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Abstract

Parallel heterogeneous computing has emerged as a promising ap-
proach for addressing computationally intensive problems. Energy
efficiency is a critical concern in high-performance computing, par-
ticularly when leveraging hybrid architectures such as CPU-GPU
systems. This study aims to provide valuable insight into optimizing
the trade-off between energy efficiency, performance, and power
governors over hybrid architectures.

In this work, we evaluate a Parallel Heterogeneous Genetic Al-
gorithm (HPIGA) by running it under five Dynamic Voltage and
Frequency Scaling (DVFS) configurations, exploring different fre-
quency configurations for both CPU and GPU. These configura-
tions investigate various combinations of CPU and GPU operating
modes, including "powersave" and "performance". Through these
experiments, we analyze the energy consumption and performance
characteristics of the parallel algorithm under fixed computational
loads. The results reveal interesting insights into CPU-GPU specific
DVFS configurations, where setting the CPU and GPUs to high/low
frequencies can significantly reduce dynamic energy usage in cer-
tain configurations.

These findings contribute to the development of sustainable com-
puting frameworks by addressing the challenges inherent in fre-
quency scaling and heterogeneous computing environments. This
study provides a foundation for future research aimed at developing
predictive models and advanced scheduling techniques to further
optimize energy efficiency in hybrid CPU/GPU architectures.
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1 Introduction

Genetic Algorithms (GAs), inspired by natural selection, have been
widely adopted to solve complex optimization problems [22]. In
real-life scenarios, the execution of GAs can result in significant
energy consumption. Parallel Genetic Algorithms (PGAs) provide
a promising avenue for addressing these challenges by leveraging
parallel computing to distribute workloads and reduce execution
times [2]. However, most existing parallel genetic algorithm (PGA)
implementations prioritize performance optimization, often ne-
glecting the critical aspect of energy consumption. Furthermore,
traditional implementations and energy studies are generally con-
fined to homogeneous platforms, such as one multi-core CPU or
one GPU, which limits their applicability in modern hybrid sys-
tems [4, 10].

Parallel heterogeneous computing has emerged as a brilliant
solution for tackling computationally intensive problems found
in real-life environments. As hybrid architectures such as CPU-
GPU systems become prevalent, energy efficiency has become a
pressing concern. The interplay between performance and energy
consumption, particularly under diverse operating conditions be-
tween different devices, requires a comprehensive investigation to
guide sustainable computing practices [5]. Dynamic Voltage and
Frequency Scaling (DVFS) is a widely used technique to reduce en-
ergy consumption across different platforms [7]. Many processors
offer chip-level DVFS, which adjusts the frequency and voltage of
the computing cores. However, the intricate energy consumption
dynamics of these systems under varying DVFS configurations in
hybrid architectures remain unexplored, leaving a critical gap in
understanding their operational efficiency. This challenge is com-
pounded when tackling multi-objective optimization problems with
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conflicting goals, requiring innovative approaches to balance per-
formance and energy efficiency.

In this work, we evaluate the performance and energy efficiency
of a basic parallel Genetic Algorithm (GA) called HPIGA [6] under
varying DVFS configurations. HPIGA is a heterogeneous paral-
lel islands-model GA implemented using OpenMP and OpenACC
directives to enable execution on multicore processors and accel-
erators, including GPUs. While most researchers typically use the
"ondemand" governor by default, without exploring other power
governors, our study investigates the energy consumption and
performance of five different frequency configurations: "power-
save, "ondemand", "performance”, "high-CPU", and "high-GPU". We
test our experiments by running them on a hybrid system with
a multi-core CPU and two GPUs. By experimenting with various
combinations of CPU and GPU frequency governors, we aim to an-
alyze their impact on the energy consumption and performance of
island-model PGAs under fixed computational loads. Our findings
shed light on the trade-offs between energy efficiency, performance,
and power mode in hybrid architectures. Additionally, the insights
gained will contribute to future efforts in predictive modeling to es-
timate energy consumption profiles across broader configurations
and workloads.

