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ABSTRACT

The current state and foreseeable future of high performance scientific com-
puting (HPC) can be described in three words: heterogeneous, parallel and
distributed. These three simple words have a great impact on the architecture
and design of HPC platforms and the creation and execution of efficient al-
gorithms and programs designed to run on them. As a result of the inherent
heterogeneity, parallelism and distribution which promises to continue to per-
vade scientific computing in the coming years, the issue of data distribution
and therefore data partitioning is unavoidable.

This data distribution and partitioning is due to the inherent parallelism of
almost all scientific computing platforms. Cluster computing has become all
but ubiquitous with the development of clusters of clusters and grids beco-
ming increasingly popular. Even at a lower level, high performance symmetric
multiprocessor (SMP) machines, General Purpose Graphical Processing Unit
(GPGPU) computing, and multiprocessor parallel machines play an important
role. At a very low level, multicore technology is now widespread, increasing
in heterogeneity, and promises to be omnipresent in the near future.

Scientific computing is undergoing a paradigm shift like none other before.
Only a decade ago most high performance scientific architectures were homo-
geneous in design and heterogeneity was seen as a difficult and somewhat
limiting feature of some architectures. However this past decade has seen the
rapid development of architectures designed not only to exploit heterogeneity
but architectures designed to be heterogeneous. Grid and massively distributed
computing has led the way on this front. The current shift is moving from these
to architectures that are not heterogeneous by definition, but heterogeneous by
necessity. Cloud and exascale computing architectures and platforms are not
designed to be heterogeneous as much as they are heterogeneous by definition.
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Indeed such architectures cannot be homogeneous on any large (and useful)
scale. In fact more and more researchers see heterogeneity as the natural state
of computing.

Further to hardware advances, scientific problems have become so large that
the use of more than one of any of the above platforms in parallel has become
necessary, if not unavoidable. Problems such as climatology and projects in-
cluding the Large Hadron Collider necessitate the use of extreme-scale parallel
platforms, often encompassing more than one geographically central super-
computer or cluster. Even at the core level large amounts of information must
be shared efficiently.

One of the greatest difficulties in solving problems on such architectures is the
distribution of data between the different components in a way that optimizes
runtime. There have been numerous algorithms developed to do so over the
years. Most seek to optimize runtime by reducing the total volume of commu-
nication between processing entities. Much research has been conducted to do
so between distinct processors or nodes, less so between distributed clusters.

This thesis presents new data partitioning algorithms for matrix and linear
algebra operations (these algorithms would in fact work for any application
with similar communication patterns). In practice these partitionings distri-
bute data between a small number of computing entities, each of which can
have great computational power themselves. These partitionings may also be
deployed in a hierarchical manner, which allows the flexibility to be employed
in a great range of problem domains and computational platforms. These
partitionings, in hybrid form, working together with more traditional parti-
tionings, minimize the total volume of communication between entities in a
manner proven to be optimal. This is done regardless of the power ratio that
exists between the entities, thus minimizing execution time. There is also no
restriction on the algorithms or methods employed on the clusters themselves
locally, thus maximizing flexibility.

Finally, most heterogeneous algorithms and partitionings are designed by mo-
difying existing homogeneous ones. With this in mind the ultimate goal of
this thesis is to demonstrate that non-traditional and perhaps unintuitive al-
gorithms and partitionings designed with heterogeneity in mind from the start can
result in better, and in many cases optimal, algorithms and partitionings for
heterogeneous platforms. The importance of this given the current outlook
for, and trends in, the future of high performance scientific computing is ob-
vious.
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CHAPTER

ONE

INTRODUCTION

“I would never have got to know this remote and beautiful island otherwise.”
– Erwin Schrödinger, November, 19601

1.1 Motivation

Two general areas have provided the motivation for this work—those which
are fundamental to this research, and the current state-of-the-art of high per-
formance scientific computing. Areas which fall into the fundamental area
include:

What happens when we want to solve a well-established homogeneous
problem on heterogeneous platforms?

How can the performance of these problems be improved?

Why have these problems, running on heterogeneous platforms, been
largely ignored by research groups?

Where is scientific computing headed in the future?

Platforms and architectures which are central to the state-of-the-art and future
of scientific computing include:

• Super Computing

• Grid Computing

1Schrödinger, E. (1967). What is life? With mind and matter and autobiographical sketches.
Cambridge University Press.
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• Cloud Computing

• Cluster Computing

• GPGPU Computing

• Multicore Computing

1.1.1 Fundamentals

This work started with a simple question. Take two heterogeneous processing
elements—how can they work together to best solve a specific problem? This
question immediately raised many more. What happens if we add another
element to make three? What about four? Is there something specific about
the problems we want to solve that can be exploited to improve performance?
How will the data partitioning and distribution impact the communication
and execution times? How will the communication network affect the com-
munication times? How will this affect execution times?

Regardless of the answers to these questions, two things are certain. It is desi-
red for these elements to balance the computational load between themselves
optimally, and to communicate data necessary for computations optimally.
Unfortunately optimality is not always possible. These two tasks often turn
out to be surprisingly difficult on heterogeneous platforms. Indeed solutions
to problems that prove to be optimal on heterogeneous platforms are rare. Of-
ten some of the most simple tasks on homogeneous platforms turn out to be
NP-Complete when attempted on heterogeneous ones (Beaumont et al., 2002a).
Sometimes approximation algorithms are found, often heuristics and problem
restrictions are resorted to, and in some cases not even theoretical results exist.
In the latter case researchers have deemed it necessary to resort to experimen-
tal approaches for reproducibility and comparison studies. Tools to facilitate
such have already been developed (Canon and Jeannot, 2006).

To answer our questions we choose as a testbed the problem of matrix matrix
multiplication (MMM). Matrices are probably the most widely used mathe-
matical objects in scientific computing and their multiplication (or problems
reducible to MMM) appear very frequently in all facets of scientific computing
(Dongarra and Lastovetsky, 2006). Indeed, MMM is the prototype of tightly-
coupled kernels with a high spatial locality that need to be implemented effi-
ciently on distributed and heterogeneous platforms (Beaumont et al., 2001b).
Moreover most data partitioning studies mainly deal with matrix partitioning.

2



Why would we want to extend MMM to heterogeneous platforms? As stated
in Beaumont et al. (2001b), the future of computing platforms is best described
by the keywords distributed and heterogeneous.

Our fundamental motivation stems from two sources. First, there exist many
general heterogeneous MMM algorithms which work well for several, dozens,
hundreds, or even thousands of nodes, but all currently known algorithms re-
sult in simple, perhaps naïve partitionings when applied to the architecture
of a small number of interconnected heterogeneous computing entities (two,
three, etc.). Examples of these methods are explored in Beaumont et al. (2001b,
2002b); Dovolnov et al. (2003); Kalinov and Lastovetsky (1999); Lastovetsky
(2007). As stated earlier we intentionally set out to investigate the particu-
lar case of a small number of computing entities to see what is happening in
what is sometimes perceived to be a “degenerate” case. Despite its existence
for at least 30 years, parallel MMM research has almost completely ignored
this area. Early work is presented in Becker and Lastovetsky (2006, 2007), and
some early application results in Becker and Lastovetsky (2010).

Second, we at the Heterogeneous Computing Laboratory2 are keenly aware
of the parallel, distributed and especially the heterogeneous nature of compu-
ting platforms which are omnipresent in scientific computing, and that most
parallel and distributed algorithms in existence today are designed for, and
only work efficiently on homogeneous platforms. After discussing the afore-
mentioned load balancing and communication issues, we will survey modern
scientific computing platforms, and where parallelism, distribution and hete-
rogeneity impact them.

1.1.1.1 Load Balancing

The issue of load balancing is well studied and well understood, but not wi-
thout its challenges. For a detailed study see Boulet et al. (1999). Neglecting
the obvious such as the nature of the problem itself, failures and fluctuating
capability due to other outside influences or factors, the issue can be reduced
to a knowledge of the problem and the computing elements themselves. Sup-
pose there is an amount of work W to do. If element A is capable of doing a
work x in time t1 and element B is capable of doing a work y in time t2, the
problem can be statically partitioned quite easily. We know that A works at a
speed s1 = x

t1
and B works at a speed s2 = y

t2
. If we normalize the speeds so

2hcl.ucd.ie
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that s1 + s2 = 1, element A is to receive an amount of work equal to W × s1

and element B is to receive an amount of work equal to W × s2. Theoretically
this would result in A and B finishing their work partitions in the same time,
thus being optimal from a load balancing point of view.

For homogeneous computing elements such a problem scales well. In fact
homogeneous systems are a standard platform for many supercomputers to-
day (See 1.1.2). Current supercomputers utilize thousands of homogeneous
elements (normally nodes or processors) working in parallel. At the time of
writing the fourth fastest computer on Earth is “Kraken”, a Cray CT5 Family,
XT5-HE System Model, with 16,488 AMD x86_64 Opteron Six Core proces-
sors running at 2,600 MHz (a total of 98,928 cores) at the National Institute
for Computational Sciences/University of Tennessee in Tennessee, USA.3 Kra-
ken is capable of 1,028,851 GFlops. For reference the laptop I am writing on
now is an Intel Core Duo T5500 running at 1.66Ghz with 2GB memory, and
has a peak performance of around 1Gflop, depending on the benchmark. An
embarrassingly parallel problem—that is a problem that can be cut into any
number of pieces as small as one wants with little or no communication bet-
ween processes—could be theoretically balance load by partitioning the pro-
blem into 98,928 partitions and have each core solve one of the partitions. This
would theoretically solve the whole problem in about one millionth of the time
it would take my laptop. This is of course neglecting an multitude of factors
such as data distribution and re-collection times, architectural differences, and
vast memory and storage issues.

1.1.1.2 Communication

It is the communication aspects of data partitioning and distribution which
make designing such algorithms difficult. Again ignoring faults, other non-
related network traffic, etc., does the communication component of data parti-
tioning affect the time it takes to solve the problem? How is it affected? what
are these effects? Are there possibilities of deadlocks, race conditions and other
parallel communication issues? Most fundamentally, two simple questions
arise:

• How does the way we partition the data affect the execution time?

• What is the best way to partition the data so that we minimize the com-

3www.nics.tennessee.edu/computing-resources/kraken
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munication time, thus (hopefully) minimizing the execution time?

These questions can be quite difficult to answer—sometimes impossible to
answer—but can have a significant effect on the overall execution time.

1.1.2 State-of-the-art Scientific Computing

1.1.2.1 The Top500

The website www.top500.org maintains a list of the fastest computers on
Earth, updated bi-annually. The fastest computer on Earth at the time of wri-
ting is “Jaguar”, a Cray XT5-HE At Oak Ridge National Laboratory in Tennes-
see, USA.4 Jaguar is composed of two physical partitions (not to be confused
with data partitions). The first partition is “XT5” with 37,376 Opteron 2435 (Is-
tanbul) processors running at 2.6GHz, with 16GB of DDR2-800 memory, and
a SeaStar 2+ router with a peak bandwidth of 57.6Gb/s. The resulting parti-
tion contains 224,256 processing cores, 300TB of memory, and a peak perfor-
mance of 2.3 petaflop/s (2.3 quadrillion floating point operations per second).
The second partition “XT4” has 7,832 quad-core AMD Opteron 1354 (Buda-
pest) processors running at 2.1 GHz, with 8 GB of DDR2-800 memory (some
nodes use DDR2-667 memory), and a SeaStar2 router with a peak bandwidth
of 45.6Gb/s. The resulting partition contains 31,328 processing cores, more
than 62 TB of memory, over 600 TB of disk space, and a peak performance of
263 teraflop/s (263 trillion floating point operations per second). The routers
are connected in a 3D torus topology for high bandwidth, low latency, and
high scalability. The combined top500 benchmarked performance is 2,331,000
GFlops.

For interest, 2,331,000 GFlops is 2.27 times faster than Kraken, and significantly
over two million times faster than the computer I am using at the moment.

What makes Jaguar different to Kraken? Jaguar is heterogeneous. Note that
this is not necessarily the reason that Jaguar is faster, it is just a fact. Actually,
the second and third fastest, along with the sixth and seventh fastest compu-
ters on Earth are heterogeneous. That makes half of the ten fastest computers
on Earth heterogeneous. Jaguar is heterogeneous in processor architecture,
speed, number of cores per processor, memory, storage, and network commu-
nications.

4www.nccs.gov/computing-resources/jaguar/
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We have seen that heterogeneity has pervaded the area of supercomputers,
however there are several other cutting-edge technologies emerging that are
inherently heterogeneous.

1.1.2.2 Grid Computing

Grid Computing has become very popular for high performance scientific
computing in recent years (Foster and Kesselman, 2004). Compared to stand-
alone clusters and supercomputers, grids tend to be more loosely coupled,
geographically dispersed, and are inherently heterogeneous. Unlike some
clusters, grids tend to be built with general purpose scientific computing in
mind. In short, grids seek to combine the power of multiple clusters and/or
sites to solve problems. Grid computing has been sought and promoted by
organizations such as CERN5 to analyze the vast amounts of data that such
bodies produce.

A primary advantage of grid computing is that each constituent cluster or site
can be built from off-the-shelf commodity hardware that is cheaper to pur-
chase, upgrade and maintain. Additionally there has been a major effort to
produce middleware—software which makes the management of resources
and jobs easier and cheaper than a custom solution. For an example, see Smart-
GridRPC, a project between the HCL and the University of Tennessee (Brady
et al., 2010). The primary disadvantage is the geographic distribution of sites
which combined with commodity network hardware makes inter-site commu-
nication much slower than the often custom-built, very expensive networks of
supercomputers.

An example of an existing grid is Grid’5000 (Bolze et al., 2006). Located in
France, Grid’5000 is composed of nine sites. Porto Alegre, Brazil has just be-
come the official tenth site, and Luxembourg is expected to join soon. There is
also a connection available which extends to Japan.

Grid’5000 has 1,529 nodes from Altix, Bull, Carri, Dell, HP, IBM and SUN.
A total of 2,890 processors with a total of 5,946 cores from both AMD and
Intel. Local network connections are Myrinet, Infiniband, and Ethernet. All
Grid’5000 sites in France are connected with a 10Gb/s dark fibre link provided
by RENATER (The French National Telecommunication Network for Techno-
logy Education and Research)6. Figure 1.1 Shows the backbones of the Renater

5public.web.cern.ch/public/
6www.renater.fr
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Figure 1.1: The Renater5 Network provides 10Gb/s dark fibre links that
Grid’5000 utilizes for its inter-site communication network (Courtesy of
www.renater.fr)

Network which connects the sites of Grid’5000. The important aspect of this
figure is the architecture of the network connecting the various sites across
France, and the connections to sites outside France.

In keeping with the decentralized nature of grid computing, Grid’5000 is fun-
ded by INRIA (The French National Institute for Research in Computer Science
and Control)7, CNRS (The French National Centre for Scientific Research)8, the
universities of all sites, and some regional councils. This highlights another
advantage of grids—the cost of building and maintaining them can be shared
amongst many different bodies easily.

7www.inria.fr
8www.cnrs.fr
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A total of 606 experiments are listed on the Grid’5000 website as completed or
in progress. A tiny sample of experiment areas include genetic algorithms, task
scheduling, middleware testing, modeling physical phenomena, and linguistic
processing. As an example of Grid’5000 performance, the Nancy site has a 92
node Intel Xeon cluster which achieves 7,360 GFlops, and a 120 node Intel Xeon
cluster, which achieves 1,536 GFlops. As the Nancy site is average (actually
a little lower than average) in size for Grid’5000, we can roughly calculate
the power by dividing Nancy’s power by the number of nodes at Nancy then
multiplying by the total number of nodes in Grid’5000. This roughly equals
65,000 Gflops, or 36 times slower than Jaguar. This of course is just a rough
Gflop count, and does not take any specific parameters into account.

1.1.2.3 Cloud Computing

Cloud computing can have a different definition, depending on the source. Ge-
nerally it is a form of computing where not only the details of who, what and
where a user’s computations are being carried out are hidden from the user,
but perhaps even the knowledge and details of how to calculate the computa-
tions. The general idea is that a user supplies data to a client program or inter-
face, along with either a full program or program description, and the client
program then selects the proper, available servers—which can be anywhere
on the globe—and gets the work carried out. When the computation is com-
plete, the results are delivered back to the user. For some applications where
there are “canned” solutions available, all the user will have to do is supply
the data and specify what solution is desired. In effect all the user needs to do
is specify the problem and the solution will be delivered. In most definitions
the “cloud” is a metaphor for the Internet, as one could view cloud computing
as the computational (number crunching) equivalent of the Internet we know
today. All the user knows is to open a web browser, supply information (what
they’re looking for) and the results come back. The user doesn’t know from
who, or where, and doesn’t care—it just comes.

1.1.2.4 Cluster Computing

In 1982 Sun Microsystems was founded upon the motto “The Network is the
Computer”. This philosophy paved the way for the popularization of clus-
ter computing, largely through their software products. At the time compu-
ter operating systems were designed only to run on and exploit the power of
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stand-alone computers. Sun’s operating systems were revolutionary in that
they were designed to harness the power of networks of computers.

Two or more such computers working together to achieve a common goal
constitute a cluster. The topic itself, and much research focusing specifically
on cluster computing as a pure subject is quite old, dating back 30 or more
years. In fact such systems first started out as “the poor man’s supercom-
puter” in academic departments where researchers would leave jobs running
perhaps all night instead of purchasing expensive supercomputer time (Beau-
mont et al., 2001b).
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Figure 1.2: The architecture share of the top500 list from 1993 to 2010. (Cour-
tesy of www.top500.org)

Cluster Computing has since become the dominant architecture for all scienti-
fic computing, including top500 supercomputers. Figure 1.2 shows the archi-
tectures of top500 computers from 1993 to 2010. In 1993 no top500 computers
were clusters. They were MPPs, constellations, SMPs, and others—even single
processor vector machines. It wasn’t until the late 1990s that the first clusters
joined the top500, but their popularity exploded, largely due to low cost and
simple maintenance combined with great power. By 2007 about 80% of top500
machines were clusters and the number has grown to the point today where
almost all top500 machines are clusters.

Let us demonstrate the prevalence and importance of clusters in the context of
this section. Although not comprehensive in terms of state-of-the art scientific
computing, this does provide a good overview:
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• Top500 - Almost all computers in the top500 are based on cluster plat-
forms

• Grid Computing - All grids are geographically distributed clusters or
clusters of clusters.

• Cloud computing - As the name implies, how clusters fit in is slightly
“fuzzy” but surely any cloud of even a moderate size would include clus-
ters.

• GPGPU (General Purpose Graphical Processing Unit) computing is done
on clusters of GPU machines.

• Multicore computing physically exists at the processor (single machine)
level, but it is clusters of multicores which make up many top500 ma-
chines and grids.

Thus we have seen quite simply that cluster computing is actually the founda-
tion of all other types of computing discussed here.

1.1.2.5 GPGPU (General Purpose Graphical Processing Unit) Compu-
ting

Another exciting area of high performance computing in which interest is ga-
thering great pace is using Graphics Processing Units (GPUs) alongside tradi-
tional CPUs. Traditionally GPUs are used to take the burden of, and accelerate
the performance of, rendering graphics (today often 3D graphics) to a display
device. To this end, GPUs have evolved to become in most cases quite specia-
lized in the operations necessary to do so, namely linear algebra operations.
This makes them quite unintentionally well suited for many high performance
scientific applications, as many of these rely heavily or exclusively on linear al-
gebra operations. Examples of problems which have been explored with this
approach include oil exploration, image processing and the pricing of stock
options (Kruger and Westerman, 2005).

Beyond the confines of linear algebra, interest has also been gathering in so
called General Purpose Computing on Graphics Processing Units or (GPGPU).
This seeks to harness the computing power of GPUs to solve increasingly ge-
neral problems. Recently nVidia and ATI (by far the two largest GPU manufac-
turers) have joined with Stanford University to build a dedicated GPU-based
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client for the Folding@home project which is one of the largest distributed
computing projects in the world.

Briefly, Folding@home9 harnesses (mostly) the unused CPU cycles of home
computers across the globe to perform protein folding simulations and other
molecular dynamics problems. A user downloads a client application and
then when the user’s computer is idle, packets of data from a server at Stan-
ford are downloaded, and processed by the client program. Once the data has
been processed using the client, the results are sent back to the server and the
process repeated. At the time of writing the total number of active CPUs on
the project is 286,723 with a total participation of 5,514,891 processing units,
343,843 of which are GPUs, and 1,003,463 are PlayStation 3s running the Cell
Processor.10 The total power of the Folding@home project is estimated to be
2,958,000 Gflops, theoretically 1.27 times faster than Jaguar. We must keep in
mind however that if a problem with the complexity, memory, and data de-
pendencies of those being solved on Jaguar was given to the Folding@home
network, it would be incredibly—actually uselessly—slow, and very, very dif-
ficult to program.

Nonetheless, Folding@home is surely an example of extreme heterogeneity. Of
course, mixed in those millions of computers are Linux, MAC, and Windows
machines as well. The power of such a distributed, heterogeneous “system”
can only be effectively harnessed due to the nature of the problems that are
being solved. Although extremely large, the problems are embarrassingly pa-
rallel. In this case the key is that there are no data dependencies. No user
computer needs information from, or needs to send information to, any other
user computer. Further, the order in which data is sent back to the server
does not matter. As long as all of the results eventually come back, they can
be reconstructed back to the original order. If some results don’t come back
(which is inevitable), the data necessary to get the results are simply farmed
out to another active user. Nonetheless we see a system with the power of a
supercomputer, using a heterogeneous hierarchy at every level—client/server,
system, processor and core.

For another similar project, see SETI@home11, which distributes data from the
Aricebo radio telescope in Puerto Rico to home users’ computers, which then
analyze the data for signs of extra-terrestrial life.

9http://folding.stanford.edu
10fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
11setiathome.ssl.berkeley.edu
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To wrap up GPU processing, nVidia has announced a new configuration using
their video cards. Their PhysX physics engine can now be used on two hete-
rogeneous nVidia GPUs in one machine.12 A physics engine is software that
computes and replicates the actual physics of events in real-time to make com-
puter graphics more realistic such as shattering glass, trees bending in the
wind, and flowing water. In this configuration the more powerful GPU ren-
ders graphics while the other is completely dedicated to running the PhysX
engine.

1.1.2.6 Multicore Computing

At a much lower level, multicore technology has become mainstream for most
computing platforms from home through high-performance. Multicore pro-
cessors have more than one core, which is the element of a processor that per-
forms the reading and executing of an instruction. Originally processors were
designed with a single core, however a multicore processor can be considered
to be a single integrated circuit with more than one core, and can thus execute
more than one instruction at any given time. Embarrassingly parallel pro-
blems can approach a speedup equal to the number of cores, but a number of
limiting factors including the problem itself normally limits such realization.
Currently most multicore processors have two, four, six or eight cores. The
number of cores possible is limited however, and is generally accepted to be
in the dozens. More cores would require more sophisticated communication
systems to implement and are referred to as many-core processors.

The Cell processor is a joint venture between Sony Corporation, Sony Compu-
ter Entertainment, IBM, and Toshiba and has nine cores. One core is referred
to as the “Power Processor Element” or PPE, and acts as the controller of the
other eight “Synergistic Processing Elements” or SPEs. See Figure 1.3 for a ba-
sic schematic of the processing elements of the Cell processor. The PPE can
execute two instructions per clock cycle due to its multithreading capability. It
has a 32KB instruction and 32KB L1 cache, and a 512KB L2 cache. The PPE per-
formance is 6.2 GFlops at 3.2GHz. Each SPE has 256KB embedded SRAM and
can support up to 4GB of local memory. Each SPE is capable of a theoretical
20.8 GFlops at 3.2GHz. Recently IBM has shown that the SPEs can reach 98%
of their theoretical peak performance using optimized parallel matrix matrix
multiplication.13 The elements are connected by an Element Interconnect Bus

12www.nvidia.com/object/physx\_faq.html\#q4
13www.ibm.com/developerworks/power/library/pa-cellperf/
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Figure 1.3: A basic schematic of the IBM Cell processor showing one Power
Processing Element (PPE) and eight Synergistic Processing Elements (SPEs).
(Figure from NASA High-End Computing, Courtesy of Mercury Computer
Systems, Inc.)

