
HeteroMPI Programmers’ Reference and Installation Manual

1

HeteroMPI Programmers’ Reference and Installation Manual

HeteroMPI Programmers’ Reference and Installation Manual

2

HeteroMPI
A Message Passing L ibrary for Heterogeneous

Networks of Computers
Version 1.0

Ravi Reddy, Alexey Lastovetsky

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

E-mail: Manumachu.Reddy@ucd.ie, Alexey.Lastovetsky@ucd.ie

January 10, 2006

HeteroMPI Programmers’ Reference and Installation Manual

3

CONTENTS

1 INTRODUCTION ...5
2 WHAT IS HETEROMPI ..5
3 HETEROMPI’S LIBRARY INTERFACE ...6
3.1 HETEROMPI RUNTIME INITIALIZATION AND FINALIZATION..6

HMPI_Init..6
HMPI_Finalize ..7

3.2 HETEROMPI GROUP MANAGEMENT FUNCTIONS...8
HMPI_Group_rank ...8
HMPI_Rank..9
HMPI_Group_coordof ..10
HMPI_Coordof...11
HMPI_Group_topo_size..12
HMPI_Group_topology ..13
HMPI_Group_parent...14
HMPI_Group_size ...15
HMPI_Is_host...16
HMPI_Is_parent ..16
HMPI_Is_member ..17
HMPI_Is_free...18
HMPI_Get_comm ..18
HMPI_Group_create...19
HMPI_Group_auto_create...22
HMPI_Group_heuristic_auto_create ...23
HMPI_Group_free ...24

3.3 HETEROMPI RUNTIME UPDATION FUNCTIONS...25
HMPI_Recon ...25

3.4 HETEROMPI ESTIMATION FUNCTIONS...27
HMPI_Timeof ...27

3.5 HETEROMPI PROCESSOR INFORMATION FUNCTIONS..28
HMPI_Get_number_of_processors ..29
HMPI_Get_processors_info ..29
HMPI_Get_processes_info ..30
HMPI_Group_performances ..31

3.6 HETEROMPI SYNCHRONIZATION FUNCTIONS ..32
HMPI_Barrier...32
HMPI_Notify_free_processes ...33
HMPI_Wait_free_processes ..33
HMPI_Host_rendezvous..33

3.7 HETEROMPI DEBUGGING AND VERSION FUNCTIONS...34
HMPI_Printf ...34
HMPI_Strerror ..35
HMPI_Debug ...36
HMPI_Get_version ...36

HeteroMPI Programmers’ Reference and Installation Manual

4

4 HETEROGENEOUS DATA PARTITIONING INTERFACE (HETERODPI)..37
4.1 SETS...37

Partition_unordered_set ..37
Partition_ordered_set ...38
Get_set_processor...39
Get_my_partition ...39

4.2 DENSE MATRICES...39
Partition_matrix_2d ..39
Partition_matrix_1d_dp...40
Partition_matrix_1d_iterative ..41
Partition_matrix_1d_refining...42
Get_matrix_processor..42
Get_my_width...43
Get_my_height ..43
Get_diagonal...43
Get_my_elements ...44
Get_my_kk_elements ..44

4.3 GRAPHS..44
Partition_graph ...44
Partition_bipartite_graph..45
Partition_hypergraph..46

4.4 TREES...47
Partition_tree ..47

5 HETEROMPI COMMAND-LINE USER’S INTERFACE...48
5.1 HETEROMPI ENVIRONMENT ..48
5.2 VIRTUAL PARALLEL MACHINE...48
5.3 BUILDING AND RUNNING HETEROMPI APPLICATION ..49
6 HETEROMPI INSTALLATION GUIDE FOR UNIX...51
6.1 SYSTEM REQUIREMENTS..51
6.2 CONTENTS OF HETEROMPI FOR UNIX DISTRIBUTION..52
6.3 BEFORE INSTALLATION...52
6.3.1 INSTALLING MPI ...52
6.3.2 INSTALLING MPC ...53
6.3.3 MAKING RSH/SSH WORKING..53
6.4 BEGINNING INSTALLATION..54
6.5 FINISHING INSTALLATION..55
6.6 CONTENTS OF HETEROMPI INSTALLATION...56
6.7 TESTING YOUR INSTALLATION...56

HeteroMPI Programmers’ Reference and Installation Manual

5

1 Introduction

The tools designed for programming high-performance computations on HNOCs must provide
mechanisms to automate the following tedious and error-prone tasks:

• Parameter determination characterizing the computational requirements of the parallel
application and the capabilities of the machines,

• Data partitioning,
• Matching and Scheduling, and
• Task execution.
Ideally a tool must supply mechanisms to the programmer so that he or she can provide

information to it that can assist in finding the most efficient implementation on HNOCs.
Combining the system’s detailed analysis with the programmer’s high-level knowledge of the
application is essential in finding more efficient mappings than either one alone is capable of
achieving. The performance models used by the tools must take into account all the essential
features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects
of paging and the speed and the bandwidth of the communication links between the processors.
The model of the executing network of computers must take into consideration the essential set
of machine characteristics such as computing bandwidth, communication latency,
communication overhead, communication bandwidth, network contention effects and the
memory hierarchy. Such a model must have enough parameters for it to be effective and
accurate.

HeteroMPI is such a tool, which is an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. The main idea of HeteroMPI is to
automate the process of selection of a group of processes, which would execute the
heterogeneous algorithm faster than any other group. HeteroMPI provides features that allow the
user to carefully design their parallel applications that can run efficiently on HNOCs.

The rest of the manual is organized as follows. Section 2 describes HeteroMPI. Section 3
presents the HeteroMPI API, which are extensions to MPI. Section 4 presents the library of data
partitioning functions. Section 5 provides the HeteroMPI command-line user’s interface. This is
followed by installation instructions for HeteroMPI on UNIX platforms in section 6.

2 What is HeteroMPI

Heterogeneous MPI (HeteroMPI) is an extension of MPI for programming high-
performance computations on heterogeneous networks of computers. It allows the application
programmer to describe the performance model of the implemented algorithm in a generic form.
This model allows for all the main features of the underlying parallel algorithm, which have an
impact on its execution performance, such as the total number of parallel processes, the total
volume of computations to be performed by each process, the total volume of data to be
transferred between each pair of the processes, and how exactly the processes interact during the
execution of the algorithm. Given the description of the performance model, HeteroMPI tries to
create a group of processes that executes the algorithm faster than any other group of processes.

HeteroMPI provides all the features to the user to write portable and efficient parallel
applications on HNOCs. These features automate all the essential steps involved in application
development on HNOCs:

HeteroMPI Programmers’ Reference and Installation Manual

6

1). Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous system. The
machine capabilities are determined before the application execution and supplied to the model
of executing network of computers. The model of the executing network of computers is
implementation-dependent. We use a static structure automatically obtained by HeteroMPI
environment and saved in the form of an ASCII file. However, the parameters of the model can
be updated at runtime taking into account the changing network loads.

2). Decomposition of the whole problem into a set of sub-problems that can be solved in
parallel by interacting processes. This step of heterogeneous decomposition is parameterized by
the number and speeds of processors and the speeds and bandwidths of the communication links
between them. The Heterogeneous Data Partitioning Interface (HeteroDPI) is developed to
automate this step of heterogeneous decomposition. HeteroDPI provides API that allows the
application programmers to specify simple and basic partitioning criteria in the form of
parameters and functions to partition the mathematical objects used in their parallel applications.

3). Selection of the optimal set of processes running on different computers of the
heterogeneous network by taking into account the speeds of the processors, and the speeds and
the bandwidths of the communications links between them. During the creation of this set of
optimal processes, HeteroMPI runtime system solves the problem of selection of the optimal set
of processes running on different computers of the heterogeneous network using an advanced
mapping algorithm. The mapping algorithm is based on the performance model of the parallel
algorithm in the form of the set of functions generated by the compiler from the description of
the performance model, and the performance model of the executing network of computers,
which reflects the state of this network just before the execution of the parallel algorithm.

4). Application program execution on the HNOCs. The command line user interface of
HeteroMPI developed consists of a number of shell commands supporting the creation of a
virtual parallel machine and the execution of the HeteroMPI application programs on the virtual
parallel machine. The notion of virtual parallel machine enables a collection of heterogeneous
computers to be used as single large parallel computer.

3 HeteroMPI ’s L ibrary Inter face

In this section, we describe the interfaces to the routines provided by HeteroMPI as extensions to
MPI and the interfaces to the routines in the heterogeneous data partitioning interface (HPDI).

3.1 HeteroMPI runtime initialization and finalization

HMPI _I ni t

Initializes HeteroMPI runtime system

Synopsis:

 i nt
 HMPI _I ni t
 (
 i nt * ar gc,

HeteroMPI Programmers’ Reference and Installation Manual

7

 char * * * ar gv
)

Parameters:
 ar gc --- Number of arguments supplied to mai n
 ar gv --- Values of arguments supplied to mai n

Descr iption: All processes must call this routine to initialize HeteroMPI runtime system. This
routine must be called before any other HeteroMPI routine. It must be called at most once;
subsequent calls are erroneous.

