energies MBPY

Article

A Novel Statistical Learning-Based Methodology for
Measuring the Goodness of Energy Profiles of
Applications Executing on Multicore

Computing Platforms

Muhammad Fahad *©, Arsalan Shahid‘”, Ravi Reddy Manumachu'® and Alexey Lastovetsky

School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland;
arsalan.shahid@ucdconnect.ie (A.S.); ravi.manumachu@ucd.ie (R.R.M.); alexey.lastovetsky@ucd.ie (A.L.)
* Correspondence: muhammad.fahad@ucdconnect.ie; Tel.: +353-1-716-2521

check for
Received: 29 June 2020; Accepted: 28 July 2020; Published: 1 August 2020 updates

Abstract: Accurate energy profiles are essential to the optimization of parallel applications for
energy through workload distribution. Since there are many model-based methods available for
efficient construction of energy profiles, we need an approach to measure the goodness of the profiles
compared with the ground-truth profile, which is usually built by a time-consuming but reliable
method. Correlation coefficient and relative error are two such popular statistical approaches, but they
assume that profiles be linear or at least very smooth functions of workload size. This assumption
does not hold true in the multicore era. Due to the complex shapes of energy profiles of applications
on modern multicore platforms, the statistical methods can often rank inaccurate energy profiles
higher than more accurate ones and employing such profiles in the energy optimization loop of an
application leads to significant energy losses (up to 54% in our case). In this work, we present the
first method specifically designed for goodness measurement of energy profiles. First, it analyses the
underlying energy consumption trend of each energy profile and removes the profiles that exhibit a
trend different from that of the ground truth. Then, it ranks the remaining energy profiles using the
Euclidean distances as a metric. We demonstrate that the proposed method is more accurate than the
statistical approaches and can save a significant amount of energy.

Keywords: energy efficient computing; accurate energy modelling; green computing; similarity
matching; pattern recognition; anomaly detection

1. Introduction

Energy is identified by the International Energy Agency (IEA) as a major contributor to climate
change [1,2]. Energy efficiency is central to the efforts of IEA to combat climate change [3]. Information
and communications technology (ICT) systems and devices are predicted in the worst-case scenario to
use up to 51% of global electricity in 2030 and contribute up to 23% of globally released greenhouse
gas emissions [4]. Therefore, energy efficiency in ICT is becoming a grand technological challenge and
is now a first-class design constraint in all computing settings [5,6].

Energy efficiency in ICT can be achieved at the hardware level (or system level) and software level
(or application level). While the system-level energy optimization approach focuses on minimizing
the energy consumption of the whole node by employing techniques such as clock and power gating,
dynamic voltage, and frequency scaling, etc. [7-9], application-level energy optimization techniques
use application-level models and model variables such as workload distribution, number of processes,
number of threads, etc. [10,11] as decision variables for energy optimization of applications.
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Accurate energy profiles as functions of the workload are essential to the optimization of parallel
applications for energy through workload distribution [12]. There are many model-based methods
for efficient construction of energy profiles but none of them is accurate in all situations. Therefore,
to pick the best method in a given situation, we need a way to measure the goodness of energy profiles
produced by different methods when the ground-truth profile, often built by a time-consuming and
expensive but reliable method, is available. We define the goodness as the accuracy of a profile against
the ground truth profile. Here, the ground-truth refers to the baseline profile or the reference value for
the comparison. State-of-the-art but inaccurate energy measurements used in energy optimization of
applications can result in significant energy losses [13], up to 84% in some real-life settings [14].

Pearson correlation coefficient [15] and average prediction error (also known as relative error) [16]
are the most commonly used statistical measurements to determine the accuracy of energy profiles.
A plethora of research work including [5,13,14,17-19] use average, maximum and minimum prediction
errors to determine the accuracy of energy profiles. References [20-23] are some of the notable works
which used the correlation coefficient to determine to determine whether the energy profiles follow the
ground truth.

However, there are research works questioning the effectiveness of both techniques for using
goodness measurement of energy profiles. For example, Rico-Gallego et al. [24] argue that the relative
error is lower for a profile that underestimates than for a profile that overestimates, and thus can
negatively impact the interpretation of the results. Similarly, Fahad et al. [13] demonstrate that the two
statistical measures do not capture the holistic picture of the energy consumption trend of the profiles,
and thus are blind to the qualitative differences of the energy profiles and the ground truth.

In general, both popular statistical techniques are highly sensitive to outliers and rely on the
assumption of linear or smooth increase of energy consumption by applications with the increase of
workload. However, the energy profiles of applications on modern multicore platforms are highly
non-smooth and non-linear. Therefore, the existing statistical measures can rank an inaccurate energy
profile higher than accurate ones. The reason is two-fold. First, in the presence of significant variations
in the energy profiles, they do not capture the difference in the general trend of energy consumption.
Second, they do not capture the similarities in variations.

While the general direction of energy profiles of applications on multicore platforms is reported as
a near-linear increasing function of workload size, the shape of the profile can be highly non-linear and
non-smooth [11]. We distinguish the terms trend and shape using the following example. Consider the
sample energy profiles shown in Figure 1. The general direction of all three profiles, which represents
the underlying energy consumption trend, is increasing with the increase in workload. However,
their shapes are different. The energy profile Modell is linear whereas the shapes of Real and Model2
are non-linear and non-smooth.
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Figure 1. Sample dynamic energy consumption profiles.
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While the goodness measuring problem is comparatively less studied for the energy of computing,
a plethora of methods have been proposed to solve this problem in many other fields such as data
mining, time series similarity analysis, and graph (matching) theory. Popular similarity measures
for pattern matching are cosine similarity [25], dynamic time warping [26], angular metric for
shape similarity (AMSS) for time series data [27], and autoregressive integrated moving average
(ARIMA) method [28-32]. Distance metrics used to determine the pattern matching include Euclidean
distance [33-35] and graph-edit-distance (GED) [36]. We provide a brief overview of the popular
approaches in these faculties and why they are not applicable straightforwardly for determining the
goodness of energy profiles in the Supplementary Materials [37].

To summarize, there is no effective metric to measure the goodness of energy profiles. In this
work, we present a novel methodology called trend-based similarity measure (TSM) of energy profiles,
which measures the similarity between a given energy profile and the ground truth. TSM is designed to
capture the underlying energy consumption trend of the profiles and is composed of the following four
stages: (i). The regression model of the energy profile is learned, (ii). The regression fits of this energy
profile and the ground truth are compared to determine if they exhibit the same trend, (iii). If they do
not, then the energy profile is branded fundamentally inaccurate; (iv). If they do, the distance between
the regression models of the energy profile (that follows the same trend-line as of the ground truth) and
the ground truth is determined using Euclidean distance as a metric of goodness of the energy profile.

To the best of our knowledge, this is the first work to estimate the goodness of energy profiles
by taking into consideration the qualitative difference of the underlying energy consumption trends.
Additionally, unlike other statistical methods used for goodness estimation, it uses the Euclidean
distance metric for quantitative estimation of similarity between non-linear and non-smooth profiles,
increasing the accuracy of estimation. We compare TSM with popular approaches such as Euclidean
distance, average and maximum prediction errors, and correlation coefficient for a diverse set of
235 application energy profiles obtained on multicore heterogeneous hybrid computing platforms
using three popular energy measurement approaches (i). System-level measurements using power
meters, (ii). Integrated on-chip power sensors, and (iii). Energy predictive models. It is shown
that the popular statistical approaches do not capture the underlying energy consumption trend and
thus erroneously rank an inaccurate energy profile as better than more accurate ones in some cases.
We demonstrate that using inaccurate profiles, obtained with state-of-the-art measurement tools, in
energy optimization loop may lead to significant energy losses (up to 54% in our case). We find TSM
to be more effective when employing in the energy optimization loop than the popular statistical
approaches. In summary, the main contributions of this work are:

1. A novel methodology to measure the similarity between an energy profile and the ground
truth. To the best of our knowledge, the proposed methodology is the first work that takes into
consideration the qualitative differences of the energy consumption trend of the profiles and
ranks the energy profiles based on their similarity with the ground truth.

2. An experimental validation of the proposed methodology for a diverse set of 235 application
energy profiles on modern multicore hybrid heterogeneous computing platforms.

3. A comprehensive comparative analysis of the proposed methodology with popular statistical
approaches such as correlation, average error, and Euclidean distance, which are commonly used
to compare the accuracy and similarity of energy profiles as well as time series of equal lengths
in general. We demonstrate that all three statistical approaches fail to capture the qualitative
difference of an energy profile and the ground truth, and thus fail to distinguish the energy profiles
based on their energy consumption trend. Therefore, they can mislead to consider as similar the
energy profile whose energy consumption trend is different from that of the ground truth.

4. We demonstrate how the proposed methodology can help in determining whether the energy
model that is used to construct the energy profile, includes an extraneous contributor that does
not reflect the energy consumption by the application, or it lacks some essential contributor to
energy consumption by the application.



