
Optimal Data Partitioning Shape for Matrix Multiplication
on Three Fully Connected Heterogeneous Processors

Ashley DeFlumere and Alexey Lastovetsky

School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

Abstract. Parallel Matrix Matrix Multiplication (MMM) is used in scientific codes across
many disciplines. While it has been widely studied how to optimally divide MMM among
homogenous compute nodes, the optimal solution for heterogeneous systems remains an open
problem. Dividing MMM across multiple processors or clusters requires consideration of the
performance characteristics of both the computation and the communication subsystems. The
degree to which each of these affects execution time depends on the system and the algorithm
used to divide, communicate, and compute the MMM data. Our previous work has determined
the optimum shape must be, for all ratios of processing power, communication bandwidth and
matrix size, one of six well-defined shapes for each of the five MMM algorithms studied. This
paper further reduces the number of potentially optimal candidate shapes to three defined
shapes known as Square Corner, Square Rectangle, and Block Rectangle. We then find, for
each algorithm and all ratios of computational power among processors, ratios of overall
computational power and communication speed, and problem size, the optimum shape. The
Block Rectangle, a traditional 2D rectangular partition shape, is predictably optimal when
using relatively homogeneous processors, and is also optimal for heterogeneous systems with
a fast, medium and slow processor. However, the Square Corner shape is the optimum for
heterogeneous environments with a powerful processor and two slower processors, and the
Square Rectangle is optimal for heterogeneous environments composed of a two fast processors
and a single less powerful processor. These theoretical results are confirmed using a series of
experiments conducted on Grid’5000, which show both that the predicted optimum shape is
indeed optimal, and that the remaining two partition shapes perform in their predicted order.

1 Introduction

The problem of partitioning Parallel Matrix Matrix Multiplication (MMM) optimally over an ar-
bitrary number of processors has been the subject of extensive study. While this problem, when
approached using homogeneous processors, presents a challenge, it is significantly more substan-
tive when considering heterogeneous systems. High performance scientific computing platforms are
increasingly heterogeneous, so it is necessary to find the optimum heterogeneous MMM data parti-
tion shape[1]. While a system may be heterogeneous in its computational power, its communication
interconnect, or some combination of both, this paper will focus on heterogeneity in computational
power.

The bulk of the previous study of MMM partitioning on heterogeneous platforms has been
concerned with finding the optimal rectangular partitioning[2][3][4]. Even when restricting the opti-
mality problem to only rectangular shapes, it is complex and NP-complete for an arbitrary number
of heterogeneous processors[5]. The underlying assumption that the optimal shape should be rect-
angular has only recently been questioned.

Our previous work challenged this traditional assumption, and explored both rectangular and
non-rectangular data partition shapes[6][7]. These papers, encompassing work with both two and
three processor systems, show optimal, and potentially optimal, partition shapes that have both
expected and unexpected shapes. The two processor case, for instance, has an optimal data par-
tition shape which is non-rectangular for highly heterogeneous systems, i.e., when the ratio of
computational power between the two processors is greater than three.

The complexity of the optimal shape problem necessitates beginning with a small number of
processors in order to establish an extensible method for identifying potentially optimal partition
shapes. This novel method, called the Push Technique, incrementally improves a partition shape
by decreasing its volume of communication. The Push Technique has previously been applied to
the case of three heterogeneous processors, and identified six potentially optimal partition shapes,
called candidates. These are seen in Fig. 1.

1 2 3 4 5 6

Fig. 1. The candidate partition shapes previously identified as potentially optimal three processor shapes.
Processors P,R, and S are in white, grey, and black, respectively. (1) Square Corner (2) Rectangle Corner
(3) Square Rectangle (4) Block 2D Rectangular (5) L Rectangular (6) Traditional 1D Rectangular

These cases, with small numbers of processors, are also practically significant. Consider a GPU-
CPU hybrid system. The concept of abstract processors may be used to model this type of system[8].
Each logical processor represents an independent group of tightly coupled devices such as cores on
the same socket, or a GPU and its host core. In this way, a modern hybrid compute node is modelled
by a small number of abstract heterogeneous processors.

