Implementing a model-based collective
communication operation with the

MPIBlib/CPM framework

Kiril Dichev

May 23, 2011



Outline

Introduction

Overview of the CPM and MPIBIlib frameworks

Example driven implementation of a model-based collective with
MPIBIlib/CPM

Tools for running and testing the model-based collective
implementation



Outline

Introduction



Why should we use models for collective operations

» MPI implements various collectives

» The standard implementations ignore the characteristics of
the underlying communication network

» Communication performance models describe these
characteristics

> By using models, we can optimize a collective operation to
use this knowledge



Why should we use models for collective operations

Efficient collective communication is implemented with
> tree data structures

> tree-based algorithms
We can use communication performance models for collectives by:
» switching between existing algorithms

> mapping processes to the nodes of the communication tree

» dynamically generating a communication tree



What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we



What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

> dynamically generate communication trees



What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

> dynamically generate communication trees

» for some collective operations



What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

» dynamically generate communication trees
» for some collective operations

> with the help of model predictions



What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

> dynamically generate communication trees
» for some collective operations
> with the help of model predictions

» and do the communication over these trees



Outline

Overview of the CPM and MPIBIlib frameworks



MPIBIlib

Overview

MPIBIib provides a library with benchmarking functionality
» Suitable for inserting benchmarks into applications
> The library can be used by
» any MPI applications
> a set of provided tools and tests
» implements a number of existing collective algorithms
(Example: binomial tree algorithm)

» provides a command line tool ('colective’) for fast
development and testing



MPIBIlib

Trees

» We want to avoid code rewriting

» For collectives, we introduce orthogonal concepts which can
be combined:
» Tree algorithms (not depending on the tree)
» Communication trees (not depending on the algorithm)



MPIBIlib

Tree builders

> Tree builders - encapsulate into an object the logic of
constructing a tree

> A tree builder generates a communication tree

» The communication tree is used in the tree algorithm



CPM

> Implements heterogeneous communication performance
models

» Estimates the model parameters on a cluster
> Uses MPIBIib for benchmarking

» Provides a number of collective operation using model
predictions



CPM

Model-based collectives

> In order to implement a model-based collective, we



CPM

Model-based collectives

> In order to implement a model-based collective, we
» do not reimplement communication algorithms



CPM

Model-based collectives

> In order to implement a model-based collective, we

» do not reimplement communication algorithms
> implement tree builders



CPM

Model-based collectives

> In order to implement a model-based collective, we
» do not reimplement communication algorithms
> implement tree builders
» A model-based tree builder encapsulates the logic of
constructing a model-based communication tree



CPM

Model-based collectives

> In order to implement a model-based collective, we
» do not reimplement communication algorithms
> implement tree builders

» A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

» Implementing a model-based tree builder is the main part
when implementing a model-based collective operation



Outline

Example driven implementation of a model-based collective with
MPIBIlib/CPM



Simple collectives

In MPIBIib, the available collectives follow the naming convention
MPIB_X_Y with

» X - a communication operation

> Y - a tree algorithm



MPIBIib collectives

Example based on Scatterv operation

Ene Boost Graph Library
————————— >

calls method

uses object

inherits

comm_tree::Graph
(communication tree!

MPIB_Scatterv_binom



How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM
» follows the naming convention M_X_Y with
» M - a communication model
» X - a communication operation

> Y - a tree algorithm



How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM
» follows the naming convention M_X_Y with
» M - a communication model
» X - a communication operation

» Y - a tree algorithm

u]

o)
I
i

it



The model

A model-based collective operation can be
> generic
» depends on the predicted execution time of a communication
» prediction can be provided by any model
» Example: predict_p2p returns the predicted execution time for
a point-to-point communication
» model-specific - depends on certain communication
performance models using parameters specific for these
models only

In this tutorial, we only discuss generic model-based collectives



The model

Example based on Scatterv operation

»
calls method

—>
The Boost Graph L\bra&y uses object

inherits

comm_tree::Graph
(communication tree!

MPIB_Scatterv_

tree_algorithm

(general algorith
E)

CPM_predictor
i

Hockney_model

Hockney_Scatterv_sorted_binomfal



The model

Initialization

> Master node can read a model from a file or

» all nodes can build the model by performing collective
benchmarks

» then, model parameters are broadcasted to all nodes




The model

Initialization

Example:
if (rank = 0) {
Hockney_read (stream, &model);

}

Hockney_initialize (comm, model);
if (rank = 0) Hockney_free(model);

Analogy to the MPI communicator:

> the model instance has a global scope like the MPI
communicator for MPI programs

> it is independent from the collective operation
> similar init and finalize calls



How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM
» follows the naming convention M_X_Y with
» M - a communication model
» X - a communication operation

> Y - a tree algorithm

u]

o)
I
i

it



The model-based tree builder
Example - MPIB_Scatterv_binomial

calls method

uses object

The Boost Graph L\bra&y
—_—
inherits
omm_tree::Graph
MPIB_Scattery_
tree_algorithm
(general algorithnp)

<
(communication tree;

CPM_predictor
I
CPM::SGv:
Binomial_builder]|
Hockney_model|

Hockney_Scatterv_sorted_binomfal




The model-based tree builder

» The builder must implement a build function which generates
a tree

» usage of Boost required

» all model logic is done by calling the model predict_p2p
function



The model-based tree builder
Example - Process Mapping

class Binomial_builder {
private:
CPM_predictor* predictor;

void build(int root, int count,
Graph& g, Vertex& r, Vertex& u, Vertex& v)

//Get the rank of a vertex we are visiting
Vertex s = <get some vertex with already assigned rank>
int source = get(vertex.index, g, s);

