
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 1

Model-based optimization of EULAG kernel on
Intel Xeon Phi through load imbalancing

Alexey Lastovetsky, Member, IEEE , Lukasz Szustak, Member, IEEE
and Roman Wyrzykowski, Member, IEEE

Abstract—Load balancing is a widely accepted technique for performance optimization of scientific applications on parallel
architectures. Indeed, balanced applications do not waste processor cycles on waiting at points of synchronization and data exchange,
maximizing this way the utilization of processors. In this paper, we challenge the universality of the load-balancing approach to
optimization of the performance of parallel applications. First, we formulate conditions that should be satisfied by the performance
profile of an application in order for the application to achieve its best performance via load balancing. Then we use a real-life scientific
application, EULAG MPDATA kernel, to demonstrate that its performance profile on a modern parallel architecture, Intel Xeon Phi,
significantly deviates from these conditions. Based on this observation, we propose a method of performance optimization of scientific
applications through load imbalancing. In the case of data parallel application, the method uses functional performance models of the
application to find partitioning that minimizes its computation time but not necessarily balances the load of processors. We apply this
method to optimization of MPDATA on Intel Xeon Phi. Experimental results demonstrate that the performance of this carefully
optimized load-balanced application can be further improved by 15% using the proposed load-imbalancing technique.

Index Terms—functional performance model, data partitioning, Intel Xeon Phi, EULAG, MPDATA, load imbalancing.

F

1 INTRODUCTION

LOAD balancing is a widely accepted technique for opti-
mization of the computational performance of scientific

applications on parallel architectures. Indeed, the intuition
suggests that unlike unbalanced applications, the balanced
ones do not waste processor cycles on waiting at points of
synchronization and data exchange, maximizing this way
the utilization of the processors.

In this paper, we challenge the universality of the load-
balancing approach to optimization of the computational
performance of parallel applications. First, we try to un-
derstand the limitations of the load-balancing approach. We
formulate conditions that should be satisfied by the perfor-
mance profile of an application in order for the application
to achieve its best performance via load balancing.

Then we use a real-life scientific application to demon-
strate that its performance profile on a modern parallel
architecture does not satisfy these conditions. The appli-
cation we use implements the Multidimensional Positive
Definite Advection Transport Algorithm (MPDATA), which
is one of the major parts of the dynamic core of the EULAG
geophysical model [1]. EULAG (Eulerian/semi-Lagrangian
fluid solver) is an established numerical model developed
for simulating thermo-fluid flows across a wide range of
scales and physical scenarios [2], [3]. In particular, it can be
used in numerical weather prediction (NWP), simulation of
urban flows, areas of turbulence, ocean currents, etc. This

• A. Lastovetsky is with the School of Computer Science, University College
Dublin, Belfield, Dublin 4, Ireland.
E-mail: alexey.lastovetsky@ucd.ie,

• L. Szustak and R. Wyrzykowski are with the Czestochowa University
of Technology, Dabrowskiego 69, 42-201 Czestochowa, Poland. E-mail:
lszustak@icis.pcz.pl, roman@icis.pcz.pl

solver, originally developed for conventional HPC systems,
is currently being re-written for modern HPC platforms.
In particular, MPDATA has been recently re-written and
optimized for execution on an Intel Xeon Phi coprocessor
[4], [5], [6].

In our experiments, we observe significant deviations
of the MPDATA performance profile from the conditions
required for applicability of the load-balancing techniques.
Based on this observation, we propose a general method of
performance optimization of scientific applications through
load imbalancing as well as an algorithm that tries to find
the optimal, possibly imbalanced, configuration of a data
parallel application on a set of homogeneous processors.
This algorithm uses functional performance models of the
application [7], [8] to find the partitioning that minimizes its
computation time but not necessarily balances the load of
the processors. Finally, we apply this algorithm to optimiza-
tion of MPDATA on Intel Xeon Phi. Experimental results
demonstrate that the performance of this carefully opti-
mized load-balanced application can be further improved
by 15% using the proposed load-imbalancing method.

The contributions of the work presented in the paper are
as follows:

• Formulation of the conditions that should be satisfied
to guarantee that load balancing will minimize the
computation time of parallel application.

• Building the performance profile of a real-life sci-
entific application on a modern HPC platform and
demonstration of its significant deviation from the
conditions that guarantee that load balancing be a
safe technique for performance optimization.

• A new optimization method that uses the perfor-
mance profile for optimization of the application

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 2

through its imbalancing.
• Application of the proposed method to optimiza-

tion of MPDATA on Intel Xeon Phi, resulting in
further acceleration of this carefully optimized load-
balanced application by up to 15%.

The rest of the paper is structured as follows. Section 2
overviews load-balancing techniques and formulates the
conditions when these techniques would minimize the com-
putation time of parallel applications. Section 3 analyzes
the performance profile of MPDATA on Intel Xeon Phi and
introduces the new approach to minimization of the compu-
tation time through load imbalancing. Section 4 introduces a
partitioning algorithm for (uneven) distribution of compu-
tations between homogeneous processors, minimizing the
computation time of the application. Section 5 applies this
algorithm to optimization of MPDATA on Xeon Phi, and
Section 6 concludes the paper.

2 LOAD BALANCING AND PERFORMANCE

In this section, we review load-balancing techniques used
for optimization of the performance of parallel scientific
applications on both homogeneous and heterogeneous plat-
forms. We also formulate the conditions when application
of these techniques will optimize the computational perfor-
mance.

Load balancing is a widely accepted and commonly used
approach to performance optimization of scientific applica-
tions on parallel architectures. Load balancing algorithms
can be classified as static or dynamic. Static algorithms (for
example, those based on data partitioning) [8], [9], [10], [11],
[12], [13] require a priori information about the parallel
application and platform. This information can be gath-
ered either at compile-time or runtime. Static algorithms
are also known as predicting-the-future because they rely
on accurate performance models as input to predict the
future execution of the application. Static algorithms are
particularly useful for applications where data locality is
important because they do not require data redistribution.
However, these algorithms are unable to balance on non-
dedicated platforms, where load changes with time. Dy-
namic algorithms (such as task scheduling and work steal-
ing) [14], [15], [16] balance the load by moving fine-grained
tasks between processors during the calculation. Dynamic
algorithms do not require a priori information about exe-
cution but may incur significant communication overhead
due to data migration. Dynamic algorithms often use static
partitioning for their initial step due to its provably near-
optimal communication cost, bound tiny load imbalance,
and lesser scheduling overhead [17].

Whatever load balancing algorithm is used, the goal is
always to minimize the computation time of the application.
The intuition behind the assumption that balancing the
application improves its performance is the following: a
balanced application does not waste processor cycles on
waiting at points of synchronization and data exchange,
maximizing this way the utilization of the processors and
minimizing the computation time. Is this assumption al-
ways true? To answer this question, let us formulate the as-
sumption in a mathematical form. Consider an application,
the computational performance of which can be modeled by

speed functions. Namely, let p parallel processors be used
to execute the application, and let si(x) be the speed of
execution of the workload of size x by processor i. Here
the speed can be measured in floating point operations
per second or any other fix-sized computation units per
unit time. The size of workload can be characterized by
the problem size (for example, the number of cells in the
computational domain or the matrix size) or just by the
number of equal-sized computational units. The speed si(x)
is calculated as x

ti(x) , where ti(x) is the execution time of the
workload of size x on processor i. Using these definitions,
we can formulate the following theorem.

