
University College Dublin

Optimization of Multithreaded

Data-parallel Applications on Modern

Multicore CPUs For Performance and

Energy Using Application-level Decision

Variables

Semyon Khokhriakov
UCD Student Number: 15204508

This thesis is submitted to University College Dublin in fulfilment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science

Head of School: Assoc. Prof. Chris Bleakley

Research Supervisor: Assoc. Prof. Alexey Lastovetsky

Co-Supervisor: Dr. Ravi Reddy Manumachu

September 2019

i

Acknowledgements

Primarily I would like to express my deepest appreciation to my supervisor,

Prof. Alexey Lastovetsky, for giving me the golden opportunity to do my PhD in

the Heterogeneous Computing Laboratory, for his patience, motivation, faith,

and immense knowledge he gave me.

Besides my supervisor, I would like to pay special thankfulness, warmth,

and appreciation to my co-supervisor, Dr. Ravi Manumachu, whose help and

sympathetic attitude at every point during my research helped me to work

on time. I had a pleasure and honour to work with him during this research

progression. Thank you, Ravi.

I thank all my colleagues from the UCD Heterogeneous Computing

Laboratory, Hamidreza Khaleghzadeh, Ken O’Brien, Muhammad Fahad,

Emin Nuriyev, Arsalan Shahid, Eric Gyamfi and Tania Malik, for all the fun

and journeys we have had in the last four years.

I would also like to warmly thank Dr. Vladimir Rychkov and Ms. Julia

Rychkova, who supported me at every bit and made me feel like home. To Dr.

Sadegh Panahiazar and Mr. Morteza Matkan for giving me an opportunity to

join their "Illumino" startup. To all my friends for always being there whenever

I needed them.

This research was supported by Science Foundation Ireland (SFI) under

Grant Number 14/IA/2474. I would like to thank SFI and University College

Dublin for their financial support. To all the staff of the School of Computer

Science, especially to my DSP members, Mr. Damian Dalton and Prof.

Michela Bertolotto.

Last but not least, I would like to thank my mother, Ms. Valentina

Khokhriakova, for raising me in a way I have become. To all my family for the

encouragement, understanding, and love throughout my whole life.

ii

DEDICATION

To

My Family

iii

Abstract

Performance and energy are two most important objectives for optimization

on modern parallel platforms such as supercomputers, high performance

computing (HPC) clusters, and cloud computing infrastructures. These

platforms are now ubiquitously equipped with multicore CPUs to address the

twin critical concerns of performance and energy efficiency. The multicore

CPUs feature tight integration of tens of cores organized in one or more

sockets with multi-level cache hierarchy. Such tight integration, however,

leads to several inherent complexities. The complexities are: a). Severe

resource contention for shared on-chip resources such as last level lache

(LLC), interconnect (For example: Intel’s Quick Path Interconnect, AMD’s

Hyper Transport), and DRAM controllers; b). Non-uniform memory access

(NUMA) where the time for memory access between a core and main

memory is not uniform and where main memory is distributed between

locality domains or groups called NUMA nodes; c). Dynamic power

management (DPM) of multiple power domains (CPU sockets, DRAM).

The inherent complexities in these CPUs pose difficult challenges to

solution methods solving the single- and bi-objective optimization problems of

multithreaded data-parallel applications for performance and energy on such

platforms. Recent researches demonstrate that performance and energy

profiles of data-parallel applications executed on modern multicore CPUs to

iv

manifest drastic variations and these variations are the principal cause for low

average performance.

This thesis studies the influence of three-dimensional decision variable

space on single- and bi-objective optimizations of applications for

performance and energy on multicore CPUs. The three decision variables

are: a). The number of identical multithreaded kernels (threadgroups)

involved in the parallel execution of an application; b). The number of threads

in each threadgroup; and c). The workload distribution between the

threadgroups.

The thesis demonstrates the workload distribution to be an important

decision variable that can no longer be ignored in performance optimization

problem of data-parallel applications on modern multicore CPUs. The

solution methods using workload distribution as a decision variable are

proposed in this thesis. These methods employ model-based parallel

computing technique and use load-imbalancing data partitioning.

The thesis proposes methods for single-objective optimization for

performance and energy on modern multicore CPUs that use the

threadgroups and the number of threads in each threadgroup as decision

variables. The workload distribution is fixed so that a given workload is

always partitioned equally between the threadgroups.

One of the key findings of this thesis is that energy proportionality of

computing does not hold true for multicore CPUs thereby affording an

opportunity for bi-objective optimization for performance and energy. Based

on this finding, this thesis proposes the first application-level method for

solving the bi-objective optimization problem for performance and energy on

a single multicore CPU. The method uses two decision variables, the number

of identical multithreaded kernels (threadgroups) executing the application in

v

parallel and the number of threads in each threadgroup. The workload

distribution is not a decision variable. It is fixed so that a given workload is

always partitioned equally between the threadgroups.

