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HETEROPBLAS: A SET OF PARALLEL BASIC LINEAR ALGEBRA SUBPROGRAMS

OPTIMIZED FOR HETEROGENEOUS COMPUTATIONAL CLUSTERS∗

RAVI REDDY†, ALEXEY LASTOVETSKY†, AND PEDRO ALONSO‡

Abstract. This paper presents a software library, called Heterogeneous PBLAS (HeteroPBLAS), which provides optimized
parallel basic linear algebra subprograms for Heterogeneous Computational Clusters. This library is written on the top of HeteroMPI
and PBLAS whose building blocks, the de facto standard kernels for matrix and vector operations (BLAS) and message passing
communication (BLACS), are optimized for heterogeneous computational clusters. This is the first step towards the development
of a parallel linear algebra package for Heterogeneous Computational Clusters.

We show that the efficiency of the parallel routines is due to the most important feature of the library, which is the automation
of the difficult optimization tasks of parallel programming on heterogeneous computing clusters. They are the determination of
the accurate values of the platform parameters such as the speeds of the processors and the latencies and bandwidths of the
communication links connecting different pairs of processors, the optimal values of the algorithmic parameters such as the data
distribution blocking factor, the total number of processes, the 2D process grid arrangement, and the efficient mapping of the
processes executing the parallel algorithm to the executing nodes of the heterogeneous computing cluster.

We present the user interface and the software hierarchy of the first research implementation of HeteroPBLAS. We demonstrate
the efficiency of the HeteroPBLAS programs on a homogeneous computing cluster and a heterogeneous computing cluster.
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1. Introduction. This paper presents a software library, called Heterogeneous PBLAS (HeteroPBLAS),
which provides optimized parallel basic linear algebra subprograms (PBLAS) for Heterogeneous Computational
Clusters. This library is written on top of HeteroMPI [1], and PBLAS [2] whose building blocks, the de facto
standard kernels for matrix and vector operations (BLAS [3]) and message passing communication (BLACS [4]),
are optimized for heterogeneous computational clusters.

We start with presentation of related works, which have produced solely heterogeneous parallel algo-
rithms/strategies. There are two strategies of distribution of computations that can be used to implement
PBLAS for Heterogeneous Computing Clusters (HCCs) [5]:

1. HeHo: heterogeneous distribution of processes over processors and homogeneous block distribution of
data over the processes. This was implemented in mpC language [6, 7] with calls to ScaLAPACK [8];

2. HoHe: homogeneous distribution of processes over processors with each process running on a separate
processor and heterogeneous block cyclic distribution of data over the processes. This was implemented in mpC
language with calls to BLAS and LAPACK [9].

The HeHo strategy is a multiprocessing approach that is commonly used to accelerate ScaLAPACK pro-
grams on HCCs. The strategies are compared using Cholesky factorization on a HCC. The authors [5] show that
for HCCs, the strategies HeHo and HoHe are more efficient than the traditional homogeneous strategy HoHo
(homogeneous distribution of processes over processors with each process running on a separate processor and
homogeneous block cyclic distribution of data over the processes implemented in ScaLAPACK). The main dis-
advantage of the HoHe strategy is non Cartesian nature of the data distribution, which is the distribution where
each processor has to communicate with more than four direct neighbors. This leads to additional communi-
cations that can be crippling in the case of large networks. Moreover, the non Cartesian nature leads to poor
scalability of the linear algebra algorithms that are proven scalable in the case of Cartesian data distribution
and networks allowing parallel communications.

Beaumont et al. [10] present a proposal motivating provision of PBLAS in the form of a library for HCCs.
The authors discuss HoHe strategies to implement matrix products and dense linear system solvers for HCCs
and present them as a basis for a successful extension of the ScaLAPACK library to HCCs. They show that
extending the standard ScaLAPACK block cyclic distribution to heterogeneous 2D grids is a difficult task.
However, providing this extension is only the first step. The ScaLAPACK software must then be completely
redesigned and rewritten, which is not a trivial effort.
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The multiprocessing strategy (HeHo), however, is easier to accomplish. It allows the complete reuse of high
quality software such as ScaLAPACK on HCCs with no redesign efforts and provides good speedups. It can be
summarized as follows:

1. The whole computation is partitioned into a large number of equal chunks;
2. Each chunk is performed by a separate process;
3. The number of processes run by each processor is proportional to its speed.

Thus, while distributed evenly across parallel processes, data and computations are distributed unevenly
over processors of the HCC so that each processor performs the volume of computations proportional to its
speed.

There have been several research contributions illuminating the merits of this strategy. Kishimoto and
Ichikawa [11] use it to estimate the best processing element (PE) configuration and process allocation based
on an execution time model of the application. The execution time is modeled from the measurement results
of various configurations. Then, a derived model is used to estimate the optimal PE configuration and process
allocation. Kalinov and Klimov [12] investigate the HeHo strategy where the performance of the processor is
given as a function of the number of processes running on the processor and the amount of data distributed to
the processor. They present an algorithm that computes optimal number of processes and their distribution over
processors minimizing the execution time of the application. Cuenca et al. [13] analyze automatic optimization
techniques in the design of parallel dynamic programming algorithms on heterogeneous platforms. The main
idea is to determine automatically the optimal values of a number of algorithmic parameters such as number of
processes, number of processors, and number of processes per processor.

Therefore, there has been a proliferation of research efforts presenting approaches to implement parallel
solvers for HCCs but scientific software based on these approaches is virtually nonexistent. However, one
can conclude from these research efforts that any software aspiring to provide automatically tuned parallel
linear algebra programs for HCCs must automate the following essential and complicated tasks, which are also
described in [14]:

1. Determination of the accurate values of platform parameters such as speeds of the processors, latencies
and bandwidths of the communication links connecting different pairs of processors. These parameters compose
the performance model of the executing heterogeneous platform;

2. Determination of the optimal values of algorithmic parameters such as the data distribution blocking
factor, the total number of processes, and the 2D process grid arrangement to be used during the execution of
the linear algebra kernel, and

3. Efficient mapping of the processes executing the parallel algorithm to the executing nodes of the HCC.

In this paper, we present a software library, called Heterogeneous PBLAS (HeteroPBLAS), which provides
optimized PBLAS for HCCs. The design of the software library adopts the multiprocessing approach and
thus reuses the PBLAS software (a component of ScaLAPACK) completely. The library also performs the
automations of the aforementioned tedious and error prone tasks. This can be seen as the first step towards
the development of a parallel linear algebra package for HCCs.