(EIB), with a theoretical peak bandwidth of 204.8GB/s.

The Sony PlayStation 3 is an example of the Cell processor at work. To increase
fabrication yields, Sony limited the number of operational SPEs to seven. One
of the SPEs is reserved for operating system tasks, leaving the PPE and six SPEs
for game programmers to use. Clearly this has utilized the Cell to create a more
heterogeneous system. This is exemplary of a truly heterogeneous system in
practice—functionality can be arranged as desired, and needed.

The Cell processor is used in the IBM “Roadrunner” supercomputer, which is
a hybrid of AMD Opteron and Cell processors and is the third fastest computer
on Earth (formerly number 1) at 13,752,776 GFlops. The PlayStation 3 “Gravity
Grid” at the University of Massachusetts at Dartmouth Physics Department is
a cluster of sixteen Playstation 3 consoles used to perform numerical simula-
tions in the areas of black hole physics such as binary black hole coalescence
using perturbation theory.14

Clearly the Cell processor is an example of parallel heterogeneous computing
at a very low-level, with very diverse applications, and introduces a hierar-
chy with the PPE controlling the SPE’s, while also maintaining some number
crunching abilities itself.

The future of heterogeneous multicore architectures is expanding rapidly. The

14arxiv.org/abs/1006.0663
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past month alone has seen two major developments. First, a research team
at the University of Glasgow has announced what is effectively a 1000 core
processor, although it differs from a traditional multicore chip as it is based on
FPGA technology, which could easily lend itself to heterogeneous use. Second,
the release of the first multicore mobile phones has been announced. The natu-
ral need for heterogeneity in such platforms is discussed in van Berkel (2009).

1.1.3 Heterogeneity

We have seen that heterogeneity and hierarchy have infiltrated every aspect
of computing from supercomputers to GPUs, Cloud Computing to individual
processors and cores. We have also seen that in many, many ways all of these
technologies are interwoven and can join to form hybrid entities themselves.

To conclude it is fitting to state that homogeneity (even if explicitly designed)
can be very difficult and expensive to maintain, and easy to break (Lastovetsky,
2003). Any distributed memory system will become heterogeneous if it allows
several independent users to simultaneously run applications on the same sys-
tem at the same time. In this case different processors will inevitably have dif-
ferent workloads at any given time and provide different performance levels
at different times. The end result would be different performances for different
runs of the same application.

Additionally, network usage and load, and therefore communication times
will also be varied with the end result being different communication times
for a given application, further interfering with the delivery of consistent per-
formance for the same application being run more than once.

Component failure, aging, and replacement can all also impact homogeneity.
Are identical replacement components available? Are they costly? Do all
components deliver uniform and consistent performance with age? Even if
these problems are managed, eventually when upgrading or replacement time
comes, all upgrades and replacements must be made at the same time to main-
tain homogeneity.

We see now that heterogeneity is the natural state of parallel and distributed
systems. Most interestingly, vendors are now starting to intentionally design
and construct systems and platforms for high performance scientific compu-
ting which are heterogeneous from the outset. This is perhaps a natural pro-
gression as specialized hardware and software aimed at one particular class
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of problem is desired over more general-purpose approaches that yield poor
performance.

1.2 Objectives

The main goal of this thesis is to present, validate, and experimentally demons-
trate a new partitioning algorithm for high performance scientific computing
on parallel hierarchal heterogeneous computing platforms. This partitioning
could theoretically be deployed on any heterogeneous architecture including
all those discussed in Section 1.1.2. It will also be shown that this partitioning
can serve as the basis for other new partitionings. The following is a list of
other goals that will and must be realized along the way. First the state-of-
the-art will be reviewed, before the underlying mathematical principles of this
new partitioning are explored. For the cases in which it applies the partitio-
ning will be discussed and it’s optimality proven. A hybrid algorithm will be
discussed which is designed to be optimal in all cases for certain problem do-
mains. The construction of a heterogeneous cluster hand-designed specifically
for problems discussed in this thesis will be detailed. The partitioning will be
compared to the state-of-the-art and both its benefits and deficits discussed.
The partitioning will be modelled, simulated, and then experimentally veri-
fied before being shown to be beneficial to application areas indicative of those
widely in use today. Then, future directions of research will be presented.

Finally, as stated, most heterogeneous algorithms and partitionings are desi-
gned by modifying existing homogeneous ones. The ultimate goal of this the-
sis is to demonstrate the concept that unintuitive, non-traditional algorithms
and partitionings, designed with heterogeneity in mind from the start, can
result in better—and optimal—algorithms and partitionings for high perfor-
mance computing on heterogeneous platforms.

1.3 Outline

Chapter 2: Background and Related Work
In this section existing research in the area of heterogeneous parallel data par-
titioning and matrix matrix multiplication is explored. The state-of-the-art is
clearly described and the benefits and drawbacks of current techniques are
detailed.
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Chapter 3: UCD Heterogeneous Computing Laboratory (HCL) Cluster
This chapter describes the design and construction of a heterogeneous clus-
ter specifically for the simulation and testing of heterogeneous algorithms and
partitionings. The cluster is unique in its ability to be configured in network
parameters and topology which allows for testing on any number of heteroge-
neous scenarios.

Chapter 4: Partitioning a Matrix in Two – Geometric Approaches
This chapter presents and mathematically validates a new data partitioning
method for matrix matrix multiplication on heterogeneous networks. A geo-
metrical approach is used to present the design of the partitioning. The par-
titioning is shown to be optimal in most cases, and a hybrid partitioning is
proposed which would be optimal in all cases.

Chapter 5: The Square-Corner Partitioning
This chapter defines the Square-Corner Partitioning and its application to ma-
trix matrix multiplication. The optimality of the partitioning as well as other
benefits such as overlapping computation and communication are explored.
Experimental results are presented, first on two processors, then on small
groups of clusters, then on two larger clusters.

Chapter 6: The Square-Corner Partitioning on Three Clusters
In this chapter the Square-Corner Partitioning is extended to three clusters.
Both topologies possible (fully-connected and star) are explored. Experimental
results are given for simulations on three processors and three clusters. Results
of overlapping computation and communication are also explored.

Chapter 7: Max-Plus Algebra and Discrete Event Simulation on Parallel Hie-
rarchal Heterogeneous Platforms
This chapter presents the results of applying the Square-Corner Partitioning
on Max-Plus Algebra operations and a Discrete Event Simulation Application.

Chapter 8: Moving Ahead – Multiple Partitions and Rectangular Matrices
This chapter presents work on extending partitionings to more than three and
to non-square matrices. The Square-Corner Partitioning is shown to be useful
for the multiplication of rectangular matrices in particular.

Chapter 9: Conclusions and Future Work
In this chapter overall conclusions of this work are drawn, and indications of
exciting areas of future work are detailed.
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CHAPTER

TWO

BACKGROUND AND RELATED
WORK

2.1 Data Distribution and Partitioning

In 1997, van de Geijn and Watts noted: “It seems somewhat strange to be wri-
ting a paper on parallel matrix multiplication almost two decades after com-
mercial parallel systems first became available. One would think that by now
we would be able to manage such an apparently straight forward task with
simple, highly efficient implementations. Nonetheless, we appear to have gai-
ned a new insight into this problem” (van de Geijn and Watts, 1997).

It is now 2010 and researchers across the globe are still working with great
ferocity on parallel matrix multiplication algorithms! This chapter presents a
summary of parallel matrix multiplication, first and briefly on homogeneous
algorithms, then heterogeneous algorithms. We start with the homogeneous
case because most heterogeneous algorithms are modifications of their homo-
geneous counterparts. We will of course end with the current state-of-the-art
in heterogeneous parallel MMM algorithms.

In order to discuss these algorithms however, we must discuss data distribu-
tion and therefore data partitioning, which is the focus of this thesis. The par-
titioning of data directly affects the communication between processing ele-
ments. These communications may be over a super-fast bus between cores
or long-distance copper or fibre networks, but either way it is typically com-
munications that are an order of magnitude or more slower than processing
speed and therefore the most significant bottleneck in parallel and distributed
algorithms.
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2.2 Introduction

As stated in the summary, it is now 2010 and we are still working with great fe-
rocity on parallel matrix multiplication algorithms. This is due to the common
thread that ran through the motivation in Section 1.1.2, from cloud computing
with theoretically millions or more machines at work, through supercompu-
ters with hundreds of thousands of processors, down to multicore chips on
single machines. This thread is heterogeneity. In fact there was another com-
mon thread, distribution, which is due to necessary physical separation of com-
puting elements. Be they two computers on opposite sides of the Earth, or two
cores separated by hundredths of a centimeter, computing elements need to be
physically separated and therefore must communicate to work together.

This brings up an interesting question—Why must processing elements be
physically separated? There are many answers to this question, the main rea-
sons being:

(i) Heat. Too many processing elements in too small a space creates too
much heat which increases cooling costs in the best case, and in the worst
case leads to component failure.

(ii) Cost. Along with cooling cost, communication hardware costs are per-
haps the largest cost factors. The ultra-fast communication buses bet-
ween cores and processors and main-memory are simply too expensive
to scale up. In fact such devices only barely scale out of the micro and
into the macro scales. It is much, much cheaper to connect machines with
commodity, off-the-shelf communication hardware, than two processors
with an ultra-fast motherboard bus that is metres or more long.

(iii) Convenience. For economical, social and other reasons, it makes sense
to distribute computing resources geographically. In the case of the Fol-
ding@home project introduced in the motivation, the utilized resources
were already geographically distributed, and then exploited. We also
saw that there are computing resources, particularly grids (for example
Grid’5000 (Bolze et al., 2006)), that are intentionally built to be geographi-
cally distributed. This is not done due to pure physical necessity, but to
make cost, maintenance, upgrading and logistics more convenient.

(iv) Modularity and Reliability. Closely related to convenience is the modu-
larity and reliability of the system itself. If a supercomputer was just a

18



single, massive processor (if physically feasible), what would happen if
it or a crucial component failed? Everything would grind to a halt. What
happens if a chip, node, or even an entire cluster or even in the extreme
an entire site in Grid’5000 goes down? All other processors, nodes, clus-
ters, and sites go merrily on with their business. This gets even better if
the middleware can handle fault tolerance. The user may not realize that
a component failed, other than a possibly longer execution time, but not
necessarily, and what counts most is the results will still be correct.

(v) “That’s just the way it is” or ‘‘That’s just the way things evolve”. Every-
thing from beings with exoskeletons to animals with internal skeletons,
from dinghies to the most massive cargo ships, from subatomic particles
to the most massive of stars have a physical size limit per entity. At some
point the only way to generate more beings, carrying capacity, or energy,
is to make more of them. And thanks to quantum physics no two things
can occupy the same space at the same time, so more things means more
space which necessitates physical distribution.

There are certainly more parameters, especially when individual cases are exa-
mined. Perhaps one more question could be asked, particularly in reference to
(i) and (ii) above. Why can’t a chip be manufactured which is just one big
chip? Let’s ignore heat, cost, reliability and other obvious answers and instead
of answering the question directly just render the question itself a moot point.
If it were possible to do so we would still be dealing with communications.
Communications between individual registers or even in the extreme, tran-
sistors on the chip itself, still need to be done optimally or at least efficiently.
Again, as in Section 1.1 we see that communication between different entities
is an inherent fact of computing, no matter what scale we are dealing with and
no matter how we look at or abstract the issue.

2.3 Parallel Computing for Matrix Matrix Multipli-

cation

Currently parallel computing is undergoing a paradigm shift. It is spreading
from supercomputer centers which have been established utilizing speciali-
zed, often custom-built and terribly expensive computers which are used and
programmed by highly trained and specialized people to clusters of off-the-
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shelf commodity workstations that (with the proper libraries and some skill)
can be used by “ordinary” people. By ordinary I mean people whose pri-
mary profession need not be programming supercomputers. Such clusters
have already pervaded academia and industry, but promise to do so further,
and are now becoming accessible to and “toys” of home users, who desire to
use them. Indeed these clusters remain the poor man’s supercomputer (Csi-
kor et al., 2000) as discussed in the motivation. Cloud Computing promises to
carry this concept even further, with additional abstraction, and less expertise
needed by the user.

From this point forward we will not consider heterogeneity (or homogeneity
for that matter) and communication to be exclusive. From one follows the
other. Any parallel architecture (homogeneous or heterogeneous) without
some communication somewhere is useless. Let’s just talk about parallel com-
puting for a while. We will start with the simple case, homogeneous parallel
computing.

In this thesis I exclusively address the linear algebra kernel of Matrix-Matrix
Multiplication (MMM) as the prototype problem for High Performance Paral-
lel Computing on Heterogeneous Networks (with the exception of some ap-
plication areas explored later in Chapter 7). This is a common and justifiable
decision as matrices are probably the most widely used mathematical objects
in scientific computing (Lastovetsky, 2007). Further to that, MMM is the pro-
totype for a group of tightly coupled kernels with a high special locality that
should be implemented efficiently on parallel platforms [both homogeneous
and heterogeneous] (Beaumont et al., 2001b). Throughout this thesis, if only
one matrix is being discussed, it may be thought of as the product C of two
other matrices A and B, such that C = A × B. In these cases, A and B are
partitioned identically to C. This has become a standard in the field.

2.3.1 Data Partitioning for Matrix Matrix Multiplication on
Homogeneous Networks

The problem of matrix partitioning on homogeneous networks has been well
studied. It has perhaps been studied to exhaustion with the exception of the
inclusion of application specific issues, or particular hardware/software consi-
derations. In other words the theoretical underpinnings have been established
and are very unlikely to undergo a significant change. For more see Kumar
et al. (1994).
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Figure 2.1: A one-dimensional homogeneous (column-based) partitioning of a
matrix with a total of nine partitions.

Let us start then with homogeneous matrix partitioning for three reasons:

1. Because it is well established

2. Because most heterogeneous algorithms are designed either from, or at
least with, their homogeneous counterparts in mind

3. It is often the homogeneous counterparts that heterogeneous algorithms
are compared to, particularly to address their effectiveness or lack thereof
(Lastovetsky and Reddy, 2004)

When partitioning a matrix for distribution between homogeneous proces-
sors1, the problem of load balancing is easy, as all processors have equal speed,
and therefore each partition will have equal area. Thus the issue quickly turns
to minimizing communications. The simplest homogeneous partitioning of
a matrix is in one dimension, with the matrix partitioned into either rows or
columns of equal area as in Figure 2.1. The other way to accomplish a homo-
geneous partitioning is to use a two-dimensional partitioning, which results in
a grid of partitions as in Figure 2.2.

1We begin by talking about partitioning and distribution among individual processors and
later will scale this up to individual clusters. Entity will sometimes be used to refer to any unit
capable of processing be it a core, processor, cluster, etc.
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Figure 2.2: A two-dimensional homogeneous partitioning of a matrix with a
total of nine partitions.

Let us start with the two-dimensional case. We have a matrix multiplication
C = A× B and for simplicity we make each a square n× n matrix. Assume
we have p homogeneous processors P1, P2, . . . , Pp. Again for simplicity let us
assume that the processors are arranged in a grid of size p1× p2 = p such that
p1 = p2. In this case the processors and the partitions of the matrix overlay
each other exactly such that at each step k,

• Each processor Pi,k, i ∈ . . . p1 broadcasts horizontally ai,k to processors
Pi,∗

• Each processor Pk,j, j ∈ . . . p2 broadcasts vertically bk,j to processors P∗,j

This allows each processor Pi,j to update its portion of C, using ci,j = ci,j +

ai,k× bk,j. In other words, at each step of the algorithm each processor does the
following:

• Each processor broadcasts the part of the pivot column which it owns
horizontally to the processors in the same processor row which the pro-
cessor resides in

• Each processor broadcasts the part of the pivot row which it owns verti-
cally to the processors in the same processor column which the processor
resides in.

This is shown in Figure 2.3.
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Figure 2.3: A two-dimensional homogeneous partitioning of a matrix with a
total of nine partitions showing pivot rows and columns and the directions
they are broadcast.

The popular ScaLAPACK library uses this technique, but uses a blocked ver-
sion (Blackford et al., 1997). In this case, each matrix element (say Ci,j, Ai,j, and
Bi,j) is a square r × r block. For each processing entity there will be an opti-
mal value of r, depending on memory and other architecture-specific details.
Usually the number of blocks d(n/r)e × d(n/r)e is greater than the number of
processors p1 × p2. In this case the blocks are distributed in a cyclic fashion so
that each processor is responsible for updating several blocks of the C matrix
at each step k.

It is worth noting at this point that the total volume of communication (TVC)
of the calculation described above is proportional to the sum of the half per-
imeters (SHP) of each partition. This can be viewed rather simply; at each
step, each processor responsible for a square of x× x elements receives x ele-
ments from a row-mate and x elements from a column-mate for a total of 2x
elements. Since the partitions are all equal in size and dimension (if

√
p evenly

divides n), the same will be true for all processors. Thus at each step each pro-
cessor is receiving a number of elements proportional to 2× x, the sum of each
partition’s half perimeter.

It is easy to show that the two-dimensional partitioning has a lower TVC than
the one-dimensional partitioning. Given a fixed area, the rectangle covering
that area and having the smallest perimeter is a rectangle that is square, and
the fact that any other partitioning strategy would force at least one partition to
be non-square, any other partitioning strategy (including the one-dimensional
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partitioning described above) would result in a greater SHP, and therefore a
greater TVC.

There are other parallel algorithms for MMM, such as:

• Cannon’s algorithm (Lee et al., 1997)

• DNS (Kumar et al., 1994)

• one-dimensional and two-dimensional Systolic (Golub and Van Loan,
1996)

• Broadcast Multiply Roll (Fox et al., 1988)

• the Transpose Algorithm (Lin and Snyder, 1992)

• SUMMA (Scalable Universal Matrix Multiplication Algorithm (van de
Geijn and Watts, 1997), which is used in PBLAS (the Parallel Basic Linear
Algebra Subprograms) library (Choi et al., 1996)

Each has its advantages and disadvantages and a discussion of each is beyond
the scope of this thesis. They are mentioned for completeness.

2.3.2 Data Partitioning for Matrix Matrix Multiplication on
Heterogeneous Networks

Now let us assume a heterogeneous network. We have p heterogeneous pro-
cessors P1, P2, . . . , Pp, each free to run at a speed unique to all other processors.
We will express these speeds relatively as s1, s2, . . . , sp. Similar to the homoge-
neous algorithm above at each time step k, there will be a pivot row broadcast
vertically and a pivot column broadcast horizontally. These rows and columns
can be either made of individual matrix elements or blocks of elements as des-
cribed above. If we are discussing blocks, they will remain square for efficiency
on a processor-local level. We will now see how a modification of the homo-
geneous algorithm above can lead to heterogeneous ones.

The heterogeneity of processors means that we cannot necessarily partition
the matrix into squares. We will generalize and partition the matrix into non-
overlapping rectangles. Similar to the homogeneous algorithm, data should
be partitioned so that the area of each rectangular partition is proportional to
the speed of the processor who owns it. From a load-balancing point of view it
is only the area of the rectangles that matter. The dimensions of each rectangle

24



Figure 2.4: A two-dimensional heterogeneous partitioning consisting of nine
partitions

are free for us to choose. Figure 2.4 shows a heterogeneous partitioning of nine
rectangles.

The difficult question is this: What dimensions should each rectangle have to
minimize the total inter-partition (and therefore inter-cluster, if each partition
were owned by a cluster) volume of communication? Actually the word diffi-
cult turns out to be an understatement. This question (when formally defined)
turns out to be NP-complete (Beaumont et al., 2002b). There is no known poly-
nomial time solution to this question. In other words, for even modestly sized
problems, unreasonable (or impossible) lengths of time would be needed to
achieve an optimal solution. We must therefore resort to approximation algo-
rithms or heuristics. Generally these begin by imposing a restriction or restric-
tions on the proposed solution to allow it to run in polynomial time. The next
three subsections will explore the state-of-the-art in attempts to do so.

Before we do it is worth mentioning (again for completeness) that we are and
will be discussing static partitionings only. Static partitionings are determined
based on input data, and after that the partitioning does not change throu-
ghout the course of the program. A dynamic partitioning is one that does (more
properly has the ability to) change the initial partitioning before the program
terminates. One way to do this is use the past to predict the future (Beaumont
et al., 2001b). This method determines how to best change the partitioning ba-
sed on how the program is commencing during execution. There also exist
dynamic master-slave techniques. These all may suffer from various draw-
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backs, not the least that they must be very general and therefore less likely to
perform as well as static approaches which are tailored to a specific problem
domain.

2.3.2.1 Restricting the General Approach: A Column Based Partitioning

In (Beaumont et al., 2001b) the authors state the general matrix partitioning
problem:

• Given p computing elements P1, P2, . . . , Pp, the relative speed of which is

characterized by a positive constant Si, where
p

∑
i=1

Si = 1

• Partition a unit square into p rectangles so that

– There is a one to one mapping of elements to rectangles

– The area of the rectangle allocated to element Pi is equal to Si where
i ∈ {1, . . . , p}.

– The partitioning minimizes
p

∑
i=1

(wi + hi), where wi is the width of the

rectangle and hi is the height of the rectangle assigned to element Pi.

Partitioning the unit square into rectangular partitions with areas proportional
to the speed of the processing elements mapped to them is aimed at balancing
the load of the work done by each processing element. As a rule there will be
more than one partitioning satisfying this condition.

Minimizing the sum of half-perimeters of the partitions,
p

∑
i=1

(wi + hi) is aimed

at minimizing the total volume of communication between the elements. This
is possible because with the problem of MMM, at each step, each processing
element that does not own the pivot row and column receives an amount of
data proportional to the half-perimeter of the rectangular partition it owns.
Therefore the amount of data communicated at each step between all proces-
sing elements will be proportional to the sum of the half-perimeters of all parti-

tions,
p

∑
i=1

(wi + hi), less the sum of the heights of the partitions owning the pivot

column, (one in the case of the unit square), and less the sum of the widths of
the partitions owning the pivot row (also one for the unit square). Thus at each

step the total data communicated will be
p

∑
i=1

(wi + hi) − 2. Because the total
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amount of data communicated between the processing elements is the same at
each step of the algorithm, the total amount of data communicated during the

execution of the algorithm will also be proportional to
p

∑
i=1

(wi + hi)− 2. There-

fore minimization of
p

∑
i=1

(wi + hi)− 2 will minimize the total volume of commu-

nication between all partitions. Clearly any solution minimizing
p

∑
i=1

(wi + hi)

will also minimize
p

∑
i=1

(wi + hi)− 2.

The authors of (Beaumont et al., 2001b) have shown that this general partitio-
ning problem is NP-Complete and therefore heuristics must be resorted to in
order to find optimal solutions. Such a heuristic is presented by Beaumont
et al. (2001b) which restricts the rectangles of the partitioning to forming co-
lumns such as in Figure 2.5. The algorithm follows:

Algorithm 2.1 (Beaumont et al., 2001b): Optimal column-based partitioning of
a unit square between p heterogeneous processors:

• First, the processing elements are re-indexed in the non-increasing order
of their speeds, s1 ≥ s2 ≥ . . . ≥ sp. The algorithm only considers partitio-
nings where the i-th rectangle in the linear column-wise order is mapped
to processor Pi, i ∈ {1, . . . , p}.