Usage:

 i nt mai n(i nt ar gc, char * * ar gv)
 {
 i nt r c = HMPI _I ni t (
 &ar gc,
 &ar gv
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Er r or has occur r ed
 }
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Fi nal i ze

Finalizes HeteroMPI runtime system

Synopsis:

 i nt
 HMPI _Fi nal i ze
 (
 i nt exi t code
)

Parameters:

 exi t code --- code to be returned to the command shell

Descr iption: This routine cleans up all HeteroMPI state. All processes must call this routine at
the end of processing tasks. Once this routine is called, no HeteroMPI routine (even
HMPI _I ni t) may be called.

HeteroMPI Programmers’ Reference and Installation Manual

8

Usage:

 i nt mai n(i nt ar gc, char * * ar gv)
 {
 i nt r c = HMPI _I ni t (
 &ar gc,
 &ar gv
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Er r or has occur r ed
 }

 r c = HMPI _Fi nal i ze(0) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Er r or has occur r ed
 }
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

3.2 HeteroMPI Group Management Functions

HMPI _Gr oup_r ank

Returns rank of the calling process

Synopsis:

 i nt
 HMPI _Gr oup_r ank
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes

Descr iption: This routine returns the rank of the process calling it. Only processes that are
members of the group represented by the handle gi d can call this routine.

HeteroMPI Programmers’ Reference and Installation Manual

9

Usage:

 / / HMPI _HOST_GROUP i s a pr edef i ned gr oup handl e
 / / cont ai ni ng t he host pr ocess.
 HMPI _Gr oup* gi d = HMPI _HOST_GROUP;

 i f (HMPI _I s_member (gi d))
 {
 i nt r ank = HMPI _Gr oup_r ank (
 gi d
) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _Rank

Returns rank of the process with the coordinates specified

Synopsis:

 i nt
 HMPI _Rank
 (
 const HMPI _Gr oup* gi d,
 const i nt * coor di nat es
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes
 coor di nat es --- coordinates representing a process in the group represented by
 the handle gi d

Descr iption: This routine returns the rank of the process in the group represented by the handle
gi d and the coordinates of the process being coor di nat es . Only processes that are members
of the group represented by the handle gi d can call this routine.

Usage:

 / / Het er oMPI t ar get pr ogr am
 HMPI _Gr oup gi d;
 i nt coor di nat es = 3;
 i f (HMPI _I s_member (&gi d))

HeteroMPI Programmers’ Reference and Installation Manual

10

 {
 i nt r ank = HMPI _Rank (
 &gi d,
 &coor di nat es
) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _Gr oup_coor dof

Returns the coordinates of the process

Synopsis:

 i nt
 HMPI _Gr oup_coor dof
 (
 const HMPI _Gr oup* gi d,
 i nt * numc,
 i nt * * coor di nat es
)

Parameters:

 gi d --- Handle to the HeteroMPI group of processes. This is an input parameter.
 numc --- Output parameter giving the number of coordinates representing the
 calling process in the group represented by the handle gi d.
 coor di nat es --- The values of the coordinates of the calling process in the
 group represented by the handle gi d.

Descr iption: If the process calling this routine is a member of the group given by the handle
gi d, then its coordinates are returned in coor di nat es , the initial element of which points to
an integer array containing the coordinates with size numc . Only processes that are members of
the group represented by the handle gi d can call this routine.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (&gi d))
 {
 i nt numc;
 i nt * coor di nat es;

HeteroMPI Programmers’ Reference and Installation Manual

11

 i nt r c = HMPI _Gr oup_coor dof (
 &gi d,
 &numc,
 &coor di nat es
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Fai l ur e
 }

 f r ee(coor di nat es) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HMPI _SUCCESS is returned on success.

HMPI _Coor dof
Returns the coordinates of the process with a specified rank.

Synopsis:

 i nt
 HMPI _Coor dof
 (
 const HMPI _Gr oup* gi d,
 i nt r ank,
 i nt * numc,
 i nt * * coor di nat es
)

Parameters:

 gi d --- Handle to the HeteroMPI group of processes. This is an input parameter.
 r ank --- The rank of the process whose coordinates are returned.
 This is an input parameter.
 numc --- Output parameter giving the number of coordinates of the process
 whose rank is r ank in the group represented by the handle gi d.
 coor di nat es --- The values of the coordinates of the process whose rank is

 r ank in the group represented by the handle gi d.

Descr iption: The coordinates of the process whose rank is r ank in the group represented by the
handle gi d are returned in coor di nat es , the initial element of which points to an integer
array containing the coordinates with size numc . Only processes that are members of the group
represented by the handle gi d can call this routine.

HeteroMPI Programmers’ Reference and Installation Manual

12

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (gi d))
 {
 i nt r ank = 0;
 i nt numc;
 i nt * coor di nat es;

 i nt r c = HMPI _Coor dof (
 &gi d,
 r ank,
 &numc,
 &coor di nat es
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Fai l ur e
 }

 f r ee(coor di nat es) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HMPI _SUCCESS is returned on success.

HMPI _Gr oup_t opo_si ze

Returns the number of coordinates that can specify a process in a group

Synopsis:

 i nt
 HMPI _Gr oup_t opo_si ze
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes

HeteroMPI Programmers’ Reference and Installation Manual

13

Descr iption: This routine returns the number of coordinates used to specify a process, which is a
member of the group represented by the handle gi d. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (&gi d))
 {
 i nt numc = HMPI _Gr oup_t opo_si ze(
 &gi d
) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _Gr oup_t opol ogy

Returns the number of processes in the group in each dimension of the topology of the group.

Synopsis:

 i nt
 HMPI _Gr oup_t opol ogy
 (
 const HMPI _Gr oup* gi d,
 i nt * numc,
 i nt * * coor di nat es
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes.
 numc --- Output parameter giving the number of dimensions of the topology

specifying the arrangement of the processes, which are members of the
group represented by the handle gi d.

 coor di nat es --- Output parameter giving the number of processes in each
 dimension of the topology specifying the arrangement of
 the processes, which are members of the group represented by
 the handle gi d.

Descr iption: This routine returns the number of dimensions of the topology and the number of
processes in each dimension of the topology representing the arrangement of the processes,

HeteroMPI Programmers’ Reference and Installation Manual

14

which are members of the group represented by the handle gi d. The number of processes in
each dimension are returned in coor di nat es , the initial element of which points to an integer
array with number numc of elements containing the number of dimensions. Only processes that
are members of the group represented by the handle gi d can call this routine.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (&gi d))
 {
 i nt numc;
 i nt * coor di nat es;
 i nt r c = HMPI _Gr oup_t opol ogy (
 &gi d,
 &numc,
 &coor di nat es
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / Fai l ur e
 }

 f r ee(coor di nat es) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HMPI _SUCCESS is returned on success.

HMPI _Gr oup_par ent

Returns the rank of the parent of a group

Synopsis:

 i nt
 HMPI _Gr oup_par ent
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes.

HeteroMPI Programmers’ Reference and Installation Manual

15

Descr iption: This routine returns the rank of the parent of the group represented by the handle
gi d. Only processes that are members of the group represented by the handle gi d can call this
routine.

Usage:

 HMPI _Gr oup* gi d;
 i nt r ank;
 i f (HMPI _I s_member (gi d))
 {
 r ank = HMPI _Gr oup_par ent (gi d) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _Gr oup_si ze

Returns the number of processes in the group

Synopsis:

 i nt
 HMPI _Gr oup_si ze
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes

Descr iption: This routine returns the number of processes in the group represented by the handle
gi d. Only processes that are members of the group represented by the handle gi d can call this
routine.

Usage:

 HMPI _Gr oup* gi d;
 i nt s i ze;

 i f (HMPI _I s_member (gi d))
 {
 s i ze = HMPI _Gr oup_si ze(gi d) ;
 }

HeteroMPI Programmers’ Reference and Installation Manual

16

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _I s_host

Is the calling process the host?

Synopsis:

 unsi gned char
 HMPI _I s_host ()

Descr iption: This routine returns t r ue if the process calling this function is the host process
otherwise f al se. Any process can call this function.

Usage:

 i f (HMPI _I s_host ())
 {
 pr i nt f (“ I ’ m t he host \ n”) ;
 }
 el se
 {
 pr i nt f (“ I ’ m not t he host \ n”) ;
 }

Return values: Value of 1 is returned if the process is the member of the group. 0 otherwise.

HMPI _I s_par ent

Is the calling process the parent process of the group?

Synopsis:

 unsi gned char
 HMPI _I s_par ent
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes.

HeteroMPI Programmers’ Reference and Installation Manual

17

Descr iption: This routine returns t r ue if the process calling this routine is the parent of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:

 HMPI _Gr oup* gi d;

 i f (HMPI _I s_par ent (gi d))
 {
 pr i nt f (“ I ’ m t he par ent of t he gr oup gi d\ n”) ;
 }
 el se
 {
 pr i nt f (“ I ’ m not t he par ent of t he gr oup gi d\ n”) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _I s_member

Am I a member of the group?

Synopsis:

 unsi gned char
 HMPI _I s_member
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes.

Descr iption: This function returns t r ue if the process calling this routine is the member of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call this routine.

Usage:

 HMPI _Gr oup* gi d;

 i f (HMPI _I s_member (gi d))
 {

HeteroMPI Programmers’ Reference and Installation Manual

18

 pr i nt f (“ I ’ m a member of t he gr oup gi d\ n”) ;
 }
 el se
 {
 pr i nt f (“ I ’ m not a member of t he gr oup gi d\ n”) ;
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HMPI _I s_f r ee

Am I a member of the predefined group HMPI _FREE_GROUP?

