the number of dimensions of the topology
specifying the arrangement of the processes, which are members of the
group represented by the handle gi d.
coor di nat es --- Output parameter giving the number of processes in each
dimension of the topology specifying the arrangement of
the processes, which are members of the group represented by
the handle gi d.

Description: This routine returns the number of dimensions of the topology and the number of
processes in each dimension of the topology representing the arrangement of the processes,

13

HeteroMPI Programmers Reference and Installation Manual

which are members of the group represented by the handle gi d. The number of processes in
each dimension are returned in coor di nat es, the initial element of which points to an integer
array with number nunt of elements containing the number of dimensions. Only processes that
are members of the group represented by the handle gi d can call this routine.

Usage:

HWI G oup gid;

if (HWPI _I's nmenber(&gid))

(.
i nt nunc;
i nt* coordi nates;
int rc = HWI_Goup_topol ogy(
&gi d,
&nunt,
&coor di nat es
)i
if (rc !'= HWPlI _SUCCESS)
{
[/ Failure
}
free(coordi nat es);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HMPI _SUCCESS is returned on success.

HVPI _G oup_par ent
Returns the rank of the parent of a group

Synopsis:
i nt
HVPlI _G oup_par ent
(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes.

14

HeteroMPI Programmers Reference and Installation Manual

Description: This routine returns the rank of the parent of the group represented by the handle
gi d. Only processes that are members of the group represented by the handle gi d can call this

routine.

Usage:

HWPI _G oup* gid;

i nt rank;

if (HWPI _Is_nmenber(gid))
{

}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

rank = HWPI _Goup_parent(gid);

HWPI _G oup_si ze
Returns the number of processes in the group

Synopsis:
i nt
HWPI _G oup_si ze
(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes

Description: This routine returns the number of processes in the group represented by the handle
gi d. Only processes that are members of the group represented by the handle gi d can call this

routine.
Usage:

HWPI _G oup* gid;
int size;

if (HWPI _Is_nmenber(gid))
{

}

size = HWI _G oup_size(gid);

15

HeteroMPI Programmers Reference and Installation Manual

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI | s_host
Is the calling process the host?

Synopsis:

unsi gned char
HWI |I's host ()

Description: This routine returns t r ue if the process calling this function is the host process
otherwise f al se. Any process can call this function.

Usage:

if (HWPl _I's_host())

{
printf(“l”mthe host\n”);
}
el se
{
printf(“l"mnot the host\n”);
}

Return values. Value of 1 is returned if the process is the member of the group. 0 otherwise.

HWPI | s_parent
Is the calling process the parent process of the group?

Synopsis:

unsi gned char
HWPI | s_parent

(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes.

16

HeteroMPI Programmers Reference and Installation Manual

Description: This routine returns t r ue if the process calling this routine is the parent of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:

HWPI _G oup* gid;

if (HWI Is _parent(gid))

{
printf(“l"mthe parent of the group gid\n”);
}
el se
{
printf(“l"mnot the parent of the group gid\n”);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _| s_menber
Am I a member of the group?

Synopsis:

unsi gned char
HWPI _| s_menber

(
const HWI _Goup* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes.

Description: This function returns t r ue if the process calling this routine is the member of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:
HWPI G oup* gid;
if (HWPI _Is_nmenber(gid))
{

17

HeteroMPI Programmers Reference and Installation Manual

printf(“l"ma nmenber of the group gid\n”);

}
el se
{
printf(“l”mnot a nenber of the group gid\n”);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWI |Is free

Am I a member of the predefined group HVPI _ FREE _GROUP?

Synopsis:

unsi gned char
HWI |s free()

Description: This routine returns t r ue if the process is free and is member of the predefined
group HVPlI _FREE_GROUP and f al se otherwise. Any process can call this function.

Usage:

if (HWI _Is free())

{
printf(“l"ma free process and nenber of”
“ HWPI _FREE_GROUP \n");
}
el se
{
printf(“l"mnot a free process and not a nenber of”
“ HWPI _FREE_GROUP \n");
}

Return values: Value of 1 is returned if the process is not the member of any other group other
than HVPl _FREE_GROUP. 0 otherwise.

HWPI _Get _comm
Returns an MPI communicator with communication group of MPI processes

Synopsis:

const MPI _Commt
HWPlI _Get _comm

(

18

HeteroMPI Programmers Reference and Installation Manual

const HWI _Goup* gid
)

Parameters:

gi d --- handle to the HeteroMPI group of processes.

Description: This routine returns an MPI communicator with communication group of MPI
processes defined by gi d. This is a local operation not requiring inter-process communication.
Application programmers can use this communicator to call the standard MPI communication
routines during the execution of the parallel algorithm. This communicator can safely be used in

other MPI routines.
Usage:

HWPI _G oup* gid;
MPI _Conm* conmm

if (HWPI _Is_nmenber(gid))

{
comm = HWPI Get comm(gid);
i f (comm == NULL)
{
[l error
}
}

Return values: This call returns NULL if the process is not a member of the group represented
by the handle gi d.

HVPI _Group_create
Create a HeteroMPI group of processes

Synopsis:
i nt
HWI _Group_create

(
HWPI _G oup* gid,
const HWPI Mbdel * nodel
const int* nodel paraneters,
i nt parant

)

Parameters:

19

HeteroMPI Programmers Reference and Installation Manual

gi d --- handle to the HeteroMPI group of processes. This is an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of a set of functions generated by the compiler from the description
of the performance model (input parameter)

nodel _par anmet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: This routine tries to create a group that would execute the heterogeneous algorithm
faster than any other group of processes. In HeteroMPI, groups are not absolutely independent on
each other. Every newly created group has exactly one process shared with already existing
groups. That process is called a parent of this newly created group, and is the connecting link,
through which results of computations are passed if the group ceases to exist.
HVPI _G oup_cr eat e is a collective operation and must be called by the parent and all the
processes, which are not members of any HeteroMPI group.