• The algorithm iteratively builds the optimal c column partitioning β(c, q)

of a rectangle of height 1 and width
q

∑
j=1

sj for all c ∈ {1, . . . , p} and q ∈

{c, . . . , p}:

– β(1, q) is trivial.

– For c > 1, β(c, q) is built in two steps:

∗ First, (q − c + 1) candidate partitionings {β j(c, q)}(j ∈
{1, . . . , q− c + 1}) are constructed such that β j(c, q) is obtained
by combining the partitioning β(c− 1, q− j) with the straight-
forward partitioning of the last column (the column number

c) of the width
q

∑
i=q−j+1

si into j rectangles of the corresponding

areas sq−j+1 ≥ sq−j+2 ≥ . . . ≥ sq.

∗ Then, β(c, q) = βk(c, q) where βk(c, q) ∈ {β j(c, q)q−c+1
j=1 } and

minimizes the sum of the half-perimeters of the rectangles.
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Figure 2.5: An example of a column-based partitioning of the unit square into
12 rectangles. The rectangles of the partitioning all make up columns, in this
case three.

• The optimal column-based partitioning will be a partitioning from the
set {β(c, p)p

c=1} that minimizes the sum of half-perimeters of rectangles.

Algorithm 2.1 runs in O(p3) time.

2.3.2.2 A More Restricted Column-Based Approach

Kalinov and Lastovetsky (2001), further restrict the column-based geometrical
partitioning by assuming that the processing elements are already arranged in
a set of columns (i.e. assuming that the number of columns c in the partitioning
and the mappings of rectangles in each column to the processors are given).
The algorithm is as follows.

Algorithm 2.2: (Kalinov and Lastovetsky, 2001): An optimal partitioning of
a unit square between p heterogeneous processors arranged into c columns,
each of which is made of rj processors where j ∈ {1, . . . , c}:

• Let the relative speed of the i-th processor from the j-th column, Pi,j be

si,j where
c

∑
j=1

rj

∑
i=1

si,j = 1.

• First, partition the unit square into c vertical rectangular slices so that the
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Figure 2.6: An example of Algorithm 2.2, a column-based partitioning for a
3× 3 processor grid. Two steps are shown: Partitioning the unit square into
columns then independently partitioning those columns into rectangles.

width of the j-th slice wj =
rj

∑
i=1

si,j.

– This partitioning makes the area of each vertical slice proportional
to the sum of speeds of the processors in the corresponding column.

• Second, each vertical slice is partitioned independently into rectangles in
proportion to the speeds of the processors in the corresponding column.

Algorithm 2.2 runs in linear time. Figure 2.6 shows this for a 3× 3 processor
grid.

2.3.2.3 A Grid Based Approach

Lastovetsky (2007) describes a partitioning which imposes a further restriction
on the column-based approaches. The restriction is that the partitionings must
form a grid as in Figure 2.7. This can be viewed from another approach. The
grid based partitioning is one which partitions the unit square into rectangles
so that there exist p and q such that any vertical line crossing the square will
intersect exactly p rectangles and any horizontal line crossing the square will
intersect exactly q rectangles, regardless of where these lines cross the unit
square.

It is proposed and proven in (Lastovetsky, 2007) that in the case of a unit square
partitioned into a grid of c columns, each of which is partitioned into r rows,
the sum of half-perimeters of all partitions will be equal to (r+c). The corol-
laries which precipitate from this is that the optimal grid based partitioning
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Figure 2.7: A grid based partitioning of the unit square into 12 partitions.

is one which minimizes r+c, and that the sum of half-perimeters of the opti-
mal grid-based partitioning does not depend on the mapping of the processors
onto the nodes of the grid. The algorithm for the optimal grid-based partitio-
ning follows.

Algorithm 2.3: (Lastovetsky, 2007): Optimal grid-based partitioning of a unit
square between p heterogeneous processors:

• Find the optimal shape r× c of the processor grid such that p = r× c and
(r + c) is minimized.

• Map the processors onto the nodes of the grid.

• Apply Algorithm 2.2 of the optimal partitioning of the unit square to this
r× c arrangement of the p heterogeneous processors.

Step one finds the optimal shape of the processor grid that minimizes the sum
of half-perimeters of any grid based partitioning for any mapping of the pro-
cessors onto the nodes of the grid. Step two simply does the mapping (by any
means). Step three then finds one such partitioning where the area of each rec-
tangle is proportional to the speed of the processor owning it. It is noted that
the solution is always column-based due to the nature of Algorithm 2.2.

The first step of Algorithm 2.3 is described by Algorithm 2.4.
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Figure 2.8: An optional grid based partitioning returned by Algorithm 2.3.

Algorithm 2.4 (Lastovetsky, 2007): Find r and c such that p = r × c and
(r + c) is minimal:

r = b√pc
while (r > 1)
if ((p mod r) == 0)
goto stop;

else
r−−;

stop: c = p/r

Figure 2.8 shows an optimal grid based partitioning returned by algorithm 2.3.

In (Lastovetsky, 2007) the correctness of these algorithms is proven and the
complexity of Algorithm 2.4 is shown to be O(p3/2). Experimental results are
also given which demonstrate the effectiveness of the grid based approach.

2.3.2.4 Cartesian Partitionings

The grid-based partitioning strategy is not the most restrictive partitioning
problem that has been addressed. A Cartesian partitioning can be obtained
from a column-based partitioning by imposing an additional restriction; na-
mely that the rectangular partitionings also make up rows as seen in Figure
2.9. This results in any given partition having no more than four direct neigh-
bors (up, down, left, right).
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Figure 2.9: A cartesian partitioning of the unit square into 12 rectangular par-
titions. All partitions have no more than four direct neighbors: up, down, left,
right.

Cartesian partitionings are important in heterogeneous algorithm design due
to their scalability. This is due to no partition having more than one neighbor in
any given direction. This lends itself to a scalable partitioning for algorithms
which have communication patterns which only involve nearest neighbors,
or for that matter, communications only between partitions in the same row
and/or column.

Due to the additional restriction imposed by a Cartesian partitioning an opti-
mal partitioning may not be achievable. The load between partitionings may
not be perfectly balanced for some combinations of relative computing ele-
ment speeds. This renders relative speeds unusable and the problem should
be reformulated in terms of absolute speeds. The Cartesian partitioning pro-
blem can be formulated as follows:

• Given p processors, the speed of each of which is characterized by a given
positive constant, find a Cartesian partitioning of a unit square such that:

– There is a one to one mapping of partitions to computing elements.

– The partitioning minimizes i,j
max

{
hi × wj

sij

}
, where hi is the height

of partitions in the i-th row, wj is the width of partitions in the j-th
column, si,j is the speed of the computing element owning the j-th
partition in the i-th row, where i ∈ {1, . . . , r}, j ∈ {1, . . . , c}, and
p = r× c.
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To the author’s knowledge the Cartesian problem has not been studied as sta-
ted above in general form. An algorithm to solve this problem has to find an
optimal shape r × c of the computing element grid, the mapping of the ele-
ments onto the grid, and the size of the partitions allocated to the elements.
Simplified versions of the problem have been studied however (Beaumont
et al., 2001a; Dovolnov et al., 2003). If the shape r × c of the partitioning is
given the problem is proven to be NP-Complete (Beaumont et al., 2001a). In
addition it is not known if given both the shape r× c of the grid and the map-
ping of computing elements onto the grid are given, there exists a polynomial
time solution.

An approximate algorithm of the simplified Cartesian problem where the
shape r× c is given in Algorithm 2.5.

Algorithm 2.5 (Beaumont et al., 2001a): Find a Cartesian partitioning of a unit
square between p processors of the given shape p = r× c:

• Step 1. Arrange the processors so that if linearly ordered row-wise, be-
ginning from the top left corner, they will go in a nonincreasing order of
their speeds.

• Step 2. For the processor arrangement, apply a known algorithm to find
an approximate solution, {hi}r

i=1, {wj}c
j=1.

• Step 3.Calculate the areas hi, wi of the rectangles of the partitioning.

• Step 4. Rearrange the processors so that ∀i, j, k, l : sij ≥ skl ⇔ hi × wj ≥
hk × wl.

• Step 5. If Step 4 does not change the arrangement of the processors then
return the current partitioning and stop the procedure else go to Step2.

2.4 Conclusion

In this section we saw that communication is unavoidable in parallel com-
puting. Normally this is thought of in terms of computer networks: wires,
switches, routers, etc. However it must be realized that communication occurs
even at lower levels than two geographically distributed clusters. It happens
between machines in the same rack, and even between cores on a single pro-
cessor.
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We then examined how the partitioning of data, specifically in the case of
matrix matrix multiplication, can affect the amount of data that needs to be
communicated. After briefly looking at elementary one and two-dimensional
partitionings, several state-of-the-art methods were explored including gene-
ral two-dimensional cases, more restricted column-based approaches, even
more restricted strategies such as grid based, and finally very restricted two-
dimensional approaches in cartesian cases. All of these partitioning strategies
have two common threads. They all balance load and they all seek to mini-
mize the sum of communication between partitions, normally through impo-
sing restrictions. However this is not a hard rule, as in some cases relaxing
restrictions can lead to better solutions.
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CHAPTER

THREE

UCD HETEROGENEOUS
COMPUTING LABORATORY (HCL)

CLUSTER

3.1 Summary

The UCD Heterogeneous Computing Laboratory’s main cluster was designed
and hand built by myself to provide a controllable heterogeneous test plat-
form. The cluster serves to develop and run HCL software and as a testbed for
applications that are to be deployed on larger systems. The cluster is composed
of 16 compute nodes and two switches, along with the necessary peripherals
(server/UPS/access node/etc.) The cluster is unique in two ways: the band-
width between each node can be controlled from 8kb/s up to 1Gb/s, and that
the cluster itself can be split into two clusters in several configurations.

The compute nodes are heterogeneous in vendor, chipset, memory, operating
system, number of cores, and many other ways. A complete host of scienti-
fic programming and monitoring system software is installed to allow HCL
group members to easily develop and test applications. To date the cluster
has been used in over 40 publications and six Ph.D. theses, with collaborators
from many international universities. For a list see Appendix A. It has also
been used for the development and testing of eight software packages. A list
is included in Appendix B. A major upgrade (HCL Cluster 2.0) is currently un-
der way in order to further serve the expanding needs of the Heterogeneous
Computing Laboratory.
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3.2 The UCD Heterogeneous Computing Labora-

tory Cluster

The UCD Heterogeneous Computing Laboratory’s main cluster1 is designed
to provide a controllable hierarchal heterogeneous environment for research in
high performance heterogeneous computing. The cluster was hand-built over
the course of four months from purchasing to end of testing. It is completely
stand-alone (that is to say it is not dependent on outside support, infrastruc-
ture, software, security, etc.).

The cluster is housed in a 42U server rack with power backup supplied by
an APC Smart 1500 UPS. The main server is heterogeneous.ucd.ie (heteroge-
neous). Domain Name Service is provided by BIND (Berkley Internet Name
Daemon). NAT (Network Address Translation) is implemented between the
external network and the internal network (the compute nodes). Clonezilla
is used for recovery issues. All compute nodes and access/server machines
are kept synchronized through NTP (Network Time Protocol). DHCP (Dyna-
mic Host Configuration Protocol) is used to configure IP addresses and host-
names. NFS (Network File System) is used to allow compute nodes access
to server files. NIS (Network Information Service) is used to organize user
names and passwords across the cluster. Smartmontools provides backup ser-
vices. TORQUE/PBS manages jobs that users submit to the queues. There are
four queues, with varying priority and preemption policies:

1. normal, where most jobs (which should not be interrupted) are placed. It
has the highest priority.

2. lowpri, for running jobs which may run for extended periods but are in-
terruptible. Should a job A be placed on the normal queue while a lowpri
job B is running, B will be sent a kill signal, so it may shut down cleanly,
and then it will be re-queued on the system, so it can resume running
after A has finished.

3. service, which is for running service jobs such as home directory backups.
This has lower priority than the above queues and jobs running on this
queue are preemptable.

4. volunteer, which has the lowest priority, and is for executing volun-
teer computing jobs during otherwise idle periods. These jobs are also

1hcl.ucd.ie/hardware
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preemptable.

For security the only incoming connections allowed are ssh except requests
originating from inside the cluster that require incoming packets such as http,
NTP, etc. which are also allowed. Incoming ssh connections are only allo-
wed if they originate from designated IP addresses: currently some user ma-
chines and a central UCD School of Computer Science server (csserver.ucd.ie).
The only other machine that is allowed is a gateway machine (hclgate.ucd.ie),
which again is completely under group control. This machine is used to allow
connections from users outside the UCD Intranet should csserver be down.
Security on this machine is kept to the highest standard and updates as it is
connected to the outside Internet.

3.3 Software

The HCL Cluster has been outfitted with all current packages necessary for the
group to carry out parallel heterogeneous program and software development.
Software packages currently available on the cluster include the following:

• autoconf

• automake

• ATLAS

• autotools

• BLAS

• Boost

• C\C++ (gnu)

• ChangeLog

• colorgcc

• Dia

• doxygen

• Eclipse

• evince

• fftw2

• GDB

• git

• gfortran

• gnuplot

• Graphviz

• gsl-dev

• LAPACK

• LATEX

• libboost-graph-dev

• libboost-serialization-dev
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• libtool

• logp_mpi

• mc

• MPI (MPICH, OpenMPI)

• netperf

• octave3.2

• openmpi-bin

• openmpi-dev

• OProfile

• python

• qhull

• R

• r-cran-strucchange

• STL

• subversion

• valgrind

• vim

Software specifically for Heterogeneous Computing includes the following:

• Parallel extension of C:

– mpC

• Extensions for MPI:

– HeteroMPI

– libELC

• Extensions for GridRPC:

– SmartGridSolve

– NI-Connect

• Computation benchmarking, modeling, dynamic load balancing:

– FuPerMod

– PMM

• Communication benchmarking, modeling, optimization:

– CPM

– MPIBlib

Software specifically for Mathematical Heterogeneous Computing includes
the following:
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• HeteroScaLAPACK

• Hydropad

Details on all of the above are available at:
http://hcl.ucd.ie/wiki/index.php/Main\_Page

and
http://hcl.ucd.ie/wiki/index.php/HCL\_cluster.

Ganglia is used to provide real-time cluster status to users and is available
at: http://heterogeneous.ucd.ie/ganglia. Figure 3.1 shows overall
cluster load, CPU, memory and network reports for the year April 2010 -
March 2011. For node by node load, CPU, memory and network reports, see
Appendix D.

Figure 3.1: HCL Cluster load, CPU, memory and network profiles for the year
April 2010 - March 2011.

3.4 Heterogeneity

The compute section of the cluster is comprised of 16 nodes (hcl01 - hcl16) from
three different vendors (Dell, IBM, HP). It was designed to be heterogeneous
in hardware, software, and network as follows.

3.4.1 Hardware

• Processor Architecture (Intel <Celeron, P4, Xeon>, AMD <Opteron
Dual-Core>)
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• Processor Speed (1.8 - 3.6 GHz)

• Ram (256 MB, 512 MB, 1GB)

• Main Storage (SCSI, SATA), (80 - 240GB)

• Front Side Bus (533, 800, 1k MHz)

• L2 Cache (1, 2 MB)

3.4.2 Operating Systems

• MS Windows (current option)

• Debian Linux “squeeze” kernel 2.6.32 (currently)

• Fedora Linux / Debian Linux (formerly)

3.4.3 Network

An overall schematic of the HCL Cluster network is given in Figure 3.2.

• 2 x Cisco 3560G 24+4 Switches (8Kb/s - 1Gb/s configurable bandwidth
per port)

The HCL cluster is unique in two ways which make it specifically and par-
ticularly suited for research in heterogeneous computing. First, the ingress
bandwidth of each link to every node can be controlled and specified from
8Kbp/s to 1Gb/s. This allows for a very large number of possible network
configurations. Second, the cluster can be split to form two or three clusters of
any possible configuration between the 16 nodes.

This is possible due to the following two reasons:

• The switches are connected by a 1GB/s SFP cable, also with an 8Kb/s -
1Gb/s configurable bandwidth.

• Each node has two network interface cards, the first of which (NIC1) is
connected to Switch1 and the second (NIC2) is connected to Switch2.
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Figure 3.2: Schematic of the HCL Cluster Network.
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Figure 3.3: A two cluster configuration of the HCL Cluster. By bringing up
NIC1 and bringing down NIC2 on hcl01 - hcl08, and the opposite for hcl09 -
hcl16, and enabling the SFP connection between the switches, two connected
clusters of eight nodes each are formed.

By enabling or disabling each node’s particular NICs one can control which
switch the node is currently connected to. For instance one can create a simple
two cluster scenario by enabling NIC1 and disabling NIC2 on hcl01 - hcl08
and doing the opposite on hcl09 - hcl16. Due to the SFP connection between
the switches this would create a two cluster scenario of eight nodes each, as
depicted in Figure 3.3.

In fact, each node can be connected to both switches at the same time, allowing
a group of hybrid clusters to be created. Think of nodes hcl01 and hcl02 being
connected to both switches and then partitioning hcl03 - hcl09 so that they are
connected to Switch1 and hcl10 - hcl16 so that they are connected to Switch2.
We now have a hybrid cluster scenario as depicted in Figure 3.4.

Finally a hierarchy of clusters can be formed by disabling the SFP connection
between the switches as shown in Figure 3.5. In this case the only way that
Clusters 2 and 3 can communicate is through Cluster 1.
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43



Node Absolute Speed (MFlops)

hcl01 2171
hcl02 2099
hcl03 1761
hcl04 1787
hcl05 175
hcl06 1653
hcl07 1879
hcl08 1635
hcl09 3004
hcl10 2194
hcl11 4580
hcl12 1762
hcl13 4934
hcl14 4096
hcl15 2697
hcl16 4840

Total Cluster 42,827

Table 3.1: Performance of each node of the HCL Cluster as well as the ag-
gregate performance in MFlops. All performance values were experimentally
determined.

3.5 Performance and Specifications

Table 3.1 shows the performance of each node of the HCL Cluster as well as
the aggregate performance in MFlops. All performance values were experi-
mentally determined.

For results of the STREAM (McCalpin, 1995) benchmark on the HCL Cluster,
see Appendix E. For results of the HPL (High Performance Linpack) bench-
mark2 on the HCL Cluster, see Appendix F. The HCL Cluster has an absolute
speed of 42.8 GFlops.

Table 3.5 shows the hardware and Operating System specifications for the HCL
Cluster. As of May 2010 and the upgrade to HCL Cluster 2.0, all nodes are
operating Debian "squeeze" kernel 2.6.32.

2http://www.netlib.org/benchmark/hpl/
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3.6 Publications, Software Development and Re-

leases

To date the HCL cluster has been used in over 40 publications and six Ph.D.
theses (see Appendix A). It has also been used to develop the following eight
software packages (also see Appendix B). Details, latest releases and patches
are available at http://hcl.ucd.ie.

• ADL: Algorithm Definition Language, a new language and compiler that
is designed to improve the performance of GridRPC/SmartGridRPC ap-
plications.

• CPM: Communication Performance Models of Heterogeneous Networks
of Computers, a software tool that automates the estimation of the hete-
rogeneous communication performance models of clusters based on a
switched network.

• HeteroMPI: An extension of MPI for high performance heterogeneous
computing.

• HeteroScaLAPACK: a linear algebra library for heterogeneous networks
of computers.

• Hydropad: a grid enabled astrophysical application that simulates the
evolution of clusters of galaxies in the universe

• MPIBlib: An MPI Benchmark library.

• NI-Connect: Non-intrusive and incremental evolution of grid program-
ming systems.

• SmartGridSolve: High level programming system for high performance
grid computing.

3.7 Conclusion

The Heterogeneous Computing Laboratory Cluster is a purpose built platform
designed and built to suit the specific needs of the HCL group. It is a highly
tunable and heterogeneous testbed unique in its flexibility and ability to take
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on a multitude of different configurations. It has been used in over 40 publica-
tions, six Ph.D. theses, and the development of eight software packages to date
(See Appendices A and B). A major upgrade (HCL Cluster 2.0) is currently un-
derway in order to further serve the expanding needs of the Heterogeneous
Computing Laboratory in the future.
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Name Make/Model Processor FSB L2 Cache

hclswitch1 Cisco Catalyst 3560G N/A N/A N/A
hclswitch2 Cisco Catalyst 3560G N/A N/A N/A

UPS APC Smart UPS 1500 N/A N/A N/A
hcl01 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl02 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl03 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hl04 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl05 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl06 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl07 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl08 Dell Poweredge 750 3.4 Xeon 800MHz 1MB
hcl09 IBM E-server 326 1.8 Opteron 1GHz 1MB
hcl10 IBM E-server 326 1.8 Opteron 1GHz 1MB
hcl11 IBM X-Series 306 3.2 P4 800MHz 1MB
hcl12 HP Proliant DL 320 G3 3.4 P4 800MHz 1MB
hcl13 HP Proliant DL 320 G3 2.9 Celeron 533MHz 1MB
hcl14 HP Proliant DL 140 G2 3.4 Xeon 800MHz 1MB
hcl15 HP Proliant DL 140 G2 2.8 Xeon 800MHz 1MB
hcl16 HP Proliant DL 140 G2 3.6 Xeon 800MHz 2MB

Name RAM HDD 1 HDD 2 NIC OS

hclswitch1 N/A N/A N/A 24 x 1Gb/s N/A
hclswitch2 N/A N/A N/A 24 x 1Gb/s N/A

UPS N/A N/A N/A N/A N/A
hcl01 1GB 80GB SATA 250GB SATA 2 x 1Gb/s FC4
hcl02 1GB 80GB SATA 250GB SATA 2 x 1Gb/s FC4
hcl03 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl04 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl05 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl06 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl07 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl08 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl09 1GB 80GB SATA N/A 2 x 1Gb/s Debian
hcl10 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl11 512MB 80GB SATA N/A 2 x 1Gb/s Debian
hcl12 512MB 80GB SATA N/A 2 x 1Gb/s FC4
hcl13 1GB 80GB SATA N/A 2 x 1Gb/s FC4
hcl14 1GB 80GB SATA N/A 2 x 1Gb/s Debian
hcl15 1GB 80GB SATA N/A 2 x 1Gb/s Debian
hcl16 1GB 80GB SATA N/A 2 x 1Gb/s Debian

Table 3.2: Hardware and Operating System specifications for the HCL Cluster.
As of May 2010 and the upgrade to HCL Cluster 2.0, all nodes are operating
Debian "squeeze" kernel 2.6.32.
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CHAPTER

FOUR

PARTITIONING A MATRIX IN TWO -
GEOMETRIC APPROACHES

4.1 Summary

Chapter 2 concluded with a continuing thread which was common to a num-
ber of partitionings that improved performance by introducing restrictions to
the general partitioning problem. It is however possible in some cases to im-
prove performance by relaxing restrictions. In this chapter we explore one
such case. That case is partitioning a matrix in two. The choice of two par-
titionings is not a restriction however, as future chapters will show that this
approach is not restricted to just two partitions. It is how the partitions them-
selves are formed that is the relaxation of restriction.

The initial motivation which led to this work stems from two sources. First,
there are many general heterogeneous matrix partitioning algorithms which
work well for several, dozens, hundreds, or even thousands of computing en-
tities. We will see that all result in a simple, and non-optimal partitioning
when applied to architectures of small numbers of computing entities—in the
case of this chapter, two. As stated earlier we intentionally set out to investi-
gate the case of a small number of computing entities to see what is happening
in what is this perceived (by some researchers) “degenerate” case. Despite its
existence for at least 30 years, parallel MMM research has almost completely
ignored this area. This is perhaps due to a lack of interest in a small number of
processors or computers working together. Indeed in these cases the speedup
benefits are obviously small. However with modern architectures, particu-
larly cluster-based architectures and grids, small numbers of clusters or sites
working together can clearly yield a very attractive benefit. As we will see,
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perhaps a small number of computing entities is not as “degenerate” as some
researchers have believed.