Theorem 1: Let si(x) > 0 (x > 0) be the speed of
processor i ∈ {1, . . . , p}, and ∀∆x > 0: si(x)

x ≥ si(x+∆x)
x+∆x .

Let x1 + . . . + xp = n > 0 and s1(x1)
x1

= . . . =
sp(xp)

xp
. Then,

∀y1, . . . , yp > 0 such that (y1, . . . , yp) 6= (x1, . . . , xp) and
y1 + . . .+ yp = n : maxi

yi

si(yi)
≥ x1

s1(x1) .
Proof : As (y1, . . . , yp) 6= (x1, . . . , xp) and

y1 + . . .+yp = x1 + . . .+xp, then there exists k ∈ {1, . . . , p}
such that yk > xk. Therefore, maxi

yi

si(yi)
≥ yk

sk(yk) =
xk+(yk−xk)

sk(xk+(yk−xk)) ≥
xk

sk(xk) = x1

s1(x1) .

Theorem 1 states that in order to guarantee that the
balanced configuration of the application will execute the
workload of size n faster than any unbalanced configura-
tion, the speed functions si(x), characterizing the perfor-
mance profiles of the processors, should satisfy the condi-
tion:

∀∆x > 0:
si(x)

x
≥ si(x+ ∆x)

x+ ∆x
(1)

Geometrically, it can be illustrated as follows. If we plot
a speed function as shown in Figure 1, then the angle α(x)
between the straight line, connecting the point (0, 0) and
the point (x, s(x)) on the speed curve, and the x-axis will be
inversely proportional to the execution time of the workload
of size x by the processor. Indeed, the cotangent of this angle
is directly proportional to the ratio x

s(x) representing the
execution time of the workload x. Therefore, larger angles
correspond to shorter execution times. The condition 1
means that the increase of the workload, x, will never result
in the decrease of the execution time, or equivalently in the
increase of the angle α(x).

x

s(x)
(x, s(x))

α(x)

Speed

Workload(0,0)

Fig. 1. Example of speed function suitable for minimization of computa-
tion time through load balancing. Angle α(x) represents the computation
time: the greater the angle, the shorter the computation time.

The main body of the load balancing algorithms de-
signed for performance optimization explicitly or implic-
itly assume that the speed of processor does not depend
on the size of workload [9], [10], [18], [19], [20], [21]. In

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 3

other words, the speed functions si(x) are assumed to be
positive constants, in which case the condition 1 is trivially
satisfied. More advanced algorithms are based on functional
performance models (FPMs), which represent the speed of
processor by a continuous function of the problem size [7],
[22]. However, the shape of the function is not arbitrary but
has to satisfy the following assumption [8]: Along each of
the problem size variables, either the function is monotoni-
cally decreasing, or there exists point x such that

• On the interval [0, x], the function is

– monotonically increasing,
– concave, and
– any straight line coming through the origin of

the coordinate system intersects the graph of
the function in no more than one point.

• On the interval [x,∞), the function is monotonically
decreasing.

These restrictions on the shape of speed functions guarantee
that the efficient load balancing algorithms, proposed in
[23], [24], [25], [26], [27], [28], will always return a unique
solution, minimizing the computation time. At the same
time, it is easy to show that the restrictions imposed on
FPMs will make them comfortably satisfy the condition 1.

Thus, the state-of-the-art load balancing algorithms de-
signed for optimization of the computational performance
of parallel applications assume that their performance pro-
files satisfy the condition 1. Therefore, correct application of
such algorithms requires that the experimental speed points
be approximated by a function satisfying this condition.
This approximation step may significantly distort the actual
performance profile and lead to a substantially non-optimal
solution.

3 OPTIMIZATION OF PARALLEL APPLICATIONS
THROUGH LOAD IMBALANCING

In this section, we demonstrate that the performance profile
of real-life scientific applications on modern parallel plat-
forms may significantly deviate from the conditions, which
guarantee that load balancing will always optimize their
computational performance. Based on this observation, we
propose an optimization method that uses the performance
profile for optimization of the application through its imbal-
ancing.

In this work, we build the performance profile of
MPDATA on Intel Xeon Phi. MPDATA is a core component
of EULAG (Eulerian/semi-Lagrangian fluid solver), which
is an established computational model developed for sim-
ulating thermo-fluid flows across a wide range of scales
and physical scenarios. Its carefully optimized data-parallel
implementation on a 61-core Intel Xeon Phi [5] partitions the
3D rectilinear n × n × l domain into four equal n

2 ×
n
2 × l

sub-domains, each allocated to a team of 15 cores. This
configuration of the application is the best load-balanced
configuration identified in [5].

The experimentally constructed speed functions of these
four teams, each processing (in parallel) a 120 × m × 128
sub-domain, are shown in Figure 2. In these experiments,
the application runs on 60 cores while one core is always

reserved for OS. Each of the 60 cores runs four threads of
the application making the total number of threads 240.
The experimental points for a given m are obtained by
execution of the application for a 120×2m×128 domain and
measuring the execution time of each team of cores (each
team will process a sub-domain of size 120×m×128 in this
case).

0

ST0(x)

ST2(x)

ST1(x)

ST3(x)

Problem size

S
p

e
e
d

1600000

1280000

960000

640000

320000

0 50 100 150 200 m250

Fig. 2. Speed functions of Intel MIC built for four 15-core teams, each
processing in parallel a 120 × m × 128 sub-domain. The speed is
measured in cells per second, while the problem size is represented
by m.

The graph in Figure 2 clearly shows that for many m and
∆m the speed of processing of the 120×m×128 sub-domain
will be significantly lower than the speed of processing of
the 120 × (m + ∆m) × 128 sub-domain. Moreover, we can
also see that α(m+∆m) > α(m) for some such m and ∆m,
which means that the time of processing of the 120×m×128
sub-domain will be longer than the time of processing of the
120 × (m + ∆m) × 128 sub-domain. This is illustrated in
Figure 2 by two straight lines that geometrically represent
the execution time of the problem for two different sizes. In
general, the lower the line, the longer is the execution time.
One can see that in our case the lower line corresponds to a
smaller problem size and the upper line to a larger one.

This observation can be used to speed up the execution
of the application as follows. First, the four speed func-
tions in Figure 2 are practically identical, differing by less
than 3%. Therefore, these four functions can be accurately
approximated by a single function (for example, by their
average). We can use this single function to compare the
execution time of the application for various partitions of a
120×2m×128 domain along the second dimension. Namely,
the execution time for the equally partitioned domain, when
each team is given a sub-domain of size 120×m× 128, will
be same for all teams and characterized by a line with angle
α(m), also characterizing the execution time of the whole
application. If we re-partition the domain so that two teams
get 120×(m+∆m)×128 sub-domains and two other teams
get 120× (m−∆m)× 128 sub-domains, then the execution
time of the first two teams will be characterized by lines
with angle α(m − ∆m) while the execution time of the
second two teams will be characterized by lines with angle
α(m+ ∆m). The time of parallel execution for this configu-
ration will be given by the lowest of these lines, that is, by
the line with angle min{α(m + ∆m), α(m + ∆m), α(m −
∆m), α(m−∆m)} = min{α(m+ ∆m), α(m−∆m)}. Now
if min{α(m+∆m), α(m−∆m)} > α(m), then the unequal

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 4

partitioning will result in faster execution than the equal
one.