Finally, this thesis proposes a predictive dynamic energy model based on

a non-negative linear regression and employing performance monitoring

counters (PMCs) as predictor variables to explain the Pareto-optimal

solutions determined by the solution method proposed in this thesis for

modern multicore CPUs.

vi

Contents

Acknowledgements ii

Abstract iv

Contents vii

List of Figures x

List of Tables xviii

1 Introduction 1

1.1 Motivation Behind This Thesis 3

1.1.1 Performance Optimization on Modern Multicore CPUs . 3

1.1.2 Energy Optimization on Modern Multicore CPUs 10

1.1.3 Bi-Objective Optimization for Performance and Energy . 12

1.2 Thesis Contributions . 16

1.3 Thesis Structure . 18

2 Background and Related Work 19

2.1 Multicore CPUs: Performance Optimization 19

2.1.1 Performance Models of Computation 21

2.1.2 Code Tuning . 21

vii

2.1.3 Scheduling . 23

2.1.4 Data Partitioning . 25

2.2 Multicore CPUs: Energy Optimization 28

2.2.1 Terminology . 29

2.2.2 Energy Models of Computation 30

2.2.3 System-level and Component-level Optimization 32

2.2.4 Application-level Optimization 42

2.3 Bi- and Multi-objective Optimization in HPC 43

2.3.1 Multi-Objective Optimization in HPC 43

2.3.2 Bi-objective Optimization for Performance and Energy . 44

2.4 Summary . 45

3 Novel Single-objective Optimization Methods for Performance and

Energy On Modern Multicore CPUs 47

3.1 Performance and Energy Optimization on Modern Multicore

CPUs: Challenges . 48

3.2 Performance Optimization Using Workload Distribution as a

Decision Variable . 54

3.2.1 Load Imbalancing Using Uneven Workload Distribution . 54

3.2.2 PFFT-FPM Employing 2D Fast Fourier Transform 55

3.2.3 PFFT-FPM-PAD Employing 2D FFT 61

3.2.4 PMM-FPM Employing Parallel Matrix Multiplication . . . 66

3.2.5 Experimental Analysis 72

3.2.6 Summary . 78

3.3 Performance and Energy Optimization Using Threadgroups and

Threads per Group as Decision Variables 79

3.3.1 Solution Method Using Threadgroups and Threads as

Decision Variables (SOPPETG) 80

viii

3.3.2 Parallel Matrix-Matrix Multiplication Using SOPPETG . . 81

3.3.3 2D Fast Fourier Transform Using SOPPETG 83

3.3.4 Experimental Analysis for Performance 84

3.3.5 Experimental Analysis for Energy 94

3.3.6 Summary . 103

3.4 Conclusion . 104

4 Bi-objective Optimization for Performance and Energy on Modern

Multicore CPUs 105

4.1 Multi-Objective Optimization: Background 110

4.2 Introduction in BOPPETG . 112

4.3 Experimental Results and Discussion 114

4.4 Analysis Using Performance and Dynamic Energy Models . . . 120

4.5 Conclusion . 123

5 Conclusion 125

5.1 Future Work . 127

Appendices 154

A Analysis of Performance Profiles of Data-parallel Applications on

Modern Multicore CPUs 154

B Methodology for Reliable Experimental Results 163

C HCLLIMB: Software for Bi-objective Optimization of DGEMM and

FFT on Modern Multicore CPUs for Performance and Energy 166

ix

List of Figures

1.1 The most general architecture of processors nowadays. 2

1.2 Speed function of IMKL DGEMM application executing varying

number of threads (T) on the Intel Haswell server. 4

1.3 Speed function of IMKL FFT application executing with 36

threads on the Intel Haswell server. 5

1.4 Dynamic Energy Consumption of IMKL FFT application

executing with 56 cores on the Intel Xeon Platinum server. . . . 11

1.5 Pareto frontier of FFTW PFFTTG application on HCLServer4

(S4) for workload size m = n = 30464. 16

2.1 A representative architecture of modern multicore CPU

processors. 20

2.2 Execution time of the parallel matrix multiplication application

with different data partitioning algorithms [42]. 27

2.3 Relationship between core voltage and frequency. 33

3.1 Speed function of IMKL FFT application executing with 36 cores

on the Intel Haswell server. 49

3.2 Dynamic Energy Consumption of IMKL FFT application

executing with 56 cores on the Intel Xeon Platinum server. . . . 50

3.3 a). Intuition behind load balancing. b). Load imbalancing. . . . 51

x

3.4 Each curve is the speed of one threadgroup. 55

3.5 PFFT-LB performing 2D-DFT of signal matrixM of size N ×N

(N = 16) using four threadgroups. Each threadgroup gets four

rows each. (a). Each threadgroup performs series of row

1D-FFTs locally indicated by solid arrows. (b). Matrix M is

transposed. (c). Each threadgroup performs series of row

1D-FFTs locally indicated by solid arrows. (d). Matrix M is

transposed again. It is the output of PFFT-LB. 57

3.6 PFFT-FPM performing 2D-DFT of signal matrix M of size

N × N (N = 16) using four threadgroups. Each threadgroup

gets different number of rows given by the data distribution,

d = {5, 3, 3, 5}. (a). Each threadgroup performs series of row

(padded row) 1D-FFTs locally indicated by solid arrows. (b).