This paper proves that the optimal candidates may be further reduced to just three optimal
partition shapes, the Square Corner, the Square Rectangle, and the Block Rectangle. For each MMM
algorithm, each of these shapes is optimal for a subset of the possible ranges of computational power
ratios and communication bandwidths. Together, they describe the optimal shape for all possible
ranges of these values. These theoretical results are further verified using experiments on GRID’5000.

2 Problem Description

Throughout, we will make several assumptions, as follows:

1. Matrices A, B and C are square, of size N ×N , and identically partitioned among Processors
P , R, and S, represented in figures as white, grey and black, respectively.

2. Processor P computes faster than Processors R and S by ratio, Pr : Rr : Sr, where Sr = 1.
3. All Processors may communicate with all other Processors, with no constraints on network

topology.

For all algorithms, we use the Hockney Model[9] of communication Tcomm = α×βM . For simplic-

ity, we will set α = 0. The total volume of communication is calculated as M =
∑N

i=1N(pi − 1) +∑N
j=1N(pj − 1), where pi is the number of processors assigned elements in row i, and pj is the

number of processors assigned elements in column j. The method of computation in all algorithms
is assumed to be SUMMA[10].

3 Theoretical Results

3.1 Methodology

Partition shapes have defined metrics that are used to determine the optimality of a given shape in
a particular problem space. Some of these metrics quantify the volume of communication of a par-
ticular shape. The volume of communication is, in turn, used to create the model of communication
time, Tcomm, within the constraints of the MMM algorithm. The volume of elements assigned to
each processor for computation, and the relative computational power of each processor, is used to
create the model of computation time, Tcomp. These two fundamental parts of the MMM, Tcomm

and Tcomp, are combined according to the MMM algorithm to create a total execution time, Texe,
for the particular partition shape.

The partition shape which minimises the execution time for a specific MMM algorithm is said
to the be the optimum shape. However, no single shape is the global optimum for an entire MMM
algorithm. Each shape has unique characteristics which allow for increased performance under
certain conditions, such as varied processor computational ratios, and the ratio between overall
computation and communication speeds.

The sections below describe the process of forming the Texe model for each shape using each
MMM algorithm and analysing those models to find the minimum, and thereby the optimum. The
proofs for all theorems found throughout this paper may be examined in [11].

3.2 Pruning Candidates

Upon further inspection of the six potentially optimal candidate shapes found in [7], it is possible
to analytically reduce this to three candidate shapes.

Theorem 1 (Three Candidates). The three partition shapes known as Rectangle Corner, L
Rectangle and Traditional Rectangle, have a higher theoretical volume of communication than the
Block Rectangle shape. The optimal shape must be among the remaining three candidate shapes,
Block Rectangle, Square Rectangle and Square Corner.

From here, we will analyse only the remaining three candidate partition shapes: Square Corner,
Square Rectangle, and Block Rectangle.

3.3 Serial Communication with Barrier (SCB)

Serial Communication with Barrier (SCB) is a simple MMM algorithm in which all data is sent
by each processor serially, and only once communication completes among all processors does the
computation proceed in parallel on each processor.

The execution time is given by,

Texe = V β + max(cP , cR, cS)

where V is the volume of communication, β is the bandwidth of the communication links and cX
is the time taken to compute the assigned portion of the matrix on Processor X.

Each processor is assigned data in proportion to the computational power. Processors P,R and

S, with ratios Pr : Rr : 1 will be assigned PrN
2

T , RrN
2

T and N2

T elements to compute, respectively.
For all shapes, the computation time is identical for barrier algorithms, so communication time is
the focus.

Square Corner The Square Corner shape is composed of a matrix partitioned into two small
squares for Processors R and S, while Processor P is assigned the non-rectangular remainder of
the matrix. This shape type is only valid for computational power ratios such that non-overlapping
squares for Processors R and S may be formed, which is possible when Pr ≥ 2

√
Rr.