Usage:
HWI G oup gidl, gid2, gid3;
i nt nodel p[1] = {5};

unsi gned char is_parent_of _nid2
unsi gned char is_parent_of nid3

0;
0;

/'l The parent used in the creation of abstract network
/1 gidl is the host
if (HVPI _Is_nmenber (HWPI _HOST_GROUP))

{
HVWPI _G oup_cr eat ¢(
&gi di,
&HVPI _Model _si npl e,
nodel p,
1
);
}
if (HWI Is free())
{
HWPI _G oup_cr eat ¢(
&gi d1,
&HWPI _Model _si npl e,
NULL,
0
);
}

/1 The parent used in the creation of group gid2 is the
/1 menber of group gidl whose coordi nates are given

20

HeteroMPI Programmers Reference and Installation Manual

11 {2}
if (HWPI _I's nmenber(&gidl))
{

i nt nunct;

int** coordinates = (int**)mall oc(
si zeof (int*)

)i

int rc = HWI _G oup_coordof (
&gi d1,
&nunrc,
coor di nat es,

)i

if ((*coordinates)[0] == 2)

{

is_parent_of _nid2 = 1;
}

free(coordi nates[0]);
free(coordi nates);

if (is_parent_of _nid2
|| HWPI _Is free()

)
{
HVPI _G oup_creat ¢(
&ni d2,
&HWPI _Mbdel _si npl e,
nodel p,
1
);
}

/'l The parent used in the creation of the group gid3 is
/1l the menber of abstract network nid2 whose

/'l coordinates are given by {3}

if (HWPI _Is_nmenber (&nid2))

i nt nunc;
int** coordinates = (int**)mall oc(

si zeof (int*)
);

int result = HWI _G oup_coordof (
&gi d2,
&nunc,
coor di nat es,

21

HeteroMPI Programmers Reference and Installation Manual

);
if ((*coordinates)[0] == 3)
{
is_parent_of gid3 = 1;
}

free(coordi nates[0]);
free(coordi nat es);

if (is_parent_of nid3
|| HWPI _Is free()

)
{
HVPI _Group_creat g(
&gi d3,
&HVPI _Model _si npl e,
nodel p,
1
);
}

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HVWPI _G oup_auto_create

Create a HeteroMPI group of processes with optimal number of processes

Synopsis:

i nt
HVWPlI _G oup_auto_create

(
HWPI _G oup* gid,
const HWPI _Mbdel * nodel
const int* nodel paraneters,
i nt parant

)

Parameters:

gi d --- handle to the HeteroMPI group of processes. This is an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of a set of functions generated by the compiler from the description
of the performance model (input parameter)

nodel _par anet er s --- parameters of the performance model (input parameter)

22

HeteroMPI Programmers Reference and Installation Manual

par ant --- number of parameters of the performance model (input parameter)

Description: This routine allows application programmers not to bother about finding the
optimal number of processes that can execute the parallel application. They can specify only the
rest of the parameters thus leaving the detection of the optimal number of processes to the
HeteroMPI runtime system. HMPl _Gr oup_aut o_cr eat e is a collective operation and must
be called by the parent and all the processes, which are not members of any HeteroMPI group.

The parameters nodel _par anet ers and param count are input parameters. User fills
only the input-specific part of the parameter nodel _par anmet ers and ignores the return
parameters specifying the number of processes to be involved in executing the algorithm and
their performances.

Return values: HVPl _ SUCCESS on success and an error in case of failure.

HWI G oup_heuristic_auto_create

Uses user-supplied heuristics to create a HeteroMPI group of processes with optimal number of
processes

Synopsis:

typedef int (*HWVPI _Heuristic_function)(
int np, int *dp, const int* nodelp, int parant);

i nt

HWI G oup_heuristic_auto_create

(
HWPI _G oup* gid,
const HWPI _Mbdel * nodel
HWPI Heuristic _function hfunc,
const int* nodel paraneters,
i nt parant

)

Parameters:

gi d --- handle to the HeteroMPI group of processes. This is an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of a set of functions generated by the compiler from the description
of the performance model (input parameter)

hf unc --- User-supplied heuristic function (input parameter)

nodel _par anmet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: This routine has the same functionality as HVPl _Gr oup_aut o_cr eat e except

that it allows application programmers to supply heuristics that minimize the number of process
arrangements evaluated.

23

HeteroMPI Programmers Reference and Installation Manual

Application programmers provide the heuristic function hf unc. The input parameter np is the
number of dimensions in the process arrangement. The input parameter dp is an integer array of
size NP containing the number of processes in each dimension of the process arrangement. The
input parameters nodel p and par ant are the parameters supplied to the performance model.
The function HMPl _Gr oup_heuri sti c_aut o_creat e evaluates a process arrangement
only if the heuristic function hf unc returns true.

A simple heuristic function is shown below, which returns a value true only if the process
arrangement is a square grid.

I nt Square_grid_only(
int np, int *dp, void *nodelp, int parant){
if ((np ==2) && (dp[0] == dp[1]))
return true;
return fal se;

}

The function evaluates process arrangements that are square grids only if this heuristic function
is provided as an input.

Return values: HMPlI _SUCCESS on success and an error in case of failure.

HWI G oup _free
Free a HeteroMPI group of processes

Synopsis:
i nt
HWI G oup _free
(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HeteroMPI group of processes
Description: This routine deallocates the resources associated with a group object gi d.
HVPI _G oup_f r ee is a collective operation and must be called by all the processes, which are
members of the HeteroMPI group gi d.

Usage:

24

HeteroMPI Programmers Reference and Installation Manual

HWI _G oup gi d;
if (HWPI _I's nmenber (&gid))
{

}

Return values: HMPlI _ SUCCESS on success and an error in case of failure.

HVPI G oup_free(&gid);

3.3 HeteroMPI Runtime updation Functions

HWPI _Recon
Updates the estimation of processor performances dynamically

Synopsis:

typedef void (*HWMPI _Benchmar k_function) (
const void*, int, void*);

i nt
HVPl _Recon
(

HWPI _Benchmar k_f uncti on func,
const voi d* input_p,

i nt num of _paraneters,

voi d* output _p

)

Parameters:

f unc --- Benchmark user function executed by all the physical processors.

I nput _p --- Input parameters to the user function.

num of _par anet er s --- Number of input parameters to the user function.
out put _p --- Return parameter on the execution of the user function.

Description: All the processors execute the benchmark function f unc in parallel, and the time
elapsed by each of the processors to execute the code is used to refresh the estimation of its
speed. This is a collective operation and must be called by all the processes in the group
associated with the predefined communication universe HMPI_COMM_WORLD of
HeteroMPL.

This routine allows updating the estimation of processor performances dynamically, at
runtime, just before using the estimation by the programming system. It is especially important if
computers, executing the HeteroMPI program, are used for other computations as well. In that
case, the real performance of processors can dynamically change dependent on the external

25

HeteroMPI Programmers Reference and Installation Manual

computations. The use of this routine allows writing parallel programs sensitive to such dynamic
variation of the workload of the underlying computer system.