Energies 2020, 13, 3944 4 of 22

5. We compare the effectiveness of our proposed method with state-of-the-art statistical approaches
for energy optimization. We demonstrate that the use of the state-of-the-art instead of TSM in the
energy optimization loop leads to significant energy losses (up to 54% in our case).

The rest of the paper is organized as follows. We present the proposed solution method in Section 2.
The experimental results and a general discussion are presented in Section 3. Finally, we conclude the
paper in Section 4.

2. Materials and Methods

This section is organized as follows. We start with the formulation of the goodness measuring
problem for energy profiles which are constructed using different energy estimation approaches.
We then give an overview of the state-of-the-art goodness of fit techniques followed by a study on their
inadequacies to determine the goodness of energy profiles of the applications executing on multicore
computing platforms. Then, we describe our proposed solution method TSM. Finally, we explain the
experimental platform, the dataset of applications used in this work, and the experiment methodology
used to validate TSM.

2.1. Goodness Measuring Problem Formulation

Accuracy or goodness of energy profiles of an application can be defined as the degree to which
the energy consumption data of the methods which are employed to produce these profiles, conform
to the ground truth. Hence, the similarity of an energy profile with ground truth is also implicitly
determined when calculating its accuracy. An energy profile of an application is represented as a
function of workload size. We define the goodness as a measure that provides an absolute value of
resemblance between two vectors (ground truth and an energy profile) in a solution space (i.e., set of
energy profiles (EPS) of an application).

Goodness Measuring Problem: Consider an energy profile E(A) of an application A given by a
discrete set, E(A) = {e(x1),e(x2),...,e(xn)} where e(x;) i € {1,2,--- ,n} is the energy consumption by
the workload size x;. Let there be m energy profiles of the same application A for the same range of
problem sizes constructed with different energy measurement approaches. Let EPS4 denotes the set of
energy profiles of an application A. Then, the problem is to find the best energy profile in EPS4 which
has maximum resemblance with ground truth among all energy profiles.

2.2. Challenges With State-of-the-Art Practices to Measure the Goodness of Energy Models

Multicore architectures are now prevalent in all computing settings ranging from a handheld
mobile device to HPC computing platforms and supercomputers. However, the advent of the
multicore era has also introduced several inherent complexities, which are severe contention for shared
on-chip resources due to the tight integration of tens of cores, non-uniform memory access (NUMA),
and dynamic power management (DPM) of multiple power domains such as CPU sockets, Dynamic
random-access memory (DRAM). The functional relationships between the energy and workload
size have complex (non-linear and non-smooth) properties on modern multicore CPUs. Profile-based
energy optimization algorithms [11,12] leverage the profile variations to find energy-efficient workload
distributions. At the same time, the state-of-the-art statistical approaches consider energy profiles
as linear or smooth functions of workload sizes to find their goodness. The failure of capturing the
qualitative differences in energy profiles can drastically affect the energy optimization efforts and can
cause significant energy losses [13,14].

We present two case studies to highlight the inadequacies of state-of-the-art statistical approaches.
The first is based on the results of [13]. Consider an energy profile of multiplication of two dense N x N
matrices on an Intel Haswell server comprising of two CPU 12-core sockets, using Intel Math Kernel
Library routine to compute the Double-precision General Matrix Multiplication (MK-DGEMM) routine
(see Figure 2). We run two MKL-DGEMM routines in parallel on both sockets. Each routine solves a



Energies 2020, 13, 3944 5o0f 22

different workload size (N X N). For the first socket, the workload size ranges from 10,000 x 10,000 to
14,928 x 14,928 with a constant step size of 64. For the second socket, the range is from 15,000 x 15,000
to 19,928 x 19,928 with a constant step size of 64. The x-axis in the Figure 2 shows the workload sizes
for socketl. We measure the total dynamic energy consumption by these two parallel workloads using
Intel Running Average Power Limit (RAPL) [38] and HCLWattsUp [39]. The HCLWattsUp Application
Programming Interface (API) provides system-level power measurements using external power meters,
which is the ground truth.

«HCLWattsUp «=RAPL «=RAPL Calib.
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Figure 2. Dynamic energy consumption profile segments of matrix-matrix multiplication using Intel
Math Kernel Library (MKL) constructed with HCLWattsUp and Intel Running Average Power Limit
(RAPL) on HCLServer01.

RAPL always reports less the dynamic energy consumption, resulting in the average and maximum
errors of 64% and 69% respectively. The Euclidean distance of 92,104 between these profiles is large, but
there exists a strong positive correlation of 0.97 between them given by the Pearson correlation coefficient.
Despite the strong positive correlation, the profiles disagree on energy consumption behavior for
almost 50% of the data points. For example, for data points (NN) {10512,11152,11984,12624,13712},
HCLWattsUp reports a percentage decrease of {8,5,3,2,6} in dynamic energy consumption with respect
to immediately preceding data points. In contrast, RAPL reports a percentage increase of {8,14,9,13,13}.
Similarly, while HCLWattsUp suggests a percentage increase for data points {12944,13328,13584,13968}
by {3,7,8,3}, RAPL suggests a decrease of {9,7,8,8}.

Furthermore, although both profiles exhibit an overall rising trend of energy consumption,
the degrees of the slopes are significantly different. The divergence between the profiles increases with
the increase in workload sizes. All three statistical measurements fail to capture this behavior.

The high positive correlation coefficient between the profiles indicates that the RAPL profile can
be calibrated. Hence, its average and maximum errors can be reduced to 18% and 59% from 64%
and 69% respectively by calibrating the RAPL readings with respect HCLWattsUp (using a constant
positive offset). The Euclidean distance will also be reduced from 92,104 to 26,502 after calibration.
However, the calibration does not improve the overall qualitative difference in energy consumption
behavior. The overall energy consumption trend remains different after calibrating RAPL readings.
It suggests that the correlation coefficient, average error, and Euclidean distance are not sufficiently
accurate measures for comparing the similarity of energy profiles.

The next case study demonstrates that a non-similar energy profile used as an input to an energy
optimization algorithm can cause significant energy losses. In Figure 1, two sample energy profiles are
compared against the ground truth (labeled Real). The average errors of profiles Modell and Model2
against the ground truth are 62% and 64%. The Euclidean distance between profiles Model1, Model2,
and the ground truth is 18,108 and 33,550. Model1 and Model?2 are equally strongly correlated with the
ground truth with the correlation coefficient equal to 0.91.
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While Modell is ranked better than Model2 by both the Euclidean distance and average error,
it exhibits different energy consumption behavior for more than 40% of data points as compared with
ground truth. Hence, it causes a significant loss of energy when input to the energy optimization
algorithm [12], which employs the workload size as the decision variable for energy optimization of
an application. For example, Modell only provides 21% of workload distributions that are the same
as those provided by ground truth when used as an input to this algorithm for energy optimization.
In contrast, Model2 provides the same workload distributions as of the ground truth for 79% of problem
sizes despite its higher average error and greater Euclidean distance. Therefore, Model? is better than
Model1 for the use in energy optimization or energy consumption analysis of the application.

Thus, the average error, Euclidean distance, and correlation coefficient are not sufficient to measure
the similarity between energy profiles despite being the most used statistical measures for this purpose.
The average error and Euclidean distance are highly sensitive to outliers and do not capture the
similarity of energy consumption trends. They are also highly sensitive to the transformations such
as uniform amplitude/time scaling, shifting, etc. Pearson correlation coefficient, on the other hand,
assumes a linear relationship between the variables which might not be always true. It can also be
easily misinterpreted as the high correlation coefficient does not necessarily mean a strong linear
relationship or high similarity between two variables. Finally, they can mislead in many cases by
erroneously grading the energy profile the best and causing significant energy losses when used for
energy optimization of an application.

2.3. Trend-Based Similarity Measuring Methodology for Energy Profiles

We now present our solution method called trend-based similarity measure of energy profiles
(TSM) to determine the similarity between the energy profiles and the ground truth. We use the
term “model” to represent the regression model of the energy profile for illustration purposes, unless
stated otherwise.

The inputs to TSM are the precision setting and a set of energy profiles (constructed with different
energy measurement approaches) and the ground truth (EPS). The precision setting is the same as the
experimental settings used to construct the energy profiles of the application. For example, for each
data point in the energy function for an application, we repeatedly execute the application until the
sample mean lies in the 95% confidence interval and a precision of 0.025 (2.5%) has been achieved.
The output of TSM is the ranking of energy profiles based on their distance which reflects their
resemblance with the ground truth.

TSM is composed of the following four stages: (i). The underlying regression model of the energy
profile is learned, (ii). The regression fits of this energy profile and the ground truth are compared
to determine if they exhibit the same trend, (iii). If they do not, then the energy profile is branded
fundamentally inaccurate; (iv). If they do, the distance between the regression models of the energy
profile (that follows the same trend-line as of the ground truth) and the ground truth is determined
using Euclidean distance as a metric of goodness of the energy profile.