The rest of the paper is organized as follows. We start with an overview of the software in the HeteroPBLAS
package. We describe the different software components and building blocks of the first research implementation
as well as the user interface. In §3, we present the performance model of one of the PBLAS routines. The
writing of the performance models formed the core development activity of the project. In §4, we explain how
the optimal values of the algorithmic parameters are determined. In §5, we present the experimental results
of execution of HeteroPBLAS programs on a homogeneous computing cluster and a heterogeneous computing
cluster. We conclude the paper by outlining our future research goals.

2. Overview of Heterogeneous PBLAS. The flowchart of the main routines of HeteroPBLAS software
library is shown in Fig. 2.1. The high level building blocks of HeteroPBLAS are HeteroMPI and PBLAS. The
Parallel BLAS (PBLAS) is a parallel set of BLAS, which perform message passing and whose interface is as
similar to BLAS as possible. The design goal of PBLAS was to provide specifications of distributed kernels,
which would simplify and encourage the development of high performance and portable parallel numerical
software, as well as providing manufacturers with a small set of routines to be optimized. These subprograms
were used to develop parallel libraries such as ScaLAPACK, which is a well known standard package providing
high performance linear algebra routines for distributed memory message passing MIMD computers supporting
PVM and/or MPI.
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ScaLAPACK uses block partitioned algorithms to ensure good performance on MIMD distributed memory
concurrent computers, by minimizing the frequency of data movement between different levels of the memory
hierarchy. The most fundamental building blocks of ScaLAPACK are the sequential BLAS, in particular the
Level 2 and 3 BLAS, and the BLACS, which perform common matrix oriented communication tasks. The
PBLAS are used as the highest level building blocks for implementing the ScaLAPACK library and provide the
same ease of use and portability for ScaLAPACK that the BLAS provide for LAPACK.

HeteroMPI is an extension of MPI for programming high performance computations on HCCs. The main
idea of HeteroMPI is to automate the process of selection of a group of processes, which would execute the
parallel algorithm faster than any other group.
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Fig. 2.1. Flow of the HeteroPBLAS context creation routine call. The percentages give the breakup of HeteroPBLAS devel-
opment efforts.

The first step in this process of automation is the writing/specification of the performance model of the
parallel algorithm. Performance model is a tool supplied to the programmer to specify his high level knowledge
of the application that can assist in finding the most efficient implementation on HCCs. This model allows
description of all the main features of the underlying parallel algorithm that affect the execution performance
of parallel applications on HCCs. These features are:

1. The total number of processes executing the algorithm;
2. The total volume of computations to be performed by each of the processes in the group during the

execution of the algorithm;
3. The total volume of data to be transferred between each pair of processes in the group during the

execution of the algorithm;
4. The order of execution of the computations and communications by the parallel processes in the group,

that is, how exactly the processes interact during the execution of the algorithm.
HeteroMPI provides a dedicated performance model definition language (PMDL) for writing this perfor-

mance model. The model and the PMDL are borrowed from the mpC programming language. The PMDL
compiler compiles the performance model written in PMDL to generate a set of functions, which make up the
algorithm specific part of the HeteroMPI runtime system. These functions are called by the mapping algorithms
of HeteroMPI runtime system to estimate the execution time of the parallel algorithm.

A typical HeteroMPI application contains HeteroMPI group management function calls to create and destroy
a HeteroMPI group, and the execution of the computations and communications involved in the execution of the
parallel algorithm employed in the application by the members of the group. The principal group constructor
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routine HMPI_Group_auto_create determines the optimal number of processes and the optimal process grid
arrangement, thereby relieving the application programmers from having to specify these parameters during
the execution of the parallel application.

During the creation of a group of processes, the HeteroMPI runtime system solves the problem of selection
of the optimal set of processes running on different computers of the HCC. It should be noted that this problem
of mapping, in general, is NP-complete. The mapping algorithms used to solve the problem of selection of
processes are explained in [1, 7]. The solution is based on the following:

1. The performance model of the parallel algorithm in the form of the set of functions generated by the
compiler from the compilation of the performance model written in PMDL;

2. The performance model of the executing network of computers, which reflects the state of this network
just before the execution of the parallel algorithm. This model considers the executing heterogeneous network
as a multilevel hierarchy of interconnected sets of heterogeneous multiprocessors [7]. This model takes into
account the material nature of communication links and their heterogeneity.

The principal routines in HeteroPBLAS software library are the context creation functions for the PBLAS
routines. There is a context creation function for each PBLAS routine. It provides a context for the execution
of the PBLAS routine but most importantly, performs the critical work of automating the difficult optimization
tasks.

All the context creation routines have names of the form hscal_pxyyzz_ctxt. The second letter, x, indicates
the data type. For example, d would mean double precision real data. The next two letters, yy, indicate the
type of matrix (or of the most significant matrix). For example, ge would represent a general matrix. The
last three letters zz indicate the computation performed. For example, the context creation function for the
PDGEMM routine has an interface, which is shown below:

int hscal_pdgemm_ctxt(char* transa, char* transb,

int * m, int * n, int * k, double * alpha, int * ia, int * ja,

int * desca, int * ib, int * jb, int * descb, double * beta,

int * ic, int * jc, int * descc, int * ictxt)

This function call returns a handle to a HeteroMPI group of MPI processes in ictxt and a return value of
HSCAL_SUCCESS on successful execution. It differs from the PBLAS PDGEMM call in the following ways:

1. It returns a context but does not actually execute the PDGEMM routine;
2. The input arguments are the same as for the PDGEMM call except
(i) The matrices A, B and C containing the data are not passed as arguments;
3. The output arguments differ as follows:
(i) An extra return argument, ictxt, which contains the handle to a group of MPI processes that is

subsequently used in the actual execution of the PDGEMM routine;
(ii) A return value of HSCAL_SUCCESS indicating successful execution or otherwise an appropriate error

code.