Second, this was borne of a keen awareness of the parallel, distributed and
especially the heterogeneous nature of computing platforms which are omni-
present in computing today. In addition, most parallel and distributed algo-
rithms in existence today are designed for and only work well on homoge-
neous platforms. Finally, most heterogeneous algorithms are based on their
homogeneous counterparts. It is now necessary for many new algorithms to
be designed with heterogeneous platforms in mind from the start.

4.2 A Non-Rectangular Matrix Partitioning

All of the state-of-the-art matrix partitioning areas discussed thus far including
the specific examples explored, had two common threads—they all balance
computational load and they all seek to minimize communication between
partitions. Both of these objectives are sought in order to minimize the overall
execution time of matrix matrix multiplications.

It is true that there was another design feature common to all. This feature
is that they are all rectangular. In all algorithms discussed, the solution sets
contained only partitionings which result in nothing but rectangular parti-
tions. Thus, it seems that the partitioning problem itself is somewhat res-
tricted. Most researchers believe that allowing for non-rectangular partitions
(relaxing this rectangular restriction) will not significantly improve the perfor-
mance of the partitioning, and at the same time significantly complicate the
solution of the partitioning problem.

This statement seems plausible, however in this chapter we introduce a non-
rectangular partitioning solution that can significantly outperform counterpart
rectangular partitionings. In some cases this non-rectangular partitioning can
prove to be optimal amongst all partitionings. In addition, it does not signifi-
cantly add to the complexity of the solution itself.

First we will define exactly what non-rectangular is meant in this context.
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4.2.1 The Definition of Non-Rectangularity

In Figure 4.1 there are two partitions, s1 and s2. s1 is non-rectangular and
s2 is rectangular. To precisely define what a non-rectangular partition is in
context of the general partitioning problem, we start with the definition of a
rectangular partitioning.

1

2s

s

Figure 4.1: A heterogeneous non-rectangular partitioning consisting of two
partitions, one rectangular and one a non-rectangular polygon.

Definition 4.1 A partitioning of any problem whose solution is to partition the
unit square is rectangular if all of the following four rules apply:

1. The unit square is completely tiled by partitions

2. No partitions overlap

3. All partition boundaries are parallel to the boundaries of the unit square

4. All partitions are rectangular

It would seem at first that in order to define a non-rectangular partitioning, all
that is needed is to eliminate Definition 4.1, Rule 4. This seems reasonable as
non-rectangular partitions would now be allowed, and Definition 4.1, Rule 3
would eliminate circles, triangles, and other exotic partitions.

However, a definition is needed that makes non-rectangular partitionings such
as that in Figure 4.1 and all purely rectangular partitionings mutually exclu-
sive. Eliminating Definition 4.1, Rule 4 would not do so, as purely rectangular
partitions would still fit into the new definition of non-rectangular partitions.
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The solution is to replace Definition 4.1 Rule 4 with the following—At least one
partition is non-rectangular. This gives us the following definition.

Definition 4.2 A partitioning of any problem whose solution is to partition the
unit square is non-rectangular if all of the following four rules apply:

1. The unit square is completely tiled by partitions

2. No partitions overlap

3. All partition boundaries are parallel to the boundaries of the unit square

4. At least one partition is non-rectangular

We are now in a position where rectangular and non-rectangular partitionings
are mutually exclusive, and we can differentiate between, and therefore com-
pare, rectangular and non-rectangular partitionings.

4.2.2 A Non-Rectangular Partitioning - Two Partitions

In Section 2.3.2.1, the Matrix Partitioning Problem (Beaumont et al., 2001b) was
stated. It is restated more formally as Problem 4.1.

Problem 4.1: The Matrix Partitioning Problem

• Given p computing elements P1, P2, . . . , Pp, the relative speed of which is

characterized by a positive constant si, where
p

∑
i=1

si = 1

• Partition a unit square into p rectangles so that

– There is a one to one mapping of elements to rectangles.

– The area of the rectangle allocated to element Pi is equal to si where
i ∈ {1, . . . , p}.

– The partitioning minimizes
p

∑
i=1

(wi + hi), where wi is the width of the

rectangle and hi is the height of the rectangle assigned to element Pi.

As Problem 4.1 is restricted to rectangles, we need to reformulate the problem
to be more general in order to allow for non-rectangular partitions.

Problem 4.2: The General Matrix Partitioning Problem
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• Given p computing elements P1, P2, . . . , Pp, the relative speed of which is

characterized by a positive constant si, where
p

∑
i=1

si = 1

• Partition a unit square into p polygons so that

– There is a one to one mapping of elements to polygons.

– The area of the polygon allocated to element Pi is equal to si where
i ∈ {1, . . . , p}.

– The partitioning minimizes the sum of half perimeters of all poly-
gons.

In the case of a very small problem size, say (p = 2), every rectangular partitio-
ning of Problem 4.1 or Problem 4.2 will result in one such as that in Figure 4.2.
This is because there is no other way but to partition the unit square into two
rectangles but to draw a straight line across the square, while ensuring that
each rectangle is of the appropriate area as dictated by Problem 4.1 (or each
partition is of the appropriate area as dictated by Problem 4.2).

As Problems 4.1 and 4.2 are equivalent, except that Problem 4.2 relaxes the res-
triction of rectangular solutions, clearly any rectangular partitioning algorithm
can be applied to either, and generate the same solution.

A non-rectangular partitioning however can only be applied to Problem 4.2,
but since Problem 4.2 is more general this is not a problem. Such an algorithm
follows:

Algorithm 4.1: An algorithm to solve Problem 4.2, the General Matrix Parti-
tioning Problem, for p = 2.

• Step 1. Re-index the processing elements Pi in the non-decreasing order
of their speeds, s2 ≤ s1.

• Step 2. Create a rectangular partition of size s2 in the lower right corner
of the unit square.

• Step 3. Map P2 to the rectangular partition of size s2, and map P1 to the
remaining non-rectangular balance of the unit square of size 1− s2 = s1.

The result of Algorithm 4.1 is of the form in Figure 4.3.

In each case the volume of communication is proportional to the sum of half
perimeters of all partitions.
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1

1

1 2s s

Figure 4.2: A rectangular (column-based) partitioning to solve Problem 4.2.
This is the rectangular counterpart of the non-rectangular partitioning in Fi-
gure 4.3

.

• For the rectangular case this is equal to 3 .

• For the non-rectangular case in Figure 4.3 this is equal to Equation 4.1.

(
1 + 1 + (1− y) + (1− x) + x + y

2
+ x + y

)
= 2 + x + y (4.1)

We have left the relative speeds si of the processors Pi as unknowns (but re-
member that their sum equals 1), and since both are non-zero, we can make
the following observations:

• For the rectangular partitioning, the sum of half perimeters is equal to 3
regardless of the ratio between si and s2. (Imagine the border between
the two partitions in Figure 4.2 sliding left or right).

• For the non-rectangular partitioning, the sum of half perimeters is equal
to 2 + x + y, and therefore depends on x and y, and the sizes of the par-
titions s1 and s2, and therefore the ratio between the partitions.

Thus a natural manipulation is to minimize the sum (x + y), to drive down the
sum of half perimeters for the non-rectangular case. Doing so will not affect
the area of the partitions, as x and y form a rectangle of size s2, and are free to
be changed while keeping the area of s2 (and therefore the area of s1) constant.
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1

1

1

Figure 4.3: A non-rectangular partitioning to solve Problem 4.2.

Since (x × y) is a rectangle of fixed area, minimising its perimeter is propor-
tional to minimising (x + y), and occurs when the rectangle is a square. Thus
Equation 4.1 becomes

2 + 2×
√

s2 (4.2)

We can then answer the question: Is the non-rectangular partitioning’s sum

of half perimeters less than that of the rectangular partitioning? The answer is
found by answering

2 + 2×
√

s2 <? 3. (4.3)

Clearly, Inequality 4.3 is true for all
√

s2 < 1
2 . This corresponds to s2 < 1

4 ,
which means that s1 > 3

4 . We can therefore conclude that when p = 2, and
s1
s2

> 3, the non-rectangular partitioning has a lower sum of half perimeters
than that of the rectangular. When s1

s2
= 3, the sum of half perimeters of the

two partitionings are equal.

In other words as long as the area of the larger partition is greater than three
times the smaller, the non-rectangular partitioning will result in a lower sum
of half perimeters and therefore a lower volume of communication. We can
summarize with the following:

• For ratios ρ : 1 where ρ ∈ [1, 3) the rectangular partitioning has a lower
total volume of communication.

• For the ratio ρ : 1 where ρ = 3 the rectangular and non-rectangular
partitionings are equivalent in total volume of communication.
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• For ratios ρ : 1 where ρ ∈ (3, ∞) the non-rectangular partitioning has a
lower total volume of communication.

This of course depends on the sum of half perimeters Ĉ being proportional
to the total volume of communication (TVC) for the non-rectangular solution.
This will be explored in Section 5.5.2. We will then provide a short yet formal
proof.

4.2.3 Ratio Notation

As in the previous section above, we will be discussing and utilizing the speed
(or computational power) ratio between two computing entities (processors,
clusters, etc.) often in the coming chapters. This ratio will be denoted ρ, where

ρ =
de f s1

s2
, where s1 and s2 are the relative speeds or processing power of the

entities s1 and s2. For simplicity, these ratios are always normalized so that
s2 = 1. Therefore the following identities apply:

in fractional notation, ρ =
s1

s2
=

s1

1
=

ρ

1
⇒ ρ = s1

and in ratio notation, ρ = s1 : s2 = s1 : 1 = ρ : 1 = ρ : s2

At different times it will be more appropriate to use one over another.

Additionally, because we assume perfect load balancing, s1 and s2 are pro-
portional to the partition areas assigned to entities P1 and P2 (or simply just
entities 1 and 2) respectively.

4.2.4 Optimization

We have seen that for partitioning the unit square into two partitions, a non-
rectangular partitioning can have a lower sum of half perimeters than a rec-
tangular one, given the ratio between the two partition areas is ρ : 1 where
ρ ∈ (3, ∞).

What can be said about the lower bound of the sum of half perimeters? How
close to this lower bound is the non-rectangular partitioning? In Beaumont
et al. (2001b) the authors give a lower bound for the sum of half perimeters Ĉ
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to be LB in Equation 4.4

LB = 2×
p

∑
i=1

√
si (4.4)

where p is the number of partitions and si is the area of the ith partition. This is
because the half perimeter of any partition is at a minimum when that partition
is a square.

We then consider the following case. We have p = 2, s1 = 1− ε and s2 = ε

where ε is some arbitrarily small but positive number. Any rectangular parti-
tioning will require two partitions, formed by drawing a line of length 1 (See
Figure 4.2). This will result in a sum of half perimeters, Ĉ = 3, however LB
gets arbitrarily close to 2.

Now we consider the non-rectangular partitioning of Figure 4.3. As ε → 0,
the sum of half perimeters Ĉ → 2 and LB → 2, which happens to be the half
perimeter of the unit square itself, and therefore obviously optimal. Thus the
non-rectangular partitioning can be optimal.

In (Beaumont et al., 2001b), the authors make an experimental comparison of
the sum of half perimeters and theoretical lower bound of the column-based
rectangular partitioning discussed in Section 2.3.2.1. The comparison between
Ĉ and LB is made in the following manner:

• Two curves are generated for a number of processors (entities) from 1 to
40.

• The first curve reflects the mean value Ĉ
LB for 2,000,000 randomly gene-

rated partition areas (si).

• The second curve reflects the minimum value generated for the same.

Clearly the average values give a good idea of how the partitioning performs
overall, while the minimum value (with such a large set of randomly gene-
rated areas) should reflect on how optimal the partitioning can be for each
number of processors (entities). (Note that the number of processors is equal
to the number of partitions as there is a one-to-one mapping of processors to
partition areas). Figure 4.4 shows the results of these experiments (adopted
from (Beaumont et al., 2001b)).

Figure 4.4 shows a number of interesting characteristics:

• The average values show:
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Figure 4.4: A plot of the average and minimum Ĉ
LB values for a number of pro-

cessors (entities) p from 1 to 40 for the column based rectangular partitioning
of Beaumont et al. (2001b). For each value p, 2,000,000 partition values si are
randomly generated.

– By far the worst performance is for p = 2, by a factor of approxima-
tely 2 over that of the second worst performing case, p = 6.

• The minimum values show:

– “Magic” numbers where the minimum Ĉ
LB values are at or near 1,

indicating optimal or near optimal solutions. These are numbers
where it is theoretically possible to tile the unit square with a grid
of x squares of size (

√
x ×
√

x). Of course these numbers are the
perfect squares (1, 4, 9, 16, 25, 36, ...). The average results also show
better performance near these numbers.

– By far the worst performance is for p = 2, by a factor of approxima-
tely 5, over that of the second worst performing case, p = 6. (Note
that p = 3 just out performs p = 6 and is the third worst performing
case, as we will discuss this case in Chapter 6.)

It is important to note that in the case of p = 2, any and all rectangular par-
titionings should have the same performance, as they all result in equivalent
partitionings in the form of that in Figure 4.2.
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Figure 4.5: A plot of the average and minimum Ĉ
LB values for a number of

processors (entities) p from 1 to 40 except p = 2 using the rectangular par-
titioning, and for p = 2, the non-rectangular partitioning. For each value p,
2,000,000 partition values si are randomly generated.

Figure 4.5 Shows the same plot as Figure 4.4 but with the non-rectangular par-
titioning data for p = 2. In other words for p = 2 the non-rectangular par-
titioning of Figure 4.3 is used (with s2 =

√
s2 ×

√
s2) but for all other p, the

partitioning values of Figure 4.4 have been retained. In addition, for p = 2,
the restriction s1

s2
≥ 3.0 has been added since it is known that in cases where

s1
s2
< 3.0, the rectangular partitioning should be used instead.

Figure 4.5 Shows a number of interesting characteristics:

• The average values show

– For the case of p = 2, the average value has dropped from 1.105 to
1.054, an improvement of almost 49%.

– p = 2 has gone from the worst average value to third worst, now
better than p = 3 and p = 6.

– The worst performing average case is now p = 6.

• The minimum values show

– The worst performing case is now p = 3 instead of p = 2
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– For the case of p = 2 (which was the worst performing case at
1.061), the performance is now optimal (actual value 1.000001). This
concludes that p need not be a “magic” number in order for the mi-
nimum ratio to be at (or very very near) 1 (optimal).

It is interesting that for the simple case of p = 2 a non-rectangular partitioning
has out performed a rectangular one in all but a very small practical range
of ratios. One more glance at Figures 4.4 and 4.5 begs the question, can the
non-rectangular partitioning be extended to p > 2?

What has been established, is that in the case of p = 2, a hybrid partitio-
ning employing any rectangular partitioning for s1

s2
< 3.0, and using the non-

rectangular partitioning discussed in this section for all others will give the
best theoretical performance known. Further, the only room for improvement
lies in the region s1

s2
< 3.0, as above that ratio the non-rectangular partitio-

ning provides an optimal solution to the General Matrix Partitioning Problem
(Problem 4.2).

4.3 Conclusion

This chapter presented a geometric approach to partitioning a matrix into two
partitions. All rectangle-based partitionings reduce to equivalent partitionings
when applied to the General Matrix Partitioning Problem (Problem 4.2), yiel-
ding solutions with sum of half perimeters Ĉ = 3, and an accordingly pro-
portional total volume of communication. Despite common belief that a non-
rectangular approach would not yield a better result, and significantly com-
plicate the solution (Lastovetsky and Dongarra, 2009), a non-rectangular so-
lution was presented which does yield better performance at little-to-no com-
plication. This performance comes in a lower sum of half perimeters than all
rectangular partitionings provided the ratio between the areas of the two par-
titions is greater than 3 : 1. This non-rectangular solution was shown to be
optimal as the sum of half perimeter approaches the theoretically optimal sum
of half perimeters Ĉ = 2 as the ratio between partition areas grows. A hy-
brid algorithm utilizing the non-rectangular algorithm for ratios ≥ 3 : 1, and
any rectangular algorithm for ratios < 3 : 1 would yield better overall results
compared to all known algorithms.

Further, this chapter has laid the foundation for Chapter 5, which will show
that an architecture requiring a data partitioning amongst “only” two com-
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puting entities is not a degenerate case, as with modern scientific computing
platforms each entity/cluster/site/etc. can be of great computational power
locally. This concept is extended to more than two processors and useful ap-
plication areas in Chapters 6, 7, and 8, providing theoretical and experimental
evidence to show that a partitioning amongst small numbers of computing
entities can be quite advantageous.
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CHAPTER

FIVE

THE SQUARE-CORNER
PARTITIONING

5.1 Summary

This chapter introduces the “Square-Corner Partitioning”, whose geometri-
cal version was introduced in Chapter 4. The Square-Corner Partitioning is
a top-level, non-rectangular partitioning for matrix matrix multiplication bet-
ween two clusters or other computing entities. After communication details
and theoretical performance are examined, experimental results of simulations
using two processors, then experimental results using two different sets of two
clusters are presented. The Square-Corner Partitioning is compared to rectan-
gular partitionings in both communication and execution times.

The Square-Corner Partitioning is based on Algorithm 4.1, and accompanying
geometrical analysis in Chapter 4. The solution partitioning is similar to Fi-
gure 4.3. Results of experiments on two clusters correlate well with both the
simulations presented here and theoretical performances. In the case of two
clusters, each of which may have great computational power, this partitioning
proves to be an important asset to anyone performing large matrix matrix mul-
tiplications, or any problem with a communication schedule similar to MMM.

5.2 The Square-Corner Partitioning

In Chapter 4 a non-rectangular partitioning solving the General Matrix Par-
titioning Problem (Problem 4.2) for p = 2 was presented. This partitioning
was shown to have a lower sum of half perimeters (SHP) than any rectangu-
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lar partitioning solving the same problem, provided the ratio between the two
clusters is greater than 3 : 1. More specifically:

• For ratios ρ : 1 where ρ ∈ [1, 3) the rectangular partitioning has a lower
total volume of communication.

• For the ratio ρ : 1 where ρ = 3 the rectangular and non-rectangular
partitionings are equivalent in total volume of communication.

• For ratios ρ : 1 where ρ ∈ (3, ∞) the non-rectangular partitioning has a
lower total volume of communication.

This partitioning can be now be more specifically defined as The Square-
Corner Partitioning, described by Algorithm 5.1.

Algorithm 5.1: The Square-Corner Partitioning, a solution to Problem 4.2, the
General Matrix Partitioning Problem, for p = 2.

• Step 1. Re-index the processing elements Pi in the non-decreasing order
of their speeds, s2 ≤ s1.

• Step 2. Create a square partition of size s2 in any corner of the matrix to
be partitioned.

• Step 3. Map P2 to the square partition of size s2, and map P1 to the re-
maining balance of the matrix of size s1 = N2− s2, where N is the size of
the matrix.

• Step 4. Do the same for all matrices.

As Figure 5.1 shows, the rectangular Straight Line Partitioning always results
in a TVC equal to N2, in two communication steps regardless of the power
ratio ρ.

The Square-Corner Partitioning has a TVC equal to Equation 5.1,

TVC = 2× N ×
√

s2 (5.1)

where N is the matrix dimension and
√

s2 ×
√

s2 is the dimension of Cluster
2’s square partitions, shown in Figure 5.2.

As we have now formally defined the Square-Corner Partitioning, we will for-
mally, yet simply prove that it has a lower TVC than the Straight-Line Partitio-
ning for ρ > 3.
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Theorem 5.1: For all power ratios ρ greater than 3, the Square-Corner Partitio-
ning has a lower TVC than that of the Straight-Line Partitioning, and therefore
all known partitionings, when p = 2.
Proof:

TVCSCP < TVCSLP

2× N ×
√

s2 < N2

2× N2√
ρ + 1

< N2

2 <
√

ρ + 1

4 < ρ + 1

3 < ρ

Q.E.D

Similar proofs show that for the power ratio ρ = 3, the Square-Corner TVC is
exactly equal to the Straight-Line TVC, and for ratios ρ < 3, the Square-Corner
TVC exceeds that of the Straight-Line Partitioning.

We can also simply prove that as defined, the Square-Corner Partitioning mi-
nimizes the total volume of communication against variants of the algorithm.
Possible variants include assigning non-square partitions to Cluster 2. This
means relaxing the

√
s2 ×
√

s2 square partition to become a rectangle of width
α, height β, and area s2. We wish to minimize the total volume of commu-
nication, which more generally than Equation 5.1 can be given by Equation
5.2.

TVC = α× N + β× N (5.2)

With the restraints:

α× β = s2, 0 < α ≤ N, 0 < β ≤ N (5.3)

Theorem 5.2: The TVC of the Square-Corner Partitioning, C is minimized only
when the Square-Corner Partitioning assigns a square partition to the smaller
partition area α× β = s2.

Proof: The first derivative of C is set equal to zero and it is shown that this
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Figure 5.1: The Straight-Line Partitioning and communication steps required
to carry out C = A× B.

occurs only when α = β, and therefore when the partition of area s2 is a square.
We then see that the second derivative of C is always positive and therefore
any other partition will result in an increase in C.

C = α× N + β× N

C = α× N +
s2

α
× N

dC
dα

= N − s2 × N
α2

N − s2 × N
α2 = 0

s2 = α2, ∴ α = β

d2C
dα2 = N + 2× s2 × N

α3 > 0

Q.E.D

Figure 5.2 shows the Square-Corner Partitioning and the necessary data mo-
vements required to calculate a matrix product C = A× B. Clearly the TVC is
dependent on the size of the square partition and therefore the ratio ρ between
the two partitions. The communication steps follow:

1. Cluster 1 needs to receive the entire square partition of matrix A from
Cluster 2.
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Figure 5.2: The Square-Corner Partitioning and communication steps required
to carry out C = A × B. The square partition is located in a corner of the
matrix.

2. Cluster 1 needs to receive the entire square partition of matrix B from
Cluster 2.

3. Cluster 2 needs to receive a set of partial rows of matrix A from Cluster
1.

4. Cluster 2 needs to receive a set of partial columns of matrix B from Clus-
ter 1.

It will be shown in Section 5.5.1, based on Figures 5.1 and 5.2, that the Square-
Corner Partitioning is not a special case of any Straight-Line Partitioning or
vice-versa.

5.3 Serial Communications

First we will investigate the case where communication between nodes or clus-
ters is serial—no parallel communication is allowed to occur. In fact it is this
scenario that we examined in Chapter 4 and so far in this chapter (because it
is in this case that the communication time is proportional to the TVC). This
will not be the case if parallel communications are allowed (Section 5.4). This
serial communication model is viable and realistic, particularly for grids and
other geographically distributed architectures, as physical distance, other traf-
fic and cost may force a serial connection between entities. Indeed for massi-
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vely distributed projects, such as SETI@home, the number of links that connect
computing entities to servers is so great that one of them has a good chance of
being serial, and becoming a bottleneck that will limit the whole communica-
tion channel to the performance limitations of that bottleneck.