Tcomm(SC) = 2N

(√
RrN2

T
+

√
N2

T

)
× β (1)

Square Rectangle The Square Rectangle shape is composed of an N height rectangle, R, and a
square, S, while Processor P is assigned the non-rectangular remainder of the matrix. The commu-
nication time is given by,

Tcomm(SR) =

(
N2 + 2N

√
N2

T

)
× β (2)

Block Rectangle The Block Rectangle partition shape is composed of two h height rectangles of
combined width N . Processor P is assigned the rectangular remainder of the matrix.

Tcomm(BR) =

(
2N2 − PrN

2

T

)
× β (3)

Optimum SCB Shape The optimum data partitioning shape minimises Tcomm. A graphical
representation of these three functions can be seen in Fig. 2.

Theorem 2 (SCB Square Corner). The Square Corner partition shape minimises execution
time, i.e. is the optimum, using the SCB MMM algorithm for all processor computational power
ratios such that Pr < 2T − 2

√
RrT − 2

√
T .

Theorem 3 (SCB Square Rectangle). The Square Rectangle partition shape minimises exe-
cution time, i.e. is the optimum, using the SCB MMM algorithm for all processor computational
power ratios such that Pr < T − 2

√
T .

Corollary 4 (SCB Block Rectangle) The Block Rectangle partition shape minimises execution
time, i.e. is the optimum, for all processor computational power ratios except those specified in
Theorems 2 and 3.

30

1

20
Pr Rr

Time
(s)

Fig. 2. The SCB Tcomm functions for the three candidate shapes, Square Corner (white and grey stripes),
Block Rectangle (solid grey), and Square Rectangle (white and grey checkerboard). The x-axis is the relative
computational power of P , Pr, from 1 to 30. The y-axis is the relative computational power of R, Rr, from
1 to 20. The z-axis is the communication time in seconds. The vertical black surface is the equation x = y,
and represents the problem constraint Pr ≥ Rr. On the left, viewed from the front, on the right, viewed
from underneath (the lowest function is optimal).

3.4 Parallel Communication with Barrier (PCB)

In the Parallel Communication with Barrier (PCB) algorithm, all data is sent among processors
in parallel, and only once communication completes does the computation processed in parallel on
each processor. The execution time of this algorithm is given by,

Texe = max(vP , vR, vS)× β + max(cP , cR, cS)

where vX is the volume of data elements which must be sent by Processor X. As with SCB, the
focus in this algorithm is on communication time because computation time is not dependent on
the data partition shape.

Communication Time Functions The communication times of partition shapes Square Corner
(SC), Square Rectangle (SR), and Block Rectangle (BR) are given by,

Tcomm(SC) = 2N2β ×max

(√
Rr

T
− Rr

T
+

√
1

T
− 1

T
,
Rr

T
,

1

T

)
(4)

Tcomm(SR) = N2β ×max
(
1 +

2√
T
− Rr

T
− Rr

T
√
T
− 3

T
,
Rr

T
+

Rr

T
√
T
,

3

T

)
(5)

Tcomm(BR) = N2β ×max
(Pr

T
,

2Rr

T
,

2

T

)
(6)

PCB Optimal Shape The optimum partition shape minimises Tcomm. The graph of these three
functions is found in Fig. 3.

30

1

20
Pr Rr

Time
(s)

Fig. 3. The PCB Tcomm functions for the three candidate shapes, Square Corner (white and grey stripes),
Block Rectangle (solid grey), and Square Rectangle (white and grey checkerboard). The vertical black
surface is the equation x = y, and represents the problem constraint Pr ≥ Rr. On the left, viewed from the
front, on the right, view from underneath (the lowest function is optimal).

Theorem 5 (PCB Square Corner). The Square Corner partitioning shape minimizes execution
time, i.e. is the optimum shape, when using the PCB MMM algorithm and the computational power
ratios are such that Pr > 2(

√
RrT −Rr +

√
T − 1).