Matrix M is transposed. (a). Each threadgroup performs

series of row (padded row) 1D-FFTs locally indicated by solid

arrows. (d). Matrix M is transposed again. It is the output of

PFFT-FPM . 58

3.7 Speed functions of two threadgroups, each a group of 18

threads. Each group executes 2D-DFT of size x × y using

IMKL FFT on a Intel multicore server consisting of two sockets

of 18 cores each. The plane y = N = 24704 intersects the

speed functions. 60

3.8 Each intersection produces two curves for the two threadgroups

showing speed versus x keeping y = N = 24704. Application

of HPOPTA to determine optimal distribution of rows provides

the partitioning, (d[1] = x1 = 11648, d[2] = x2 = 13056). 61

xi

3.9 Speed function for threadgroup1 intersected by the plane

x1 = 11648. Speed function for threadgroup2 intersected by

the plane x2 = 13056. 64

3.10 Each intersection produces a curve for the threadgroup showing

speed versus y keeping x constant. The lengths of padding for

the two threadgroups, Npadded, is the same and is equal to

24960. 65

3.11 PMM-LB: Matrix B is replicated at all the threadgroups.

Matrices A and C of size (N × N), N = 16, are horizontally

partitioned among the threadgroups. Each threadgroup

receives the same number of rows N
p

= 4. 67

3.12 PMM-LB: Matrix B is replicated at all the threadgroups.

Matrices A and C of size (N × N), N = 16, are horizontally

partitioned among the threadgroups. Each threadgroups

receives the different number of rows given by the data

distribution, d = {5, 3, 3, 5}. 69

3.13 Speed functions of four threadgroups, each a group of 18

threads. Each group executes matrix product

C = α× A×B + β × C of size N ×N of size x× y on a Intel

multicore server consisting of two sockets of 18 cores each.

The plane y = N = 18176 intersects the speed functions. . . . 69

3.14 Each intersection produces four curves for the four

threadgroups showing speed versus x keeping y = N = 18176

constant. Application of POPTA to determine optimal

distribution of rows provides the partitioning,

(d[1] = x1 = 4352, d[2] = x2 = d[3] = x3 = d[4] = x4 = 4608). . 70

xii

3.15 Execution times of PFFT-FPM and PFFT-FPM-PAD against the

basic FFTW-3.3.7 executed using 36 threads. 75

3.16 Speedup of PFFT-FPM and PFFT-FPM-PAD against the basic

FFTW-3.3.7 executed using 36 threads. 75

3.17 Execution times of PFFT-FPM and PFFT-FPM-PAD against the

basic FFTW-3.3.7 executed using 36 threads. 76

3.18 Speedups of PFFT-FPM and PFFT-FPM-PAD against the basic

IMKL FFT executed using 36 threads. 77

3.19 Execution times of PMM-FPM against the basic OpenBLAS

DGEMM executed using 36 threads. 78

3.20 Execution times of PMM-FPM against the basic IMKL DGEMM

executed using 36 threads. 79

3.21 (a). PMMTG-V: Matrices B and C are vertically partitioned

among the threadgroups. (b). PMMTG-H: Matrices A and C

are horizontally partitioned among the threadgroups. (c).

PMMTG-S: The p threadgroups are arranged in a square grid

of size
√
p × √p. All the matrices are partitioned into squares

among the threadgroups. 82

3.22 2D-DFT of signal matrix M of size N × N using p

threadgroups. a). PFFTTG-V using vertical decomposition of

the signal matrix. b). PFFTTG-H using horizontal

decomposition of the signal matrix. 83

3.23 (a). Performance of PMMTG application employing OpenBLAS

DGEMM with varying number of threadgroups on HCLServer1.

(b). Execution time of PMMTG versus the best base

configuration (g,t) employing OpenBLAS DGEMM on

HCLServer1. 85

xiii

3.24 (a). Performance of PMMTG application employing IMKL

DGEMM with varying number of threadgroups on HCLServer1.

(b). Execution time of PMMTG versus the best base

configuration (g,t) employing IMKL DGEMM on HCLServer1. . . 87

3.25 (a). Performance of PMMTG application employing IMKL

DGEMM with varying number of threadgroups on HCLServer3.

(b). Execution time of PMMTG versus the best base

configuration (g,t) employing IMKL DGEMM on HCLServer3. . . 88

3.26 (a). Performance of PMMTG application employing OpenBLAS

DGEMM with varying number of threadgroups on HCLServer3.

(b). Execution time of PMMTG versus the best base

configuration (g,t) employing OpenBLAS DGEMM on

HCLServer3. 89

3.27 (a). Performance of PFFTTG application employing IMKL FFT

with varying number of threadgroups on HCLServer1. (b).

Eexecution time of PFFTG versus the best base congregation

(g,t) employing IMKL FFT on HCLServer1. 90

3.28 (a). Performance of PFFTTG application employing FFTW with

varying number of threadgroups on HCLServer1. (b).

Eexecution time of PFFTTG versus the best base congregation

(g,t) employing FFTW on HCLServer1. 92

3.29 (a). Performance profile of FFTW PFFTTG application with

varying number of threadgroups and number of threads per

group on HCLServer3 (S3) for workload size, m = n = 17728.