The function call is a collective operation and must be called by all the processes running in the Hetero-
PBLAS program. The context contains a handle to a HeteroMPI group of MPI processes, which tries to execute
the PBLAS routine faster than any other group of processes. This context can be reused in multiple calls of
the same routine or any routine that uses similar parallel algorithm as PDGEMM. The reader is referred to the
HeteroPBLAS programmer’s manual for more details of the user interface.

The HeteroPBLAS context creation/destruction routines call interface functions of HeteroMPI runtime
system (the main routines being HMPI_Recon, HMPI_Timeof, HMPI_Group_auto_create). The HeteroPBLAS
information functions calculate the total number of computations (arithmetical operations) performed by each
process and the total number of communications in bytes between a pair of processes involved in the execution
of the PBLAS routine. These routines are serial and can be called by any process. They do not actually execute
the corresponding PBLAS routine but just calculate the total number of computations and communications
involved. The block IPBLAS (‘I’ standing for instrumented) represents the instrumented code of PBLAS, which
reuses the existing code base of PBLAS completely. The instrumentations made to it are (a) Wrapping of the
parallel regions of the code in mpC par loops recognized by the PMDL compiler and (b) Replacement of the
serial BLAS computation routines and the BLACS communication routines by calls to information functions,
which return the number of arithmetical operations performed by each process and number of communications
in bytes between different pairs of processes respectively.
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The first step in the implementation of the context creation routine for a HeteroPBLAS routine is the
writing of its performance model using the PMDL. The performance model definitions contain the instrumented
code components. The HeteroMPI compiler compiles this performance model to generate a set of functions.
During the creation of the context, the mapping algorithms of HeteroMPI runtime system call these functions
to estimate the execution time of the PBLAS routine.

The writing of performance models of all the PBLAS routines has been the most laborious and intricate
effort of this project. The key design issues were (a) accuracy, to facilitate accurate prediction of the execution
time of the PBLAS routine, (b) efficiency, to execute the performance model in reasonable execution time,
(c) reusability, as these performance models are to be used as building blocks for the performance models of
ScaLAPACK routines, and (d) preservability, to preserve the key design features of underlying ScaLAPACK
package. In the next section, we present one such performance model that demonstrates the tedium and accuracy
of the writing process.

3. Performance model of PBLAS PDGEMM. The performance model definition of PDGEMM rou-
tine shown in Fig. 3.1 is used to demonstrate the complexity of the effort of writing a performance model. It
describes the simplest case of parallel matrix–matrix multiplication of two dense square matrices A and B of
size n*n. The reader is referred to [1, 7] for more details of the main constructs, namely coord, parent, node,
link, and scheme, used in a description of a performance model. This definition is an extensively stripped down
version of the actual definition, which can be studied from the package. The data distribution blocking factor
b is assumed equal to the algorithmic blocking factor. Another simplification is that the matrices are divided
such that (n%(b*p)) and (n%(b*q)) (see explanation of variables below) are both equal to zero.

/* 1 */ algorithm pdgemm(int n, int b, int bp, int bq, int p, int q) {

/* 2 */ coord I=p, J=q;

/* 3 */ node {I>=0 && J>=0:

/* 4 */ bench*((n/b)*((n/p)*(n/q)*(b))/((n/bp)*(n/bq)*(b)));};

/* 5 */ link (K=p, L=q)

/* 6 */ {

/* 7 */ I>=0 && J>=0 && J!=L:

/* 8 */ length*((n/p)*(n/q)*sizeof(double))

/* 9 */ [I, J]->[I, L];

/* 10 */ I>=0 && J>=0 && I!=K:

/* 11 */ length*((n/p)*(n/q)*sizeof(double))

/* 12 */ [I, J]->[K, J];

/* 13 */ };

/* 14 */ parent[0,0];

/* 15 */ scheme

/* 16 */ {

/* 17 */ int i, j, k;

/* 18 */ for(k = 0; k < n; k+=b)

/* 19 */ {

/* 20 */ par(i = 0; i < p; i++)

/* 21 */ par(j = 0; j < q; j++)

/* 22 */ if (j != ((k/b)%q))

/* 23 */ (100.0/(n/q)) %% [i,((k/b)%q)]->[i,j];

/* 24 */ par(i = 0; i < p; i++)

/* 25 */ par(j = 0; j < q; j++)

/* 26 */ if (i != ((k/b)%p))

/* 27 */ (100.0/(n/p)) %% [((k/b)%p),j]->[i,j];

/* 28 */ par(i = 0; i < p; i++)

/* 29 */ par(j = 0; j < q; j++)

/* 30 */ ((100.*(b/n)) %% [i,j];

/* 31 */ }

/* 32 */ };

/* 33 */ };

Fig. 3.1. The performance model of the PDGEMM routine written in the performance model definition language.



206 R. Reddy, A. Lastovetsky and P. Alonso

Line 1 is a header of the performance model declaration. It introduces the name of the performance model
pdgemm parameterized with the scalar integer parameters n, b, bp, bq, p, and q. Parameter n is the size of
square matrices A, B, and C. Parameter b is the size of the data distribution blocking factor. Parameters bp
and bq are used in the execution of the benchmark code, which performs a matrix update of a matrix Cb of size
(n/bp)*(n/bq) using Ab of size (n/bp)*(b) and Bb of size (b)*(n/bq). The value of the parameter bp is the
square root of the total number of processes available for computation. The value of parameter bq is equal to
total number of processes divided by bp. Parameters p and q represent the number of processes along the row
and the column in the process grid arrangement.

