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University of Extremadura, Avda. de la Universidad S/N, E-10071 Cáceres (Spain)
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Abstract. Most of the parallel strategies used for information extrac-
tion in remotely sensed hyperspectral imaging applications have been im-
plemented in the form of parallel algorithms on both homogeneous and
heterogeneous networks of computers. In this paper, we develop a study
on efficient collective communications based on the usage of HeteroMPI
for a parallel heterogeneous hyperspectral imaging algorithm which uses
concepts of mathematical morphology.
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1 Introduction

Hyperspectral imaging identifies materials and objects in the air, land and water
on the basis of the unique reflectance patterns that result from the interaction of
solar energy with the molecular structure of the material[1]. Most applications of
this technology require timely responses for swift decisions which depend upon
high computing performance of algorithm analysis. Examples include target de-
tection for military and defense/security deployment, urban planning and man-
agement, risk/hazard prevention and response including wild-land fire tracking,
biological threat detection, monitoring of oil spills and other types of chemical
contamination. These images are characterized by covering tens or even hundreds
of kilometers long, having hundreds of MB in size. Few consolidated parallel tech-
niques for analyzing this kind of data currently exist in the open literature, and
mainly all of them implemented on homogeneous networks of computers using
MPI. Although the standard MPI[3] has been widely used to implement paral-
lel algorithms for Heterogeneous Networks of Computers (HNOCs), it does not
provide specific means to address some additional challenges posed by these net-
works, including the distribution of computations and communications unevenly,
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taking into account the computing power of the heterogeneous processors and
the bandwidth of the communications links. To achieve these goals, HeteroMPI
was developed as an extension of MPI which allows the programmer to describe
the performance model of a parallel algorithm in generic fashion[4], a very useful
feature for heterogeneous hyperspectral imaging applications to define distribu-
tion of workload and communications, which typically make intensive use of
scatter/gather communication operations).

In this paper, our main goal is to study on several approximations for efficient
collective communications adapted to the particularities of a heterogeneous hy-
perspectral image processing scenario already developed using HeteroMPI, basing
our developments on the communication model by Lastovetsky et al.[9]. The paper
is structured as follows. Section 2 first describes hyperspectral imaging algorithm
considered in this study and main features of HeteroMPI. Section 3 explore the
different paradigms studied. Finally, section 4 concludes with the experimental
results obtained and some remarks and hints at plausible future research.

2 Related Work

Several hyperspectral imaging algorithms have been implemented using MPI as a
standard development tool. Examples include the distributed spectral-screening
principal component transform algorithm (S-PCT)[6], D-ISODATA[7], a compu-
tationally efficient recursive hierarchical image segmentation algorithm hybrid
method (called RHSEG)[8], and a morphological approach for classification of
hyperspectral images called automated morphological classification (AMC)[10],
which takes into account both the spatial and the spectral information in the
analysis in a combined fashion. An MPI-based parallel version of AMC has been
developed and tested on NASA’s Thunderhead cluster[12], showing parallel per-
formance results superior to those achieved by other parallel hyperspectral al-
gorithms in the literature[2]. In particular, this algorithm is the one used in our
experiments because it is an exemplar algorithm with the main characteristics
of the different hyperspectral imaging existing in the literature. An important
limitation in the mentioned parallel techniques is that they assume that the
number and location of processing nodes are known and relatively fixed, allow-
ing the use of the standard MPI specification. This approach is feasible when
the application is run on a homogeneous distributed-memory computer system.
However, selection of a group for execution on HNOCs must take into account the
computing power of the heterogeneous processors and the speed/bandwidth of
communication links between each processor pair[5]. This feature is of particular
importance in applications dominated by large data volumes such as hyperspec-
tral image analysis, but is also quite difficult to accomplish from the viewpoint
of the programmer. The main idea of HeteroMPI is to automate and optimize
the selection of a group of processes that executes a heterogeneous algorithm
faster than any other possible group.

Particularly, HeteroMPI has been used to measure the processing power of each
processor in the moment the execution of the heterogeneous algorithm is to be
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made. To measure this, the directive HeteroMPI Recon has been used along
with a benchmark defined to reflect the most important features of the real algo-
rithm in terms of computational cost and to stress and activate the whole memory
hierarchy. Then, with directive Hetero Group create and performance model
defined through mpC[11], the best heterogeneous executing group is created, and
data is distributed based on the actual processing power available at each node.