2.3.1. Model Fitting

Energy profiles are usually constructed as a function of problem size, CPU threads/cores, or CPU
frequency. The configuration parameters have a strong influence on the overall energy consumption
behavior of the application from the energy profiles. The experimental observation in our previous
studies [13,14] is that the overall trend of the energy profile of an application is a monotonically increasing
function of workload size. Like the energy profiles, their underlying energy consumption trend can be
linear or non-linear, however, the general direction of energy consumption is monotonically increasing.

The authorsin [11] also report the same. They find that the dynamic energy profiles of an application
in the single-core era increase monotonically with problem size and are smooth linear functions of
problem size. However, multicore CPUs exhibit inherent complexities including (a) non-uniform
memory access (NUMA); (b) severe contention for shared on-chip resources such as last level cache
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(LLC), interconnect, and DRAM controllers due to tight integration of tens of cores; and (c) dynamic
power management (DPM) of CPU sockets and DRAM. Due to these complexities, while the trend of
the energy profiles is still a monotonically increasing function of workload size, the functional shape is
non-smooth and non-linear.

Therefore, the first step of TSM is based on the regression analysis of the energy profiles to examine
their underlying regression models using the application configuration parameters as predictor
variables to model the energy consumption. We use polynomial regression to model the relationship
between the energy consumption of an application and its configuration parameter.

Polynomial regression fits the relationship between the dependent variable (the energy
consumption) and the predictor variable (the application configuration parameter), as an n-th degree
polynomial. Therefore, it can estimate both linear and non-linear models. For example, the linear
models are fit as polynomial regression of degree 1 whereas the non-linear models are fit as higher
(i.e., greater than 1) degrees of polynomial regression (such as quadratic, cubic, etc.). To facilitate clarity
of exposition, the mathematical form of kth order of polynomial regression model [40] can be stated
as follows:

fe(y) = co+ Z cixt 1)
im1

where x = {x1,...,x,} is the predictor variable; ¢y is the intercept; k is the degree of polynomial; and
c = {c1,¢2,...,cn} is the vector of coefficients (or the regression coefficients). In real life, there usually is
stochastic noise (measurement errors). Therefore, the model can be expressed [41] as

fe(y) = fe(y) +e )

where the error term or noise € is a Gaussian random variable with expectation zero and variance 02,

written € ~ N (0, 02).

In [42], the authors report that the dynamic energy models having a non-zero intercept violate the
basic principle of the theory of energy predictive models for computing. This is because dynamic energy
is consumed by the CMOS component due to the switching activity when executing an application.
There is no switching activity in the absence of workload execution, and therefore the system dissipates
static energy only. Hence, regression models should predict no dynamic energy consumption when
there is no workload. Therefore, to conform to this principle, we force the intercept to be zero while
fitting the regression models.

To choose the order of the polynomial regression model reflecting the best fit, we follow a systematic
approach called the forward selection procedure. In this approach, the models are successively fit in
increasing order of polynomial and the significance of regression coefficients is tested at each step of
model fitting. The order is kept increasing until an F-test for the highest order term is non-significant.
Briefly, the F-test of overall significance indicates whether the regression model provides a better fit to
the data than a model that contains no independent variables. It has the following two hypotheses:
(i). The null hypothesis: It states that the model with no independent variables (intercepts only) fits the
data equal to the regression model, and (ii). The alternative hypothesis: It states that the regression
model fits the data better than the intercept-only model. A regression model is considered as significant
if the p-value of the F-test is less than the significance level (i.e., 95% of the confidence interval or
0.05 level). We find that the first and third-order polynomials fit for all the energy profiles in our
application suite.

We want to emphasize here that the purpose of fitting the regression model is not to build an
offline energy model to predict the energy consumption by employing a predictor variable. Instead,
the regression analysis is performed to examine the underlying model of energy profiles in an EPS to
facilitate the comparison of their energy consumption trend. Therefore, we fit the regression model on
the whole dataset instead of splitting it into training and test datasets.



Energies 2020, 13, 3944 8 of 22

2.3.2. The Discrepancy Analysis

In the second step, we compare the regression models of energy profiles in the EPS and the
ground truth. We term this test as the discrepancy analysis. The following conditions must hold for
the regression models of two energy profiles to be ideally alike:

1. Theregression models of the energy profile and the ground truth must follow the same orientation.
Both regression models must exhibit the same increase and decrease in the range of all the
data points.

2. The regression models of the energy profile and the ground truth must not intersect at any point.

3.  The distance between the regression models of the energy profile and the ground truth must be
the same for the range of all the data points.

All these properties must be satisfied by a regression model to be considered as ideally similar to
that of the ground truth.

Mathematically, the idea can be expressed as the slope and its direction must be the same for
the regression models of an ideally similar energy profile and of the ground truth. The slope and
its direction can be determined by taking the first and second derivatives of the regression models.
Therefore, we compare the first and second derivatives of the regression equations of an energy profile
and the ground truth. While the first derivative indicates whether the energy consumption trend is
increasing or decreasing, the second derivative tells about the shape of the underlying regression
model of the energy function. Two regression models do not follow the same trend if the second
derivative of one of them is positive (greater than zero) and negative (less than zero) for the other one,
or vice versa. However, they follow the same direction if the second derivatives of both regression
models are either positive (greater than zero) or negative (less than zero). The regression models that
do not follow the same direction are classified as opposite and consequently removed from the EPS.

In the next step, we compare the coefficients of the second derivatives of the regression models
that follow the same direction. Two models are considered as same if the difference of coefficients
of their derivatives is within an interval of input precision settings. To illustrate this, consider two
third order (cubic) polynomial regression models r1 and 2. Let r1 is the regression model of the
ground truth. Let the coefficients of the second derivatives of both models are c1 and c2 respectively.
Then, the difference between the coefficients of the second derivatives of both models is calculated as
€ :|(c1 - C2| /¢1x100. Now, if € lies within the input precision settings, then both regression models
are considered as the same. Otherwise, they are classified as similar.

To summarize, we analyze the qualitative behavior of regression models of the energy profiles and
the ground truth by comparing the derivatives of their polynomial functions. As a result, we classify
the energy models into one of the following three categories:

1.  Opposite: The slopes of the regression models of an energy profile and the ground truth are in
the opposite direction. The regression models of an energy profile and the ground truth exhibit
opposite behavior such that one of them is increasing at x and the other one is decreasing with x.
Furthermore, the shape of the regression fit is concave up for one of them and concave down for
the other one.

2. Same: The slopes of the regression models of an energy profile and the ground truth are identically
the same and follow the same direction. This class represents the energy profiles which are ideally
the same to their corresponding ground truths.

3. Similar: The slopes of the regression models of an energy profile and the ground truth are different,
however, they follow the same direction. It indicates that the energy profile is neither the same as
the ground truth nor in the opposite direction to it.

As a result of this step, the energy profiles that have regression fits in the opposite direction to
that of the ground truth are removed from the EPS. Consequently, the resulting EPS contains only the
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same or similar energy models. The goodness of the remaining energy profiles to the ground truth is
quantified in the third step.

2.3.3. The Distance Metric

In this step, we determine the distance between the regression fit of each energy profile and the
ground truth in the remaining EPS. For this purpose, we use Euclidean distance as a distance metric to
establish an absolute value of the distance of the regression fit of each profile and the ground truth.
Because of its triangular-inequality property, Euclidean distance is used to index the model space
which speeds up the search and matching in general, especially for the huge model space. Furthermore,
it helps in ranking the similar profiles based on their distance with the ground truth in an EMS.

Hence, to rank the profiles based on their similarity, first, the Euclidean distance between the
regression models of the profiles and the ground truth belong to the same EPS is computed. Then, the
energy profiles are ranked according to the Euclidean distance between their regression models and
that of the ground truth. The energy profile whose regression model has the least Euclidean distance
with that of the ground truth is considered as the most similar profile in that EPS. The final output of
this step is the sets of the energy profiles with similarity ranks. Two profiles may have the same rank if
their Euclidean distance differs by less than or equal to the input precision.

2.4. Experimental Setup

In this section, we explain the experimental platform, the application dataset used in this work,
and the experiment methodology used to validate TSM.

2.4.1. Experimental Platform and Applications

The dataset used in this work comprises of 235 energy profiles of different application
configurations executed on multicore heterogeneous hybrid computing platforms and constructed
with on-chip sensors, power meters, or energy predictive models employing performance monitoring
counters (PMCs) as predictor variables. The profiles are constructed as the results of the research
works [13,14]. The details on experimental setup, platforms, application suite, configuration parameters,
and the boundary conditions to construct the dataset are presented in the Supplemental Materials [37]
of this work. Briefly here, the application configuration parameters are (a) problem size, (b) number of
CPU threads, or the number of CPU cores. The application suite used to construct the profiles contains
highly optimized memory bound and compute-bound scientific routines and two unoptimized routines.
The optimized routines include matrix multiplication employing DGEMM offered by OpenBLAS
package, matrix multiplication employing DGEMM offered by Intel Math Kernel Library (MKL),
two-dimensional FFT (2D FFT) from FFTW package, 2D FFT from Intel MKL, benchmarks from NASA
Application Suite (NAS), high-performance conjugate gradient (HPCG) from Intel MKL, and stress.
The unoptimized routines are basic matrix multiplication and matrix-vector multiplication.

