
SummaGen: Parallel Matrix-Matrix Multiplication
Based on Non-rectangular Partitions for

Heterogeneous HPC Platforms

Stephen Patton∗, Hamidreza Khaleghzadeh∗, Ravi Reddy Manumachu†, and Alexey Lastovetsky†
School of Computer Science

University College Dublin

Dublin, Ireland

Email: ∗{stephen.patton,hamidreza.khaleghzadeh}@ucdconnect.ie, †{ravi.manumachu,alexey.lastovetsky}@ucd.ie

Abstract—Parallel matrix-matrix multiplication (PMM) of
dense matrices is a foundational kernel of parallel linear algebra
libraries in high performance computing (HPC) domain. The
problem of finding the optimal shape of matrices for efficient
execution of PMM on heterogeneous platforms has an engrossing
history comprising of two distinct threads. The first thread
focused purely on rectangular partitions whereas the second
thread relaxed the rectangular partition constraint to allow
non-rectangular partitions. The research works in the second
thread, however, are entirely theoretical. There is no software
implementation that would facilitate experimental studies of the
practical performance and optimality of the proposed partition
shapes. We address this gap in this work.

We propose an implementation of PMM based on non-
rectangular partitions called SummaGen. To study its efficacy,
we compare the performances of PMM for four partition shapes
proven optimal for three processor case where speeds of the
processors are represented by positive real numbers. We conduct
the experiments on a hybrid heterogeneous multi-accelerator
NUMA node comprising of three heterogeneous devices, a dual-
socket Intel Haswell multicore CPU, an Nvidia K40 GPU, and an
Intel Xeon Phi 3120P. We show that the four shapes exhibit equal
performances (with an average percentage difference of 8%) for a
range of problem sizes where the speeds are constant confirming
the optimality of these shapes in practice. We demonstrate further
that the four shapes exhibit equal dynamic energy consumptions
for this case.

We also present a study of performances of PMM for the same
partition shapes for a matrix decomposition using load imbal-
ancing data partitioning algorithm employing functional perfor-
mance models (FPMs). The peak and average performances of
the implementation are 80% and 70% of the theoretical peak
floating-point performance of the machine.

Index Terms—Parallel Matrix-Matrix Multiplication;
SUMMA; heterogeneous platforms; GPU; Intel Xeon PHI;
multicore CPU

I. INTRODUCTION

Parallel matrix-matrix multiplication (PMM) of dense matri-

ces is a foundational kernel of parallel linear algebra libraries

in high performance computing (HPC) domain. The problem

of finding the optimal shape of matrices or optimal partitioning

of matrices for efficient execution of PMM for heterogeneous

platforms has an engrossing history comprising of two distinct

threads or developments. We will present them first as the

motivation for our work.

The first thread purely focused on finding the optimal

shape of matrices based on rectangular partitions on hetero-

geneous platforms. Kalinov et al. [1] proposed a column-

based rectangular partitioning algorithm based on speeds of

processors that are positive real numbers. Beaumont et al. [2]

proved that the partitioning problem is NP-complete (when

speeds are positive rational numbers) and proposed a column-

based rectangular partitioning approximation algorithm with

an approximation ratio of 1.75. Nagamochi et al. [3] presented

an approximation algorithm which improved the ratio to 1.25.

Then, the focus shifted to the study of the problem where

advanced performance models of computation are employed.

Lastovetsky et al. [4] presented a column-based partitioning al-

gorithm that takes as input 2D functional performance models

(FPMs). Clarke et al. [5] proposed a variant of the column-

based approach of [2] that used 1D FPMs. Fügenschuh et

al. [6] subsequently reduced the approximately ratio to 1.15

satisfying some assumptions.

Round about 2006, second thread began when Becker at

al. [7], [8] relaxed the constraint of rectangular partitions.

The authors proposed optimal shape, called the square corner,
for two heterogeneous processors where one partition is non-

rectangular. DeFlumere et al. [9], [10] extended the findings

to three heterogeneous processors and identified six poten-

tially optimal shapes, some of which contain non-rectangular

partitions. This inspired the work of [11] who combined

the recursive technique of [3] and work on non-rectangular

partitions to further reduce the approximation ratio to 2√
3
with

no assumptions and for an arbitrary number of processors.

Finally, in [12], the optimality of four partition shapes has

been mathematically proven and the accuracy of the best

approximate solutions is analyzed against the optimal solutions

for the case of three partitions where they can be found using

the exact algorithm.

While efficient implementations of PMM based on rectangu-

lar partitions exist [13], [14]), the research works in the second

thread on non-rectangular partitions are entirely theoretical.

There is no software implementation for PMM that would

facilitate experimental studies of the practical performance and

optimality of the proposed partition shapes. We address this

57

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00017

gap in this work.

We propose an implementation of PMM based on non-

rectangular partitions called SummaGen. To study its efficacy,

we compare the performances of PMM for four partition

shapes proven to be optimal for three processor case where

the speed of a processor is represented by a constant function

of problem size [9], [10]. The partition shapes are a). Square

corner, b). Square rectangular, c). Block 2D rectangular and

d). Traditional 1D rectangular.

We perform our experiments on a hybrid heterogeneous

multi-accelerator NUMA node comprising of three computing

devices, an Intel Haswell multicore CPU consisting of two

sockets of 12 physical cores each, an Nvidia k40 GPU, and

an Intel Xeon Phi 3120P. Each accelerator is connected to a

dedicated host core via a separate PCI-E link. A data-parallel

application executing on this heterogeneous hybrid platform,

consists of a number of kernels (generally speaking, multi-

threaded), running in parallel on different computing devices

of the platform. Due to tight integration and severe resource

contention in such a heterogeneous hybrid platform, the load

of one computational kernel in a given hybrid application may

have a noticeable impact on the performance of others to

the extent of preventing the ability to model the performance

of each kernel in the hybrid application individually [15].

To address this issue, we restrict our study in this work to

such configurations of the hybrid application, where individual

kernels are coupled loosely enough to allow us to build their

individual performance profiles with sufficient accuracy. To

achieve this, we only consider configurations where no more

than one CPU kernel or accelerator kernel is running on

the corresponding device. Each group of cores executing an

individual kernel of the application is modelled as an abstract

processor [15] so that the executing platform is represented as

a set of heterogeneous abstract processors. We make sure that

the sharing of system resources is maximized within groups

of computational cores representing the abstract processors

and minimized between the groups. This way, the contention

and mutual dependence between abstract processors are min-

imized.

The PMM applications are executed using three abstract

processors. The first abstract processor contains 22 CPU cores

executing the multi-threaded CPU kernel. The second abstract

processor comprises the Nvidia K40c GPU along with its

dedicated host CPU core executing the GPU kernel. And

finally, the third abstract processor consists of Intel Xeon Phi

3120P co-processor along with its dedicated host CPU core

executing the Xeon Phi kernel. The dedicated host CPU core

is responsible for sending data from host to accelerator, kernel

invocations on the accelerator and then copying results back

from the accelerator to host. Therefore, the pair consisting

of an accelerator and its dedicated host core executing one

accelerator kernel is modelled by an abstract processor. The

kernel executing on the accelerator uses all the cores of

the accelerator. The execution time of a kernel in the GPU

and Xeon Phi abstract processors includes the times of data

transfer between the accelerators and their host cores. Because

the abstract processors contain CPU cores that share some

resources such as main memory and QPI, they cannot be

considered independent. Therefore, the performance of these

loosely-coupled abstract processors must be measured simulta-

neously, thereby taking into account the influence of resource

contention [15].

