
CHAPTER 1

OPTIMIZATION OF COLLECTIVE
COMMUNICATION FOR
HETEROGENEOUS HPC PLATFORMS

Kiril Dichev1 and Alexey Lastovetsky1

1School of Computer Science and Informatics, University College Dublin, Belfield 4, Dublin,
Ireland

1.1 Introduction

Communication plays a central role in parallel computing algorithms. For collective
communication, significant gains in performance can be achieved by implementing
topology- and performance-aware collectives. In this chapter, we offer a compre-
hensive overview of the existing research in this area. We observe both MPI col-
lectives as well as alternatives from the distributed computing domain. The existing
challenges in analytical and experimental solutions for heterogeneous platforms are
presented and discussed.

This work describes the existing methods of optimizing communication for mod-
ern platforms. The most basic communication operation is the point-to-point com-
munication involving a sender and a receiver. As a higher level of abstraction, col-

High Performance Computing on Complex Environments.
By Copyright c© 2013 John Wiley & Sons, Inc.

1

2 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

(a) (b)

Figure 1.1 Broadcast schedule through a binomial tree. (a) In step 1, the root communicates
to its right child. (b) In step 2, two independent point-to-point exchanges can be performed in
parallel to complete the operation.

lective communication, which involves the exchange of data between a group of
processes, is fundamental in many areas of computing. Parallel implementations
of fundamental mathematical kernels like dense matrix multiplication [1] or three-
dimensional Fast Fourier Transformation rely on collective operations. More re-
cently, the MapReduce construct [2] widely used by Google for indexing of web
pages is gaining in popularity, and also requires collective operations.

In this work, we cover the different research directions for optimizing collective
communication operations. This review chapter asks following seemingly simple
questions: What are the best practices of implementing an efficient collective op-
eration for a heterogeneous and/or hierarchical platform? How do they differ from
efficient implementations for homogeneous platforms? Can the best practices be
classified and presented in a clear way? Is there a trend which shows what is and
what is not possible in the area of such optimizations for today’s complex platforms?

When answering these questions, we focus both on classical high performance ap-
proaches, which invariably revolve around MPI collectives, and on more recent and
efficient communication libraries. The wide range of collective operations (broad-
cast, reduce, scatter etc.) and the efficient algorithms for each of them cannot be
covered in detail in this work. However, it is helpful to demonstrate the common
optimizations for heterogeneous networks based on a use case. In this work, we
consider the popular broadcast operation as such a use case. In a broadcast, a root
process sends the same data to a group of other processes. The broadcast operation
is complete when the last process in the group has received the data. The efficiency
of the operation is measured by how fast the broadcast completes.

Even for this fundamental collective operation, there is already a large variety
of popular implementations [3]. To name a few, there are the linear tree (or chain
or pipeline) algorithm, the binomial tree or the flat tree algorithm. In this work,
our algorithm of choice is the binomial tree algorithm. We show a broadcast of
a message in a trivial binomial tree in Fig. 1.1. The main advantage of such an
algorithm is that (as shown in Fig. 1.1(b)) different point-to-point exchanges can be
parallelized. While not always optimal, this algorithm is common for small message
broadcasts on trivial networks like single-switch Ethernet clusters.

OVERVIEW OF OPTIMIZED COLLECTIVES AND TOPOLOGY-AWARE COLLECTIVES 3

On top of MPI

Within MPI

Below MPI

Figure 1.2 Optimizations of collective operations in regard to their relation to MPI - on top,
within, or below MPI. In theory, generic optimizations stand above MPI, but as indicated in
red, in practice their implementation is either above or within an MPI library.

1.2 Overview of Optimized Collectives and Topology-Aware Collec-
tives

The general area of communication optimization is very broad and includes a num-
ber of different directions. Intuitively, the goal of all such optimization is to reduce
the global runtime of the communication operations. But there are different ways to
achieve this goal. The vastness of optimizations of MPI collectives has obstructed,
rather than helped for any division of the different types of optimizations into cate-
gories. For clarity, in this section we specify a few categories of such optimizations
in regard to the software layer they are embedded in. MPI [4] is still the most used
communication library for high performance computing, and we classify all existing
approaches in their relation to this library. We present this MPI-centric view in Fig.
1.2. With such a categorization, it is easier to talk of the particular area of inter-
est in this chapter and differentiate it from other work which is also concerned with
achieving better performance, but in a different manner.

Optimizations below the MPI layer include tuning of parameters that affect the
performance of the underlying protocol. An important example of such tuning [5]
demonstrates that the TCP window size has a significant impact on MPI communi-
cation on links with a high bandwidth-delay product. Modern grid infrastructures
employing fibre optics over very long distances have these properties.

Collective optimizations within the MPI layer can be very broad. Some of these
are implemented within the MPI library because they require access to hardware-
related interfaces. For example, optimizations for Infiniband networks include the
use of RDMA calls within MPI [6, 7, 8]. Other such optimizations include accessing
kernel modules like CPU affinity to control the migration of MPI processes on cores,
and others. Also, some protocols like eager and rendezvous [4], which affect point-
to-point and collective operations, are intrinsic to the MPI communication library.

More generic optimized MPI collective algorithms can be implemented on top of
MPI. The most obvious example is reimplementing a collective based on existing
MPI point-to-point calls or MPI collectives.

