
J Supercomput
DOI 10.1007/s11227-016-1779-7

Hierarchical redesign of classic MPI reduction
algorithms

Khalid Hasanov1 · Alexey Lastovetsky2

© Springer Science+Business Media New York 2016

Abstract Optimization of MPI collective communication operations has been an
active research topic since the advent ofMPI in 1990s. Many general and architecture-
specific collective algorithms have been proposed and implemented in the state-of-the-
art MPI implementations. Hierarchical topology-oblivious transformation of existing
communication algorithms has been recently proposed as a new promising approach
to optimization of MPI collective communication algorithms and MPI-based applica-
tions. This approach has been successfully applied to the most popular parallel matrix
multiplication algorithm, SUMMA, and the state-of-the-artMPI broadcast algorithms,
demonstrating significant multifold performance gains, especially for large-scale HPC
systems. In this paper, we apply this approach to optimization of the MPI Reduce and
Allreduce operations. Theoretical analysis and experimental results on a cluster of
Grid’5000 platform are presented.

Keywords MPI collectives · Reduction · Hierarchical MPI

1 Introduction

The message passing interface (MPI) [1] is widely accepted as the de facto standard
for programming distributed-memory systems. The communication in the MPI is per-
formed bymessage passing between processes either using point-to-point or collective

B Alexey Lastovetsky
alexey.lastovetsky@ucd.ie

Khalid Hasanov
khasanov@ie.ibm.com

1 IBM Research Ireland, Dublin, Ireland

2 University College Dublin, Dublin, Ireland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1779-7&domain=pdf


K. Hasanov, A. Lastovetsky

operations. The point-to-point operations are expressed as a set of send and receive
functions that allow transmitting a message of specified size and type between two
processes. The collective communication functions usually involve more than two
processes and provide higher abstraction of parallel processing than point-to-point
operations. Some collective communication operations offer collective computation
and synchronization features besides transmitting data among the processes. The
high level of abstraction of the collectives makes it possible to express an appro-
priate problem in an elegant declarative way. This in turn improves their portability
across different platforms while hiding the implementation details. Therefore, the
use of collectives rather than point-to-point operations is preferable where applica-
ble.

According to research studies over the past two decades [2,3], MPI reduction oper-
ations, particularly MPI reduce and allreduce, are the most used collective operations
in scientific applications. In the reduce operation, each node i owns a vector xi of n
elements. After completion of the operation all the vectors are reduced element-wise to
a single n-element vector which is owned by a specified root process. In the allreduce
operation, the result vector will be accumulated on all the processes in the same way
as it happens in the reduce. Another widely used reduction operation is reduce–scatter,
which can be seen as a reduce operation followed by a scatter operation. This paper
focuses only on the reduce and allreduce operations.

OptimizationofMPI collective operations has been an active research topic since the
advent of MPI in 1994. Many general and architecture-specific collective algorithms
have been proposed and implemented in the state-of-the-art MPI implementations.
Hierarchical topology-oblivious transformation of existing communication algorithms
has been recently proposed as a newpromising approach to optimization ofMPI collec-
tive communication algorithms and MPI-based applications [4,5,17]. This approach
has been successfully applied to the most popular parallel matrix multiplication algo-
rithm, SUMMA [6], and the state-of-the-art MPI broadcast and reduce algorithms,
demonstrating significant multifold performance gains, especially on large-scale HPC
systems [18]. In this article, we extend our conference paper [7] on topology-oblivious
hierarchical optimization ofMPI reduce operation by including a study of optimization
of MPI allreduce operation using the same technique.

1.1 Contributions

Wepropose a topology oblivious hierarchical technique to optimize legacyMPI collec-
tive communication operations and show its applicability in the context of MPI reduce
and allreduce algorithms. The approach is simple and general, allowing for appli-
cation of the proposed optimization to any existing MPI collective communication
algorithm. As by design the original algorithm is a particular case of its hierarchically
transformed counterpart, the performance of the algorithm will either improve or stay
the same in the worst case scenario. Theoretical study of the hierarchical transforma-
tion of six reduce and five allreduce algorithms, which are implemented in MPICH
[19] and Open MPI [8], is presented. The theoretical results have been experimentally
validated on a cluster of Grid’5000 (see http://www.grid5000.fr) infrastructure.