Theorem 6 (PCB Square Rectangle). The Square Rectangle partitioning shape minimizes exe-
cution time, i.e. is the optimum shape, when using the PCB MMM algorithm and the computational
power ratios are such that Pr < 2Rr + Rr√

T
− 2
√
T − 1 and Pr > 5 + Rr−2√

T
.

Corollary 7 (PCB Block Rectangle) The Block Rectangle partition shape minimises execution
time, i.e. is the optimum, for all processor computational power ratios except those specified in
Theorems 5 and 6.

3.5 Serial Communication with Bulk Overlap (SCO)

In the Serial Communication with Bulk Overlap (SCO) algorithm, all data is sent by each processor
serially, while in parallel any elements that can be computed without communication are computed.
Only once both communication and overlapped computation are complete does the remainder of
the computation begin. The execution time is given by,

Texe = max
(

max(Tcomm, oP) + cP ,max(Tcomm, oR) + cR,max(Tcomm, oS) + cS

)
where Tcomm is the same as that of the SCB algorithm, oX is the number of seconds taken

by Processor X to compute any elements not requiring communication, and cX is the number of
seconds taken to compute the remainder of the elements assigned to Processor X.

Square Corner Of the three candidate partitions, only the Square Corner has an oX term which
is not equal to zero, i.e. it contains elements which may be computed without any communication
amongst processors. The overlap-able area may be seen Fig. 4. The addition of the non-zero oP

term implies that cP will no longer be equal to cR and cS if we continue to naively assign the

volume of elements as N2Pr

T . As Processor P should be assigned a larger portion of the matrix to
compute than suggested by Pr.

To determine this optimal size, we first assume that the volumes (and thereby the size of the
squares) assigned to Processors R and S should decrease in proportion to each other, so their
computation times remain equal (cR = cS). The size of a side of the square R, r, and a side of the

square S, s, is set at s =
√

r2

Rr
. We may safely ignore the third term (Processor S) of the SCO max

function, as it will always be equal to the second term (Processor R). Execution time is given by,

Texe
N3β

= max

(
max

(
2

N

(√Rr

T
+

√
1

T

)
,

1− r√
Rr
− 2r + r2

Rr
+ 2r2√

Rr
+ r2

c

)

+
2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
,

2

N

(√Rr

T
+

√
1

T

)
+
r2Pr

cRr

)

In order to make the execution time equations easier to analyse, the constant factor N3β has been
removed. This introduces a new variable, a ratio between computation and communication speeds,
c = Spβ, where Sp

N is the number of elements computed per second by Processor P . The size of N
and r have been normalised, so that r

N becomes r, and r is understood to be 0 ≤ r < 1.

S	

R	

P
overlap

area

P

P

Fig. 4. On the left, the area of Processor P which does not require communication in the Square Corner
partition shape is enclosed in dotted lines. On the right, the graph of execution time functions for the SCO
algorithm. Axes as are in previous graphs, and N = 3000 and c = 50.

Optimal size of R and S The optimal size of r is given by,

r =

√
−(Pr

Rr
+ 1 + 1

Rr
)(2c

N

√
Rr

T + 2c
N

√
1
T − 1)

(Pr

Rr
+ 1 + 1

Rr
)

(7)

The full derivation of this value may be found in [11].

Square Rectangle and Block Rectangle The computation of no portion of matrix C may be
overlapped with communication. The execution time function is equivalent to that for the SCB
algorithm. Total execution time is given by,

Texe(SR)

N3β
=

1

N
+

2

N

√
1

T
+ max

(
Pr

Tc
,
Pr

Tc
,
Pr

Tc

)
Texe(BR)

N3β
=

2

N
− Pr

TN
+ max

(
Pr

Tc
,
Pr

Tc
,
Pr

Tc

)

SCO Optimal Shape

Theorem 8 (SCO Square Corner). The Square Corner partition shape minimizes execution
time, i.e. is the optimum shape, when using the SCO MMM algorithm for computational ratios

such that Pr >
2
N (
√

Rr
T +
√

1
T)+ 2

c (r−r
2− r2√

Rr
+ r√

Rr
− r2

Rr
)− 2

N
1
Tc−

1
TN

and Pr >
2c
N (
√
RrT +

√
T) + 2T (r − r2 −

r2√
Rr

+ r√
Rr
− r2

Rr
)− Tc

N −
2c
N

√
T , where r is the optimal size of the square R, given in (7).