Synopsis:

 unsi gned char
 HMPI _I s_f r ee()

Descr iption: This routine returns t r ue if the process is free and is member of the predefined
group HMPI _FREE_GROUP and f al se otherwise. Any process can call this function.

Usage:

 i f (HMPI _I s_f r ee())
 {
 pr i nt f (“ I ’ m a f r ee pr ocess and member of ”
 “ HMPI _FREE_GROUP \ n”) ;
 }
 el se
 {
 pr i nt f (“ I ’ m not a f r ee pr ocess and not a member of ”
 “ HMPI _FREE_GROUP \ n”) ;
 }

Return values: Value of 1 is returned if the process is not the member of any other group other
than HMPI _FREE_GROUP. 0 otherwise.

HMPI _Get _comm

Returns an MPI communicator with communication group of MPI processes

Synopsis:

 const MPI _Comm*
 HMPI _Get _comm
 (

HeteroMPI Programmers’ Reference and Installation Manual

19

 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes.

Descr iption: This routine returns an MPI communicator with communication group of MPI
processes defined by gi d. This is a local operation not requiring inter-process communication.
Application programmers can use this communicator to call the standard MPI communication
routines during the execution of the parallel algorithm. This communicator can safely be used in
other MPI routines.

Usage:

 HMPI _Gr oup* gi d;
 MPI _Comm* comm;

 i f (HMPI _I s_member (gi d))
 {
 comm = HMPI _Get _comm(gi d) ;
 i f (comm == NULL)
 {
 / / er r or
 }
 }

Return values: This call returns NULL if the process is not a member of the group represented
by the handle gi d.

HMPI _Gr oup_cr eat e

Create a HeteroMPI group of processes

Synopsis:

 i nt
 HMPI _Gr oup_cr eat e
 (
 HMPI _Gr oup* gi d,
 const HMPI _Model * model ,
 const i nt * model _par amet er s,
 i nt par amc
)

Parameters:

HeteroMPI Programmers’ Reference and Installation Manual

20

 gi d --- handle to the HeteroMPI group of processes. This is an output parameter.
 model --- handle that encapsulates all the features of the performance model in the
 form of a set of functions generated by the compiler from the description
 of the performance model (input parameter)
 model _par amet er s --- parameters of the performance model (input parameter)
 par amc --- number of parameters of the performance model (input parameter)

Descr iption: This routine tries to create a group that would execute the heterogeneous algorithm
faster than any other group of processes. In HeteroMPI, groups are not absolutely independent on
each other. Every newly created group has exactly one process shared with already existing
groups. That process is called a parent of this newly created group, and is the connecting link,
through which results of computations are passed if the group ceases to exist.
HMPI _Gr oup_cr eat e is a collective operation and must be called by the parent and all the
processes, which are not members of any HeteroMPI group.

Usage:

 HMPI _Gr oup gi d1, gi d2, gi d3;

 i nt model p[1] = { 5} ;
 unsi gned char i s_par ent _of _ni d2 = 0;
 unsi gned char i s_par ent _of _ni d3 = 0;

 / / The par ent used i n t he cr eat i on of abst r act net wor k
 / / gi d1 i s t he host
 i f (HMPI _I s_member (HMPI _HOST_GROUP))
 {
 HMPI _Gr oup_cr eat e(
 &gi d1,
 &HMPI _Model _si mpl e,
 model p,
 1
) ;
 }

 i f (HMPI _I s_f r ee())
 {
 HMPI _Gr oup_cr eat e(
 &gi d1,
 &HMPI _Model _si mpl e,
 NULL,
 0
) ;
 }

 / / The par ent used i n t he cr eat i on of gr oup gi d2 i s t he
 / / member of gr oup gi d1 whose coor di nat es ar e gi ven

HeteroMPI Programmers’ Reference and Installation Manual

21

 / / { 2}
 i f (HMPI _I s_member (&gi d1))
 {
 i nt numc;
 i nt * * coor di nat es = (i nt * *) mal l oc(
 s i zeof (i nt *)
) ;
 i nt r c = HMPI _Gr oup_coor dof (
 &gi d1,
 &numc,
 coor di nat es,
) ;
 i f ((* coor di nat es) [0] == 2)
 {
 i s_par ent _of _ni d2 = 1;
 }

 f r ee(coor di nat es[0]) ;
 f r ee(coor di nat es) ;
 }

 i f (i s_par ent _of _ni d2
 | | HMPI _I s_f r ee()
)
 {
 HMPI _Gr oup_cr eat e(
 &ni d2,
 &HMPI _Model _si mpl e,
 model p,
 1
) ;
 }

 / / The par ent used i n t he cr eat i on of t he gr oup gi d3 i s
 / / t he member of abst r act net wor k ni d2 whose
 / / coor di nat es ar e gi ven by { 3}
 i f (HMPI _I s_member (&ni d2))
 {
 i nt numc;
 i nt * * coor di nat es = (i nt * *) mal l oc(
 s i zeof (i nt *)
) ;

 i nt r esul t = HMPI _Gr oup_coor dof (
 &gi d2,
 &numc,
 coor di nat es,

HeteroMPI Programmers’ Reference and Installation Manual

22

) ;

 i f ((* coor di nat es) [0] == 3)
 {
 i s_par ent _of _gi d3 = 1;
 }

 f r ee(coor di nat es[0]) ;
 f r ee(coor di nat es) ;
 }

 i f (i s_par ent _of _ni d3
 | | HMPI _I s_f r ee()
)
 {
 HMPI _Gr oup_cr eat e(
 &gi d3,
 &HMPI _Model _si mpl e,
 model p,
 1
) ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Gr oup_aut o_cr eat e

Create a HeteroMPI group of processes with optimal number of processes

Synopsis:

 i nt
 HMPI _Gr oup_aut o_cr eat e
 (
 HMPI _Gr oup* gi d,
 const HMPI _Model * model ,
 const i nt * model _par amet er s,
 i nt par amc
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes. This is an output parameter.
 model --- handle that encapsulates all the features of the performance model in the
 form of a set of functions generated by the compiler from the description
 of the performance model (input parameter)
 model _par amet er s --- parameters of the performance model (input parameter)

HeteroMPI Programmers’ Reference and Installation Manual

23

 par amc --- number of parameters of the performance model (input parameter)

Descr iption: This routine allows application programmers not to bother about finding the
optimal number of processes that can execute the parallel application. They can specify only the
rest of the parameters thus leaving the detection of the optimal number of processes to the
HeteroMPI runtime system. HMPI _Gr oup_aut o_cr eat e is a collective operation and must
be called by the parent and all the processes, which are not members of any HeteroMPI group.

The parameters model _par amet er s and par am_count are input parameters. User fills
only the input-specific part of the parameter model _par amet er s and ignores the return
parameters specifying the number of processes to be involved in executing the algorithm and
their performances.

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Gr oup_heur i st i c_aut o_cr eat e

Uses user-supplied heuristics to create a HeteroMPI group of processes with optimal number of
processes

Synopsis:

 t ypedef i nt (* HMPI _Heur i st i c_f unct i on) (
 i nt np, i nt * dp, const i nt * model p, i nt par amc) ;
 i nt
 HMPI _Gr oup_heur i st i c_aut o_cr eat e
 (
 HMPI _Gr oup* gi d,
 const HMPI _Model * model ,
 HMPI _Heur i st i c_f unct i on hf unc,
 const i nt * model _par amet er s,
 i nt par amc
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes. This is an output parameter.
 model --- handle that encapsulates all the features of the performance model in the
 form of a set of functions generated by the compiler from the description
 of the performance model (input parameter)
 hf unc --- User-supplied heuristic function (input parameter)
 model _par amet er s --- parameters of the performance model (input parameter)
 par amc --- number of parameters of the performance model (input parameter)

Descr iption: This routine has the same functionality as HMPI _Gr oup_aut o_cr eat e except
that it allows application programmers to supply heuristics that minimize the number of process
arrangements evaluated.

HeteroMPI Programmers’ Reference and Installation Manual

24

Application programmers provide the heuristic function hf unc . The input parameter np is the
number of dimensions in the process arrangement. The input parameter dp is an integer array of
size np containing the number of processes in each dimension of the process arrangement. The
input parameters model p and par amc are the parameters supplied to the performance model.
The function HMPI _Gr oup_heur i st i c_aut o_cr eat e evaluates a process arrangement
only if the heuristic function hf unc returns true.

A simple heuristic function is shown below, which returns a value true only if the process
arrangement is a square grid.

 i nt Squar e_gr i d_onl y(
 i nt np, i nt * dp, voi d * model p, i nt par amc) {
 i f ((np == 2) && (dp[0] == dp[1]))
 r et ur n t r ue;
 r et ur n f al se;
 }

The function evaluates process arrangements that are square grids only if this heuristic function
is provided as an input.

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Gr oup_f r ee

Free a HeteroMPI group of processes

Synopsis:

 i nt
 HMPI _Gr oup_f r ee
 (
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes

Descr iption: This routine deallocates the resources associated with a group object gi d.
HMPI _Gr oup_f r ee is a collective operation and must be called by all the processes, which are
members of the HeteroMPI group gi d.