In general, if the performance profile of an application
violates the condition 1, that is,

∃i ∈ {1, . . . , p},∃x > 0,∃∆x > 0:
si(x)

x
<
si(x+ ∆x)

x+ ∆x
(2)

and the balanced configuration of the application allocates
the workload of size x to processor i, then the application
can be accelerated if we reduce the accumulated workload
of all processors but processor i by ∆x so that none of these
processors would increase its execution time, and allocate
this additional workload to processor i. This method can
be applied to optimization of parallel applications on both
heterogeneous and homogeneous platforms.

4 MODEL-BASED PARTITIONING ALGORITHM FOR
OPTIMAL LOAD IMBALANCING

In this section, we develop the proposed approach for a
relatively simple case and introduce a straightforward parti-
tioning algorithm that aims to find the optimal distribution
of computations of an application between homogeneous
processors using the functional performance model of the
application. While simple and not general, this algorithm is
sufficiently efficient to be used for optimization of our target
application, MPDATA.

Consider the following problem. Let p identical parallel
processors be used to execute the workload of size n, and let
s(x) be the speed of execution of the workload of size x by
a processor. Let ∆x be the minimal granularity of workload
so that each processor can be only allocated a multiple of
∆x. The problem is to find the distribution of the workload
of size n between the p processors, which minimizes the
computation time of its parallel execution.

To further simplify the problem, we assume that n
p be

a multiple of ∆x and p be an even number. Then the pro-
posed partitioning algorithm, shown below as Algorithm 1,
proceeds as follows. It starts from the balanced distribution
of the workload when each processor is assigned the same
workload, n

p , and calculates the time of parallel execution of
the workload for this configuration using the speed function
s(x). Then, all processors are divided into two equal teams,
called the left team and the right team, and the algorithm
goes through a number of iterations. At each iteration, the
workload of each processor from the right team is increased
by ∆x, while the workload of each processor from the
left team is decreased by the same amount, ∆x. This will
not change the total amount of the workload but further
imbalance its distribution between the processors. For this
redistributed workload, the time of its parallel execution
is calculated (again using the speed function s(x)). The
iterations are repeated until the workload cannot be further
redistributed. The algorithm returns the distribution with
the minimal calculated execution time.

We do not claim neither optimality nor generality of
the presented algorithm. This is an ad hoc approximate
algorithm designed for a very specific and restricted case,
motivated by the application we aim to optimize. A generic
optimization algorithm is still required to solve the formu-
lated problem.

Algorithm 1 Distribution of workload n between p homo-
geneous processors of speed s(x)

xropt = xlopt = xr = xl = n
p

tmin =
n
p

s(n
p)

repeat
xr = xr + ∆x
xl = xl −∆x
t = max(xr

s(xr) ,
xl

s(xl)
)

if t < tmin then
tmin = t
xropt = xr
xlopt = xl

end if
until xr < n & xl > 0

It is obvious that if we replace the speed function s(x) by
any function a× s(x), where a = const, then this algorithm
will return the same solution. We will use this property
when applying Algorithm 1 in Section 5.4.

5 APPLICATION: OPTIMIZATION OF MPDATA ON
INTEL XEON PHI

In this section, we apply the partitioning algorithm pro-
posed in Section 4 to optimization of MPDATA on Intel Xeon
Phi.

5.1 Intel MIC overview
The Intel MIC architecture is a relatively new system for
high performance computing [29]. Intel MIC combines
many integrated Intel CPU cores into a single chip. This
architecture is built to provide a general-purpose program-
ming environment similar to that provided for Intel CPUs.
It is capable of running applications written in industry-
standard programming languages such as Fortran, C, and
C++. The Intel Xeon Phi (codenamed Knights Corner) is the
first product based on Intel MIC architecture. This copro-
cessor is delivered in form factor of a PCI express device,
and can not be used as a stand-alone processor. However,
it allows users to directly run individual applications in the
native mode without the support of CPU.

In this study, we use the top-of-the-line Intel Xeon Phi
7120P coprocessor. It contains 61 cores clocked at 1.238 GHz,
and 16 GB of on-board memory. As the Intel MIC architec-
ture supports four-way hyper-threading, it totally gives 244
logical cores (threads) for a single chip. This coprocessor
provides 352 GB/s of memory bandwidth. An important
component of each Intel Xeon Phi processing core is its vec-
tor processing unit (VPU) [5], that significantly increases the
computing power. Each VPU supports a new 512-bit SIMD
instruction set called Intel Initial ManyCore Instructions.
The theoretical peak performance of Intel Xeon Phi 7120P
is 1208 GFlop/s for double precision numbers.

5.2 Introduction to MPDATA
The MPDATA algorithm is a general approach for integrat-
ing the conservation laws of geophysical fluids on micro-to-
planetary scales [30]. It belongs to the class of methods for

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 5

the numerical simulation of fluid flows which are based on
the sign-preserving properties of upstream differencing. The
MPDATA scheme allows for solving advection problems,
and offers several options to model a wide range of complex
geophysical flows.

MPDATA is a collection of stencils kernels, which are
commonly known as memory bound [31], [32], [33]. The
stencils computations have been investigated by many au-
thors over the years [34], [35], [36], [37], [38], [39], [40],
[41], [42]. The one of the main direction of improving the
efficiency of stencil computations is focused around dif-
ferent strategies of domain decomposition, like space and
temporal blocking techniques [34]. These strategies provide
as nearly as possible balanced workload of computing re-
sources, and have been adapted to a wide range of multi-
/manycore systems (see, e.g., [36], [41], [42]). The main as-
sumption for these techniques is to attempt to better exploit
data locality by performing operations on data blocks of
a suitable size before moving on to the next block. This
assumption has been aggressively used by us in [42] to
improve the efficiency of implementing 2D stencil codes on
hybrid CPU-GPU platforms.

The MPDATA algorithm corresponds to the group of
nonoscillatory forward-in-time algorithms. The number of
required time steps depends on a type of simulated phys-
ical phenomenon, and can exceed few millions especially
when considering the MPDATA algorithm as a part of the
EULAG model. For detailed description of the MPDATA
mathematical scheme, the reader is referred to [1], [3], [30].

Each MPDATA time step is determined by a set of 17
computational stages, where each stage is responsible for
calculating elements of a certain matrix. These stages repre-
sent stencil codes which update grid elements according to
different patterns. Listing 1 shows a part of the 3D MPDATA
stencil-based implementation for the 8-th stage.

Listing 1. Part of 3D MPDATA stencil-based implementation
/∗ . . . ∗ /
/ / s t a g e 8
for (. . .) / / i − d imens i on

for (. . .) / / j − d imens i on
for (. . .) / / k − d imens i on

mx[i , j , k]=max(x [i] [j] [k] ,
x [i −1][j] [k] , x [i +1] [j] [k] ,
x [i] [j −1][k] , x [i] [j +1] [k] ,
x [i] [j] [k−1] , x [i] [j] [k + 1]) ;

/∗ . . . ∗ /

The stages are dependent on each other: outcomes of
prior stages are usually input data for the subsequent
computations. Every stage reads a required set of matrices
from the main memory, and writes results to the main
memory after computation. In consequence, a significant
traffic to the main memory is generated, which mostly limits
the performance of novel architectures. A single MPDATA
time step requires 5 input matrices, and returns one output
matrix that is necessary for the next step.