//Find the rank from unassigned ranks which has
// the fastest link to the rank of the current vertex

for (deque<pair<int, double> >:iterator i = ranks.begin();
i = ranks.end(); i++) {
int target = i—>first;

i—>second = predictor—>predict_p2p
(predictor , source, target, counts[target]);
}

deque<pair<int, double> >:iterator i =
min_element(ranks.begin(), ranks.end(), second_less()):

//Create a vertex and edge in the tree to build the fastest
//possible connection to the current rank

int target = i—>first;

ranks.erase(i);

Vertex t = add_vertex(g);

put(vertex_index , g, t, target);

add_edge(s, t, g);



The model-based tree builder
Example - Process Mapping

class Binomial_builder {
private:
CPM_predictor* predictor;

void build(int root, int count,
Graph& g, Vertex& r, Vertex& u, Vertex& v)

//Get the rank of a vertex we are visiting
Vertex s = <get some vertex with already assigned rank>
int source = get(vertex_index, g, s);

//Find the rank from unassigned ranks which has
// the fastest link to the rank of the current vertex

for (deque<pair<int, double> >:iterator i = ranks.begin();
i I= ranks.end(); i++) {
int target = i—>first;

i—>second = predictor—>predict_p2p
(predictor , source, target, counts[target]);

deque<pair<int , double> >:iterator i =
min_element(ranks.begin(), ranks.end(), second_less()):

//Create a vertex and edge in the tree to build the fastest
//possible connection to the current rank

int target = i—>first;

ranks.erase(i);

Vertex t = add_vertex(g);

put(vertex_index , g, t, target);

add_edge(s, t, g);



The model-based tree builder
Example - Process Mapping

class Binomial_builder {
private:
CPM_predictor* predictor;

void build(int root, int count,
Graph& g, Vertex& r, Vertex& u, Vertex& v)

//Get the rank of a vertex we are visiting
Vertex s = <get some vertex with already assigned rank>
int source = get(vertex_index, g, s);

//Find the rank from unassigned ranks which has
// the fastest link to the rank of the current vertex

for (deque<pair<int, double> >:iterator i = ranks.begin();
i = ranks.end(); i++) {
int target = i—>first;

i—>second = predictor—>predict_p2p
(predictor , source, target, counts[target]);
}

deque<pair<int, double> >:iterator i =
min_element(ranks.begin(), ranks.end(), second_less()):

//Create a vertex and edge in the tree to build the fastest
//possible connection to the current rank

int target = i—>first;

ranks.erase(i);

Vertex t = add_vertex(g);

put(vertex_-index , g, t, target);

add_edge(s, t, g);




How to implement model-based collectives?

A model-based collective operation belongs in CPM
» follows the naming convention M_X_Y with
» M - a communication model
» X - a communication operation

» Y - a tree algorithm

u]

o)
I
i

it



Communication operation

» We don't need to worry about the communication operation -
MPIBIlib provides that

> We only need to integrate the components



Integrating CPM and MPIBIib components into a
model-based collective communication

Example based on Scatterv operation

calls method
—>
The Boost Graph L\bra&y uses object
A
inherits

comm_tree::Graph
(communication tree!

TMPIB_Scatterv_

tree_algorithm

(general algorithm)
4

CPM_Scatterv_sorted_binomipl

CPM::SGv::
Binomial_builder|

Hockney_model

Hockney_Scatterv_sorted_binomfal



Integrating CPM and MPIBIib components into a
model-based collective communication

The integration includes:



Integrating CPM and MPIBIib components into a
model-based collective communication

The integration includes:

> passing an initialized predictor according to the model M
(example for Hockney model) :

Hockney_Scattev_sorted_binomial (...){
CPM _Scatterv_sorted_binomial(&Hockney_model_instance—>predictor , ...



Integrating CPM and MPIBIib components into a
model-based collective communication

The integration includes:

> passing an initialized predictor according to the model M
(example for Hockney model) :

Hockney_Scattev_sorted_binomial (...){
CPM _Scatterv_sorted_binomial(&Hockney_model_instance—>predictor , ...

» calling the right tree algorithm (YY) with the right model-based
tree builder (X)

extern "C” int CPM_Scatterv_sorted_binomial (CPM_predictorx predictor, ... {
return MPIB_Scatterv_tree_algorithm (Binomial_builder(predictor, no), ...



Outline

Tools for running and testing the model-based collective
implementation



Tools for using the model-based collectives

» Generate a (Hockney) model file - essential !

mpirun --machinefile <> -np <> model -C Hockney -o <model-file>



Tools for using the model-based collectives

» Generate factors for Scatterv/Gatherv - only relevant for
benchmarks on irregular operations

» factors determine the message sizes for the processes
» argument -c or -r for CPU-based or random size distribution

mpirun -np 4 --machinefile <> generate_factors -c > factors.out



Tools for using the model-based collectives

» running a benchmark on the new collective operation

mpirun -np 4 --machinefile <> collective -1 <CPM installation>/1ib/libcpm_coll.so \
-0 Hockney_Scatterv_dfs_binomial_min -f factors.out \

-0 model=Hockney,file=<generated model file>,sgv=2 > \
Hockney_Scatterv_dfs_binomial_min.out

» MPIBIib 'collective’ documentation for generic arguments (all
except for -0)
mpirun -np 1 collective -h
» CPM documentation on "subopt” (-0) arguments
> e.g. on sgv decides where the communication tree is generated
» 'verbose' (i.e. -0 verbose,...) is useful for debugging the
generated tree (tree is output)



	Introduction
	Overview of the CPM and MPIBlib frameworks
	Example driven implementation of a model-based collective with MPIBlib/CPM
	Tools for running and testing the model-based collective implementation