Still, such generic optimizations are not always implemented on top of MPI, but
sometimes are embedded within the MPI layer. The decision to embed an optimiza-
tion within an MPI implementation in such cases is driven by software development

4 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

or even political issues rather than strict requirements. For example, some of the
optimizations of collectives we list as generic in the next sections are in fact imple-
mented within Open MPI [9].

The main focus of this work are:

Generic optimizations for collective operations (Sect. 1.6, 1.7), i.e. opti-
mizations not dependent on low-level MPI internals like hardware or low-level
protocol details. As highlighted in Fig. 1.2, they can either be implemented
within or on top of the MPI layer.

Alternative communication libraries (Sect. 1.8) offer interesting optimiza-
tions of communication not present, and often not possible, in existing MPI
middleware.

In the following section we present the state-of-the-art in such optimizations of
collectives on homogeneous clusters. Then we attempt a structured introduction of
the specific area of communication optimizations on heterogeneous networks.

1.3 Optimizations of Collectives on Homogeneous Clusters

Most optimizations of collective operations on homogeneous clusters focus on find-
ing an efficient algorithm on top of point-to-point primitives. Detailed work analyz-
ing an array of collectives [10] considers the general approaches – analytical (through
models) and empirical (through experiments). The model of choice is Hockney (see
Sect. 1.7.1), and its point-to-point predictions are used to build prediction formulas
for more complex collective operations. However, even seemingly different algo-
rithms often produce predictions of similar time complexity. For this reason, the
support of experiments is often needed. The decision making process is difficult,
and depending on message size and process number, a range of algorithms can be
used for a single collective operation. On the example of the broadcast algorithm,
binomial tree broadcast is used for small messages, and a combination of a “scatter”
and “allgather” operation (in MPI semantics) for large messages. The decision is
hard-coded within the MPICH library1 based on the process count and message size.

A more sophisticated process of optimization can be performed through a more
intelligent, system-specific, selection [11]. Clearly, the selection process is good if
the selected algorithm is optimal. The optimization consists of the selection from
a large set of predefined collective methods. A collective method is considered the
coupling of a particular collective algorithm with a segment size. Formally, a relation
D is defined which maps “the set of all possible collective operation input parameters
PIN c” to the set of available methods M c while minimizing collective duration:

D : PIN c →M c (1.1)

1MPICH web page: www.mpich.org

HETEROGENEOUS NETWORKS 5

The work proceeds to search for a mapping that selects the fastest collective
method for the input parameters on a given platform. Finding such a mapping is ex-
tremely difficult in practice. The work proposes an analytical approach (Sect. 1.7.1
discusses these models), and an empirical approach (graphics encoding schemes and
statistical learning methods). Both approaches have advantages and drawbacks, and
can be used on homogeneous networks.

The empirical solutions have the advantage of being accurate for different plat-
forms. But they have a significant disadvantage – to build a decision map a number
of dimensions need to be examined. Typically, the process number p and the mes-
sage size m are two orthogonal dimensions of the input. Additionally, different MPI
implementations and different platforms make the empirical process very expensive
and require some heuristics in most cases.

1.4 Heterogeneous Networks

In recent years, the term “heterogeneity” has been heavily linked with the advent of
many-core processors and accelerators like GPUs. In this work, we consider the net-
work heterogeneity rather than the processor heterogeneity. A variety of examples
for network heterogeneity can be found in today’s computing platforms. Distributed
systems traditionally provide a high level of network heterogeneity – popular exam-
ples of such heterogeneous high performance systems include grid and cloud infras-
tructures. But even on supercomputers like the IBM/BlueGene, the torus topology is
a heterogeneous network in regard to the latency, with node to node communication
depending on the number of hops between sender and receiver. On the other hand,
supercomputers with thousands of nodes – in which each node consists of many-
cores and possibly accelerators – can also clearly be characterized as heterogeneous.
Communication on different levels shows different properties for these modern re-
sources – e.g. intra-node vs. inter-node communication.

1.4.1 Comparison to Homogeneous Clusters

The most significant challenge in optimization of collectives for heterogeneous net-
works, compared to homogeneous networks, is in the increase in complexity. If we
trivially assume the cost of each communicating pair of nodes i and j to be Cij ,
then “the problem of finding the optimal broadcast schedule in such a heterogeneous
system is NP-complete” [12]. We already observed how analytical and empirical
solutions can be used to support the selection of an efficient collective algorithm.
With the introduction of this new complexity, the empirical approach becomes more
challenging. It is not sufficient to run a set of benchmarks pi ∗mj for a selection of
process counts and message sizes for a handful of fixed communication schedules.
For example, on a homogeneous cluster a binomial tree algorithm would yield the
same performance independent of the reordering of processes along the tree. On
a heterogeneous cluster, the differing cost per link Cij means that an exponential
number of possible binomial trees can be formed, with potentially different total

6 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

Figure 1.3 While both empirical and analytical solutions are used for homogeneous clusters,
analytical solutions are the only option for heterogeneous and more complex networks.

communication cost. This exponential increase in complexity is a challenge both for
empirical and analytical solutions, but analytical solutions promise more flexibility
in how they can be used, and are hugely more efficient than running communication
benchmarks. Therefore, analytical solutions seem like the only viable option for op-
timizations on complex networks. We visualize this limitation in Fig. 1.3. While
we can try both empirical and analytical models on homogeneous networks, with
increasing network heterogeneity more empirical, or “lookup table” based solutions,
give way to analytical solutions.

1.5 Topology- and Performance-Aware Collectives

Optimized collectives for heterogeneous networks generally follow two main phases
as shown in Fig.1.4. In a first phase, a network model is created which characterizes
the underlying network in some form and way. In a second phase, this model is used
for efficient collective communication.