5.3.1 Straight-Line Partitioning

For the Straight-Line Partitioning, the TVC is always N2, regardless of power
ratio, as shown in Figure 5.1. To be consistent with three more cases that will
be examined in this section and Section 5.4 we will state this as a limit:

TVCSLP = N2

lim
s2→0

TVCSLP = N2

This can be expressed in terms of ρ as

lim
ρ→∞

TVCSLP = N2 (5.4)

5.3.2 Square-Corner Partitioning

The TVC for the Square-Corner Partitioning is given by Equation 5.1. Additio-
nally, we can see that the Square-Corner Partitioning is optimal if we look at
the limit of Equation 5.1:

TVCSCP = 2× N ×
√

s2

lim
s2→0

TVCSCP = 0

This can be expressed in terms of ρ as

lim
ρ→∞

TVCSCP = 0 (5.5)

Figure 5.3 Shows the Square-Corner Partitioning TVC compared to that of the
Straight-Line Partitioning with serial communications for power (partition) ra-
tios ρ = 1 : 1 → 25 : 1. At a ratio of 3 : 1 the partitionings are equivalent in
TVC, and for ρ = 15 : 1 the Square-Corner Partitioning’s TVC is one-half that
of the Straight-Line Partitioning.
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Figure 5.3: The TVC for the Square-Corner and Straight-Line Partitionings
with serial communication, in terms of cluster power (partition area) ratio.

5.3.3 Hybrid Square-Corner Partitioning for Serial Commu-
nications

Since for ratios ρ < 3 : 1, the Square-Corner Partitioning has a greater TVC
than that of the Straight-Line Partitioning, the two can be combined to create a
hybrid algorithm. This Hybrid Square-Corner Partitioning for Serial Commu-
nications (HSCP-SC) is equivalent to the Square-Corner Partitioning for ρ ≥ 3,
and equivalent to the Straight-Line Partitioning for ρ < 3.

Figure 5.4 shows the TVC of the HSCP-SC compared to that of the Straight-
Line Partitioning.

Since we know that for ρ < 3, the HSCP-SC and SLP are equivalent by defini-
tion, we will not compare the HSCP-SC and the SLP experimentally, but will
compare the SCP to the SLP experimentally as we have been doing theoreti-
cally.
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Figure 5.4: The TVC for the Hybrid Square-Corner for Serial Communications
and Straight-Line Partitionings with serial communication, in terms of cluster
power (partition area) ratio.
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5.4 Parallel Communications

Next we will investigate the case where communication between nodes or
clusters is parallel. In this case, there are two communications happening at
the same time: Cluster 1 is transmitting to Cluster 2, and Cluster 2 is transmit-
ting to Cluster 1 as per Figures 5.1 and 5.2. This is also a reasonable model,
as many network interconnects do allow parallel communications, even over
large geographic distance, but at a greater cost than that of serial communica-
tion links.

The equations for the total volumes of communication so far have been expres-
sed in terms of the area of the smaller, square partition s2. It will be advanta-
geous to express these in terms of the ratio ρ = s1

s2
= s1 : s2:

ρ =
s1

s2

s2 =
s1

ρ

s2 =
1− s2

ρ
(see Figure 5.2)

s2 =
1
ρ
− s2

ρ

s2 +
s2

ρ
=

1
ρ

ρ× s2 + s2 = 1

s2 × (ρ + 1) = 1

s2 =
1

1 + ρ
(5.6)

5.4.1 Straight-Line Partitioning

For the Straight-Line Partitioning, the TVC from Cluster 1 to Cluster 2
(TVCSLP 1→2) is always greater than that from Cluster 2 to Cluster 1 and there-
fore dominant (except at a 1:1 ratio where TVCSLP 1→2 = TVCSLP 2→1 = N2

2 ).
As per Figure 5.1:
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TVCSLP 1→2 = (1− s2)× N2 (5.7)

TVCSLP 1→2 ∝
(

1− 1
1 + ρ

)
TVCSLP 1→2 ∝

(
ρ

1 + ρ

)
(5.8)

As with the serial communication case, it can be shown that the Straight-Line
Partitioning is not optimal by examining the limit of Equation 5.7:

TVCSLP = (1− s2)× N2

lim
s2→0

TVCSLP = N2

This can be expressed in terms of ρ as

lim
ρ→∞

TVCSLP = N2 (5.9)

Note that Equation 5.9 is equal to Equation 5.4, thus the Straight-Line Partitio-
ning performs the same with serial and parallel communications.

5.4.2 Square-Corner Partitioning

For the Square-Corner Partitioning, again the volume of communication from
Cluster 1 to Cluster 2 (TVCSCP 1→2) is greater and therefore dominant for ρ >

3 : 1. For ρ < 3 : 1, TVCSCP 2→1 is dominant. At ρ = 3 : 1 both TVC values are
equivalent. As per Figure 5.2, we can determine:

TVCSCP 1→2 = 2×
√

s2 × (1−
√

s2)× N2 (5.10)

TVCSCP 1→2 ∝ 2× (
√

s2 − s2)

TVCSCP 1→2 ∝ 2×
(√

1
1 + ρ

− 1
1 + ρ

)
(5.11)
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TVCSCP 2→1 = 2× s2 × N2

TVCSCP 2→1 ∝ 2× s2

TVCSCP 2→1 ∝
(

2
1 + ρ

)
(5.12)

Where TVCSCP 1→2 is the total volume of communication moving from Cluster
1 to Cluster 2 and TVCSCP 2→1 is the total volume of communication moving
from Cluster 2 to Cluster 1.

Therefore the dominant communication for a given ratio ρ for the Square-
Corner Partitioning using parallel communications is:

max(TVCSCP 1→2, TVCSCP 2→1) =

max

[
2×

(√
1

1 + ρ
− 1

1 + ρ

)
,
(

2
1 + ρ

)]
(5.13)

Figure 5.5 shows a plot of Equations 5.8 and 5.13. This illustrates the Straight-
Line and Square-Corner Partitionings with parallel communications for power
(partition) ratios ρ = 1 : 1 → 25 : 1. Since communications are parallel,
only the dominant communication is taken into account. For the SCP this is
achieved with the max function in Equation 5.13.

The discontinuity in the TVC of the Square-Corner Partitioning at ρ = 3 is due
to the transition from TVCSCP 2→1 being dominant for ρ < 3 to TVCSCP 1→2

being dominant for ρ > 3. (TVCSCP 1→2 = TVCSCP 2→1 when ρ = 3). If
we included the non-dominant terms, the curves for both TVCSCP 2→1 and
TVCSCP 1→2 are continuous (See Figure 5.7) .

We can also show that for parallel communications the Square-Corner Parti-
tioning is optimal, as is the case for serial communications by examining the
limit of Equation 5.10:

TVCSCP = 2×
√

s2 × (1−
√

s2)× N2

lim
s2→0

TVCSCP = 0
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Figure 5.5: The TVC for the dominant communication of the Straight-Line and
Square-Corner Partitionings utilizing parallel communications.

This can be expressed in terms of ρ as

lim
ρ→∞

TVCSCP = 0 (5.14)

5.4.3 Hybrid Square-Corner Partitioning for Parallel Com-
munications

As Figure 5.5 shows, for ratios less than ρ = 2 : 1, the Square-Corner Par-
titioning has a greater TVC than that of the Straight-Line Partitioning when
parallel communications are utilized. Thus the two can be combined to create
a hybrid algorithm. This Hybrid Square-Corner Partitioning for Parallel Com-
munications (HSCP-PC) is equivalent to the Square-Corner Partitioning for
ρ ≥ 2, and equivalent to the Straight-Line Partitioning for ρ < 2. The HSCP-
PC will give the best performance of all known algorithms regardless of ρ.
Figure 5.6 shows the HSCP’s TVC compared to that of the Straight-Line Parti-
tioning.

The TVC of the HSCP-PC is given by:
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Figure 5.6: The TVC for the Hybrid Square-Corner for Parallel Communica-
tions and Straight-Line Partitionings with parallel communication, in terms of
cluster power (partition area) ratio.

min

[
ρ

1 + ρ
, max

[
2×

(√
1

1 + ρ
− 1

1 + ρ

)
,
(

2
1 + ρ

)]]
(5.15)

As Equation 5.15 and Figure 5.7 show, the HSCP-PC is a combination of three
functions, as summarized in Table 5.1.

ρ Algorithm Function

1 ≤ ρ < 2 SLP
(

ρ
1+ρ

)
2 ≤ ρ < 3 SCPs2→s1

(
2

1+ρ

)
3 ≤ ρ SCPs1→s2 2×

(√
1

1+ρ −
1

1+ρ

)
Table 5.1: The HSCP-PC algorithm in terms of ρ. The algorithm is composed
of the SLP and different components of the SCP depending on the value of ρ.
SCPx→y is the TVC of the SCP from partition x to partition y.

Figure 5.7 shows the HSCP-PC’s TVC compared to that of the Straight-Line
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Partitioning and the two components of the Square-Corner Partitioning.

Since we know that for ρ < 2, the HSCP-PC and SLP are equivalent by defini-
tion, we will not compare the HSCP-SC and the SLP experimentally, but will
compare the SCP to the SLP experimentally as we have been doing theoreti-
cally.
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5.5 Choosing a Corner For the Square Partition

We choose a corner for the position of the square partition for several reasons
of convenience as follows. The location does not affect the TVC. Placing the
square partition in the corner position of the matrix:

1. Minimizes the number of communication steps necessary, and reduces
the complexity of the communication schedule discussed in Section 5.5.1.

2. Allows the use of the SHP metric as proportional to the TVC as discussed
in Section 5.5.2.

• In showing that the SHP is proportional to the TVC for the Square-
Corner Partitioning (as it is for the rectangular, or Straight-Line Par-
titioning) we come up with a new metric, the total number of row
and column interrupts, I. This is explored in section 5.5.3.

3. Maximizes an area of the matrix which can allow for the overlapping
of communication and computation which will be discussed in Section
5.5.4.

4. Maximizes the potential size of multiple partitions as will be discussed
in Chapters 6 and 8.

5.5.1 Minimizing the Number of Communication Steps

Placing the square partition in the corner of the matrix minimizes the num-
ber of communication steps necessary to calculate C = A × B. Figure 5.2
shows that the Square-Corner Partitioning requires a total of four commu-
nication steps. Figure 5.8 shows a partitioning similar to the Square-Corner
Partitioning and the necessary data movements required to calculate a matrix
product C = A× B with the square partition adjacent to one of the sides of the
matrix.

As Figure 5.8 shows, the number of communication steps in this case is five.
Just as in the case where the square partition is located in one of the corners
of the matrix, both square partitions and a number of partial rows and partial
columns need to be communicated.

Figure 5.9 shows a partitioning similar to the Square-Corner Partitioning and
the necessary data movements required to calculate a matrix product C = A×
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Figure 5.8: A partitioning similar to the Square-Corner Partitioning and the
communication steps required to carry out C = A× B. The square partition is
located adjacent to one of the sides of the matrix.

B with the square partition in the center of the matrix, not adjacent to any sides.
As Figure 5.9 shows, the number of communication steps is six. Just as in the
case where the square partition is located in one of the corners of the matrix,
both square partitions and a number of partial rows and partial columns need
to be communicated.

A very important point to note is that the Square-Corner Partitioning requires
at least four communication steps to compute C = A × B. All Straight-Line
Partitionings require only two. Thus the algorithms are distinct and one is not a
special case of the other.

5.5.2 Sum of Half Perimeters - A Metric

In Chapter 4 we used the sum of half perimeters as a metric which is propor-
tional to the total volume of communication. This is common practice for rec-
tangular partitionings but demands closer inspection for the non-rectangular
case.

First let us use two methods to determine the sum of half perimeters for the
non-rectangular (Square-Corner) solution on the unit-square.

• Add the entire perimeter of the partitions s1 and s2 and divide the sum
by two. Equation 4.2 gives us Ĉ = 2 + 2×√s2.

• Beaumont et al. (2002b) provides the second way: It is the length of the
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Figure 5.9: A partitioning similar to the Square-Corner Partitioning and the
communication steps required to carry out C = A× B. The square partition is
not adjacent to any sides of the matrix.

lines drawn to make the partition(s) plus 2. This also results in Ĉ =

2 + 2×
√

2.

Thus the unit square SHP for the Square-Corner Partitioning is (2 + 2×√s2).
For a real matrix of size N, the SHP is given by Equation 5.2.

Ĉ = 2× N + 2×
√

s2 (5.16)

As we have seen in Equations 5.1 and 5.16, the TVC and SHP for the Square-
Corner Partitioning are expressed in terms of

√
s2. We can in turn define

√
s2

in terms of the cluster power ratio, ρ in Equation 5.17. As always we normalize
this ratio so that the power of the slower cluster is equal to 1, so a ratio of ρ is
understood to be a ratio of ρ : 1.

√
s2 =

N√
ρ + 1

(5.17)

To study the proportionality of the SHP and TVC relationship, Table 5.1 lists
some actual SHP/TVC ratios for the Square-Corner Partitioning, along with
the partitionings in Figures 5.8 (square partition adjacent to one side) and 5.9
(square adjacent to no sides). The value of

√
s2, and therefore the ratio between

the two partitions, is varied. Note that we are working on the unit square.

It is desirable to make a meaningful comparison of the proportionality of
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SHP/TVC√
s2 Square-Corner Figure 5.8 Figure 5.9

0.1 11.0 11.5 12.0
0.25 5.0 5.5 6.0
0.5 3.0 3.5 4.0

0.75 2.66 2.833 3.33
0.9 2.11 2.611 3.11

Table 5.2: SHP/TVC values for the Square-Corner Partitioning and
two Square-Corner-Like partitionings (Figures 5.8 and 5.9),

√
s2 ∈

(0.1, 0.25, 0.5, 0.75, 0.9), on the unit square.

the SHP/TVC ratio for the Square-Corner and “Square-Corner-Like” Parti-
tionings and the SHP/TVC ratio for the Straight-Line Partitioning. Initially
this proves troublesome, as varying the ratio between only two partitionings
for the Straight-Line Partitioning will yield the same ratio regardless of SHP
and TVC values, as both are constant. The SHP is always 3, and the TVC is
always 1 on the unit square. Table 5.3 lists values for the Straight-Line Partitio-
ning SHP/TVC ratios for a varying number of partitions. To keep calculations
simple, each partition is given an equal area, and the partition numbers are
kept to perfect squares.

Number of Partitions SHP/TVC

2 3
4 2
9 3/2

16 4/3

25 5/4

36 6/5

Table 5.3: SHP/TVC values the Straight-Line Partitioning for six different
numbers of partitions, p ∈ (2, 4, 9, 16, 25, 36), on the unit square.

Interestingly, plotting the SHP and TVC while varying
√

s2 for the Square-
Corner and Square-Corner-Like Partitionings (keeping p constant), but va-
rying the number of partitions p for the Straight-Line Partitioning, we can see
their relative relationships. This is shown in Figure 5.10.

Figure 5.10 shows that the Square-Corner Partitioning and Straight-Line Par-
titionings have equivalent SHP/TVC ratios. Those for the other two Square-
Corner-Like Partitionings are also linear, and have the same intercepts as the
other lines, only their slope varies.
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Figure 5.10: A plot of the SHP vs.TVC values for Square-Corner and Square-
Corner-Like Partitionings (Figures 5.8 and 5.9), and the Straight-Line Partitio-
ning on the unit square. For the Square-Corner and Square-Corner-Like Parti-
tionings the value of

√
s2 ∈ (0.1, 0.25, 0.5, 0.75, 0.9) is varied. For the Straight-

Line Partitioning the number of partitions p ∈ (2, 4, 9) is varied.

The intercept for all lines appears to be (0, 2). This corresponds to a TVC of 0
(obviously optimal), and a SHP of 2, also optimal (The SHP of the unit-square
itself is 2). This however is not the case if we inspect the region below SHP = 3
with greater detail. It is seen that once the SHP reaches 3, the Straight-Line Par-
titioning cannot proceed towards the optimal (0, 2). This is because the SHP
cannot be less than 3, and therefore the TVC can never be below 1. However
the Square-Corner Partitioning carries no such restriction and does approach,
in the limit SHP → 0, the optimal value of TVC = 0. Interestingly, the other
two Square-Like Partitionings also approach the optimal value of TVC = 0.

5.5.3 A New TVC Metric - Row and Column Interrupts

In section 5.5.1 we saw that for each communication step a number of par-
tial rows and columns had to be communicated. In fact, all communications
make up partial rows and columns. Although once all communications have
completed it is entire rows and columns that have been communicated in ag-
gregate. This holds for the Straight-Line Partitioning as well. This leads us to
conclude that a more general metric, proportional to the TVC, is the number
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of rows and columns interrupted by partitions boundaries.

For the Square-Corner and Square-Corner-Like Partitionings, the number of
rows and columns interrupted is

√
s2 rows and

√
s2 columns for the square

partition, and the same for the polygonal partition for a total of 4×√s2. The
TVC is 2× N ×√s2. For the Straight-Line Partitioning, the number of rows
interrupted is N for the first partition and N for the second for a total of 2× N.
The TVC is N2. From this the following observations can be made:

• For the Square-Corner and Square-Corner-Like Partitionings,

TVC
I

=
2× N ×√s2

4×√s2
=

N
2

• For the Straight-Line Partitioning,

TVC
I

=
N2

2× N
=

N
2

where I is the total number of rows and columns interrupted by each partition
in each partitioning, given by Equation 5.18.

I =
p

∑
i=1

(ri + ci) (5.18)

where p is the number of partitions, r is the number of rows interrupted by
partition i, and c is the number of columns interrupted by partition i.

We conclude, but do not prove, that Equation 5.18 is a more general metric
than the SHP for determining the relative TVC of matrix partitionings.

This is due to the fact that the SHP fails to be proportional to the TVC for poly-
gons whose perimeters are not equal to that of a bounding rectangle. In Figure
5.8 the partition owned by Cluster 1 is a polygon which falls into this category.
In Figure 5.9 the partition owned by Cluster 1 is not even polygonal, but a po-
lygon with a “hole“ cut in it. Nonetheless if one considers the perimeter of the
hole to contribute to the SHP as we did in section 5.5.2, the SHP does behave
linearly and converge on the optimal TVC. Thus the SHP does seem appro-
priate as a metric, however the sum of row and column interrupts, I, is again
more appropriate, as it matches exactly the I value of the other Square-Corner
and Square-Corner-Like Partitionings, when their TVC values are equivalent.

The non-rectangular partition in the Square-Corner Partitioning works per-
fectly with both the SHP and I metrics, because the SHP is equal to the SHP
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A B

C D

+

+ =    Bounding Rectangles

=    Polygon Boundaries

Figure 5.11: Four polygonal partitionings seen so far, along with their boun-
ding rectangles. Partitions A and B have a TVC proportional to the SHP. C
and D do not. All partitions have a TVC proportional to their I value, the total
number of row and column interrupts.

81



����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�����������������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

A B+=C

Cluster 1

Cluster 2

Figure 5.12: The Square-Corner Partitioning showing the area (hatched) of
Cluster 1’s C matrix which is immediately calculable. No communication is
necessary to calculate this area. This is possible because Cluster 1 already owns
the areas of A and B necessary to calculate C (also hatched).

of the partition’s bounding rectangle. (Also note that the same is true for all
rectangular partitions.) Figure 5.11 shows the polygons so far investigated.
A is the non-rectangular partition from the Square-Corner Partitioning, B is a
rectangular partitioning from the Straight-Line Partitioning. C and D are from
the Square-Corner-Like Partitionings. The TVC of A and B is proportional to
the SHP while that of C and D are not. At the same time all partitionings A,B,C
and D have an I value proportional to their TVC.

5.5.4 Overlapping Communication and Computation

The Square-Corner Partitioning has another advantage over the Straight-Line
Partitioning. There is always a part of the product matrix C which can be im-
mediately calculated. This is shown in Figure 5.12 as the hatched area. The
hatched areas of matrices A and B are those required to calculate area C with
no communication. Cluster 1 owns these areas from the outset. In Chapter 6
this will be shown to greatly reduce execution times. Placing the square parti-
tion in one corner of the matrix maximizes the area of this immediately calcu-
lable sub-partition, in the corner opposite. We explore this further in Sections
6.1.4 and 6.2.
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5.6 HCL Cluster Simulations

To experimentally verify algorithm 5.1, the Square-Corner Partitioning, we im-
plemented it and the Straight-Line Partitioning in Open-MPI (Gabriel et al.,
2004). The experiments were carried out on two identical machines on the
HCL Cluster (hcl03 and hcl04), (See Chapter 3). This was done so we could
focus solely on the partitioning method without worrying about any contri-
butions made by architectural differences. Local matrix computations utilize
ATLAS (Whaley and Dongarra, 1999). The machines were connected with
a switch allowing the bandwidth between the nodes to be specified, up to
1Gb/s.

5.6.1 Serial Communications

Since the HCL switches allow parallel communications, we simulated a serial
communication link in code. We do this by forcing all communications from
Processor 1 to Processor 2 to complete before the communications going from
Processor 2 to Processor 1 commence. This is done using MPI_Barrier()

calls. Both partitionings carry out all communications first, then all compu-
tations. Thus preliminarily there is no communication/computation overlap.
All times are averaged over five runs.

The ratio of speeds between the two nodes was varied by slowing down the
CPU of one node relative to the other using a CPU limiting program as propo-
sed in (Canon and Jeannot, 2006). This program supervises a specified pro-
cesses and using the /proc pseudo-filesystem, forces the process to sleep
when it has used more than a specified fraction of CPU time. The process
is then woken when enough idle CPU time has elapsed for the process to re-
sume. Sampled frequently enough, this can provide a fine level of control over
the fraction of CPU time used by the process. Comparison of the run-times of
each node confirmed that this method results in the desired ratios well within
2%.

5.6.2 Comparison of Communication Times

We ran matrix matrix multiplications using the Square-Corner Partitioning
and the Straight-Line Partitioning for power ratios ranging from 1 : 1 to 1 : 25
and for bandwidth values ranging from 50Mb/s to 1Gb/s. In all cases other
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Figure 5.13: Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is
100Mb/s, N = 4, 500.

than ratios of 1 : 1, 1 : 2, and 1 : 3, the total communication time for the Square-
Corner Partitioning was less than that of the Straight-Line Partitioning.

Figure 5.13 shows the communication times for the Square-Corner and
Straight-Line Partitionings for ratios 1 : 1− 1 : 25 and a network bandwidth
of 100Mb/s. The shape of the curves in this figure reflect the TVC relation-
ship between the Square-Corner and Straight-Line Partitionings as theoreti-
cally shown in Figure 5.3.

Figure 5.14 shows the communication times for the Square-Corner and
Straight-Line Partitionings for ratios 1 : 1− 1 : 25 and a network bandwidth of
500Mb/s. Again the experimental results match the theoretical predictions.

The most important feature of all communication plots is that there is the pre-
dicted “crossover” between the Square-Corner Partitioning and Straight-Line
Partitioning at a ratio of ρ = 3 : 1, and for all greater ratios the Square-Corner
Partitioning has a lower TVC and therefore communication time. In fact the
gap between the two partitionings continues to widen with increasing ratio,
because lim

ρ→∞
TVCSLP = N2 (Equation 5.4), and lim

ρ→∞
TVCSCP = 0 (Equation

5.5).
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Figure 5.14: Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is
500Mb/s, N = 4, 500.

85



 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0  5  10  15  20  25

C
om

m
un

ic
at

io
n 

T
im

e 
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Figure 5.15: Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is
1Gb/s, N = 4, 500.
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5.6.3 Comparison of Total Execution Times

The objective of the Square-Corner Partitioning is to reduce the inter-cluster
communication time, resulting in a lower total execution time compared to all
other partitionings when the number of partitions, p = 2. Since the total execu-
tion time is dependent on communication and computation time, any savings
in total execution time will be dependent on how dominant communication
time is in the overall execution time. It can be seen comparing the communi-
cation and execution times that the reduction in communication times directly
impacts the execution times.

Figures 5.16, 5.17 and 5.18 show the total execution times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1− 1 : 25 and network
bandwidths of 100Mb/s, 500Mb/s and 1Gb/s respectively, using serial com-
munications. The crossover at ρ = 3 : 1 which was predicted theoretically
and observed experimentally in the communication times is also present in
the execution times. For all ratios ρ > 3 : 1, the Square-Corner Partitioning out
performs the Straight-Line Partitioning.