The key contributions of this work are:

o Our work provides a detailed analysis of the impact of five
different DVFS configurations on energy consumption and
performance of the parallel islands-model GA, which is the
most commonly used model of PGAs, filling a gap in the
study of heterogeneous architectures.

e We demonstrate how hybrid systems’ diverse operating modes
can be leveraged to balance energy efficiency and compu-
tational performance, offering valuable insights for future
energy-aware computing frameworks.

The findings reveal new strategies for optimizing energy consump-
tion without compromising computational performance, advancing
the understanding of energy-aware parallel genetic algorithms over
hybrid and heterogeneous architectures.

The rest of the paper is organized as follows: Section 2 reviews
related works. Section 3 describes the methodology and experimen-
tal setup. Section 4 presents the results and analysis of our findings.
Section 5 concludes the study and explores potential directions for
future research.

2 Related Works

The quest for energy efficiency in high-performance heterogeneous
systems has driven extensive research, particularly on the effects
of DVFS on parallel algorithms. Prior studies have examined how
different algorithm decisions and DVFS settings influence perfor-
mance and energy consumption behaviors. This section highlights
significant advancements in energy-aware optimization strategies
for heterogeneous computing systems.

An energy-aware approach for bi-objective optimization is pre-
sented in [8] for heterogeneous CPU-GPU architectures, aiming to
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minimize runtime and energy consumption. The study introduces
a cost function to balance these objectives and evaluates a greedy
scheduling algorithm under DVFS mechanisms. Experimental re-
sults demonstrate significant energy savings without substantial
runtime increases through optimized workload distribution. In con-
trast, our study here focuses on PGA’s energy efficiency and per-
formance under varying DVFS settings, emphasizing island-model
distribution. An analysis of DVFS techniques for improving the
energy efficiency of GPUs is presented in [20]. The authors there
provided a survey of DVFS strategies aimed at enhancing GPU
energy efficiency. Their analysis underscores the significance of
selecting appropriate DVFS schemes tailored to specific workloads
to achieve optimal energy savings. Their study lacks an exploration
of CPU or heterogeneous hybrid investigations. Another study ex-
amined the role of DVFS in reducing dynamic power consumption
by adjusting processor clock frequencies is presented in [15]. They
highlight the shift from single-core to heterogeneous platforms,
integrating multicore CPUs and GPUs, which has led to the need for
application-level energy optimization techniques. The study also
reviews component-level energy measurement methods, presenting
their trade-offs in accuracy and performance. Lastly, it introduces
challenges in scaling energy and performance optimization. Read-
ers interested in understanding the influence of DVFS on energy
usage, application performance, and system dynamics are encour-
aged to refer to [16, 18, 24, 27].

In the area of energy efficiency in metaheuristics, several studies
have focused on addressing the challenges of energy consumption
and resource utilization. This paragraph reviews various studies
that have investigated the energy consumption of search algorithms
executed on parallel and heterogeneous systems. In [3], the authors
conducted a comparative study on the energy consumption of par-
allel execution of search problems examining several metaheuristic
algorithms, including GA. The study demonstrated that parallel
implementations significantly improve computational throughput
while managing energy consumption. While this research provides
a foundational understanding of the energy consumption of par-
allel metaheuristics, it did not explore GPU profiles or various
DVFS settings. Another study that employs heuristics and addresses
energy-efficient scheduling in heterogeneous CPU-GPU systems is
presented in [23]. A CPU-GPU utilization model is developed to an-
alyze power consumption and scheduling constraints. The authors
propose a heuristic greedy strategy (UE]JS) and a hybrid Particle
Swarm Optimization algorithm (PSO) to optimize energy efficiency
and reduce job rejection rates. A study [12] proposes a two-level
parallel genetic algorithm, to solve the N-Queens problem using
heuristic search techniques. The approach integrates GAs with
Simulated Annealing (SA) to enhance solution exploration. The
study also highlights opportunities to improve energy efficiency
and computational performance by optimizing CUDA kernel pa-
rameters, utilizing CPU cores more effectively, and transitioning to
a heterogeneous platform with CPUs and GPUs.