However, two different categories of collective communication for heterogeneous
platforms can be identified – topology-aware and performance-aware collectives (see
also [13]).

The now common term topology aware seems to originate from the network-
ing domain (e.g. [14]), where information from routing tables can help reduce the
number of hops when transferring packets. The central property of this type of op-
timization is that it does not rely on actual performance data, but rather on the net-
work topology – which is often synonymous to hierarchy and structure. The network
properties for topology-aware communication are configured either manually or au-
tomatically.

The other popular direction of optimization is performance aware communica-
tion. In this case, network properties are reconstructed with performance measure-
ments. This approach is useful when topology information cannot be provided or is
not sufficient to determine the performance.

TOPOLOGY AS INPUT 7

Network model

Topology given through
manual configuration or
system API

Performance measure-
ments through commu-
nication performance
model

Optimized collec-
tive operation

Design of topology–
aware algorithm

Performance-aware
algorithm or prediction-
based selection of
algorithm

Topology

Performance

(a) (b)

Figure 1.4 General phases of topology or performance-aware collective communication.
(a) A network model represents some properties of the network. (b) The network model is
used either in a network-aware algorithm, or in a prediction-based selection from a pool of
network-unaware algorithms.

1.6 Topology as Input

Naturally, the first use of topology-aware collectives was through manual configu-
ration. Early work of this kind includes different MPI libraries for distributed com-
puting, where the hierarchy information is provided by the user. The hierarchy in
the test cases typically consists of two-levels – intra- and inter-cluster information.
Some work reimplements efficiently both the intra- and inter-cluster communication
on top of MPI point-to-point communication [15]. Other work only reimplements the
inter-cluster communication through TCP channels, but relies on the optimized MPI
collectives within clusters [16]. Naturally, the main design goal of such middleware
is to minimize the expensive cross-site communication for various heterogeneous
settings. More recently, with the advent of multi-core machines, similar ideas were
introduced for topology-aware communication on high-performance clusters. A sim-
ple step is a remapping of MPI processes to follow the topology of the resources [17].
More advanced approaches create new collectives with role assignment of processes
according to placement [18, 19].

In MPI, collectives are usually implemented through a single spanning tree. How-
ever, using multiple spanning trees (MST) offers performance gains for heteroge-
neous networks, particularly for large-message collectives. One notable exception
in the MPI community is work on optimizing collectives for the meshes/tori topol-
ogy on the IBM BlueGene supercomputer [20]. On the example of a large-message
broadcast “the basic idea is to find a number of non-overlapping spanning trees in
the rectangular mesh/tori. The broadcast message is split into components, and each
component is pipelined separately (and simultaneously) along one of the spanning

8 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

trees”. This approach is also an example of a topology-aware optimization. We will
discuss alternative MST optimizations in Sec 1.8.

It is worth noting that the often tedious manual configuration of topology or hier-
archy has recently given way to useful APIs. This is an important and logical step,
since topology in itself – other than performance – rarely changes. A useful API
for accessing such topology information gaining popularity in high-performance li-
braries is hwloc [21]. It provides information for the hierarchy and topology within
nodes. Automated solutions are emerging also for an inter-node topology, based for
example on Infiniband APIs [13].

For further optimizations based on topology, sometimes it is possible to redesign
a parallel application to make better use of topology-aware collectives [22].

1.7 Performance as Input

Topology is often sufficient to design an efficient collective algorithm. But there
are two main cases when topology-aware communication can not be used. First,
with increasing network complexity, the topology might be unknown or difficult to
describe. If we book compute resources connected through complex networks, it is
not possible anymore to easily represent the network. Second, the topology may only
reflect partial performance information – e.g. the number of hops, which are related
to latency, but unrelated to the bandwidth.

When performance is used to characterize network properties, it is common to use
communication performance models. But such performance models face significant
challenges. As described in Fig. 1.2, a number of layers exist for the communication
library, and components of each layer impact the performance in some way. There-
fore, it is unrealistic to look for “one fits all” model – its complexity and number of
parameters would be overwhelming. Instead, it is reasonable to make the assumption
that the low-level configuration of software and runtime is optimized, and to focus
on the communication as something generic. In many cases, this ideal notion is not
possible – e.g. misconfiguration of the underlying hardware or software (including
MPI) is possible, and then incorporation of additional parameters is necessary. These
technicalities are not the subject of this chapter.

A significant advantage of an accurate communication performance model is that
it can be efficiently used for a wide range of optimized collective operations. The
use of the model consists of two important phases (see Fig. 1.4):

In a first phase, the model parameters are estimated.

In a second phase, some form of optimization is targeted – either through
prediction-based selection, or through a design of new algorithm.

For clarity, each time we introduce a model we will briefly address the above
points of estimation, and how the models can be used on the example of a broadcast
operation.

PERFORMANCE AS INPUT 9

Figure 1.5 LogP example: Even basic predictions for collectives require consideration.
Depending on o and g, completion can either take (g + 2 ∗ o+ L) or (3 ∗ o+ L).

1.7.1 Homogeneous Performance Models

The simple Hockney model [23] is the most comprehensive performance model of
point-to-point communication, and is the common starting point for modelling col-
lective algorithms. If the latency is α and the reciprocal value of the bandwidth is β,
the time T to transfer a message of size m is given as:

T (m) = α+ β ∗m (1.2)

The estimation of model parameters is trivially done with ping-pong benchmarks
with different message sizes, and tools like NetPIPE [24] can be used.