We show that the four shapes exhibit the same performances

for a range of problem sizes where the performance models

are constant functions of problem size. SummaGen therefore

confirms the optimality of these shapes in practice. We also

demonstrate that the four shapes exhibit equal dynamic energy

consumptions. The optimality of these shapes for dynamic

energy is a subject for our current research.

The problem of finding the optimal shape of matrices for

efficient execution of PMM when the speed of a processor

is represented by a non-constant function of problem size

is an open research problem. We study experimentally the

performances of PMM for the four partition shapes where

the matrix decomposition is determined using a data partition-

ing algorithm employing non-smooth functional performance

models and uses load imbalancing technique [16], [17]. Op-

timal solutions found by this algorithm may not load balance

the application in terms of execution time. We find that the

partition shapes square rectangle and block rectangle perform

better than the other two shapes.

The peak and average performances of the implementation

are 80% and 70% of the theoretical peak floating-point per-

formance of the machine, which is 2.5 TFLOPs calculated

using the summation of the theoretical peaks for the three

heterogeneous devices.

Our contributions can be summarized below:

• A software implementation called SummaGen of parallel

matrix-matrix multiplication based on non-rectangular

partitions for heterogeneous platforms.

• An experimental study employing SummaGen to deter-

mine the practical performance of four partition shapes

on a hybrid heterogeneous multi-accelerator NUMA node

comprising of three heterogeneous devices, an Intel

Haswell multicore CPU and two accelerators, an Nvidia

k40 GPU and an Intel Xeon Phi 3120P. We show that

the four shapes exhibit the same dynamic energies and

performances for a range of problem sizes where the

speeds are constant functions of problem size. While

this confirms their optimality in practice for performance,

optimality for dynamic energy is an open research topic.

• An experimental study to determine the practical per-

formance of four partition shapes when the speed of a

processor is represented by a non-constant function of

problem size.

The paper is organized as follows. Section II contains

the formulations for PMM on heterogeneous platforms based

on rectangular and non-rectangular partitions. Section III

presents related work. Section IV contains the description of

the implementation of SummaGen. Section VI contains the

experimental results. Section VII concludes the paper.

58

II. PARALLEL MATRIX-MATRIX MULTIPLICATION

OPTIMIZATION PROBLEM: PROBLEM FORMULATION

The problem of optimal rectangular partitioning of square

matrices for Parallel Matrix-Matrix Multiplication (PMM)

on heterogeneous platforms can be formulated as follows

(PMMR-OPT): Consider a matrix product C = A × B,

where A, B, and C are square matrices of n × n blocks

of size r. Assume that we have p heterogeneous processors

Pi, 1 ≤ i ≤ p, whose speed functions of problem size vector

x are represented by S = {si(x)}pi=1, s(x) : Z2
≥0 → R≥0. The

objective is to partition the matrices into p rectangles Ri of

size hi × vi,
∑p

i=1 hi × vi = n2, so as to:

• Minimize computation time:

minTcomp = min
p

max
i=1

hi × vi
si((hi, vi))

(1)

• Minimize total communication volume:

minTcomm = min

p∑

i=1

(hi + vi) (2)

The aim of PMMR-OPT is to minimize the sum of compu-

tation (Tcomp) and communication times (Tcomm).

The total volume of communications during the execution

of PMM is proportional to the sum of the half-perimeters of

the p rectangles Ri given by the formula 2.

While achieving the objective of minimization of time

of computations during the execution of PMM decides the

sizes (hi, vi) of the rectangles Ri, achieving the objective of

minimization of total communication volume shapes the layout

of the rectangles in the square matrix.

PMMR-OPT is an open research problem. For the case

where the speeds of the processors are represented by con-

stant functions of problem size or scalars (positive rational

numbers), the problem is proved to be NP-complete [2].

The problem of optimal non-rectangular partitioning of ma-

trices is, however, comparably difficult to formulate. We call

this problem PMMNR-OPT where the goal is to partition the

square matrices into p non-rectangular shapes. A continuous

version of this problem formulation is presented in [11].

Let Z denote a non-rectangular shape whose area is given

by A(Z) and its covering rectangle by R(Z), i.e. the Cartesian
product of the projections of Z along both dimensions. If

R(Z) = [x1, x2] × [y1, y2], then the height of Z is defined

by h(Z) = x2 − x1 and its width, w(Z) = y2 − y1. The half-

perimeter of Z defined as c(Z) = h(Z)+w(Z) represents the
volume of communications.

PMMNR-OPT can be stated as follows: Given p heteroge-

neous processors Pi, 1 ≤ i ≤ p, whose speed functions are

represented by S = {si(a)}pi=1, s(a) : R≥0 → R≥0, partition

the matrices into p non-rectangular shapes Zi of area A(Zi),∑p
i=1A(Zi) = n2, so as to:

• Minimize computation time:

minTcomp = min
p

max
i=1

A(Zi)

si(A(Zi))
(3)

• Minimize total communication volume:

minTcomm = min

p∑

i=1

c(Zi) (4)

The aim of PMMNR-OPT is to minimize the sum of

computation (Tcomp) and communication times (Tcomm).

Here, for the sake of simplicity, we assume that there exist

speed functions of processors of areas of the zones so that

given an area of a zone, A(Z), one can determine the time of

computations using the formula
A(Z)

s(A(Z)) .

III. RELATED WORK

We divide our survey into five categories. First category

reviews computation and communication performance models

used in the theoretical study of PMM. Second category reviews

research works that study the problem of optimal rectangular

partitioning of matrices in Parallel Matrix-Matrix Multiplica-

tion (PMMR-OPT). Third category surveys works that have

proposed both rectangular and non-rectangular shapes for

the partitions. The fourth category presents an overview of

communication-optimal and communication-avoidance algo-

rithms. Final category looks at software libraries for PMM.

A. Computation and Communication Models

We review in this section performance models of compu-

tations and communications that are commonly employed in

the analysis of PMM for heterogeneous platforms.

The most simple model is a constant performance model

(CPM) where different notions such as normalized cycle

time, normalized processor speed, average execution time, task

computation time, etc. characterize the speed of an application

[1], [2]. In CPMs, no dependence is assumed between the

performance of a processor and the workload size.

The most advanced load balancing algorithms employ

functional performance models (FPMs) that are application-

specific and that represent the speed of a processor by a

continuous function of problem size [18]. The FPMs capture

realistically and accurately the real-life behaviour of applica-

tions executing on nodes consisting of uniprocessors (single-

core CPUs).

The complex nodal architecture of modern HPC systems

comprising of tightly integrated processors with inherent se-

vere resource contention and NUMA result in significant

variations (drops) in the performance profiles of parallel

applications executing on these platforms thereby violating

the assumptions on the shapes of the performance profiles

considered by the FPM-based load balancing algorithms. In

[16], [17], novel model-based data partitioning algorithms are

proposed that employ load imbalancing parallel computing

method employing non-smooth FPMs.