5.3 Adaptation of 3D MPDATA to Intel Xeon Phi copro-
cessor

In our previous work [4], [5], we proposed the adaptation
of 3D MPDATA to Intel Xeon Phi coprocessors. The pro-
posed decomposition contributes to ease the memory and
communication bounds, and to better exploit computation
resources of Intel Xeon Phi. The resulting adaptation is
based on the following methodology:

• (3+1)D decomposition of MPDATA heterogeneous
stencil computations;

• partitioning of threads into independent work teams;
• parallelization of MPDATA computations;
• scheduling for multicore and manycore systems.

To alleviate the memory-bound nature of MPDATA, we
proposed the (3+1)D decomposition of MPDATA stencil
computation [5]. The main aim of this decomposition is
to take advantage of cache memory reuse by transferring
the data traffic associated with all intermediate computation
from the main memory to the cache hierarchy. This aim is
achieved by using a combination of two well-known loop
optimization techniques: loop tiling and loop fusion. Such
an approach allows us to reduce the main memory traffic
at the cost of additional computations associated with extra
areas (halo) of all intermediate matrices. Another advantage
of this approach is the possibility of reducing the main
memory consumption because all intermediate results are
stored only in the cache memory.

LT0

m

n

b)

a)

Computing
domain

T0
15 cores

T2
15 cores

T3
15 cores

T1
15 cores

50% 50%

50%

50%

M

L

N

j
k

i

c)
Stage 1

Stage 17

Stage 1

Stage 17 s-
di

m

core0 core14

Fig. 3. Hierarchical domain decomposition of the MPDATA computation:
a) domain partitioning into sub-domains according to work teams, b)
sub-domain decomposition into blocks of size adapted to the cache
capacity, and c) parallel execution of MPDATA stages within a single
block by work team

The proposed decomposition moves the bulk of data
traffic from the main memory to the cache hierarchy. In
consequence, a lot of inter- and intra-cache communications
are generated between more than 200 Intel MIC’s processing
cores. To improve the efficiency of the (3+1)D decomposition
on Intel Xeon Phi, we provided [5] the partitioning of
available cores (threads) into independent work teams. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 6

best numbers of work teams and threads per each team are
determined empirically. The usage of work teams allows us
to reduce inter- and intra-cache communication overheads
due to data transfers between neighbour threads, as well as
their synchronization. These advantages are achieved at the
cost of some extra computation performed by teams.

Figure 3 illustrates the hierarchical domain decompo-
sition of the MPDATA computation. At the start point,
the MPDATA computing domain is partitioned into sub-
domains (Figure 3a) according to a given number of work
teams. Every sub-domain is processed by a single work
team of threads. Within every time step, the work teams
execute computations in parallel and independently of each
other. After each time step, the work teams are synchro-
nized. Each sub-domain is further partitioned into a number
of blocks (Figure 3b), where the size of block is adapted
to the cache capacity. The subsequent blocks are processed
one by one, and each block is processed in parallel by the
corresponding work team. A sequence of all the MPDATA
stages is executed in parallel within every block (Figure 3c),
taking into account the data dependencies.

The best performance results on a single Intel Xeon Phi
obtained in [4], [5] were achieved by partitioning the 3D
MPDATA domain in two dimensions into four equal sub-
domains, so that there was one-to-one mapping between
these sub-domains and the teams of cores arranged in a
2× 2 grid as illustrated in Figure 3. This homogeneous par-
titioning balances the load of the core teams and minimizes
the execution time of the application in comparison with all
other homogeneous partitioning shapes.

5.4 Applying model-based partitioning algorithm to
MPDATA decomposition

Thus, it was previously and experimentally determined that
the best load-balanced configuration of the MPDATA appli-
cation on a Intel Xeon Phi arranges its cores in four 15-
core teams as shown in Figure 3 and evenly partitions the
N × M × L computation domain between these teams,
allocating a N

2 ×
M
2 × L sub-domain to each of the teams.

It is important to note that only balanced homogeneous
distributions were considered in this previous work. In this
paper, we start with that balanced distribution and use the
performance model to imbalance the distribution in order to
achieve a better performance. To find a better partitioning
of the computation domain between these teams of cores,
we employ the data-partitioning algorithm, presented in
Section 4.

As a first step, we build speed functions of the teams so
that the speed of each team be represented by a function
of problem size. In the case of MPDATA, the problem size
is characterized by the size of the domain processed by the
team and therefore represented by three parameters n, m
and l. In real-life NWP simulations l is fixed [5]. Therefore,
we build speeds of teams as functions of two parameters n
and m, setting l to 128, the value typically used in NWP
simulations.

In general, the speed should be measured in equal-sized
computation units performed per one time unit [8], for
example, in flops. In the case of MPDATA, it is difficult to
estimate the amount of arithmetic operations that will be

executed during the processing of a n×m× l computation
domain. We know however that with a very high level of
accuracy this amount is directly proportional to the number
of cells in this domain. Therefore, we measure the speed in
cells per second.

The speed functions are built empirically by benchmark-
ing the work teams for a range of problem sizes. For each
problem size (n,m), the speed is calculated as n×m×128

t ,
where t is the measured execution time.

It has been shown [13], [43] that in modern multicore,
manycore and hybrid platforms, where processing elements
are coupled and share resources, the speed of one group of
elements may depend on the load of others due to resource
contention. Therefore, the groups cannot be considered as
independent processing units and their speed cannot be
measured separately and independently. In this work, we
use the performance measurement method proposed in
[13]. According to this method, the speed of each homo-
geneous processing unit will depend not only on the exe-
cuted workload but also on the number of other processing
units executing the same workload in parallel. Therefore,
the performance of the four teams of cores is measured
simultaneously rather than separately, thereby taking into
account resource contention. To ensure the reliability of
measurements, we repeat measurements multiple times. We
only measure the computation time of every team without
the overheads of inter-team synchronization required after
each time step. If the measurements were conducted sep-
arately, the measured performance of these teams would
not reflect their actual performance during the execution
of the application, and therefore performance optimization
decisions based on the corresponding performance models
would be inaccurate. Figure 4 demonstrates the difference
between the speed of team T0 measured separately and
simultaneously with other teams.

ST0(x)

ST0(x)*

1600000

0

S
p

e
e
d

1280000

960000

640000

320000

0
Problem size

m50 100 150 200 250

1920000

Fig. 4. Comparison of speed functions of team T0, measured
separately(S∗

T0
(x)) and simultaneously with other three teams (ST0 (x))

executing the same workload

If we aim to partition a N ×M × 128 domain between
the four teams of cores, then for different values of variables
n and m (0 < n < N , 0 < m < M) we find the speed of
processing of a subdomain of size n × m × 128 by each
of the four teams, making sure that all they start their
computations simultaneously. Figure 5 illustrates how the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 7

obtained experimental points are used to approximate the
speed of team T0 as a function of n andm. The experimental
points for the speed function were obtained with steps
∆n = ∆m = 4 for both n and m.