Usage:

HeteroMPI Programmers’ Reference and Installation Manual

25

 HMPI _Gr oup gi d;
 i f (HMPI _I s_member (&gi d))
 {
 HMPI _Gr oup_f r ee(&gi d) ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

3.3 HeteroMPI Runtime updation Functions

HMPI _Recon

Updates the estimation of processor performances dynamically

Synopsis:

 t ypedef voi d (* HMPI _Benchmar k_f unct i on) (
 const voi d* , i nt , voi d*) ;

 i nt
 HMPI _Recon
 (
 HMPI _Benchmar k_f unct i on f unc,
 const voi d* i nput _p,
 i nt num_of _par amet er s,
 voi d* out put _p
)

Parameters:

 f unc --- Benchmark user function executed by all the physical processors.
 i nput _p --- Input parameters to the user function.
 num_of _par amet er s --- Number of input parameters to the user function.
 out put _p --- Return parameter on the execution of the user function.

Descr iption: All the processors execute the benchmark function f unc in parallel, and the time
elapsed by each of the processors to execute the code is used to refresh the estimation of its
speed. This is a collective operation and must be called by all the processes in the group
associated with the predefined communication universe HMPI_COMM_WORLD of
HeteroMPI.

This routine allows updating the estimation of processor performances dynamically, at
runtime, just before using the estimation by the programming system. It is especially important if
computers, executing the HeteroMPI program, are used for other computations as well. In that
case, the real performance of processors can dynamically change dependent on the external

HeteroMPI Programmers’ Reference and Installation Manual

26

computations. The use of this routine allows writing parallel programs sensitive to such dynamic
variation of the workload of the underlying computer system.

Usage:

 doubl e Per f _f unc (
 doubl e l , doubl e w, doubl e h, doubl e del t a)
 {
 doubl e m, x, y, z;
 f or (m = 0. 0, x = 0. 0; x < l ; x += del t a)
 f or (y = 0. ; y < w; y += del t a)
 f or (z = 0. ; z < h; z += del t a)
 m += XYZ_f unc(x, y, z) ;
 r et ur n m * del t a * del t a * del t a;
 }

 voi d Benchmar k_f unct i on
 (
 const voi d* i nput _p,
 i nt num_of _p,
 voi d* out put _p
)
 {
 doubl e* par ams = (doubl e*) i nput _p;
 doubl e r esul t = Per f _f unc(
 par ams[0] ,
 par ams[1] ,
 par ams[2] ,
 par ams[3]
) ;
 * (doubl e*) (out put _p) = r esul t ;
 r et ur n;
 }

 / / Al l member s of gr oup HMPI _COMM_WORLD_GROUP must cal l
 / / t hi s f unct i on
 i f (HMPI _I s_member (HMPI _COMM_WORLD_GROUP))
 {
 doubl e out put _p;
 i nt r c = HMPI _Recon(
 Benchmar k_f unct i on,
 i nput _p,
 4,
 &out put _p
) ;

 i f (r c ! = HMPI _SUCCESS)

HeteroMPI Programmers’ Reference and Installation Manual

27

 {
 / / An er r or has occur r ed
 }
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

3.4 HeteroMPI Estimation Functions

HMPI _Ti meof

Predict the total time of execution of the algorithm on the underlying hardware without its real
execution

Synopsis:

 doubl e
 HMPI _Ti meof
 (
 const HMPI _Model * model ,
 const i nt * model _par amet er s,
 i nt par amc
)

Parameters:

 model --- handle that encapsulates all the features of the performance model in
 the form of a set of functions generated by the compiler from the
 description of the performance model (input parameter)
 model _par amet er s --- parameters of the performance model (input parameter)
 par amc --- number of parameters of the performance model (input parameter)

Descr iption: This routine allows application programmers to predict the total time of execution
of the algorithm on the underlying hardware without its real execution. This function allows the
application programmers to write such a parallel application that can follow different parallel
algorithms to solve the same problem, making choice at runtime depending on the particular
executing network and its actual performance. This is a local operation that can be called by any
process, which is a member of the group associated with the predefined communication universe
HMPI _COMM_WORLD of HeteroMPI.

HMPI _Ti meof can thus be used to estimate the execution time on HNOCs for each possible
set of model parameters model _par amet er s . Application programmers can use this function
creatively to design best possible heuristics for the set of parameters. Depending on the time
estimated for each set, the optimal values of the parameters are determined. These values are
then passed to the performance model during the actual creation of the group of processes using
the function HMPI _Gr oup_cr eat e.

Usage:

HeteroMPI Programmers’ Reference and Installation Manual

28

 al gor i t hm bcast (i nt p, i nt n, i nt I TER, i nt r ooot) {
 coor d I =p;
 node {
 I >=0: bench* 1;
 } ;
 l i nk {
 I >=0&&I ! =r ooot : l engt h* (n* n* I TER* si zeof (doubl e))
 [r ooot] - >[I] ;
 } ;
 par ent [0] ;
 scheme {
 i nt i , k ;
 f or (k = 0; k < I TER; k++)
 f or (i = 0; i < p; i ++)
 i f (i ! = r ooot)
 (100/ I TER) %%[r ooot] - >[i] ;
 } ;
 } ;

 i nt mai n() {
 i nt p;
 HMPI _Gr oup gi d;
 …
 p = HMPI _Gr oup_si ze(HMPI _COMM_WORLD_GROUP) ;
 i f (HMPI _I s_host ()) {
 i nt par am_count = 4;
 i nt model _par ams[4] = {
 p,
 N,
 I TER,
 r oot
 } ;
 doubl e t i me;
 t i me = HMPI _Ti meof (
 &HMPI _Model _bcast ,
 &model _par ams,
 par am_count
) ;
 t i me = (doubl e) t i me/ (doubl e) I TER;
 pr i nt f (" Number of byt es br oadcast = %d,
 t i me=%0. 9f \ n" , N* N* 8, t i me) ;
 }
 }

3.5 HeteroMPI Processor Information Functions

HeteroMPI Programmers’ Reference and Installation Manual

29

HMPI _Get _number _of _pr ocessor s

Returns the number of physical processors of the underlying distributed memory machine

Synopsis:

 i nt
 HMPI _Get _number _of _pr ocessor s()

Descr iption: This routine returns the number of physical processors of the underlying distributed
memory machine. This is a collective operation and must be called by all the processes in the
group associated with the predefined communication universe HMPI_COMM_WORLD of
HeteroMPI.

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group HMPI _COMM_WORLD_GROUP. HMPI _SUCCESS is returned on success.

HMPI _Get _pr ocessor s_i nf o

Returns the relative performances of the physical processors of the underlying distributed
memory machine

Synopsis:

 i nt
 HMPI _Get _pr ocessor s_i nf o
 (
 doubl e* r el at i ve_per f or mances
)

Parameters:

 Rel at i ve_per f or mances --- Output parameter containing the relative
 performances of the physical processors of the
 underlying distributed memory machine

Descr iption: This routine returns the relative performances of the physical processors of the
underlying distributed memory machine. This is a collective operation and must be called by all
the processes in the group associated with the predefined communication universe
HMPI_COMM_WORLD of HeteroMPI.

Usage:

 i nt p = HMPI _Get _number _of _pr ocessor s () ;
 doubl e speeds = (doubl e*) mal l oc(
 si zeof (doubl e)
 *
 p

HeteroMPI Programmers’ Reference and Installation Manual

30

) ;

 i nt r c = HMPI _Get _pr ocessor s_i nf o(
 speeds
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / An er r or has occur r ed
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group HMPI _COMM_WORLD_GROUP. HMPI _SUCCESS is returned on success.

HMPI _Get _pr ocesses_i nf o

Returns the relative performances of the processes running on the physical processors of the
underlying distributed memory machine

Synopsis:

 i nt
 HMPI _Get _pr ocesses_i nf o
 (
 doubl e* r el at i ve_per f or mances
)

Parameters:

 Rel at i ve_per f or mances --- Output parameter containing the relative
 performances of the processes running on the
 physical processors of the underlying distributed
 memory machine

Descr iption: This routine returns the relative performances of the processes running on the
physical processors of the underlying distributed memory machine. This is a collective operation
and must be called by all the processes in the group associated with the predefined
communication universe HMPI_COMM_WORLD of HeteroMPI.

Usage:

 i nt p = HMPI _Gr oup_si ze(HMPI _COMM_WORLD_GROUP) ;
 doubl e speeds = (doubl e*) mal l oc(
 si zeof (doubl e)
 *
 p
) ;

HeteroMPI Programmers’ Reference and Installation Manual

31

 i nt r c = HMPI _Get _pr ocesses_i nf o(
 speeds
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / An er r or has occur r ed
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group HMPI _COMM_WORLD_GROUP. HMPI _SUCCESS is returned on success.