For the cost of communications, Hockney model is most

commonly used where the cost of data transfer (of m bytes)

between a pair of processors is represented by α + β × m
where α is the latency and β is the reciprocal of bandwidth

of the communication link connecting the processors.

59

B. Rectangular Matrix Partitioning

Kalinov et al. [1] propose a column-based partitioning

heuristic (KL) to solve PMMR-OPT. It is based on speeds

of processors that are positive real numbers and does not take

into account the cost of communications.

Beaumont et al. [2] prove that PMMR-OPT on hetero-

geneous platforms where the load is balanced between the

processors whose speed functions are represented by positive

rational numbers and the communication volume is minimized,

is NP-complete. They propose a column-based partitioning

heuristic (BR) and prove its optimality among all column-

based approaches.

Lastovetsky et al. [4] present a column-based partitioning

heuristic (FPM-KL) solving PMMR-OPT that takes as input

3D functional performance models (FPMs). FPM-KL takes

an input a fixed 2D grid of processors and does not take into

account cost of communications. Clarke et al. [5] propose a

variant of BR that is based on 2D FPMs. It outperforms FPM-

KL.

Nagamochi et al. [3] present an approximation algorithm

solving PMMR-OPT having the approximation ratio 1.25.

Fügenschuh et al. [6] improved the ratio to 1.15.

Li et al. [19] propose matrix-matrix multiplication on a

heterogeneous platform composed of a CPU and an ATI GPU.

They optimize PMM using a software pipeline design.

C. Non-Rectangular Matrix Partitioning

Brett et al. [7] study PMM for two interconnected hetero-

geneous processors and propose a non-rectangular matrix par-

titioning algorithm called square corner. While one partition

is square, the other is non-rectangular. They demonstrate that

square corner is superior to rectangular partitioning for ratios

of speeds greater than three to one between the processors.

Brett et al. [8] extend the square corner algorithm [7] for three

interconnected heterogeneous processors. Here, two partitions

in the corners are squares; the remaining partition is therefore

non-rectangular. They show that the square corner partitioning
is better than rectangular partitioning for highly heterogeneous

platforms and non-fully connected network topologies. Both

the works show that non-rectangular partitioning can be opti-

mal but do not prove the optimality of the shapes.

DeFlumere et al. [9], [10] prove the optimality of square
corner shape for two heterogeneous processors using a novel

method, called ”Push Technique“. This method incrementally

improves a partition shape by decreasing its volume of com-

munication. It is applied to the case of three heterogeneous

processors and six potentially optimal partition shapes are

identified.

Beaumont et al. [11] present a non-rectangular recursive

partitioning approximation algorithm (NRRP) that combines

the work on non-rectangular partitioning by [7]–[10] and the

recursive rectangular approximation algorithm by [3]. NRRP

has an approximation ratio of 2√
3
.

Beaumont et al. [20] propose a generalization of partitioning

a square into zones to three dimensions. They study partition-

ing a cuboid into zones of prescribed volumes, which represent

the number of computations to perform while minimizing

the surface of the boundaries between zones, which represent

the data transfers. They prove the NP-completeness of this

problem and propose a 1.51-approximation algorithm.

D. Communication-Optimal and Communication-Avoidance
Algorithms

In communication-optimal and communication-avoidance

algorithmic research for matrix-matrix multiplication, the the-

oretical lower bounds on the communications during the exe-

cution of sequential and parallel matrix-matrix multiplication

are first proven using simple but accurate enough architectural

models for shared memory and distributed memory machines.

For a sequential algorithm, communications represent data

movement between different levels of memory hierarchy. For a

parallel algorithm executing on a distributed-memory machine,

communications represent data transfers over the intercon-

nection network links. An algorithm is called communication
optimal if its communication costs (asymptotically) match the

lower bounds. Communication avoidance algorithms minimize

the volume of communications by employing such techniques

as, for example, neighbouring processors minimizing data

movement between them by executing computations using

redundant copies of matrix data shared between them.

The research reviewed in this section are focused specif-

ically on homogeneous parallel platforms. SUMMA [21] is

proven to be communication-optimal for particular memory

ranges for square matrix-matrix multiplication. 2.5D algo-

rithms [22] are proven to be communication-optimal for all

square matrix sizes. Solomonik et al. [22] present a 2.5D ma-

trix multiplication algorithm that attains lower bounds on the

number of words and messages communicated. Both SUMMA

and 2.5D algorithms assume the processors are arranged in a

two or three-dimensional grid.

Communication-optimal algorithms named BFS/DFS

(Breadth-first steps/Depth-first steps) [23] have processors

arranged in a hierarchy instead of a grid and employ

sequential recursive techniques. They do not make any

assumptions about processors and network topology. Demmel

et al. [24] propose an algorithm for matrix multiplication that

is communication optimal for all dimensions of rectangular

matrices.

We present in this work a software implementation for

parallel matrix-matrix multiplication for a specific case of

three heterogeneous processors where the partition shapes are

proven to be communication-optimal.

E. Software Libraries for PMM

DPLASMA [13] provides dense linear algebra factorizations

for distributed architectures that feature heterogeneous many-

core nodes. The dense matrix is partitioned into tiles (square

blocks) and its factorization is modeled as a distributed di-

rected acyclic graph (DAG) of tasks (operating on tiles) that

are then scheduled dynamically.

Elemental [25] contains PMM implementations for homoge-

neous platforms based on SUMMA [21] that can be executed

60

using 2D and 3D processor grids with support for different

matrix distributions including block-cyclic distribution.

FuPerMod [14] provides PMM implementations for het-

erogeneous platforms based on three performance models:

a). Constant performance models (CPM), b). FPM based on

piecewise linear interpolation of the speed, and c). FPM based

on Akima spline interpolation of the speed.

To the best of our knowledge, there is no software li-

brary offering efficient PMM implementations based on non-

rectangular partitioning of matrices. We address this gap in

this work.

IV. SUMMAGEN FOR HETEROGENEOUS PLATFORMS

BASED ON NON-RECTANGULAR PARTITIONS

SummaGen computes the matrix product C = A×B, where

A, B, and C are square matrices of size N ×N (n×n blocks

of size r) using p heterogeneous processors. The inputs to it

are the following:

• p processors.

• Square matrices A, B, C of size N ×N .

• Integer array of sub-partitions, subp, of size subplda ×
subpldb.

• Integer array containing heights of sub-partitions, subph,
of size subplda.

• Integer array containing widths of sub-partitions, subpw,
of size subpldb.

The three arrays, {subp, subph, subpw}, are used to specify

the layout of partitions in the square matrices.