An approach employing a dual heterogeneous PGA is presented
in [17], focusing on energy efficiency and production performance
in the dynamic energy-aware job shop scheduling problems. The
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method simultaneously executes a cellular GA on GPUs and a clas-
sic GA on multi-core CPUs, leveraging two-level parallelization
to minimize energy costs, total tardiness, and schedule disruption.
Numerical tests demonstrate significant improvements in energy ef-
ficiency, solution quality, and execution time. The study highlights
the potential of parallel platforms for addressing large-scale, energy-
aware scheduling problems efficiently. Recent advancements have
explored parallel and heterogeneous computing strategies to en-
hance performance in computationally intensive tasks. For instance,
a parallel Metaheuristic approach presented in [11] introduces a
parallel framework for ensemble feature selection using multi-core
CPUs and GPUs. By employing GAs, PSO, and grey wolf optimiza-
tion, the approach improves accuracy and reduces execution time
on 21 large datasets. While their focus is on optimizing ensemble fea-
ture selection, their study did not investigate the performance and
energy efficiency of PGAs running on hybrid systems. A significant
contribution to GPU-based parallel computing is presented in [25].
This study develops a parallel GPU-based GA to optimize schedul-
ing in resource-constrained multi-project scenarios. By leveraging
GPU acceleration, the algorithm efficiently solves large-scale in-
stances, demonstrating improved performance and solution quality
compared to CPU-based implementations. While their work em-
phasizes the efficiency of GPU-based GAs, they did not investigate
the energy consumption profiles over various GPU frequencies. A
recent survey on energy-aware scheduling in high-performance
computing (HPC) systems, found in [13], explores various tech-
niques and goals for optimizing energy consumption in CPU-GPU
systems. This article discusses mechanisms such as DVFS, power
capping, and thread throttling to manage power and energy trade-
offs efficiently. It also discusses the role of performance-energy
configurations in enhancing energy efficiency in modern HPC en-
vironments. This work provides a valuable understanding of the
energy-related challenges and advancements within CPU-GPU sys-
tems. For further insights into energy efficiency and performance
trade-offs of PGAs, we direct readers to [14, 19, 21, 26].

In summary, while previous studies have explored various as-
pects of energy efficiency and performance in hybrid computing
environments, they either focused on a single DVFS setting without
detailed configurations or studied different DVFS settings on spe-
cific system configurations. Furthermore, prior works often utilized
heuristics to optimize or select energy settings without directly
studying the efficiency of the underlying algorithms themselves.
Our study differs by investigating the performance and energy ef-
ficiency of PGAs on a heterogeneous system under various DVFS
settings, paving the way for the development of a predictive model
for energy consumption in hybrid systems.

3 Experimental Setup

To evaluate the energy efficiency and performance of the PGA, we
conducted a systematic analysis under five distinct DVFS configu-
rations. The configurations studied are:

(1) powersave: All computing devices (CPUs and GPUs) set to
"Powersave” mode.!

!For the GPUs, the "powersave" and "performance” modes are set by adjusting the
clock speeds, streaming multiprocessors (SM), and power consumption (between 100W
and 300W) to their minimum or maximum values, respectively.
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(2) ondemand: All computing devices are set to the "Onde-
mand" mode.

(3) performance: All computing devices are set to the "Perfor-
mance" mode.

(4) high-CPU: The CPU is set to "Performance" mode, while
the GPUs are set to "Powersave" mode.

(5) high-GPU: The CPU is set to "Powersave" mode, while the
GPUs are set to "Performance” mode.

By studying these five configurations, we aim to provide a com-
prehensive analysis of the trade-offs between energy efficiency
and computational performance. The first three configurations:
"powersave", "ondemand", and "performance" establish baseline be-
haviors by assessing extreme and balanced energy-performance
trade-offs in homogeneous setups, offering key references for com-
parison with hybrid configurations. In particular, the "high-CPU"
and "high-GPU" modes provide critical insights into the behavior
of the system under asymmetric power-performance setups, reflect-
ing real-world scenarios where computational resources operate
under varying energy constraints. These configurations allow us to
explore how heterogeneous DVFS settings influence load balancing,
energy efficiency, and execution time, especially when different
devices prioritize performance or energy savings.