Line 3 is a coordinate declaration declaring the 2D coordinate system to which the processor nodes of the
network are related. Line 4 is a node declaration. It associates the processes with this coordinate system to
form a p\times q grid. It specifies the (absolute) volume of computations performed by each of the processes.
The statement bench just specifies that as a unit of measurement, the volume of computation performed
by some benchmark code be used. The benchmark code solves the core computational task, which is the
matrix update representing the largest share of the computations performed by the processes at each step
of the PBLAS routine. In other words, it is the costliest task performed by a process at each step of the
PBLAS routine. In this case, the benchmark code used for estimation of speeds of processes performs a local
DGEMM update of two dense (n/bp)*b and b*(n/bq) matrices where b is the optimal data distribution
factor determined by the HeteroPBLAS runtime system (to follow in the next section). The total volume of
computations performed by each process in the benchmark code is (n/bp)*(n/bq)*b. The total volume of
computation performed by each process PIJ at each step of the parallel algorithm is (n/p)*(n/q)*b. Since
there are n/b steps in the parallel algorithm, the total volume would be ((n/b)*(n/p)*(n/q)*(b)). The line 4
of node declaration describes the ratio of this total volume to the total volume of computations involved in the
execution of the benchmark code. Lines 5–13 represent a link declaration. This specifies the links between the
processes, the pattern of communication among the processes, and the total volume of data to be transferred
between each pair of processes during the execution of the algorithm. Lines 7–9 of the link declaration describe
horizontal communications related to matrix A. Obviously, processes from the same column of the process grid
do not send each other elements of matrix A. Only processes from the same row of the process grid send each
other elements of matrix A. Process PIJ will send (n/p)*(n/q) number of elements of matrix A to process
PIL. So the total volume of data transferred (in bytes) from process PIJ to process PIL will be given by
(n/p)*(n/q)*sizeof(double).

Lines 10–13 of the link declaration describe vertical communications related to matrix B. Obviously, only
processes from the same column of the process grid send each other elements of matrix B. In particular, process
PIJ will send all its elements of matrix B to all other processes from column J of the processor grid. That is,
process PIJ will send (n/p)*(n/q) number of elements of matrix B to process PKJ . So the total volume of
data transferred (in bytes) from process PIJ to processor PKJ will be given by (n/p)*(n/q)*sizeof(double).

Line 15 introduces the scheme declaration. The scheme block describes how exactly processes interact
during the execution of the algorithm. The scheme block is composed mainly of two types of units. They are
computation and communication units. Each computation unit is of the form e%%[i] specifying that e percent
of the total volume of computations is performed by the process with the coordinates (i). Each communication
unit is of the form e%%[i[→ [j] specifying transfer of data from process with coordinates i to the process with
coordinates j. There are two types of algorithmic patterns in the scheme declaration, which are sequential
and parallel. The parallel algorithmic patterns are specified by the keyword par and they describe parallel
execution of some actions (mixtures of computations and communications). The scheme declaration describes
(n/b) successive steps of the algorithm. At each step k,

1. Lines 20–23 describe horizontal communications related to matrix A. A column of b*b blocks of matrix
A is communicated horizontally. The number of elements transferred from PIJ to PIL at this step will be (n/p).
The total number of elements of matrix A, which process PIJ sends to process PIL, during the execution of
the algorithm is (n/p)*(n/q). Therefore, (n/p)/((n/p)*(n/q))*100=(100./(n/q)) percent of all data that
should be sent from process PIJ to process PIL will be sent at the step. The nested par statement in the
main for loop of the scheme declaration specifies this fact. Again, we use the par algorithmic patterns in this
specification to stress that during the execution of this communication, data transfer between different pairs of
processes is carried out in parallel;

2. Lines 24–27 describe vertical communications related to matrix B. A row of b*b blocks of matrix B

is communicated vertically. The number of elements transferred from PIJ to PKJ at this step will be (n/q).
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The total number of elements of matrix B, which process PIJ sends to process PKJ , during the execution of
the algorithm is (n/p)*(n/q). Therefore, (n/q)/((n/p)*(n/q))*100=(100./(n/p)) percent of all data that
should be sent from process PIJ to process PKJ will be sent at the step. The nested par statement in the
main for loop of the scheme declaration specifies this fact. Again, we use the par algorithmic patterns in this
specification to stress that during the execution of this communication, data transfer between different pairs of
processes is carried out in parallel;

3. Lines 28–30 describe computations. Each process updates each of its b*b block of matrix C with one
block from the pivot column and one block from the pivot row. At each of (n/b) steps of the algorithm, each
process will perform (100.*b/n) percent of the volume of computations it performs during the execution of
the algorithm. The third nested par statement in the main for loop of the scheme declaration just specifies this
fact. The par algorithmic patterns are used here to specify that all processes perform their computations in
parallel.

The simplest case of PDGEMM PBLAS routine just described demonstrates the complexity of the task
of writing a performance model. There are altogether 123 such performance model definitions covering all the
PBLAS routines. They can be found in the HeteroPBLAS package in the directory /PBLAS/SRC available at
the URL [15]. The performance model files start with prefix pm_ followed by the name of the PBLAS routine
and have a file extension mpc.

int main(int argc, char **argv) {

int nprow, npcol, pdgemmctxt, myrow, mycol, c__0 = 0;

/* Problem parameters */

char *TRANSA, *TRANSB;

int *M, *N, *K, *IA, *JA, *DESCA, *IB, *JB, *DESCB, *IC, *JC,

*DESCC;

double *ALPHA, *A, *B, *BETA, *C;

/* Initialize the heterogeneous PBLAS runtime */

hscal_init(&argc, &argv);

/* Get the heterogeneous PDGEMM context */

hscal_pdgemm_ctxt(TRANSA, TRANSB, M, N, K, ALPHA, IA, JA, DESCA,

IB, JB, DESCB, BETA, IC, JC, DESCC, &pdgemmctxt);

if (!hscal_in_ctxt(&pdgemmctxt))

hscal_finalize(c__0);

/* Retrieve the process grid information */

Cblacs_gridinfo(pdgemmctxt, &nprow, &npcol, &myrow, &mycol);

/* Initialize the array descriptors for the matrices A, B and C */

descinit_(DESCA, \dots , &pdgemmctxt); /* for Matrix A */

descinit_(DESCB, \dots , &pdgemmctxt); /* for Matrix B */

descinit_(DESCC, \dots , &pdgemmctxt); /* for Matrix C */

/* Distribute matrices on the process grid using user-defined pdmatgen */

pdmatgen_(&pdgemmctxt, \dots ); /* for Matrix A */

pdmatgen_(&pdgemmctxt, \dots ); /* for Matrix B */

pdmatgen_(&pdgemmctxt, \dots ); /* for Matrix C */

/* Call the PBLAS pdgemm routine */

pdgemm_(TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA, DESCA, B, IB,

JB, DESCB, BETA, C, IC, JC, DESCC);

/* Release the heterogeneous PDGEMM context */

hscal_free_ctxt(&pdgemmctxt);

/* Finalize the Heterogeneous PBLAS runtime */

hscal_finalize(c__0);

}

Fig. 4.1. HeteroPBLAS program employing PBLAS PDGEMM.