We employ three nodes for constructing the energy profiles. The first node is HCLServer01.
It has an Intel Haswell E5-2670 multicore CPU containing 24 physical cores with 64 GB DDR4 main
memory. It hosts two accelerators, one Nvidia K40c GPU and one Intel Xeon Phi 3120P. The Nvidia
GPU has 3584 processor cores with 12 GB main memory and memory bandwidth of 549 GB/s. The Intel
Xeon Phi contains 57 processor cores with 6 GB GDDR5 main memory and memory bandwidth of
240 GB/s. The second node is HCLServer(2. It contains an Intel Xeon Gold 6152 Skylake multicore CPU
consisting of 22 cores and 96 GB DDR4 main memory. It hosts one Nvidia P100 GPU. The GPU has
2880 processor cores with 12 GB GDDR5 main memory and memory bandwidth of 288 GB/s. The third
node is HCLServer(3. It hosts an Intel Xeon Platinum 8180 Skylake multicore CPU having 56 cores
with 187 GB main memory.

A Watts Up Pro power meter is installed between the wall A/C outlet and the input power socket
of a node. The power meters are calibrated periodically using a Yokogawa WT310 power meter,
which is an ANSI C12.20 revenue-grade power meter. The sampling speed of Watts Up Pro power
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meters is one sample every second. The datasheet reported accuracy is +3%. The unit of measurement
is 0.5 watts.

For the on-chip sensor measurements, we use RAPL [38] to determine the energy consumed
by the application kernels executing on Intel CPUs. For the Nvidia GPUs, NVIDIA Management
Library (NVML) [43] is employed. And for Intel Xeon Phi, the Intel System Management Controller
chip (SMC) [44] (using Intel manycore platform software stack (MPSS) [45]) is utilized. HCLWattsUp
interface [39] is used to obtain the power measurements from the WattsUp Pro power meters. The Intel
MKL installed in the nodes has version 2017.0.2; the CUDA versions present on HCLServer01 and
HCLServer02 are 7.5 and 9.2.148.

The statistical methodology used to obtain a data point reliably using the different tools is
explained in [37]. Briefly, the methodology determines the sample mean (execution time or dynamic
energy or PMC) by executing the application in a loop. The loop is terminated when the sample
mean meets the statistical confidence criteria (95% confidence interval, precision of 0.025 (2.5%)).
The student’s t-test is employed to determine the sample mean. Pearson’s chi-squared test is used to
ensure that the observations follow a normal distribution to satisfy the assumptions of the test.

2.4.2. Experimental Methodology to Validate TSM

We classify our suite of energy profiles (EPS) into the following two groups:

1. Group A (Sets of many energy profiles): Group A comprises of the EPS where there is more than
one energy profile of the same application constructed with different approaches such as on-chip
power sensors, system-level power measurements provided by power meters, etc.

2. Group B (Sets of single energy profiles): Group B comprises of the EPS where only one energy
profile is compared with the ground truth.

For each group, we fit the regression models as n-th order of polynomial for each energy profile and
their corresponding ground truths belonging to the same EPS. To choose the best order of polynomial
approximation, we follow the forward selection procedure as explained in Section 2.3.1. Intuitively,
the polynomial order should be the same for the regression models of an energy model and its
corresponding model of the ground truth belonging to the same EPS. As a result of this sanity check, we
reject the energy functions which have a different order of polynomial as a best fit than the regression
model of the ground truth.

In the next step, we analyze the qualitative behavior of regression models of the energy profiles
and the ground truth by comparing the derivatives of their polynomial functions as explained in
Section 2.3.2. The energy profiles classified as opposite are removed from their respective EPS, as a
result of this step. In the third step, we determine the similarity between the remaining energy profiles
and the ground truth using Euclidean distance. We compare the results of TSM with other statistical
approaches such as correlation, Euclidean distance, and average error to compare the accuracy and
similarity of energy profiles (and for the time series of equal length in general). The Euclidean distance
that is compared with TSM is the distance between the energy profiles and the ground truth. In contrast,
TSM uses the Euclidean distance between the regression models of the energy profiles and the ground
truth in an EPS.

3. Results and Discussion

This section is structured as follows: (i). Comparison of the accuracy of energy profiles determined
with TSM and other popular statistical approaches, (ii). A general discussion on the results obtained
and their interpretation, and finally (iii). Comparison of the effectiveness of TSM with other popular
statistical approaches using a profile-based energy optimization algorithm as a yardstick that employs
the workload size as a decision variable.



Energies 2020, 13, 3944 11 of 22

3.1. Experiment Results

Group A (Sets of many energy profiles): The similarity ranking by TSM and popular statistical
approaches for the energy profiles in each EPS that belongs to group A are provided in the
supplemental [37]. One can observe that the correlation coefficient does not always distinguish
much between the energy profiles. Consider, for example, the profiles in EPS DGEMM_EqualLoad.
The profiles RAPL_Parallel and RAPL_Combined both have a correlation of positive 0.9993 with
the ground truth (HCLWattsUp_Parallel). Similarly, the correlation coefficient for RF_Additive and
NN_Additive is 0.9999 with the ground truth in EPS DGEMM_Predictive Models.

Similarly, the average prediction error also misleads in many cases. Consider, for
example, the profiles in EPS DGEMM_EqualLoad. The average prediction error suggests the
HCLWattsUp_Combined as the most similar profile with the ground truth. However, TSM suggests
RAPL_Combined as the most similar, and HCLWattsUp_Combined as the most different among all
three profiles in EPS DGEMM_EqualLoad. A visual illustration of regression models of the profiles
in EPS DGEMM_EqualLoad as presented in Figure 3, also conforms to the TSM. In general, one can
observe that regression models of all three profiles in EPS DGEMM_EqualLoad follow the same pattern
as of the ground truth (HCLWattsUp_Parallel). However, both the RAPL_Parallel and RAPL_Combined
exhibit the closest resembling pattern with the ground truth for the range of all problem sizes as
illustrated in Figure 3b. HCLWattsUp_Combined, on the other hand, exhibits a slightly different
pattern at both ends of data points (that is the range of very small problem sizes and very large problem
sizes) as shown in Figure 3a. Therefore, while it follows the same orientation, it is ranked as the least
similar profile in its EPS.
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Figure 3. Regression models of energy profiles in set of energy profiles (EPS) DGEMM_EqualLoad
constructed with (a) HCLWattsUp, and (b) RAPL. Here, DGEMM refers to Double-precision General
Matrix Multiplication application.

However, the similarity results as presented in the supplemental [37] suggest that overall the
Euclidean distance between the energy profiles proves to be more efficient than the correlation
coefficient and average prediction error. In most of the cases, it suggests the similarity ranking in line
with TSM. However, it also misleads in some of the cases. Consider, for example, the similarity ranking
for the profiles in EPS DGEMM_Predictive Models. Euclidean distance between the profiles ranks
LM_additive as the third most similar profile, whereas TSM ranks it as the fifth most similar profile.
Similarly, Euclidean distance between the profiles ranks RF_NonAdditive as the second most similar
in EPS FFT_Predictive Models, whereas TSM ranks it as the third most like the ground truth in its EPS.

It is important to note that the statistical measurements and the metrics do not capture the holistic
picture of the energy consumption trend of the profiles. Consider, for example, the profiles in EPS
DGEMM_AnMoHA. Both the Euclidean distance and average prediction error consider the profiles
Combined_3 and Combined_4 as the third most similar and fourth-most similar profiles with the
ground truth (Parallel). However, one can observe in Figure 4b that the qualitative comparison of
the regression fit of both profiles and the ground truth by TSM suggests them to have a different
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energy consumption trend and thus drop them from the EPS. The correlation coefficient ranks the
profiles in this EPS in line with TSM and ranks them as least similar. But it also does not provide
the details on their qualitative difference of the underlying energy consumption behavior. Similarly,
both the Euclidean distance and average prediction error rank Combined_2 as the least similar profile.
In contrast, TSM ranks it as the third most similar profile.
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Figure 4. Regression models of energy profiles in set of energy profiles (EPS) DGEMM_AnMoHA.
(a) Combined_1 and Combined_5 follows the same trend, Combined_2 follows similar trend, and (b) all
profiles exhibit opposite trend as of the ground truth. Here, DGEMM refers to Double-precision
General Matrix Multiplication application, and AnMoHA refers to Additive Energy Modelling of
Hybrid Applications.

Graphical illustration of regression models of the profiles in EPS DGEMM_AnMoHA as presented
in Figure 4 also confirms the same results. One can observe that Combined_3 and Combined_4 exhibit
different energy consumption behavior as of the ground truth (Parallel). However, Combined_1 and
Combined_5 follow the same direction with the same slope, whereas Combined_2 follows the same
direction but exhibits a different orientation.

