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Abstract

Energy is now a �rst-class design constraint along with performance
in all computing settings. Energy predictive modelling based on perfor-
mance events or performance monitoring counters (PMCs) is the leading
method used for prediction of energy consumption during an application
execution and the fundamental building block for application-level energy
optimization techniques. Modern hardware processors provide a large set
of PMCs. Determination of the best subset of PMCs for energy predictive
modeling is a non-trivial task given the fact that all the PMCs can not be
determined using a single application run. Several techniques have been
devised to address this challenge. While some techniques are based on
a statistical methodology, some use expert advice to pick a subset (that
may not necessarily be obtained in one application run) that, in experts'
opinion, are signi�cant contributors to energy consumption. However, the
existing techniques have not considered a fundamental property of predic-
tor variables that should have been applied in the �rst place to remove
PMCs un�t for modeling energy. I address this oversight in this report
by proposing a novel selection criterion for PMCs called additivity, which
can be used to determine the subset of PMCs that can potentially be used
for reliable energy predictive modeling. It is based on the experimental
observation that the energy consumption of a serial execution of two ap-
plications is the sum of energy consumptions observed for the individual
execution of each application.

I further study the composability of well-known energy predictive mod-
els based on additivity of PMCs. I show that the accuracy of a linear
energy predictive models is greatly triggered by the number of additive
PMCs used as predictor variable in them.

Finally I conclude and present the current state and future research
plan of my PhD program.

1 Introduction

1.1 High-Performance Computing (HPC) Plat-
forms & Challenges

Modern Computing Platforms are evolving with increased complexities
and highly shared resources. Since the origin, HPC community has always
been concerned with increasing the platform performance for executing an
application or set of applications. Figure 1 shows the top supercomputing
platforms and their increased performance (in peta�ops) over a period of
time. It can be seen that U.S. summit will be the fastest supercomputing
platform after 2018 and China plans to release �rst exascale machine
by the end of 2020. It should be noted that latest HPC platforms have
become highly heterogeneous owing to tight integration of multicore CPUs
and accelerators (such as GPUs, Intel Xeon Phis, or FPGAs) to maximize
the dominant objectives of performance and energy e�ciency.
Evolution of Performance Modelling for HPC Platforms: A

Bird's-Eye View
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Figure 1: Evolution of HPC Platforms for Performance

For more than three decades prior to mid-2000s, computer users came
to expect performance doubling every 18 months due to Moore's law and
Dennard scaling. Both clock rate and power increased rapidly. This is the
era of homogeneous and heterogeneous clusters of single-core processors.
However, by 2004, computer designers hit the power wall caused by prob-
lems stemming from increasing power consumption and increasing power
density (amount of power dissipated per unit area, which represents the
heat dissipation). The power problem was caused primarily by the break-
down of Dennard scaling, a scaling model whereby the power density of a
transistor based processor of a unit area remains constant due to voltage
and current scaling down with the length of the transistor. Up until 2004,
moving to a smaller transistor process meant frequency could be increased
for no increase in heat dissipation. The breakdown of Dennard scaling
meant frequency scaling was no longer economical. The chip fabrication
industry turned to multicore CPU architectures to address this problem
of increased power consumption and power density. Frequency scaling
was abandoned in favour of multiple processors per chip. Round about
2001, general purpose computing on GPUs became practical with the ap-
pearance of programmable shaders and �oating point support. Therefore,
performance e�ciency of the HPC system has been the researched widely
by the community.

I brie�y study the evolution of performance models and researches that
have attempted to realistically capture the real-life behavior of applica-
tions executing on these platforms for performance maximization.

The simplest models used positive constant numbers and di�erent no-
tions such as normalized processor speed, normalized cycle time, task
computation time, average execution time, etc., to characterize the speed
of an application [1], [2], [3]. The common aspect of these models is that
the performance of a processor is assumed to have no dependence on the
size of the workload. We call them the constant performance models
(CPMs).

The most advanced load balancing algorithms use functional perfor-
mance models (FPMs), which are application-speci�c. The FPMs rep-
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resent the speed of a processor by continuous function of problem size
but satisfying some assumptions on its shape [4], [5]. The assumptions
require them to be smooth enough in order to guarantee that optimal so-
lutions minimizing the computation time are always load balanced. The
FPMs capture accurately the real-life behaviour of applications executing
on nodes consisting of uniprocessors (single-core CPUs).

However, modern HPC platforms have complex nodal architectures
with highly hierarchical arrangement and tight integration of processors
where resource contention and NUMA are inherent. On such platforms,
the performance pro�les of real-life scienti�c applications are not smooth
and may deviate signi�cantly from the shapes that allowed traditional and
state-of-the-art load balancing algorithms to �nd optimal solutions.

Lastovetsky et al. [6] study the drastic deviations in the performance
pro�les for a real-life scienti�c application. The authors propose an op-
timization technique reusing an advanced performance model of compu-
tation (FPM) but using novel load distribution to minimize the compu-
tation time of the application. Lastovetsky et al. [7] illustrate in depth
these variations in performance and energy pro�les of two widely known
and highly optimized scienti�c routines, OpenBLAS DGEMM [8] and
FFTW [9] on a modern multicore Intel Haswell CPU platform. They
explain the limitations of the FPM-based load balancing algorithms pro-
posed in [10], [11], [12], [13], [14], [15], [16], [17], [18]. They propose novel
model-based methods and algorithms for minimization of time and energy
of computations for the most general performance and energy pro�les of
data parallel applications executing on homogeneous multicore clusters.
Unlike load balancing algorithms, optimal solutions found by these al-
gorithms may not load-balance an application. The new model-based
methods proposed in [6], [7], however, can not be used for optimization of
data-parallel applications on HPC platforms with hybrid nodes for maxi-
mization of performance since they are designed for homogeneous clusters,
i.e., cluster of identical processors. There have also been attempts to pro-
�le performance of a computing system by using high-level parameters
such as DRAM activity, data stream etc. such as roo�ine model [19].