Red dot represents the minimum. (b). Performance profiles of

FFTW PFFTTG application versus the best base

implementation employing FFTW on HCLServer3 (S3). 93

xiv

3.30 (a). Dynamic energy consumption of PMMTG application

employing OpenBLAS DGEMM with varying number of

threadgroups on HCLServer1. (b). Dynamic energy

consumption of PMMTG versus the best base configuration

(g,t) employing OpenBLAS DGEMM on HCLServer1. 96

3.31 (a). Dynamic energy consumption of PMMTG application

employing IMKL DGEMM with varying number of threadgroups

on HCLServer1. (b). Dynamic energy consumption of PMMTG

versus the best base configuration employing IMKL DGEMM

on HCLServer1. 97

3.32 (a). Dynamic energy consumption of PMMTG application

employing OpenBLAS DGEMM with varying number of

threadgroups on HCLServer2. (b). Dynamic energy

consumption of PMMTG versus the best base configuration

employing OpenBLAS DGEMM on HCLServer2. 98

3.33 (a). Dynamic energy consumption of PMMTG application

employing IMKL DGEMM DGEMM with varying number of

threadgroups on HCLServer2. (b). Dynamic energy

consumption of PMMTG versus the best base configuration

employing IMKL DGEMM on HCLServer2. 99

3.34 (a). Dynamic energy consumption of PFFTTG application

employing FFTW with varying number of threadgroups on

HCLServer1. (b). Dynamic energy consumption of PFFTTG

versus the best base configuration employing FFTW on

HCLServer1. 101

xv

3.35 (a). Energy profile of FFTW PFFTTG application with varying

number of threadgroups and number of threads per group on

HCLServer4 (S4) for workload size m = n = 30464. (b).

Energy profile of FFTW PFFTTG application with varying

number of threadgroups and number of threads per group on

HCLServer4 (S4) for workload size m = n = 32192. Red dot

represents the minimum. 102

4.1 An example showing the set S of decision variable vectors, the

set Z of objective vectors, and Pareto-optimal objective vectors

shown by bold line. S ⊂ R3,Z ⊂ R2. 112

4.2 (a). Pareto frontier of IMKL DGEMM PMMTG application on

HCLServer1 (S1) for workload size N = 32768. (b). Pareto

frontier of IMKL FFT PFFTTG application on HCLServer1 (S1)

for workload size N = 31744. 117

4.3 (a). Pareto frontier of FFTW PFFTTG application on

HCLServer4 (S4) for workload size m = n = 30464. (b).

Pareto frontier of PFFTTG application based on IMKL FFT on

HCLServer4 (S4) for workload size m = n = 22208. 118

4.4 (a). Pareto frontier of IMKL DGEMM PMMTG application on

HCLServer2 (S2) for workload size m = n = 17408. (b). Pareto

frontier of PMMTG application employing OpenBLAS DGEMM

on HCLServer2 (S2) for workload size m = n = 17408. 119

4.5 (a). Measured (left) and predicted (right) dynamic energy

consumption of OpenBLAS DGEMM on HCLServer2 (S2) for

workload size m = n = 16384. (b). Measured (left) and

predicted (right) dynamic energy consumption of OpenBLAS

DGEMM on HCLServer2 (S2) for workload size m = n = 17408. 122

xvi

A.1 Performance profiles of 2D-FFT computing 2D-DFT of size N ×

N using FFTW-2.1.5 and FFTW-3.3.7. The executions of 2D-

FFT applications employ 36 threads on a Intel multicore server

consisting of two sockets of 18 cores each. 157

A.2 The average speeds of FFTW-2.1.5 vs FFTW-3.3.7. 158

A.3 Performance profiles of 2D-FFT computing 2D-DFT of size

N × N using FFTW-2.1.5 and IMKL FFT. The executions of

2D-FFT applications employ 36 threads on a Intel multicore

server consisting of two sockets of 18 cores each. 159

A.4 The average speeds of FFTW-2.1.5 and IMKL FFT. 160

A.5 Performance profiles of 2D-FFT computing 2D-DFT of size N ×

N using FFTW-3.3.7 and IMKL FFT. The executions of 2D-

FFT applications employ 36 threads on a Intel multicore server

consisting of two sockets of 18 cores each. 161

A.6 The average speeds of FFTW-3.3.7 and IMKL FFT. 161

C.1 Best form of partitioning for OpenBALS DGEMM 180

C.2 Best form of partitioning for IMKL DGEMM 180

C.3 Full speed function of FFTW-3.3.7. 181

C.4 Full speed function of IMKL FFT. 181

xvii

List of Tables

3.1 Specifications of the Intel multicore CPUs, HCLServer01-04, with increasing

number of sockets and an increasing number of cores per socket. 49

3.2 Specification of the Intel Haswell server used to construct the performance

profiles. 72

3.3 Execution times in seconds for FFTW-3.3.7 on the Intel Haswell multicore

server for three different planner flags. 73

3.4 Specifications of the Intel multicore CPUs, HCLServer01-04, ordered by

increasing number of sockets and an increasing number of cores per socket. 84

4.1 Specifications of the Intel multicore CPUs, HCLServer01-04, ordered by

increasing number of sockets and an increasing number of cores per socket. 115

4.2 L1 dTLB PMC data for size 16384 121

4.3 L1 dTLB PMC data for size 17408 121

A.1 Specification of the Intel Haswell server used to construct the performance

profiles. 154

A.2 Execution times in seconds for FFTW-3.3.7 on the Intel Haswell multicore

server for three different planner flags. 156

xviii

List of Acronyms

BOPPE Bi-objective optimization problem for performance and energy.

CPU Central processing unit.

DGEMM Double-precision general matrix multiplication.

DPM Dynamic power management.

dTLB Data translation lookaside buffer.

DVFS Dynamic voltage and frequency scaling.

FFT Fast Fourier transform.

FPM Functional performance model.

HPC High-performance computing.

IMKL Intel MKL.

LB Load balancing.

LIMB Load imbalancing.

LLC Last level cache.

xix

NUMA Non-uniform memory access.

OS Operating system.

PAD Padding.

PFFT Parallel fast Fourier transform.