Theorem 9 (SCO Square Rectangle). The Square Rectangle partition shape minimizes execu-
tion time, i.e. is the optimum shape, when using the SCO MMM algorithm for computational ratios

such that Pr < T − 2
√
T and Pr <

2c
N (
√
RrT +

√
T) + 2T (r− r2 − r2√

Rr
+ r√

Rr
− r2

Rr
)− Tc

N −
2c
N

√
T

Corollary 10 (SCO Block Rectangle) The Block Rectangle partition shape minimizes execu-
tion time, i.e. is the optimum shape, for all processor computational power ratios except those
specified in Theorems 8 and 9.

3.6 Parallel Communication with Bulk Overlap (PCO)

In the Parallel Communication with Bulk Overlap (PCO) algorithm all data is sent among proces-
sors in parallel, while in parallel any elements that can be computed without communication are
computed. Once both communication and overlapped computation are complete, the remainder of
the computation begins. The execution time for this algorithm is given by,

Texe = max
(

max(Tcomm, oP) + cP ,max(Tcomm, oR) + cR,max(Tcomm, oS) + cS

)
where Tcomm is the same as that of the PCB algorithm. As with the SCO algorithm, we simplify

the equations by removing constant N3β, normalising N , and making the size of s dependent on
the size of r. The optimal size of r is derived in [11].

Square Corner

Texe
N3β

= max

(
max

(
2

N
max

(
r − r2 +

r√
Rr

− r2

Rr
, r2
)
,

1− r√
Rr
− 2r + r2

Rr
+ 2r2√

Rr
+ r2

c

)
(8)

+2
r − r2 + r√

Rr
− r2√

Rr
− r2

Rr

c
,

2

N
max

(
r − r2 +

r√
Rr

− r2

Rr
, r2
)

+
r2Pr

cRr

)

Square Rectangle and Block Rectangle As with the SCO algorithm, the Square Rectangle
and Block Rectangle shapes do not have a portion which may be overlapped with communication.
The time of execution, as with PCB model, is given by,

Texe(SR)

N3β
= max

(1

N
+

2

N
√
T
− Rr

NT
− Rr

NT
√
T
− 3

NT
,
Rr

NT
+

Rr

NT
√
T
,

3

NT

)
+
Pr

Tc
(9)

Texe(BR)

N3β
= max

(
Pr

NT
,

2Rr

NT
,

2

NT

)
+
Pr

Tc
(10)

PCO Optimal Shape As with the PCB algorithm, the Block Rectangle shape is superior to the
Square Rectangle shape when Pr > 2Rr + Rr√

T
− 2
√
T + 2. When examining all three shapes to

determine the optimal, we see that as c decreases, all three equations converge. However, for larger
values of c, the clear winner for all computational power ratios is the Square Corner shape as seen
in Fig. 5. The full proof of this is found in [11].

Fig. 5. The PCO execution time functions for Square Corner (white and grey stripes), Block Rectangle
(solid grey), and Square Rectangle (white and grey checkerboard). The x-axis, Pr, is 1 to 30, and the y-axis,
Rr displays values 1 to 20. The vertical black surface is x = y. The Square Corner shape is increasingly
superior as c increases. Shown here is N = 3000 and c = 300.