1.2 Energy : A Recent & Big Challenging Area

Increased performance of HPC systems comes at the cost of energy con-
sumption and with such a tremendous boost in performance of these mod-
ern systems, tons of watts of power is being consumed by HPC and su-
percomputing centers. Tianhe-2, the 33.9-peta�op, 3.12-million processor
machine by China supercomputing center consumes around 17.8 MW of
power and it is equivalent to powering 13501 households, approximately.

Energy is now a �rst-class design constraint along with performance
in all computing settings. It is a critical limitation for battery-operated
mobile systems. Energy-proportional designs [20] in servers are crucial to
the operational e�ciency of data centres. According to a 2010 DOE O�ce
of Science report [21], it is the leading concern for HPC system designs.
Energy consumption in computing contributes nearly 3% to the overall
carbon footprint and is now a serious environmental concern [22].

While microarchitectural and chip-design advancements have been the
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leading providers of energy savings, application-level energy optimization
strategies such as DVFS (dynamic voltage and frequency scaling), Dy-
namic Power Management (DPM), power-aware scheduling and, most
importantly, improvements due to algorithmic innovations, are serious
contenders and are also proli�cally researched.

Accurate measurement of energy consumption during an application
execution is key to several application-level energy minimization tech-
niques. There are two dominant approaches to providing it: a). Physical
measurements using external power meters or on-chip power sensors, and
b). Energy predictive models.

While the �rst approach is known to be accurate, it can only provide
the measurement at a computer level and therefore lacks the ability to pro-
vide �ne-grained component-level decomposition of the energy consump-
tion of an application. This is a serious drawback. Consider, for example,
a computer consisting of a multicore CPU and an accelerator (GPU or
Xeon Phi), which is representative of nodes in modern supercomputers.
While it is easy to determine the total energy consumption of a hybrid
application run that utilizes both the processing elements (CPU and accel-
erator) using the �rst approach, it is di�cult to determine their individual
contributions. This decomposition is critical to energy models, which are
key inputs to data partitioning algorithms that are critical building blocks
for optimization of the application for energy. Without the ability to de-
termine accurate decomposition of the total energy consumption, one has
to employ an exhaustive approach (involving huge computational com-
plexity) to determine the optimal data partitioning that optimizes the
application for energy.

Energy predictive software modelling

Energy predictive modelling emerged as the pre-eminent alternative.
The existing energy predictive models predominantly use performance
events as predictor variables for modelling energy consumption. Per-
formance events or performance monitoring counters are special-purpose
registers provided in modern microprocessors to store the counts of soft-
ware and hardware activities. We will use the acronym PMCs to refer to
software events, which are pure kernel-level counters such as page-faults,
context-switches, etc. as well as micro-architectural events originating
from the processor and its performance monitoring unit called the hard-
ware events such as cache-misses, branch-instructions, etc. They have
been developed primarily to aid low-level performance analysis and tun-
ing.

While remarkably PMCs have not been used for performance pre-
dictions (as explained earlier), over the years, they have been speedily
adopted for energy predictive modelling and have come to dominate its
landscape. These models are, however, trained using physical measure-
ments of energy consumptions of the examples. The most common ap-
proach proposing an energy predictive model is to determine the energy
consumption of a hardware component based on linear regression of the
performance events occurring in the hardware component during an ap-
plication run. The total energy consumption is then calculated as the
sum of these individual energy consumptions. Therefore, this approach
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constructs component-level models of energy consumption and composes
them using summation to predict the energy consumption during an ap-
plication run.

To summarize, physical measurements and energy predictive models
are two dominant approaches to determine the energy consumption dur-
ing an application run. Energy predictive modelling emerged as the pre-
eminent alternative to physical measurements providing �ne-grained de-
composition of energy consumption during an application run.

Evolution of PMCs as the dominant parameters in energy pre-

dictive models

We now take a brief tour through the beginnings and consequent �rm
establishment of performance events as the dominant parameters in energy
predictive models. While presenting this brief history, we also review
notable models that predict energy consumption based on utilization or
activity factors estimated from performance events.

In the late 1990s, architects began studying in earnest architecture-
level power models in simulators similar to how performance is studied in
cycle-level architecture simulators. The Cacti tool [23] originally written
to study latencies of caches in detail, subsequently provided their dynamic
power and leakage power models. In 2000, whole-processor power simula-
tors, SimplePower [24] and Wattch [25], appeared. SimplePower provided
detailed dynamic power models of integer ALU and other architectural
units in an in-order pipelined processor; the Wattch tool focused on an
out-of-order super-scalar pipeline. While both simulators used analytical
methods for modeling power, IBM's PowerTimer [26] used empirical tech-
niques. It predicted power consumption of an architectural unit based on
measured power consumption of similar unit in an existing microprocessor
and scaling it appropriately; taking into account variations in size and de-
sign. However, simulators had some drawbacks, chief among them being
their speed of exploration, and their lack of rapid adaptability and sustain-
ability to fast-changing hardware architecture landscape. An appealing
alternative route was allowed by direct physical measurements of power
consumption using power meters. Although power meters provided the
total power consumption of a system, one major challenge that remained
to be addressed was the accurate decomposability of power consumption
at �ne-grained component level of granularity. To address this challenge,
the performance events based approaches estimating power consumption
of architectural units based on their activity factors were invented and
eventually became the core of current energy predictive models. The
accelerated adoption of this approach was made possible by the simulta-
neous provision of hardware performance counters (almost akin to stan-
dardization) by all the major hardware vendors, and also availability of
lightweight tools providing portable APIs to determine the PMCs.