123

http://www.grid5000.fr


Hierarchical redesign of classic MPI reduction algorithms

1.2 Outline

The rest of the paper is structured as follows. Section 2 discusses related work. The
hierarchical optimization of MPI reduction algorithms is introduced in Sect. 3. The
experimental results are presented in Sect. 4. Finally, Sect. 5 concludes the presented
work and discusses future directions.

2 Related work

The reduce operation was implemented as an inverse broadcast in the CCL [9] library
and was not optimized for different message sizes. The InterComm [10] library pro-
poses a more advanced reduce implementation as a combination of reduce–scatter
and gather, and tries to be efficient for small and large message sizes. The allreduce
operation was implemented in a similar way as a reduce–scatter followed by an all-
gather operation. The MagPIe [11] library provides optimized collective algorithms,
including algorithms for reduction operations for wide area systems.

Design and high-performance implementation of collective communication oper-
ations and commonly used algorithms, such as minimum-spanning tree reduce
algorithm, are discussed in [12]. The authors also discuss the lower bounds of the
reduction operations. The lower bounds on the latency and computation costs are
the same in both the reduce and allreduce operations, and equal to �log2(p)� and
p−1
p ×m×γ, respectively. Here, p is the total number of processes in the operation,

m is the message size, and γ are the flops. On the other hand, the lower bound on
the bandwidth cost is m×β for the reduce, while it is 2× p−1

p ×m×β for the allreduce
operation.

Automatic tuning of collectives for a given system by conducting a series of exper-
iments on the system was discussed in [13]. Rabenseifner [2] proposes five reduction
algorithms optimized for different message sizes and numbers of processes. Cheetah
framework [3] implements MPI reduction operations in a hierarchical way on multi-
core systems, which supports multiple communicationmechanisms. Unlike that work,
our optimization is topology oblivious, and our hierarchical algorithms have not been
designed as new algorithms from scratch, but rather employs the existing reduction
algorithms underneath.

2.1 MPI reduce and allreduce algorithms

We assume that the time to send a message of size m between any two MPI processes
is modeled with Hockney model [14] as α+m×β, where α is the latency per message
and β is the reciprocal bandwidth per byte. It is also assumed that the computation
cost per byte in the reduction operation is γ on any MPI process. Unless otherwise
noted, in the rest of the paper we will call MPI process just process.

This section outlines general purpose MPI reduce and allreduce algorithms, which
present in the state-of-the-art MPI implementations, such as MPICH and Open MPI.
We call them general purpose as by design they do not assume any knowledge of the
underlying topology and platform. The general purpose reduce algorithms have the

123



K. Hasanov, A. Lastovetsky

Table 1 Reduce algorithms and their theoretical cost within the Hockney model

Algorithm Theoretical cost

Flat tree (p − 1)× (α + m×β + m×γ )

Linear tree (p − 1)× (α + m×β + m×γ )

Pipeline (p + X − 2) × (
α + m

X ×β + m
X ×γ

)

Binary tree 2
(
log2 (p + 1) + X − 2

) × (
α + m

X ×β + m
X ×γ

)

Binomial tree log2 (p) × (α + m×β + m×γ )

Rabenseifner’s reduce [2] 2 log2 (p) ×α + 2 p−1
p ×m×β + p−1

p ×m×γ

theoretical costs given in the Table 1. We do not provide theoretical analysis of those
algorithms, as this work is an extension of our conference paper [7] which already
provides detailed discussion of them. Instead, we provide a broader discussion of the
MPI allreduce algorithms.

– Linear allreduce algorithm
Open MPI implements the linear allreduce algorithm as a linear reduce to a spec-
ified root followed by a linear broadcast from the same root. Despite that the root
process faces the communication and computation overhead, the linear algorithm
can be a preferred algorithm for small messages on a small number of processes.
The time for the allreduce can be derived as the sum of the linear reduce (Table 1)
and linear broadcast [5] times:

2× (p − 1) × (α + m×β) + (p − 1) ×m×γ. (1)

– Recursive doubling allreduce algorithm
In each step of the recursive doubling allreduce algorithm, the distance between the
communicating processes is doubled. For a power-of-two number of processes,
the algorithm consists of log2 p steps. The amount of data exchanged by each
process doubles in each step as well. The total execution time of the algorithm is
as follows: log2 p×(α + m×β + m×γ ).