HMPI _Gr oup_per f or mances

Returns the relative performances of the processes in a group

Synopsis:

 i nt
 HMPI _Gr oup_per f or mances
 (
 const HMPI _Gr oup* gi d,
 doubl e* r el at i ve_per f or mances
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes
 Rel at i ve_per f or mances --- Output parameter containing the relative
 performances of the processes in the group
 represented by the handle gi d

Descr iption: This routine returns the relative performances of the processes in the group
represented by the handle gi d. This is a collective operation and must be called by all the
processes in the group given by the handle gi d.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (gi d))
 {
 i nt p = HMPI _Gr oup_si ze(&gi d) ;
 doubl e speeds = (doubl e*) mal l oc(
 si zeof (doubl e)
 *

HeteroMPI Programmers’ Reference and Installation Manual

32

 p
) ;

 i nt r c = HMPI _Gr oup_per f or mances (
 gi d,
 speeds
) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 / / An er r or has occur r ed
 }
 }

Return values: Error code HMPI _UNDEFI NED is returned if the process is not the member of
the group given by the handle gi d. HMPI _SUCCESS is returned on success.

3.6 HeteroMPI Synchronization Functions

HMPI _Bar r i er

Barrier for the members of the group

Synopsis:

i nt HMPI _Bar r i er
(
 const HMPI _Gr oup* gi d
)

Parameters:

 gi d --- handle to the HeteroMPI group of processes

Descr iption: Has same functionality as MPI _Bar r i er . This is a collective operation and must
be called by all the processes in the group given by the handle gi d.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (&gi d))
 {
 HMPI _Bar r i er (&gi d) ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HeteroMPI Programmers’ Reference and Installation Manual

33

HMPI _Not i f y_f r ee_pr ocesses

Notify free processes to leave the waiting point

Synopsis:

i nt HMPI _Not i f y_f r ee_pr ocesses ()

Descr iption: This must be called by only the host-process. It sends a command to the dispatcher
to signal the free processes to leave the waiting point.

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_host ())
 {
 HMPI _Not i f y_f r ee_pr ocesses () ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Wai t _f r ee_pr ocesses

Waiting point for free processes waiting for commands for group destruction

Synopsis:

i nt HMPI _Wai t _f r ee_pr ocesses ()

Descr iption: This must be called by all the free processes. All the free processes wait in this call
for commands from dispatcher on group destruction.

Usage:

 i f (HMPI _I s_f r ee())
 {
 HMPI _Wai t _f r ee_pr ocesses () ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _Host _r endezvous

Allows rendezvous with the host-process

Synopsis:

HeteroMPI Programmers’ Reference and Installation Manual

34

i nt HMPI _Host _r endezvous (i nt count)

Descr iption: This function allows rendezvous with the host-process. Any process, which is the
member of the group HMPI _COMM_WORLD_GROUP, and the host-process must call this
function.

Parameters:

 count --- Number of processes rendezvous with the host-process

Usage:

 HMPI _Gr oup gi d;
 / / A par ent of a gr oup can r endezvous wi t h t he host
 i f (HMPI _I s_par ent (&gi d) | | HMPI _I s_host ())
 {
 HMPI _Host _r endezvous (1) ;
 }

 / / A whol e gr oup can r endezvous wi t h t he host
 i f (HMPI _I s_member (&gi d) | | HMPI _I s_host ())
 {
 HMPI _Host _r endezvous (HMPI _Gr oup_si ze(&gi d)) ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

3.7 HeteroMPI Debugging and Version Functions

HMPI _Pr i nt f

Print formatted strings to the host processor.

Synopsis:

i nt HMPI _Pr i nt f
(
 const char * f or mat ,
 . . .
)

Parameters:

 f or mat --- Format string in printf-fashion.

Descr iption: Prints formatted strings to standard output on the virtual host processor from any
virtual processor of the computing space. Any process can call this function.

HeteroMPI Programmers’ Reference and Installation Manual

35

Usage:

 HMPI _Gr oup gi d;

 i f (HMPI _I s_member (&gi d))
 {
 HMPI _Pr i nt f (
 " Hel l o, My node r ank i s %d, My Gl obal r ank “
 “ i s %d\ n " ,
 HMPI _Gr oup_r ank (&ni d) ,
 HMPI _Gr oup_r ank (HMPI _COMM_WORLD_GROUP)
) ;
 }

Return values: HMPI _SUCCESS on success and an error in case of failure.

HMPI _St r er r or

Return a string associated with error code.

Synopsis:

i nt
HMPI _St r er r or
(
 i nt er r num,
 char * message
)

Parameters:

 er r num --- Error code from any HeteroMPI routine call.
 message --- Output parameter. Error message associated with the error code.
 The message must represent storage that is at least
 HMPI _MAX_ERROR_STRI NG characters long.

Descr iption: An error message string corresponding to the error number er r num is returned in
message. Any process can call this function.

Usage:

 char message[HMPI _MAX_ERROR_STRI NG] ;

 i nt r c = HMPI _I ni t (
 &ar gc,
 &ar gv

HeteroMPI Programmers’ Reference and Installation Manual

36

) ;

 i f (r c ! = HMPI _SUCCESS)
 {
 HMPI _St r er r or (
 r c,
 message
) ;

 HMPI _Pr i nt f (
 " Er r or dur i ng HETEROMPI i ni t i al i zat i on. Reason i s %s\ n" ,
 message
) ;
 }

Return values: HMPI _SUCCESS on success and error on failure.

HMPI _Debug

Turn the diagnostics on/off.

Synopsis:

i nt
HMPI _Debug
(
 i nt yesno
)

Parameters:

 yesno --- yes (1) or no (0)

Descr iption: Produces detailed diagnostics. Any process can call this function. This is the only
function apart from HMPI _Get _ver si on that can be called before HMPI _I ni t or after
HMPI _Fi nal i ze.

HMPI _Get _ver si on

Returns the version of the HeteroMPI API in the format x.y

Synopsis:

i nt
HMPI _Get _ver si on
(
 i nt * ver si on,
 i nt * sub_ver si on

HeteroMPI Programmers’ Reference and Installation Manual

37

)

Parameters:

 ver si on --- Major version
 sub_ver si on --- Minor version

Descr iption: Returns the version of HeteroMPI. Any process can call this function. This is one
of the few functions that can be called before HMPI _I ni t or after HMPI _Fi nal i ze.

Usage:

 i nt ver si on, sub_ver si on;
 HMPI _Get _ver si on(&ver si on, &sub_ver si on) ;

4 Heterogeneous Data Par titioning Inter face (HeteroDPI)

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In particular,
partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of
various scientific, engineering and business domains resulted in the following short list of
mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and
non-ordered), dense matr ices (and multidimensional arrangements), graphs, and trees.

Based on this classification, we suggest an API for partitioning mathematical objects commonly
used in scientific and engineering domains for solving problems on networks of heterogeneous
computers. These interfaces allow the application programmers to specify simple and basic
partitioning criteria in the form of parameters and functions to partition their mathematical
objects. These partitioning interfaces are designed to be used along with various programming
tools for parallel and distributed computing on heterogeneous networks.

4.1 Sets

Par t i t i on_unor der ed_set

Partition a non-ordered set

Synopsis:

t ypedef doubl e (* User _def i ned_met r i c) (
 i nt p, const doubl e * speeds , const i nt * act ual ,
 const i nt * i deal)

i nt Par t i t i on_unor der ed_set (
 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt n,
 const i nt * w, i nt t ype_of _met r i c,

HeteroMPI Programmers’ Reference and Installation Manual

38

 User _def i ned_met r i c umf , doubl e * met r i c, i nt * np)

Descr iption: This routine partitions a set into p disjoint partitions.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_or der ed_set

Partition a well-ordered set

Synopsis:

i nt Par t i t i on_or der ed_set (
 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt n,
 const i nt * w, i nt pr ocessor _r eor der i ng,
 i nt t ype_of _met r i c, User _def i ned_met r i c umf ,
 doubl e * met r i c, i nt * np)

Descr iption: This routine partitions a well-ordered set into p disjoint contiguous partitions.

Parameters:

Parameter p is the number of partitions of the set. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
p×pn logically representing 2D arrays of shape [p] [pn] . The speed of the i -th processor for
j -th problem size is given by the [i] [j] -th element of speeds with the problem size itself
given by the [i] [j] -th element of psi zes . Parameter ml i mi t s gives the maximum number
of elements that each processor can hold.

Parameter n is the number of elements in the set, and parameter w is the weights of its elements.

Parameter t ype_of _met r i c specifies which metric should be used to determine the quality
of the partitioning. If t ype_of _met r i c is USER_SPECI FI ED, then the user provides a
metric function umf , which is used to calculate the quality of the partitioning. If
t ype_of _met r i c is SYSTEM_DEFI NED, the system-defined metric is used.

The output parameter met r i c gives the quality of the partitioning, which is the deviation of the
partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the output
parameter met r i c is set to NULL, then the calculation of metric is ignored.

If w is not NULL and the set is well ordered, then the user needs to specify if the implementations
of this operation may reorder the processors before partitioning (Boolean parameter
pr ocessor _r eor der i ng is used to do it). One typical reordering is to order the processors
in the decreasing order of their speeds.

HeteroMPI Programmers’ Reference and Installation Manual

39

Return values: 0 on success and - 1 in case of failure.

Get _set _pr ocessor

For an ordered set, returns the processor owning the set element at index i

Synopsis:

i nt Get _set _pr ocessor (
 i nt i , i nt n, i nt p, i nt pr ocessor _r eor der i ng,
 const i nt * np)

Return values: - 1 in case of failure.

Get _my_par t i t i on

For a set, returns the number of elements allocated to processor i

Synopsis:

i nt Get _my_par t i t i on (
 i nt i , i nt p, const doubl e * speeds, i nt n)

Return values: - 1 in case of failure.