PMC Performance monitoring counters.

PMM Parallel matrix multiplication.

SOPPE Single-objective optimization problem for performance and energy.

TG Threadgroups.

TLB Translation lookaside buffer.

xx

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while

registered as a candidate for the degree stated on the Title Page, and I have

not obtained a degree elsewhere on the basis of the research presented in

this submitted work.

xxi

Chapter 1

Introduction

High-performance computing (HPC) has received lots of attention from the

science and business industry with the advent of multi-core and cloud

computing. HPC is essential in physical simulations, weather forecasting,

quantum mechanics, data analytics, artificial intelligence (AI), etc., where

large-scale problems need to be solved requiring massive computations to be

performed. HPC gathers together a wide range of modern homogeneous and

heterogeneous platforms (supercomputers [1], Grid’5000 [2]) to deliver higher

performance. Multicore CPUs are the mandrel of such system, and any

optimization focusing on the objectives such as performance and energy

consumption of multicore CPUs, will optimize these objectives for the overall

system.

Reviewing the history of computers, for more than three decades prior to

mid-2000s called the single-core era, performance doubled every 18 months

due to Moore’s law [3] and Dennard scaling ([4]). Moore’s law states that the

number of transistors per square inch on integrated circuits doubles every

year since the integrated circuit was invented. Dennard scaling is a scaling

model whereby the power density of a transistor based processor of a unit

area remains constant due to voltage and current scaling down with the

length of the transistor. However, since 2004, designers of processors started

facing physical constraints of the integrated circuit containing the transistors.

Both power dissipation and power density trends have essentially required

1

designers to remain within a particular power budget and density

requirements. All these limitations, associated with voltage supply scaling,

threshold scaling, and clock frequency scaling, along with design complexity,

forced companies to look for an alternative to the single core paradigm [5].

Thus, in 2005, AMD released their first dual-core processor (Athlon 64 X2)

and from that time onwards, microprocessor architecture entered multicore

era. Multicore processors integrate many cores into one chip to overcome the

physical constraints of uniprocessor architecture and deliver high computing

power with a single chip.

Modern parallel platforms are composed of tightly integrated multicore

CPUs with a hierarchical arrangement of cores into sockets with multi-level

cache hierarchy. This tight integration has resulted in the cores contending for

various shared on-chip resources such as Last Level Cache (LLC) and

interconnect (For example: Intel‘s Quick Path Interconnect [6], AMD‘s Hyper

Transport [7]), leading to resource contention and non-uniform memory

access (NUMA). NUMA happens where the time for memory access between

a core and main memory is not uniform and where main memory is

distributed between locality domains or groups called NUMA nodes. Figure

2.1 shows the most general architecture of multicore CPUs. It comprises of

two sockets (NUMA node 0 and NUMA node 1) with four physical cores each.

Figure 1.1: The most general architecture of processors nowadays.

2

1.1. MOTIVATION BEHIND THIS THESIS

Each core has its own L1 and L2 caches. All the cores in a socket share the

last level cache (L3). The time taken to access a data item depends on where

it is in the multi-level cache and memory hierarchy. The closer the memory to

the core, the less the access time. For example: time to access data in the L1

cache is considerably less than that for L2 and L3 caches. Time is longer for

access to the memory of the neighbour NUMA node since in this case the

slow on-chip interconnect is used. Furthermore, all cores share the same last

level cache (L3) leading to severe resource contention for it between threads.

Efficient portable parallel programming on platforms composed of such

multicore CPUs must address daunting challenges posed by the inherent

complexities.

1.1 Motivation Behind This Thesis

To explain the motivation of this thesis, the author elucidates the challenges

posed by the inherent complexities in multicore CPU platforms to solving

single-objective optimization of data-parallel applications for performance and

energy, and bi-objective optimization for performance and energy on such

platforms. The challenges are illustrated using two well-known highly

optimized scientific kernels, matrix-matrix multiplication (DGEMM) and 2D

fast Fourier transform (2D-FFT).

1.1.1 Performance Optimization on Modern Multicore CPUs

This section presents the challenges posed to performance optimization on

modern multicore CPUs. This is followed by explanation why the state-of-

the-art dominant technique of load balancing fails to address the challenges.

Finally, it proposes solution methods to address the challenges.

Figure 1.2 shows the performance profile of multithreaded matrix-matrix

multiplication employing DGEMM routine provided by the Intel Math Kernel

Library v.2017. The application computes the matrix product (C = α×A×B+

β×C) of two dense square matrices A and B of size N ×N . It is executed on

a modern Intel Haswell server consisting of 36 cores. The number of threads

3

1.1. MOTIVATION BEHIND THIS THESIS

Figure 1.2: Speed function of IMKL DGEMM application executing varying
number of threads (T) on the Intel Haswell server.

employed during the execution of the DGEMM routine is configurable.

The crucial observation is that for one thread the profile is smooth.

However, drastic variations in the performance can be observed with

increasing number of threads. The variation is related to the difference of

speeds between two subsequent local minima (s1) and maxima (s2) and is

defined as: variation(%) = |s1−s2|
min(s1,s2)

× 100. The maximum width of variations

with 36 threads is more than 40%. There are several sizes where the width of

variations reaches more than 20%.