4. Determination of the optimal algorithmic parameters. Fig. 4.1 shows the essential steps involved
in calling the PBLAS PDGEMM routine in a HeteroPBLAS program. The HeteroPBLAS runtime is initialized
using the operation hscal- _init. The heterogeneous PDGEMM context is obtained using the context con-
structor routine hscal_pdgemm_ctxt. The function call hscal_in_ctxt returns a value of 1 for the processes
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chosen to execute the PDGEMM routine, otherwise 0. Then the homogeneous PBLAS PDGEMM routine is exe-
cuted. The heterogeneous PDGEMM context is freed using the context destructor operation hscal_free_ctxt.
When all the computations are completed, the program is exited with a call to hscal_finalize, which finalizes
the HeteroPBLAS runtime.

The PDGEMM context constructor routine hscal_pdgemm_ctxt is the main function automating the dif-
ficult optimization tasks of parallel programming on HCCs. They are the determination of the accurate values
of the platform parameters such as the speeds of the processors and the latencies and bandwidths of the com-
munication links connecting different pairs of processors, the optimal values of the algorithmic parameters
such as the data distribution blocking factor, the total number of processes, the 2D process grid arrange-
ment, and efficient mapping of the processes executing the parallel algorithm to the executing nodes of the
HCC.

4.1. Data distribution blocking factor. The context constructor routine hscal_pdgemm_ctxt uses the
HeteroMPI function HMPI_Timeof, as shown below, to determine the optimal value of the data distribution
blocking factor.

double time, min_time = DBL_MAX; void *model_params;

for (b = 1; b <= n; b++) {

// Fill the parameters to the performance model

model_params[0] = n; model_params[1] = b;

model_params[2] = bp; model_params[3] = bq;

model_params[4] = p; model_params[5] = q;

// Refresh the speeds of the processors

HMPI_Recon(&hscal_dgemm_benchmark, model_params);

if (HMPI_Is_host()) {

time = HMPI_Timeof(&hscal_model_pdgemm, model_params);

if (time < min_time)

opt_b = b; min_time = time;

}

}

The function HMPI_Timeof is used to estimate the execution time of the algorithm on the underlying hardware
without its real execution. This local operation can be called by any process, which is a member of the group
associated with the predefined communication universe of HeteroMPI. The parameters to this function are
the handle, hscal_model_pdgemm, generated from the compilation of the performance model of the PDGEMM
routine, and the parameters to this performance model. As one can see from the code snippet, this estimation
is performed for each possible set of values to the parameters to the performance model. Using the execution
time predicted for each set, the optimal value can be determined, which would be the one resulting in minimum
estimated execution time.

The estimation is based on the performance model of the PDGEMM routine and the performance model
of the executing network of computers, which reflects the state of this network just before the execution of the
PDGEMM routine. The function HMPI_Recon is used to update dynamically the estimation of processor speeds
at runtime. This is a collective operation and must be called by all the processes running in the HeteroPBLAS
application. The performance model of the executing network of computers is summarized as follows:

1. The performance of each processor is characterized by the execution time of the same serial code (takes
place during the execution of HMPI_Recon)

(i) The serial code is provided by the application programmer;
(ii) It is supposed that the code is representative for the computations performed during the execution of

the application;
(iii) The code is performed at runtime in the points of the application specified by the application program-

mer. Thus, the performance model of the processors provides current estimation of their speed demonstrated
on the code representative for the particular application.
In this case, the serial code, hscal_dgemm_benchmark, performs a local DGEMM update of (N/bp)×b and
b×(N/bq) matrices where b is the data distribution blocking factor;

2. The communication model [7] is seen as a hierarchy of homogeneous communication layers. Each is
characterized by the latency and bandwidth. Unlike the performance model of processors, the communication
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model is static, a shortcoming that would be addressed in our future work. Its parameters are obtained during
the initialization of the Heterogeneous ScaLAPACK runtime and are not refreshed later.

The estimation procedure is explained in detail in [7] and is summarized here. The time of execution for
each mapping, µ : I → C, where I is a set of the processes of the group, and C = {c0, c1, . . . , cM−1} is a
set of computers of the executing network, is estimated. The estimation time for the optimal mapping, which
would ensure the fastest execution of the parallel algorithm, is returned. In general, for accurate solution of this
problem as many as MK possible mappings have to be probated to find the best one (here, K is the number of
processes of the group). Obviously, that computational complexity is not acceptable for a practical algorithm
that should be performed at runtime. Therefore, the HeteroMPI runtime system searches for some approximate
solution that can be found in some reasonable interval of time, namely, after probation of M × K possible
mappings instead of MK .

Each computation unit in the scheme declaration of the form e%%[i] is estimated. Each communication
unit of the form e%%[i] → [j] specifying transfer of data from virtual processor with coordinates i to the
virtual processor with coordinates j is estimated. Simple calculation rules are used to estimate the sequential
algorithmic patterns in the scheme declaration. For example, the estimation of the pattern

for (e1; e2; e3) a

is calculated as follows:

for (T=0, e1; e2; e3)

T += time taken to execute action a

The rules just reflect semantics of the corresponding serial algorithmic patterns.