Usage:

doubl e Perf func (

{

VOi

doubl e I, double w, double h, double delta)
double mx,y, z;
for (m=0.0, x =0.0; x <1I; x += delta)

for (y =0.; vy <w y += delta)

for (z =0.; z <h; z += delta)
m += XYZ func(x,vy, z);
return m* delta * delta * delta;

d Benchmar k_function
const void* input_p,

i nt num of _p,
voi d* out put _p

doubl e* parans = (doubl e*)i nput _p;

double result = Perf _func(
par ans[0] ,
parans[1],
par ans|[2] ,
par ans| 3]
);
(doubl e) (output _p) = result;
return;

Al nmenbers of group HWPI _COVM WORLD GROUP nust cal
this function
(HWPI _I's_nmenber (HVPI _COVM WORLD_GROUP))

doubl e out put _p;

int rc = HWI _Recon(
Benchmar k_f uncti on,
i nput _p,
4,
&out put _p

);

if (rc != HWPl _SUCCESS)

26

HeteroMPI Programmers Reference and Installation Manual

// An error has occurred

}
Return values: HVPl _ SUCCESS on success and an error in case of failure.
34 HeteroMPI Estimation Functions

HVPI _Ti meof
Predict the total time of execution of the algorithm on the underlying hardware without its real
execution

Synopsis:
doubl e
HVPl _Ti meof
(

const HWPI Mbdel * nodel
const int* nodel paraneters,
i nt parant

)
Parameters:

nodel --- handle that encapsulates all the features of the performance model in
the form of a set of functions generated by the compiler from the
description of the performance model (input parameter)
nodel _par anmet er s --- parameters of the performance model (input parameter)
par ant --- number of parameters of the performance model (input parameter)

Description: This routine allows application programmers to predict the total time of execution
of the algorithm on the underlying hardware without its real execution. This function allows the
application programmers to write such a parallel application that can follow different parallel
algorithms to solve the same problem, making choice at runtime depending on the particular
executing network and its actual performance. This is a local operation that can be called by any
process, which is a member of the group associated with the predefined communication universe
HVPI _COVM_WORL D of HeteroMPL.

HMVPI _Ti meof can thus be used to estimate the execution time on HNOCsS for each possible
set of model parameters model _par anet er s. Application programmers can use this function
creatively to design best possible heuristics for the set of parameters. Depending on the time
estimated for each set, the optimal values of the parameters are determined. These values are
then passed to the performance model during the actual creation of the group of processes using
the function HVPl _Group_cr eat e.

Usage:

27

HeteroMPI Programmers Reference and Installation Manual

al gorithmbcast(int p, int n, int ITER int rooot) {
coord | =p;
node {
| >=0: bench*1;
1

link {

| >=0&&I ! =rooot : | engt h*(n*n*| TER*si zeof (doubl e))

[rooot]->[1];

3
parent[O0];
schene {

int i, Kk;

for (k = 0; k < ITER k++)

for (i =0; I < p; i++)
if (i !'= rooot)
(100/ I TER) %®4 r ooot] ->[i];
3
3

int main() {
int p;
HWI _G oup gi d;

p = HWI _ G oup_size(HWI _COVM WORLD GROUP) ;
if (HWI _Is_host()) {
i nt param count = 4,
i nt nodel parans[4] = {
P,
N
| TER,
r oot
1
doubl e ti mne;
time = HWPI _Ti meof (
&HVPI Model bcast,
&nodel par ans,
par am count
);
ti = (doubl e)ti ne/ (doubl e) | TER;
printf("Nunmber of bytes broadcast = %,
time=%.9f\n", NN8, tine);

}

3.5 HeteroMPI Processor | nformation Functions

28

HeteroMPI Programmers Reference and Installation Manual

HWPI _Get _nunber _of processors
Returns the number of physical processors of the underlying distributed memory machine

Synopsis:

i nt
HWPI _Get _nunber of processors()

Description: This routine returns the number of physical processors of the underlying distributed
memory machine. This is a collective operation and must be called by all the processes in the
group associated with the predefined communication universe HMPI_COMM_WORLD of
HeteroMPL.

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group HVPI _ COVM WORLD GROUP. HVPI _SUCCESS is returned on success.

HWPlI _Get processors_info

Returns the relative performances of the physical processors of the underlying distributed
memory machine

Synopsis:

i nt
HWPI _Get _processors_info

doubl e* rel ative_performnces

)

Parameters:

Rel ati ve_perfornmances --- Output parameter containing the relative
performances of the physical processors of the
underlying distributed memory machine

Description: This routine returns the relative performances of the physical processors of the
underlying distributed memory machine. This is a collective operation and must be called by all
the processes in the group associated with the predefined communication universe
HMPI_COMM_WORLD of HeteroMPL

Usage:

int p = HWI_Get_nunber_of processors();
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)

*

p

29

HeteroMPI Programmers Reference and Installation Manual

)
int rc = HWI _Get _processors_i nf o
speeds

)i

if (rc !'= HWPl _SUCCESS)

{

// An error has occurred
}

Return values: Error code HVMPI _UNDEFI NED is returned if the process is not the member of
the group HMPI _COMM WORLD_CGROUP. HVPI _SUCCESS s returned on success.

HWPlI _Get processes_info

Returns the relative performances of the processes running on the physical processors of the
underlying distributed memory machine

Synopsis:

i nt
HWPI _Get _processes_info

doubl e* rel ati ve_perfornmances

)

Parameters:

Rel ati ve_perfornmances --- Output parameter containing the relative
performances of the processes running on the
physical processors of the underlying distributed
memory machine

Description: This routine returns the relative performances of the processes running on the
physical processors of the underlying distributed memory machine. This is a collective operation
and must be called by all the processes in the group associated with the predefined
communication universe HMPI_COMM_WORLD of HeteroMPI.

Usage:

int p = HWI_Goup_size(HWI _COVWM WORLD GROUP) ;
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)

*

p

30

HeteroMPI Programmers Reference and Installation Manual

int rc = HWI _Get _processes_i nf o

speeds
)
if (rc !'= HWPlI _SUCCESS)
{
// An error has occurred
}

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of

the group HVPI _ COVM WORLD GROUP. HVPI _SUCCESS is returned on success.

HWPI _G oup_per formances

Returns the relative performances of the processes in a group

Synopsis:

i nt
HWPI _G oup_per formances

(
const HWPI _Group* gid,

doubl e* rel ative_performnces

)
Parameters:

gi d --- handle to the HeteroMPI group of processes

Rel ati ve_perfornmances --- Output parameter containing the relative
performances of the processes in the group
represented by the handle gi d

Description: This routine returns the relative performances of the processes in the group
represented by the handle gi d. This is a collective operation and must be called by all the

processes in the group given by the handle gi d.
Usage:
HWI _G oup gi d;

if (HWPI _Is_nmenber(gid))
{
int p = HWI _Goup_size(&gid);
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)

*

31

HeteroMPI Programmers Reference and Installation Manual

p
);
int rc = HWI _G oup_performances(
gid,
speeds
);
if (rc !'= HWPl _SUCCESS)
{
/1 An error has occurred
}

}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group given by the handle gi d. HVPI _SUCCESS is returned on success.