One of the �rst models correlating PMCs to energy values was devel-
oped by Bellosa et al. [27]. Their model is based on events such as inte-
ger operations, �oating-point operations, memory requests due to cache
misses, etc., which they believed to be strongly correlated with energy con-
sumption. Icsi et al. [28] propose an elaborate methodology to determine
component-level power estimates from the access rates of the components,
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which are based on PMCs. Li et al. [29] propose power models for the
operating system (OS) based on their observations of strong correlation
between instructions per cycle (IPC) and OS routine power. Lee et al. [30]
adopt a statistically rigorous approach to derive regression models using
performance events to predict power. A linear model that is based on the
utilization of CPU, disk, and network is proposed in [31]. A more com-
plex power model (Mantis) is proposed in [32] relying on the utilization
metrics of CPU, disk, and network components and PMCs for memory.
Fan et al. [33] propose a simple linear model that correlates power con-
sumption of a single-core processor with its utilization. Energy pro�ling
for applications using CPU and disk activity is the subject in [34]. Rivoire
et al. [35], [36] study and compare �ve full-system real-time power mod-
els using a variety of machines and benchmarks. Four of these models
are utilization-based whereas the �fth includes CPU PMCs in the model
parameter set along with the utilizations of CPU and disk. They report
that PMC-based model is the best overall in terms of accuracy since it
accounted for majority of the contributors to system's dynamic power
(especially the memory activity). They also question the generality of
their PMC-based model since the PMCs used in their model parameter
set may not have the same essence and hence not portable across di�erent
architectures (Intel, AMD, etc). Singh et al. [37] develop per-core power
models based on multiple linear regression using PMCs. Powell et al. [38]
use a linear regression model to estimate activity factors and power for
a large number of micro-architectural structures using a small number of
PMCs. Goel et al. [39] derive per-core power models using PMC values
and temperature readings. A linear model that takes into account CPU
utilization and I/O bandwidth is described in [40] to predict power con-
sumption of a server. Basmadjian et al. [41] construct a power model of a
server as a summation of power models of its components, the processor
(CPU), memory (RAM), fans, and disk (HDD). Bircher et al. [42] propose
an iterative modeling procedure to predict power using PMCs. They use
PMCs that trickle down from the processor to other subsystems such as
CPU, disk, GPU, etc and PMCs that �ow inward into the processor such
as Direct Memory Access (DMA) and I/O interrupts. Dargie et al. [43]
use the statistics of CPU utilization to model the relationship between
the power consumption of multicore processor and workload quantita-
tively. They demonstrate that the relationship is quadratic for single-core
processor and linear for multicore processors.

However, there have been few attempts that have critically examined
and highlighted the poor prediction accuracy of performance events for
energy predictive modeling.

Economou et al. [32] highlight the fundamental limitation, which is
the inability to obtain all the PMCs simultaneously or in one application
run. They also mention the lack of PMCs to model energy consumption of
disk I/O and network I/O. McCullough et al. [44] evaluate the competence
of predictive power models for modern node architectures and show that
linear regression models show prediction errors as high as 150%. They
suggest that direct physical measurement of power consumption should
be the preferred approach to tackle the inherent complexities posed by
modern node architectures. Hackenberg et al. [45] present a study of
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Table 1: Speci�cation of the Intel Haswell multicore CPU

Technical Speci�cations Intel Haswell Server

Processor Intel E5-2670 v3 @2.30GHz
OS CentOS 7
Micro-architecture Haswell
Thread(s) per core 2
Cores per socket 12
Socket(s) 2
NUMA node(s) 2
L1d cache 32 KB
L11 cache 32 KB
L2 cache 256 KB
L3 cache 30720 KB
Main memory 64 GB DDR4
Memory bandwidth 68 GB/sec
TDP 240 W
Idle Power 58 W

various power measurement strategies, which includes Intel RAPL [46].
Intel RAPL uses a software modeling approach that uses PMCs to pre-
dict energy consumption. They report that the accuracy of RAPL de-
pends on the type of workload and is quite poor for workloads that use
the hyper-threading feature. They also report that the accuracy is poor
for applications with small execution times and becomes better only for
applications with longer execution times since the predictions are energy
averages. O'Brien et al. [47] survey predictive power and energy models
focusing on the highly heterogeneous and hierarchical node architecture
in modern HPC computing platforms. Using a case study of PMCs, they
highlight the poor prediction accuracy and ine�ectiveness of models to
accurately predict the dynamic power consumption of modern nodes due
to the inherent complexities (contention for shared resources such as Last
Level Cache (LLC), NUMA, and dynamic power management).

Challenges of using PMCs For energy modelling

Modern hardware processors provide a large set of PMCs. Consider the
Intel Haswell multicore server CPU whose speci�cation is shown in Tab.
1. On this server, the PAPI tool [48] provides 53 hardware performance
events. The Likwid tool [49], [50] provides 167 PMCs. This includes
events for uncore and micro-operations (µops) of CPU cores speci�c to
Haswell architecture that are not provided by PAPI. However, all the
PMCs can not be determined using a single application run since only a
limited number of registers is dedicated to collecting them. For example,
to collect all the Likwid PMCs for a single runtime con�guration of an
application on the server, the application must be executed 53 times. It
must be also pointed out that energy predictive models based on PMCs
are not portable across a wide range of architectures. While a model based
on either Likwid PMCs or PAPI PMCs may be portable across Intel and
AMD architectures, it will be unsuitable for GPU architectures.

Therefore, there are three serious constraints that pose di�cult chal-
lenges to employing PMCs as predictor variables for energy predictive
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modeling. First, there is a large number of PMCs to consider. Second,
tremendous programming e�ort and time are required to automate and
collect all the PMCs. This is because all the PMCs can not be collected
in one single application run. Third, a model purely based on PMCs lacks
portability. We now explore the techniques employed to select a subset of
PMCs to be used as predictor variables for energy predictive modeling. I
now present a brief survey of them.

O'Brien et al. [47] survey the state-of-the-art energy predictive models
in HPC and present a case study demonstrating the ine�ectiveness of the
dominant PMC-based modeling approach for accurate energy predictions.
In the case study, they use 35 carefully selected PMCs (out of a total of 390
available in the platform) in their linear regression model for predicting
dynamic energy consumption. [42], [51], [52] select PMCs manually, based
on in-depth study of architecture and empirical analysis. [53], [39], [54],
[55], [56], [57], [58] select PMCs that are highly correlated with energy
consumption using Spearman's rank correlation coe�cient (or Pearson's
correlation coe�cient) and principal component analysis (PCA). [42], [57],
[59] use variants of linear regression to remove PMCs that do not improve
the average model prediction error.