The rule to estimate time for a parallel algorithmic pattern

par (e1; e2; e3) a

is more complicated and is explained in detail in [7]. This is the core of the entire mapping algorithm determining
its accuracy and efficiency. It takes into account material nature and heterogeneity of both processors and
network equipment. It relies on fairly allocating processes to processors in a shared memory multiprocessor
normally implemented by operating systems for processes of the same priority (HeteroMPI processes are just
the case). At the same time, it proceeds from the pessimistic point of view when estimating workload of different
processors of that multiprocessor. Estimation of communication cost by the rule is sensitive to scalability of
the underlying network technology. It treats differently communication layers serializing data packages and
supporting their parallel transfer. The most typical and widely used collective communication operations are
treated specifically to provide better accuracy of the estimation of their execution time. An important advantage
of the rule is its relative simplicity and effectiveness. The effectiveness is critical because the algorithm is
supposed to be multiply executed at runtime.

This procedure to determine the optimal value of the data distribution blocking factor is now performed
during the installation of the HeteroPBLAS software rather than for every call of the context constructor routine
for performance reasons.

4.2. Two dimensional process grid arrangement. The optimal value of this algorithmic parameter
represents all of the following: the optimal values for the total number of processes, the number of process rows,
the number of process columns, and efficient mapping of the processes to the executing computers of the HCC.
The context constructor routine hscal_pdgemm_ctxt calls the HeteroMPI function HMPI_Group_pauto_create

to determine the optimal values. Its operation employing HeteroMPI calls is shown below:

int i, k, pa, p, opt_p, q, opt_q, *a, terminate = 0;

double t, mint=DBL_MAX; void *model_params = NULL;

// The host process

if (HMPI_Is_host()) {

// The total number of processes available for computation

int np = HMPI_Group_size(HMPI_COMM_WORLD_GROUP);

for (k=np; k>=1; k--) {

// The possible two dimensional process arrangements (p,q)

HMPI_Get_2D_process_arrangements(k, &pa, &a);

// For each two dimensional process arrangement (p,q)

for (i=0; i<pa; i++) {

// Fill the parameters to the performance model

// Estimate the execution time for each process arrangement (p,q)
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t = HMPI_Timeof(&hscal_model_pdgemm, model_params);

if (t < mint)

// A better process arrangement found, continue the algorithm

terminate = 0; mint = t; opt_p = p; opt_q = q;

}

if (terminate) { break; }

terminate=1;

}

// Create a HeteroMPI group of processes with the optimal values of

// algorithmic parameters

model_params[0] = n; model_params[1] = opt_b;

model_params[2] = bp; model_params[3] = bq;

model_params[4] = opt_p; model_params[5] = opt_q;

}

// Create a HeteroMPI group of processes

HMPI_Group_create(gid, model_params);

return HMPI_SUCCESS;

The algorithm can be summarized as follows: The number of steps of the algorithm is represented by
the variable k. For k=1, the total number of processes available for computation, np, is determined. All the
possible two dimensional process arrangements, (p,q), whose product is np, are obtained using the function,
HMPI_Get_2D_pro- cess_arrangements. For example, if the total number of processes available is 25, then
the possible two dimensional process arrangements whose product of the coordinates is 25 are {(1,25), (5,5),
(25,1)}.

Each such process arrangement, (p,q), is filled into the array of parameters to the performance model of
the PDGEMM routine. The function call HMPI_Timeof is then invoked to estimate the execution time of the
algorithm. One of the inputs to this function call is the handle, hscal_model_pdgemm, which encapsulates
all the features of the performance model in the form of a set of functions generated by the compiler from
the description of the performance model of the PDGEMM routine. The function call HMPI_Timeof invokes
the mapping algorithms of the HeteroPBLAS runtime system to select such a mapping that is estimated to
ensure the fastest execution of the parallel algorithm for that process arrangement. The selection process is
described in detail in [1, 7]. It is based on the performance model of the PDGEMM routine and the performance
model of the executing network of computers, which reflects the state of the network just before the execution
of the PDGEMM routine. During the selection process, the HeteroPBLAS runtime system searches for some
approximate solution that can be found in some reasonable interval of time by probation of a subset of all
possible mappings. From the execution times predicted for all the possible process arrangements, the process
arrangement, (opt_p, opt_q), that results in the least estimated time of execution of the algorithm is determined.

For the next step, the total number of processes is decremented by one. The possible two dimensional
process grid arrangements are again obtained and evaluated using the function HMPI_Timeof. The algorithm
continues if a process arrangement is found for which the estimated execution time is less than the estimated
execution time of the process arrangement (opt_p, opt_q) determined in the previous step. Otherwise, the
algorithm terminates.

The optimal values of the blocking factor and the 2D process grid arrangement (opt_p, opt_q) are then
passed as performance model parameters to the function call, HMPI_Group_create, which creates a HeteroMPI
group of MPI processes that participate in the execution of the parallel application. These processes become
members of the heterogeneous PDGEMM context. This function call is a collective operation and must be
called by all the processes available for computation in the predefined communication universe of HeteroMPI.

Heuristics are used to reduce the number of process arrangements evaluated. For example, one dimensional
arrangements are not evaluated in the case of matrix–matrix multiplication on Ethernet where it can be proved
using simple formulas [16] that they perform poorly compared to two dimensional arrangements and do not
minimize the objective function for networks with either sequential communications or parallel communications.

5. Experimental results. We present four sets of experiments. The first set of experiments is run on
a homogeneous computing cluster ‘Grig’ (https://www.cs.utk\-.edu/help/doku.php?id=clusters:grig)
consisting of 32 Linux nodes with 2 processors per node with Myrinet interconnect. The processor type is
Intel EM64T. The software used is heterompi-1.2.0, MPICH-1.2.7, ScaLAPACK-1.8.0 and ATLAS, which is an
optimized BLAS library.
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We chose two level3 routines, PDGEMM and PDTRSM, for demonstration because they exhibit two differ-
ent algorithmic patterns. In the case of PDGEMM, the size of the problem solved at each step of its execution,
that is number of updates of the resulting matrix, is constant whereas in the execution of PDTRSM, the size
of the problem (number of updates of the trailing submatrix) decreases with each step.