3.6 HeteroMPI Synchronization Functions

HVWPI _Barrier
Barrier for the members of the group

Synopsis:

int HWI Barrier

(const HWPI _Group* gid
)

Parameters:

gi d --- handle to the HeteroMPI group of processes

Description: Has same functionality as MPl _Bar ri er . This is a collective operation and must
be called by all the processes in the group given by the handle gi d.

Usage:
HWI _G oup gid;

if (HWPl _I's nmenber (&gid))
{

}

Return values: HMPlI _SUCCESS on success and an error in case of failure.

HVPI _Barrier (&gid);

32

HeteroMPI Programmers Reference and Installation Manual

HWI Notify_ free_processes
Notify free processes to leave the waiting point

Synopsis:
int HWI Notify free_ processes()

Description: This must be called by only the host-process. It sends a command to the dispatcher
to signal the free processes to leave the waiting point.

Usage:
HWI G oup gi d;

if (HWI Is host())
{

}

HVPI Notify free processes();

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HWI _Wait_free_processes
Waiting point for free processes waiting for commands for group destruction

Synopsis:

int HWI WAit free_processes()

Description: This must be called by all the free processes. All the free processes wait in this call
for commands from dispatcher on group destruction.

Usage:

if (HWI _Is free())
{

}

HWPI Wit free processes();

Return values: HVPl _ SUCCESS on success and an error in case of failure.

HWPlI _Host _rendezvous
Allows rendezvous with the host-process

Synopsis:

33

HeteroMPI Programmers Reference and Installation Manual

int HWPI _Host rendezvous(int count)

Description: This function allows rendezvous with the host-process. Any process, which is the
member of the group HMPI _COVMM WORLD GROUP, and the host-process must call this
function.

Parameters:
count --- Number of processes rendezvous with the host-process
Usage:
HWI _G oup gid;
/1 A parent of a group can rendezvous with the host

if (HWI |Is parent(&gid) || HWI Is host())
{

}

/1 A whole group can rendezvous with the host
if (HWI _Is_nenber(&gid) || HWPI _Is_host())
{

}

Return values: HMPlI _SUCCESS on success and an error in case of failure.

HWPI Host rendezvous(1);

HWPI Host rendezvous(HWPI _G oup_si ze(&gid));

3.7 HeteroMPI Debugging and Version Functions

HWI Printf
Print formatted strings to the host processor.

Synopsis:
int HWI Printf
(

const char* format,
)
Parameters.
f or mat --- Format string in printf-fashion.

Description: Prints formatted strings to standard output on the virtual host processor from any
virtual processor of the computing space. Any process can call this function.

34

HeteroMPI Programmers Reference and Installation Manual

Usage:
HWI G oup gid;

if (HWPI _Is_nmenber(&gid))

HWPI _Printf(
"Hell o, My node rank is %, My d obal rank *
“is %\n ",

HWPI _G oup_rank(&ni d),
HWPI _G oup_r ank(HWPI _COVM WORLD _GROUP)

);
}

Return values: HVPl _ SUCCESS on success and an error in case of failure.

HWPI _Strerror

Return a string associated with error code.

Synopsis:

i nt

HVPlI _Strerror
(

int errnum
char* nessage

)

Parameters:

er r num--- Error code from any HeteroMPI routine call.
nessage --- Output parameter. Error message associated with the error code.

The message must represent storage that is at least
HVPI _MAX_ERROR_STRI NGcharacters long.

Description: An error message string corresponding to the error number er r numis returned in
message. Any process can call this function.

Usage:
char nessage[HVWPI _MAX ERROR STRI NG ;
int rc = HWI _Init(

&ar gc,
&ar gv

35

HeteroMPI Programmers Reference and Installation Manual

),

if (rc != HWPl _SUCCESS)

{
HWPI _Strerror(

re,
message

);

HWPI _Printf(

"Error during HETEROWPI initialization. Reason is %\n",
nessage

);
}

Return values: HVPI _ SUCCESS on success and error on failure.

HVPI _Debug
Turn the diagnostics on/off.

Synopsis:

i nt

HWPI _Debug
(

)

Parameters:

int yesno

yesno --- yes (1) or no (0)

Description: Produces detailed diagnostics. Any process can call this function. This is the only
function apart from HMPI _Get _ver si on that can be called before HVPl | nit or after
HWPI _Final i ze.

HWPI _Get version
Returns the version of the HeteroMPI API in the format x.y

Synopsis:

i nt

HWPI _Get version
(

int *version
int *sub_version

36

HeteroMPI Programmers Reference and Installation Manual

)

Parameters:

ver si on --- Major version
sub_ver si on --- Minor version

Description: Returns the version of HeteroMPI. Any process can call this function. This is one
of the few functions that can be called before HVPI _I ni t or after HVPI _Fi nal i ze.

Usage:

int version, sub_version;
HWPI _Get version(&version, &sub_version);

4 Heterogeneous Data Partitioning I nterface (Heter oDPI)

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In particular,
partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of
various scientific, engineering and business domains resulted in the following short list of
mathematical objects commonly used in parallel and distributed algorithms: Sets (ordered and
non-ordered), dense matrices (and multidimensional arrangements), graphs, and trees.

Based on this classification, we suggest an API for partitioning mathematical objects commonly
used in scientific and engineering domains for solving problems on networks of heterogeneous
computers. These interfaces allow the application programmers to specify simple and basic
partitioning criteria in the form of parameters and functions to partition their mathematical
objects. These partitioning interfaces are designed to be used along with various programming
tools for parallel and distributed computing on heterogeneous networks.

41 Sets

Partition_unordered_set
Partition a non-ordered set

Synopsis:

typedef double (*User _defined netric)(
int p, const double *speeds, const int *actual,
const int *ideal)

int Partition_unordered set (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n,
const int *w, int type_of _netric,

37

HeteroMPI Programmers Reference and Installation Manual

User _defined netric unf, double *netric, int *np)
Description: This routine partitions a set into p disjoint partitions.
Return values: O on success and - 1 in case of failure.

Partition_ordered_set
Partition a well-ordered set

Synopsis:

int Partition_ordered _set (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n,
const int *w, int processor_reordering,
int type of _nmetric, User_defined netric unf
double *netric, int *np)

Description: This routine partitions a well-ordered set into p disjoint contiguous partitions.