From the survey, I can classify the existing techniques into three cate-
gories. The �rst category contains techniques that consider all the PMCs
with the goal to capture all possible contributors to energy consumption.
To the best of our knowledge, I found no research works that adopt this
approach. This could be due to several reasons: a) Gathering all PMCs
requires huge programming e�ort and time; b) Interpretation (for exam-
ple, visual) of the relationship between energy consumption and PMCs is
di�cult especially when there are large number of PMCs; c) Dynamic or
runtime models must choose PMCs that can be gathered in just one appli-
cation run; d) Typically, simple models (those with less parameters) are
preferred over complex models not because they are accurate but because
simplicity is considered a desirable virtue.

The second category consists of techniques that are based on a statis-
tical methodology. The last category contains techniques that use expert
advice or intuition to pick a subset (that may not necessarily be deter-
mined in one application run) and that, in experts' opinion, is a dominant
contributor to energy consumption.

In this report, I address the challenges already discussed with PMCs
based energy predictive models with the aim to build reliable end accurate
energy predictive models.

Energy consumption of a serial execution of two applications is the
sum of energy consumptions observed for the individual execution of each
application. The same condition should be ful�lled by the PMCs if they
are predictor variables of energy in linear models. Hence, I feel a need
to address this fundamental property of predictor variables (PMCs) that
should have been considered in the �rst place to remove PMCs un�t for
modeling energy. I propose a novel selection criterion for PMCs called
additivity (publised and available online @ [60]), which can be used to
determine the subset of PMCs that can potentially be used for reliable
energy predictive modeling. I de�ne a compound application to represent
a serial execution of a combination of two or more individual applications.
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The individual applications are also termed as base applications. A linear
predictive energy model is consistent if and only if its predictor variables
are additive in the sense that the vector of predictor variables for a com-
pound application is the sum of vectors for the individual execution of
each application. The additivity criterion, therefore, is based on simple
and intuitive rule that the value of a PMC for a compound application is
equal to the sum of its values for the executions of the base applications
constituting the compound application.

A PMC is branded non-additive on a platform if there exists a com-
pound application for which the calculated value signi�cantly di�ers from
the value observed for the application execution on the platform (within a
tolerance of 5.0%). The use of a non-additive PMC as a predictor variable
in a model renders it inconsistent and therefore unreliable. I study the
additivity of PMCs o�ered by two popular tools, Likwid and PAPI, by em-
ploying a detailed statistical experimental methodology on a modern Intel
Haswell multicore server CPU. I observe that all the Likwid PMCs and
PAPI PMCs are reproducible. However, I show that while many PMCs
are potentially additive, a considerable number of PMCs are not. Some
of the non-additive PMCs are widely used in energy predictive models as
key predictor variables.

Based on the presented property of additivity, I further study and
present a mathematical and experimental study of the prediction accuracy
of the most popular class of energy predictive models, which are based on
linear regression and employ performance events as predictor variables. I
postulate a simple and intuitive property called composability of models
that has been heretofore unstudied and which I believe is essential for
their reliable design.

1.3 Organization of Report

The rest of the report is structured as follows. Section 2 details the ter-
minology that has been used throughout in this report. In Section 3, I
present a tour of previous researches as related work. Section 4 presents
the research objective and questions that I am addressing during my PhD.
Section 5 illustrates the results and experimental �ndings and section
6 conclude this report. Finally, in section 7, I summarize my current
achievements and a tentative future plan for PhD program.

2 Terminology

This section describes the various terms related to energy predictive mod-
els used in this work.

2.1 Static and Dynamic Energy Consumption

There are two types of energy consumptions, static energy and dynamic
energy. Static energy consumption is de�ned as the energy consumption
of the platform without the given application execution. Dynamic energy
consumption is calculated by subtracting this static energy consumption
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from the total energy consumption of the platform during the given ap-
plication execution. That is, if PS is the static power consumption of the
platform, ET is the total energy consumption of the platform during the
execution of an application, which takes TE seconds, then the dynamic
energy ED can be calculated as,

ED = ET − (PS × TE) (1)

I only consider only the dynamic energy consumption because static
energy consumption is a constant (inherent property) of a platform and
will remain same for di�erent application con�gurations. Let us now elu-
cidate using two examples from published results the importance of using
dynamic energy consumption.

In our �rst example, consider a model that reports predicted and mea-
sured total energy consumption of a system to be 16500J and 18000J,
respectively. It would report the prediction error to be 8.3%. However,
if it is known that the static energy consumption of the system is 9000J,
then the actual prediction error (based on dynamic energy consumptions
only) would be 16.6%, i.e., the double.

In our second example, consider two di�erent energy prediction mod-
els (MA and MB) with same prediction errors of 5% for an application
execution on two di�erent machines (A and B) with same total energy
consumption of 10000J. One would consider both the models to be equally
accurate. But supposing it is known that the dynamic energy proportions
for the machines are 30% and 60%. Now, the true prediction errors (using
dynamic energy consumptions only) for the models would be 16.6% and
8.3% respectively. Therefore, the second model MB should be considered
more accurate than the �rst.

The dynamic energy consumption in the energy function is calculated
by subtracting the static energy consumption from the total energy con-
sumption during the execution of the application measured using Watts
Up power meter. The static energy consumption is calculated by multi-
plying the idle power of the platform (without application execution) with
the execution time of the application.

3 Related Work

This section is divided into two parts. In the �rst part, I present tools
widely used to obtain PMCs. I also survey notable research on selection
of PMCs for power and energy modeling from a large set supplied by a
tool. In second part, I present notable energy predictive models in CPU
based platforms and accelerators.

3.1 Tools to Determine PMCs

PAPI [48] provides a standard API for accessing PMCs available on most
modern microprocessors. It provides two types of events, native events
and present events. Native events correspond to PMCs native to a plat-
form. They form the building blocks for present events. A preset event
is mapped onto one or more native events on each hardware platform.
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While native events are speci�c to each platform, preset events obtained
on di�erent platforms can not be compared.

Likwid [49] provides command-line tools and an API to obtain PMCs
for both Intel and AMD processors on the Linux OS.

For Nvidia GPUs, CUDA Pro�ling Tools Interface (CUPTI ) [61] can
be used for obtaining the PMCs. Intel PCM [62] is used for reading PMCs
of core and uncore (which includes the QPI) components of an Intel pro-
cessor. Perf [63] also called perf_events can be used to gather the PMCs
for CPUs in Linux.