The speedup, which is shown in the figures, is calculated as the ratio of the execution time of the homoge-
neous PBLAS program and the execution time of the HeteroPBLAS program. Dense matrices of size N×N and
vectors of size N were used in the experiments. The homogeneous PBLAS program uses the default parameters
suggested by the recommendations from the ScaLAPACK user’s guide, which are to (a) use the best BLAS and
BLACS libraries available, (b) use a data distribution block size of 64, (c) use a square processor grid and (d)
execute no more than one process per processor.
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Fig. 5.1. Experimental results on the homogeneous Grig cluster. N is the size of the vector/matrix. (a) Results of PDAXPY.
(b) Results of PDGEMV. (c) Speedup of PDGEMM. (d) Speedup of PDTRSM.

The first set of experiments is composed of two parts. Fig. 5.1 shows the experimental results of the first
part. Fig. 5.1(a) and Fig. 5.1(b) show the experimental results from the execution of the PBLAS level1 routine
PDAXPY and level2 routine PDGEMV on the homogeneous cluster. The homogeneous PBLAS programs
use a 1×64 grid of processes (using one process per processor configuration). Fig. 5.1(c) and Fig. 5.1(d)
shows the experimental results from the execution of the PBLAS level3 routines PDGEMM and PDTRSM,
respectively. The homogeneous PBLAS programs use an 8×8 grid of processes (using one process per processor
configuration). In the second part, we used the optimal data distribution blocking factor and the optimal
process grid arrangement, determined by the HeteroPBLAS program, in the execution of the corresponding
homogeneous PBLAS program. From both the parts, it was observed that there is no discernible overhead
during the execution of HeteroPBLAS programs. The maximum overhead of about 7% incurred in the case of
level3 routines occurs during the creation of the context. The execution times of HeteroPBLAS programs for
level1 and level2 routines are the same if one process is executed per computer/node and not per processor. In the
case of first part, one can notice that the HeteroPBLAS programs perform better than the homogeneous PBLAS
programs. This is because the homogeneous PBLAS programs use the default parameters (recommendations
from the user’s guide) but not the optimized parameters whereas the HeteroPBLAS programs use the optimal
algorithmic parameters such as the optimal blocking factor and the optimal process arrangement.
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For equitable comparison, the PBLAS programs must be optimized for the HCC. However one of the goals
of this paper is to show how the HeteroPBLAS software automates this procedure of optimization and therefore
we use pure/unoptimized ScaLAPACK available online. However, as one must have observed by now, the
process of optimization is not trivial.

The second set of experiments is run on a small heterogeneous local network of sixteen different Linux work-
stations (hcl01–hcl16) whose specifications can be read at the URL http://hcl.ucd.ie/Hardware/Cluster+

Specifications. The network is based on 2 Gbit Ethernet with a switch enabling parallel communications
between the computers. The software used is MPICH-1.2.5, ScaLAPACK–1.8.0, and ATLAS.

The HeteroPBLAS program uses the multiprocessing approach, where more than one process is run on
each processor. The number of processes to run on each processor during the program startup is determined
automatically by the HeteroPBLAS command line interface tools. A simple heuristic used is the heterogeneity
of the network. The heterogeneity of the network due to the heterogeneity of the processors is calculated as the
ratio of the absolute speed of the fastest processor to the absolute speed of the slowest processor. For example,
consider the benchmark code of a local DGEMM update of two matrices 2560×128 and 128×2560, the absolute
speeds of the processors hcl01–hcl16 in million flop/s performing this update are {10829, 9729, 11054, 11151,
11211, 11295, 10958, 10949, 7425, 7047, 10827, 11200, 9056, 11626, 9815, 12250}. As one can see, hcl16 is the
fastest processor and hcl10 is the slowest processor. The heterogeneity in this case ≈ 2. The command line
tools, therefore, would run two processes on each processor during the program startup.
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Fig. 5.2. Experimental results on the heterogeneous cluster. N is the size of the vector/matrix. (a) Speedup of PDAXPY.
(b) Speedup of PDGEMV. (c) Speedup of PDGEMM. (d) Speedup of PDTRSM.

Fig. 5.2(a) and Fig. 5.2(b) show the experimental results from the execution of the PBLAS level1 routine
PDAXPY and level2 routine PDGEMV. The homogeneous PBLAS programs use a 1×25 grid of processes
(using one process per processor configuration). Fig. 5.2(c) and Fig. 5.2(d) show the experimental results from
the execution of the PBLAS level3 routines PDGEMM and PDTRSM respectively. The homogeneous PBLAS
program uses a 5×5 grid of processes (using one process per processor configuration).

There are a few reasons behind the superlinear speedups achieved in the case of PDGEMM and eventually
for very large problem sizes in the case of PDTRSM not shown in the figure.

The first reason is the better load balance achieved through proper allocation of processes involved in
the execution of the algorithm to the processors. During the creation of a HeteroMPI group of processes in
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the context creation routine, the mapping of the parallel processes in the group is performed such that the
number of processes running on each processor is as proportional to its speed as possible. In other words, while
distributed evenly across parallel processes, data and computations are distributed unevenly over processors of
the heterogeneous network, and this way each processor performs the volume of computations as proportional to
its speed as possible. In the case of execution of PDGEMM on HCCs, it can be seen that for problem sizes larger
than 5120, more than 25 processes must be involved in the execution to achieve good load balance. Since only 25
processes are involved in the execution of the homogeneous PBLAS program, good load balance is not achieved.
However just running more than 25 processes in the execution of the program would not resolve the problem.
This is because in such a case, the optimal process arrangement and the efficient mapping of the processes to
the executing computers of the underlying network must also be determined. This is a complex task automated
by HeteroMPI. Secondly, the optimal values of the algorithmic parameters that are automatically determined
by the HeteroPBLAS library. One of the key algorithmic parameters is the data distribution blocking factor.
There is a tradeoff between load imbalance and communication startup cost, which can be controlled by varying
the blocking factor, b. The optimal values of the blocking factor determined by the HeteroPBLAS library are
in the range (128 ≤ b ≤ 256) as shown in Fig. 5.3. It uses the value of 128. The procedure to determine the
optimal block size is performed during the installation of the software.
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Fig. 5.3. Optimal block size estimated by the HeteroPBLAS library for various problem sizes (N ≤ 20480). The execution
times are on a log scale.