To illustrate the usage of these arrays, consider four ex-

amples depicting the square corner, square rectangle, block

2D rectangular, and traditional 1D rectangular partition shapes

shown in the Figures 1a, 1b, 1c, 1d for three processors

{P0, P1, P2} solving PMM of matrices A,B,C of size 16×16.
They are considered among the six potentially optimal three

processor shapes [9], [10]). The arrays for the square-corner

partition shape (Figure 1a) are:

subplda = 3; subpldb = 3

subp[9] = {0, 1, 1, 1, 1, 1, 1, 1, 2}
subph[3] = {9, 3, 4}
subpw[3] = {9, 3, 4}

The sub-partitions in the row-major order is given by the

Cartesian product of subph × subpw = {9 × 9, 9 × 3, 9 ×
4, 3× 9, 3× 3, 3× 4, 4× 9, 4× 3, 4× 4}. Processor P0 owns

the sub-partition {9×9}, processor P1 owns the sub-partitions

{9×3, 9×4, 3×9, 3×3, 3×4, 4×9, 4×3}, and finally processor
P2 owns the sub-partition {4× 4}.

The arrays for the square-rectangle partition shape (Figure

1b) are:

subplda = 2; subpldb = 3

subp[6] = {0, 0, 1, 0, 2, 1}
subph[2] = {12, 4}
subpw[3] = {9, 4, 3}

The sub-partitions in the row-major order is given by the

Cartesian product of subph× subpw = {12× 9, 12× 4, 12×
3, 4 × 9, 4 × 4, 4 × 3} Processor P0 owns the sub-partitions

{12 × 9, 12 × 4, 4 × 9}, processor P1 owns the sub-partition

{12×3, 4×3}, and finally processor P2 owns the sub-partition

{4× 4}.
The arrays for the block 2D rectangular and traditional 1D

rectangular partition shapes (Figures 1c and 1d) are:

subplda = 2; subpldb = 2

subp[6] = {0, 0, 1, 2}
subph[2] = {12, 4}
subpw[3] = {6, 10}

subplda = 1; subpldb = 3

subp[6] = {0, 1, 2}
subph[2] = {16}
subpw[3] = {8, 5, 3}

The arrays (subp, subph, subpw) for partition shapes have

to be provided manually. This is not however scalable for large

number of processors. We don’t consider this to be a serious

drawback since the state-of-the-art solutions are proven to be

optimal for only three processors and we believe that these

arrays can be generated automatically.

Like SUMMA [21], the implementation of SummaGen

consists of three main stages:

• Horizontal communications of rows of matrix A.

• Vertical communications of columns of matrix B.

• Local computations.

We now describe these stages.

A. Horizontal Communications for Matrix A

Each processor gathers all the necessary A elements required

for computation of its own partition. All of these elements are

stored locally in a single working matrix WA, to be used later

during local computations.

A processor first iterates over the sub-partition rows to check

if its owns at least 1 sub-partition along the row. After selecting

a row (blocki), it now iterates over all the columns of that row

(blockj). Now, given subpblocki,blockj , it either broadcasts the

sub-partition across the row because it owns it locally or waits

to receive the sub-partition from the owner.

There is a special case, however when an entire sub-

partition row is owned by a single processor. In this case,

no communication is required as no other processor needs the

sub-partition row. Therefore one only has to copy locally the

elements from A into WA.
Figure 2) contains the implementation of the horizontal

communications. A processor iterates over the sub-partition

rows (line 2) using a starting point in subp (myi) and the

number of rows thereafter (block_lda). It needs to store the

element-wise index within the A rows as well. Thus we

initialize Alocali to 0 beforehand and update after each row

with the sub-partition height (line 42).

61

(a) (b)

(c) (d)

Fig. 1. a). Example: The square corner partition shape for three processors {P0, P1, P2} solving PMM of matrices A,B,C of size 16×16. P0 and P1 own
the square corners. b). Example: The square rectangle partition shape for three processors {P0, P1, P2} solving PMM of matrices A,B,C of size 16× 16.
P1 and P2 own the square and rectangle. (c). Example: The block rectangle shape for three processors solving PMM of matrices A,B,C of size 16×16. All
the processors own rectangular partitions. (d). Example: Traditional 1D rectangular shape for three processors for three processors solving PMM of matrices
A,B,C of size 16× 16. All the processors own rectangular partitions.

Next, we must check whether the processor actually owns

a sub-partition along the row (line 3) because if it does not,

then we can skip the row as it does not need any elements

from this row.

The next set of lines initialize the height of temporary arrays

(line 4) and the row communicator variables (line 5), which

are the comm, the rank of the processor in the comm and

an array of the other row ranks (comm_ranks[new_rank] =
global_rank).

In line 8, we check the special case when the processor

owns the entire sub-partition row. In this case, we can simply

copy our A elements locally into WA and move onto the next

row (line 9).

If the processor does not own the entire sub-partition row,

the row contains a number of other processors and therefore

horizontal communications ate incurred. So we start out by

iterating over the columns (line 13), again keeping track of

the element-wise index of the processor within the A columns

where we initialize Alocalj to 0 beforehand and update after

each column (line 38). We also declare the source owner of the

sub-partition and initialize the width of the temporary arrays

(line 16) and total size (line 17). Finally, we reallocate the

temporary array (line 18) using the new total size.

Now we check whether if the processor is the owner of

the sub-partition (line 20). If it owns the sub-partition, then

the source is initialized to its rank (line 22) and the temporary

array (tmp) is initialized to elements from its local A (line 25).

If it does not own the sub-partition, we search comm_ranks
(line 29) looking for the owner, that is, we find the source

within the new communicator. The reason why we can’t just

use the subp rank is that we created a new communicator

previously (line 6) whose rank may be different from the

global communicator rank.
At this point, we are ready for communications and use

MPI_Bcast() to transfer the elements across to each processor

in the row communicator (line 33).
Finally, we copy the temporary array, which now contains

the A elements of the sub-partition subpblocki,blockj , into our

working matrix WA (line 36) and move onto the next column.

Eventually, after all columns have been iterated, all processors

in the sub-partition row subpblocki,∗ will have the complete set

of elements for that row.
We repeat for each sub-partition row and once finished,

all processors will locally have all A elements required for

computation of their partition.

B. Vertical Communications for Matrix B
Each processor gathers all the necessary B elements required

for computation of its own partition. All of these elements are

62

1 i n t A l o c a l i = 0 ;
2 f o r (i n t b l o c k i = myi ; b l o c k i < myi+ b l o c k _ l d a ; b l o c k i ++) {
3 i f (r ow_con t a i n s _ r a nk (rank , b l o ck i , subp)) {
4 i n t tmp_lda = subph [b l o c k i] ;
5 i n t comm_ranks [subp ldb] ;
6 get_subp_comm(&comm, &comm_rank , comm_ranks ,
7 s i z e , subp , subp ldb , 0 , b l o c k i * subp ldb) ;
8 i f (comm_rank == s i z e) {
9 copy_ma t r i x (&WA[A l o c a l i * n] , n ,