Parameters:

Parameter p is the number of partitions of the set. Parameters Speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
pxpn logically representing 2D arrays of shape [p] [pn] . The speed of the i -th processor for
| -th problem size is given by the [i] []] -th element of speeds with the problem size itself
given by the [1] []] -th element of pSi zes. Parameter m i m t s gives the maximum number
of elements that each processor can hold.

Parameter n is the number of elements in the set, and parameter Wis the weights of its elements.

Parameter t ype_of _nmet ri ¢ specifies which metric should be used to determine the quality
of the partitioning. If t ype_of _netri c is USER_SPECI FI ED, then the user provides a
metric function unf, which is used to calculate the quality of the partitioning. If
type_of _netricis SYSTEM DEFI NED, the system-defined metric is used.

The output parameter et r i ¢ gives the quality of the partitioning, which is the deviation of the
partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the output
parameter et ri C is set to NULL, then the calculation of metric is ignored.

If wis not NULL and the set is well ordered, then the user needs to specify if the implementations
of this operation may reorder the processors before partitioning (Boolean parameter
processor _reorderi ng is used to do it). One typical reordering is to order the processors
in the decreasing order of their speeds.

38

HeteroMPI Programmers Reference and Installation Manual

Return values: 0 on success and - 1 in case of failure.

CGet _set _processor
For an ordered set, returns the processor owning the set element at index i

Synopsis:

int Get_set processor (
int i, int n, int p, int processor_reordering,
const int *np)

Return values: - 1 in case of failure.

Get _ny_partition
For a set, returns the number of elements allocated to processor i

Synopsis:

int Get_ny partition (
int i, int p, const double *speeds, int n)

Return values: - 1 in case of failure.
4.2 DenseMatrices

Partition_matrix_2d
Partition a matrix amongst processors arranged in a 2D grid

Synopsis:

int Partition_matrix_2d (
int p, int q,
int pn, const double *speeds, const int *psizes,
const int *mimts, int m int n,
int type of distribution, int *w, int *h, int *trow,
int *tcol, int *ci, int *cj)

Parameters:

The parameter p is the number of processors along the row of the processor grid. The parameter
g is the number of processors along the column of the processor grid.

Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxgxpn logically representing arrays of shape
[p]1[q]l [pn]. The speed of the (i,) -th processor for k-th problem size is given by the
[1]]]][K] -th element of speeds with the problem size itself given by the [i][]][K] -th

39

HeteroMPI Programmers Reference and Installation Manual

element of psi zes. Parameter mM i m t s gives the maximum number of elements that each
processor can hold.

The parameters mand n are the sizes of the generalized block along the row and the column.

The input parameter t ype_of _di stri buti on specifies if the distribution is CARTESI AN,
ROW BASED, and COLUMN- BASED.

Output parameter W gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size pXq.

Output parameter h gives the heights of rectangles of the generalized block assigned to different
processors. This parameter is an array of size pxqxpxq logically representing array of shape

[pllallp][d]l.

Output parameter t r ow gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first row of the generalized block. This parameter is an
array of size pxd.

Output parameter t col gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first column of the generalized block. This parameter is
an array of size pxq.

Output parameters Ci , and C] are each an array of size mxn. The coordinates of the processor
in its processor grid to which the matrix element at row i and column j of the generalized block
is assigned is given by ci[ixn+j], and cj[i%xn+j] respectively. If the application
programmer sets these parameters to NULL, then these parameters are ignored.

Description: This routine partitions a matrix into p disjoint partitions amongst processors
arranged in a 2D grid.

Return values: 0 on success and - 1 in case of failure.

Partition_matrix_1d _dp

Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition matrix_1d dp(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
CGet _| ower _bound | b, DP_function dpf,
int type_of distribution,
int *w, int *h, int *trow, int *tcol, int *c)

40

HeteroMPI Programmers Reference and Installation Manual

Parameters:

The parameter p is the number of number of disjoint rectangles the matrix is partitioned into.
Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxpn logically representing 2D arrays of shape
[p] [pn] . The speed of the i -th processor for | -th problem size is given by the [i][]] -th
element of speeds with the problem size itself given by the [][]] -th element of psi zes.
Parameter m i m t s gives the maximum number of elements that each processor can hold.

The parameters mand n are the sizes of the generalized block along the row and the column.

The input parameter t ype_of _di stri buti on specifies if the distribution is ROW BASED
or COLUMN- BASED.

Output parameter W gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size p. Output parameter h gives the heights
of rectangles of the generalized block assigned to different processors. This parameter is an array
of size pXp. Output parameter t r ow gives the top leftmost point of the rectangles of the
generalized block assigned to different processors from the first row of the generalized block.
This parameter is an array of size p. Output parameter t col gives the top leftmost point of the
rectangles of the generalized block assigned to different processors from the first column of the
generalized block. This parameter is an array of size p.

Output parameter C is an array of size Mkn. The coordinates of the processor in its processor
array to which the matrix element at row i and column j of the generalized block is assigned is
given by c[1 xn+j] . If the user sets these parameters to NULL, then these parameters are
ignored.

Description: This routine partitions a matrix into p disjoint partitions amongst processors
arranged in a linear array.

Return values: 0 on success and - 1 in case of failure.

Partition matrix 1d iterative

Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition_matrix_1d iterative(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
CGet | ower _bound I b, Iterative function cf,
int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

41

HeteroMPI Programmers Reference and Installation Manual

Application programmers provide a cost function Cf that tests the optimality of a partition from
a finite set of partitions. The initial partition in this finite set of partitions is obtained using a
problem-specific strategy. The cost function cf is called iteratively for each of the partitions in
the subset of partitions. The return value of this function gives an optimality value. At each step
of the iteration, the optimality value is compared to the lower bound of the optimal solution to
the optimization problem. Application programmers specify a function | b, which is used to
calculate the lower bound of their optimization problem. The iteration stops when the function
returns an optimality value less than or equal to the lower bound or a negative return value
indicating that the partitioning cannot be improved and that the current partition is optimal.

Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear
array.

Return values: 0 on success and - 1 in case of failure.

Partition_matrix_1d_refining
Partition a matrix amongst processors arranged in a linear array

Synopsis:

int Partition_matrix_1d_refining(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
CGet | ower _bound | b, Refining function cf,
int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

Application programmers provide a refinement function r f that refines an old partition giving a
new better partition. A negative return value of this function suggests that the old partition
cannot be refined further. This function is iteratively called. The partition for the first call of this
refining function is obtained using a problem-specific strategy. Application programmers specify
a function | b, which is used to calculate the lower bound of their optimization problem. The
iteration stops when the refinement function r f returns an optimality value less than or equal to
the lower bound indicating that the current partition is optimal.

Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear
array.

Return values: 0 on success and - 1 in case of failure.

Get _matri x_processor
Returns the coordinates (i,j) of the processor owning the matrix element at row r and column ¢

Synopsis:

42

HeteroMPI Programmers Reference and Installation Manual

typedef struct {int i; int j;} Processor,;

int Get_matrix_processor (
int r, int ¢, int p, int q, int *w, int *h, int *trow,
int *tcol, int type_of _distribution, Processor *root)

Return values: 0 on success and - 1 in case of failure.

Get _my_wi dth

Returns the width of the rectangle owned by the processor with coordinates (i,])

Synopsis:
int Get_ny_w dth(
int i, int j, int p, int q, const double *speeds,
int type of _distribution, int m int n)
Description: Currently only applicable to two-dimensional processor arrangements.

Return values: - 1 in case of failure.

Get _ny_hei ght
Returns the height of the rectangle owned by the processor with coordinates (i,))

Synopsis:
int Get_ny_height(

int i, int j, int p, int q, const double *speeds,
int type of _distribution, int m int n)

Description: Currently only applicable to two-dimensional processor arrangements.
Return values: - 1 in case of failure.
CGet _di agona

Obtain the number of elements owned by the processor with coordinates (i,j) on the diagonal of
the matrix

Synopsis:

i nt Get_diagonal (
int i, int j, int p, int q, int *w, int *h, int *trow,
int *tcol)

Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

43

HeteroMPI Programmers Reference and Installation Manual

Return values: - 1 in case of failure.

Get _ny_el enent s

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix including the diagonal elements

Synopsis:

int Get_ny_el enent s(
int n, int g, int i, int j, int p, int g, int *w, int *h,
int *trow, int *tcol, int type_of_distribution,

char upper_or _| ower)

Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

Get _ny_kk_el enments

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix starting from (K,K) including the diagonal elements

Synopsis:

int Get_ny_kk_el ement s(
int n, int g, int k, int i, int j, int p, int q, int *w,
int *h, int *trow, int *tcol, int type_of _distribution,

char upper_or _| ower)

Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

4.3 Graphs

Partition_graph

Partition a graph
Synopsis:
int Partition_graph (
int p, int pn, const double *speeds,

const int *psizes, const int *mimts, int n, int m
const int *vwgt, const int *xadj,

44

HeteroMPI Programmers Reference and Installation Manual

const int *adjacency, const int *adjwgt,
int nopts, const int *options, int *vp, int *edgecut)

Parameters:

Parameter p is the number of partitions of the graph. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
pxpn logically representing 2D arrays of shape [p] [pn] . The speed of the i -th processor for
| -th problem size is given by the [i] []] -th element of speeds with the problem size itself
given by the [1] []] -th element of pSi zes. Parameter m i m t s gives the maximum number
of elements that each processor can hold.

The parameters N and mare the number of vertices and edges in the graph. The parameters vwgt
and adj wgt are the weights of vertices and edges of the graph. In the case in which the graph is
unweighted (i.e., all vertices and/or edges have the same weight), then either or both of the arrays
vwgt and adj wgt can be set to NULL. The parameters vwgt is of size n. The parameter
adj wgt is of size 2mbecause every edge is listed twice (i.e., as (V, U) and (U, V)).

The parameters Xxadj and adj acency specify the adjacency structure of the graph
represented by the compressed storage format (CSR). The adjacency structure of the graph is
stored as follows. The adjacency list of vertex i is stored in adj acency starting at index
xadj [i] and ending at but not including xadj [i +1] . The adjacency lists for each vertex are
stored consecutively in the array adj acency.

The parameter Opt i ONS is an array of size NOpPt S containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter VP is an array of size N containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a graph into p disjoint partitions.
Return values: 0 on success and - 1 in case of failure.

Partition_bipartite_graph
Partition a bipartite graph

Synopsis:

int Partition_bipartite_graph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int n, int m const int *vtype, const int *vwgt,

45

HeteroMPI Programmers Reference and Installation Manual

const int *xadj, const int *adjacency,
const int *adjwgt, int type_of _partitioning,
int nopts, const int *options, int *vp, int *edgecut)

Parameters:

The meaning of the parameters p, pn, speeds, psi zes, mMimts, n, mvwgt, adj wot,
xadj, adjacency is identical to meaning of the corresponding parameters of
Partition_graph.

The parameter Vit ype specifies the type of vertex. The only values allowed are 0 and 1
representing the two disjoint subsets the bipartite graph is composed of.

The parameter t ype_of _parti ti oni ng specifies whether the partitioning of subsets is done
separately or not. It can take only one of the values PARTI TI ON_SUBSET and
PARTI TI ON_OTHER.

The parameter Opt i ONS is an array of size NOpt S containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter VP is an array of size of size N containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a bipartite graph into p disjoint partitions.
Return values: 0 on success and - 1 in case of failure.

Partition_hypergraph

Partition a hypergraph

Synopsis:

int Partition_hypergraph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int nv, int nedges, const int *vwgt, const int *hptr,
const int *hind, const int *hwgt, int *vp,
int nopts, const int *options, int *edgecut)

Parameters:

The meaning of the parameters p, pn, speeds, psi zes, and n i m t s is identical to meaning
of the corresponding parameters of Parti ti on_gr aph.

46

HeteroMPI Programmers Reference and Installation Manual

The parameters Nnv and nedges are the number of vertices and number of hyperedges in the
hypergraph.

The parameters vWQt is an array of size nv that stores the weights of the vertices and hwgt is
an array of size nedges that stores the weights of hyperedges of the graph. If the vertices in the
hypergraph are unweighted, then vwgt can be NULL. If the hyperedges in the hypergraph are
unweighted, then hwgt can be NULL.

The parameter hpt r is an array of size nedges+1 and is an index into hi nd that stores the
actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in
consecutive locations in hi nd. Specifically, i -th hyperedge is stored starting at location
hind[hptr[i]] up tobutnotincluding hi nd[hptr[i +1]].

The parameter Opt i ONS is an array of size NOPt S containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow

integration of third party implementations, which provide their own partitioning schemes.

The parameter VP is an array of size of size N containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of hyperedges that are cut by the partitioning.

Description: This routine partitions a hypergraph into p disjoint partitions.
Return values: 0 on success and - 1 in case of failure.

44 Trees

Partition_tree

Partition a tree

Synopsis:

int Partition_tree (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int n, int nedges, const int *nwgt, const int *xadj,
const int *adjacency, const int *adjwgt,
int *vp, int *edgecut)

Parameters:

The meaning of the parameters p, pn, speeds, psi zes, and n i m t s is identical to meaning
of the corresponding parameters of Parti ti on_gr aph.