3.1.1 Techniques for Selection of PMCs for Energy Pre-
dictive Modeling

All the models surveyed in this section are linear energy predictive models.
Singh et al. [53] use PMCs provided by AMD Phenom processor. They

divide the PMCs into four categories and rank them in the increasing order
of correlation with power using the Spearman's rank correlation. Then
they select the top PMC in each category (four in total) for their energy
prediction model.

Goel et al. [39] divide PMCs into event categories that they believe
capture di�erent kinds of microarchitectural activity. The PMCs in each
category are then ordered based on their correlation to power consumption
using the Spearman's rank correlation.The PMCs with less correlation are
then investigated by analyzing the accuracy of several models that employ
them.

Kadayif et al. [64] present a PMC-based model for predicting energy
consumption of programs on a UltraSPARC platform. The platform pro-
vides 30 di�erent PMCs. However, they use only eight and do not specify
how they have selected them.

Lively et al. [54] employ 40 PMCs in their predictive model. They
use an elaborate statistical methodology to select PMCs. They compute
the Spearman's rank correlation for each PMC and remove those below a
threshold. They compute the principal components (PCA) of the remain-
ing PMCs and select those with the highest PCA coe�cients. Bircher et
al. [42] employ an iterative linear regression modeling process where they
add a PMC at each step and stop until desired average prediction error
is achieved.

Song et al. [55] select a group of PMCs (for their energy model of
Nvidia Fermi C2075 GPU) that are strongly correlated to power con-
sumption based on the Pearson correlation coe�cient.

Witkowski et al. [56] use PMCs provided by the Perf tool for their
model. They use the correlation (Pearson correlation coe�cient) between
a PMC and the measured power consumption and select those PMCs,
which have high correlation coe�cients. Although they �nd that the
PMCs related to DRAM have a low correlation with power consumption,
they still use them since these variables signify intensity of DRAM oper-
ations, which contribute signi�cantly to power consumption.

Gschwandtner et al. [51] deal with the problem of selecting the best
subset of PMCs on the IBM POWER7 processor, which o�ers over 500
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di�erent PMCs. They �rst manually select a medium number of hardware
counters that they believe are prominent contributors to energy consump-
tion. Then they empirically select a subset from their initial selection.
Jarus et al. [57] use PMCs provided by the Perf tool for their models.
The PMCs employed di�er for di�erent models and are selected using
two-stage process. In the �rst stage, PMCs that are correlated 90% or
above are selected. In the second stage, stepwise regression with forward
selection is used to decide the �nal set of PMCs.

Haj-Yihia et al. [52] start with a set of 23 PMCs (o�ered by Likwid)
based on expert knowledge of the Intel architecture. Then they perform
linear regression iteratively where they drop PMCs (one by one) that do
not impact the average prediction error of their model.

Wu et al. [58] use the Spearman correlation coe�cient and PCA to
select the subset of PMCs, that are highly correlated with power con-
sumption. Chadha et al. [59] select a particular PMC from the list of
PAPI PMCs available for their platform and check if it �ts well with lin-
ear regression model. If it does, they select it as a key parameter for their
modeling and experimental study. Otherwise, they skip it.

3.2 Notable Energy Predictive Models

3.2.1 Energy Predictive Models for CPUs and accelera-
tors

Bertran et al. [65] present a power model that provides per-component
power breakdown of a multicore CPU. Their model is based on activity
factors obtained from PMCs for various components in a multicore CPU.
Basmadjian et al. [66] report that summation of power consumptions of
all active cores to derive the total power consumption is inaccurate and
take into account resource sharing in their power prediction model for
multicore processors.

Rotem et al. [46] present a software power model, which eventually
became RAPL, in Intel Sandybridge. This model predicts the energy
consumption of core and uncore components (QPI, LLC) based on some
PMCs (which are not disclosed).

McPAT [67] is an integrated power, area, and timing modeling frame-
work for multithreaded, multicore, and manycore architectures. It sup-
ports estimation of power consumption for various components in a mul-
tiprocessor, which includes shared caches, integrated memory controllers,
in-order and out-of-order processor cores, and networks-on-chip. However,
McPAT has known limitations in power estimation, which were reported
in [68]. Haj-Yihia et al. [52] present a linear regression model for Intel
Skylake processors based on PMCs. They selected the PMCs which are
popular in well-known energy and power models. Lastovetsky et al. [69]
present an application-level energy model where the dynamic energy con-
sumption of a processor is represented by a function of problem size.
Unlike PMC-based models that contain hardware-related PMCs and do
not consider problem size as a parameter, this model takes into account
highly non-linear and non-convex nature of the relationship between en-
ergy consumption and problem size for solving optimization problems of
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data-parallel applications on homogeneous multicore clusters for energy.
I now survey few notable research works that have proposed energy

predictive models for accelerators such as GPU, Xeon Phi, and FPGA.
Hong et al. [70] propose an energy prediction model for an Nvidia GPU
similar to the PMC-based unit power prediction approach of [28]. Na-
gasaka et al. [71] present a statistical approach that uses GPU performance
counters exposed for CUDA applications to predict power consumption of
GPU kernels. Song et al. [55] propose power and energy prediction mod-
els that employ a con�gurable, back-propagation, arti�cial neural network
(BP-ANN). The parameters of the BP-ANN model are ten carefully se-
lected PMCs of a GPU. The values of these PMCs are obtained using
the CUDA Pro�ling Tools Interface (CUPTI) [61] during the application
execution. Shao et al. [72] construct an instruction-level energy model
of a Xeon Phi processor. Khatib et al. [73] propose a linear instruction-
level model to predict dynamic energy consumption for soft processors in
FPGA. The model considers both inter-instruction e�ects and the operand
values of the instructions.

4 Research Objective & Questions

Energy is now a mainstream challenge along with performance in all com-
puting systems. Energy-proportional designs in servers are crucial to the
operational e�ciency of data centres. Chip designers and developers have
been mainly concerned with providing energy saving equipment. However,
the application level energy optimization techniques such as dynamic fre-
quency and voltage scaling, core switching, cache line locking, clock and
power gating, dynamic power management, scheduling, and algorithmic
developments etc., have caught much attention in research community as
they are serious contenders towards saving energy.