1440000

1280000

1120000

1600000

960000

S
p
e
e
d

100 108 116 124 132 140

132

124

108

140

100

116
n

m

Fig. 5. Experimentally built speed of execution of the MPDATA workload
by team T0 as function of two parameters n and m (l = 128)

We can see that for a fixed value of m the speed varies
very slowly and very little with variation of n, staying
nearly constant. More detailed analysis of the speed func-
tions confirms that the speed of team strongly depends on
m and very little depends on n. This observation allows us
to assume that with a high level of accuracy the optimal (or
at least a near optimal) partitioning of the N × M × 128
domain between the four teams can be obtained from the
optimal even load-balanced partitioning, which allocates a
sub-domain of size N

2 ×
M
2 × 128 to each team, by fixing n

to N
2 and varying m.
Mathematically, it means that we only have to deal with

speed functions of just one parameter, m. These functions
are obtained from the previously built speed functions
of two parameters, n and m, by fixing the parameter n.
Geometrically, this can be illustrated as follows. The two-
parameter speed functions are represented by surfaces. By
fixing parameter n to N

2 , we cut the surfaces by a vertical
plane n = N

2 as shown in Figure 5. Curves obtained on this
plane will represent the one-parameter speed functions as
shown in Figure 6 for n = 120.

1600000

0

S
p

e
e
d

1280000

960000

640000

320000

0
Problem size

m50 100 150 200 250

ST0(x)

ST2(x)

ST1(x)

ST3(x)

Fig. 6. Speeds of four teams built simultaneously as functions of param-
eter m (n = 120 and l = 128)

Finally, as all four teams have very close speed functions
(as can be seen in Figure 6), we calculate their average
(shown in Figure 7) and use it as input to Algorithm 1 to
find the optimal value of m for each team.

1600000

0

S
p

e
e
d

0

12
0

1280000

960000

640000

320000

m
50

10
0

15
0

20
0

25
0

Problem size

Savg(x)

11
2

12
8

Fig. 7. Averaged speed of teams built as a function of parameter m
(n = 120 and l = 128). The statistical properties of averaging are given
by the relative standard deviation (RSD) less than 3.0%, and the average
value of RDS equal to 0.74%.

More specifically, let the MPDATA domain be of size
240 × 240 × 128. Then, we consider our four teams as four
identical abstract processors, p = 4, the speed of each of
which is given by the speed function shown in Figure 7.
Note that in this function, the amount of workload is given
in frames of cells of size 120× 128, while the speed is given
in cells per second. As pointed in Section 4, despite the unit
of workload used to measure the speed (axis y) is 120× 128
times greater than the unit of workload used to measure the
size of workload (axis x), we can safely use this function as
input to Algorthm 1.

The solution returned by Algorthm 1 allocates m = 112
frames to even abstract processors and m = 128 frames to
odd processors. This corresponds to partitioning of the 240×
240× 128 domain into two sub-domains of size 120× 112×
128, allocated to teams T0 and T2, and two sub-domains
of size 120 × 128 × 128, allocated to teams T1 and T3. The
traditional load-balanced approach partitions the domain in
four equal sub-domains of size 120 × 120 × 128. This is
illustrated in Figure 8.

1
2

8

T0
15 cores

T2
15 cores

T1
15 cores

120 120

120

120
T3

15 cores

T0
15 cores

T2
15 cores

128

T1
15cores

112

120
T3

15cores

1201
2

8

Fig. 8. Optimal partitioning of MPDATA of size 240× 240× 128 between
4 teams

In general, the theoretical execution time is calculated
using the formula:

t = max(
xr
s(xr)

,
xl
s(xl)

),

where xr is the number of cells processed by each of the
right teams, xl is the number of cells processed by each
of the left teams, and s(xr) and s(xl) are the speeds of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 8

processing of the cells. For the even partitioning, it gives
us:

te = max(
120 · 120 · 128

1240376
,

120 · 120 · 128

1240376
) = 1.486[s],

while for the uneven partitioning returned by Algorithm 1,
we have:

tu = max(
120 · 128 · 128

1418579
,

120 · 112 · 128

1436742
) =

= max(1.386, 1.197) = 1.386[s].

Figure 7 illustrates these two solutions. The red line rep-
resents the execution time of the evenly partitioned config-
uration when all teams take the same time to complete their
computations. The two green lines represent the execution
time of the left and right teams for the uneven partition.
The upper line corresponds to the execution time of each
of the right teams processing smaller sub-domains, while
the lower green line – each of the left teams. The overall
time of parallel execution will be given by the lower green
line. We can see that this green line is positioned above
the red one, which indicates that the execution time of the
unevenly partitioned configuration is less than that of the
evenly partitioned. We can also clearly see that any attempt
to reduce the imbalance by brining the two green lines closer
to each other will result in the lower line moving further
down, which means the increase of the overall execution
time

5.5 Experimental results
In this subsection, we experimentally evaluate the optimiza-
tion technique presented in Section 5.4.

The performance results presented in this subsection
are obtained for double precision MPDATA computations
corresponding to 40 time steps. All the benchmarks are
compiled as native executables using the Intel compiler
(v.15.0.2), and run on the Intel Xeon Phi 7120P coprocessor.
To ensure the reliability of the results, measurements are
repeated several times, and average execution times are
used. We find the confidence interval and stop the mea-
surements if the sample mean lies in the interval with the
confidence level 95%. We use Student’s t-test, assuming
that the individual observations are independent and their
population follows the normal distribution.

Table 1 includes both theoretical and experimental exe-
cution times of MPDATA for the domain of size 240×240×
128. These results are obtained for different configurations
of partitioning, including the traditional ”load-balanced”
partitioning (∆m = 0) and a range of ”unbalanced” parti-
tioning for different ∆m > 0. The theoretically optimal ∆m
returned by Algorithm 1 is equal to 8, which corresponds
to the configuration where each odd or even team processes
the sub-domain of size 120×128×128 or 120×112×128 re-
spectively. In this case, the estimated execution time of 1.386
seconds is very close to the real computation time which
is 1.364 seconds. According to experiments, the shortest
execution time is achieved for ∆m = 9, when computations
take 1.348 seconds.

Comparing the experimental and theoretical times, we
can see that the accuracy of theoretical prediction is very
good, with prediction errors being as small as 2 − 4%. In

TABLE 1
Theoretical and experimental execution times for MPDATA domain of
size 240 × 240 × 128 with different configurations of partitioning. The

odd work teams process the sub-domain of size
120 × (120 + ∆m) × 128, while the even teams

–120 × (120 − ∆m) × 128.

Offset Theoretical Experimental
∆m time [s] time [s] Speedup

0 1.486 1.548 1.000
4 1.470 1.470 1.053
6 1.401 1.374 1.127
7 1.422 1.361 1.137
8 1.386 1.364 1.135
9 1.398 1.348 1.148
10 1.397 1.352 1.145
11 1.429 1.372 1.129
12 1.402 1.368 1.131

general, we can identify two main factors contributing into
the prediction error:

• While the experimentally built speed functions of
teams T0, T1, T2 and T3 are not identical, suggesting
some degree of their heterogeneity in execution of
the MPDATA workload, our theoretical model con-
siders them homogeneous and represents their speed
by the average of the real speed functions, which is
then used as input to Algorithm 1.

• During the construction of the speed functions, the
speed of a team for problem size n×m×l is measured
when other teams process in parallel sub-domains of
the same size, n ×m × l. However, during the exe-
cution of the application in our experiments different
teams process sub-domains of slightly different sizes
when ∆m 6= 0.