47

HeteroMPI Programmers Reference and Installation Manual

The parameters n and nedges are the number of vertices and edges in the tree. The parameters
nwgt is an array of size n that stores the weights of the vertices and adj wgt is an array of size
nedges that stores the weights of edges of the tree. If the vertices in the tree are unweighted,
then nwgt can be NULL. If the edges in the tree are unweighted, then adj wgt can be NULL.

The parameters xadj and adj acency specify the adjacency structure of the tree.

The parameter VP is an array of size of size N containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a tree into p disjoint subtrees.

Return values: 0 on success and - 1 in case of failure.

5 HeteroM Pl Command-line User’s|nterface

51 HeteroMPI Environment

Currently, the HeteroMPI programming environment includes a compiler, run-time support
system (RTS), a library, and a command-line user interface.

The compiler compiles the description of this performance model to generate a set of functions.
The functions make up an algorithm-specific part of the HeteroMPI runtime system.

The library consists of extensions to MPI and Heterogeneous Data Partitioning Interface
(HeteroDPI).

HeteroMPI command-line user’s interface consists of a number of utilities supporting parallel
machines manipulation actions and building of HeteroMPI applications.

5.2 Virtual Parallel Machine

Please refer to the mpC command-line user’s interface guide on how to write a VPM description
file and the VPM manipulation utilities. The mpC user guide is in the ‘docs’ directory.

e “npccreat e’ to create a VPM;

* “npcopen” to create a VPM;

 “npccl ose” to close a VPM;

* “npcdel ” to remove a VPM;

nettype grid(int p, int q) {
coord I=p, J=q;
b

48

HeteroMPI Programmers Reference and Installation Manual

Figure A.1: Specification of a simple performance model in the HeteroMPI’s performance definition language. The
performance model definition is in the file “gri d. npc”.

5.3 Building and Running HeteroM Pl Application

Please refer to the mpC command-line user’s interface guide on utilities that are used to run an
mpC/HeteroMPI application on a VPM:

e “hnpi cc” to compile a performance model definition file;

* “hnpi bcast ” to make available all the source files to build a executable;

e “hnpi | oad” to create a executable;

e “hnpi run” to execute the target application;

A sample performance model and the HeteroMPI application using the performance model are
shown in Figures A.1 and A.2:

Outlined below are steps to build and run a HeteroMPI application.

1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the
machines being used in your HeteroMPI application. Describe your VPM in a file in the
$MPCTOPO directory. VPM is opened after successful execution of the command npccr eat e.
Consider for example:

shel 1 $ cat $MPCTOPQ vpm Sol mach123_Li nuxmach456. vpm

#

Machi nes and the nunmber of processes to run on each
machi ne

Nunber in square brackets indicate the nunber of

processors

49

HeteroMPI Programmers Reference and Installation Manual

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

int main() {

<mat h. h>
<stdi o. h>
<sys/tine. h>
“grid.c”

i nt param _count, nodel _parans[2];
struct timeval start, end,
gettineof day(&start, NULL);

HWI _G oup gid;
HWI Init(&argc, &argv);
if (HWI _Is_host()) {
int gsize, p, q;
param count = 2;
gsi ze = HWPl _G oup_si ze(HWPI _COVW WORLD GROUP) ;
p =q = sqrt(gsize);
if ((p==0) & (q == 0))
p=9q-= 1;
nodel _par ans[0]
nodel _par ans[1]

p
q;

printf("Total nunber of processes avail able for conputation
is %\n", gsize);
printf("Creating a grid (%, %) of processes\n", p, Q);

if (HWI _Is _host())
HWI G oup_create (&gid, &WPC Net Type grid,
nodel _parans, param count)
if (HWI _Is free())
HWI G oup_create (&gid, &WC Net Type grid,
NULL, 0)
/1 Distribute conputations using the optinal speeds of processes
if (HWPI _|I's nenber(&gid)){
/1 conputations and conmuni cati ons are perforned here

}

if (HWI _Is_nenber(&gid)) HWI_Goup_free(&gid);

get ti neof day(&end, NULL);

if (HWI _Is_host()) {
double tstart = start.tv_sec + (start.tv_usec/pow10, 6));
double tend = end.tv_sec + (end.tv_usec/pow 10, 6));
printf(“Time taken for group creation(sec)=%\n",

tend-tstart);

}
HWPI _Fi nal i ze(0);

Figure A.2: A sample HeteroMPI program. The HeteroMPI program is written in the file
“Test _group_create. c”.

sol machl 2 [2]
sol mach2 2 [2]
sol mach3 2 [2]

50

HeteroMPI Programmers Reference and Installation Manual

[i nuxmach4 4 [4]

I i nuxmach5 2 [2]

[i nuxmach6 1 [1]

shel | $ npccreate vpm Sol mach123 Li nuxmach456

2). Compile the performance model file.

shel I'$ hnpicc grid. npc

This file is translated into a C file “gri d. c”.

3). Broadcast the files to all the machines in the virtual parallel machine.
shel I $ hnpi bcast Test_group_create.c grid.c

4). Create the executable.

shel I'$ hnpiload —0 Test_group_create Test_group_create.c

5). Run the target program.

shel I'$ hnpirun Test_group_create

Total nunber of processes available for conputation is 9
Creating a grid (3, 3) of processes

Time taken for group creation(sec)=0.262353

6 HeteroMPI Installation Guidefor UNI X

This section provides information for programmers and/or system administrators who want to
install HeteroMPI for UNIX.

6.1 System Requirements

The following table describes system requirements for HeteroMPI for UNIX/LINUX.

Component Requirement

Operating System Linux, Solaris, FreeBSD

HeteroM Pl is successfully tested on the
following operating systems:

Linux 2.6.5-1.358smp (gcc version 3.3.3
20040412 (Red Hat Linux 3.3.3-7))

Linux 2.6.8-1.521smp (gcc version 3.3.3

51

HeteroMPI Programmers Reference and Installation Manual

20040412 (Red Hat Linux 3.3.3-7))

Linux 2.6.5-1.358 (gcc version 3.3.3
20040412 (Red Hat Linux 3.3.3-7))

Linux 2.4.18-3 ((gcc version 2.96
20000731 (Red Hat Linux 7.3 2.96-110))

Sun Solaris 5.9 (gcc version 3.4.1)

FreeBSD 5.2.1-REL EASE (gcc version
3.3.3 [FreeBSD] 20031106)

C compiler Any ANSI C compiler

MPI LAM MPI 6.3.2 or higher
MPICH MPI 1.2.0 or higher

LAM MPI can be obtained from http://www.lam-mpi.org/
MPICH MPI can be obtained from http://www-unix.mcs.anl.gov/mpi/mpich/

6.2 Contentsof HeteroMPI for UNIX/LINUX Distribution

HeteroMPI for Unix/Linux distribution contains the following:

Directory Contents

README Copyright information, Contact
information

INSTALL Installation instructions

Makefile Installation and test of the compiler and the
environment

docs HeteroMPI manual for programmers
mpC manuals

man Manual pages for HeteroMPI API

src Source code for HeteroMPI, MPC

include Header files

tests Tests for testing HeteroMPI library

third Party Software Third party software for graphs

tools HeteroMPI tools to build executables,
clean up HeteroMPI repositories

6.3 Beforelnstallation

6.3.1 Installing MPI

You should have MPI installed on your system. Please make sure that npi cc and npi r un tools
are in your PATH environment variable.