Accurately being able to capture energy consumption during an ap-
plication execution is key to several application-level energy minimization
techniques. Two most dominant approaches to measure energy consump-
tion of a computing machine include 1). physical measurements and 2).
software models. The �rst approach includes hardware measurements
through power-meters. However, physical measurements are only capable
to capture overall energy consumption of a system. While it is easy to
determine the total energy consumption of a hybrid application run that
utilizes both the processing elements (CPU and accelerator) using the �rst
approach, it is di�cult to determine their individual contributions. Hence,
they are not helpful for energy optimization at component level. In addi-
tion to this, without the ability to determine accurate decomposition of
the total energy consumption, one has to employ an exhaustive approach
(involving huge computational complexity) to determine the optimal data
partitioning that optimizes the application for energy.

In such a scenario, energy predictive software modelling has emerged
as an alternative solution for �ne grain decomposition of energy consump-
tion. The existing energy predictive models are predominantly based
on performance events, i.e., speci�c purpose memory storing elements
to track hardware activity. They have been developed primarily to aid
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low-level performance analysis and tuning. While remarkably PMCs have
not been used for performance modelling, over the years, they have been
speedily adopted for energy predictive modelling and have come to dom-
inate its landscape. These models are, however, trained using physical
measurements of energy consumptions of the examples. These models
are, however, trained using physical measurements of energy consump-
tions of the examples. The most common approach proposing an energy
predictive model is to determine the energy consumption of a hardware
component based on linear regression of the performance events occurring
in the hardware component during an application run. The total energy
consumption is then calculated as the sum of these individual energy con-
sumptions.

My main research objective is to build reliable and accurate energy
predictive models for modern and complex computing machines. For this,
I study PMC based energy modelling as they have been widely adopted
and considered strong contenders for modelling energy consumption.

I will now list research questions that I have answered during my PhD
and also I will state a few open research questions which I plan to answer
in future during my PhD. RQ is used to denote research question in this
section.

As majority of models that use PMCs as a predictor variables are lin-
ear, I �rst study them. While PMC based energy models has attracted
vast community, there are a few researches who doubt the accuracy of
PMC based energy models (also mentioned in section 3). They also re-
port high errors of predictions in PMC based models. This motivate me
to explore if it is the case in reality or not? For answering this, after a
comprehensive background research (see section 2) and on the basis of my
own experimental analysis, I found the present energy predictive linear
models based on PMCs are not reliable and they show unavoidable inac-
curacy. Hence, my �rst research question which I answered is:

RQ 1: Why are the PMC based linear energy predictive models not reli-
able and accurate?

For my quest to answering this question, I �rst studied the limitations
of PMC based models (presented in section 1). As one of the limitation
of PMCs include the restriction to access a limited number of events in
a single application run, it requires a huge programming e�ort to collect
all the PMCs for a particular workload. And, there exist no open-source
tool to collect all the PMC for an application.

Problem: Need of an open-source software tool to automate the pro-
cess of collection of PMCs.
For this, I wrote SLOPE-PMC [74], which includes two software wrappers
for automatic collection of all the PMCs for an application, i.e., SLOPE-
PMC-LIKWID and SLOPE-PMC-PAPI.

Moving forward, to studying the PMC based energy predictive models,
I have to generate data containing all PMCs for a number of applications.
And, there is no such database that is reliable and openly available to
use. I generated a data set with all PMCs available on our platform for
215 applications. For the sake of understanding, each data point can be
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considered as a vector of PMCs and energy consumption for particular
application. The process of collecting this data is not trivial. It took me
8086 hours (approximately) to obtain this data-set. However, for better
analysis, there is a need to generate data having thousands of data points
rather than 215 points. For extending the data-set, I decided to simulate
the existing data points.

It is an experimental observation and a fact that energy consumption
of a serial execution of two applications is the sum of energy consumptions
observed for the individual execution of each application.

I decided to combine the vector of PMCs for di�erent applications to
have a huge amount of simulated data-points via arti�cial applications.

For a linear energy predictive model, each individual predictor variable
(in my case, a PMC) must be additive. That is, to check if value of
a PMC for a compound application (serial execution of two individual
applications called the base applications) is equal to the sum of its values
for the executions of the base applications constituting the compound
application.

To proceed further, I came up with a few other questions; answering
to which led me to answer the fundamental research question (i.e., RQ 1).
I will now mention all of them as follows:

• Are all the PMCs available on modern computing platforms addi-
tive?

With comprehensive suite of applications, I found many of the PMCs
on modern platforms as non-additive and presented a property of
additivity as a selection criteria for linear PMC based analytical
models. An initial list of potentially additive PMCs is published in
[60]. Studying further the additivity of PMCs, I formulated another
research question given below:

• Are there di�erent number of additive PMCs for di�erent classes of
applications (compute bound or memory bound)?

For answering this, I choose highly optimized applications from both
classes and check the additivity of PMCs for them. I found that
there are a number of PMCs which may be additive for one class of
applications and non-additive for the other. This bring up another
research question given below:

• Are there any additive PMCs in common for both class of applica-
tions?

After a detailed experimental analysis, I �nally found no PMC that is
commonly additive for both application classes. Another important
research question that I answered is given as follows:

• How the PMCs have evolved from single core to multicore complex
architectures in terms of additivity?

I answered this question via a comprehensive set of experimental
analysis (results shown in section 5). Another research question
that I have answered after this is:

• How much inaccuracy the presence of non-additive PMCs in a model
can be expected in state-of-the-art models?
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I studied the composability of existing energy predictive models (re-
sults shown in section 4). In the current stage of my PhD, I along
with my team are formalizing the linear energy predictive models
mathematically by integrating the assumed characteristics of PMC
based models and the property of additivity.

Hence, from the above mentioned study, I conclude that one of the
reasons for the inaccuracy in PMC based linear energy predictive models
is the use of non-additive PMCs in them. There maybe some other reasons
for the inaccuracy other than this, but we demonstrate (in section 5) that
using only one or two highly additive PMC can lead to a more reliable
model with desirable accuracy.