3.7 Parallel Interleaving Overlap (PIO)

The Parallel Interleaving Overlap (PIO) algorithm, unlike the previous algorithms described, does
not use bulk communication. At each step data is sent, a row and a column (or k rows and columns)
at a time, by the relevant processor(s) to all processor(s) requiring those elements, while, in parallel,
all processors compute using the data sent in the previous step. The execution time for this algorithm
is given by,

Texe = Send k + (N − 1)×max

(
β(Vk),max

(
kP , kR, kS

))
+ Compute (k + 1)

where Vk is the number of elements sent at step k, and kX is the number of seconds to compute
step k on Processor X.

In the case of the PIO algorithm, the processors compute at the same time, meaning the optimal
distribution will be in proportion to their computational power. The optimal size of the r and s is

therefore
√

RrN2

T and
√

N2

T , respectively. In order to analyse the equations, we remove the constant

factor N4β and focus on the dominant middle term which is multiplied by (N − 1).

Execution Time The execution time for each partition shape, Square Corner (SC), Square Rect-
angle (SR), and Block Rectangle (BR), is given by,

Texe(SC)

N4β
= max

(
2

N2

(√
Rr

T
+

√
1

T

)
,
Pr

Tc

)
(11)

Texe(SR)

N4β
= max

(
2

N2

(
1 + 2

√
1

T

)
,
Pr

Tc

)
(12)

Texe(BR)

N4β
= max

(
Pr

N2T
,
Pr

Tc

)
(13)

PIO Optimal Shape When computation time dominates, all three partition shapes are equivalent.
However, when communication time dominates, they differ.

Theorem 11 (PIO Block Rectangle). The Block Rectangle partition shape minimises execution
time when using the PIO algorithm for computational power ratios such that Pr < 4

√
T .

Corollary 12 (PIO Square Corner) The Square Corner partition shape minimises execution
time, i.e. is the optimum shape, for all processor computational power ratios except those specified
in Theorem 11 when using the PIO algorithm.

4 Experimental Results

To validate the theoretical results of this paper we present experiments undertaken on Grid’5000
in France using the Edel cluster at the Grenoble site. Each algorithm was tested using three nodes,
comprised of 2 Intel Xeon E5520 2.2 GHz CPUs per node, with 4 cores per CPU. The communication
interconnect is MPI over gigabit ethernet, and the computations use ATLAS. Heterogeneity in
processing power was achieved using the cpulimit program, an open source code that limits the
number of cycles a process may be active on the CPU to a percentage of the total. For space
considerations, we present only results from SCB and PCB here.

4.1 Serial Communication with Barrier

The experimental results, for communication time, with the SCB algorithm can be found in Fig. 6.
Note it is not possible to form a Square Corner shape at ratio 1 : 1 : 1. These experiments show
that the theoretical optimum does indeed outperform the other possible shapes, which also perform
in the expected order. We did find, that while the Square Corner and Square Rectangle shapes
are theoretically identical at the 14 : 5 : 1 ratio, the Square Rectangle performed slightly better
experimentally.

1:1:1	 3:2:1	 5:4:1	 7:7:1	 10:9:1	 14:5:1	 12:1:1	 25:4:1	

Theoretical	 Communication	 Time	
Square	 Corner	

Square	 Rectangle	

Block	 Rectangle	

0.08	

0.10	

0.12	

0.14	

0.16	

0.18	

0.20	

1:1:1	 3:2:1	 5:4:1	 7:7:1	 10:9:1	 14:5:1	 12:1:1	 25:4:1	

Experimental	 Communication	 Time	

Square	 Corner	
Square	 Rectangle	
Block	 Rectangle	

Fig. 6. On the left is the theoretical relative communication time for Square Corner, Square Rectangle and
Block Rectangle when using the SCB algorithm. On the right is the experimental communication time (in
seconds) for given ratios of Pr : Rr : 1. The value of N is 5000.

4.2 Parallel Communication with Barrier

The experimental results, for communication time, with the PCB algorithm can be found in Fig. 7.
Note it is not possible to form a Square Corner shape at ratio 1 : 1 : 1. The results conform to
the theoretical predictions with the optimum shape performing best, and the other two shapes
performing in their predicted order.