10 &A[A l o c a l i * l db] , tmp_lda , n , n) ;
11 } e l s e {
12 i n t A l o c a l j = 0 ;
13 f o r (i n t b l o c k j = 0 ;
14 b l o c k j < subp ldb ; b l o c k j ++) {
15 i n t s o u r c e ;
16 i n t tmp_ldb = subpw [b l o c k j] ;
17 i n t elem_num = tmp_lda * tmp_ldb ;
18 tmp = (doub l e *)
19 r e a l l o c (tmp , elem_num * s i z e o f (doub l e)) ;
20 i f (subp [b l o c k i * subp ldb + b l o c k j]
21 == rank) {
22 s o u r c e = comm_rank ;
23 i n t s t a r t _ e l em = A l o c a l i * l db +
24 (A l o c a l j − e l em _ j _ s t a r t) ;
25 copy_ma t r i x (tmp , tmp_ldb , &A[s t a r t _ e l em] ,
26 tmp_lda , tmp_ldb , l db) ;
27 } e l s e {
28 s o u r c e = 0 ;
29 wh i l e (comm_ranks [s o u r c e] !=
30 subp [b l o c k i * subp ldb + b l o c k j])
31 s o u r c e ++;
32 }
33 MPI_Bcast (tmp , elem_num , MPI_DOUBLE,
34 sou rce , comm) ;
35 i n t s t a r t _ e l em = A l o c a l i * n + A l o c a l j ;
36 copy_ma t r i x (&WA[s t a r t _ e l em] , n ,
37 tmp , tmp_lda , tmp_ldb , tmp_ldb) ;
38 A l o c a l j += subpw [b l o c k j] ;
39 }
40 }
41 }
42 A l o c a l i += subph [b l o c k i] ;
43 }

Fig. 2. SummaGen: Horizontal communications for matrix A.

stored locally in a single working matrix WB, to be used later

during local computations.

The structure of vertical communication is identical with

that of its horizontal counterpart. Therefore we will not go

into detail but point out the differences in the implementation

(Figure 3).

The differences between them revolve around iteration of

the sub-partition columns (line 2), identifying the column

communicator (line 6), and accessing and initializing the

indices of the B and WB matrices.

At the end of vertical communication, all processors will

locally have all the necessary B elements required for compu-

tation of their partition.

C. Local Computations

Computation of our local partition is the final step of

SummaGen and at this stage we have the all the A and B
elements required (located in WA and WB). Since the partition
can be non-regular, WA × WB would not be a prudent

solution.

The reason for this is that multiple processors can end up

computing the same sub-partition. This is due to the fact that

processors may need sub-partition row i and column j even

1 i n t B l o c a l j = 0 ;
2 f o r (i n t b l o c k j = myj ; b l o c k j < myj+ b l o ck_ l db ; b l o c k j ++) {
3 i f (c o l umn_con t a i n s _ r ank (rank , b l o ck j , subp)) {
4 i n t tmp_ldb = subpw [b l o c k j] ;
5 i n t comm_ranks [s ubp l d a] ;
6 get_subp_comm(&comm, &comm_rank , comm_ranks ,
7 s i z e , subp , subp lda , subp ldb , b l o c k j) ;
8 i f (comm_rank == s i z e) {
9 copy_ma t r i x (&WB[B l o c a l j] , ldb ,

10 &B[B l o c a l j] , n , tmp_ldb , l db) ;
11 } e l s e {
12 i n t B l o c a l i = 0 ;
13 f o r (i n t b l o c k i = 0 ;
14 b l o c k i < subp l d a ; b l o c k i ++) {
15 i n t s o u r c e ;
16 i n t tmp_lda = subph [b l o c k i] ;
17 i n t elem_num = tmp_lda * tmp_ldb ;
18 tmp = (doub l e *)
19 r e a l l o c (tmp , elem_num * s i z e o f (doub l e)) ;
20 i f (subp [b l o c k i * subp ldb + b l o c k j]
21 == rank) {
22 s o u r c e = comm_rank ;
23 i n t s t a r t _ e l em =
24 (B l o c a l i − e l em _ i _ s t a r t) * l db + B l o c a l j ;
25 copy_ma t r i x (tmp , tmp_ldb , &B[s t a r t _ e l em] ,
26 tmp_lda , tmp_ldb , l db) ;
27 } e l s e {
28 s o u r c e = 0 ;
29 wh i l e (comm_ranks [s o u r c e] !=
30 subp [b l o c k i * subp ldb + b l o c k j])
31 s o u r c e ++;
32 }
33 MPI_Bcast (tmp , elem_num , MPI_DOUBLE,
34 sou rce , comm) ;
35 i n t s t a r t _ e l em = B l o c a l i * l db + B l o c a l j ;
36 copy_ma t r i x (&WB[s t a r t _ e l em] , ldb ,
37 tmp , tmp_lda , tmp_ldb , tmp_ldb) ;
38 B l o c a l i += subph [b l o c k i] ;
39 }
40 }
41 }
42 B l o c a l j += subpw [b l o c k j] ;
43 }

Fig. 3. SummaGen: Vertical communications for matrix B.

though they don’t own the sub-partition subpi,j . An example

for this can be seen in Figure 1a, where P1 requires sub-

partition row 0 and column 0 even though P0 owns subp0,0.
The simple solution to remove this redundancy and compute

only our partition, is to compute on a per sub-partition basis.

Thereby computing our total C partition incrementally.

In the implementation (Figure 4) we iterate over the rows

and columns (lines 2 and 5) of the sub-partitions array,

subp, during which a call to an optimized vendor DGEMM

routine (line 8) for each sub-partition owned (line 7) is all

that’s required. At the end of which all processors will have

computed strictly their own resulting C partition.

The routine localDgemm calls optimized vendor library

DGEMM routine multiplying two matrices of sizes height×n
and n× width.

V. ALGORITHMS FOR CONSTRUCTING THE PARTITION

SHAPES

We now describe the algorithm to arrange the partitions for

a given shape. The inputs to the algorithm are the size N2 of

the dense square matrices (A, B, C) and the shape type (square

corner, square rectangle, block rectangle, 1D rectangular).

For the case where the speeds are constants, the procedure

63

1 i n t C l o c a l i = 0 , C l o c a l j ;
2 f o r (i n t b l o c k i = myi ; b l o c k i < myi+ b l o c k _ l d a ; b l o c k i ++) {
3 h e i g h t = subph [b l o c k i] ;
4 C l o c a l j = 0 ;
5 f o r (i n t b l o c k j = myj ; b l o c k j < myj+ b l o ck_ l db ; b l o c k j ++) {
6 wid th = subpw [b l o c k j] ;
7 i f (subp [b l o c k i * subp ldb + b l o c k j] == rank) {
8 localDgemm(&he i gh t , &width , &n ,
9 &WA[C l o c a l i * n] , &n ,

10 &WB[C l o c a l j] , &ldb ,
11 &C[C l o c a l i * l db + C l o c a l j] , &ldb ,
12 &e t ime) ;
13 }
14 C l o c a l j += wid th ;
15 }
16 C l o c a l i += h e i g h t ;
17 }

Fig. 4. SummaGen: Local computations.

expects as input an array of three positive real numbers

representing the speeds. For the case where the speeds are

not constant, the inputs are discrete speed functions. The

output from the procedure is a set of arrays representing the

partitions: {subplda, subpldb, subp, subpw, subph}, which is

input to SummaGen for execution of PMM. Proving that these

algorithms construct the optimal partitions for a given shape

is a future research topic.