As bandwidth increases, the ratios where both the Square-Corner and Straight-
Line Partitionings are faster than the sequential time (performing the multipli-
cation on the fastest processor only) increase. For the Square-Corner Partitio-
ning, this ratio increases from approximately 17 : 1 to 23 : 1 as the bandwidth
increases from 100Mb/s to 1Gb/s.
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Figure 5.16: Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 100Mb/s,
N = 4, 500.
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Figure 5.17: Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 500Mb/s,
N = 4, 500.
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Figure 5.18: Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 1Gb/s,
N = 4, 500.
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5.6.4 Parallel Communications

In this section we explore the performance of the Square-Corner Partitioning
when parallel communications are utilized. All experimental parameters and
techniques are the same as Section 5.6.1. The only difference is a modified
communication schedule, which is described in the following section.

5.6.5 Comparison of Communication Times

We ran matrix matrix multiplications using the Square-Corner Partitioning
and the Straight-Line Partitioning for power ratios ranging from 1 : 1 to 1 : 25
and for bandwidth values ranging from 50Mb/s to 1Gb/s. In all cases where
ρ > 2 : 1 The total communication time for the Square-Corner Partitioning
was less than that of the Straight-Line Partitioning, as predicted by theory.

All communications are carried out before computations begin. Non-Blocking
MPI_ISend() and MPI_IRecv() communications are used, followed by
MPI_Wait() statements. This is done to give control of the communica-
tion scheduling to the network layer allowing Ethernet parallelism. The only
MPI_Barrier is between the communication and computation code seg-
ments.

Figures 5.19, 5.20, and 5.21 show the communication times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1− 1 : 25 and network
bandwidths of 100Mb/s, 500Mb/s, and 1Gb/s respectively. The shape of
the curves in these figures reflect the TVC relationship between the Square-
Corner and Straight-Line Partitionings as theoretically shown in Figure 5.3.
Note that with parallel communications this results in a lower communication
time when ρ > 2 : 1.
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Figure 5.19: Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
100Mb/s, N = 4, 500.
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Figure 5.20: Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
500Mb/s, N = 4, 500.
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Figure 5.21: Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
1Gb/s, N = 4, 500.
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5.6.6 Comparison of Total Execution Times

The objective of the Square-Corner Partitioning is to reduce the inter-cluster
communication time, resulting in a lower total execution time compared to all
other partitionings when the number of partitions, p = 2. Since the total execu-
tion time is dependent on communication and computation time, any savings
in total execution time will be dependent on how dominant communication
time is in the overall execution time. It can be seen comparing the communi-
cation and execution times that the reduction in communication times directly
impacts the execution times.

Figures 5.22, 5.23 and 5.24 show the total execution times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1− 1 : 25 and network
bandwidths of 100Mb/s, 500Mb/s and 1Gb/s respectively. These figures also
show the execution time for the fastest processor executing the multiplication
time sequentially on the fastest processor.

As bandwidth increases, the ratio where both the Square-Corner and Straight-
Line Partitionings are faster than the sequential time (performing the multipli-
cation on the fastest processor only) increases. For the Square-Corner Partitio-
ning, this ratio increases from approximately 19 : 1 to 22 : 1 as the bandwidth
increases from 100Mb/s to 1Gb/s.
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Figure 5.22: Average execution times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
100Mb/s, N = 4, 500.
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Figure 5.23: Average execution times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
500Mb/s, N = 4, 500.
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Figure 5.24: Average execution times for the Square-Corner and Straight-Line
Partitionings using parallel communications. Network bandwidth is 1Gb/s,
N = 4, 500.
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hcl06 (eth1)

hcl08 (eth1)

Switch 2

Switch 1

SFP

hcl07 (eth1)

hcl04 (eth0)

hcl03 (eth0)

Figure 5.25: A two cluster configuration of the HCL Cluster. By bringing up
NIC1 and bringing down NIC2 on hcl03 - hcl05, and the opposite for hcl06 -
hcl08, and enabling the SFP connection between the switches, two homoge-
neous connected clusters of three nodes each are formed.

5.7 HCL Cluster Experiments

This section presents results of MPI matrix matrix multiplication experiments
on a small two cluster configuration of the HCL Cluster (See Chapter 3). Six
machines (hcl03 - hcl08) were used, connected through two switches utilizing
the SFP connection between them as shown in Figure 5.25. Cluster 1 (hcl03,
hcl04, hcl05) all have their CPU speeds restricted as in Section 5.6. Thus we
have a two cluster architecture which should be well modelled by the simula-
tions in Section 5.6.

5.7.1 Comparison of Communication Times

The communication times for this architecture were very close to the simula-
tion using two machines in Section 5.6. Overall the communication times were
slightly higher, most likely due to the increased number of machines commu-
nicating. Only the bandwidth of the SFP connection was varied as this is the
only link between the two clusters.

Figures 5.26, 5.27, and 5.28 show the communication times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1 to 1 : 15 and a network
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Figure 5.26: Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
100Mb/s, N = 4, 500.

bandwidths of 100Mb/s, 500Mb/s and 1Gb/s respectively. Parallel commu-
nications are utilized in all experiments. As with two processors and parallel
communications, the Square-Corner Partitioning has a lower communication
time for all ρ > 2 : 1. N = 4,500 for all experiments.
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Figure 5.27: Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
500Mb/s, N = 4, 500.
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Figure 5.28: Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
1Gb/s, N = 4, 500.
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Figure 5.29: Average execution times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
100Mb/s, N = 4, 500.

5.7.2 Comparison of Total Execution Times

The overall execution times were again directly influenced by the communica-
tion times. Execution times were lower than simulations as expected, due to a
three-fold increase in computational power through increased parallelism. It
is seen that the increase in bandwidth and corresponding reduction in com-
munication times is the largest factor in reducing the execution times.

Figures 5.29, 5.30, and 5.31 show the total execution times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1 to 1 : 15 and network
bandwidths of 100Mb/s, 500Mb/s and 1Gb/s respectively. As with two pro-
cessors and parallel communications, the Square-Corner Partitioning has a lo-
wer execution time for all ρ > 2 : 1.
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Figure 5.30: Average execution times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
500Mb/s, N = 4, 500.
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Figure 5.31: Average execution times for the Square-Corner and Straight-Line
Partitionings utilizing parallel communication. Network bandwidth is 1Gb/s,
N = 4, 500.

105



5.8 Grid’5000 Experiments

To investigate the scalability of the Square-Corner Partitioning we utilized
Grid’5000 (See Section 1.1.2.2). Grid’5000 is located across nine sites in France
and has 1,529 nodes from Altix, Bull, Carri, Dell, HP, IBM and SUN. There is a
total of 2,890 processors with a total of 5,946 cores from both AMD and Intel.

In this section we used two clusters of machines at the Bordeaux site. The first
are IBM x4355 dual-processor nodes with AMD Opteron 2218 2.6GHz Dual
Core Processors with 2MB L2 Cache and 800MHz Front Side Bus. Each node
has 4GB of RAM (2GB per processor, 1GB per core). The second are IBM eSer-
ver 325 dual-processor nodes with AMD Opteron 248 2.2GHz single core pro-
cessors with 1MB L2 Cache. Each node has 2GB of Ram (1GB per processor).

The problem size is N = 15, 000.

5.8.1 Comparison of Communication Times

All communications were 1GB/s Ethernet. Parallel communications are utili-
zed. It can be seen that an effect of keeping the overall computational power
constant while increasing the relative power ratio served to flatten out some
of the communication curves, particularly those for the Straight-Line Partitio-
ning, where there is a constant amount of communication regardless of the
power ratio.

Figure 5.32 shows the communication times for ratios 1 : 1 to 1 : 8.
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Figure 5.32: Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communications. Network bandwidth is
1Gb/s, N = 15, 000.
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5.8.2 Comparison of Total Execution Times

Power ratios were varied from 1 : 1 to 1 : 8 by varying the number of CPUs
in each cluster while trying to maintain a relatively constant total power. This
represents a departure from our simulation and experiment results in Sections
5.6 and 5.7, where the overall computational power was not kept constant. All
local computations utilized ATLAS.

It can be seen that the reduction in communication time directly impacts the
execution time. The expected crossover at power ratio 2:1 is present and for
greater power ratios, the Square-Corner Partitioning has a lower execution
time.

Both the Square-Corner and Straight-Line Partitionings resulted in lower exe-
cution times than the problem being solved on just the fastest cluster, which
ran in 198s.
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Figure 5.33: Average execution times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communications. Network bandwidth is
1Gb/s, N = 15, 000.
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5.9 Conclusion

This chapter presented a new data partitioning algorithm, the Square-Corner
Partitioning, for matrix matrix multiplication on two heterogeneous intercon-
nected clusters. Compared to more general partitioning algorithms which re-
sult in simple “Straight-Line” rectangular partitions on a two-cluster architec-
ture, this new partitioning is proven to reduce the total volume of inter-cluster
communication when the power ratio of the two clusters is greater than 3 : 1
when serial communications are utilized, and greater than 2 : 1 when parallel
communications are utilized. This results in a lower execution time for archi-
tectures with these ratios.

This partitioning algorithm can be utilized as the top-level partitioning of a
hierarchal algorithm that is to multiply matrices across more than two connec-
ted clusters. A tree-like network could deploy this partitioning at each level
of the network, allowing individual clusters to handle their computations in
any manner locally. When serial communications are utilised, a hybrid algo-
rithm utilizing this new Square-Corner Partitioning for power ratios equal to
or greater than 3 : 1, and the existing Straight-Line Partitioning for ratios of less
than 3 : 1 guarantees that the total volume of communication will be equal to
or less than previously existing algorithms for all ratios. When parallel com-
munications are utilised, a hybrid algorithm utilizing this new Square-Corner
Partitioning for power ratios equal to or greater than 2 : 1, and the existing
Straight-Line Partitioning for ratios of less than 2 : 1 guarantees that the to-
tal volume of communication will be equal to or less than previously existing
algorithms for all ratios.

The Square-Corner Partitioning has several advantages over other Straight-
Line Partitionings including the possibility of overlapping communication and
computation. This is theoretically and experimentally explored in Chapter 6.
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CHAPTER

SIX

THE SQUARE-CORNER
PARTITIONING ON THREE CLUSTERS

6.1 Introduction

In this chapter the Square-Corner Partitioning is extended from an architecture
of two clusters to three. We do this because the move from two to three clusters
represents a theoretical hurdle, and the three cluster topology is much closer
to a n cluster topology than two. A large part of this is due to the fact that
a three cluster system introduces a new degree of freedom, in the availability
of more than one interconnection topology. Thus we are sacrificing theoretical
generality to explore deeper with experimental analysis. We will see in Chap-
ter 8 that generalizing to four or more clusters is a qualitative extension of the
three cluster case.

The cases where the Square-Corner Partitioning has a lower total volume of
communication than the Straight-Line Partitioning are explored theoretically
then experimentally. Topological limitations are also discussed. As in the two
cluster case we will start our experiments with three processor simulations be-
fore presenting experimental results on Grid’5000. Experimental results corre-
late well with theory and simulation.

In this research we model three clusters using three processors because a three
processor network provides a controllable and tunable environment whose
structure is similar to three clusters. In the case of connected clusters, local
communications are often an order of magnitude faster than the interconnec-
ting link. Due to physical distance this link is often serialized or of some limi-
ted parallelism but depending on architecture parallel links are not ruled out
nor considered exotic. Similarly, with three processors local communications
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Figure 6.1: Star and Fully Connected topologies for three clusters.

(within processor-local registers and memory) are typically fast compared to
the inter-processor connection speed. Using an Ethernet switch with a confi-
gurable bandwidth (discussed in Chapter 3) allows us to model many different
scenarios.

As the case of three clusters brings up a new degree of freedom that was not
found in the two cluster case, namely network topology, we explore the impact
of this on the partitioning’s effectiveness. In the case of three clusters there are
“Star“ and “Fully Connected“ topologies now available (see Figure 6.1). We
will also explore the case where communications and computations can be
overlapped resulting in lower overall execution times.

To our knowledge no research has been conducted to optimize data partitio-
ning techniques for the specific architecture of three connected nodes. The
most related work is Beaumont et al. (2001b), which introduced a partitioning
for matrix matrix multiplication designed for any number of nodes including
three. This partitioning exclusively utilizes rectangular partitions, organized
in columns, with each rectangle being proportional in area to the speed of the
node which is to calculate that partition. This Straight-Line Partitioning in the
case of three clusters results in a partitioning as shown in Figure 6.2.

The Square-Corner Partitioning differs in that the matrix is not partitioned into
rectangles. We create three partitions, the first being a square located in one
corner of the matrix, the second being a square in the diagonally opposite cor-
ner, and the third is polygonal, comprised of the balance of the matrix, as seen
in Figure 6.3. On a star topology where the fastest node is the middle node,
this partitioning always results in a lower total volume of communication (see
Section 6.1.1). The benefit of a more efficient communication schedule further
reduces communication time, which in turn drives down total execution time.
On a fully connected topology this minimizes the total volume of communica-
tion between clusters for a defined range of power ratios (see Section 6.1.2).
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Figure 6.2: A Straight-Line Partitioning for three clusters.

This partitioning also allows for a sub-partition of the matrix product to be
calculated without any communications needed. When dealing with hard-
ware that has a dedicated communication sub-system, this can further reduce
execution time.

As with the two cluster case in Chapter 5 the total volume of communication
of the Square-Corner Partitioning approaches the theoretical lower bound as
the power ratio between the nodes grows, unlike existing partitionings which
have a TVC bounded by a constant or a function that does not approach the
theoretical lower bound.

As discussed in Chapter 4 the TVC for a rectangular partitioning is proportio-
nal to the sum of the half-perimeters Ĉ of all partitions, given by Equation 6.1
(for a unit square)

Ĉ =
p

∑
i=1

(hi + wi) (6.1)

where p is the number of nodes, and hi and wi are the height and width of the
rectangle assigned to node i, respectively.

Since the perimeter of any rectangle enclosing a given area is minimized when
that rectangle is a square, there is a natural lower bound LB for Ĉ given by
Equation 6.2, where ai is the area of the partition belonging to node i.

LB = 2×
p

∑
i=1

√
ai (6.2)
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Figure 6.3: The Square-Corner Partitioning for three clusters.

As in the case for two clusters, the lower bound cannot always be met by the
Straight-Line Partitioning. However as Figure 6.3 shows, as s2 and s3 approach
0, the SHP of the Square-Corner Partitioning approaches 2, which is the per-
imeter of the unit square itself, and therefore optimal. Figure 6.4 shows the
Straight-Line Partitioning and necessary data movements to carry out the ma-
trix matrix multiplication C = A× B.

Although the general rectangular partitioning problem is NP-complete it is
easy to show that for the simple case of three partitions the best possible rec-
tangular partitioning is of the form shown in Figure 6.2 (where s2 and s3 are
the smaller partitions), as this arrangement minimizes q in Equation 6.3, the
only variable quantity in the TVC of the Straight-Line Partitioning for a matrix
size N.

N2 + N × q (6.3)

In order to calculate its partition of C, Cluster 1 needs to receive the respective
partitions of A from Clusters 2 and 3, Cluster 2 needs to receive Cluster 3’s
partition of B, and part of Cluster 1’s partition of A, and Cluster 3 needs to
receive Cluster 2’s partition of B and the remaining part of Cluster 1’s partition
of A, as shown in figure 6.4.

If we define the area of Cluster 2’s partition to be s2 and Cluster 3’s partition
to be s3, Equation 6.3 can be expressed as Equation 6.4.
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Figure 6.4: A two-dimensional Straight-Line Partitioning and data movements
required to carry out C = A× B on three heterogeneous nodes or clusters.

N2 + s2 + s3 (6.4)

When dealing with a star topology where Cluster 1 (the fastest cluster) is the
middle topologically, the communications between Clusters 2 and 3 must go
through Cluster 1. This has the effect of doubling the total volume of com-
munication between Clusters 2 and 3, as all communications between this pair
must first be sent to and received by Cluster 1 before the data can be sent on to
the recipient node. This raises the TVC to Equation 6.5.

N2 + 2× (s2 + s3) (6.5)

The Square-Corner Partitioning differs from the Straight-Line (rectangular)
partitioning described above by relaxing the restriction that all partitions must
be rectangular. We extend the two node partitioning presented in Chapter 5
by creating two square partitions in diagonally opposite corners of the matrix.
Since the total volume of communication is proportional to the sum of half per-
imeters of the partitions, it is easy to show that the sum of half perimeters is at
a minimum when the two slower nodes are assigned square partitions. There-
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Figure 6.5: The Square-Corner Partitioning and data movements necessary to
calculate C = A× B.

fore, the optimal Square-Corner Partitioning assigns the balance of the matrix
to the fastest node. Since a square has the smallest perimeter of any rectangle
of a given area we do not consider non-square rectangular corner partitions.
Figure 6.5 shows the partitioning scheme used by the Square-Corner Partitio-
ning and the necessary data movements to calculate C = A× B.

The total volume of communication of the Square-Corner Partitioning is given
by Equation 6.6, where s2 and s3 are the areas assigned to Clusters 2 and 3 (the
two slower clusters).

2× N × (
√

s2 +
√

s3) (6.6)

As Figure 6.5 shows, Clusters 2 and 3 do not communicate at all, thus the TVC
is equal to Equation 6.6 for both the fully connected and star topology where
Cluster 1 is the middle Cluster topologically.

Other similar (but non-Square-Corner) partitioning methods were also investi-
gated. Examples of two partitionings explored are shown in Figure 6.6. In the
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Figure 6.6: Examples of non-Square-Corner Partitionings investigated.

Square-Corner Partitioning, diagonally opposite corners are chosen to mini-
mize the number of communication steps necessary as well as for the reasons
discussed in Section 5.2. As shown in Figure 6.5 the number of communication
steps is eight. Placing the squares in corners that are not diagonally opposite as
in Figure 6.6.A requires ten communication steps provided ε1 6= ε2. If ε1 = ε2

the number of steps remains at eight. The total volume of communication is
still equal to Equation 6.6 regardless. If the partitions are nested as in Figure
6.6.B, the number of communication steps is 12 and a higher TVC results. All
other (more exotic) partitioning methods investigated resulted in an increased
TVC also.

In the Square-Corner Partitioning, the square partitions cannot overlap. This
imposes the following restriction on the relative speeds of the clusters:

s2

s1
× s3

s1
≤ 1

4
(6.7)

where s1 + s2 + s3 = 1 and s1 is the relative speed of the cluster owning the
balance of the matrix (the fastest cluster). A consequence of this is that the
possible cluster ratios are somewhat limited. Another way of visualizing this
is by noting that the areas of s2 and s3 cannot overlap. This eliminates certain
ratios such as 1:1:1.

6.1.1 Comparison of Communications on a Star Topology

Since in the Square-Corner Partitioning Clusters 2 and 3 do not have to com-
municate at all, the total volume of communication on a star where Cluster 1
is the middle cluster remains equal to Equation 6.6. The Straight-Line Partitio-
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ning has a TVC equal to Equation 6.5. In terms of cluster speeds, the Square-
Corner Partitioning has a lower TVC when Inequality 6.8 is satisfied.

(
√

s2 +
√

s3) < 1.5− s1 (6.8)

where s1 : s2 : s3 is the ratio representing the node speeds, normalized so that
s1 + s2 + s3 = 1, and subject to the restriction of Inequality 6.7.

In order to see when the Square-Corner Partitioning has a lower total volume
of communication than the Straight-Line partitioning, we examined the sur-
face

z = (
√

s3 +
√

s2)− 1.5 + s1 (6.9)

which represents the Straight-Line Partitioning’s total volume of communica-
tion subtracted from that of the Square-Corner Partitioning. Since z < 0 for all
positive values of s1, s2, and s3, the Square-Corner Partitioning always results
in a lower total volume of communication.

Additionally, the fact that Cluster 1 must now relay data from Cluster 2 to
Cluster 3 and vice-versa introduces a section of the communication schedule
that is necessarily serialized in the Straight-Line Partitioning. The Square-
Corner Partitioning has no such section and can therefore exploit in full any
existing network parallelism.

For the Straight-Line Partitioning, the total volume of communication becomes
dependent on which cluster is the middle node topologically, and in turn on
the values of s2 and s3. These three topologies and their required communica-
tions are shown in Figure 6.7. In the figure, the following are the volumes of
each communication:

a + b = N2 − s2 − s3

c = e = s2

d = f = s3

The resultant TVCs are shown in Table 6.1.

In Table 6.1 the TVC for cases where Clusters 2 and 3 are the center nodes
topologically are presented as inequalities because it is impossible to separate
a and b in a general manner. Only their sum (a + b = N2 − s2 − s3) can be
quantified (see Figure 6.4). Therefore where (a + 2 × b) and (2 × a + b) appear,
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Figure 6.7: The three possible star topologies for three clusters using the
Straight-Line Partitioning and associated data movements. Labels refer to data
movements in Figure 6.4. Volumes of communication are shown in Table 6.1.

only (a + b) is used, thus giving a conservative value for the TVC in these cases.

Note that in Table 6.1, the TVC calculated for the case where Cluster 1 is the
center cluster is equivalent to Equation 6.5, the TVC calculated in Section 6.1.

For the Square-Corner Partitioning, the total volume of communication is al-
ways less when the most powerful cluster (Cluster 1) is the center node. This
is shown in Figure 6.8. Additionally, when Cluster 1 is not the center node, the
communication schedule gets more complicated and one side of the network
becomes busier than the other. In the figure, the following are the volumes of
each communication:

a = h =
√

s2 × (N −√s2)

e,= d =
√

s3 × (N −√s3)

c = g = s2

b = f = s3,

The resultant TVCs are shown in Table 6.2.
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Center Cluster TVC

1 a + b + c + d + 2 × e + 2 × f
= N2 + 2× s2 + 2× s3

2 a + 2 × b + c + 2 × d + e + f
> N2 + s2 + 2× s3

3 2 × a + b + 2 × c + d + e + f
> N2 + 2× s2 + s3

Table 6.1: TVC values for the Straight-Line Partitioning on the three possible
star topologies shown in Figure 6.7. Letters a - f refer to labels in Figure 6.7.

Note that in Table 6.2, the TVC calculated for the case where Cluster 1 is
the center cluster is equivalent to Equation 6.6, the TVC calculated in Section
6.1.

Center Cluster TVC

1 a + b + c + d + e + f + g + h
= 2× N × (

√
s2 +
√

s3)

2 2 × a + b + 2 × c + d + e + f + 2 × g + 2 × h
= 2× N × (2×√s2 +

√
s3)

3 a + 2 × b + c + 2 × d + 2 × e + 2 × f + g + h
= 2× N × (

√
s2 + 2×√s3)

Table 6.2: TVC values for the Square-Corner Partitioning on the three possible
star topologies shown in Figure 6.8. Letters a - h refer to labels in Figure 6.8.
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6.1.2 Comparison of Communications of a Fully Connec-
ted Topology

On a fully connected topology the Square-Corner Partitioning has a total vo-
lume of communication equal to Equation 6.6 and the Straight-Line partitio-
ning has a total volume of communication equal to Equation 6.4. In terms of
cluster speeds the Square-Corner Partitioning results in a lower total volume
of communication when

(
√

s2 +
√

s3) < 1− s1

2
(6.10)

is satisfied, where again s1 : s2 : s3 is the ratio representing the cluster speeds,
normalized so that s1 + s2 + s3 = 1, and subject to the restriction of Inequality
6.7.