Table 1 also demonstrates the performance gain from
applying the proposed load-imbalancing optimization. For
the imbalanced configurations presented in this table, we
notice a better performance than for the load-balanced
configuration of the MPDATA decomposition. The largest
performance gain is achieved for ∆m = 9, giving the
speedup of 1.148x.

TABLE 2
Experimental time for all work teams with different partitionings: the odd
work teams process the sub-domain of size 120 × (120 + ∆m) × 128,

while the even teams –120 × (120 − ∆m) × 128.

Offset Experimental time [s]
∆m Team 0 Team 1 Team 2 Team 3 Total

0 1.515 1.498 1.518 1.503 1.548
4 1.456 1.247 1.455 1.249 1.470
6 1.364 1.161 1.359 1.162 1.374
7 1.355 1.161 1.341 1.168 1.361
8 1.355 1.166 1.349 1.172 1.364
9 1.340 1.155 1.335 1.161 1.348
10 1.345 1.141 1.337 1.152 1.352
11 1.363 1.156 1.357 1.154 1.372
12 1.360 1.163 1.353 1.165 1.368

Table 2 complements the results in Table 1 giving ex-
perimental execution times of the individual teams. We can
clearly see a significant difference between the execution
times measured for the odd and even teams when ∆m 6= 0.
Obviously, this difference is caused by the unbalanced

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 9

workloads for the odd and even teams. However, the to-
tal execution time is shorter than in the case of balanced
workloads (∆m = 0).

Table 2 also shows that the total execution time is always
slightly longer than the maximum time among all teams.
It is mainly due to the fact that the computation time of
every team is measured without the overheads of inter-team
synchronization required after each time step. In addition,
the results in Table 2 are presented in Figure 9 in a graphical
form.

Team 0

Team 2

Team 1

Team 3

Total

0 4 62 8 10 12
1.0

1.6

1.2

1.4

Ti
m

e
 [

s]

∆m

Fig. 9. Experimental execution times measured for individual work teams
and the total execution time measured for the whole MPDATA workload

Finally, we evaluate the proposed model-based partition-
ing algorithm for the MPDATA domain of size 480× 480×
128. As in the previous case, the application is executed for
different configurations of partitioning, for a range of ∆m.
In this case, however, the theoretically optimal configuration
returned by Algorithm 1 is exactly the same as the experi-
mentally optimal one, both achieved when ∆m = 20. The
prediction errors are also smaller in this case, not exceeding
3%. The experimental execution time for ∆m = 20 is
5.338 seconds, in comparison with 6.140 seconds for the
even partitioning.This allows us to accelerate the MPDATA
computations by 1.15 times. Moreover, the performance gain
is also observed for other unbalanced configurations, but it
is smaller than 1.15x. The results of these experiments are
included in Table 3.

TABLE 3
Theoretical and experimental execution times for MPDATA domain of
size 480 × 480 × 128 with different configurations of partitioning. The

odd work teams process the sub-domain of size
240 × (240 + ∆m) × 128, while the even teams –

240 × (240 − ∆m) × 128.

Offset Theoretical Experimental
∆m time [s] time [s] Speedup

0 6.136 6.140 1.000
4 5.731 5.681 1.081
8 5.809 5.806 1.058
12 5.543 5.453 1.126
16 5.509 5.418 1.133
20 5.499 5.338 1.150
24 5.624 5.477 1.121

5.6 Self-adaptable implementation of MPDATA
MPDATA is typically used in long running simulations,
such as numerical weather prediction, that require several

thousand time steps. Therefore, in the context of real-life
simulations, MPDATA is executed many thousand times for
the same given size of domain. What is important is that
for a given domain decomposition the speed of execution of
one time-step will be the same for any time step, whether it
is first, second or 1234th. We can exploit these facts and use
a small number of the initial time steps to build the speed
function, find the optimal division of the workload and then
use this optimal division for the rest of the execution. This
way we can make MPDATA self-adaptable.

In our design, we do not build at runtime the full
speed function but only its small part, sufficient for finding
the optimal division for the given size of domain. More
specifically, for a given problem size we fix n to the value of
the balanced solution and only vary m, building the speed
as a function of m for a limited range of values around the
balanced solution.

Figure 10 illustrates how the necessary part of the speed
function is built for a given problem size. In this example,
all work teams process together the MPDATA domain of
size 240 × 240 × 128. In the initial MPDATA time steps,
the computation are executed with the load-balanced con-
figuration where the domain is partitioned in four equal
sub-domains of size 120 × 120 × 128 (Figure 10a). In the
subsequent MPDATA time step, the total execution time
(Figure 10b) and the speed (Figure 10c) are obtained for
∆m = 0 and m = 120. Then, the first redistribution takes
place with ∆m = 4, where the odd work teams process the
sub-domains of size 120×(120+∆m)×128, while the even
teams – the sub-domains of size 120 × (120 − ∆m) × 128
(see Figure 10d). In the next time step, this new configura-
tion of the application is executed and the total execution
time (Figure 10e) and speed (Figure 10f) for both odd
(m = (120 + ∆m)) and even (m = (120 − ∆m)) teams
are determined. This gives us two additional points, for
m = 116 and m = 124, in the approximation of the speed
function (Figure 10f). This procedure is repeated for other re-
distributions with incremented ∆m (Figures 10g–10o) until
a significant drop in performance is registered for ∆m = 16
(Figures 10m–10o). The constructed part of the speed func-
tion (Figure 10o) is then used as input to Algorithm 1,
returning the optimal configuration for the given problem
size. As a result, the indicated division of the workload is
used for the rest of the execution.

The proposed method has been successfully applied as
a run-time mechanism for self-adaptive implementation of
MPDATA. During the initial time steps, this mechanism
builds the required part of the speed function, and then uses
Algorithm 1 to find the optimal partition. After the optimal
partition is found, MPDATA continues its execution with
this fixed partition as normal.

The potential overhead of this mechanism can come from
three additional operations: (i) evaluation of the speed for
a given distribution, (ii) execution of the data partitioning
algorithm, and (iii) redistribution.

In general, the proper evaluation of the speed for any
given distribution would require repetition of the execution
of the same time step several times to ensure the accept-
able accuracy of measurements. However, in the case of
MPDATA the sufficient number of repetitions has proved
to be just one because of the stable computational intensity

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 10

120 120

T0 T1

T2 T3 e
xe

cu
ti

o
n

ti
m

e

∆m
0

Problem
Size120

S
p
e
e
d

(a) (b) (c)

1st redistribution, ∆m=4

116 124

S
p
e
e
d

Problem
Size124 116

T0 T1

T2 T3

4

e
xe

cu
ti

o
n

ti
m

e

∆m
0

(d) (e) (f)

2nd redistribution, ∆m=8

112 128

S
p
e
e
d

Problem
Size128 112

T0 T1

T2 T3

8

e
xe

cu
ti

o
n

ti
m

e

∆m
0

(g) (h) (i)

3rd redistribution, ∆m=12

108 132

S
p
e
e
d

Problem
Size132 108

T0 T1

T2 T3

12

e
xe

cu
ti

o
n

ti
m

e

∆m
0

(j) (k) (l)

4th redistribution, ∆m=16

T0 T1

T2 T3

136 104 16

e
xe

cu
ti

o
n

ti
m

e

∆m
0 104 136

S
p
e
e
d

Problem
Size

(m) (n) (o)

Fig. 10. Workflow for building a part of desired speed function

of each MPDTA time step. The second run never improved
the estimation of the speed on the experimental platform
to the extent that would change the solution returned by
Algorithm 1. This property of MPDATA allowed us to
significantly reduce the related overhead.

