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@ Divide the matrices’' data among available processors to
minimize execution time

e Finding the optimal data partition for an arbitrary number of
heterogeneous processors is an NP-complete problem
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@ Focus on 3 abstract processors as a model for interacting
clusters or GPU systems

Cluster 2
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Define the problem,

Computation

@ Each Matrix A, B, C is square and identically partitioned

@ Each Processor has a defined computation speed, expressed as
aratio P.: R, :S,, where §, =1

e Five different MMM Algorithms used to create models of
execution time
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Computation

@ Each Matrix A, B, C is square and identically partitioned

@ Each Processor has a defined computation speed, expressed as
aratio P.: R, :S,, where §, =1

e Five different MMM Algorithms used to create models of
execution time

Communication
e Modelled by Hockney, a + 3 x M
@ Each Processor communicates with both other processors, and
all three links are of the same speed (other topologies are
described briefly later)
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@ Partition Shape is a visual form of the formal partition
equation, ¢(i, j)

@ Push Operation transforms a partition shape, decreasing (or
leaving unchanged) the volume of communication and
execution time of the shape
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Three Processor Challenges

@ Two Processor Push can be mathematically shown to always
converge to recognizable shapes

@ Three Processor Push is more complex

o Consider legality of moving both processors, not simply the
active processor being Pushed

@ Must show that Three Processor Push always forms some
recognizable shape

A. DeFlumere and A. Lastovetsky Optimal MMM Shape on 3 Heterogenous Processors



Introd
DFA Program

Experimental Results

Conclusion

@ Present problem as a Deterministic Finite Automaton,
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DFA Program Definition

@ Present problem as a Deterministic Finite Automaton,
(Qv Ev 67 q0, F)
@ () - the finite set of states, possible data partition shapes

@ Y - the finite set of the alphabet, the processors and
directions of Push

@ - (Q x X — (@, the transition function, the Push operation

@ ¢o - the start state, chosen at random

e F'- I C (@, the accept states, candidates to be the optimum
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| Transi

Initialize q; < ¢

(97 h) A (Ttop + 1, Tleft)
for J = Tleft = T'right do
if ¢(rtop, j) = 0 then

findTypeOne(g, h) {Look for a suitable slot
to put element}
for g — Tbottom do

{Element is dirty, clean it} for b — ryigne do

(g,h) < find (g, h) {Function defined if qi1(9,h) #0 &&

below} (row(g riop; (q1(g,h)) =1

if g(g,h) = 1 then Il col(q, 5, (a1(g, 1)) = 1) &&
q1(Ttop, j) < 1 {Cleaned element (row(q,g9,R) =1 col(q,h,R) =1

assigned to S} then
end if return (g,h)
if g(g,h) = 2 then end if
q1(Ttop, J) < 2 {Cleaned element h+h+1
assigned to P} end for
end if h < kiegt
q1(g, h) < 0 {Put displaced element in g g+1
new spot} end for
end if return ¢; = g {No Type One Push| ¢(R)
j—j+1 possible}
end for
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Experimental Setup
@ Set N = 1000, use variety of ratios of P.: R, : S

@ Run DFA program minimum 10,000 times per processor ratio

100%
oop |
80% |
70%
-
50%
40%
30%
20% -
10% -
0% -

W Archetype D

I Archetype C
W Archetype B
I W Archetype A

A. DeFlumere and A. Lastovetsky Optimal MMM Shape on 3 Heterogenous Processors

=
=3
ol
5

2:1:1




Experimental Results

Ana

clusio

Shape Archetypes

@ Each output partition categorized by Enclosing Rectangles
and number of Corners

@ All output partitions fall into one of 4 Shape Archetypes

A B C D
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Distilling to Shape Archetype A

@ All Shape Archetypes can be transformed to look like
Archetype A, without increasing volume of communication

@ Archetype B — Archetype A : move elements of "L" shape
processor until a rectangle is formed

Total Width

L Width
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Distilling to Shape Archetype A

@ All Shape Archetypes can be transformed to look like
Archetype A, without increasing volume of communication

@ Archetype C — Archetype A : use the Push operation
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Distilling to Shape Archetype A

@ All Shape Archetypes can be transformed to look like
Archetype A, without increasing volume of communication

@ Archetype D — Archetype A : transform to Archetype B, then
move elements of "L" shape processor
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4) (5) (6)
Examples of Archetype A partition shapes
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Type One Partition Shapes

@ Two processors assigned non-overlapping rectangles, of
combined length and height less than NV

@ The optimal size to of a rectangle is a square (minimizes sum
of half-perimeters, and so volume of communication)

@ What if Processors R and S are assigned too many elements
to be non-overlapping squares?

Pr+Rr+Sr=T

R, Sr
\/T"i‘ T<1

2v/R, < P,
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Type Two and Four Partition Sh

@ Two processors assigned non-overlapping rectangles of
combined length N

@ Type Two - height of two processors not equal

@ Type Four - height of two processors equal, always has a lower
volume of communication than Type Two
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(1) Square Corner  (2) Rectangle Corner (3) Square Rectangle

4) Block Rectangle (5) L Rectangle 6) Traditional Rectangle

Canonical versions of all candidate partition shapes
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@ Push DFA shows arbitrary arrangement of elements will
condense to a recognizable three processor shape

@ The shapes produced by Push DFA are reducible to a small
set of candidate partitions

@ The optimal data partitioning shape for all computational
power and bandwidth ratios must be one of these six shapes

@ Three of the six candidates are non-rectangular partition
shapes
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Thank You
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