– Rabenseifner’s allreduce algorithm
Rabenseifner’s allreduce algorithm consists of a reduce–scatter followed by an all-
gather. The cost of the algorithm is: 2× log2 p×α+2× p−1

p ×m×β + p−1
p ×m×γ .

The main limitation of this algorithm is that it cannot be applied to user-defined
operations due to the difficulty of using reduce–scatter with user-defined opera-
tions.

– Ring allreduce algorithm
The ring algorithm for allreduce uses a nearest-neighbour communication pattern
and is used for commutative operations; it consists of computation and distribution
phases. The send buffer is divided into p blocks of size send_count

p . The algorithm
can be quite easily modified to support a use case where p does not divide the send
count [15]. In each iteration i of the computation phase, rank (r−1+ p)%p sends
block (r−i+ p)%p to rank r , which in turn receives the data using a non-blocking

123



Hierarchical redesign of classic MPI reduction algorithms

receive and performs the reduction operation on the block before sending the result
to rank (r +1)%p. In the data distribution phase, rank r receives the reduced data
from its left neighbour and sends it to its right neighbour. The algorithm continues
this way in 2×p − 1 iterations. Its total cost will be the following:

2×(p − 1)×
(

α +
⌈
m

p

⌉
×β

)
+ (p − 1)

m

p
×γ. (2)

The algorithm assumes that send_count > p.
– Segmented ring allreduce algorithm
In the segmented ring allreduce algorithm, all blocks are divided into segments
of X size. Then the computation phase is performed in a block-cyclic way for
each of the segment groups. The distribution phase is executed similarly to that of
the non-segmented ring algorithm. The main limitation of the algorithm is that it
can be applied only if the send count is greater than p× block_si ze

X . The cost of the
algorithm is given below:

(p + X − 2)×
(
α + m

X
×β + m

X
×γ

)
+ (p − 1)×

(
α +

⌈
m

p

⌉
×β

)
. (3)

3 Hierarchical optimization of MPI reduce and allreduce algorithms

This section introduces a topology-oblivious optimization ofMPI reduce and allreduce
algorithms. The idea is inspired by our previous study on the optimization of the
communication cost of parallel matrix multiplication [4] and MPI broadcast [5] on
large-scale distributed memory platforms.

3.1 Hierarchical optimization of MPI reduce algorithms

The proposed optimization technique is based on the arrangement of the p processes
participating in the reduce into logical groups. For simplicity, it is assumed that the
number of groups divides the number of MPI processes and can change between one
and p. Let G be the number of groups. Then there will be p

G MPI processes per group.
Figure 1 shows an arrangement of eight processes in the originalMPI reduce operation
(left), and an arrangement in a hierarchical reduce operation (right) with two groups
of four processes. The hierarchical reduce consists of two phases: in the first phase, a
group leader is selected for each group and the leaders start reduce operation inside
their own group in parallel (in this example, among 4 processes). In the next phase, the
reduce is performed among the group leaders (in this example, between 2 processes).
The grouping can be done by taking the topology into account as well. However, in this
work the grouping is topology oblivious and the first process in each group is selected
as the group leader. In general, different algorithms can be used for reduce operations
among the group leaders and within each group. This work focuses on the case where
the same algorithm is employed at both levels of hierarchy. Algorithm 1 shows the
pseudocode of the hierarchically transformedMPI reduce operation. Line 4 calculates

123



K. Hasanov, A. Lastovetsky

P0 P1 P2 P3 P4 P5 P6 P7

MPI Op

P0

P0 P1 P2 P3

MPI Op

P0

P4 P5 P6 P7

MPI Op

P4

MPI Op

P0

Fig. 1 Logical arrangement of processes in MPI reduce (left) and hierarchical MPI reduce (right)

the root for the reduce between the groups. Then line 5 creates a sub-communicator
of G processes between the groups, and line 6 creates a sub-communicator of p

G
processes inside the groups. We utilize the MPI_Comm_split routine to create new
sub-communicators.