1) Square Corner: The main steps to determine the layout

of the partitions in the square corner shape (example in Figure

1a) are:

Step 1. Partition workload: For the case where the speeds
are constants, the workload size N2 is partitioned using the al-

gorithm described in [2]. For the case where the speeds are not

constant, the workload is partitioned using a data partitioning

algorithm that employs load imbalancing technique and based

on non-smooth FPMs [17]. The output workload distribution

is given by d = {a1, a2, a3}. The partitions represent areas.

The areas are sorted in non-increasing order.

Step 2. Bottom left-hand square: Consider the area a3.
Determine the square n2

3 such that n2
3 ≈ a3. Place the square

in the bottom left-hand corner of the square corner shape. This

partition is allocated to P2.

Step 3. Top right-hand square: Consider the area a2.
Determine the square n2

2 such that n2
2 ≈ a2 and place it in

the top right-hand corner of the square corner shape. This

partition is allocated to P0. The remaining non-rectangular

area is allocated to P1.

For all the shapes, step 1 remains the same.

2) Square Rectangle: For the square rectangle shape (an

example shown in the Figure 1b), steps 2 and 3 are below:

Step 2. Left-most rectangle: The area a2 is divided by N
to give the dimension of the smaller side of the rectangle. The

other dimension of the rectangle is N . It is assigned to P1.

Step 3. Square adjoining the rectangle: The area a3 is

then considered. Determine the square n2
3 such that n2

3 ≈ a3.
Place the square next to the rectangle determined in Step 2.

The square is assigned to P2. The remaining area is allocated

to P0.

TABLE I
HCLSERVER1: SPECIFICATIONS OF THE INTEL HASWELL MULTICORE

CPU, NVIDIA K40C, AND INTEL XEON PHI 3120P.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec

NVIDIA K40c
No. of processor cores 2880
Total board memory 12 GB GDDR5
L2 cache size 1536 KB
Memory bandwidth 288 GB/sec

Intel Xeon Phi 3120P
No. of processor cores 57
Total main memory 6 GB GDDR5
Memory bandwidth 240 GB/sec

3) Block 2D Rectangular: For the block 2D rectangular
shape (an example shown in the Figure 1c), the steps 2 and 3

are as follows:

Step 2. Top rectangle: The area a1 is divided by N to give

the dimension of the smaller side of the rectangle. The other

dimension of the rectangle is N . It is assigned to P0.

Step 2. Right-most rectangle: The area a2 is now consid-

ered. The dimensions of the sides are determined as follows:

(a ≈ √
a2, b = a2

a). This rectangle is allocated to P1. The

remaining area is allocated to P2.

4) Traditional 1D Rectangular: For the traditional 1D
rectangular shape (an example shown in the Figure 1d), the

area a3 is divided by N to give the dimension of the smaller

side of the rectangle and the rectangle is assigned to P2. The

area a2 is divided by N to give the dimension of the smaller

side of the rectangle, which is assigned to P1. The remaining

rectangle is allocated to P0.

VI. EXPERIMENTAL RESULTS

We perform our experiments on our research server

HCLServer1, which contains an Intel Haswell multicore CPU,

an Nvidia K40c GPU, and an Intel Xeon Phi 3120P. The

specifications of the three devices are given in Table I. The

OS on the server is CentOS 7.2.1511.

We use three abstract processors (p = 3) described earlier in

the introduction in the PMM applications. We call the abstract

processors AbsCPU, AbsGPU, and AbsXeonPhi to aid our

exposition in this section. For the abstract processor AbsCPU,

the local computations are performed using DGEMM routine

provided in Intel MKL BLAS [26]. For the abstract proces-

sors AbsGPU and AbsXeonPhi, we developed two packages

that perform out-of-core matrix multiplication of large dense

matrices on them. For AbsGPU, ZZGemmOOC out-of-core

package [27] reuses CUBLAS [28] for in-core DGEMM

invocations. For Xeon Phi, XeonPhiOOC out-of-core package

[27] reuses MKL BLAS [26] for in-core DGEMM invocations.

The Intel MKL and CUDA versions used are 2017.0.2 and 7.5.

64

Fig. 5. Speed functions/Performance profiles of the abstract processors
(AbsCPU, AbsGPU, AbsXeonPhi) computing matrix multiplication of two
square matrices of size N ×N .

The MPI implementation used is Intel MPI 5.1.3. One MPI

process is mapped to one abstract processor.

The full speed functions or performance profiles of the

three abstract processors are shown in Figure 5. For each

data point in the functions, we measure the execution time of

each abstract processor when all the other abstract processors

are also executing the same workload simultaneously, thereby

taking into account the influence of resource contention. The

execution time for accelerators includes the time taken to

transfer data between the host and devices. For each data point,

the workload is a matrix multiplication for two dense square

matrices of size x×x whose performance (speed) is calculated

as 2×x3

t , where t is the execution time.

The full functions are thus constructed using an automated

procedure. For problem sizes exceeding (N = 22592), there
are memory failures since the problem size allocated to one

or more processors does not fit into the main memory of the

processor. Therefore, we use out-of-core implementations [27].

To obtain an experimental data point, the application is

executed repeatedly until the sample mean lies in the 95%

confidence interval and a precision of 0.025 (2.5%) has been

achieved. For this purpose, Student’s t-test is used assuming

that the individual observations are independent and their

population follows the normal distribution. We verify the

validity of these assumptions using Pearson’s chi-squared test.

When we mention a single number such as floating-point

performance (in TFLOPs), it is assumed that we are refering

to the sample mean determined using the Student’s t-test.

To study the performance of our implementation, we use

four shapes proven to be optimal for three heterogeneous

processors where the speeds of the processors are represented

by constant functions of problem size [9], [10]. They are a).

Square corner, b). Square rectangular, c). Block 2D rectangu-

lar, and d). Traditional 1D rectangular.

We consider two different cases: a). The speeds of the

processors are represented by constant functions of problem

size (constant performance models) and b). The speeds of

the processors are represented by non-constant functions of

problem size (functional performance models).

(a)

(b)

(c)

Fig. 6. a). Execution times of PMM for the four partition shapes multiplying
two dense square matrices of size N ×N . The speeds of the processors are
constant functions of problem size. b). Computation times during the execution
of PMM for the four partition shapes. c). Communication times during the
execution of PMM for the four partition shapes.

A. Constant Performance Models

We compare the performances of PMM for the four partition

shapes where the speeds of the processors are represented

by constant functions of problem size. The range of problem

sizes (N) tested is {25600, · · · , 35840}. Figure 5 shows that

the relative speeds of the three abstract processors AbsCPU,

AbsGPU, and AbsXeonPhi are nearly constant in this range.

Their speeds used in the experiments are {1.0, 2.0, 0.9}.
The execution times of PMM for the four partition shapes

are shown in Figure 6a. They are equal with a maximum

percentage difference of 23% for the problem size N = 25600
and an average percentage difference of 8%. The peak per-

formance observed in the experiments is 2.10 TFLOPs for

65

square rectangle shape for problem size N = 38416. This
is 84% of the theoretical peak floating-point performance of

the machine, which is 2.50 TFLOPs obtained by summation

of the theoretical peaks of the three abstract processors. The

average performance is 70% of the theoretical peak floating-

point performance of the machine.