Group B (sets of single energy profile): For group B, TSM classifies the similarity of energy
profiles with ground truths (after comparing their regression fits) into the three similarity categories
explained in Section 2.3.2. The similarity ranking by TSM and popular statistical approaches for the
energy profiles in each EPS that belongs to group B are provided in the supplemental [37]. One can
observe that likewise group A, all three statistical approaches fail to capture the qualitative difference
of the regression models of the energy profiles and the ground truth belong to the same EPS.

Consider, for example, the regression models of the energy profiles illustrated in Figures 5 and 6
representing the classes same and similar respectively. The regression models of the energy profiles
follow the same trend as the ground truths in both cases. However, the slopes of the regression models
presented in Figure 6 are different from their corresponding ground truths. Figure 7 illustrates the
regression models representing the class opposite. It can be observed that the regression models of the
energy profiles and their corresponding ground truths exhibit different trends. Consider, for example,
the regression models of the EPS {FFTW,G = 16,T = 7}. Here, G and T represent the number of thread
groups and the number of threads per group respectively. The slopes of the regression models of
both profiles are different and have different signs, positive for RAPL and negative for HCLWattsUp.
Figure 7c also shows the same results. One can observe while the shape of the regression model of
RAPL is concave up, it is concave down for HCLWattsUp. However, the popular statistical approaches
do not capture this behavior.
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Figure 5. Group B (sets of single energy profile), class same similarity. Group B comprises of sets of
energy profiles where only one energy profile is compared with the ground truth. Here, FFTW refers to
Fastest Fourier Transform in the West, and MKL-FFT refers to Intel Math Kernel Library kernel for
Fastest Fourier Transform.
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Figure 6. Group B (sets of single energy profile), class similar similarity. Here, G = CPU thread groups,
and T = CPU threads.

3.2. Discussion

Average error and Euclidean distance do not indicate whether the calibration can improve the
average error or Euclidean distance between two similar energy profiles, and thus can mislead to
consider an accurate energy profile as inaccurate. However, unlike average prediction error and
Euclidean distance, TSM can indicate if the average prediction error and Euclidean distance can be
reduced by calibrating the energy profile with the ground truth in an EPS. Consider, for example,
the energy profiles in EPS FFTW where the configuration parameter is the problem size M X N where
M < N, and N = 32,768. Figure 5a illustrates the regression models of the profiles. The difference
between the slopes of the regression fit of the RAPL energy profile and the ground truth is very close
to zero, and thus TSM classifies their similarity as the same. This same similarity suggests that the
regression models of both the RAPL energy profile and the ground truth exhibit the same energy
consumption behavior. Therefore, one can reduce the average prediction error and Euclidean distance
between the RAPL energy profile and the ground truth from 10.5% to 0.6% and from 1134.9 to 94,
respectively, after calibrating it with the ground truth. That is an improvement of 94% in average
prediction error and 92% in the Euclidean distance between the profile.

Similarly, consider the EPS IntelMKLFFT where the configuration parameter is CPU cores and
problem size N is 43,328. Figure 5b illustrates the regression models of the profiles. The difference
between the slopes of the regression models of both the RAPL energy profile is close to zero, but
slightly more than the difference between the energy profiles belong to the EPS FFTW. TSM classifies
both the RAPL energy profile and the ground truth as same. After calibration, one can reduce the
average prediction error and the Euclidean distance between the profiles from 13% to 2.19% and from
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6700 to 1495.83 respectively. That is an improvement of 83% in average prediction error and 78% in
Euclidean distance between the RAPL energy profile and the ground truth in that EPS.
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Figure 7. Group B (sets of single energy profile), class opposite similarity. Here G = CPU thread groups
and T = CPU threads. Here, FFT refers to Fastest Fourier Transform; FFTW refers to Fastest Fourier
Transform in the West; and DGEMM refers to Double-precision General Matrix Multiplication.

It is important to note while the similarity classes such as opposite and same are more useful
for group B, the similarity class similar provides less information. It does not present any threshold
to indicate the absolute value of the similarity between the energy profile and the ground truth.
The threshold that indicates the value of absolute similarity is dependent on the application domain.

Consider, for example, signal processing or multimedia processing applications, which are
considered as fault-tolerant and belonging to the approximate computing domains. An inaccurate
result is acceptable in such domains. Therefore, a comparatively less similar energy profile can also
serve the purpose in this case. In contrast, a high similarity value is required for applications such as
cryptography or hard real-time applications. That is why TSM does not define a threshold to indicate
the degree to which an energy profile exhibits a similar energy consumption behavior to the ground
truth. Instead, it just compares the energy consumption behavior and the shapes of the regression
models of the energy profile with the ground truth in an EPS and determines whether both have similar
shape and energy consumption behavior.

To quantify the similar energy profiles, one can take the difference of the polynomials or the
derivatives of the regression models of the energy profile under consideration and the ground
truth. A zero value of the difference between the polynomials or derivatives indicates the same
polynomials and thus the same regression models. One can give some weight to the energy profile
under consideration indicating how large is it from zero value of the difference, and thus how less
similar is it with the ground truth.

Unlike the profiles classified as same, there is little to none margin for average error and the
Euclidean distance reduction, if the profile is classified as similar, after calibration. This is because the
derivatives of the regression models of the energy profile under consideration and the ground truth
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have different slopes. Therefore, the calibration can reduce the average error and Euclidean distance
between the energy profile and the ground truth only to an extent. However, it highly depends on the
value of the similarity between the polynomials/derivatives of the regression models of the energy
profile and the ground truth in an EPS.

Consider, for example, the EPS FFTW where problem size N ranges from 35,840 to 41,920 and the
configuration of CPU threads are grouped into 8 and there are 14 CPU threads in each group. We refer
to this EPS as EPS; for illustration purposes. Figure 6a illustrates the regression models of the profiles
in EPSq. One can reduce the average prediction error and Euclidean distance between the RAPL
energy profile and the ground truth from 13.66% to 12.73% and from 5569.4 to 4520.9 after calibration.
That is an improvement of 6.81% in average prediction error and 18% in Euclidean distance between
the RAPL energy profile and the ground truth in EPS;. In contrast, consider the EPS FFTW where
problem size N ranges from 35,840 to 41,920 and all 112 CPU threads are grouped into 1 group. Let this
EPS be EPS, for illustration purposes. Figure 6a illustrates the regression models of the profiles in
EPS,. The average prediction error and Euclidean distance between the RAPL energy profile and the
ground truth can be reduced from 24.62% to 3.9% and from 78,669 to 23,184.7 after calibration. That is
an improvement of 84.16% in average prediction error and 70.5% in Euclidean distance between the
RAPL energy profile and the ground truth in EPS,. This is because the difference in polynomials and
derivatives of the regression models of both profiles in EPS; is less than the regression models in EPS;.

Another important finding is that the calibration of less similar profiles with the ground truth
can increase the maximum prediction error between them in some cases when trying to reduce the
average error and Euclidean distance. Consider, for example, the EPS EPS;. The maximum prediction
error between the RAPL energy profile and the ground truth is 29.8% which increases to 55.65% after
calibration (using the same offset that reduces the average prediction error and Euclidean distance).
That is an increase of 87% in the maximum error. We observe similar findings with other less similar
energy profiles. However, it is not the case where the similarity is higher or the same between the
energy profile under consideration and the ground truth in an EPS. The calibration improves the
maximum error, average prediction error, and Euclidean distance between such profiles.

The calibration should only be applied to profiles that exhibit a similar energy consumption trend
as of the ground truth because it only improves the Euclidean distance and prediction error, and thus,
does not improve the qualitative difference of the energy consumption trend of the profiles.

TSM also indicates whether the predictive model which is employed to construct the energy profile,
includes some extraneous contributor that does not reflect the energy consumption by the application,
or it lacks some essential contributor to the energy consumption by the application. Consider,
for example, the similarity results for EPS FFT_Predictive Models as presented in the supplemental [37].
The profile LM_NonAdditive has the highest average error and the greatest Euclidean distance with
the ground truth. However, the slopes of the regression models of LM_NonAdditive are in the same
direction as the ground truth (HCLWattsUp). Furthermore, the difference between its polynomials
and the slopes is close to that of the LM_Additive. However, LM_NonAdditive predicts energy
consumption more than the ground truth and LM_Additive. It suggests that the predictive model of
LM_NonAdditive includes some extraneous PMC which does not reflect the energy consumption by
the application.

Therefore, we apply a constant negative offset to its predictions to calibrate them with ground
truth. As a result of this calibration, the average error and Euclidean distance of LM_NonAdditive
energy profile with the ground truth is reduced from 92% to 39%, and from 3321 to 2722. This is an
improvement of 58% in average error and 18% in Euclidean distance. Consequently, the calibrated
energy profile of LM_NonAdditive is closer to LM_Additive is in terms of its average error and
Euclidean distance with ground truth. One can observe in Figure 8 that the regression model of
calibrated LM_NonAdditive is in a closer approximation of the ground truth (HCLWattsUp) and the
profile LM_Additive.
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Figure 8. Regression models of energy profiles in EPS FFT_Predictive Models, (a) Linear Models, and
(b) Linear Model NonAdditive Calibrated. Here, LM refers to Linear Model.