Algorithm 1: Hierarchical optimization of MPI reduce operation.
Data: p - Number of processes
Data: G - Number of groups
Data: sendbu f - Send buffer
Data: recvbu f - Receive buffer
Data: count - Number of entries in send buffer (integer)
Data: datatype - Data type of elements in send buffer
Data: op - MPI reduce operation handle
Data: root - Rank of reduce root
Data: comm - MPI communicator handle
Result: The root process has the reduced message
begin

1 MPI_Comm comm_outer /* communicator between the groups */
2 MPI_Comm comm_inner /* communicator inside the groups */
3 int root_outer /* root of reduce between the groups */
4 root_outer = Calculate_Root_Outer(G, p, root, comm)
5 comm_outer = Create_Comm_Between_Groups(G, p, root_outer, comm)
6 comm_inner = Create_Comm_Inside_Groups(G, p, root, comm)
7 MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm_inner)
8 MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root_outer, comm_outer)

The reduce algorithms which have flat design in their arrangement of processes,
such as flat tree, pipeline reduce algorithms, can be improved by the hiearchical trans-
formation.On the other hand, the reduce algorithmswhich have some kind of hierarchy
in their design cannot be improved by this transformation. The binary, binomial and
Rabenseifner’s algorithms belong to the second group where we could not improve
their performance. However, in such cases, the parameterization of the hierarchy lets
the hierarchical algorithms fall back to the original underlying algorithmandbe equally
fast. In addition, the state-of-the-artMPI implementations, such as OpenMPI employs
different algorithms and switches between them depending on the message size, the
segment size, and the number of MPI processes. That means, this kind of hierarchical

123



Hierarchical redesign of classic MPI reduction algorithms

transformation can also improve the native reduction operations in the MPI imple-
mentation. Our experimental studies cover this case as well.

Because of the limited space, we only show theoretical analysis of the hierarchical
flat tree reduce algorithm here. A detailed theoretical analysis of the other hierarchical
reduce algorithms can be found in our previous work [7].

3.1.1 Hierarchical transformation of flat tree reduce algorithm

Ifwe assume that p processes are organized intoG groups, then each groupwill contain
p
G number of processes. The reduce operations inside each group are independent of
each other and can happen in parallel. The second phase of the algorithm starts among
G groups, or equivalently among G MPI processes, as soon as the reduce operations
finish inside each groups. Therefore, if we apply the cost function of the flat tree reduce
algorithm (see Table 1) in each phase, the cost of the reduce operations among groups
and inside groupswill be (G−1)×(α+m×β+m×γ ) and (

p
G−1)×(α+m×β+m×γ ),

respectively. Thus, the overall run time of the hierarchical flat tree reduce algorithm
can be seen as a function of G: F (G) = (

G + p
G − 2

)× (α + m×β + m×γ ). The
derivative of the function is (1 − p

G2 )×(α + m×β + m×γ ), and p = √
G is the

minimum point of the function in the interval (1, p). Thus, the optimal value of the
function will be as follows: F

(√
p
) = (

2
√
p − 2

)× (α + m×β + m×γ ).

3.2 Hierarchical optimization of MPI allreduce algorithms

The allreduce operation has amore complex communication pattern than the broadcast
and reduce operations. Therefore, its hierarchical transformation is not as trivial as
it was in those cases. The main difficulty comes from the fact that in our design
we are trying not to introduce a new allreduce algorithm, but rather use existing
algorithms. To be more clear, in the case of allreduce we would only like to use the
allreduce communication operation both inside and between groups. If it was not the
case, it would be possible to design a hierarchical allreduce in very different ways.
One example of hierarchical allreduce implementation could be using a hierarchical
reduce followed by a hierarchical broadcast.

The design of the hierarchical allreduce follows a similar design philosophy to
the hierarchical broadcast and hierarchical reduce operations. Namely, the main idea
is to organize the processes into logical groups. The grouping results in a two-level
hierarchy and the allreduce operations are performed in two phases. In the first phase,
the operation is operated over the processes inside each group independently. Later
on, as soon as this phase finishes, the processes at the same index position from
different groups start the allreduce operation among them on the partially reduced
value. However, unlike the hierarchical reduce, more sub-communicators are needed
to perform the reduction operation further from all the processes at the same index
position inside each group. The communication pattern of the hierarchical allreduce
is demonstrated in Fig. 2.