3 Communication Patterns

Recently, Lastovetsky et al.[5][9] designed a new model for describing performance
of all collective communications that generally take place in parallel MPI applica-
tions and, in particular, in those applications executed on heterogeneous clusters
based on a switched Ethernet networks. The idea is to model a few simple parame-
terswithpoint-to-point communicationbetween eachpair of nodes on the network,
and then use these parameters to build an estimate for collective communications
based on a one-to-many and many-to-one pattern. In particular, in this paper we
have further studied different solutions to the problem of sending information with
different sizes located on the limits of partitions between processes (see Fig. 1(b)),
whose size is located on the congestion areapredictedby the communicationmodel.
The communication paradigms considered are: Chaotic Non-Blocking (CNB), Di-
videdChaoticNon-Blocking (DCNB)andSubgroup-Based(SB)Communications.
CNB is characterized as a naive approximation, with highly balanced computing
phase (thanks to the benchmark and directives of HeteroMPI) and the use of non-
blocking communication directives for overlapping. DCNB is developed with the
idea of coping with the problem of having communications located on the conges-
tion region. In order to evade the congestion region predicted by the model in the
network, it is necessary to introduce very complex control code to correctly retrieve
the data, also making it completely independent of the particular algorithm, thus
only dependent on the parameters of the network and the size of the message passed
to the communication framework, posing as a robust algorithm for subdivision of
messages and ordered reconstruction upon reception that evades the congestion
area. On the other hand, SB is developed with the idea of evade control code and
make use of divided messages. Introducing an ordered communication pattern by
means of subgroups of processes and collective communications we eliminate the
need of control code.

4 Experimental Results

In the present section, we describe the images and heterogeneous cluster used in
our studies, along with a comparison of the communication times obtained for
the different communication frameworks mentioned before.

4.1 Heterogeneous Cluster and Hyperspectral Image

The heterogeneous cluster used is located in the Heterogeneous Computing Lab-
oratory of the University College Dublin. It is formed by 16 different machines
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Fig. 1. (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agri-
cultural and forest features at Indian Pines, Indiana. (b) Communication of a shared
part of the hyperspectral image between neighboring processes.

interconnected by two level 5 Cisco switchs that allows hardware reconfigura-
tion of bandwidth between nodes. The processors are as follows: one IBM x306
3.0GHz AMD processor; two IBM x326 2.2GHz AMD processors; two Dell Pow-
erEdge SC1425 Xeon processors at 3.0GHz and 2.2GHz; 6 Dell PE750 Pen-
tium 3.4GHz processors; 3 HP DL140 Xeon Processors at 2.8GHz, 3.4GHz and
3.6GHz; two HP DL320 Celeron at 2.9GHz and 3.4GHz Pentium 4 Processors.
The cluster is connected via an Ethernet switch with adjustable bandwidth (from
few Kilobytes) on each link. In this research, we have only used 15 machines due
to a problem of disk space in node 2 during experiments.

The image used in the experiments is characterized by very high spectral reso-
lution (224 narrow spectral bands in the range 0.4-2.5 μm) and moderate spatial
resolution (614 samples, 512 lines and 20-meter pixels). It was gathered over the
Indian Pines test site in Northwestern Indiana, a mixed agricultural/forested area,
early in the growing season. Fig. 1(a) shows the Indian Pines AVIRIS hyperspec-
tral data set considered in experiments. The data set represents a very challenging
classification problem and it is a scene universal and extensively used as bench-
mark to validate classification accuracy of hyperspectral imaging algorithms.

4.2 Communication Times

Our experiments have focused on the measurements of the communication times
for each paradigm used on communicating the data located on the borders of
each partition assigned to the different processor on a processing power basis,
producing thus different number of messages and sizes. Each execution has been
made with the same group of processors, only varying the data assigned due
to particular processing load at each node, except in the case of SB, where
additional subgroups are created to scatter the data from the borders.
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Fig. 2. Mean communication time for each particular communication paradigm

In Fig. 2, we show the mean communication time of the 15 machines using
each one of the communication paradigms before mentioned. As can be seen,
before reaching 6972-9296 bytes the CNB method is similar to DCNB, as ex-
pected from the model (we are still before the congestion area in most of the
processors which is located around 3-4KB), thanks to small messages and no
overhead for control in this implementation. Once we reach 9296 bytes, all the
processes enter the congestion region, occurring then the effects of non-linearity
in the communications[9]. Now, the best results are obtained by the DCNB. This
is due to the use of division of the original message into several smaller messages
that will fall out of the congestion area. Even though the overhead introduced
with the control code, this implementation gives the best results, showing that
the division of messages poses as a key solution to the problem itself. Also from
the figure, we can see that the times of the SB are worst than those of the DCNB,
but still very close, specially when the size of messages reach the congestion area,
due to elimination of control overhead and ordered nature imposed by groups
and Scatter operations. This is a very promising solution to the communica-
tion problem studied in this paper, upon the inclusion of non-blocking divided
collective communications and overlapping groups.

In general, the best results are those of the DCNB, but all the paradigms
show a logarithmic scaling behavior and approximation between values due to
higher message sizes and overhead of the network, until the linearity is regained
when reaching 65KB (as predicted by the model).

5 Conclusion

The aim of this paper has been the study of different collective communication
paradigms for its use on the implementation of parallel hyperspectral imaging
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algorithms on heterogeneous networks of computers, using for it HeteroMPI li-
brary and communication models. The results obtained are very promising and
reveal different solutions and approaches varying in complexity. As future work,
we plan to integrate subgroups and collective nonblocking scatter/gather oper-
ations which may allow us to resolve the problem of excessive communications
in the congestion area
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