Finally, the redistribution does not cause an additional
overhead associated with data locality because the reparti-
tioning takes place between subsequent time steps when all
data has to be reloaded within the main memory and caches,
regardless of whether the redistribution happens or not.

In all our experiments, the self-adaptable MPDATA man-
aged to find the optimal division in less than 20 time
steps. Furthermore, the total overhead associated with the
proposed run-time mechanism was consistently less than
0.05 second. Given that the number of initial times steps
involved in the model construction has never exceeded
twenty, this means that the overhead has never exceeded
0.0025 second per time step involved in finding the op-
timal partition. For the domain size of 480 × 480 × 128,
this accounts for less than 2% of the execution time of
one time step, and this percentage will further decrease
with the increase of the domain size. In numerical weather
prediction, where MPDATA is used, the simulation runs
for several thousand time steps (over 16000 for a 2-day
prediction). Thus, the potential cost of this optimization
mechanism is less than 0.005% of the total execution time
of the application.

To conclude, the cost of this overhead is negligibly

small. Despite the distribution of computations during these
initial time steps is not optimal, the overall performance
gains reach up to 15%, which is particularly noticeable for
long time simulations. Generally, assuming that the optimal
decomposition can be found during the first 20 time steps,
the cost of the proposed self-adapting mechanism is stable
for any problem size and for any number of time steps.
The cost of this mechanism has a negligible impact on the
performance in the case of a very small number of time steps
and/or a very small domain size, while in all other cases it
has practically no negative effect at all.

6 CONCLUSION

Modern compute nodes are characterized by both the in-
creasing number of (possibly, heterogeneous) processing
elements and a high level of complexity of their integration.
Various resources such as caches and data links are shared
in an hierarchical and non-uniform way. This makes the
development of efficient applications for such platforms
a very difficult and challenging task. It would be naive
to expect that the performance profile of real-life scientific
applications on these platforms will always be comfortably
nice and smooth to suit traditional load-balancing tech-
niques used for minimization of their computation time.
Therefore, new optimization approaches that do not rely on
such increasingly unrealistic assumptions are needed. This
work has presented one such approach and demonstrated
its applicability to optimization of a real-life application on
a modern HPC platform.

ACKNOWLEDGMENTS

This publication has emanated from research conducted
with the financial support of Science Foundation Ire-
land (SFI) under Grant Number 14/IA/2474. This re-
search was conducted with the financial support of NCN
under grants no. UMO-2011/03/B/ST6/03500, and no.
UMO-2015/17/D/ST6/04059. This work is partially sup-
ported by EU under the COST Program Action IC1305:
Network for Sustainable Ultrascale Computing (NESUS).

The authors are grateful to the Czestochowa Uni-
versity of Technology for granting access to Intel Xeon
Phi coprocessors provided by the MICLAB project no.
POIG.02.03.00.24-093/13.

REFERENCES

[1] P. Smolarkiewicz, “Multidimensional Positive Definite Advection
Transport Algorithm: An Overview,” Int. J. Numer. Meth. Fluids,
vol. 50, pp. 1123–1144, 2006.

[2] Z. Piotrowski, A. Wyszogrodzki, and P. Smolarkiewicz, “Towards
Petascale Simulation of Atmospheric Circulations with Sound-
proof Equations,” Acta Geophysica, vol. 59, pp. 1294–1311, 2011.

[3] P. Smolarkiewicz and W. Grabowski, “The Multidimensional Pos-
itive Definite Advection Transport Algorithm: Nonoscillatory Op-
tion,” J. Comput. Phys., vol. 86, pp. 355–375, 1990.

[4] L. Szustak, K. Rojek, and P. Gepner, “Using Intel Xeon Phi
coprocessor to accelerate computations in MPDATA algorithm,”
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)
PPAM 2013, Part I. LNCS, vol. 8384, pp. 582–592, 2014.

[5] L. Szustak, K. Rojek, T. Olas, L. Kuczynski, K. Halbiniak, and
P. Gepner, “Adaptation of MPDATA heterogeneous stencil com-
putation to Intel Xeon Phi coprocessor,” Scientific Programming,
http://dx.doi.org/10.1155/2015/642705, 2015.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 11

[6] L. Szustak, K. Rojek, R. Wyrzykowski, and P. Gepner, “Toward
efficient distribution of MPDATA stencil computation on Intel
MIC architecture,” In: HiStencils’14 Proc. 1st International Workshop
on High-Performance Stencil Computations, pp. 51–56, 2014.

[7] A. Lastovetsky and J. Twamley, “Towards a realistic performance
model for networks of heterogeneous computers,” in High Perfor-
mance Computational Science and Engineering. Springer, 2005, pp.
39–57.

[8] A. Lastovetsky and R. Reddy, “Data partitioning with a functional
performance model of heterogeneous processors,” International
Journal of High Performance Computing Applications, vol. 21, no. 1,
pp. 76–90, 2007.

[9] M. Fatica, “Accelerating Linpack with CUDA on heterogenous
clusters,” in GPGPU-2. ACM, 2009, pp. 46–51.

[10] C. Yang, F. Wang, Y. Du et al., “Adaptive Optimization for Petas-
cale Heterogeneous CPU/GPU Computing,” in Cluster’10, 2010,
pp. 19–28.

[11] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, “An efficient,
model-based CPU-GPU heterogeneous FFT library,” in IPDPS
2008, 2008, pp. 1–10.

[12] K. Rojek and R. Wyrzykowski, “Parallelization of 3D MPDATA
Algorithm using Many Graphics Processors,” Lecture Notes in
Computer Science, vol. 9251, pp. 445–457, 2015.

[13] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data Partitioning
on Multicore and Multi-GPU Platforms Using Functional Perfor-
mance Models,” IEEE Transactions on Computers, vol. 64, no. 9, pp.
2506–2518, 2015.

[14] M. D. Linderman, J. D. Collins, H. Wang et al., “Merge: a program-
ming model for heterogeneous multi-core systems,” SIGPLAN
Not., vol. 43, pp. 287–296, 2008.

[15] C. Augonnet, S. Thibault, and R. Namyst, “Automatic calibration
of performance models on heterogeneous multicore architectures,”
in EuroPar’09, 2009, pp. 56–65.

[16] G. Quintana-Ortı́, F. D. Igual, E. S. Quintana-Ortı́, and R. A. van de
Geijn, “Solving dense linear systems on platforms with multiple
hardware accelerators,” SIGPLAN Not., vol. 44, pp. 121–130, 2009.

[17] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling
matrix computations on heterogeneous multi-core and multi-GPU
systems,” in ICS ’12. ACM, 2012, pp. 365–376. [Online].
Available: http://doi.acm.org/10.1145/2304576.2304625

[18] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping,” in
MICRO-42, 2009, pp. 45–55.

[19] M. Cierniak, M. Zaki, and W. Li, “Compile-Time Scheduling Al-
gorithms for Heterogeneous Network of Workstations,” Computer
J., vol. 40, pp. 356–372, 1997.

[20] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of
computations solving linear algebra problems on networks of
heterogeneous computers,” Journal of Parallel and Distributed Com-
puting, vol. 61, no. 4, pp. 520–535, 2001.