The hierarchical approach does not improve the recursive doubling allreduce and
Rabenseifner’s allreduce algorithms. However, we theoretically and experimentally

123



K. Hasanov, A. Lastovetsky

P0 P1 P2

MPI Op

P3 P4 P5 P6 P7 P8

P0 P1 P2 P3 P4 P5 P6 P7 P8

P0 P1 P2

MPI Op

P3 P4 P5

MPI Op

P6 P7 P8

MPI Op

P0 P1 P2 P3 P4 P5 P6 P7 P8

MPI Op MPI Op MPI Op

P0 P1 P2 P3 P4 P5 P6 P7 P8

Fig. 2 Logical arrangement of processes in MPI allreduce (left) and hierarchical MPI allreduce (right)

demonstrate that the linear, ring, and segmented ring algorithms can be improved after
transforming them hierarchically.

3.2.1 Theoretical analysis of the allreduce algorithms

The theoretical cost of the hierarchical linear allreduce can be derived by applying
linear allreduce (see formula 1) among G groups and p

G group members. The cost of
these two allreduce together will be as follows:

F(G) = 2(α + m×β)×
(
1 − p

G2

)
+

(
1 − p

G2

)
×mγ. (4)

For a fixed p, α, β, and γ, it can be shown that F(G) function attains its minimum at
G = √

p and the minimum of the function at this point is given as below:

F
(√

p
) = 4

(√
p − 1

) ×(α + mβ) + 2
(√

p − 1
) ×mγ. (5)

In the same way, we can show that the optimal value of the hierarchical ring allreduce
algorithms is attained at G = √

p and given as follows:

F
(√

p
) = 4× (√

p − 1
) ×α + 4×

(
1 − 1√

p

)
×m×β + 2×

(
1 − 1√

p

)
×m×γ.

(6)
On the other hand, the cost function of the segmented ring algorithm attains its mini-
mum at G = √

p only if 2×p×X×α +m×(p− X)×β +m×p×γ > 0. In this case,
the optimal value will be:

123



Hierarchical redesign of classic MPI reduction algorithms

F(
√
p) = (

2×√
p + 2×X − 4

) ×
(
α + m

X
×β + m

X
×γ

)

+ (
2×√

p − 2
) ×α + 2×

(
1 − 1√

p

)
×m×β. (7)

4 Experiments

The experiments were carried out on the Graphene cluster of Grid’5000 infrastructure
in France (see http://www.grid5000.fr). Almost all the sites are interconnected by 10
Gb/s high-speed network. The cluster is equipped with 144 nodes and each node has a
disk of 320 GB storage, 16 GB of memory and 4 cores of CPU Intel Xeon X3440. The
nodes in the graphene cluster are interconnected via 20Gb/s Infiniband and Gigabyte
Ethernet.

The experiments have been done with Open MPI 1.8.4, which provides several
algorithms for MPI reduction operations. This includes linear, chain, pipeline, binary,
binomial, and in-order binary algorithms for the reduce operation. The allreduce oper-
ation comes with basic linear allreduce, recursive doubling, ring, and segmented ring
algorithms. In addition, the implementation provides platform-/architecture-specific
algorithms, some of which are reduction algorithms for Infiniband networks, and
the Cheetah framework for multicore architectures. In this work, we do not con-
sider the platform-specific reduction implementations. We used the same approach as
described in MPIBlib [16] to benchmark our experiments. During the experiments,
the mentioned reduce and allreduce algorithms were selected using Open MPI MCA
(Modular Component Architecture) parameters. MPI_MAX operation has been used
in the experiments.

The theoretical and experimental results showed that the hierarchical approach
mainly improves the algorithmswhich assume flat arrangements of the processes, such
as linear, chain, pipeline, ring, and segmented ring. On the other hand, the native Open
MPI reduce and allreduce operations switch among different algorithms depending
on the requested message size, the count and the number of processes. This means
that the hierarchical transformation can improve the native reduction operation as
well. It is expected that [7] the overhead from the MPI_Comm_split operation should
affect only reduce operations with smaller message sizes. Figure 3 validates this with
experimental results. The hierarchical reduce operation of 1KB message with the
underlying native reduce achieved its best performance when the number of groups
was one, as the overhead from the split operation itself was higher than the reduce.