This inequality shows that the total volume of communication is dependent on
the values of s2 and s3 (s2 can be expressed as 1− s2 − s3). To investigate what
values of s2 and s3 result in a lower total volume of communication compared
to the rectangular partitioning, we plotted the surface

z = (
√

s2 +
√

s3)− 1 +
s1

2
(6.11)

which is negative when the Square-Corner Partitioning’s total volume of com-
munication is less than that of the Straight-Line Partitioning. Figure 6.9 shows
this surface, and Figure 6.10 shows a contour plot of this surface at z = 0.
In Figure 6.10 only the values of z < 0 are shown. It is for these values that
the TVC of the Square-Corner Partitioning is less than that of the Straight-Line
Partitioning.
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Figure 6.9: The surface defined by Equation 6.11. The Square-Corner Partitio-
ning has a lower TVC for z < 0.
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Figure 6.10: A contour plot of the surface defined by Equation 6.11 at z = 0. For
simplicity, s2 = s3, but this is not a restriction of the Square-Corner Partitioning
in general.
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6.1.3 Comparison with the State-Of-The-Art and the Lower
Bound

In Section 5.2 we summarized the work of Beaumont et al. (2001b) for the spe-
cific case of two nodes or clusters. The authors present an algorithm to find
an optimal rectangular partitioning with the restriction that the rectangles are
arranged in columns. For three nodes, this algorithm results in a partitioning
similar to Figure 6.2, with three rectangles proportional in area to the relative
powers of the nodes which own them. For the unit square, the sum of half-
perimeters Ĉ which is proportional to the total volume of communication was
given by Equation 6.1, and in the case of three nodes is:

Ĉ =
p

∑
i=1

(hi + wi) = 3 + q (6.12)

where 0 < q < 1.

The lower bound of the sum of half perimeters LB is given by Equation 6.2,
and for the case of three nodes is:

LB = 2×
p

∑
i=1

√
si = 2× (

√
s1 +
√

s2 +
√

s3) (6.13)

where si is the area of the partition belonging to node i.

In the case of three nodes, the Square-Corner Partitioning has a sum of half
perimeters equal to Equation 6.14:

Ĉ = 2 +
√

s2 +
√

s3. (6.14)

and therefore
lim

s2+s3→0
Ĉ = 2 (6.15)

which is equal to the lower bound that cannot be met by the Straight-Line
Partitioning.

To compare the Square-Corner sum of half-perimeters with that of the Straight-
Line Partitioning and the lower bound, we adopted the same approach as in
Beaumont et al. (2001b). We generated 2,000,000 random values for the par-
tition areas s2, s3 and s1 = 1− s2 − s3, and calculated values for the sum of
half-perimeters Ĉ and the lower bound LB. Since we already know that the
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total volume of communication for the Square-Corner Partitioning (on a fully
connected network) is greater for the cases where Equation 6.11 is positive, we
restrict the random areas s1, s2, and s3 accordingly.

The average sum of half-perimeter to lower bound ratio for the rectangular
partitioning is 1.128, while that of the Square-Corner Partitioning is 1.079.
Considering that 1.0 is the optimum value, this is an improvement of 38%.
The minimum value for the sum of half-perimeter to lower bound ratio for the
rectangular partitioning is 1.0595, while that of the Square-Corner Partitioning
is 1.0001, an improvement of well over 99%. This also shows that the Square-
Corner Partitioning does approach the lower bound which cannot be met by
the rectangular partitioning.

In generating 2,000,000 random areas, there are bound to be many that have
very large ratios, making them computationally unrealistic. Surely nobody
would use two entities in parallel if one of them is slower than the other by an
order of hundreds or thousands or greater. We therefore imposed the tighter
but more realistic restriction of smax/smin ≤ 100 . Even with these much tighter
restrictions, the average sum of half-perimeter to lower bound ratio for the
rectangular partitioning is 1.104 while that of Square-Corner Partitioning is
1.062, an improvement of 40%. The minimum is improved from 1.059 to 1.008,
an improvement of 86%.

6.1.4 Overlapping Communications and Computations

The other primary benefit of the Square-Corner Partitioning is overlapping
communications and computations. As seen in Figure 6.5, and in more detail
Figure 6.11, there is a sub-partition C1 of Cluster 1’s C partition which is imme-
diately calculable—no communications are necessary to compute the product
of this sub-partition. On an architecture which has a dedicated communica-
tions sub-system this quality can be exploited to overlap some communica-
tions and computations.

Figure 6.12 shows a schematic of the overlapping of communication and com-
putation from an execution time point of view. As the areas C2, X, and Y (in
Figure 6.11) are calculated to be proportional to the speed of the nodes owning
them, it is expected that steps I I I, IV, and V will finish their computations
at the same time. The same is not true for steps I and I I, as they represent
unrelated tasks.
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Figure 6.13: Demonstration that the Square-Corner Partitioning for three clus-
ters with a 1:1:1 ratio is not possible, as this ratio forces s2 and s3 to overlap,
which is not allowed by definition. s1 = s1A + s1B.

A solution exists which would minimize the overall execution time but this
would alter the approach of the Square-Corner Partitioning. Thus we formu-
late the total execution time as texe = max(I, I I) + max(I I I, IV, V)

6.1.5 Topological Limitations

It would be incomplete not to note that on three cluster topologies the Square-
Corner Partitioning has some limitations.

1. On a star topology, the areas of s2 and s3 cannot overlap. This restricts
the possible power ratios eliminating some ratios such as 1:1:1 (see Figure
6.13). The closest to 1 : 1 : 1 that the Square-Corner Partitioning can get
is 2 : 1 : 1, (s2 = s3 = s1

2 ). This occurs when the corners of s2 and s3

“meet” (but do not overlap) in the middle of the matrix.

2. On a star topology, the center cluster or node must be the fastest (s1). The
reasons for this are discussed in Section 6.1.1.

3. On a fully connected topology the ratios where the Square-Corner Par-
titioning out performs the Straight-Line Partitioning are limited (see Fi-
gure 6.10). When s2 = s3 these ratios account for about 20% of possible
ratios. This figure would change when s2 6= s3, but it gives a good indi-
cation of this limitation.
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4. Optimizing the overlapping of communication and computation could
prove difficult and would be platform dependent, unlike other aspects
of the Square-Corner Partitioning.

6.2 HCL Cluster Simulations

To experimentally verify this new partitioning, we implemented matrix mul-
tiplications utilizing the optimal Square-Corner Partitioning and the Straight-
Line (rectangular) Partitioning in Open-MPI (Gabriel et al., 2004). Local ma-
trix multiplications utilize ATLAS (Whaley and Dongarra, 1999). Experiments
were carried out on three identical machines to eliminate contributions of ar-
chitectural differences. The machines were connected with a full duplex Ether-
net switch that allows the bandwidth between the nodes to be finely control-
led.

The ratio of speeds between the three nodes were varied by slowing down
CPUs when required using a CPU limiting program as proposed in (Canon
and Jeannot, 2006). This program supervises a specified processes and using
the /proc pseudo-filesystem, forces the process to sleep when it has used
more than a specified fraction of CPU time. The process is then woken when
enough idle CPU time has elapsed for the process to resume. Sampled fre-
quently enough, this provides a fine level of control over the CPU speed. Com-
parison of the run-times of each node confirmed that this method results in the
desired ratios to within 2%.

For simplicity we present results where the speeds of the slower nodes (s2 and
s3) are equal. We varied this relative value from 5 to 25, where s1 = 100− s2 −
s3. Network bandwidth is 100Mb/s, and N = 5, 000.

Figure 6.14 shows the communication times for the Square-Corner and
Straight-Line Partitionings on a star topology. The Square-Corner Partitio-
ning has a lower communication time than the Straight-Line Partitioning in
all cases. On average the Square-Corner Partitioning results in a reduction in
communication time of approximately 40%.

A plot of the communication volumes agrees well with Figure 6.14 with one
exception. The Square-Corner and Straight-Line communication volumes
converge as s2 and s3 → 25. The reason that the communication times do
not converge is due to the necessarily sequential component of the Straight-
Line Partitioning’s communication schedule. This component can not make
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Figure 6.14: Communication times for the Square-Corner and Straight-Line
Partitionings on a star topology. Relative speeds s1 + s2 + s3 = 100.

use of network advantages such as Ethernet’s full duplex. Experiments “ille-
gally“ altering the rectangular partitioning’s communication schedule (by de-
serializing necessarily serial communications) confirm this.

Figure 6.15 shows a plot of the execution times for the Square-Corner and
Straight-Line Partitionings on the star topology. For the Square-Corner Par-
titioning two values are plotted, the execution time obtained with no overlap-
ping of communication and computation, and the values obtained with over-
lapping. It is seen that with no overlapping (only taking into account the com-
munication differences) the execution time for the Square-Corner Partitioning
is on average 14% less than that of the Straight-Line, and that the reduction
in communication times seen in Figure 6.14 directly influence the execution
times.

The introduction of overlapping communication and communications signi-
ficantly influences the performance of the Square-Corner Partitioning. For a
ratio of 90 : 5 : 5 it is 38% faster than the rectangular partitioning. As the ra-
tio approaches 50 : 25 : 25, the amount of overlap possible approaches zero,
and the execution times of the Square-Corner Partitioning with and without
overlap converge.

Figure 6.16 shows the communication times for the fully connected topology.
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Figure 6.15: Execution times for the Square-Corner, Square-Corner with Over-
lapping and Straight-Line Partitionings on the star topology. Relative speeds
s1 + s2 + s3 = 100.

A notable aspect is that the Straight-Line Partitioning’s communication times
decrease despite the fact that it is dealing with increasingly higher communi-
cation volumes. The reason for this is that the total volume of communication
for this partitioning increases much slower than that of both the Straight-Line
Partitioning on the star and the Square-Corner Partitioning. It increases so
much slower that the increased benefit of more computational parallelism (as
s2 and s3 get closer to s1) outweighs the higher communication burden. Still,
for ratios more heterogeneous than about 80 : 10 : 10, the Square-Corner Parti-
tioning has a lower total volume of communication, and therefore lower com-
munication times.

Figure 6.17 shows the overall execution times for the Square-Corner and
Straight-Line Partitionings on a fully connected topology. Again the Square-
Corner partitioning is shown with and without overlapping. Again, without
overlapping the execution times are directly affected by the communication
times. For ratios more heterogeneous than about 80 : 10 : 10, the Square-
Corner Partitioning out performs the Straight-Line. The introduction of over-
lapping again significantly influences the performance of the Square-Corner
Partitioning. For a ratio of 90 : 5 : 5 the Square-Corner Partitioning is 30%
faster that the rectangular. Additionally, the range of ratios where the Square-
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Figure 6.16: Communication times for the Square-Corner and Straight-Line
Partitionings on a fully connected topology. Relative speeds s1 + s2 + s3 = 100.

Corner Partitioning is faster than the rectangular is broadened from about
80 : 10 : 10 to about 60 : 20 : 20. Similar results were seen at other band-
widths, values of N, and power ratios, including where s2 6= s3.
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6.3 Grid’5000 Experiments

To experiment with the Square-Corner Partitioning on a large scale, geogra-
phically distributed scientific computing platform we chose three sites on
Grid’5000, arranged in a star. Actually it is not the physical topology but the
fact that the Square-Corner Partitioning forces Clusters 2 and 3 to communi-
cate through Cluster 1 that “creates” the star topology.

We chose the sites Orsay, Rennes, and Sophia. Orsay was chosen as the center
cluster (Cluster 1) as it has the greatest overall power. The desired power ra-
tios were achieved by varying the number of CPUs and cores used at each site.
It was not always possible to achieve perfect ratios but they were achieved wi-
thin a few percent. To determine relative power ratios, test code consisting of
serial matrix matrix multiplications were carried out on each type of machine.

Figure 6.18 shows the communication times for the Square-Corner and
Straight-Line Partitionings. Both curves tend towards higher communication
times with higher ratios (and therefore increased parallelism). This is attribu-
ted to the increase in the TVC with increased ratios. Instability in the results
could be due to shared communication links between sites. In addition, we
noticed that in a large multi-user environment, network traffic serves to affect
the communication of each partitioning without discrimination, unlike in si-
mulations where only one user is allowed to fully exploit or fully saturate one
communication link. In the latter scenario it is clear that the partitioning with
a higher TVC will saturate a link before one with a lower TVC.

Figure 6.19 shows the corresponding execution times. As the power ratio bet-
ween clusters increases, so does parallelism. It seems that the links between
sites are fast enough for the increased parallelism to decrease overall execu-
tion time despite a higher TVC. The inter-site bandwidth is 10Gb/s, however
this does not take into account links internal to each site running at different
speeds which do represent a possible bottleneck.

In all cases the Square-Corner Partitioning had a lower TVC, lower communi-
cation time, and lower execution time than the Straight-Line Partitioning.

6.4 Conclusion

We extended the Square-Corner Partitioning from the two cluster scenario in
Chapter 5 to three interconnected clusters. This partitioning has two advan-

133



 85

 90

 95

 100

 105

 110

 115

 120

 125

 5  10  15  20  25

C
om

m
un

ic
at

io
n 

T
im

e 
(s

)

Relative Speed of s2, s3

Square-Corner Partitioning
Straight-Line Partitioning

Figure 6.18: Communication times for the Square-Corner and Rectangular Par-
titionings on a star topology. Relative speeds s1 + s2 + s3 = 100.

 125

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

 180

 5  10  15  20  25

E
xe

cu
tio

n 
T

im
e 

(s
)

Relative Speed of s2, s3

Square-Corner Partitioning
Straight-Line Partitioning

Square-Corner Partitioning with Overlapping

Figure 6.19: Execution times for the Square-Corner, Square-Corner with Over-
lapping and Straight-Line Partitionings on a star topology. Relative speeds
s1 + s2 + s3 = 100.

134



tages over existing partitionings. First it reduces communication time due
to a lower total volume of communication and a more efficient communica-
tion schedule. The total volume of communication is shown to approach the
known lower bound unlike existing partitionings. Second it allows for the
overlapping of communication and computation.

To determine the viability of this partitioning we modeled the three cluster to-
pology with three processors performing matrix matrix multiplications. Com-
pared to more general partitionings which result in simple Straight-Line Par-
titionings, the Square-Corner Partitioning is shown to reduce the total volume
of communication in all cases for the star topology and in most cases for a fully
connected topology. We experimentally show that this directly translates to lo-
wer communication times. In the case of the star topology, we show average
reductions in communication time of about 40%.

Further experimentation shows that this reduction in communication time di-
rectly translates to a reduction in the overall execution time, aided by a more
efficient communication schedule. Overlapping communication and compu-
tation brings further benefit, in both reducing the execution times significantly,
and broadening the ratio range where the Square-Corner Partitioning out per-
forms the Straight-Line Partitioning on a fully connected topology. MPI expe-
riments demonstrate reductions in execution times of up to 38%.
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CHAPTER

SEVEN

MAX-PLUS ALGEBRA AND
DISCRETE EVENT SIMULATION ON

PARALLEL HIERARCHAL
HETEROGENEOUS PLATFORMS

7.1 Summary

In this chapter we demonstrate possible areas of application for the Square-
Corner Partitioning and the theoretical results of this thesis. We do this by
exploring computing max-plus algebra operations and discrete event simula-
tions on parallel hierarchal heterogeneous platforms. When performing such
tasks on heterogeneous platforms parameters such as the total volume of com-
munication and the top-level data partitioning strategy must be carefully taken
into account. Choice of the partitioning strategy is shown to greatly affect the
overall performance of these applications due to different volumes of inter-
partition communication that various strategies impart on these operations.
Max-plus algebra is regularly used in discrete event simulations and many
other important computational applications thus warranting the exploration
of and improvement upon the running times of basic max-plus operations on
parallel platforms which are inherently hierarchal and heterogeneous in na-
ture. The main goal of this chapter is to present benefits waiting to be exploited
by the use of max-plus algebra operations on these platforms and thus spee-
ding up more complex and quite common computational topic areas such as
discrete event simulation.
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7.2 Introduction

This chapter presents results of running fundamental max-plus algebra (MPA)
operations and discrete event simulations (DES) on parallel hierarchal hetero-
geneous platforms. The top-level data partitioning strategy is shown to greatly
affect the overall performance of these applications due to different volumes
of inter-partition communication that various strategies impart on these ope-
rations. The Square-Corner Partitioning in particular is shown to reduce the
execution times of these operations more than other, more traditional strate-
gies.

Max-plus algebra is a relatively new field of mathematics which grew from
the advent of tropical geometry in the early 1980s and has since been shown
to have many diverse application areas. MPA is (along with min-plus alge-
bra) a sub-category of tropical algebra. MPA obeys most laws of basic algebra
with the operations of addition (a + b) and multiplication (c× d) replaced by
the operations max(a, b) and addition (c + d) respectively. Min-plus algebra is
similar, but with the maximum operation replaced with a minimum operation.

Discrete event simulation is an extremely expansive area of continuing and
intense research which may broadly be characterised as a collection of tech-
niques and methods which when applied to the study of discrete-event dyna-
mical systems generate sequences which characterize system behavior. This
includes modeling concepts for abstracting essential features of a system into
a set of precedence and mathematical relationships, which can be used to des-
cribe the system and more importantly for system design, to predict behavior,
performance, and drawbacks/bottlenecks. DES is used to design and model a
great number of systems including travel timetables, operating systems, com-
munication networks, autonomous guided vehicles, CPUs and other complex
systems. There are many approaches to designing DES including Petri nets, al-
phabet based approaches, perturbation methods, control theoretic techniques
and expert systems design. Recently MPA and other techniques involving both
logical and algebraic components have shown to be capable of simplifying si-
mulations while maintaining the desired outputs (Kirov, 2009). One such me-
thod is explored later in this chapter.

The Square-Corner Partitioning (Chapter 5) is a top-level partitioning method
for parallel hierarchal heterogeneous computing which when applied to pro-
blems such as matrix matrix multiplication (MMM) and all linear algebra ker-
nels reducible to MMM, optimally reduces the total volume of communica-
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tion (TVC) between computing entities (processors, clusters, etc.) when the
power ratios between entities meet certain, yet numerous and very common
ratios. This partitioning also has other benefits including simpler communica-
tion schedules and the possibility of overlapping communication and compu-
tation (Becker and Lastovetsky, 2006, 2007). As this chapter demonstrates the
SCP can extend these benefits to many application areas.

7.3 Max-Plus Algebra

Max-plus algebra is a relatively new field in mathematics, dating back approxi-
mately 30 years. It has since been shown to have several application areas
such as discrete event simulation, dynamic programming, finite dimensional
linear algebra, modeling communication networks, operating systems, combi-
natorial optimization, solving systems of linear equations, biological sequence
comparisons and even problems such as crop rotation (Comet, 2003; Gaubert
and Plus, 1997; Heidergott et al., 2006; Kirov, 2009; Tacconi and Lewis, 1997).
In many scientific and computational applications the structure of MPA matrix
multiplication is an important aspect (Johnson and Kambites, 2009). Additio-
nally, higher powers of MPA matrices are of significant interest and necessary
in many application areas (De Schutter and De Moor, 1999; Kirov, 2009).

MPA is based on replacing the “normal” algebraic addition operation with a
binary max function, and the “normal” multiplication operation with addition.
Formally, if we define ε = −∞, e = 0, and denote Rmax to be the set R ∪ {ε},
then for elements a, b ∈ Rmax, the operations⊕ and⊗ are defined respectively
by the following:

a⊕ b =
de f

max(a, b) and a⊗ b =
de f

a + b (7.1)

Therefore, a⊕ ε = max(ε, a) = a and a⊗ ε = ε + a = ε. We can now formally
define max-plus algebra as

Rmax = (Rmax,⊕,⊗, ε, e) (7.2)

The basic algebraic rules of max-plus algebra are:

• Associativity

(A⊕ B)⊕ C = A⊕ (B⊕ C)
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(A⊗ B)⊗ C = A⊗ (B⊗ C)

• Commutativity

A⊕ B = B⊕ A

• Distributivity

(A⊕ B)⊗ C = A⊗ C⊕ B⊗ C

In general the ⊗ operation has precedence over the ⊕ operation.

MPA matrices are denoted Rm×n
max , where m and n are the matrix dimensions.

For the MPA matrices A ∈ Rm×n
max and, B ∈ R

n×p
max the matrix product A⊗ B is

the same as in normal linear algebra, but following the operation substitutions
in Definitions 7.1. That is every “+” operation is replaced with a ⊕ operation,
and every “×” (or “·”) operation is replaced with a ⊗ operation. From this,
matrix powers are straight-forward, and represented A⊗k for the kth power of
A. As max-plus matrix matrix multiplication and max-plus matrix powers are
integral parts of many applications of MPA we further discuss this in Section
7.5.1.

7.4 Discrete Event Simulation

Discrete event simulation is a very broad and well-studied field and therefore
the purpose of this section is to acquaint the reader with the specific technique
utilized in this chapter. Briefly, DES is a collection of techniques and methods
which when applied to the study of a discrete-event dynamical system gene-
rates sequences which characterize the system behavior. This includes mo-
deling concepts for abstracting essential features of the system into a set of
precedence and mathematical relationships, which can be used to describe the
system and more importantly for design, and to predict its behavior, perfor-
mance, and drawbacks/bottlenecks. For more see any good DES text such as
Fishman (2001).

As most DES algorithms are computationally intensive, efforts to paralle-
lize them are numerous. The complexity of most practical DES algorithms
however poses numerous obstacles in effective and efficient parallelization.
Amongst these are synchronization and timing inconsistencies, synchronous
vs. asynchronous simulation, deadlock avoidance and detection, conservative
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vs. optimistic simulation, recovery strategies, and memory management to
name a few (Ferscha and Tripathi, 1996).

In Section 7.5.2 we present results of the parallelization of a DES modeling
technique which although as presented in Tacconi and Lewis (1997) is sequen-
tial, lends itself to parallelization due to a computationally intensive algorith-
mic core which can be efficiently ported to hierarchal heterogeneous parallel
platforms. This core is very similar to a max-plus matrix matrix multiplication,
but using logical ’and’ and ’or’ operations instead of max-plus operations. We
employ this technique—called the Matrix Discrete Event Model (MDEM)—
using MPI and utilizing the SCP (Becker and Lastovetsky, 2006, 2007), for the
core routine.

7.4.1 The Matrix Discrete Event Model

The design, simulation, and analysis of large-scale, complex systems using
existing DES techniques such as Petri nets, alphabet-based approaches, per-
turbation methods, control theoretic techniques, and expert systems design
are often difficult to implement and are very labor and time intensive. The
MDEM is a hybrid system with logical and algebraic components that seeks
to make these processes more efficient. Although the examples in Tacconi and
Lewis (1997) focus on manufacturing systems (see Figure 7.1), the formulation
is also applicable to many DES situations such as travel timetables, operating
systems, communication networks, autonomous guided vehicles, operating
systems, and many others. Clearly the number of degrees of freedom, state
possibilities, and general complexity of such systems often result in simula-
tions with several thousands (or more) event components.

The MDEM approach is a rule-based model described by four equations: the
Model State Equation, Start Equation, Resource Release Equation, and the Pro-
duct Output Equation:

Matrix Discrete Event Model State Equation:

x = Fv × vc + Fr × rc + Fu × u + FD × vD (7.3)

Start Equation:
vs = Sv × x (7.4)

Resource Release Equation:
rs = Sr × x (7.5)
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Figure 7.1: An MDEM workcell. From Tacconi and Lewis (1997).

Product Output Equation:
y = Sy × x (7.6)

Each of these equations are logical, only using or, and, and negation operations.
Additionally, all vectors and matrices in these equations are binary. For ins-
tance, the vector which is the output of the start equation contains a ‘1’ for
each job which is to be started at the given state of the simulation, and a ‘0’
otherwise.