As a simple example of predicting collectives, let us consider the binomial tree
broadcast operation. It can be trivially predicted [10] as

T (m) = dlog(p)e ∗ (α+m ∗ β) (1.3)

Numerous early efforts exist to design efficient collective operations on networks
with heterogeneous links with the Hockney model. The common feature of all of
them is the use of a heuristic to provide an efficient communication schedule rather
than an optimal one. An intuitive idea is to use minimal spanning tree algorithms and
modifications thereof, using the communication cost as edge property [12]. Other
heuristics of trees with binomial or other structure also exist, for example considering
overlap of communication [25]. Interestingly, it is not always the case that complex
heuristics result in better efficiency – some evidence suggests that even a simple
heuristic based on a fixed tree structure with reordering of processes can produce
efficient communication trees [26].

A more advanced model is the LogP model [27], which has an upper bound L
on latency, overhead o, gap per message g, and the number of processors P. The
increase in parameters allows separate contributions for the network and processors
at each machine – with g and L being network-dependent, and o being processor-
dependent. And yet, a number of questions arise. While conceptually we can dif-
ferentiate between the processor- and network-dependent contributions o and g, it
is unclear where to draw the line between these contributions and what benchmarks
should be performed in order to accurately estimate these parameters. This might be
unproblematic for point-to-point communication, but is more important for collec-
tives.

There are also other challenges to these parameters. The gap g and the overhead
o parameters overlap in time. Consider for example a trivial broadcast between 3

10 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

processors as shown in Fig. 1.5. The prediction depends on the relation between g
and o, since they overlap in time at each node.

Let us use this model to predict the familiar binomial tree broadcast for small
messages. If we consider that for small message size m the gap g is small, we make
the assumption g < 2 ∗ o+ L, resulting in [28]:

T = dlog(p)e ∗ (2 ∗ o+ L) (1.4)

An extension of this model – LogGP model [29] – introduces the additional pa-
rameter gap per byte G for long messages. The extra parameter accounts for the
overhead of sending one long message, where the prediction for a binomial tree
broadcast is

T (m) = dlog(p)e ∗ (2 ∗ o+ L+G ∗ (m− 1)) (1.5)

The PLogP model [30], or the Parametrized LogP model, is another model related
to LogP/LogGP model. It has the same 5 parameters, but they capture slightly differ-
ent properties – we refer to the information provided in the original work for details.
An important feature is that the parameters g and m are not constant, but functions
– g(m) and o(m), and do not need to be linear, but only piecewise linear. This, in
principle, allows to capture non-linear behaviour for varying message sizes, and such
nonlinearities are sometimes observed in MPI (e.g. at the switch point between eager
and rendezvous protocol).

The developers of the model provide a software tool for estimating its parame-
ters. The original work introducing LogP/LogGP does not provide such software,
and only micro benchmarks have been developed for these models. By using the
provided PLogP software, its parameters can be evaluated, and can then in turn be
translated into the LogP/LogGP parameters. The estimation of the parameters is
much more complex than with simple models like Hockney. The authors claim that
their model can be efficiently evaluated, because only g(0) benchmarks need to sat-
urate the network. However, this does not account for non linear behaviour of the
network, when the cost of estimating the parameters increases significantly. In such
cases, PLogP benchmarks are increased for more message sizes to extrapolate the
non linear runtime more accurately using g(m) and o(m). For example, the authors
acknowledge that g(m > 0) with saturation of a link can take up to 17 times longer
per link.

1.7.2 Heterogeneous Performance Models

The motivation for more complex performance models is that predictions for collec-
tive operations are not accurate based on traditional point-to-point models. Simply
put, even if the individual contributing factors can be ignored for point-to-point pre-
dictions, these factors are needed when modelling collective communication. Per-
formance models of heterogeneous networks can follow one of two approaches –
either homogeneous communication models can be applied separately for each link,
or new heterogeneous models can be introduced. To avoid the introduction of an

PERFORMANCE AS INPUT 11

entirely new model, a simple first step is the slight modification of an existing model
to represent at least some of the heterogeneity of the used platform. On the example
of LogP, it has been recognized early that on sender and receiver side, contributions
can differ for different nodes, and the constant overhead o can be subdivided into
separate sender and receiver overheads os and or [31]. New heterogeneous commu-
nication models have been proposed [32, 33] with the idea to have more parameters
which give more expressive power and, potentially, better accuracy. Parameters for
constant and variable contributions of the network and sender and receiver are intro-
duced. Here, we show the point-to-point prediction as given in [32]:

T (m) = Ssender
c +Ssender

m ∗m+Xc+Xm ∗m+Rreceiver
c +Rreceiver

m ∗m (1.6)

In this formula, the components Sc, Xc and Rc are the constant parts of the send,
transmission and receive costs respectively. m is the message size, with Sm, Xm,
and Rm being the message dependent parts. Prediction formulas are provided for
various collective operations – but with more expressiveness of different contribu-
tions to the runtime than homogeneous models. However, the prediction formulas
are significantly more complex. If we consider the binomial tree broadcast, the pre-
diction is:

T (m) = max{T 0
recv(m), T 1

recv(m), . . . , Tn−1
recv (m)} (1.7)

with

T i
recv(m) = T parent(i)

recv + childrank(parent(i), i)

∗(Sparent(i)
c + Sparent(i)

m ∗m)

+Xm ∗m+Xc +RI
m ∗m+Ri

c. (1.8)

parent(i) is the parent of node i in the broadcast tree, and childrank(parent(i), i)
is the order, among its siblings, in which node i receives the message from its parent.