Figure 4 presents experiments with the hierarchical pipeline reduce with a message
size of 16KBwith 1KB segmentation. The performance of the pipeline algorithmwith
larger messages and segment sizes of 32 and 64KB can be found in [7]. Figure 5 shows
the speedup of the hierarchical transformation of native Open MPI reduce operation,
linear, chain, pipeline, binary, binomial, and in-order binary reduce algorithms with
message sizes starting from 16KB up to 16MB. Except binary, binomial, and in-
order binary reduce algorithms, there is a significant performance improvement. In
the figure, NT is native Open MPI reduce operation, LN is linear, CH is chain, PL is
pipeline with 32KB segmentation, BR is binary, BL is binomial, and IBR denotes in-

123

http://www.grid5000.fr


K. Hasanov, A. Lastovetsky

Fig. 3 Time spent on
MPI_Comm_split and
hierarchical native reduce.
m = 1KB, p = 512

20 22 24 26 28
0

1

2

3

4

5

·10−4

Number of groups
T
im

e(
Se
c)

MPI Comm split HReduce
Reduce

Fig. 4 Hierarchical pipeline
reduce. m = 16KB, segment
1KB and p = 512

20 22 24 26 28
0

5 · 10−2

0.1

0.15

Number of groups

T
im

e(
Se

c)

HReduce Reduce

order binary tree reduce algorithm.Wewould like to highlight one important point that
Fig. 5 does not compare the performance of different Open MPI reduce algorithms,
but shows the speedup of their hierarchical transformations. Each of these algorithms
can be better than the others in some specific settings depending on the message size,
number of processes, underlying network, and so on. At the same time, the hierarchical
transformation of these algorithms will either improve their performance or be equally
fast.

Figure 6 demonstrates experiments with the hierarchical allreduce. On the left, we
have the results with the hierarchical linear allreduce where any number of groups
decrease the execution time of the original allreduce operation. The figure on the right
shows the speedups of the hierarchical transformation of different allreduce algorithms
that include the native allreduce operation, basic linear (reduce followed by broadcast
without message segmentation), non-overlapping (reduce followed by broadcast with
message segmentation), recursive-doubling, ring, and segmented-ring algorithms. As

123



Hierarchical redesign of classic MPI reduction algorithms

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9

11
13
15
17
19
21
23
25
27

Reduce algorithms and their hierarchica
l modifications

Message size(KB)

Sp
ee
du

p

NT LI CH PL BR BL IBR

24
25

26
27

28
29210

211
212

213

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31

Reduce algorithms and their hierarchica
l modifications

Message size(KB)

Sp
ee
du

p
Fig. 5 Speedup on 256 (left) and 512 (right) cores, one process per core

20 22 24 26 28
0

200

400

600

800

Number of groups

T
im

e(
Se

c)

NT BL NOV RD RG SRG

24
25

26
27

28
29

213
214

1

3

5

7

9

11

Allreduce algorithms and their hierarchica
l modifications

Message size(KB)

Sp
ee
du

p

Fig. 6 Hierarchical linear allreduce performance with a message of size 16KB (left). Speedup of hier-
archical allreduce on 512 cores with different algorithms and message sizes (right). NT native open MPI
allreduce operation, BL basic linear, NOV non-overlapping, RD recursive doubling, RG ring, and finally
SRG segmented ring algorithm

seen, there is no improvement over the recursive-doubling algorithm; however, all the
other algorithms get their execution time reduced after their hierarchical transforma-
tion. As expected, this improvement is multifold for basic linear and non-overlapping
allreduce algorithms.

5 Conclusion

Despite that there has been a lot of research in MPI collective communications, this
work shows that their performance is far from optimal and there is some room for
improvement. Indeed, our simple hierarchical optimization, which transforms existing

123



K. Hasanov, A. Lastovetsky

MPI reduction algorithms into two-level hierarchy, gives significant improvement on
small- and medium-scale platforms.

We plan to investigate the effect of using different reduction algorithms in each
hierarchy and different number of processes per group.

Automatic estimation of the optimal number of groups is the main challenge of the
hierarchical approach. To deal with that we are actively developing an MPI software
library which will provide automatic estimation and selection of the optimal number
of groups during run time.

Acknowledgments The experiments presented in this publication were carried out using the Grid’5000
experimental testbed, being developed under the INRIA ALADDIN development action with support from
CNRS, RENATER and several universities as well as other funding bodies (see https://www.grid5000.fr).
This work was also supported by Science Foundation Ireland under Grant Number 14/IA/2474.