Figures 6b and 6c show the computation and commu-

nication times during the execution of PMM for the four

partition shapes. The computation and communication times

are the maximums of the computation and communication

times of the abstract processors. The communication times

include only time for the MPI communications and not data

transfer times between the host and the accelerators. The

parallel execution times are dominated by computation times.

The communication times, however, are different. We hope to

study further the cause for these differences using realistic and

accurate communication models in our future work.

B. Non-constant Performance Models

For each shape, we compare the performances of PMM

for a matrix decomposition determined by data partitioning

algorithm that employs load imbalancing technique and is

based on non-smooth FPMs [16], [17]. Optimal solutions

found by this algorithm are uneven workload distributions.

They minimize the parallel execution time of computations

but may not load balance the application in terms of execution

time.

The range of problem sizes (N) tested is

{1024, · · · , 20480}. For this range, the speed functions

of the three abstract processors shown in the Figure 5 are

non-constant functions of the problem size. The discrete speed

function of AbsXeonPhi is smooth between 642 to 137602.
The maximum variations occur for problem sizes in the range

[128002, 192002]. The variations increase however for larger

problem sizes (≥ 138242) where out-of-card computations

are invoked. Unlike AbsXeonPhi, the variations decrease for

AbsCPU and AbsGPU as problem size increases. The load

imbalancing data partitioning algorithm [17] exploits these

variations to determine optimal workload distribution that

minimizes the time of computations during the execution of

PMM.

Figure 7a compares the execution times of PMM for the

four partition shapes. Figures 7b and Figure 7c compares

the execution time of computations and communications. The

peak performance observed in the experiments is 1.80 TFLOPs

for square rectangle shape for problem size N = 35008. This
is 72% of the theoretical peak floating-point performance of

the machine.

The partition shapes square rectangle and block rectangular
perform better than the other two shapes. Their low parallel

execution times are due to their low computation as well as

communication times. In our future work, we hope to supple-

ment our experimental findings with a theoretical study of the

optimality of these shapes when the speeds of the processors

are represented by non-constant functions of problem size.

(a)

(b)

(c)

Fig. 7. a). Execution times of PMM for the four partition shapes multiplying
two dense square matrices of size N × N . The speeds of the processors
are non-constant functions of problem size. b). Computation times during the
execution of PMM for the four partition shapes. c). Communication times
during the execution of PMM for the four partition shapes.

C. Study of Energy Consumptions for Partition Shapes Based
on Constant Performance Models

In general, two types of energy consumption can be con-

sidered, dynamic and static. We define the static energy con-

sumption as the energy consumption of the platform without

the given application execution. Dynamic energy consumption

is calculated by subtracting this static energy consumption

from the total energy consumption of the platform during

the given application execution. That is, if PS is the static

power consumption of the platform, ET is the total energy

consumption of the platform during the execution of an

application, which takes TE seconds, then the dynamic energy

ED can be calculated as,

66

ED = ET − (PS × TE) (5)

Our experimental platform HCLServer1 is facilitated with

one WattsUp Pro power meter that sits between the wall

A/C outlets and its input power sockets. The power meter

captures the total power consumption of the server. It has

data cable connected to one USB port of the server. A script

written in Perl collects the data from the power meter using

the serial USB interface. The execution of the script is non-

intrusive and consumes insignificant power. The power meter

is periodically calibrated using an ANSI C12.20 revenue-grade

power meter, Yokogawa WT210. The maximum sampling

speed of the power meter is one sample every second. The

accuracy specified in the data-sheets is ±3%. The minimum

measurable power is 0.5 watts. The accuracy at 0.5 watts is

±0.3 watts. The static power consumption of the platform is

230 Watts.

We use HCLWattsUp API [29], which gathers the read-

ings from the power meter to determine the dynamic en-

ergy consumption during the execution of PMM application.

HCLWATTSUP has no extra overhead and therefore does not

influence the energy consumption of the application execution.

Fans are significant contributors to energy consumption. On

our platform, fans are controlled in two zones: a) zone 0: CPU

or System fans, b) zone 1: Peripheral zone fans. There are 4

levels to control the speed of fans:

• Standard: BMC control of both fan zones, with CPU zone

based on CPU temp (target speed 50%) and Peripheral

zone based on PCH temp (target speed 50%)

• Optimal: BMC control of the CPU zone (target speed

30%), with Peripheral zone fixed at low speed (fixed

30%)

• Heavy IO: BMC control of CPU zone (target speed 50%),

Peripheral zone fixed at 75%

• Full: all fans running at 100%

To rule out the contribution of fans in dynamic energy

consumption, we set the fans at full speed before executing

the PMM applications. When set at full speed, the fans run

constantly at ∼13400 rpm until they are set to a different

speed level. In this way, energy consumption due to fans is

included only in the static power consumption of the platform.

We monitor the temperature of our platform and speeds of the

fans (with Full setting) with the help of Intelligent Platform

Management Interface (IPMI) sensors, both with and without

the application run. We found an insignificant difference in

the speeds of fans in both scenarios.

Figure 8 shows the dynamic energy consumptions for the

four partition shapes for the PMM application employing

constant performance model. The range of problem sizes (N)

tested is {25600, · · · , 35840}. One can see that the dynamic

energy consumptions are equal. This does not, however, sug-

gest that the shapes are optimal for dynamic energy. We aim

to further develop methods to prove whether these shapes are

optimal for dynamic energy.

Fig. 8. Dynamic energy consumptions of the PMM applications for the four
partition shapes.

VII. CONCLUSION

Parallel matrix-matrix multiplication (PMM) of dense matri-

ces is a foundational kernel of parallel linear algebra libraries

in high performance computing (HPC) domain. The problem

of finding the optimal shape of matrices that minimized the

computation time and the overall volume of communications

in PMM on heterogeneous platforms has been the center of

research and can be classified into two distinct threads.

The first thread purely focused on rectangular partitions

whereas the second thread relaxed the rectangular partition

constraint to allow non-rectangular partitions. While efficient

implementations of PMM based on rectangular partitions exist

[13], [14], the results in the second thread are entirely theoreti-

cal. There is no software implementation for PMM that would

facilitate experimental studies of the practical performance and

optimality of the proposed partition shapes.

To address this shortcoming, we proposed an implemen-

tation of PMM based on non-rectangular partitions on het-

erogeneous platforms called SummaGen. To study its per-

formance, we compared the performances of PMM for four

partition shapes proven optimal for three processor case where

speeds of the processors are represented by constant function

of problem size. We employ for our experiments a hybrid

heterogeneous multi-accelerator NUMA node comprising of

three heterogeneous computing devices, a dual-socket Intel

Haswell multicore CPU, an Nvidia K40 GPU, and an Intel

Xeon Phi 3120P. We showed that the four shapes exhibit equal

performances (with an average percentage difference of 8%)

for a range of problem sizes where the speeds are constant

confirming their optimality in practice. We demonstrated that

the four shapes exhibit equal dynamic energy consumptions

for a range of problem sizes where the speeds are constant.

Whether these shapes are optimal for dynamic energy is a

subject for our current research.