Unfortunately, the maximum operator cannot be eliminated, and a simpler pre-
diction is impossible in such cases. The reason behind this is that it cannot be deter-
mined in advance which tree path is overall slower – and dominating the runtime –
on heterogeneous networks.

1.7.3 Estimation of Parameters of Heterogeneous Performance Models

A significant challenge when increasing the number of parameters of heterogeneous
models is the estimation phase. A model with a large number of parameters captur-
ing separate contributions in communication is useless if the parameters cannot be
practically established. After all, in real experiments it is the estimation phase that
gives meaning to the model parameters – not an abstract description of what they
should represent. There is good reason to be cautious – the presented model in pre-
vious section claims that two sets of experiments, ping-pong and consecutive sends,
are sufficient to capture all 9 parameters. This is not plausible. For example, it is
assumed that it is easy to estimate the component Sc in isolation, but how this can be

12 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

done within a node is not clear. Also, the constant network contribution is sometimes
ignored during the estimation phase.

The proper estimation of model parameters is addressed in more recent work [33].
One important requirement is that n model parameters require the estimation phase
to provide benchmarks which can be formulated as a system of linear equations with
a single unique solution. It is difficult to design an estimation procedure providing
such a system of equations. However, under certain assumptions it is feasible and
is demonstrated for Ethernet clusters. For a number of collectives, the resulting
predictions are shown to be more accurate than simple model predictions.

1.7.4 Other Performance Models

Performance models are not limited to capturing point-to-point or collective opera-
tions under “ideal” conditions. Another potential use case for such models is captur-
ing contention and/or congestion. The topic is important, with the increase in net-
working and memory bus capacity lagging behind the increase of processing units
like cores. We only give a short overview of some related work here. Simple ap-
proaches suggest introducing a factor to the familiar Hockney model, which slows
down performance proportionally to the process number [34]. Other work in this
direction introduces more complex extensions to LogP/LogGP to capture network
contention [31]. The communication pattern of an application as well as the un-
derlying network are analyzed. While more accurate for the given applications, the
model uses a much larger number of parameters. There are also efforts for new
contention models – for example, a simple experiment-oriented model which esti-
mates penalty coefficients for Infiniband [35], or a model capturing the congestion
on Ethernet clusters for gather operations [36].

1.8 Non-MPI Collective Algorithms for Heterogeneous Networks

While communication research in HPC increasingly focuses on the complex hierar-
chical structure of clusters – consider the presence of cores and accelerators within
nodes – the related area of distributed computing is often overlooked. And yet algo-
rithms and ideas from distributed computing have a strong background in optimizing
communication for heterogeneous networks. Many of the solutions in this area do
not suffer the limitations of MPI. First, we observe a multiple spanning tree algo-
rithm which, unlike previously presented algorithms, is bandwidth-oriented and not
topology-oriented. Then, we focus on adaptive algorithms of distributing data, which
are orthogonal to the fixed schedule of communication in MPI. We show two useful
applications of such algorithms – efficient alternatives to MPI collectives, or new
ways of designing performance models.

NON-MPI COLLECTIVE ALGORITHMS FOR HETEROGENEOUS NETWORKS 13

Figure 1.6 A network model [37] and multiple spanning trees for improving throughput.
(a) Available bandwidth for each independent link. (b) Three possible spanning trees and
predicted throughput for each.

1.8.1 Optimal Solutions with Multiple Spanning Trees

A recent work in distributed computing [37] uses MST without the constraints of
MPI to implement efficient collective operations. As discussed earlier, the only
known MPI solution builds multiple trees following the known network topology.

The problem of finding an optimal set of communication trees is very complex
– nn−2 different trees exist alone for n hosts according to Cayley’s formula [38].
Naturally, the use of heuristics is required to find a good solution in reasonable time,
and the above work uses following steps:

Start with a network model to describe the properties of a heterogeneous net-
work – an example is given in Fig. 1.6.

Generate a good (but not optimal) set of trees for given network using a heuristic
algorithm [39].

Translate network model and set of trees into a set of constraints.

Use linear programming algorithm to find maximum throughput.

It is crucial that a heuristic algorithm provides spanning trees for the given prob-
lem. These trees can be seen merely as “sensible suggestions”. As any heuristic, they
have their limitations, which are discussed in detail in related work. In the last steps,
the maximum throughput provided by the linear programming is not used for the
algorithm design. It serves as a measure of the efficiency of the designed algorithm.

14 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000

R
u

n
ti
m

e
 (

s
e

c
s
)

Message size (MB)

MPICH2 64 procs broadcast
Open MPI 64 procs broadcast
BitTorrent 64 procs broadcast

Figure 1.7 Experiments on a hierarchy of 3 Ethernet clusters within a site in Bordeaux.
BitTorrent broadcasts outperform MPI broadcasts for very large messages.