References

1. Message passing interface forum. http://www.mpi-forum.org/. Accessed 20 Feb 2016
2. Rabenseifner R (2004) Optimization of collective reduction operations. In: 2004 International confer-

ence on computational science, pp 1–9
3. Venkata MG et al (2013) Optimizing blocking and nonblocking reduction operations for multicore

systems: hierarchical design and implementation. In: 2013 IEEE international conference on cluster
computing, pp 1–8

4. Hasanov K, Quintin JN, Lastovetsky A (2015) Hierarchical approach to optimization of parallel matrix
multiplication on large-scale platforms. J Supercomput 71(11):3991–4014

5. Hasanov K, Quintin JN, Lastovetsky A (2014) High-level topology-oblivious optimization of MPI
broadcast algorithms on extreme-scale platforms. In: Euro-Par 2014: parallel processing workshops,
lecture notes in computer science, vol 8806, Springer, New York, pp 412–424

6. de Geijn RA, Jerrell W (1997) SUMMA: scalable universal matrix multiplication algorithm. Concurr
Pract Exp 9(4):255–274

7. HasanovK, Lastovetsky A (2015) Hierarchical optimization ofMPI reduce algorithms. In: PaCT 2015,
lecture notes in computer science, vol 9251, Springer, New York, pp 21–34

8. Gabriel E, Fagg G, Bosilca G, Angskun T, Dongarra J et al (2004) Open MPI: goals, concept, and
design of a next generation MPI implementation. In: EuroPVM/MPI 2004, lecture notes in computer
science, vol 3241, Springer, New York, pp 97–104

9. Bala V, Bruck J, Cypher R, Elustondo P, Ho C-T, Ho C-T, Kipnis S, Snir M (1995) CCL: a portable and
tunable collective communication library for scalable parallel computers. IEEE Trans Parallel Distrib
Syst 6(2):154–164

10. Barnett M, Shuler L, van De Geijn R, Gupta S, Payne DG, Watts J (1994) Interprocessor collective
communication library (InterCom). In: IEEE scalable high-performance computing conference, pp
357–364

11. Kielmann T, Hofman RF, Bal HE, Plaat A, Bhoedjang RA (1999) MagPIe: MPI’s collective commu-
nication operations for clustered wide area systems. ACM Sigplan Notices 34(8):131–140

12. Chan EW, Heimlich MF, Purkayastha A, Van de Geijn RA (2004) On optimizing collective commu-
nication. In: 2004 IEEE international conference on cluster computing, pp 145–155

13. Vadhiyar SS, Fagg GE, Dongarra J (2000) Automatically tuned collective communications. In:
ACM/IEEE conference on supercomputing, p 3

14. Hockney RW (1994) The communication challenge for MPP: intel paragon and Meiko CS-2. Parallel
Comput 20(3):389–398

15. Pjes̆ivac-Grbović J (2007) Towards automatic and adaptive optimizations ofMPI collective operations.
PhD thesis, University of Tennessee, Knoxville

16. Lastovetsky A, Rychkov V, O’Flynn M (2008) MPIBlib: Benchmarking MPI communications for
parallel computing on homogeneous and heterogeneous clusters. In: EuroPVM/MPI 2008, lecture
notes in computer science, vol 5205, Springer, New York, pp 227–238

123

https://www.grid5000.fr
http://www.mpi-forum.org/


Hierarchical redesign of classic MPI reduction algorithms

17. Hasanov K, Quintin JN, Lastovetsky A (2015) Topology-oblivious optimization of MPI broadcast
algorithms on extreme-scale platforms. Simul Model Pract Theory 58:30–39

18. HasanovK (2015)Hierarchical approach to optimization ofMPI collective communication algorithms.
PhD. thesis, University College Dublin

19. MPICH-A Portable Implementation of MPI. http://www.mpich.org/. Accessed 01 March 2016

123

http://www.mpich.org/

	Hierarchical redesign of classic MPI reduction algorithms
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related work
	2.1 MPI reduce and allreduce algorithms

	3 Hierarchical optimization of MPI reduce and allreduce algorithms
	3.1 Hierarchical optimization of MPI reduce algorithms
	3.1.1 Hierarchical transformation of flat tree reduce algorithm

	3.2 Hierarchical optimization of MPI allreduce algorithms
	3.2.1 Theoretical analysis of the allreduce algorithms


	4 Experiments
	5 Conclusion
	Acknowledgments
	References