4.2 Dense Matr ices

Par t i t i on_mat r i x_2d

Partition a matrix amongst processors arranged in a 2D grid

Synopsis:

i nt Par t i t i on_mat r i x_2d (
 i nt p, i nt q,
 i nt pn, const doubl e * speeds, const i nt * psi zes,
 const i nt * ml i mi t s, i nt m, i nt n,

 i nt t ype_of _di st r i but i on, i nt * w, i nt * h, i nt * t r ow,
 i nt * t col , i nt * ci , i nt * cj)

Parameters:

The parameter p is the number of processors along the row of the processor grid. The parameter
q is the number of processors along the column of the processor grid.

Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size p×q×pn logically representing arrays of shape
[p] [q] [pn] . The speed of the (i , j) -th processor for k -th problem size is given by the
[i] [j] [k] -th element of speeds with the problem size itself given by the [i] [j] [k] -th

HeteroMPI Programmers’ Reference and Installation Manual

40

element of psi zes . Parameter ml i mi t s gives the maximum number of elements that each
processor can hold.

The parameters m and n are the sizes of the generalized block along the row and the column.

The input parameter t ype_of _di st r i but i on specifies if the distribution is CARTESI AN,
ROW- BASED, and COLUMN- BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size p×q.

Output parameter h gives the heights of rectangles of the generalized block assigned to different
processors. This parameter is an array of size p×q×p×q logically representing array of shape
[p] [q] [p] [q] .

Output parameter t r ow gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first row of the generalized block. This parameter is an
array of size p×q.

Output parameter t col gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first column of the generalized block. This parameter is
an array of size p×q.

Output parameters ci , and c j are each an array of size m×n. The coordinates of the processor
in its processor grid to which the matrix element at row i and column j of the generalized block
is assigned is given by ci [i ×n+j] , and c j [i ×n+j] respectively. If the application
programmer sets these parameters to NULL, then these parameters are ignored.

Descr iption: This routine partitions a matrix into p disjoint partitions amongst processors
arranged in a 2D grid.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_mat r i x_1d_dp

Partition a matrix amongst processors arranged in a linear array

Synopsis:

i nt Par t i t i on_mat r i x_1d_dp(

 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt m, i nt n,
 Get _l ower _bound l b, DP_f unct i on dpf ,
 i nt t ype_of _di st r i but i on,
 i nt * w, i nt * h, i nt * t r ow, i nt * t col , i nt * c)

HeteroMPI Programmers’ Reference and Installation Manual

41

Parameters:

The parameter p is the number of number of disjoint rectangles the matrix is partitioned into.
Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size p×pn logically representing 2D arrays of shape
[p] [pn] . The speed of the i -th processor for j -th problem size is given by the [i] [j] -th
element of speeds with the problem size itself given by the [i] [j] -th element of psi zes .
Parameter ml i mi t s gives the maximum number of elements that each processor can hold.

The parameters m and n are the sizes of the generalized block along the row and the column.

The input parameter t ype_of _di st r i but i on specifies if the distribution is ROW- BASED
or COLUMN- BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size p. Output parameter h gives the heights
of rectangles of the generalized block assigned to different processors. This parameter is an array
of size p×p. Output parameter t r ow gives the top leftmost point of the rectangles of the
generalized block assigned to different processors from the first row of the generalized block.
This parameter is an array of size p. Output parameter t col gives the top leftmost point of the
rectangles of the generalized block assigned to different processors from the first column of the
generalized block. This parameter is an array of size p.

Output parameter c is an array of size m×n. The coordinates of the processor in its processor
array to which the matrix element at row i and column j of the generalized block is assigned is
given by c[i ×n+j] . If the user sets these parameters to NULL, then these parameters are
ignored.

Descr iption: This routine partitions a matrix into p disjoint partitions amongst processors
arranged in a linear array.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_mat r i x_1d_i t er at i ve

Partition a matrix amongst processors arranged in a linear array

Synopsis:

i nt Par t i t i on_mat r i x_1d_i t er at i ve(

 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt m, i nt n,
 Get _l ower _bound l b, I t er at i ve_f unct i on cf ,
 i nt * w, i nt * h, i nt * t r ow, i nt * t col , i nt * c)

Parameters:

HeteroMPI Programmers’ Reference and Installation Manual

42

Application programmers provide a cost function cf that tests the optimality of a partition from
a finite set of partitions. The initial partition in this finite set of partitions is obtained using a
problem-specific strategy. The cost function cf is called iteratively for each of the partitions in
the subset of partitions. The return value of this function gives an optimality value. At each step
of the iteration, the optimality value is compared to the lower bound of the optimal solution to
the optimization problem. Application programmers specify a function l b, which is used to
calculate the lower bound of their optimization problem. The iteration stops when the function
returns an optimality value less than or equal to the lower bound or a negative return value
indicating that the partitioning cannot be improved and that the current partition is optimal.

Descr iption: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear
array.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_mat r i x_1d_r ef i ni ng

Partition a matrix amongst processors arranged in a linear array

Synopsis:

i nt Par t i t i on_mat r i x_1d_r ef i ni ng(

 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt m, i nt n,
 Get _l ower _bound l b, Ref i ni ng_f unct i on cf ,
 i nt * w, i nt * h, i nt * t r ow, i nt * t col , i nt * c)

Parameters:

Application programmers provide a refinement function r f that refines an old partition giving a
new better partition. A negative return value of this function suggests that the old partition
cannot be refined further. This function is iteratively called. The partition for the first call of this
refining function is obtained using a problem-specific strategy. Application programmers specify
a function l b, which is used to calculate the lower bound of their optimization problem. The
iteration stops when the refinement function r f returns an optimality value less than or equal to
the lower bound indicating that the current partition is optimal.

Descr iption: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear
array.

Return values: 0 on success and - 1 in case of failure.

Get _mat r i x_pr ocessor

Returns the coordinates (i,j) of the processor owning the matrix element at row r and column c

Synopsis:

HeteroMPI Programmers’ Reference and Installation Manual

43

t ypedef st r uct { i nt i ; i nt j ; } Pr ocessor ;
i nt Get _mat r i x_pr ocessor (

 i nt r , i nt c, i nt p, i nt q, i nt * w, i nt * h, i nt * t r ow,
 i nt * t col , i nt t ype_of _di st r i but i on, Pr ocessor * r oot)

Return values: 0 on success and - 1 in case of failure.

Get _my_wi dt h

Returns the width of the rectangle owned by the processor with coordinates (i,j)

Synopsis:

i nt Get _my_wi dt h(

 i nt i , i nt j , i nt p, i nt q, const doubl e * speeds,
 i nt t ype_of _di st r i but i on, i nt m, i nt n)

Descr iption: Currently only applicable to two-dimensional processor arrangements.

Return values: - 1 in case of failure.

Get _my_hei ght

Returns the height of the rectangle owned by the processor with coordinates (i,j)

Synopsis:

i nt Get _my_hei ght (

 i nt i , i nt j , i nt p, i nt q, const doubl e * speeds,
 i nt t ype_of _di st r i but i on, i nt m, i nt n)

Descr iption: Currently only applicable to two-dimensional processor arrangements.

Return values: - 1 in case of failure.

Get _di agonal

Obtain the number of elements owned by the processor with coordinates (i,j) on the diagonal of
the matrix

Synopsis:

i nt Get _di agonal (

 i nt i , i nt j , i nt p, i nt q, i nt * w, i nt * h, i nt * t r ow,
 i nt * t col)

Descr iption: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

HeteroMPI Programmers’ Reference and Installation Manual

44

Return values: - 1 in case of failure.

Get _my_el ement s

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix including the diagonal elements

Synopsis:

i nt Get _my_el ement s(

 i nt n, i nt g, i nt i , i nt j , i nt p, i nt q, i nt * w, i nt * h,
 i nt * t r ow, i nt * t col , i nt t ype_of _di st r i but i on,
 char upper _or _l ower)

Descr iption: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

Get _my_kk_el ement s

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix starting from (k,k) including the diagonal elements

Synopsis:

i nt Get _my_kk_el ement s(

 i nt n, i nt g, i nt k, i nt i , i nt j , i nt p, i nt q, i nt * w,
 i nt * h, i nt * t r ow, i nt * t col , i nt t ype_of _di st r i but i on,
 char upper _or _l ower)

Descr iption: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

4.3 Graphs

Par t i t i on_gr aph

Partition a graph

Synopsis:

i nt Par t i t i on_gr aph (
 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s, i nt n, i nt m,
 const i nt * vwgt , const i nt * xadj ,

HeteroMPI Programmers’ Reference and Installation Manual

45

 const i nt * adj acency, const i nt * adj wgt ,
 i nt nopt s, const i nt * opt i ons, i nt * vp, i nt * edgecut)

Parameters:

Parameter p is the number of partitions of the graph. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
p×pn logically representing 2D arrays of shape [p] [pn] . The speed of the i -th processor for
j -th problem size is given by the [i] [j] -th element of speeds with the problem size itself
given by the [i] [j] -th element of psi zes . Parameter ml i mi t s gives the maximum number
of elements that each processor can hold.