1.8.2 Adaptive Algorithms for Efficient Large-Message Transfer

In middleware like MPI, messages are communicated through a fixed schedule of
point-to-point operations. The messages are pushed across the network following
this schedule, hence this class of algorithms is called sender-initiated multicasts.
The orthogonal class of collective operations is called receiver-initiated multicasts.
In this case, receivers pull the data from senders. A very popular protocol in this
category is BitTorrent [40]. While initially more popular in distributed and peer-to-
peer computing, BitTorrent has shown promising performance even in the context
of high performance networks with some level of heterogeneity. Experiments on
different emulated wide-area networks show that BitTorrent-inspired protocols can
perform very well [41]. More surprisingly, even on a hierarchy of clusters within a
single computing site, broadcasts of very large messages using the original BitTor-
rent protocol can often outperform state-of-the-art MPI algorithms [42]. Fig. 1.7
shows that for message sizes in the range of Megabytes, BitTorrent can outperform
state-of-the-art MPI implementations on a hierarchy of Ethernet clusters.

While the analysis of BitTorrent communication is not trivial, one fundamental
feature of receiver-initiated multicasts is that data can be propagated adaptively. To
support this, BitTorrent opens multiple TCP channels in parallel. Early work [43]
has also shown that in this case the throughput approaches the maximum. Therefore,
there has recently been strong evidence that dynamic and adaptive scheduling of
point-to-point communication can be efficient when transferring large data volumes
in heterogeneous networks.

NON-MPI COLLECTIVE ALGORITHMS FOR HETEROGENEOUS NETWORKS 15

1.8.3 Network Models Inspired by BitTorrent

One interesting application of adaptive and dynamic multicast protocols (e.g. Bit-
Torrent) which deserves increased research effort in the future is the generation of a
network model. To some extent, this idea has been demonstrated [37] by allowing
dynamic stealing of bandwidth within clusters while providing the overall network
topology.

Another entirely BitTorrent-based solution is proposed in a network tomography
method to identify logical clusters without any a-priori knowledge of the network
[44]. Network tomography, even though an area of research more popular in Inter-
nets and unknown networks, bears a close resemblance to the performance models
used in high performance computing. The general goal in this area is the logical
reconstruction of a network using only end-to-end measurements. Network tomog-
raphy follows two distinct phases:

Measurement phase – end-to-end measurements with some level of noise

Reconstruction phase – remove noise through statistical methods

In its goal, the method is quite similar to the estimation of model parameters. But
instead of isolated point-to-point experiments, adaptive BitTorrent-based multicasts
are used for network discovery. The multicasts are repeated a number of times until
the network properties are reliably reconstructed. In the end, a logical view of the
network in the form of bandwidth clusters is built. The resulting accurate clustering
of geographically distributed sites according to their bandwidth is shown in Fig. 1.8.
The provided clustering can be used as a topology input for any topology-aware
collective algorithm.

Furthermore, the presented tomography seems even more suitable for performance-
aware collective communication. As shown in Fig. 1.9, such algorithms can provide
an entirely performance-based network model, and have the potential to replace the
traditional performance measurement procedures. The two types of performance
measurements differ strongly. Traditional measurement procedures typically use
point-to-point operations to reconstruct link model parameters. Each of these mea-
surements needs to be repeated a number of times. On the other side, the measure-
ment procedures inspired e.g. by the BitTorrent protocol can be very efficient, and
can be entirely based on collective operations like broadcasts. In a separate phase,
the statistical algorithm removes noise and randomness in the measurements till the
accuracy levels are good enough. It is significant that collective operations can be
used instead of point-to-point operations. This allows for an increased accuracy of
the model when targeting predictions of collective operations. For example, it is im-
possible for point-to-point operations to detect the presence of bottlenecks in most
scenarios. However, the use of flexible measurement procedures can detect such
bottlenecks [44].

16 COLLECTIVE COMMUNICATION FOR HETEROGENEOUS HPC PLATFORMS

10.69.1.24

172.16.16.139

172.16.16.138

10.69.1.16

172.16.113.76

10.69.0.21

10.69.1.10

10.69.1.11

10.69.1.12

10.69.1.14

10.69.1.17

172.16.113.57

172.16.113.52

172.16.113.38

10.69.1.13

172.16.113.98

172.16.2.7

10.69.1.74

10.69.1.71

10.69.1.1

172.16.113.33

10.69.1.9

172.16.1.90

172.16.16.64

10.69.1.15

172.16.1.92

172.16.1.93

172.16.2.1

172.16.16.68

172.16.16.69

172.16.16.60

172.16.16.62

172.16.16.78

10.69.0.36

172.16.16.63

172.16.113.50

172.16.16.65

172.16.2.9

10.69.1.72

172.16.113.56

172.16.2.4

172.16.113.95

172.16.113.92

172.16.2.3

172.16.113.35

172.16.1.9

172.16.113.49

172.16.113.36

172.16.113.9

172.16.1.89

172.16.1.87

172.16.1.86

172.16.1.85

172.16.1.84

172.16.1.83

172.16.113.3

172.16.16.52

172.16.16.77

172.16.16.75

172.16.16.74

172.16.1.91

172.16.113.51

172.16.16.66

172.16.16.67

(a) (b)

Figure 1.8 Network tomography as proposed in [44]. (a) Reconstructed bandwidth clusters.
(b) Underlying physical network.

Figure 1.9 Performance-aware network models. (a) Traditionally, a number of
isolated point-to-point experiments are used in HPC. (b) Inspired by network tomography,
measurements based on collective operations can be performed.