Figure 1.3 illustrates the performance profile of 2D-FFT offered by the

same Intel Math Kernel Library v.2017. The 2D-FFT application is executed

with 36 threads on the same Intel Haswell server. It computes the 2D-DFT of

the signal matrix of size N ×N . The number of threads employed during the

execution of the 2D-FFT routine is also configurable. The variations happen

for the whole range of problem sizes. The maximum width of variations is

around 89%. The detailed study of performance profiles of the 2D-FFT

application using three vendor packages, FFTW-2.1.5, FFTW-3.3.7 and IMKL

4

1.1. MOTIVATION BEHIND THIS THESIS

Figure 1.3: Speed function of IMKL FFT application executing with 36 threads
on the Intel Haswell server.

FFT, can be found in the Appendix A, where also is show that the FFT

routines in the packages demonstrate low average performance due to these

variations.

To make sure the experimental results are reliable and not noise, a

statistical methodology described in Appendix B is used. Briefly, for every

data point in the functions, the automation software executes the application

repeatedly until the sample mean lies in the 95% confidence interval with

precision of 0.025 (2.5%).

The variations cannot be explained by the constant and stochastic

fluctuations due to OS activity or a workload executing in a node in common

networks of computers. In such networks, a node is persistently performing

minor routine computations and communications by being an integral part of

the network. Examples of such routine applications include e-mail clients,

browsers, text editors, audio applications, etc. As a result, the node will

experience constant and stochastic fluctuations in the workload. This

changing transient load will cause a fluctuation in the speed of the node in the

sense that the speed will vary for different runs of the same workload. One

way to represent these inherent fluctuations in the speed is to use a speed

5

1.1. MOTIVATION BEHIND THIS THESIS

band rather than a speed function. The width of the band characterizes the

level of fluctuation in the speed due to changes in load over time [8], [9], [10].

For a node with uniprocessors, the width of the band has been shown to

decrease as the problem size increases. For a node with a very high level of

network integration, typical widths of the speed bands were observed to be

around 40% for small problem sizes and narrowing down to 3% for large

problem sizes. Therefore, as the problem size increases, the width of the

speed band is observed to decrease. Therefore, for long running

applications, one would observe the width to become quite narrow (3%).

However, this is not the case for variations in the presented graphs. Hence,

these variations are consequences of the inherent complexities posed by the

tight integration which has resulted in the cores contending for various shared

on-chip resources such as Last Level Cache (LLC) and interconnect (NUMA).

They pose a daunting challenge to performance optimization of

multi-threaded applications on modern multicore CPUs.

Load balancing is a well known and still the dominant technique for

performance optimization of scientific applications on parallel platforms. Load

balancing algorithms can be classified as static or dynamic. Static algorithms

(for example, those based on data partitioning) [11], [12] require a priori

information about the parallel application and platform. Dynamic algorithms

(such as task scheduling and work stealing) [13]–[15] balance the load by

moving finegrained tasks between processors during the calculation.

Dynamic algorithms do not require a priori information about execution but

may incur significant communication overhead due to data migration.

The most advanced load balancing algorithms use functional performance

models (FPMs), which are application-specific and represent the speed of a

processor by continuous function of problem size but satisfying some

assumptions on its shape [9]. These FPMs capture accurately the real-life

behavior of applications executing on nodes consisting of uniprocessors

(single-core CPUs). The assumptions require them to be smooth enough in

order to guarantee that optimal solutions minimizing the computation time are

always load balanced. However, as can be seen from the figures 1.2 and 1.3,

due to complex nodal architectures with a highly hierarchical arrangement

6

1.1. MOTIVATION BEHIND THIS THESIS

and tight integration of cores the shape of the performance profiles of real

scientific applications on the modern multicore CPUs is not smooth and may

deviate significantly from the shapes that allowed traditional and

state-of-the-art load balancing algorithms to find optimal solutions.

Lastovetsky et al. [16], [17] study the variations in performance profile for

a real-life data-parallel scientific application, Multidimensional Positive

Definite Advection Transport Algorithm (MPDATA), on a Xeon Phi

co-processor. They geometrically prove the limitations of the FPM-based load

balancing algorithms to modern performance profiles executed on multicore

CPUs. Based on FPMs, the authors propose a novel optimization technique

that distributes workload among cores unequally but gaining better

performance in comparison with traditional load balancing. Furthermore,

Lastovetsky et al. in [18] propose new model-based methods and algorithms

for minimization of time and energy of computations for the most general

shapes of performance and energy profiles of data parallel applications

observed on the modern homogeneous multicore clusters.

The methods [16]–[18] show that workload distribution has become an

important decision variable for performance optimization on modern multicore

CPUs. The methods are, however, theoretical works and target

homogeneous clusters of multicore CPUs and not a single multicore CPU.

There are three solution approaches that can be employed to remove the

performance variations.

Manual code optimization is typically the first approach adopted to

improve the performance of an application. The roofline model [19] is used to

visually depict the trend of performance gains accrued from code tuning

towards the theoretical peak performance of a multicore processor. Using this

model, the highly optimized scientific applications such as Intel Math Kernel

Library (IMKL) (BLAS, FFT) consistently demonstrate the superior

performance of their codes for new platforms.