This suggests that the prediction error of the energy profile LM_Additive can be improved by
removing non-relevant PMCs from the set of explanatory variables. This finding conforms to the
results as presented in [42], where the authors present a study to demonstrate how the prediction errors
of PMC based energy predictive models can be improved significantly by removing irrelevant PMCs
(which does not reflect the energy consumption by the application) from the set of predictor variables.

Similar to the indication of extraneous PMCs, TSM can also indicate whether the predictive model,
which is employed to construct the energy profile, lacks essential PMCs which strongly reflects the
energy consumption by the application. Consider, for example, the regression models of energy profiles
of FFTW_32768 and MKLFFT_43328 as shown in Figure 5. The energy profiles of the application
with RAPL exhibit the same energy consumption patterns as of the ground truth. However, RAPL
under-reports energy consumption in comparison with the ground truth. It suggests that the energy
profiles of both applications lack the contributions by some essential components. The prediction
errors and Euclidean distance of both profiles can be reduced significantly by applying a constant
positive offset to its predictions to calibrate them with the ground truth. The calibration improves the
average prediction error and Euclidean distance of FFTW_32768 by 94% and 92%, respectively, and
by 83% and 78%, respectively, for MKLFFT_43328. Hence, TSM may be used as a selection criterion
of PMCs in energy predictive models to predict the energy consumption by an application. We will
investigate this direction in our future work.

To summarize, the statistical approaches (correlation coefficient, average prediction error, and the
Euclidean distance between the energy profiles) fail to distinguish the energy profiles based on their
underlying energy consumption trend. They erroneously rank an inaccurate energy profile as better
than more accurate ones in some cases. TSM, on the other hand, proves to be more effective in
capturing the energy consumption behavior of the profiles and comparing their qualitative differences.
It provides more information about the energy consumption behavior of the profiles and thus ranks
them based on their proximity with energy consumption behavior of the ground truth. Furthermore,
it can also suggest if the calibration can improve the Euclidean distance, and the average and maximum
prediction errors between the energy profile under consideration and the ground truth.

3.3. Comparison of TSM and State-of-the-Art Statistical Approaches for Energy Optimization

In this section, we compare the effectiveness of TSM with other popular statistical approaches
using a profile-based energy optimization algorithm as a yardstick that employs the workload size as a
decision variable. Furthermore, we demonstrate that inaccurate energy profiles can cause a significant
amount of energy loss when used for the optimization of an application for dynamic energy.

The profile-based energy optimization algorithms [11,12] leverage the variations (jumps and
drops) of the energy profiles and determine the workload distributions that optimize the total dynamic
energy consumption for the given workload size. These variations in energy profiles are caused by
the intrinsic complexities in modern hybrid heterogeneous computing platforms such as resource
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contention due to non-uniform memory access (NUMA) and the tight integration of multi-core CPU
with one or more accelerators. The algorithm provides the same workload distributions for energy
profiles classified as identically the same (second stage of TSM) used as an input for the range of the
same workload sizes. Likewise, it provides different workload distributions for non-similar energy
profiles used as input for the range of the same workload sizes. This is because non-similar energy
profiles exhibit different variations in their energy consumption behavior for the same set of data points.

We use the profile-based optimization method [12] to determine the optimal partitioning of the
workload size to optimize the total dynamic energy consumption of the application. The energy
optimization algorithm does not make any assumptions about the shape of input energy profiles.
The algorithm takes the following inputs: (i). The workload size, (ii). The number of processors,
and (iii). The discrete dynamic energy functions of individual processors. The output is the optimal
workload distribution that provides minimal dynamic energy consumption for the input workload
size. The algorithm has a polynomial complexity of O<m3 x p3 ) We compare the output workload
distributions provided by the algorithm when using as an input the dynamic energy profiles ranked as
similar to ground truth by popular statistical approaches and TSM.

For our first case study, consider the profiles in the EPS, DGEMM_AnMoHA as illustrated in
Figure 9. The combined energy profiles are constructed following the additive energy modelling
approach as presented in [13]. Briefly, the approach is based on the hypothesis that the total dynamic
energy consumption during an application execution will be equal to the sum of energies consumed
by all the individual application components executing on processors in the case of loosely-coupled
application components. Formally speaking, let E4(x), Eg(x), and Ec(x) be the dynamic energy
consumptions by the application kernels of workload size x executing sequentially on processors CPU1,
GPU1, and PHI1. Let Combined spc(x) represent the sum, E4(x) + Eg(x) + Ec(x). Let Parallel spc(x) be
the total dynamic energy consumption by parallel execution of the same application kernels of the
workload size x on the processors CPU1, GPU1, and PHI1. Then, the additive hypothesis holds only if
Parallel opc(x) = Combined apc(x).
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Figure 9. Dynamic energy profiles in set of energy profiles (EPS) DGEMM_AnMoHA.

We run a parallel hybrid application DGEMM (which multiplies two dense matrices A and B
of sizes M x N where M < N) as explained in [13] on HCLServer01 for the workload sizes ranging
from 38,400 x 20,224 to 60, 672 x 20, 224 with a constant step size of 256. The dimension M is equally
partitioned among three aforementioned processors (CPU1, GPU1, PHI1) into M;, M and M3 such that
the matrix M1 X N, My X N and M3 X N (i.e 12,800 X 20, 224) are computed by processor CPU1, GPU1,
and PHI1 respectively. There are no communications involved between the processors. The DGEMM
energy profiles in DGEMM_AnMoHA are constructed using different combinations of additive models
of application-components executing on processors. More details on additive energy modelling of
hybrid parallel applications and the design configurations of independent experiments to construct
the energy profiles in DGEMM_AnMoHA can be found in [13].
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Figure 9 illustrates the energy profiles in DGEMM_AnMoHA. The average prediction error,
correlation coefficients and Euclidean distance of all energy profiles are {2%,8%,7%,6%,4%]},
{0.9762,0.8641,0.5741,0.6741,0.8945} and {2258,8795,8421,7523,4515} respectively as presented in the
supplemental [37]. The Euclidean distance and average prediction error rank the profiles Combined_3
and Combined_4 as the most similar to the ground truth (Parallel) after Combined_1 and Combined_5.
However, one can observe in Figure 9 that the qualitative comparison of both profiles with the ground
truth by TSM suggests them to have a different energy consumption trend and thus drop them from the
EPS. The correlation coefficient ranks the profiles in this EPS in line with TSM and ranks them as the
least similar. But it does not provide the details on their qualitative difference such as the underlying
energy consumption trend of the profiles. Similarly, both the Euclidean distance and average prediction
error ranks Combined_2 as the least similar profile in its EPS. In contrast, TSM ranks it as the third
most similar profile. However, all three statistical approaches likewise TSM rank Combined_1 as the
most similar energy profile.

We determine the workload distributions for workload sizes ranging from 38,400 X 20,224 to
60,672 x 20,224 using the individual additive dynamic energy profiles of each processor CPU1, GPU1,
and PHII as an input to the data partitioning algorithm [12]. Combined_2 provides 32% of the
workload distributions the same as of Combined_1 whereas Combined_3 and Combined_4 provide
29% and 20% same workload distributions as of Combined_1. This conforms to the results of TSM,
which ranks Combined_2 as better than Combined_3 and Combined_5.

Workload distributions when using Combined_3 and Combined_5 consume more dynamic energy
for 82% and 81% of the data points, respectively, in comparison with Combined_2 for the workload
sizes. Consider, for example, the workload sizes {47616,48128,49664,50176,50688,51200,51712}. The
workload distributions of Combined_3 consume {52%,51%,52%,51%,54%,49%,50%} respectively more
dynamic energy than the corresponding workload distributions of Combined_2 for the workload sizes.
Similarly, consider the workload sizes {47104,47616,48128,49152,49664,50176,51200}. The workload
distributions of Combined_4 consume {39%,38%,40%,37%,36%,38%,40%} respectively more dynamic
energy than the corresponding workload distributions of Combined_2 for the workload sizes.

For our next case study, consider the profiles in the EPS, DGEMM_EqualLoad in Figure 10.
The energy profiles of DGEMM in this EPS are constructed with RAPL and HCLWattsUp when
running equal workload sizes on each CPU socket of a dual-socket multi-core Intel Haswell platform
(technical specifications are provided in the supplemental [37]. The details on energy profiles and
their construction procedure can be found in [13]. Briefly, we equally partition the workload sizes
(M x N) ranging from 19,456 x 9728 to 67,584 x 33,792 on both CPU sockets such that the matrix
Mj X N and M, X N are computed by processor CPU socketl and CPU socket2 respectively. There are
no communications involved between the processors. Figure 10 shows the parallel and combined
dynamic energy profiles of both application configurations.