CONCLUSION 17

1.9 Conclusion

This work reviewed the main generic optimization techniques for collective com-
munication. With increasingly heterogeneous networks, empirical approaches to op-
timizing communication become unfeasible due to the exponential growth of the
already huge test space. Therefore, we need some sort of a network model. Such a
network model can be based on topology or performance. Topology-aware collec-
tives are a relatively straight-forward and popular approach to optimization. They of-
fer solid performance gains in case we know the network topology in advance. More
advanced network models are based on the performance. In this case, performance
communication models are used. While these models strive to capture the network
heterogeneity, they are difficult to use. For example, heterogeneous models captur-
ing various contributions produce complex prediction formulas. In addition to that,
their parameters are difficult to estimate. More advanced models would be even more
complicated to use, and that limits their practical importance. This means that one
of the classic cases of using models on homogeneous networks – prediction-based
selection of optimal algorithms – is difficult to apply with advanced models for het-
erogeneous and hierarchical networks. From a scientific point of view, this outcome
is not satisfactory. After all, accurate predictions are the only scientific validation of
any model. But if we take a more practical approach, even for a “relatively accurate”
model, there is a significant potential for designing efficient performance-aware al-
gorithms. The simple Hockney model – even though proven to not always provide
accurate predictions – has been successfully used on heterogeneous networks. It has
been observed that minimal spanning trees based on the per-link Hockney model pro-
vide efficient broadcast for small messages. For larger messages, the same approach
can be used successfully for binomial trees broadcasts. For very large messages,
receiver-initiated multicasts are gaining popularity in the HPC domain. The adaptive
nature of these algorithms makes them suitable even for very complex networks.

We are grateful to COST Action IC0805 “Open European Network for High
Performance Computing on Complex Environments” for their support.

REFERENCES

1. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, et al., ScaLAPACK Users’ Guide, vol. 4. Society
for Industrial and Applied Mathematics, 1987.

2. J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

3. D. Wadsworth and Z. Chen, “Performance of MPI broadcast algorithms,” in Interna-
tional Parallel and Distributed Processing Symposium. IPDPS 2008., pp. 1–7, 2008.

4. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with
the message passing interface, vol. 1. MIT press, 1999.

5. L. Hablot, O. Gluck, J.-C. Mignot, S. Genaud, and P.-B. Primet, “Comparison and tuning
of MPI implementations in a grid context,” in IEEE International Conference on Cluster
Computing, pp. 458 –463, September 2007.

6. A. Mamidala, A. Vishnu, and D. Panda, “Efficient shared memory and RDMA based
design for MPI Allgather over InfiniBand,” Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pp. 66–75, 2006.

7. J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based MPI implementation
over InfiniBand,” International Journal of Parallel Programming, vol. 32, pp. 167–198,
June 2004.

8. T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time MPI broadcast algo-
rithm for large-scale InfiniBand clusters with multicast,” in International Parallel and
Distributed Processing Symposium. IPDPS 2007, pp. 1 –8, March 2007.

High Performance Computing on Complex Environments.
By Copyright c© 2013 John Wiley & Sons, Inc.

19

20 REFERENCES

9. E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-
hay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Gra-
ham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next generation
MPI implementation,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
(Budapest, Hungary), pp. 97–104, September 2004.

10. R. Thakur and R. Rabenseifner, “Optimization of collective communication opera-
tions in MPICH,” International Journal of High Performance Computing Applications,
vol. 19, pp. 49–66, 2005.

11. J. Pjesivac-Grbovic, Towards Automatic and Adaptive Optimizations of MPI Collective
Operations. PhD thesis, The University of Tennessee, Knoxville, 2007.

12. P. B. Bhat, C. Raghavendra, and V. K. Prasanna, “Efficient collective communication
in distributed heterogeneous systems,” Journal of Parallel and Distributed Computing,
vol. 63, no. 3, pp. 251 – 263, 2003.

13. H. Subramoni, K. Kandalla, J. Vienne, S. Sur, B. Barth, K. Tomko, R. Mclay, K. Schulz,
and D. K. Panda, “Design and evaluation of network topology-/speed- aware broadcast
algorithms for InfiniBand clusters,” in IEEE International Conference on Cluster Com-
puting, pp. 317–325, 2011.

14. M. Kwon and S. Fahmy, “Topology-aware overlay networks for group communication,”
in 12th international workshop on network and operating systems support for digital
audio and video, pp. 127–136, ACM, 2002.

15. T. Kielmann, H. E. Bal, and S. Gorlatch, “Bandwidth-efficient collective communication
for clustered wide area systems,” in Workshops of International Parallel and Distributed
Processing Symposium. IPDPS 2000, pp. 492–499, 2000.

16. E. Gabriel, M. Resch, T. Beisel, and R. Keller, “Distributed computing in a heteroge-
neous computing environment,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface (V. Alexandrov and J. Dongarra, eds.), vol. 1497 of LNCS,
pp. 180–187, Springer Berlin / Heidelberg, 1998. 10.1007/BFb0056574.

17. R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes,” in 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, 2009, pp. 427–436, IEEE, 2009.

18. J. Ladd, M. G. Venkata, R. Graham, and P. Shamis, “Analyzing the effects of multi-
core architectures and on-host communication characteristics on collective communi-
cations,” in 40th International Conference on Parallel Processing Workshops. ICPPW
2011, pp. 406–415, 2011.

19. T. Ma, G. Bosilca, A. Bouteiller, B. Goglin, J. M. Squyres, and J. J. Dongarra, “Ker-
nel assisted collective intra-node MPI communication among multi-core and many-core
CPUs,” in International Conference on Parallel Processing. ICPP 2011, pp. 532–541,
2011.

20. G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway, J. E. Moreira,
B. Steinmacher-Burow, and Y. Zheng, “Optimization of MPI collective communication
on BlueGene/L systems,” in International Conference on Supercomputing. ICS 2005,
pp. 253–262, ACM, 2005.