By evaluating energy consumption and performance across these
configurations, we aim to provide a comprehensive understanding
of their effects. This approach allows for a more thorough analysis
of energy efficiency. Ultimately, our goal is to highlight how varying
governors influence the performance of the GA. This exploration
will help understand how different governors affect the energy
consumption and performance of the PGA. To focus on studying
the effect of DVFS, we divide the islands equally across all devices.
If the total number of islands is not divided evenly, we adjust the
distribution by adding extra islands to some devices based on the
remainder. For consistency and a fair comparison, the stopping
condition is defined by the number of function evaluations, which
remains the same for each dimension, regardless of the number of
islands employed.

3.1 Parameter Settings and System
Specifications

We provide an overview of the benchmark problem used to assess
the experimental setup and the parameter configurations applied
during our runs. The primary objective of this study is to inves-
tigate the performance and energy consumption profiles of the
PGA under different power governors. To achieve this, we use the
well-known One-Max problem, a widely recognized test case for
evolutionary algorithms, known for its simple search space and
consistent energy and performance characteristics. This simple
function should not significantly affect the energy results, ensuring
that the energy profiles reflect the performance of the governors
rather than the complexity of the problem itself [1].

To ensure reliable results, we vary the dimensions, including
lower dimensions (100 and 500) and higher ones (1000, 3000, and
5000), which increase runtime and provide robust energy consump-
tion profiles. Our analysis employs a comprehensive statistical
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approach to generate reliable findings for each configuration. Ta-
ble 1 summarizes the parameter settings used in the experiments,
selected based on commonly used values reported in the literature
and previous studies. These parameters were determined through a
series of preliminary numerical experiments designed to highlight
differences between the algorithms being tested.

Table 1: Parameter Settings

Values
50 individual

Definitions

Sub-population size

Recombination Uniform, pc = 0.6
Mutation Bit-flip, pm = 0.0001
Selection Binary tournament
Replacement Replacing the worst
Elitism Yes

Migration interval ~ Every 10 iterations

We conduct our experiments on a hybrid heterogeneous server
platform, detailed in Table 2, which contains a single-socket Intel
Icelake multicore CPU and two Nvidia A40 GPUs. The two GPUs
are connected to the motherboard and accessible to all cores (0-63)
of the CPU. Energy consumption is measured using a WattsUp

Table 2: System Specifications.

Intel Platinum 8362 Icelake
No. of cores per socket | 32
No. of threads per core | 2
Socket(s) 2
L1d cache, L1i cache 1.5 MiB, 1 MiB
L2 cache, L3 cache 40 MiB, 48 MiB
Total main memory 62 GB DDR4-3200

TDP 265 W
NVIDIA A40 GPU
No. of GPUs 2
No. of Ampere cores 10,752
Total board memory 48 GB GDDRé6 (with ECC)
Memory bandwidth 696 GB/sec
TDP 300 W

Pro power meter, which monitors the node’s total power usage
through the wall socket. Data is collected via a USB interface using
non-intrusive Perl scripts. The power meter, with a sampling rate
of one sample per second and a minimum measurable power of 0.5
W, is periodically calibrated using a Yokogawa WT210 meter. The
measurements collected through physical methods using external
power meters are considered highly reliable [9]. To ensure result
reliability, experiments are repeated until the response variables
(execution time and energy) achieve a 95% confidence interval
with 5% precision. Statistical tests, including Student’s t-test and
Pearson’s chi-squared test, validate the independence and normality
of observations.
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4 Experimental Results and Analysis

This section presents the experimental results obtained from evalu-
ating the performance and energy efficiency of HPIGA. We present
the total energy, dynamic energy, and execution time measured
for the dimensions under study. Table 3 presents the total energy
consumption values observed under the five DVES configurations
studied. Total energy is a more comprehensive metric for evalu-
ating overall efficiency, as it accounts for the combined impact of
dynamic and static energy.