Furthermore, I conclude that general PMC based linear models can
not be reliable and accurate because in general there are no PMCs that
are found to be additive for all class of applications. They may have
been reliable in single core systems because of more additive nature of
PMCs in them but with modern computing systems where a lot of com-
puting resources are shared, the linear PMC based models can not predict
energy accurately. However, application speci�c linear energy predictive
modelling using PMCs is possible.

After studying the linear energy predictive models and presenting a
novel selection criteria (additivity) for PMCs, the next open research ques-
tions for my future work are given below:

RQ 2: Are there any other unstudied properties of PMCs like additivity
that non-linear energy predictive models should possess?

The accuracy of on-chip sensors for measuring the energy consumption
at component level also need to be checked. Therefore, one of the research
question that I will answer in future is as follows:

RQ 3: How accurate are the on-chip hardware sensors when it comes to
to estimate �ne-grain decomposition of energy consumption?

RQ 4: Is there possibility to have a general non-linear PMC based energy
predictive model?

RQ 5: Are there any other parameters other than PMCs that are more
reliable and can be used as predictor variables in models for more accurate
estimation of energy consumption?

RQ 6: Why PMCs have not been used for performance estimation of
platforms over the years?

Apart from the mentioned questions and problems, there may rise
other research questions in future as I progress to explore non-linear mod-
els.
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Figure 2: Experimental work�ow to determine the PMCs on the Intel Haswell
server [60]

5 Experimental Results

5.1 Additivity of Likwid and PAPI PMCs

In this section, I present our experimental results for the additivity of
PMCs. We used two popular tools, i.e., Likwid and PAPI to extract the
PMCs.

The experiments are performed on the Intel Haswell multicore CPU
platform (speci�cations given in Tab. 1). I used diverse range of appli-
cations (both compute-bound and memory-bound) in our testsuite com-
posed of NAS parallel benchmarking suite (NPB), Intel math kernel li-
brary (MKL), HPCG [75], and stress [76]. The experimental work�ow is
shown in Fig. 2 where the internals of the server are shown in great detail.

For each run of a application in our testsuite, I measure the follow-
ing: 1) Dynamic energy consumption, 2) Execution time, and 3) PMCs.
The dynamic energy consumption and the application execution time are
obtained using the HCLWattsUp interface [77]. I would like to mention
that the output variables (or response variables) in the performance and
energy predictive models, i.e., energy consumption and execution time,
are additive. I con�rm this via thorough experimentation and therefore I
will not discuss them hereafter. The details of experimental methodology
in which we use statistical analysis are given in [60].
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Table 2: Additivity Test for Intel MKL, DGEMM and FFT

APP Total
PMCs

Additive Non-
Additive

Maximum Range of Error (%)

5-10 10-
20

20-
40

40-
100

100-
500

200-
1000

DGEMM 151 27 126 43 51 21 6 1 4
FFT 151 5 146 7 50 41 40 1 4

After applying additivity test, we found that a number of PMCs that
have been used in well-known energy and power models are non-additive.
our initial study (using a limited set of applications) reveals the list of
potentially additive PMCs which are given in Arsalan et al. [60].

In-Depth Study for Additivity of Likwid PMCs

I choose Intel MKL DGEMM as an example of compute-bound ap-
plication. For the base applications, I select a range of problem sizes
(2000 × 2000 to 10000 × 10000). A compound application is written us-
ing a pair of base applications. I execute all the compound applications
one after the another and determine the maximum of absolute percentage
errors for a PMC.

We, then, choose Intel MKL FFT as the memory-bound application.
For the base applications, I select a range of problem sizes (7000 × 7000
to 20000× 20000).

In Table 2, I show the number of non-additive PMCs with the ranges
of prediction error for both applications.

My next study was to check if there exist any PMC in common for both
class of applications that is additive. After analysis, I found no PMCs in
common that satis�es additivity criteria.

5.1.1 Evolution of Additivity of PMCs from Single-core to
Multicore Architectures

In this section, I study the evolution of additivity of PMCs from single-core
to multicore platforms.

First, I design experiments using Intel MKL DGEMM by selecting
a range of large problem sizes (16000 × 16000 to 30000 × 30000) that
stresses our platform for a reasonable amount of time. I also designed
many compound applications from the given range of problem sizes.

By completely dedicating the server for few days, I launch the exper-
iments by binding the applications to speci�c CPU-core con�gurations
(from one core of each socket to 12 cores with an increment of 4). That is,
I perform additivity test for the applications (both base and compound)
that run on four di�erent core con�gurations of machine (1-core, 4-core,
8-core and 12-core). For each core and application con�guration, I note
the maximum of errors for each PMCs and count the number of non-
additive PMCs observed for each core setting. it should be noted that all
the applications are bind to both memory banks of the server.

I then repeat the same experiments with Intel MKL FFT (for large
problem sizes: 7000×7000 to 21000×21000) and Naive MV (for problem
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Figure 3: Increase in number of non-additive PMCs with cores. (A)
shows non-additive PMCs for Intel MKL DGEMM. (B) shows non-additive
PMCs for Intel MKL FFT. (C) shows non-additive PMCs for naive matrix-
vector multiplication.

sizes: 30000 to 35000)
In Figure 3, I show the rise of non-additivity in PMCs with the ad-

vancements of cpu-cores and more use of shared resources for application
execution in multicore platforms. The results are presented with respect
to total number of cores on each socket to which an application is pinned.
As one socket has 12 cores, X-axis stretches to total 24 cores. It can be
seen that for each application on single-core con�guration there are least
number of non-additive PMCs; which make it easy to understand that
emergence of complex computing systems causes the PMCs to possess
non-additive and sometimes non-deterministic nature.