The simulation itself is carried out by first calculating initial conditions from
the description of the system. The core of the simulation is carried out by the
successive calculation of ‘firing vectors’ which carry the simulation to the next
state. This amounts to the repeated calculation of an equation which has the
form of a matrix matrix multiplication except that since the approach of the
MDEM technique is hybrid—having both algebraic and logical components—
the algebraic multiplication and addition operations are replaced with logical
‘or’ and ‘and’ operations respectively. It is this step that constitutes the bulk
of the calculation time for the MDEM technique as all other calculations only
need to be carried out once.
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Figure 7.2: Comparison of the total communication times for the square-corner
and straight-line partitionings for power ratios ranging from 1 : 1− 6 : 1. Max-
Plus MMM, N = 7, 000.

7.5 MPI Experiments

In this section we present results of performing MPA matrix matrix multiplica-
tions and an MDEM discrete event simulation utilizing both the Square-Corner
Partitioning and the Straight-Line Partitioning. Hardware setup is similar to
that in Section 5.8, only differing in power ratios.

7.5.1 Max-Plus MMM Using the Square-Corner Partitioning

As outlined in Section 7.3 we experimented with performing a MPA MMM
using C and MPI. We used a two cluster heterogeneous platform with power
ratios between clusters ranging from 1 : 1 to 6 : 1. For all experiments we use
double precision and N = 7, 000. The local interconnect was 2Gb/s Infiniband
and the inter-cluster interconnect was 1Gb/s Ethernet. Figure 7.2 shows the
communication times for both the Square-Corner and Straight-Line Partitio-
nings.

Communications are serialized in code. As expected the SCP does not show
improvement in communication time until the power ratio is 3 : 1, as this is
when the SCP results in a lower TVC. For ratios greater than this (as the system
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Figure 7.3: Comparison of the total execution times for the square-corner and
straight-line partitionings for power ratios ranging from 1 : 1− 6 : 1. Max-Plus
MMM, N = 7, 000.

becomes more heterogeneous), the gap between the two communication times
widens, and would be expected to widen. For a detailed analysis see Becker
and Lastovetsky (2006).

Figure 7.3 shows the resulting difference in execution times between the SCP
and SLP. As expected we also see the crossover around ratio 3 : 1, and note
that the lower TVC that the SCP brings also results in lower execution times
for ratios above 3 : 1. Again this gap would be expected to widen. It is worth
noting that the execution time is higher than was initially expected but this is
due to the lack of an optimizing library for MPA MMM, unlike normal MMM
which can benefit from the dgemm routine in the BLAS (Blackford et al., 2002),
and ATLAS (Whaley and Dongarra, 1999).

It is worth noting that since carrying out a matrix power operation An amounts
to nothing more than n repeated matrix multiplications, carrying out matrix
power operations would also benefit from the above.
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7.5.2 The Square-Corner Partitioning for Discrete Event Si-
mulation

In Section 7.4 we outlined the MDEM model for discrete event simulations. We
use the same experimental platform as in Section 7.5.1 to demonstrate results
on a parallel, heterogeneous platform of the MDEM model. We utilize both
the SLP and the SCP for the core routine which is a matrix “and/or” multipli-
cation. We generate the initial conditions so that the core routine involves a
large system (N = 7, 000). All initial calculations and cleanup are carried out
on a single processor as these calculations are carried out only once and make
up a small percentage of the overall execution time and are not parallelizable.

Figure 7.4 shows the communication times which are relatively low due to
the use of char as the data type (all data is binary). Due to the nature of
the MDEM all communications are serialized. The results overall agree with
theory, with the 3 : 1 ratio crossover occurring. Figure 7.5 shows the execution
times for carrying out the described DES using both partitioning techniques.
It can be seen that the use of the SCP for the core kernel of the MDEM DES
algorithm significantly reduces the execution time for ratios above 3 : 1, but
less so due to the lower communication time compared to the MPA MMM.
Again the expected crossover occurs near the ratio of 3 : 1. The overall shape
of the curves are similar to those of Section 7.5.1 as the “and/or” MMM in the
MDEM involves a similar computational cost as the max-plus MMM.
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for both the square-corner and straight-line partitionings, N = 7, 000.
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7.6 Conclusion

In this chapter we explored computing max-plus algebra matrix operations
and a MDEM discrete event simulation on parallel hierarchal heterogeneous
platforms. We found that the initial top-level data partitioning—particularly
the use of the square-corner partitioning—significantly affects overall execu-
tion time due to the total volume of inter-cluster communication involved.
Notably the square-corner partitioning out performed the straight-line parti-
tioning in all cases where the power ratio between clusters was ≥ 3 : 1. Future
work involves applying similar strategies to speed up more complex routines,
perhaps with more complicated and heavyweight communication loads, on
parallel hierarchal heterogeneous platforms and experimenting on other pa-
rallel hierarchal heterogeneous networks.
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CHAPTER

EIGHT

MOVING AHEAD – MULTIPLE
PARTITIONS AND RECTANGULAR

MATRICES

8.1 Multiple Partitions

We have seen in Chapters 4 - 7 that the Square-Corner Partitioning proves
to have a lower total volume of communication and a lower execution time
than the Straight-Line Partitioning in many cases for two and three partitions.
The question is, can the Square-Corner Partitioning be extended to more than
three partitions? We have gained some insight into this question based on the
investigation into partition configurations such as those in Figure 8.1.

Configurations such as those in Figure 8.1 are not possible extensions of the
Square-Corner Partitioning for three partitions. This is due to an increase in

ε ε
ε

ε
1

1 22

A B

Figure 8.1: Examples of non-Square-Corner Partitionings investigated.
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the number of communication steps and/or the TVC that violate the definition
of the Square-Corner Partitioning. We conclude therefore that similar configu-
rations would not be suitable for a number of partitions greater than three as
well. The only configuration we see viable for an extension to four partitions
is one such as that in Figure 8.2.

Figure 8.2: An example of a four partition Square-Corner Partitioning

Moving beyond four partitions, the Square-Corner Partitioning takes on a
“diagonal” form such as that in Figure 8.3. This is because the Square-Corner
Partitioning was designed to have as simple a structure as possible, and any
other configuration has the possibility of violating the definition of a Square-
Corner Partitioning. The name Square-Corner Partitioning is still appropriate,
as the partitions “work” their ways from corner to corner.

Figure 8.3: An example of a multiple partition Square-Corner Partitioning

In order to keep within our definition of the Square-Corner Partitioning, any
extension to more than three partitions must:

1. Contain all square partitions except one, possibly two in the following
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case:

• Two non-square partitions may be created only in the cases such
as that depicted in Figure 8.3, where square partitions completely
bisect the matrix being partitioned, in which case the two pieces
formed (lower-left and upper-right in Figure 8.3) will represent one
logical partition, as they are owned by the same cluster.

2. No square partitions may communicate with each other. In other words
no two square partitions can interrupt the same row or column.

3. Maintain a one-to-one mapping between clusters and (logical) partitions

4. Map (logical) partitions to clusters so that the area of partition si is pro-
portional to the speed of cluster ci, where si ∈ (s1, s2, . . . , sp) where p
is the number of partitions and si are the areas of the partitions in non-
decreasing order, and ci ∈ (c1, c2, . . . , cp) where ci are the clusters being
mapped in non-decreasing order of relative speed

5. Partition all matrices A, B, C in the same way

Clearly as the number of clusters (and therefore partitions) increases the num-
ber of possible network topologies will increase as well. It is believed that
restricting the number and types of topologies will increase the performance
of the Square-Corner Partitioning relative to Straight-Line (rectangular) parti-
tionings in many cases.

8.2 The Square-Corner Partitioning for Partitio-

ning Rectangular Matrices

In order to be as general as possible we are interested in the applicability of the
Square-Corner Partitioning to rectangular matrices, not just the restricted case
of square matrices. It is believed that the popular test case of the unit square is
fitting for rectangular matrices because any partitioning that is optimal on the
unit square can be scaled to a rectangle and remain optimal (Lastovetsky and
Dongarra, 2009).

We will begin in the most general case. We assume only two clusters, each
owning one partition. As always each partition has an area proportional to the
speed of the cluster which owns it. We then create two partitions, one partition
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is a rectangle located in any corner of the matrix, and the other partition is
polygonal—the rest of the matrix with the area of the first partition removed
from it.

To make the case as general as possible we start with a real-valued rectangular
area and partition it into two by creating a real-valued rectangular partition
within the area. We place three restrictions on this system.

• There are two partitions to be created. This necessitates defining only one
interior partition, as the other partition will be the area which lies outside
the partition defined but inside the rectangular area being partitioned.

• The area to be partitioned and the interior partition are rectangular.

• The area of the two partitions are proportional to the speeds of the clus-
ters owning them.

This gives us a rectangular area of dimension x× y and an interior rectangular
partition α× β as in Figure 8.4.
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Figure 8.4: An example of a rectangular matrix with one rectangular (α × β)
partition and one polygonal (x× y− α× β) partition.

In Chapter 5 we showed that the TVC was minimized when the area equal to
the following was minimized:

height of small partition × width of matrix + width of small partition × height of
matrix

In Figure 8.4, this is represented by the shaded area, which equates to Γ below:

Γ = α× y + β× x (8.1)
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Proposition 8.1: Γ = α× y + β× x is minimized when the dimensions of the
rectangular partition β× α is scaled to the matrix x× y such that

α

β
=

x
y

.

Proof: We will prove Proposition 8.1 by showing that whenever the small par-
tition is not scaled as stated, Γ will always be larger.

Equation 8.2 describes the state when the rectangular partition is not scaled,
i.e. when its height α is decreased by some quantity c < α, and its width β

increased by some other quantity c′ < β, while maintaining the same area
α× β.

α× β = (α− c)
(

β + c′
)

(8.2)

We determine c′ (for simplification later), then we start with the equation for Γ,
but substitute in the values on the RHS of Equation 8.2. We then have a func-
tion S(c) which represents the new system, including the non-scaled partition,
where c is the amount that the previously scaled partition has been changed
by. Note that a function in terms of only c is satisfactory as c is proportional to
c′. We show that when c = 0, dS

dc = 0, and that at this point d2S
dc2 is positive. It

is then shown that any change in c, either positive or negative, will increase Γ
(within the definition of the problem), thus concluding the proof.

α× β = α× β + α× c′ − c× β− c× c′

c× β = α× c′ − c× c′

c× β = c′ (α− c)

c′ =
c× β

α− c
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Γ = x× β + y× α

S(c) = x(β + c′) + y(α− c)

= x× β + x× c′ + y× α− y× c

= x× β +
x× c× β

α− c
+ y× α− y× c

dS

dc
=

x× α× β

(α− c)2 − y

=
x× α× β

αs − 2× α× c + c2 − y

= x× α× β− y× α2 + 2××α× c× y− y× c2

=
x× α2 × y

x
− y× α2 + 2× α× c× y− y× c2

= 2× α× c× y− y× c2 ∴ when c = 0,
dS

dc
= 0

d2S

dc2 = 2× α× y− 2× c× y

= 2× y(α− c)

c <

de f
α ∴

d2S

dc2 is positive

It must now be shown that for any c > 0, d2S
dc2 is positive, and that for any

c < 0, d2S
dc2 is negative, to show that the minimum in d2S

dc2 when c = 0 is not a
local, but a global minimum.

d2S

dc2 = 2× α× c× y− y× c2

= c× y× (2× α− c)

c <

de f
α

∴ when c is positive,
d2S

dc2 is positive

and when c is negative,
d2S

dc2 is negative

Q.E.D.

Thus we have proven that the area Γ = α× y + β× x is a minimum when the
rectangular partitioning α × β is scaled so that α

β = x
y , but does minimizing

Γ minimize the total volume of communication when we are multiplying non-
square matrices? The answer is no, as we will see in the next section.
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8.3 The Square-Corner Partitioning for MMM on

Rectangular Matrices

Figure 8.5 shows that the TVC is at a minimum when we are dealing with a
rectangular matrix matrix multiplication as opposed to partitioning a rectangular
matrix is

α× n + β× n = n× (α + β) (8.3)

where n is one of the three given matrix dimensions, where a m × n matrix
multiplied by a n× p matrix results in a m× p product, and α× β is the area
of the partition placed in the corner of the rectangular matrices.
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Figure 8.5: The necessary data movements to calculate the rectangular matrix
product C = A× B on two heterogeneous clusters, with one square and one
polygonal partition per matrix.
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Proposition 8.2: The TVC, n× (α+ β), for a multiplication of three rectangular
matrices C = A × B is minimized when α = β, that is when the partition of
area α × β is a square, provided α = β < m, n, p where A has dimensions
m× n, B has dimensions n× p and C has dimensions m× p.

Proof: n is a given constant, therefore the goal is to minimize α + β, where
α× β is a constant. Since α + β is proportional to the perimeter of the rectangle
with area α× β, and the perimeter of any rectangle of a constant given area is
minimized when that rectangle is a square, we conclude that α = β.

Q.E.D.

It is interesting to note that the TVC only depends on one matrix dimension,
n, which is the only matrix dimension that does not feature in the product
matrix C. (n only possibly affects the values of the elements of C.) We can
conclude that minimizing the SHP on a unit square, then scaling that square to
a rectangle does not necessarily minimize the TVC of a matrix matrix multipli-
cation involving that rectangle. This topic area demands further investigation
particularly what to do in the case where α = β are > m, n, and/or p.
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CHAPTER

NINE

CONCLUSIONS AND FUTURE WORK

“They’ve got a name for the winners in the world, I want a name when I lose”
– Walter Becker and Donald Fagen (1976)1

9.1 Conclusions

The current state and foreseeable future of high performance scientific compu-
ting can be described in three words: heterogeneous, parallel and distributed.
These three simple words have a great impact on the architecture and design
of HPC platforms and the creation and execution of algorithms and programs
designed to run on them. We have seen that heterogeneity and hierarchy have
infiltrated every aspect of computing from supercomputers, GPUs and cloud
computing down to individual processors and cores. We have also seen that in
many, many ways all of these technologies are interwoven and joined to form
hybrid entities themselves. As a result of the inherent heterogeneity, paralle-
lism and distribution which promises to continue to pervade scientific com-
puting in the coming years the issue of data distribution is unavoidable. This,
combined with a lack of research into the area of parallel computing on small
numbers of (possibly powerful) heterogeneous computing entities provided
us with our motivation.

This thesis presented a new top-level data partitioning algorithm, the Square-
Corner Partitioning, for matrix and linear algebra operations. This partitioning
was designed from the outset to be parallel and heterogeneous, not relying on
homogeneous counterparts as a starting point. In practice this partitioning dis-
tributes data between a small number of clusters (each of which can have great
computational power in themselves) in a hierarchal manner, which allows it

1Dan, Steely. (1977). Deacon Blues. LP: Aja. MCA Records.
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the flexibility to be employed in a great range of problem domains and com-
putational platforms. This partitioning minimizes the total volume of commu-
nication between clusters in a manner proven to be optimal for a great range
of cluster power ratios, thus minimizing overall execution time. In a hybrid
form, working with existing partitionings, the total volume of communication
can be minimized regardless of the power ratio that exists between the clus-
ters. It also places no restriction on the algorithms or methods employed on
the clusters themselves locally, thus maximizing flexibility.

The Square-Corner Partitioning is shown to have several advantages over
more traditional Straight-Line (rectangular) partitionings, not only reducing
the total volume of communication in an optimal manner, but allowing the
overlapping of communication and computation, and necessitating fewer
communication steps.

This partitioning was compared to the state-of-the-art theoretically and expe-
rimentally. Both its benefits and deficits were discussed and demonstrated.
The Square-Corner Partitioning showed to be beneficial in performing matrix
matrix multiplications in several scenarios:

• Two processor MMM

• Small two cluster MMM

• Large two cluster MMM

• Three processor MMM

• Large three cluster MMM

The Square-Corner Partitioning was experimentally shown to be applicable to
max-plus algebra operations as well as discrete event simulations.

The Square-Corner Partitioning was also theoretically shown to be applicable
to non-square matrix matrix multiplications and minimizing the total volume
of communication in this most general realm of matrix computation. Additio-
nally it is shown to be extendable to more than three clusters.

Most heterogeneous algorithms and partitionings are designed by modifying
existing homogeneous ones. With this in mind the last goal of this thesis was
to demonstrate that non-traditional and perhaps unintuitive algorithms and
partitionings designed with heterogeneity in mind from the start can result in bet-
ter, and in cases optimal, algorithms and partitionings for heterogeneous plat-

156



forms. The importance of this given the current outlook for, and trends in, the
future of high performance scientific computing is obvious.

9.2 Future Work

Future work precipitating from the work in this thesis include the following:

• Experiment with the Square-Corner Partitioning on more platforms and
architectures, possibly including Grid Ireland.

• Optimize the overlapping of communication and computations while re-
maining within the bounds of the Square-Corner definition.

• Experiment with the possible benefits of the Square-Corner Partitioning
on low-level architectures such as multi-core processors.

• Apply the Square-Corner Partitioning to more complex linear algebra
routines and applications with more complex and heavy weight com-
munication schedules and volumes.

• Experiment with the Square-Corner Partitioning on non-square matrix
systems and operations.

• Experiment with more than three partitions to determine what configu-
rations can reduce the TVC and under what conditions this occurs.

• Develop fully the Hybrid Square-Corner Partitioning concept.

• Apply the Square-Corner Partitioning to sparse matrix systems.

• Investigate partitionings for matrix matrix multiplication on non-square
matrices as discussed in Section 8.3.

• Explore the role of the Square-Corner Partitioning as well as other novel
partitioning algorithms in the domain of cloud computing.
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APPENDIX

B

HCL CLUSTER SOFTWARE
PACKAGES

Software packages developed using the Heterogeneous Compu-
ting Laboratory Cluster. Details and latest releases are available at
http://hcl.ucd.ie/

• ADL: Algorithm Definition Language, a new language and compiler that
is designed to improve the performance of GridRPC/SmartGridRPC ap-
plications.

• CPM: Communication Performance Models of Heterogeneous Networks
of Computers, a software tool that automates the estimation of the hete-
rogeneous communication performance models of clusters based on a
switched network.

• HeteroMPI: An extension of MPI for high performance heterogeneous
computing.

• HeteroScaLAPACK: A linear algebra library for heterogeneous networks
of computers.

• Hydropad: a grid enabled astrophysical application that simulates the
evolution of clusters of galaxies in the universe

• MPIBlib: An MPI Benchmark library.

• NI-Connect: Non-intrusive and incremental evolution of grid program-
ming systems.
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• SmartGridSolve: High level programming system for high performance
grid computing.
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APPENDIX

C

HCL CLUSTER PERFORMANCE AND
SPECIFICATIONS

Table C.1 shows the performance of each node of the HCL Cluster and the ag-
gregate performance in MFlops. All performance values were experimentally
determined. Table C.2 shows full HCL Cluster Specifications as of May 2010.

Node Absolute Speed (MFlops)

hcl01 2171
hcl02 2099
hcl03 1761
hcl04 1787
hcl05 175
hcl06 1653
hcl07 1879
hcl08 1635
hcl09 3004
hcl10 2194
hcl11 4580
hcl12 1762
hcl13 4934
hcl14 4096
hcl15 2697
hcl16 4840

Total Cluster 42,827

Table C.1: Performance of each node of the HCL Cluster and the aggregate
performance in MFlops. All performance values were experimentally deter-
mined.
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APPENDIX

D

HCL CLUSTER STATISTICS APRIL 2010
- MARCH 2011

For the period April 2010 - March 2011, Figure D.1 Shows an overall cluster
profile, D.2 shows a node by node load report, D.3 shows a node by node CPU
report, D.4 shows a node by node memory report, and D.5 shows a node by
node network report.

Figure D.1: HCL Cluster load, CPU, memory and network profiles for the year
April 2010 - March 2011. Provided by Ganglia.
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Figure continued on next page.
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Figure D.2: HCL Cluster Load Report April 2010 - March 2011. Note that the
load on hcl08, hcl11 and hcl12 is not lower than the other nodes. The scale of
the y-axes of these graphs are affected by a very high 1 minute load in July.
Provided by Ganglia.

Figure continued on next page.
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Figure D.3: HCL Cluster CPU Report April 2010 - March 2011. Provided by
Ganglia.
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Figure continued on next page.
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Figure D.4: HCL Cluster Memory Report April 2010 - March 2011. Provided
by Ganglia.

Figure continued on next page.
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Figure D.5: HCL Cluster Network Report April 2010 - March 2011. Provided
by Ganglia.
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APPENDIX

E

HCL CLUSTER STREAM
BENCHMARK

Results of a STREAM benchmark of the HCL Cluster August, 2010

Cluster STREAM Performance
———————————————-
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
———————————————-
Number of processors = 18
Array size = 2000000
Offset = 0
The total memory requirement is 824.0 MB ( 45.8MB/task)
You are running each test 10 times
–
The *best* time for each test is used
*EXCLUDING* the first and last iterations
—————————————————-
Your clock granularity appears to be less than one microsecond
Your clock granularity/precision appears to be 1 microseconds
—————————————————-
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Function Rate (MB/s) Avg time Min time Max time
Copy: 24589.1750 0.0235 0.0234 0.0237
Scale: 24493.9786 0.0237 0.0235 0.0245
Add: 27594.1797 0.0314 0.0313 0.0315
Triad: 27695.7938 0.0313 0.0312 0.0315

———————————————–
Solution Validates!
———————————————–

Figure E.1: STREAM Benchmark Results for HCL Cluster, August 2010.
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APPENDIX

F

HCL CLUSTER HPL BENCHMARK

Results of a High Performance Linpack benchmark of the HCL Cluster
August, 2010

$ mpirun -np 18 ./xhpl
=========================================================
HPLinpack 2.0 – High-Performance Linpack benchmark – September 10, 2008
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory,
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
=========================================================

An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.
The following parameter values will be used:

N : 18432
NB : 64 96 128 144 160 172 192 224 256
PMAP : Row-major process mapping
P : 6
Q : 3
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PFACT : Crout
NBMIN : 4
NDIV : 2
RFACT : Right
BCAST : 1ringM 2ringM
DEPTH : 0
SWAP : Mix (threshold = 64)
L1 : transposed form
U : transposed form
EQUIL : yes
ALIGN : 8 double precision words
——————————————————————————–

- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
||Ax− b||oo/(eps ∗ (||x||oo ∗ ||A||oo + ||b||oo) ∗ N)

- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0

========================================================
T/V N NB P Q Time Gflops

——————————————————————————
WR01R2C4 18432 64 6 3 412.68 1.012e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0035149 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 460.70 9.063e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0035149 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 243.45 1.715e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039257 ...... PASSED
========================================================
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T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 317.76 1.314e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039257 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 268.04 1.558e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039261 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 207.83 2.009e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039261 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 176.45 2.493e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0040578 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 221.02 1.889e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0040578 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 176.85 2.361e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039335 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 322.95 1.293e+01
——————————————————————————
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||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0039335 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 339.39 1.230e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 4 0.0036399 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 254.28 1.642e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0036399 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 315.42 1.324e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0040343 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 220.11 2.066e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0040343 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 289.17 1.443e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0038685 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 177.57 2.351e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0038685 ...... PASSED
========================================================
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T/V N NB P Q Time Gflops
——————————————————————————
WR01R2C4 18432 64 6 3 23.24 1.716e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0035689 ...... PASSED
========================================================

T/V N NB P Q Time Gflops
——————————————————————————
WR03R2C4 18432 64 6 3 188.46 2.215e+01
——————————————————————————
||Ax− b||oo/(eps ∗ (||A||oo ∗ ||x||oo + ||b||oo) ∗ N) = 0.0035689 ...... PASSED
========================================================

Finished 18 tests with the following results: 18 tests completed and passed
residual checks, 0 tests completed and failed residual checks, 0 tests skipped
because of illegal input values.
——————————————————————————–

End of Tests.
========================================================
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