The results obtained from Table 3 reveal significant trade-offs
between total energy consumption and the DVFS configurations
used. For the dimensions under study, the "ondemand" and "high-
CPU" configurations exhibit the lowest total energy consumption
in the majority of the cases among the other configurations. The
explanation for this behavior lies in the nature of the governors.
The "ondemand" governor, being the default system-optimized op-
tion, dynamically adjusts the frequency range based on workload
demands, balancing performance and energy efficiency effectively.
The "high-CPU" governor imposes strict controls on the energy
and power usage of GPUs, prioritizing energy savings over per-
formance flexibility. This highlights how the characteristics and
configurations of each governor can significantly impact energy
consumption, with "ondemand" excelling in adaptive efficiency
and "high-CPU" in stringent energy management. Conversely, the
"performance"” and "powersave" configurations often achieve lower
energy consumption for moderate and larger dimensions, aligning
with their optimized utilization of processing power to reduce exe-
cution time and energy overhead.

The "high-GPU" configuration tends to exhibit the highest total
energy consumption (underlined) across most dimensions, indicat-
ing its inefficiency for computationally intensive workloads. This
behavior can be attributed to the governor setting the GPUs to
operate at their highest power and clock levels, resulting in signif-
icantly higher static energy consumption while minimizing CPU
usage. This imbalance between GPU and CPU energy utilization
leads to an inefficient overall energy profile. Additionally, the gov-
ernor’s lack of dynamic adaptability to workload demands further
exacerbates its energy inefficiency, as it fails to optimize energy
usage across varying computational intensities. To provide deeper
insights into the energy patterns, we present the dynamic energy
values in Table 4. Dynamic energy refers to the energy consumed
during the execution of computational tasks, varying with the sys-
tem’s workload and power states. It is calculated using the formula:
Dynamic Energy = Total Energy — (Base PowerxExecution Time).
Unlike dynamic energy, static energy corresponds to the energy
consumed by the system in its idle state, determined by the config-
uration of the system’s infrastructure. Static energy represents a
significant portion of the total energy, as it is independent of the
workload but depends on the system’s design and base power usage.
This allows for a better understanding of how dynamic energy con-
tributes to the overall efficiency, highlighting the impact of varying
DVES configurations on energy consumption.
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Table 3: Mean of total energy in Joules.

Dimensions under the study

# of Islands DVEFS 100 500 1000 3000 5000
powersave 1225 4435 22302 93343 | 189585
128 ondemand 425 2404 7573 55921 | 133356
performance 393 2341 17177 62723 | 146965
high-CPU 471 2205 14724 | 50893 | 134097
high-GPU 1184 5174 | 29569 | 98832 | 189023
powersave 2662 4438 11894 | 78868 | 162867
64 ondemand 557 2020 5945 | 50194 | 124135
performance 648 1819 6902 59960 | 156913
high-CPU 749 1981 6685 56481 | 136828
high-GPU 3983 5259 | 14066 | 111365 | 206162
powersave 3836 4432 6321 72391 | 173376
32 ondemand 2821 2069 6006 | 48819 | 81515
performance 2176 2082 2733 61110 | 146031
high-CPU 224 1870 2649 | 49855 | 132435
high-GPU 5207 5599 7122 | 94746 | 255328
powersave 5242 | 22507 3590 | 83017 | 184520
16 ondemand 1094 2957 4940 | 47498 | 105897
performance 1472 3210 2208 | 56911 | 141413
high-CPU 1579 2524 2176 | 44611 | 128891
high-GPU 6946 | 27168 3475 | 93295 | 235028

Boldfaced and underlined represent the least and highest values per dimension, respectively

Table 4: Mean of dynamic energy in Joules.

Dimensions under the study

# of Islands DVEFS 100 500 1000 3000 5000
powersave 372 497 2731 11706 | 23878
128 ondemand 195 1084 4057 | 29757 | 71266
performance 121 445 5655 | 23187 | 48577
high-CPU 221 702 5582 17940 | 53713
high-GPU 172 150 2324 8095 | 16250
powersave 435 532 1430 9867 | 20320
64 ondemand 186 1013 2942 | 25532 | 64607
performance 177 190 1870 19663 | 51807
high-CPU 378 695 2607 22546 | 54714
high-GPU 495 188 924 9279 | 9605
powersave 665 501 848 8970 | 21541
32 ondemand 1797 1053 3255 | 25902 | 43167
performance 591 436 478 24394 | 48469
high-CPU 950 544 996 19952 | 53748
high-GPU 481 124 445 7892 | 21461
powersave 2545 | 18213 892 10259 | 22959
16 ondemand 484 1782 4209 | 24126 | 56233
performance 617 1322 1076 22135 | 47051
high-CPU 811 857 1231 15086 | 54075
high-GPU 765 2903 57 7722 | 19789