To understand the behaviour of the shapes when the speeds

of the processors are represented by non-constant function

of problem size, we compare the performances of PMM

employing load imbalancing matrix decomposition method

that takes as input non-smooth functional performance models

67

of the processors. We find that the partition shapes square
rectangle and block rectangle perform better than the other

two shapes. In our future work, we hope to formally prove the

optimality of these shapes when the speeds of the processors

are represented by non-constant functions of problem size

The peak and average performances of the implementation

are 80% and 70% of the theoretical peak floating-point per-

formance of the machine.

The software implementation of SummaGen is located at

[30]. For our future work, we will study the efficiency of

SummaGen for distributed-memory nodes and large clusters.

ACKNOWLEDGMENT

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland (SFI)

under Grant Number 14/IA/2474.

REFERENCES

[1] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,” Journal of Parallel and Distributed Computing, vol. 61,
no. 4, pp. 520 – 535, 2001.

[2] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix multipli-
cation on heterogeneous platforms,” IEEE Trans. Parallel Distrib. Syst.,
vol. 12, no. 10, Oct. 2001.

[3] H. Nagamochi and Y. Abe, “An approximation algorithm for dissecting
a rectangle into rectangles with specified areas,” Discrete Appl. Math.,
vol. 155, no. 4, Feb. 2007.

[4] A. Lastovetsky and R. Reddy, “Two-dimensional matrix partitioning
for parallel computing on heterogeneous processors based on their
functional performance models,” in 7th International Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar 2009), Lecture Notes in Computer Science, vol.
6043, Springer. Lecture Notes in Computer Science, vol. 6043,
Springer, 25/9/2009 2010, pp. 112–121.

[5] D. Clarke, A. Lastovetsky, and V. Rychkov, “Column-based matrix
partitioning for parallel matrix multiplication on heterogeneous pro-
cessors based on functional performance models,” in 9th International
Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Platforms (HeteroPar’2011), Lecture Notes in Computer
Science 7155, Springer. Lecture Notes in Computer Science 7155,
Springer, August 29, 2011 2012, pp. 450–459.

[6] A. Fügenschuh, K. Junosza-Szaniawski, and Z. Lonc, “Exact and
approximation algorithms for a soft rectangle packing problem,” Op-
timization, vol. 63, no. 11, 2014.

[7] B. Becker and A. Lastovetsky, “Matrix multiplication on two inter-
connected processors,” in Proceedings of the 8th IEEE International
Conference on Cluster Computing. IEEE Computer Society, 25-28
Sept 2006 2006.

[8] B. Becker and A. L. Lastovetsky, “Towards data partitioning for parallel
computing on three interconnected clusters,” in Proceedings of the
6th International Symposium on Parallel and Distributed Computing
(ISPDC). IEEE Computer Society, 5-8 July 2007 2007.

[9] A. DeFlumere and A. Lastovetsky, “Searching for the optimal data parti-
tioning shape for parallel matrix matrix multiplication on 3 heterogenous
processors,” in 23rd International Heterogeneity in Computing Workshop
(HCW), IEEE Computer Society. IEEE Computer Society, 19 May
2014.

[10] A. DeFlumere and A. L. Lastovetsky, “Optimal data partitioning shape
for matrix multiplication on three fully connected heterogeneous proces-
sors,” in 12th International Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Platforms (HeteroPar’2014),
25 August 2014.

[11] O. Beaumont, L. Eyraud-Dubois, and T. Lambert, “A new approximation
algorithm for matrix partitioning in presence of strongly heterogeneous
processors,” in 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), May 2016, pp. 474–483.

[12] O. Beaumont, B. A. Becker, A. Deflumere, L. Eyraud-Dubois, T. Lam-
bert, and A. Lastovetsky, “Recent advances in matrix partitioning for
parallel computing on heterogeneous platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 1, pp. 218–229, 2019.

[13] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Hérault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan,
and J. J. Dongarra, “Distributed Dense Numerical Linear Algebra Algo-
rithms on massively parallel architectures: DPLASMA,” in Proceedings
of the 25th IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW’11), PDSEC 2011,
2011.

[14] D. Clarke, Z. Zhong, V. Rychkov, and A. Lastovetsky, “FuPerMod:
a software tool for the optimization of data-parallel applications on
heterogeneous platforms,” The Journal of Supercomputing, vol. 69, pp.
61– 69, 2014.

[15] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on mul-
ticore and multi-GPU platforms using functional performance models,”
Computers, IEEE Transactions on, vol. 64, no. 9, pp. 2506–2518, 2015.

[16] A. L. Lastovetsky and R. Reddy, “New model-based methods and
algorithms for performance and energy optimization of data parallel
applications on homogeneous multicore clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, April
2017.

[17] H. Khaleghzadeh, R. Reddy, and A. Lastovetsky, “A novel data-
partitioning algorithm for performance optimization of data-parallel
applications on heterogeneous HPC platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 10, pp. 2176–2190, 2018.

[18] A. Lastovetsky and R. Reddy, “Data partitioning with a functional
performance model of heterogeneous processors,” International Journal
of High Performance Computing Applications, vol. 21, no. 1, pp. 76–90,
2007.

[19] J. Li, X. Li, G. Tan, M. Chen, and N. Sun, “An optimized large-scale
hybrid dgemm design for cpus and ati gpus,” in Proceedings of the 26th
ACM International Conference on Supercomputing, ser. ICS ’12. ACM,
2012, pp. 377–386.

[20] O. Beaumont, L. Eyraud-Dubois, and T. Lambert, “Cuboid partitioning
for parallel matrix multiplication on heterogeneous platforms,” in Euro-
Par 2016: Parallel Processing. Springer International Publishing, 2016,
pp. 171–182.

[21] R. A. van de Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274.

[22] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and lu factorization algorithms,” in Euro-Par
2011 Parallel Processing, E. Jeannot, R. Namyst, and J. Roman, Eds.
Springer Berlin Heidelberg, 2011, pp. 90–109.

[23] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz,
“Communication-optimal parallel algorithm for strassen’s matrix multi-
plication,” in Proceedings of the Twenty-fourth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA ’12. ACM,
2012, pp. 193–204.

[24] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz,
and O. Spillinger, “Communication-optimal parallel recursive rectan-
gular matrix multiplication,” in Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, ser.
IPDPS ’13. IEEE Computer Society, 2013, pp. 261–272.

[25] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Trans. Math. Softw., vol. 39, no. 2, Feb.
2013.

[26] Intel MKL BLAS. [Online]. Available: https://software.intel.com/en-
us/mkl

[27] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-
core implementation for accelerator kernels on heterogeneous clouds,”
The Journal of Supercomputing, vol. 74, no. 2, Feb 2018.

[28] CUBLAS: Dense linear algebra on GPUs. [Online]. Available:
https://developer.nvidia.com/cublas

[29] Heterogeneous Computing Laboratory, University College Dublin,
“HCLWattsUp: API for power and energy measurements using WattsUp
Pro Meter,” 2016. [Online]. Available: http://git.ucd.ie/hcl/hclwattsup

[30] S. Patton and R. R. Manumachu, “hclsummagen: Efficient
implementation of parallel matrix-matrix multiplication based on
non-rectangular partitions for heterogeneous hybrid platforms,” 2018.
[Online]. Available: https://git.ucd.ie/manumachu/hclsummagen

68