However, manual code optimization is a time-consuming process and

programmers who can program such techniques are rare because they

should be experts in both hardware and software domain. This approach

involves different techniques such as loop transformation, use of pointers,

7

1.1. MOTIVATION BEHIND THIS THESIS

use of SIMD registers, blocking etc. [20], [21], [22], to avoid the unprofitable

use of cache resources and improve CPU utilization that in turn leads to

higher performance. For this, data from performance monitoring counters

(PMCs) is required, that demands additional knowledge about hardware

specific architecture. PMCs are special-purpose registers provided in modern

microprocessors to store the counts of software and hardware activities. We

will use the acronym PMCs to refer to software events, which are pure

kernel-level counters such as page-faults, context-switches, etc. as well as

micro-architectural events originating from the processor and its performance

monitoring unit called the hardware events such as cache-misses,

branch-instructions, etc.

Besides, PMCs in some cases are not reliable based on additivity test

proposed in [23]. Moreover, such efficient tuning for one architecture can be

inefficient for the other that damages code portability. Some vendors such as

Intel do not disclose the source code of their applications which makes code

modification impossible at the kernel level.

The second approach constructs solutions for an input workload size by

employing solutions to larger workload sizes with better performance. From

the figures 1.2 and 1.3 can be seen that two subsequential workload sizes

have different performance where sometimes a larger problem size has better

performance. The basic idea is to increase the input workload size (by

padding, for example) to a bigger workload size with better performance,

solve the padded workload size, and use its solution to construct the solution

for the input workload size. This is a portable approach.

Finally, the third approach is optimization using model-based parallel

computing method [16]–[18]. The key idea behind this approach is to design

and implement a parallel version of the application that can be executed

using identical abstract processors named threadgroups in parallel. The

performances of the threadgroups are represented by realistic and accurate

performance models of computation. The models are input to a data

partitioning algorithm to determine the optimal workload distribution

maximizing the performance during the parallel execution of the application.

The main advantages of this approach are:

8

1.1. MOTIVATION BEHIND THIS THESIS

• It is portable when the performance models of computation used in the

data partitioning algorithms do not use architecture-specific parameters.

• It does not require source code modification of the optimized package.

• The programming effort is less time-consuming, which is to distribute

the workload between identical already optimized and well-tested

multithreaded routines (abstract processors) and execute them in

parallel.

This thesis proposes novel single-objective optimization methods

specifically designed for performance optimization of 2D fast Fourier

transform based on FFTW and IMKL (PFFT) and dense matrix-matrix

multiplication written using OpenBLAS DGEMM and IMKL (PMM).

The solution methods employ workload distribution as the decision

variable and are based on model-based parallel computing method using

load-imbalancing data partitioning technique. The technique determines

optimal solutions (workload distributions) that may not load-balance the

application in terms of execution time. The methods take as inputs, the

discrete functions of the performance of the processors against problem size.

Based on the experiments conducted on a dual-socket Intel Haswell CPU

consisting of 36 physical cores, the average and maximum speedups

observed for PFFT using FFTW-3.3.7 are 2.3x and 9.4x and the average and

maximum speedups observed using IMKL FFT are 1.4x and 5.9x. The

average and maximum speedups observed for PMM using OpenBLAS

DGEMM are 1.2x and 1.4x and the average and maximum speedups

observed using IMKL DGEMM are 1.1x and 1.3x.

Then an application-level method, SOPPETG, for solving performance

optimization problem on a single multicore CPU is proposed. The method

uses two decision variables, the number of identical multithreaded kernels

(threadgroups) executing the application in parallel and the number of threads

in each threadgroup. The workload distribution is not a decision variable. It is

fixed so that a given workload is always partitioned equally between the

threadgroups. Based on the experiments conducted on a single-socket Intel

9

1.1. MOTIVATION BEHIND THIS THESIS

Skylake CPU consisting of 22 physical cores, the average and maximum

performance improvements of SOPPETG using OpenBLAS DGEMM are 7%

and 26.3% and the average and maximum performance improvements using

IMKL DGEMM are 4.1% and 6.5%. The average and maximum performance

improvements of SOPPETG using IMKL FFT are 7% and 13% and using

FFTW-3.3.7 are 25% and 51% respectively.

On a dual-socket Intel Haswell CPU consisting of 36 physical cores, the

average and maximum performance improvements of SOPPETG using

OpenBLAS DGEMM are 19% and 31.7% and the average and maximum

performance improvements using IMKL DGEMM are 7% and 42.1%. The

average and maximum performance improvements of SOPPETG using

FFTW-3.3.7 are 85% and 90%.

1.1.2 Energy Optimization on Modern Multicore CPUs

Reducing energy consumption is of paramount concern to the HPC

community since its pervasiveness in data centers and cloud computing

infrastructures. Energy in HPC is now an environment concern not only

because of the maintenance cost of HPC systems but also of high carbon

footprint which affects environmental sustainability as modern data centers

already can rival cities in power consumption. This was not an issue in the

past since until now we have followed Moore’s Law enhancements in

photolithography techniques which are proportional reductions in dynamic

power consumption per transistor and consequent improvements in clock

frequency at the same level of power dissipation. However, below 90 nm, the

static power dissipation can be greater than the dynamic power dissipation.

This effect summons clock frequency freezing in order to stay within thermal

power emission limits [24].

The optimization of energy consumption of multicore CPUs is more

complex than that of a single- or dual-core CPUs. The new complexities such

as tight integration with severe contention on shared resources (Last level

caches (LLC), main memory, PCI-E links, etc.) and NUMA pose tremendous

challenges to the energy optimization of data-parallel applications on modern

10

1.1. MOTIVATION BEHIND THIS THESIS

multicore CPUs.