1:1:1	 3:2:1	 5:4:1	 7:7:1	 10:9:1	 14:5:1	 12:1:1	 25:4:1	

Theoretical	 Communication	 Time	 PCB	

Square	 Corner	

Square	 Rectangle	

Block	 Rectangle	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0.1	

0.11	

0.12	

1:1:1	 3:2:1	 5:4:1	 7:7:1	 10:9:1	 14:5:1	 12:1:1	 25:4:1	

Experimental	 Communication	 Time	 PCB	

Square	 Corner	
Square	 Rectangle	
Block	 Rectangle	

Fig. 7. On the left is the theoretical relative communication time for Square Corner, Square Rectangle
and Block Rectangle partition shapes when using the PCB algorithm. On the right is the experimental
communication time (in seconds) for given ratios of Pr : Rr : 1. The value of N is 5000.

5 Conclusions

On three fully connected heterogeneous processors, the optimal data partition shape depends on
the relative computational power of each processor and the ratio between computational power and
communication speed and is one of just three well-defined shapes. In general, the Square Corner
shape is optimal for systems with a single fast processor, and two slower processors, the Square
Rectangle shape is optimal for systems with two fast processors and a less powerful processor, and

the Block Rectangle shape is optimal for relatively homogeneous systems and systems with a faster,
medium and slower processor.

These results show that the optimal data partition is not exclusively rectangular. Of the three
optimal shapes, two are non-rectangular. One of these, the Square Rectangle, has never before been
considered. Without the Push technique, this non-symmetrical and unconventional shape would
not be known to be the optimum.

Acknowledgement

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities as well as other funding bodies (see https://www.grid5000.fr).
This research was conducted with the financial support of Science Foundation Ireland under Grant
Number 08/IN./I2054.

References

1. J.J Dongarra, H.W. Meuer, H.D. Simon, and E. Strohmaier, “Top500 supercomputer sites”. URL
http://www.top500.org/.

2. D. Clarke, A. Lastovetsky, and V. Rychkov, “Column-based matrix partitioning for parallel matrix
multiplication on heterogeneous processors based on functional performance models”. Euro-Par 2011:
Parallel Processing Workshops, 2012, pp. 450-459.

3. E. Dovolnov, A. Kalinov and S. Kilmov, “Natural bloc data decomposition for heterogeneous clusters”.
Proceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS ’03), April
2003.

4. A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of computations solving linear algebra
problems on networks of heterogeneous computers”. Journal of Parallel and Distributed Computing,
2001, vol. 61, pp.520-535.

5. O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Partitioning a square into rectangles: NP-
completeness and approximation algorithms”. Algorithmica 34, 2002, pp. 217-239.

6. A. DeFlumere, A. Lastovetsky, and B.A. Becker, “Partitioning for parallel matrix-matrix multiplication
with heterogeneous processors: The optimal solution”. Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2012, pp. 125-139.

7. A. DeFlumere, and A. Lastovetsky, “Searching for the optimal data partitioning shape for parallel matrix
matrix multiplication on 3 heterogeneous processors”. Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2014.

8. Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on heterogeneous multicore and multi-
GPU systems using functional performance models of data-parallel applications”. IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2012, pp. 191-199.

9. R. Hockney, “The communication challenge for mpp: Intel paragon and meiko cs-2”. Parallel Computing,
1994, vol. 20, no. 3, pp. 389-398.

10. R. Van De Geijn and J. Watts, “SUMMA: Scalable universal matrix multiplication algorithm”.
Concurrency-Practice and Experience, 1997, vol.9, no. 4, pp. 255-274.

11. A. DeFlumere, and A. Lastovetsky, “Theoretical results on optimal partitioning for matrix matrix
multiplication on three fully connected heterogeneous processors”. School of Computer Science and
Informatics, University College Dublin, Tech. Rep. UCD-CSI-2014-01 (2014).