52

HeteroMPI Programmers Reference and Installation Manual

;Hell$ export MPIDIR=<...MPl install directory...>
shel | $ export PATH=$MPI DI R/ bi n: $PATH

6.3.2 Making rsh/ssh working

If you using r sh, please make sure that you reach every machine from every other machine with
r sh command by executingr sh —n true host nane. This command should not hang up.

If you are using ssh, please follow the instructions below:

Normally, when you use SSh to connect to a remote host, it will prompt you for your password.
However, in order for MPI commands to work properly, you need to be able to execute jobs on
remote nodes without typing in a password. In order to do this, you will need to set up RSA (ssh
1.x and 2.x) or DSA (ssh 2.x) authentication.

This text will briefly show you the steps involved in doing this, but the SSh documentation is
authoritative on these matters should be consulted for more information. The first thing that you
need to do is generate an DSA key pair to use with ssh- keygen:

shel | $ ssh-keygen -t dsa

Accept the default value for the file in which to store the key ($HOVE/ . ssh/i d_dsa) and
enter a passphrase for your keypair. You may choose to not enter a passphrase and therefore
obviate the need for using the ssh- agent . However, this weakens the authentication that is
possible, because your secret key is [potentially] vulnerable to compromise because it is
unencrypted. See the ssh documentation.

Next, copy the $HOVE/.ssh/id_dsa. pub file generated by ssh-keygen to
$HOVE/ . ssh/ aut hori zed_keys:

shel | $ cd $HOVE/ . ssh
shel1'$ cp id_dsa. pub authorized_keys

In order for DSA authentication to work, you need to have the $HOVE/ . ssh directory in your
home directory on all the machines you are running MPI on. If your home directory is on a
common filesystem, this is already taken care of. If not, you will need to copy the $HOVE/ . ssh
directory to your home directory on all MPI nodes (be sure to do this in a secure manner --
perhaps using the SCp command), particularly if your secret key is not encrypted).

ssh is very particular about file permissions. Ensure that your home directory on all your

machines is set to mode 755, your $HOVE/ . ssh directory is also set to mode 755, and that the
following files inside $HOVE/ . ssh have the following permissions:

53

HeteroMPI Programmers Reference and Installation Manual

-rwr--r-- authorized _keys
SrW------ id_dsa
-rwr--r-- id_dsa.pub
-rwr--r-- known_hosts

You are now set up to use DSA authentication. However, when you Ssh to a remote host, you
will still be asked for your DSA passphrase (as opposed to your normal password). This is
where the Ssh- agent program comes in. It allows you to type in your DSA passphrase once,
and then have all successive invocations of SSh automatically authenticate you against the
remote host. To start up the ssh- agent , type:

shel | $ eval "~ssh-agent”

You will probably want to start the SSh- agent before you start X windows, so that all your
windows will inherit the environment variables set by this command. Note that some sites invoke
ssh-agent for each user upon login automatically; be sure to check and see if there is an

ssh-agent running for you already. Once the Ssh-agent is running, you can tell it your
passphrase by running the ssh- add command:

shel | $ ssh-add $HOWE . ssh/id_dsa
At this point, if you ssh to a remote host that has the same $HOVE/ . ssh directory as your
local one, you should not be prompted for a password. If you are, a common problem is that the

permissions in your $HOVE/ . ssh directory are not as they should be.

Note that this text has covered the SsSh commands in very little detail. Please consult the Ssh
documentation for more information.

6.4 Beginning I nstallation
Please ensure the environment variables WHICHMPI, MPIDIR, MPCLOAD, MPCTOPO
discussed in Section 7 in mpC users’ guide are set up before proceeding with the HeteroMPI

installation. The user guide is in the ‘docs’ directory.

Unpack the HeteroMPI distribution, which comes as a tar in the form heterompi-x.y.z.tar.gz.
To uncompress the file tree use:

shel 1 $ gzi p -d heterompi-x.y.z.tar.gz
shel I $ tar -xvf heterompi-x.y.z.tar

where x.y.z stands for the installed version of the HeteroMPI library (say 1.2.1, 2.0.0, or 3.1.1).

The directory 'heterompi-x.y.z' will be created; execute

54

HeteroMPI Programmers Reference and Installation Manual

shel I $ cd heterompi-x.y.z

The Makefile at the global level (heterompi-x.y.z/Makefile) controls the compilation and
installation of the HeteroMPI software. It activates subdirectory specific Makefiles.

To compile all the programs execute:
shell$./install _hnpi

To uninstall:

shelI'$./uninstall

To clean up the build:

shell$./clean_build

to remove object files and executables from source directories.

6.5 Finishing Installation
On successful installation of HeteroMPI, the following message is displayed:

HHHHHHHHH B R B R BB TR H B R R R B R R R R R R B
I nstall ati on of HeteroMPl SUCCESSFUL

###4.#-;###

The message will display the variables to be set up in the shell startup files. These are:

's'hel | $ export HWPI HOME=<...install directory...>
shel | $ export MPCHOVE=$HWPI _HOVE
shel | $ export PATH=$HWPI _HOVWE/ bi n: $PATH

6.6 Contentsof HeteroMPI Installation

HeteroMPI installation contains the following:

Directory Contents
bin Binaries hmpicc, hmpibcast, hmpiload,
hmpirun,...
docs This manual

55

HeteroMPI Programmers Reference and Installation Manual

include Header files

man Manual pages for HeteroMPI API

lib Archived HeteroMPI library libhmpi.a
tests Tests for testing HeteroMPI library

6.7 Testingyour Installation

After you have successfully installed HeteroMPI, to test the installation, you can test each
individual test in the directory “$HMPI _HOVE/ t est s”. Diagnostics are produced showing
success or failure of each individual test. Before you test, a virtual parallel machine must be
opened.

56