The parameters n and m are the number of vertices and edges in the graph. The parameters vwgt
and adj wgt are the weights of vertices and edges of the graph. In the case in which the graph is
unweighted (i.e., all vertices and/or edges have the same weight), then either or both of the arrays
vwgt and adj wgt can be set to NULL. The parameters vwgt is of size n. The parameter
adj wgt is of size 2m because every edge is listed twice (i.e., as (v, u) and (u, v)).

The parameters xadj and adj acency specify the adjacency structure of the graph
represented by the compressed storage format (CSR). The adjacency structure of the graph is
stored as follows. The adjacency list of vertex i is stored in adj acency starting at index
xadj [i] and ending at but not including xadj [i +1] . The adjacency lists for each vertex are
stored consecutively in the array adj acency .

The parameter opt i ons is an array of size nopt s containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Descr iption: This routine partitions a graph into p disjoint partitions.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_bi par t i t e_gr aph

Partition a bipartite graph

Synopsis:

i nt Par t i t i on_bi par t i t e_gr aph (
 i nt p, i nt pn, const doubl e * speeds,

 const i nt * psi zes, const i nt * ml i mi t s,
 i nt n, i nt m, const i nt * vt ype, const i nt * vwgt ,

HeteroMPI Programmers’ Reference and Installation Manual

46

 const i nt * xadj , const i nt * adj acency,
 const i nt * adj wgt , i nt t ype_of _par t i t i oni ng,
 i nt nopt s, const i nt * opt i ons, i nt * vp, i nt * edgecut)

Parameters:

The meaning of the parameters p, pn, speeds , psi zes , ml i mi t s , n, m, vwgt , adj wgt ,
xadj , adj acency is identical to meaning of the corresponding parameters of
Par t i t i on_gr aph.

The parameter vt ype specifies the type of vertex. The only values allowed are 0 and 1
representing the two disjoint subsets the bipartite graph is composed of.

The parameter t ype_of _par t i t i oni ng specifies whether the partitioning of subsets is done
separately or not. It can take only one of the values PARTI TI ON_SUBSET and
PARTI TI ON_OTHER.

The parameter opt i ons is an array of size nopt s containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Descr iption: This routine partitions a bipartite graph into p disjoint partitions.

Return values: 0 on success and - 1 in case of failure.

Par t i t i on_hyper gr aph

Partition a hypergraph

Synopsis:

i nt Par t i t i on_hyper gr aph (
 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s,
 i nt nv, i nt nedges, const i nt * vwgt , const i nt * hpt r ,
 const i nt * hi nd, const i nt * hwgt , i nt * vp,
 i nt nopt s, const i nt * opt i ons, i nt * edgecut)

Parameters:

The meaning of the parameters p, pn, speeds , psi zes , and ml i mi t s is identical to meaning
of the corresponding parameters of Par t i t i on_gr aph.

HeteroMPI Programmers’ Reference and Installation Manual

47

The parameters nv and nedges are the number of vertices and number of hyperedges in the
hypergraph.

The parameters vwgt is an array of size nv that stores the weights of the vertices and hwgt is
an array of size nedges that stores the weights of hyperedges of the graph. If the vertices in the
hypergraph are unweighted, then vwgt can be NULL. If the hyperedges in the hypergraph are
unweighted, then hwgt can be NULL.

The parameter hpt r is an array of size nedges+1 and is an index into hi nd that stores the
actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in
consecutive locations in hi nd. Specifically, i -th hyperedge is stored starting at location
hi nd[hpt r [i]] up to but not including hi nd[hpt r [i +1]] .

The parameter opt i ons is an array of size nopt s containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of hyperedges that are cut by the partitioning.

Descr iption: This routine partitions a hypergraph into p disjoint partitions.

Return values: 0 on success and - 1 in case of failure.

4.4 Trees

Par t i t i on_t r ee

Partition a tree

Synopsis:

i nt Par t i t i on_t r ee (
 i nt p, i nt pn, const doubl e * speeds,
 const i nt * psi zes, const i nt * ml i mi t s,
 i nt n, i nt nedges, const i nt * nwgt , const i nt * xadj ,
 const i nt * adj acency, const i nt * adj wgt ,
 i nt * vp, i nt * edgecut)

Parameters:

The meaning of the parameters p, pn, speeds , psi zes , and ml i mi t s is identical to meaning
of the corresponding parameters of Par t i t i on_gr aph.

HeteroMPI Programmers’ Reference and Installation Manual

48

The parameters n and nedges are the number of vertices and edges in the tree. The parameters
nwgt is an array of size n that stores the weights of the vertices and adj wgt is an array of size
nedges that stores the weights of edges of the tree. If the vertices in the tree are unweighted,
then nwgt can be NULL. If the edges in the tree are unweighted, then adj wgt can be NULL.

The parameters xadj and adj acency specify the adjacency structure of the tree.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Descr iption: This routine partitions a tree into p disjoint subtrees.

Return values: 0 on success and - 1 in case of failure.

5 HeteroMPI Command-line User ’s Inter face

5.1 HeteroMPI Environment

Currently, the HeteroMPI programming environment includes a compiler, run-time support
system (RTS), a library, and a command-line user interface.

The compiler compiles the description of this performance model to generate a set of functions.
The functions make up an algorithm-specific part of the HeteroMPI runtime system.

The library consists of extensions to MPI and Heterogeneous Data Partitioning Interface
(HeteroDPI).

HeteroMPI command-line user’s interface consists of a number of utilities supporting parallel
machines manipulation actions and building of HeteroMPI applications.

5.2 Vir tual Parallel Machine

Please refer to the mpC command-line user’s interface guide on how to write a VPM description
file and the VPM manipulation utilities:

• “mpccr eat e” to create a VPM;
• “mpcopen” to create a VPM;
• “mpccl ose” to close a VPM;
• “mpcdel ” to remove a VPM;

 net t ype gr i d(i nt p, i nt q) {
 coor d I =p, J=q;
 } ;

HeteroMPI Programmers’ Reference and Installation Manual

49

Figure A.1: Specification of a simple performance model in the HeteroMPI’s performance definition language. The
performance model definition is in the file “gr i d. mpc”.

5.3 Building and Running HeteroMPI Application

Please refer to the mpC command-line user’s interface guide on utilities that are used to run an
mpC/HeteroMPI application on a VPM:

• “hmpi cc” to compile a performance model definition file;
• “hmpi bcast ” to make available all the source files to build a executable;
• “hmpi l oad” to create a executable;
• “hmpi r un” to execute the target application;

A sample performance model and the HeteroMPI application using the performance model are
shown in Figures A.1 and A.2:

Outlined below are steps to build and run a HeteroMPI application.

1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the
machines being used in your HeteroMPI application. Describe your VPM in a file in the
$MPCLOCAL/ t opo directory. VPM is opened after successful execution of the command
mpccr eat e. Consider for example:

shel l $ cat $MPCLOCAL/ t opo/ vpm_Sol mach123_Li nuxmach456. vpm

Machi nes and t he number of pr ocesses t o r un on each
machi ne
Number i n squar e br acket s i ndi cat e t he number of
pr ocessor s

HeteroMPI Programmers’ Reference and Installation Manual

50

Figure A.2: A sample HeteroMPI program. The HeteroMPI program is written in the file

“Test _gr oup_cr eat e. c”.

sol mach1 2 [2]
sol mach2 2 [2]
sol mach3 2 [2]

 #i nc l ude <mat h. h>
 #i nc l ude <st di o. h>
 #i nc l ude <sys/ t i me. h>
 #i nc l ude “ gr i d. c”

 i nt mai n() {
 i nt par am_count , model _par ams[2] ;
 st r uct t i meval st ar t , end;
 get t i meof day(&st ar t , NULL) ;

 HMPI _Gr oup gi d;
 HMPI _I ni t (&ar gc, &ar gv) ;
 i f (HMPI _I s_host ()) {
 i nt gsi ze, p, q;
 par am_count = 2;
 gs i ze = HMPI _Gr oup_si ze(HMPI _COMM_WORLD_GROUP) ;
 p = q = sqr t (gsi ze) ;
 i f ((p == 0) && (q == 0))
 p = q = 1;
 model _par ams[0] = p;
 model _par ams[1] = q;

 pr i nt f (" Tot al number of pr ocesses avai l abl e f or comput at i on
 i s %d\ n" , gsi ze) ;
 pr i nt f (" Cr eat i ng a gr i d (%d, %d) of pr ocesses\ n" , p, q) ;
 }
 i f (HMPI _I s_host ())
 HMPI _Gr oup_cr eat e (&gi d, &MPC_Net Type_gr i d,
 model _par ams, par am_count)
 i f (HMPI _I s_f r ee())
 HMPI _Gr oup_cr eat e (&gi d, &MPC_Net Type_gr i d,
 NULL, 0)
 / / Di st r i but e comput at i ons usi ng t he opt i mal speeds of pr ocesses
 i f (HMPI _I s_member (&gi d)) {
 / / comput at i ons and communi cat i ons ar e per f or med her e
 }
 i f (HMPI _I s_member (&gi d)) HMPI _Gr oup_f r ee(&gi d) ;
 get t i meof day(&end, NULL) ;
 i f (HMPI _I s_host ()) {
 doubl e t s t ar t = st ar t . t v_sec + (st ar t . t v_usec/ pow(10, 6)) ;
 doubl e t end = end. t v_sec + (end. t v_usec/ pow(10, 6)) ;
 pr i nt f (“ Ti me t aken f or gr oup cr eat i on(sec) =%f \ n” ,
 t end- t st ar t) ;
 }
 HMPI _Fi nal i ze(0) ;
 }

HeteroMPI Programmers’ Reference and Installation Manual

51

l i nuxmach4 4 [4]
l i nuxmach5 2 [2]
l i nuxmach6 1 [1]

shel l $ mpccr eat e vpm_Sol mach123_Li nuxmach456

2). Compile the performance model file.

shel l $ hmpi cc gr i d. mpc

This file is translated into a C file “gr i d. c”.