Boldfaced and underlined represent the least and highest values per dimension, respectively
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Table 4 shows that across all dimensions, the choice of DVFS con-
figuration significantly influences dynamic energy consumption.
The "high-GPU" consistently achieves the lowest energy consump-
tion in most configurations, particularly for larger dimensions. This
behavior arises because GPUs are optimized for parallel process-
ing and energy-efficient operations, whereas CPUs often consume
more power when handling similar workloads. Conversely, "onde-
mand" and "powersave" exhibit the highest energy consumption
in several scenarios, indicating their inefficiency for this workload.
Notably, the "performance" configuration often achieves a balance,
offering competitive energy efficiency across different dimensions.
These findings emphasize the impact of DVFS settings on energy
usage, guiding optimal governor selection based on computational
demands. "High-CPU" configuration shows moderate energy con-
sumption, reflecting its reliance on CPU-intensive operations that
are less energy-efficient than GPU-based processing. These obser-
vations provide a foundation for analyzing the impact of DVFS
settings on execution time, as detailed in Table 5.

The execution time results reveal the performance characteristics
of different DVFS configurations across varying dimensions and is-
land configurations. The "performance” configuration consistently
achieves the shortest execution times, showcasing its efficiency
in high-demand computational tasks due to its operation at maxi-
mum clock frequencies, which minimizes computation delays. In
contrast, "powersave" exhibits the highest execution times in most
scenarios, reflecting its trade-off of energy efficiency at the cost of
performance. This behavior arises because the "powersave" gov-
ernor locks the CPU at its minimum frequency, leading to slower
task completion as the computational power is significantly re-
duced to conserve energy. The "ondemand" configuration provides
a balanced approach, delivering competitive times in several con-
figurations but falling short of performance’s optimal efficiency.
Interestingly, the "high-CPU" configuration closely aligns with the
"performance” configuration, highlighting the CPU’s ability to han-
dle intensive workloads efficiently. The "high-GPU" configuration
optimized for energy efficiency shows longer execution times, es-
pecially for smaller dimensions, indicating possible inefficiencies
when processing lighter workloads. To visually present our results,
we provide Figure 1, which demonstrates the energy consumption
across the different DVFS and island configurations.

Figure 1 illustrates the dynamic and total energy consumption
for different dimensions under various DVES configurations. A
clear trend emerges, showing that smaller dimensions generally
lead to higher dynamic energy consumption across most DVFS
configurations as a result of increased CPU utilization. Conversely,
larger dimensions tend to benefit from GPU optimization, resulting
in lower dynamic energy usage, particularly under the "high-GPU"
configuration. However, the "high-GPU" configuration also demon-
strates the highest total energy consumption because of its high
static energy overhead. On the other hand, "ondemand" and "high-
CPU" configurations maintain balanced energy profiles across di-
mensions, with lower total energy consumption, highlighting their
adaptive and energy-efficient behavior. These patterns emphasize
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the importance of the size of the workload in determining the en-
ergy efficiency of DVFS settings.

Overall, we can observe that there is no single optimal configu-
ration of governors for energy and performance under the fixed,
equally distributed workload. For example, in dimension 5000, the
"ondemand" configuration achieved the lowest total energy con-
sumption across all tested numbers of islands but exhibited the
highest dynamic energy consumption. However, in dimension 500,
"ondemand" configuration performed poorly in terms of total en-
ergy. Additionally, the "high-GPU" configuration demonstrated the
lowest dynamic energy consumption in most cases (15 out of 20)
but failed to achieve the best execution times in any scenario. To
address this, workloads should be optimally distributed according
to the frequency-state updates to achieve better load balancing.
These observations highlight the necessity for bi-objective opti-
mization to identify Pareto-optimal fronts that account for both
energy efficiency and performance while considering an optimal
workload distribution.