[21] J. Martı́nez, E. Garzón, A. Plaza, and I. Garcı́a, “Automatic tuning
of iterative computation on heterogeneous multiprocessors with
ADITHE,” J. Supercomput., vol. 58, no. 2, pp. 151–159, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s11227-009-0350-1

[22] A. Lastovetsky and R. Reddy, “Data partitioning with a realistic
performance model of networks of heterogeneous computers,” in
Proceedings of the 18th International Parallel and Distributed Process-
ing Symposium (IPDPS 2004). Santa Fe, New Mexico, USA: IEEE
Computer Society, 26-30 April 2004.

[23] A. Ilic, F. Pratas, P. Trancoso, and L. Sousa, “High-Performance
Computing on Heterogeneous Systems: Database Queries on CPU
and GPU,” in High Performance Scientific Computing with Special
Emphasis on Current Capabilities and Future Perspectives. IOS Press,
2011.

[24] J. Colaco, A. Matoga et al., “Transparent Application Acceleration
by Intelligent Scheduling of Shared Library Calls on Heteroge-
neous Systems,” in PPAM 2013, Part I, 2014, pp. 693–703.

[25] A. Lastovetsky and R. Reddy, “Data distribution for dense fac-
torization on computers with memory heterogeneity,” Parallel
Computing, vol. 33, no. 12, pp. 757–779, 2007.

[26] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balanc-
ing of parallel computational iterative routines on highly hetero-
geneous HPC platforms,” Parallel Processing Letters, vol. 21, no. 02,
pp. 195–217, 2011.

[27] A. AlOnazi, D. Keyes, A. Lastovetsky, and V. Rychkov, “De-
sign and Optimization of OpenFOAM-based CFD Applications

for Hybrid and Heterogeneous HPC Platforms,” arXiv preprint
arXiv:1505.07630, 2015.

[28] D. Clarke, A. Lastovetsky, and V. Rychkov, “Column-based matrix
partitioning for parallel matrix multiplication on heterogeneous
processors based on functional performance models,” in Euro-Par
2011: Parallel Processing Workshops. Springer, 2012, pp. 450–459.

[29] Parallel Programming and Optimization with Intel Xeon Phi Copro-
cessors, Handbook on the Development and Optimization of Parallel
Applications for Intel Xeon Processors and Intel Xeon Phi Coprocessors.
Colfax International, 2013.

[30] P. Smolarkiewicz and L. Margolin, “MPDATA-A Multipass Donor
Cell Solver for Geophysical Flows,” in Godunov Methods: Theory
and Applications, E. Toro, Ed. Springer, 2001, pp. 833–839.

[31] K. Rojek, M. Ciznicki, B. Rosa, P. Kopta, M. Kulczewski,
K. Kurowski, Z. Piotrowski, L. Szustak, D. Wojcik, and
R. Wyrzykowski, “Adaptation of fluid model EULAG to graphics
processing unit architecture,” Concurrency and Computations: Prac-
tice and Experience, vol. 27 (4), pp. 937–957, 2015.

[32] M. Wittmann, G. Hager, J. Treibig, and G. Wellein, “Leveraging
shared caches for parallel temporal blocking of stencil codes on
multicore processors and clusters,” Parallel Process. Lett., vol. 20
(4), pp. 359–376, 2010.

[33] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, J. Liao, L. Gan, Y. Lu,
R. Ranjan, and L. Wang, “Ultra-Scalable CPU-MIC Acceleration of
Mesoscale Atmospheric Modeling on Tianhe-2,” Computers, IEEE
Transactions on, vol. 64, no. 8, pp. 2382–2393, 2015.

[34] R. Cruz, M. Araya-Polo, and J. Cela, “Introducing the Semi-stencil
Algorithm,” Lect. Notes in Comp. Sci., vol. 6067, pp. 496–506, 2010.

[35] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Optimization and Performance Modeling of Stencil Computa-
tions on Modern Microprocessors,” SIAM Rev., vol. 51(1), pp. 129–
159, 2009.

[36] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation op-
timization and auto-tuning on state-of-the-art multicore archi-
tectures,” In: SC 08 Int. Conf. on High Performance Computing,
Networking, Storage and Analysis, pp. 1–12, 2008.

[37] G. Hager and M. Wittmann, “Introduction to High Performance
Computing for Science and Engineers,” CRC Press,, vol. 20 (4), pp.
359–376, 2011.

[38] T. Malas, G. Hager, H. Ltaief, and D. Keyes, “Towards energy
efficiency and maximum computational intensity for stencil al-
gorithms using wavefront diamond temporal blocking,” arXiv
preprint arXiv:1410.5561, 2014.

[39] G. Rivera and C.-W. Tseng, “Tiling Optimizations for 3D Scientific
Computations,” In: SC00 Proc. 2000 ACM/IEEE Conf. on Supercom-
puting, 2000.

[40] J. Treibig, G. Wellein, and G. Hager, “Efficient multicore-aware
parallelization strategies for iterative stencil computations,” Jour-
nal of Computational Science, vol. 2, pp. 130–137, 2011.

[41] D. Unat, X. Cai, and S. Baden, “Mint: realizing CUDA performance
in 3D stencil methods with annotated C,” In: ICS 11 Proc. Int. Conf.
on Supercomputing, pp. 214–224, 2011.

[42] R. Wyrzykowski, L. Szustak, and K. Rojek, “Parallelization of 2D
MPDATA EULAG Algorithm on Hybrid Architectures with GPU
accelerators,” Parallel Computing, vol. 40, pp. 425–447, 2014.

[43] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on
heterogeneous multicore platforms,” in 2011 IEEE International
Conference on Cluster Computing (Cluster 2011). Austin, Texas,
USA: IEEE Computer Society, Sept 26-30 2011, pp. 580–584.

Alexey Lastovetsky received a PhD degree
from the Moscow Aviation Institute in 1986, and
a Doctor of Science degree from the Russian
Academy of Sciences in 1997. His main re-
search interests include algorithms, models, and
programming tools for high performance hetero-
geneous computing. He has published over a
hundred technical papers in refereed journals,
edited books, and international conferences. He
authored the monographs Parallel computing on
heterogeneous networks (Wiley, 2003) and High

performance heterogeneous computing (Wiley, 2009).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. PP, NO. 99, AUGUST 2016, DOI: 10.1109/TPDS.2016.2599527 12

Lukasz Szustak received his M.Sc. in Com-
puter Science from the Czestochowa University
of Technology in 2008 and his PhD in 2012.
During this period, his doctoral research focused
on adaptation of high performance computing
to modern parallel architectures including hybrid
platforms. Since 2012, Dr. Szustak is employed
at Czestochowa University of Technology. His
current work is associated with the development
of efficient methods of scheduling, load balanc-
ing, and adaptations of stencil based computa-

tions to Intel MIC and CPUs architectures.

Roman Wyrzykowski received M.Sc. and Ph.D
degrees from the Kiev Polytechnic Institute in
Computer Science in 1982 and 1986, respec-
tively. Since 1982, he is employed at the Czesto-
chowa University of Technology, Poland, where
currently he is the head of Department of Com-
puter and Information Science. His fields of ex-
pertise are: parallel and distributed computing,
mapping algorithms onto parallel architectures,
cluster and cloud technologies with applications.
Since 1994, he has chaired the program commit-

tee of the PPAM series of international conferences on parallel process-
ing and applied mathematics.