5.2 Composability of Energy Predictive Models

In this section, I present a study of the composability of models based
on non-additive nature of several well-known PMCs used in energy pre-
dictive models. I select PMCs which are most commonly used to in en-
ergy predictive models from published research [28, 29, 37, 52, 53, 78, 79].
These are listed in Table 3. Having real dynamic energy measurements
from HCLWattsUp interface against PMCs' counts from Likwid for highly
optimized base applications, I build four linear models and tested their
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Table 3: Correlation of PMCs with Dynamic Energy Consumption.
(A.) List of selected PMCs for modeling. (B.) Correlation matrix showing
relationship of dynamic energy (ED) with PMCs. 1 denotes maximum 100%
correlation and 0 for no correlation. X1,X2,X5 and X6 are highly correlated
(over 90%) with ED

X1: IDQ_MITE_UOPS
X2: ICACHE_MISSES
X3: IDQ_MS_UOPS
X4: ARTH_DVDR_UOP
X5: L2_RQSTS_CODE*
X6: DRAM_CLOCK*

ED X1 X2 X3 X4 X5 X6

ED 1 0.95 0.97 0.56 -0.45 0.97 0.93
X1 0.95 1 0.97 0.38 -0.63 0.98 0.88
X2 0.97 0.97 1 0.44 -0.54 0.99 0.90
X3 0.56 0.38 0.44 1 0.39 0.44 0.68
X4 -0.45 -0.63 -0.54 0.39 1 -0.55 -0.25
X5 0.97 0.98 0.99 0.44 -0.55 1 0.91
X6 0.93 0.88 0.90 0.68 -0.25 0.91 1

A B

accuracy for di�erent compound applications (i.e., a, b, ..., g) designed
from base applications. These models are explained as below:

• Model A: Linear model with all six selected PMCs as predictor vari-
ables for dynamic energy estimation.

• Model B: Linear model having only highly correlated PMCs shown
in Table 3 as predictor variables for dynamic energy estimation.

• Model C: Linear model composed of only one additive PMC from
the list of selected PMCs as predictor variable for dynamic energy
estimation.

• Model D: Linear model using two most additive PMCs from the list
of selected PMCs as predictor variable for dynamic energy estima-
tion.

Figure 4 presents a comparison between the dynamic energy estimated
by models with real hardware power-meter measurements along with the
absolute errors %. It can be seen that maximum prediction errors are
reported for model A that uses all selected PMCs. The prediction error
slightly reduces formodel B but not too much. Instead of using all selected
PMCs in modelling dynamic energy, I observe a noticeable reduction in
dynamic energy predictions when only one highly additive PMC is used
as a predictor variable. It is further evident from results obtained from
model C that average prediction error drops to almost half than model
A predictions. I then used two most additive PMCs from the list of our
selected PMCs to build a model D which reasonably estimate dynamic
energy consumption for compound applications in our case. It can be
seen that there is a huge reduction in maximum prediction error of Model
A and Model D, i.e., 135 % to 47 %, respectively.

Having said earlier that PMCs are un�t for modelling dynamic energy
consumption of a platform in general, based on our analysis, I conclude
that only highly additive PMCs can yield a composable model for esti-
mating a platform's dynamic energy consumption; if it executes speci�c
set of applications, only. The use of more and more non-additive PMCs
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will make a model non-composable and hence un�t to be used as a tool
for estimating dynamic energy consumption.

6 Conclusion

Energy consumption in modern computing platforms is a big and chal-
lenging area of research. Performance events (PMCs) are now dominant
predictor variables for modeling energy consumption. In this report, I dis-
cuss a novel selection criteria to select a subset of PMCs out of a large set
called as additivity. The PMCs that pass the additivity test are considered
to be �t to modelling dynamic energy consumption. I tested the PMCs
obtained from two most popular tools based on this criteria to for their
additivity and provided a list of PMCs that can potentially be used as
predictor variables for energy predictive modelling to achieve considerable
accuracy. Following this, I classi�ed the additive and non-additive PMCs
based on applications nature and then studied the evolution of additivity
of PMCs with the complexities in CPU architecture.

Furthermore, this report present the composability of well-known en-
ergy predictive models using PMCs. Based on established research, I con-
clude that the general use of PMCs for energy predictive linear models is
totally in-accurate in modern computing platforms.

In future, I will formalize the linear energy predictive models by inte-
grating the property of additivity and adding the assumptions of PMCs
based models in mathematical form. Furthermore, I plan to study non-
linearity of PMCs for their use in general non-linear and functional models.

7 Current state and future plans

In this section, I highlight the current state and and tentative future plans
of my PhD program.

• Current Achievements

1. Literature review of previous researches completed.

2. Presented the problem for energy modelling using PMCs in Sec-
ond NESUS PhD Symposium held in conjunction with Winter
School at Calabria, Italy [Feb 20, 2017 to Feb 23, 2017].

3. Developed SLOPE-PMC [74], i.e., an open-source software for
automated collection of PMCs on Intel Haswell CPU platform.

4. Published a novel property (Additivity) for selection of suitable
PMCs for energy modelling.

� Shahid, A., M. Fahad, R. R. Manumachu, and A. Las-
tovetsky, "Additivity: A Selection Criterion for Performance
Events for Reliable Energy Predictive Modeling", Journal
of Supercomputing Frontiers and Innovations, vol. 4, issue
4, pp. 50-65, 12/2017

5. Presented the property of Additivity for selection of PMCs for
linear regression based energy predictive modelling in Third NE-
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Figure 4: Prediction accuracy of the four linear energy predictive models. Pre-
dicted ED is obtained from model and WattsUp Pro power-meter provides mea-
sured ED. Comparison of measured and predicted EnergyD from model A,
model B, model C and model D is shown in Ă, B̆, C̆ and D̆, respectively. Ă′,
B̆′, C̆ ′ and D̆′ shows the absolute errors (%) in predictions. The average predic-
tion errors from Ă, B̆, C̆ and D̆ are 70.5%, 50%, 35.3% and 24.5%, respectively.23



SUS PhD Symposium held in conjunction with Winter School
at Zagreb, Croatia [January 22, 2017 to January 25, 2017].

• Future plans

1. Formalize the assumptions behind the linear energy predictive
models and integrate the additivity criteria to extend PMC
based models for composability.

2. Develop an open-source tool to check the additivity of PMCs
for given application set.

3. Study the suitability of PMCs for non-linear energy predictive
modelling.

4. Develop AI based techniques for functional energy predictive
modelling.

5. Explore other techniques for reliable and accurate energy pre-
dictive modelling apart from PMCs.

6. Check the accuracy of on-chip sensors for measuring energy con-
sumption.

7. Publish the conducted research in high-rated conferences and
journals.

8. Completion of PhD thesis by (∼ May, 2020)
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