® HCLWattsUp Parallel + HCLWattsUp Combined
® RAPL Parallel RAPL Combined
80,000
70,000 g
60,000 0 0
50,000 @

40,000
30,000
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Figure 10. Dynamic energy profiles of DGEMM application in the set of energy profiles (EPS)
DGEMM_EqualLoad.
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All three energy profiles have almost the same strong positive correlation with the ground
truth. The average errors of HCLWattsUp_Combined, RAPL_Parallel, and RAPL_Combined with
HCLWattsUp_Parallel are 4.6%, 21.2%, and 16.1%, respectively. The correlation coefficient is the same
(0.9993) for both RAPL_Parallel and RAPL_Combined, and 0.9995 for HCLWattsUp_Combined. Hence,
both the correlation coefficient and average prediction error ranks HCLWattsUp_Combined as the
most accurate energy profile in its EPS. However, TSM ranks it as the least similar. It ranks, in contrast,
RAPL_Combined as the most similar to the ground truth in that EPS.

We determine the workload distributions for workload sizes ranging from 19,456 x 9728 to
67,584 x 33,792 using the dynamic energy profiles constructed with RAPL and HCLWattsUp as
an input to the data partitioning algorithm [12]. Using the workload distribution, we run the
applications in parallel on both sockets and determine its dynamic energy consumption with RAPL and
HCLWattsUp separately. We find that the workload distributions when using HCLWattsUp_Combined
consuming more dynamic energy for 65% of the data points of the range. Consider, for
example, the workload sizes {56320,56832,57344,57856,58368,58880,59392,59904,60928}. The total
dynamic energy losses by using HCLWattsUp_Combined in comparison with RAPL_Combined to
optimize the dynamic energy consumption of DGEMM for the aforementioned workload sizes is
{17%,18%,18%,17%,18%,18%,18%,18%,17%}, respectively.

To summarize, we use an energy optimization algorithm as a yardstick to evaluate the effectiveness
of TSM and popular statistical approaches to be used in an energy optimization loop of an application.
In all the presented case scenarios, TSM proves to be more effective. The energy profiles ranked as
similar by TSM provide a greater number of same workload distributions as of the ground truth when
using as an input to the energy optimization algorithm. Another important finding is that the energy
profiles erroneously ranked as similar by popular statistical approaches can cause a significant amount
of energy loss when used for the energy optimization of the application.

4. Conclusions

In this work, we presented a novel similarity measuring technique which considers the underlying
energy consumption trend of the energy profiles. The proposed method captures the qualitative
differences of the energy consumption behavior of energy profiles and ranks them based on their
similarity with the ground truth. It effectively addresses the challenge of determining the goodness
of application energy profiles on multicore computing nodes omnipresent in cloud infrastructures,
supercomputers, data centers, and heterogeneous computing clusters where the shapes of energy
profiles are non-smooth and non-linear. We compared the proposed method with popular statistical
approaches, which are used to estimate the similarity between energy profiles, for a diverse set
of 235 energy profiles (constructed on multicore heterogeneous hybrid computing platforms using
state-of-the-art energy measurement techniques such as integrated power sensors, external power
meters, or energy predictive models using PMCs as predictor variables). We demonstrated that the use
of the state-of-the-art similarity approaches instead of the proposed one in the energy optimization
loop leads to significant energy losses (up to 54% in our case).

We also showed that the proposed method can help determine whether the prediction model (that
is employed to construct the profile) includes some extraneous contributor that does not reflect the
energy consumption by the application or lacks some essential contributor to the energy consumption
by the application. This finding further helps in determining whether the calibration can improve the
average and maximum errors, and Euclidean distance between the energy profiles (constructed with
over-estimated or under-estimated energy measurements) and the ground truth. Future work would
include studying the efficiency of the proposed solution method in selecting the predictive model
variables such as PMCs in order to improve their prediction accuracy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/15/3944/s1.


http://www.mdpi.com/1996-1073/13/15/3944/s1

Energies 2020, 13, 3944 20 of 22

Author Contributions: Conceptualization, M.F.,, A.S., RR.M., and A.L.; methodology, M.F. and A.L.; software,
M.E; validation, M.F. and A.S.; formal analysis, M.F. and A.L; investigation, M.F,; resources, M.E,, A.S. and RR.M,;
data curation, M.F, A.S. and R.R.M; writing—original draft preparation, M.F.; writing—review and editing, A.S.,
R.RM. and A.L,; visualization, M.E,, A.S. and R.R.M.; supervision, R R.M.; project administration, A.L.; funding
acquisition, A.L. All authors have read and agreed to the published version of the manuscript.

Funding: This publication has emanated from research conducted with the financial support of Science Foundation
Ireland (SFI) under Grant Number 14/1A/2474.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this work:

IEA International Energy Agency

ICT Information and communication technology
TWh Terra-watt hours

GPU Graphics processing unit

FPGA Field programmable gate array

QPI Quick path interconnect

NUMA Non-uniform memory access

DGEMM Double-precision general matrix multiplication
FFT Fast fourier transform

MKL Intel Math Kernel Library

RAPL Running average power limit

NVML NVIDIA Management Library

HPC High performance computing

TSM Trend-based similarity measure

EPS Set of energy profiles of an application constructed with different energy

measurement approaches

The following nomenclature and units are used in this work.

Variable Unit

Power Watt

Static power Watt

Execution time Second

Energy Joule

Total energy Joule

Dynamic energy Joule

References

1. IEA.Climate Change. Available online: https://www.iea.org/topics/climate-change (accessed on 23 June 2020).
IEA. Global Energy & CO, Status Report 2019. Available online: https://www.iea.org/reports/global-energy-
and-co2-status-report-2019 (accessed on 17 June 2020).

3. IEA.IEA Sets Out Pillars for Success at COP21. Available online: https://www.iea.org/news/iea-sets-out-
pillars-for-success-at-cop21 (accessed on 17 June 2020).

4. Andrae, A; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges
2015, 6, 117-157. [CrossRef]

5. O’brien, K.; Pietri, I.; Reddy, R.; Lastovetsky, A.; Sakellariou, R. A Survey of Power and Energy Predictive
Models in HPC Systems and Applications. ACM Comput. Surv. 2017, 50, 37:1-37:38. [CrossRef]

6. Fagas, G; Gallagher, ].P.; Gammaitoni, L.; Paul, D.]J. Energy Challenges for ICT. In ICT - Energy Concepts for
Energy Efficiency and Sustainability; Fagas, G., Gammaitoni, L., Gallagher, J.P., Paul, D.J., Eds.; IntechOpen:
Rijeka, Croatia, 2017; Chapter 1.

7. Tang, Z,; Qi, L.; Cheng, Z; Li, K.; Khan, S.U.; Li, K. An Energy-Efficient Task Scheduling Algorithm in

DVFS-enabled Cloud Environment. J. Grid Comput. 2016, 14, 55-74. [CrossRef]


https://www.iea.org/topics/climate-change
https://www.iea.org/reports/global-energy-and-co2-status-report-2019
https://www.iea.org/reports/global-energy-and-co2-status-report-2019
https://www.iea.org/news/iea-sets-out-pillars-for-success-at-cop21
https://www.iea.org/news/iea-sets-out-pillars-for-success-at-cop21
http://dx.doi.org/10.3390/challe6010117
http://dx.doi.org/10.1145/3078811
http://dx.doi.org/10.1007/s10723-015-9334-y

Energies 2020, 13, 3944 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Cao, T,; He, Y.,; Kondo, M. Demand-Aware Power Management for Power-Constrained HPC Systems.
In Proceedings of the 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Cartagena, Colombia, 16-19 May 2016; pp. 21-31.

Arroba, P; Moya, ].M.; Ayala, J.L.; Buyya, R. Dynamic Voltage and Frequency Scaling-Aware Dynamic
Consolidation of Virtual Machines for Energy Efficient Cloud Data Centers. Concurr. Comput. Pract. Exp.
2017, 29, e4067. [CrossRef]

Lang, J.; Riinger, G. An Execution Time and Energy Model for an Energy-Aware Execution of a Conjugate
Gradient Method with CPU/GPU Collaboration. J. Parallel Distrib. Comput. 2014, 74, 2884-2897. [CrossRef]
Lastovetsky, A.; Manumachu, R.R. New Model-Based Methods and Algorithms for Performance and Energy
Optimization of Data Parallel Applications on Homogeneous Multicore Clusters. IEEE Trans. Parallel Distrib.
Syst. 2017, 28, 1119-1133. [CrossRef]

Khaleghzadeh, H.; Fahad, M.; Manumachu, R.R.; Lastovetsky, A. A Novel Data Partitioning Algorithm
for Dynamic Energy Optimization on Heterogeneous High-Performance Computing Platforms. Concurr.
Comput. Pract. Exp. 2020, €5928. [CrossRef]

Fahad, M.; Shahid, A.; Manumachu, R.R.; Lastovetsky, A. Accurate Energy Modelling of Hybrid Parallel
Applications on Modern Heterogeneous Computing Platforms Using System-Level Measurements. IEEE
Access 2020, 8, 93793-93829. [CrossRef]

Fahad, M.; Shahid, A.; Manumachu, R.R.; Lastovetsky, A. A Comparative Study of Methods for Measurement
of Energy of Computing. Energies 2019, 12, 2204. [CrossRef]

Kuzma, ].W. Basic Statistics for the Health Sciences, 3rd ed.; Mayfield Publishing Company: Mountain View,
CA, USA, 1998.