3). Broadcast the files to all the machines in the virtual parallel machine.

shel l $ hmpi bcast Test _gr oup_cr eat e. c gr i d. c

4). Create the executable.

shel l $ hmpi l oad –o Test _gr oup_cr eat e Test _gr oup_cr eat e. c

5). Run the target program.

shel l $ hmpi r un Test _gr oup_cr eat e
Tot al number of pr ocesses avai l abl e f or comput at i on i s 9
Cr eat i ng a gr i d (3, 3) of pr ocesses
Ti me t aken f or gr oup cr eat i on(sec) =0. 262353

6 HeteroMPI Installation Guide for UNIX

This section provides information for programmers and/or system administrators who want to
install HeteroMPI for UNIX.

6.1 System Requirements

The following table describes system requirements for HeteroMPI for UNIX.

Component Requirement
Operating System Linux, Solaris, FreeBSD

HeteroMPI is successfully tested on the
following operating systems:

Linux 2.6.5-1.358smp (gcc version 3.3.3
20040412 (Red Hat L inux 3.3.3-7))

L inux 2.6.8-1.521smp (gcc version 3.3.3

HeteroMPI Programmers’ Reference and Installation Manual

52

20040412 (Red Hat L inux 3.3.3-7))

L inux 2.6.5-1.358 (gcc version 3.3.3
20040412 (Red Hat L inux 3.3.3-7))

L inux 2.4.18-3 ((gcc version 2.96
20000731 (Red Hat L inux 7.3 2.96-110))

Sun Solar is 5.9 (gcc version 3.4.1)

FreeBSD 5.2.1-RELEASE (gcc version
3.3.3 [FreeBSD] 20031106)

C compiler Any ANSI C compiler
MPI LAM MPI 6.3.2 or higher

MPICH MPI 1.2.0 or higher with chp4
device

mpC Version 3.0.0 or higher

LAM MPI can be obtained from http://www.lam-mpi.org/
MPICH MPI can be obtained from http://www-unix.mcs.anl.gov/mpi/mpich/
mpC package can be obtained from http://www.ispras.ru/~mpc/

6.2 Contents of HeteroMPI for UNIX Distr ibution

HeteroMPI for Unix distribution contains the following:

Directory Contents
README Copyright information, Contact

information
INSTALL Installation instructions
Makefile Installation and test of the compiler and the

environment
docs HeteroMPI manual for programmers
man Manual pages for HeteroMPI API
src Source code for HeteroMPI
include Header files
tests Tests for testing HeteroMPI library
Third_Party_Software Third party software for graphs
tools HeteroMPI tools to build executables,

clean up HeteroMPI repositories

6.3 Before Installation

6.3.1 Installing MPI

HeteroMPI Programmers’ Reference and Installation Manual

53

You should have MPI installed on your system. Please make sure that mpi cc and mpi r un
scripts are in your PATH environment variable.

…
shel l $ expor t MPI DI R=<. . . MPI i nst al l di r ect or y. . . >
shel l $ expor t PATH=$MPI DI R/ bi n: $PATH
…

6.3.2 Installing mpC

You should have mpC installed on your system. Please refer to the mpC installation guide on the
variables to export in the shell startup files.

…
shel l $ expor t MPCHOME=<. . . mpC i nst al l di r ect or y. . . >
shel l $ expor t PATH=$MPCHOME/ bi n: $PATH
…

6.3.3 Making rsh/ssh working

If you using r sh, please make sure that you reach every machine from every other machine with
r sh command by executing r sh –n t r ue host name. This command should not hang up.

If you are using ssh, please follow the instructions below:

Normally, when you use ssh to connect to a remote host, it will prompt you for your password.
However, in order for MPI commands to work properly, you need to be able to execute jobs on
remote nodes without typing in a password. In order to do this, you will need to set up RSA (ssh
1.x and 2.x) or DSA (ssh 2.x) authentication.

This text will briefly show you the steps involved in doing this, but the ssh documentation is
authoritative on these matters should be consulted for more information. The first thing that you
need to do is generate an DSA key pair to use with ssh- keygen:

shel l $ ssh- keygen - t dsa

Accept the default value for the file in which to store the key ($HOME/ . ssh/ i d_dsa) and
enter a passphrase for your keypair. You may choose to not enter a passphrase and therefore
obviate the need for using the ssh- agent . However, this weakens the authentication that is
possible, because your secret key is [potentially] vulnerable to compromise because it is
unencrypted. See the ssh documentation.

Next, copy the $HOME/ . ssh/ i d_dsa. pub file generated by ssh- keygen to
$HOME/ . ssh/ aut hor i zed_keys :

HeteroMPI Programmers’ Reference and Installation Manual

54

shel l $ cd $HOME/ . ssh
shel l $ cp i d_dsa. pub aut hor i zed_keys

In order for DSA authentication to work, you need to have the $HOME/ . ssh directory in your
home directory on all the machines you are running MPI on. If your home directory is on a
common filesystem, this is already taken care of. If not, you will need to copy the $HOME/ . ssh
directory to your home directory on all MPI nodes (be sure to do this in a secure manner --
perhaps using the scp command), particularly if your secret key is not encrypted).

ssh is very particular about file permissions. Ensure that your home directory on all your
machines is set to mode 755, your $HOME/ . ssh directory is also set to mode 755, and that the
following files inside $HOME/ . ssh have the following permissions:

- r w- r - - r - - aut hor i zed_keys
- r w- - - - - - - i d_dsa
- r w- r - - r - - i d_dsa. pub
- r w- r - - r - - known_host s

You are now set up to use DSA authentication. However, when you ssh to a remote host, you
will still be asked for your DSA passphrase (as opposed to your normal password). This is
where the ssh- agent program comes in. It allows you to type in your DSA passphrase once,
and then have all successive invocations of ssh automatically authenticate you against the
remote host. To start up the ssh- agent , type:

shel l $ eval ` ssh- agent `

You will probably want to start the ssh- agent before you start X windows, so that all your
windows will inherit the environment variables set by this command. Note that some sites invoke
ssh- agent for each user upon login automatically; be sure to check and see if there is an
ssh- agent running for you already. Once the ssh- agent is running, you can tell it your
passphrase by running the ssh- add command:

shel l $ ssh- add $HOME/ . ssh/ i d_dsa

At this point, if you ssh to a remote host that has the same $HOME/ . ssh directory as your
local one, you should not be prompted for a password. If you are, a common problem is that the
permissions in your $HOME/ . ssh directory are not as they should be.

Note that this text has covered the ssh commands in very little detail. Please consult the ssh
documentation for more information.

6.4 Beginning Installation

Unpack the HeteroMPI distribution, which comes as a tar in the form heterompi-x.y.z.tar.gz.

HeteroMPI Programmers’ Reference and Installation Manual

55

To uncompress the file tree use:

shel l $ gzi p - d heterompi-x.y.z.tar.gz
shel l $ t ar - xvf heterompi-x.y.z.tar

where x.y.z stands for the installed version of the HeteroMPI library (say 1.2.1, 2.0.0, or 3.1.1).

The directory 'heterompi-x.y.z' will be created; execute

shel l $ cd heterompi-x.y.z

The Makefile at the global level (heterompi-x.y.z/Makefile) controls the compilation and
installation of the HeteroMPI software. It activates subdirectory specific Makefiles.

Export the variable HMPI _HOME to point to the installation directory (directory where binaries
of HeteroMPI will be installed)

shel l $ expor t HMPI _HOME=<...install directory...>

To compile all the programs execute:

shel l $. / i nst al l _hmpi

To clean up:

shel l $ make cl ean

to remove object files and executables from source directories.

6.5 Finishing Installation

On successful installation of HeteroMPI, the following message is displayed:

 I nst al l at i on of Het er oMPI SUCCESSFUL
 Set t he val ue bel ow i n PATH envi r onment var i abl e
$HMPI _HOME/ bi n

You should update your shell startup files with the following variables:

…
shel l $ expor t HMPI _HOME=<. . . i nst al l di r ect or y. . . >
shel l $ expor t PATH=$HMPI _HOME/ bi n: $PATH
…

HeteroMPI Programmers’ Reference and Installation Manual

56

6.6 Contents of HeteroMPI Installation

HeteroMPI installation contains the following:

Directory Contents
bin Binaries hmpicc, hmpibcast, hmpiload,

hmpirun,…
docs This manual
include Header files
man Manual pages for HeteroMPI API
lib Archived HeteroMPI library libhmpi.a
tests Tests for testing HeteroMPI library

6.7 Testing your Installation

After you have successfully installed HeteroMPI, to test the installation, you can test each
individual test in the directory “$HMPI _HOME/ t est s”. Diagnostics are produced showing
success or failure of each individual test. Before you test, a virtual parallel machine must be
opened.