Finally, the optimal values of the 2D grid arrangement of processes (p,q) address the load imbalance caused
by the computational “hot spots” where certain processes have more work to do between synchronization
points than others. There is an optimal 2D process grid arrangement, (p,q), which depends on the commu-
nications characteristics of the network and determines the overlap of the communication with the computa-
tion. During the creation of a HeteroMPI group of processes in the context creation routine, the function
HMPI_Group_pauto_create estimates the time of execution of the algorithm for each process arrangement eval-
uated. For each such estimation, it invokes the runtime mapping algorithm, which tries to arrange the processes
along a 2D grid to optimally load balance the work of the processors. It returns the process arrangement that
results in the least estimated time of execution of the algorithm. Table 5.1 shows the optimal 2D process grid
arrangements determined by the context creation routines during the execution of the HeteroPBLAS programs.
The total execution time of the HeteroPBLAS program is the sum of the context creation time and the algo-
rithm execution time. It can be seen that for small problem sizes (for example, in the case for PDGEMM where
N ≤ 4096), the context creation times are large compared to the execution times of the parallel algorithms due
to the evaluation of a large number of process arrangements. This number can be reduced using meaningful
heuristics, which will be a subject for our future study.

Fig. 5.4 shows the execution times of sequential applications and HeteroPBLAS applications solving the
same matrix-matrix multiplication and triangular system of equations. The sequential application calls opti-
mized BLAS routines and is executed on the fastest processor (hcl16). The sequential applications performing
matrix-matrix multiplication and solving triangular system of equations fail for problem sizes (N ≥ 10240)
and (N ≥ 13312), respectively. It can be seen that the sequential program solving the triangular system
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Table 5.1

Optimal 2D process grid arrangements (p,q) determined during the execution of the context creation routines.

HeteroPBLAS PDGEMM Program HeteroPBLAS PDTRSM Program

Size of Predicted Context Execution Predicted Context Execution
the matrix

(p,q) Creation
Time (sec) (p,q) Creation

Time (sec)(N) Time (sec) Time (sec)

1024 (2,6) 1.8 0.34 (2,6) 0.5 0.27
2048 (2,6) 2 1 (2,7) 1 7
3072 (2,6) 2 3 (2,7) 1 21
4096 (2,6) 2 6 (2,7) 2 35
5120 (2,7) 2 11 (2,7) 2 80
6144 (2,7) 2 17 (2,7) 3 117
7168 (2,7) 2 27 (2,7) 3 160
8192 (2,7) 3 44 (2,7) 3 208
9216 (2,7) 3 48 (2,7) 4 307

10240 (2,7) 3 65 (2,7) 5 399
11264 (3,7) 11 106 (2,7) 5 491
12288 (3,7) 11 117 (2,7) 5 628
13312 (3,7) 11 164 (2,7) 6 737
14336 (3,7) 12 222 (2,7) 7 853
15360 (3,7) 12 385 (2,7) 8 919
16384 (3,7) 12 754 (2,7) 8 1285
17408 (3,7) 13 1204 (2,7) 9 1358
18432 (3,7) 13 1844 (3,7) 29 2033
19456 (2,14) 13 2729 (3,7) 33 2296
20480 (2,14) 28 4275 (3,11) 125 3017
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Fig. 5.4. Speedup of the HeteroPBLAS programs over the sequential programs.

(DTRSM) performs better than the HeteroPBLAS (and therefore PBLAS) program for the range of problem
sizes (N ≤ 10240). It is quite challenging work to find a procedure which automatically determines which
program to use (either sequential or HeteroPBLAS) for this range of problem sizes. This is because HeteroP-
BLAS programs use performance models based on the PBLAS (ScaLAPACK) algorithms, which are clearly not
accurate for small problem sizes. This is a subject for our future research.

The final set of experiments shown in Fig. 5.5 demonstrates the efficiency of the HeteroPBLAS program
employing the level3 PDGEMM routine. Its efficiency is compared to that of the HeteroMPI program, which
adopts the HoHe strategy using heterogeneous 2D block cyclic distribution of matrices [5]. We use the experi-
mental approach to analysis of the performance of heterogeneous algorithms presented in [17]. The HeteroMPI
program is close to optimal on the heterogeneous computing cluster. Since the execution time of the HeteroP-
BLAS program is practically the same as the HeteroMPI program, we can conclude that the efficiency of the
HeteroPBLAS program is also close to optimal on this network.

6. Conclusions and future work. In this paper, we present a software library, called Heterogeneous
PBLAS (HeteroPBLAS), which provides optimized parallel basic linear algebra subprograms for Heterogeneous
Computational Clusters.
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Fig. 5.5. Execution times of the HeteroPBLAS and the HeteroMPI programs on the heterogeneous cluster. N is the size of
the matrix. HeteroMPI program employs heterogeneous 2D block cyclic distribution of matrices.

We show that the efficiency of the parallel routines is due to the most important feature of the library,
which is the automation of the difficult optimization tasks of parallel programming on heterogeneous computing
clusters. These tasks are the determination of the accurate values of the platform parameters such as the speeds
of the processors and the latencies and bandwidths of the communication links connecting different pairs of
processors, the optimal values of the algorithmic parameters such as the data distribution blocking factor, the
total number of processes, the 2D process grid arrangement, and the efficient mapping of the processes executing
the parallel algorithm to the executing nodes of the heterogeneous computing cluster.

We presented the user interface and the software hierarchy of the first prototype implementation of Het-
eroPBLAS. Our future work would involve testing of the software on multicore platforms. The software would
then be integrated into the Heterogeneous ScaLAPACK package providing high performance routines for dense
linear systems, least squares problems, and eigenvalue problems.
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