Abramowitz, M. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables; Dover
Publications, Inc.: Mineola, NY, USA, 1974.

Dargie, W. A Stochastic Model for Estimating the Power Consumption of a Processor. IEEE Trans. Comput.
2015, 64. [CrossRef]

Zhou, Z.; Abawajy, ].H.; Li, E; Hu, Z,; Chowdhury, M.U.; Alelaiwi, A.; Li, K. Fine-Grained Energy
Consumption Model of Servers Based on Task Characteristics in Cloud Data Center. IEEE Access 2018, 6,
27080-27090. [CrossRef]

McCullough, J.C.; Agarwal, Y,; Chandrashekar, J.; Kuppuswamy, S.; Snoeren, A.C.; Gupta, R.K. Evaluating
the Effectiveness of Model-Based Power Characterization. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, Portland, OR, USA, 15-17 June 2011; p. 12.

Hackenberg, D.; Ilsche, T.; Schone, R.; Molka, D.; Schmidt, M.; Nagel, W.E. Power Measurement Techniques
on Standard Compute Nodes: A Quantitative Comparison. In Proceedings of the 2013 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Austin, TX, USA, 21-23 April 2013;
pp- 194-204.

Subramaniam, B.; Feng, W.C. Towards Energy-Proportional Computing for Enterprise-Class Server
Workloads. In Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering,
Prague, Czech Republic, 21-24 April 2013; p. 1526.

Hackenberg, D.; Schone, R.; Ilsche, T.; Molka, D.; Schuchart, J.; Geyer, R. An Energy Efficiency Feature
Survey of the Intel Haswell Processor. In Proceedings of the 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, Hyderabad, India, 25-29 May 2015; pp. 896-904.

Khan, K.N.; Hirki, M.; Niemi, T.; Nurminen, J.K.; Ou, Z. RAPL in Action: Experiences in Using RAPL for
Power Measurements. ACM Trans. Model. Perform. Eval. Comput. Syst. 2018, 3, 9:1-9:26. [CrossRef]
Rico-Gallego, J.A.; Diaz-Martin, ].C.; Lastovetsky, A.L. Extending t-Lop to Model Concurrent MPI
Communications in Multicore Clusters. Future Gener. Comput. Syst. 2016, 61, 6682. [CrossRef]

Li, B.; Han, L. Distance Weighted Cosine Similarity Measure for Text Classification. Intelligent Data Engineering
and Automated Learning — IDEAL 2013; Yin, H., Tang, K., Gao, Y., Klawonn, F,, Lee, M., Weise, T., Li, B., Yao, X.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 611-618.

Berndt, D.].; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of
the 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 31 July-1
August 1994; pp. 359-370.

Nakamura, T.; Taki, K.; Nomiya, H.; Seki, K.; Uehara, K. A Shape-Based Similarity Measure for Time Series
Data with Ensemble Learning. Pattern Anal. Appl. 2013, 16, 535-548. [CrossRef]


http://dx.doi.org/10.1002/cpe.4067
http://dx.doi.org/10.1016/j.jpdc.2014.06.001
http://dx.doi.org/10.1109/TPDS.2016.2608824
http://dx.doi.org/10.1002/cpe.5928
http://dx.doi.org/10.1109/ACCESS.2020.2994953
http://dx.doi.org/10.3390/en12112204
http://dx.doi.org/10.1109/TC.2014.2315629
http://dx.doi.org/10.1109/ACCESS.2017.2732458
http://dx.doi.org/10.1145/3177754
http://dx.doi.org/10.1016/j.future.2016.02.021
http://dx.doi.org/10.1007/s10044-011-0262-6

Energies 2020, 13, 3944 22 of 22

28.

29.

30.
31.

32.
33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Box, G.E.P; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Inc.: San Francisco, CA,
USA, 1976.

Yu, Q.; Jibin, L.; Jiang, L. An Improved ARIMA-Based Traffic Anomaly Detection Algorithm for Wireless
Sensor Networks. Int. |. Distrib. Sens. Netw. 2016, 12, 9653230. [CrossRef]

Piccolo, D. A Distance Measure for Classifying Arima Models. J. Time Ser. Anal. 1990, 11, 153-164. [CrossRef]
Ramoni, M.; Sebastiani, P.; Cohen, P. Bayesian Clustering by Dynamics. Mach. Learn. 2002, 47, 91-121.
[CrossRef]

Maharaj, E.A. Cluster of Time Series. J. Classif. 2000, 17, 297-314. [CrossRef]

Anton, H.; Rorres, C. Elementary Linear Algebra: Applications Version, 11th ed.; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2013.

Warren Liao, T. Clustering of Time Series Data-A Survey. Pattern Recogn. 2005, 38, 18571874. [CrossRef]
Iglesias, F.; Kastner, W. Analysis of Similarity Measures in Times Series Clustering for the Discovery of
Building Energy Patterns. Energies 2013, 6, 579-597. [CrossRef]

Sanfeliu, A.; Fu, K. A Distance Measure between Attributed Relational Graphs for Pattern Recognition. IEEE
Trans. Syst. Man Cybern. 1983, SMC-13, 353-362. [CrossRef]

Fahad, M.; Shahid, A.; Manumachu, R.R.; Lastovetsky, A. Supplementary Materials: A Novel Statistical
Learning-Based Methodology for Measuring the Goodness of Energy Profiles of Applications Executing on
Multicore Comptuing Platforms. Available online: https://csgitlab.ucd.ie/Muhammad_Fahad/supplementals-
to-the-publications/-/blob/master/2020/MDPI_goodness/supplemental.pdf (accessed on 25 July 2020).
Rotem, E.; Naveh, A.; Ananthakrishnan, A.; Weissmann, E.; Rajwan, D. Power-Management Architecture of
the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 2012, 32, 20-27. [CrossRef]
Heterogeneous Computing Laboratory, University College Dublin. HCLWattsUp: API for Power and
Energy Measurements Using WattsUp Pro Meter. Available online: https://csgitlab.ucd.ie/ucd-hcl/hclwattsup
(accessed on 23 May 2020).

Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis, 2nd ed.; Springer: New York, NY,
USA, 1998.

Ostertagova, E. Modelling Using Polynomial Regression. Procedia Eng. 2012, 48, 500-506. [CrossRef]
Shahid, A.; Fahad, M.; Manumachu, R.R.; Lastovetsky, A. Energy of Computing on Multicore CPUs:
Predictive Models and Energy Conservation Law. Available online: https://arxiv.org/pdf/1907.02805.pdf
(accessed on 15 June 2020).

Nvidia. NVML Reference Manual. Available online: https://docs.nvidia.com/pdf/NVML_API_Reference_
Guide.pdf (accessed on 16 June 2020).

Corporation, I. Intel Xeon Phi Coprocessor SystemSoftware Developers Guide. Available online: https://
software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-
guide.pdf (accessed on 16 June 2020).

Corporation, I. Intelo Manycore Platform Software Stack (Intel MPSS). Available online: https://software.
intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss (accessed on 16 June 2020).

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1155/2016/9653230
http://dx.doi.org/10.1111/j.1467-9892.1990.tb00048.x
http://dx.doi.org/10.1023/A:1013635829250
http://dx.doi.org/10.1007/s003570000023
http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dx.doi.org/10.3390/en6020579
http://dx.doi.org/10.1109/TSMC.1983.6313167
https://csgitlab.ucd.ie/Muhammad_Fahad/supplementals-to-the-publications/-/blob/master/2020/MDPI_goodness/supplemental.pdf
https://csgitlab.ucd.ie/Muhammad_Fahad/supplementals-to-the-publications/-/blob/master/2020/MDPI_goodness/supplemental.pdf
http://dx.doi.org/10.1109/MM.2012.12
https://csgitlab.ucd.ie/ucd-hcl/hclwattsup
http://dx.doi.org/10.1016/j.proeng.2012.09.545
https://arxiv.org/pdf/1907.02805.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://docs.nvidia.com/pdf/NVML_API_Reference_Guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/sites/default/files/managed/09/07/xeon-phi-coprocessor-system-software-developers-guide.pdf
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Goodness Measuring Problem Formulation 
	Challenges With State-of-the-Art Practices to Measure the Goodness of Energy Models 
	Trend-Based Similarity Measuring Methodology for Energy Profiles 
	Model Fitting 
	The Discrepancy Analysis 
	The Distance Metric 

	Experimental Setup 
	Experimental Platform and Applications 
	Experimental Methodology to Validate TSM 


	Results and Discussion 
	Experiment Results 
	Discussion 
	Comparison of TSM and State-of-the-Art Statistical Approaches for Energy Optimization 

	Conclusions 
	References