5 Conclusions and Future Work

In this study, we evaluated the energy efficiency and performance
of a Parallel Heterogeneous Genetic Algorithm (HPIGA) under five
different DVFS configurations, specifically focusing on "ondemand”,
"power-save", "performance", "high-CPU", and "high-GPU" modes
for CPU and GPU frequency configurations. Through a series of ex-
periments, we analyzed the energy consumption and performance
trade-offs across varying frequencies, highlighting the potential
for optimizing energy efficiency while maintaining computational
performance.

The results show that the "ondemand" configuration demon-
strates a commendable balance by dynamically adjusting frequen-
cies to align with workload demands, thereby optimizing energy
efficiency without significant performance degradation. However,
this level of optimization may unintentionally worsen execution
times, as it attempts to balance performance dynamically. This
unexpected side effect is one of the first to be reported in heteroge-
neous systems. Similarly, the "high-CPU" configuration achieves
low total energy consumption by imposing stringent controls on
energy and power usage, prioritizing energy savings. However,
no single configuration proves to be an optimal solution for the
bi-objective optimization of energy and time. For instance, the "high-
GPU" configuration, despite its higher total energy consumption
and execution time, achieves lower dynamic energy consumption.
This makes it a suitable option for long-running tasks on servers
with low utilization, such as during periods of inactivity or off-
peak hours. These findings underscore the necessity of selecting
appropriate DVFS configurations tailored to specific workload char-
acteristics to achieve optimal energy-performance trade-offs.

Modern systems contain CPUs with several different governors
and varying options for GPUs based on the driver and hardware.
These governors combine to offer a wide range of frequency config-
uration possibilities. In future work, we aim to expand this research
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Table 5: Mean execution time in seconds.

Dimensions under the study

# of Islands DVFS 100 500 1000 3000 5000
powersave 2.97 13.72 68.19 | 284.45 | 577.38
128 ondemand 0.91 5.22 13.90 | 103.41 | 245.41
performance 0.63 4.39 26.67 91.52 | 227.75
high-CPU 0.75 4.50 27.37 98.66 | 240.67
high-GPU 2.61 12.95 70.22 | 233.86 | 445.29
powersave 7.76 13.61 36.46 | 240.42 | 496.68
64 ondemand 1.47 3.98 11.87 97.48 | 235.29
performance 1.09 3.77 11.65 93.28 | 243.30
high-CPU 111 3.85 12.21 | 101.60 | 245.85
high-GPU 8.99 13.07 33.87 | 263.11 | 506.59
powersave 11.05 13.70 19.07 | 220.98 | 529.04
32 ondemand 4.05 4.02 10.87 90.58 | 151.57
performance 3.67 3.81 5.22 84.99 | 225.84
high-CPU 3.88 3.97 4.95 89.53 | 235.59
high-GPU 12.18 14.11 17.21 | 223.85 | 602.75
powersave 9.40 14.96 9.40 | 253.51 | 562.93
16 ondemand 2.41 4.64 2.89 92.38 | 196.30
performance 1.98 4.37 2.62 80.50 | 218.43
high-CPU 2.30 4.99 2.83 88.40 | 224.00
high-GPU 1593 | 62.54 8.81 | 220.55 | 554.74

Boldfaced and underlined represent the least and highest values per dimension, respectively

by exploring various frequency configurations and developing pre-
dictive models that go beyond using work distribution as a sole
decision variable. These models will identify Pareto-optimal solu-
tions for energy efficiency and performance, providing a robust
framework for energy-efficient computing in heterogeneous sys-
tems. This approach will enable more accurate energy optimization
strategies, supporting the development of highly efficient parallel
algorithms for diverse workloads. Furthermore, we are expanding
our research to include the configuration of the algorithm, the plat-
form setup, and the application itself, enabling it to identify the
optimal configurations. Moreover, we aim to investigate the impact
of dynamically distributing the workload on the efficiency of the
default system governor.
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Figure 1: Total and dynamic energy consumption for the dimensions under study with different DVFS configurations.
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