21. F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, and R. Namyst, “hwloc: A generic framework for managing hardware

REFERENCES 21

affinities in HPC applications,” in Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing. PDP2010, pp. 180–186, 2010.

22. C. Coti, T. Herault, and F. Cappello, “MPI applications on grids: A topology aware
approach,” in The 15th International European Conference on Parallel and Distributed
Computing. Euro-Par 2009, vol. 5704 of LNCS, pp. 466–477, Springer Berlin / Heidel-
berg, 2009.

23. R. W. Hockney, “The communication challenge for MPP: Intel Paragon and Meiko CS-
2,” Parallel Computing, vol. 20, pp. 389–398, Mar. 1994.

24. Q. O. Snell, A. R. Mikler, and J. L. Gustafson, “NetPIPE: A network protocol indepen-
dent performance evaluator,” in IASTED International Conference on Intelligent Infor-
mation Management and Systems, 1996.

25. J. Hatta and S. Shibusawa, “Scheduling algorithms for efficient gather operations in
distributed heterogeneous systems,” in International Conference on Parallel Processing
Workshops. ICPPW 2000, pp. 173–180, 2000.

26. K. Dichev, V. Rychkov, and A. Lastovetsky, “Two Algorithms of Irregular Scatter/Gather
Operations for Heterogeneous Platforms,” in 17th European MPI users’ group meeting
conference on Recent advances in the message passing interface, vol. 6305 of LNCS,
(Stuttgart, Germany), pp. 289–293, Sept. 2010.

27. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken, “LogP: Towards a realistic model of parallel computation,” Fourth
ACM SIGPLAN symposium on principles in practices of parallel programming, vol. 28,
pp. 1–12, July 1993.

28. T. Hoefler, L. Cerquetti, T. Mehlan, F. Mietke, and W. Rehm, “A practical approach to
the rating of barrier algorithms using the LogP model and Open-MPI,” in International
Conference on Parallel Processing Workshops. ICPPW 2005, pp. 562–569, June 2005.

29. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “LogGP: incorporating
long messages into the LogP model – one step closer towards a realistic model for par-
allel computation,” in Proceedings of the seventh annual ACM symposium on parallel
algorithms and architectures, pp. 95–105, ACM, 1995.

30. T. Kielmann, H. Bal, and K. Verstoep, “Fast measurement of LogP parameters for mes-
sage passing platforms,” Workshops on International Parallel and Distributed Process-
ing Symposium. IPDPS 2000, pp. 1176–1183, 2000.

31. C. Moritz and M. Frank, “LoGPG: Modeling network contention in message-passing
programs,” IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 4,
pp. 404–415, 2001.

32. M. Banikazemi, J. Sampathkumar, S. Prabhu, D. K. Panda, and P. Sadayappan, “Com-
munication modeling of heterogeneous networks of workstations for performance char-
acterization of collective operations,” in 8th Heterogeneous Computing Workshop, HCW
’99, (Washington, DC, USA), pp. 125–133, IEEE Computer Society, 1999.

33. A. Lastovetsky, V. Rychkov, and M. O’Flynn, “Accurate heterogeneous communication
models and a software tool for their efficient estimation,” International Journal of High
Performance Computing Applications, vol. 24, pp. 34–48, 2010.

34. L. Steffenel, “Modeling network contention effects on all-to-all operations,” in IEEE
International Conference on Cluster Computing, 2006, pp. 1–10, IEEE, 2006.

22 REFERENCES

35. M. Martinasso and J.-F. Mehaut, “A contention-aware performance model for HPC-
based networks: A case study of the InfiniBand network,” in 17th International Eu-
ropean Conference on Parallel and Distributed Computing. Euro-Par 2011, pp. 91–102,
2011.

36. A. Lastovetsky and M. O’Flynn, “A performance model of many-to-one collective com-
munications for parallel computing,” in International Parallel and Distributed Process-
ing Symposium. IPDPS 2007, pp. 1–8, IEEE, 2007.

37. M. den Burger, High-throughput multicast communication for grid applications. PhD
thesis, Vrije Universiteit Amsterdam, 2009.

38. A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics, vol. 23, no. 376-
378, p. 69, 1889.

39. R. Izmailov, S. Ganguly, and N. Tu, “Fast parallel file replication in data grid,” in Future
of Grid Data Environments workshop (GGF-10), 2004.

40. B. Cohen, “Incentives build robustness in BitTorrent,” in 1st Workshop on Economics of
Peer-to-Peer Systems, 2003.

41. M. den Burger and T. Kielmann, “Collective receiver-initiated multicast for grid appli-
cations,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 231 –244,
February 2011.

42. K. Dichev and A. Lastovetsky, “MPI vs BitTorrent : Switching between large-message
broadcast algorithms in the presence of bottleneck links,” in 10th International Workshop
on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms.
HeteroPar 2012, (Rhodes Island, Greece), pp. 185–195, LNCS, 7640, Springer, August
2012.

43. P. Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated content in the
Internet,” IEEE/ACM Transactions on Networking, vol. 10, pp. 455–465, Aug. 2002.

44. K. Dichev, F. Reid, and A. Lastovetsky, “Efficient and reliable network tomography
in heterogeneous networks using BitTorrent broadcasts and clustering algorithms,” in
ACM/IEEE International Conference on High Performance Computing, Networking,
Storage and Analysis. SC’12, (Salt Lake City, UT, USA), 2012.