In contrast to single-core optimization, where energy profiles follow the

fully polynomial-time scheme for task partitioning, i.e. energy consumption

with a higher workload is larger than that with a lower workload [25], the

energy profiles of real scientific applications executed on modern multicore

CPUs demonstrate highly non-linear relationship between workload size and

energy consumption.

As an example, figure 3.2 depicts the dynamic energy consumption profile

of 2D-FFT employing IMKL FFT on the Intel Xeon Platinum server consisting

of 56 cores. The dynamic energy consumption is measured with Yokogawa

WT310 power meter. It can be seen that the graph is highly non-linear. The

maximum width of variations can be up to 73%. It represents the maximum

amount of energy savings possible.

Figure 1.4: Dynamic Energy Consumption of IMKL FFT application executing
with 56 cores on the Intel Xeon Platinum server.

The research works [26], [27] propose model-based data partitioning

methods to minimize the total dynamic energy consumption during the

execution of a data-parallel application on homogeneous clusters of multicore

CPUs. They take as input discrete dynamic energy functions with no shape

assumptions (for example, the discrete profile in the Figure 1.4), which

11

1.1. MOTIVATION BEHIND THIS THESIS

accurately and realistically account for resource contention and NUMA

inherent in modern multicore CPU platforms. The research works are

theoretical demonstrating energy improvements based on simulations of

clusters of homogeneous nodes containing multicore CPUs.

This thesis proposes an application-level method, SOPPETG, for solving

energy optimization problem on a single multicore CPU. The method uses

two decision variables, the number of identical multithreaded kernels

(threadgroups) executing the application in parallel and the number of threads

in each threadgroup. The workload distribution is not a decision variable. It is

fixed so that a given workload is always partitioned equally between the

threadgroups. Based on the experiments conducted on a single-socket Intel

Skylake CPU consisting of 22 physical cores, the average and maximum

energy savings of SOPPETG using OpenBLAS DGEMM are 7.9% and 30%

and the average and maximum energy savings using IMKL DGEMM are

35.7% and 67%. The average and maximum energy savings of SOPPETG

using FFTW-3.3.7 are 30% and 63%.

On a dual-socket Intel Haswell CPU consisting of 24 physical cores, the

average and maximum energy savings of SOPPETG using OpenBLAS

DGEMM are 10% and 24.5% and the average and maximum energy savings

using IMKL DGEMM are 13% and 67%. The average and maximum energy

savings of SOPPETG using FFTW-3.3.7 on a dual-socket Intel Skylake CPU

consisting of 56 cores are 23% and 43%.

1.1.3 Bi-Objective Optimization for Performance and

Energy

Energy proportionality is the key design goal pursued by architects of modern

multicore CPU platforms [28]. One of its implications is that optimization of an

application for performance will also optimize it for energy. Modern multicore

CPUs however have several inherent complexities, which are: a) Severe

resource contention due to tight integration of tens of cores organized in

multiple sockets with multi-level cache hierarchy and contending for shared

on-chip resources such as last level lache (LLC), interconnect (For example:

12

1.1. MOTIVATION BEHIND THIS THESIS

Intel’s Quick Path Interconnect, AMD’s Hyper Transport), and DRAM

controllers; b) Non-uniform memory access (NUMA) where the time for

memory access between a core and main memory is not uniform and where

main memory is distributed between locality domains or groups called NUMA

nodes; and c) Dynamic power management (DPM) of multiple power

domains (CPU sockets, DRAM). This thesis shows that due to these

complexities, energy proportionality does not hold true for multicore CPUs.

This finding creates the opportunity for bi-objective optimization of

applications for performance and energy.

Solution methods solving the bi-objective optimization problem for

performance and energy BOPPE can be broadly classified into system-level

and application-level categories. System-level methods aim to optimize

performance and energy of the environment where the applications are

executed. The methods employ application-agnostic models and hardware

parameters as decision variables. They are principally deployed at operating

system (OS) level and therefore require changes to either the OS or the

hardware. The key decision variable employed is Dynamic Voltage and

Frequency Scaling (DVFS).

In the second category, solution methods optimize applications rather

than the executing environment. The methods use application-level decision

variables and predictive models for performance and energy consumption of

applications to solve BOPPE. The dominant decision variables include the

number of threads, loop tile size, workload distribution, etc. Following the

principle of energy proportionality, a dominant class of such solution methods

aim to achieve optimal energy reduction by optimizing for performance alone.

Definitive examples are scientific routines offered by vendor-specific software

packages that are extensively optimized for performance. For example, Intel

Math Kernel Library [29] provides extensively optimized multithreaded basic

linear algebra subprograms (BLAS) and 1D, 2D, and 3D fast Fourier

transform (FFT) routines for Intel processors. Open source packages such as

[30]–[32] offer the same interface functions but contain portable optimizations

and may exhibit better average performance than a heavily optimized vendor

package [33], [34]. The optimized routines in these software packages allow

13

1.1. MOTIVATION BEHIND THIS THESIS

employment of one key decision variable, which is the number of threads. A

given workload is load-balanced between the threads.

The works [26], [27], [35] propose model-based data partitioning methods

that take as input discrete performance and dynamic energy functions with no

shape assumptions, which accurately and realistically account for resource

contention and NUMA inherent in modern multicore CPU platforms. Using a

simulation of the execution of a data-parallel matrix multiplication application

based on OpenBLAS DGEMM on a homogeneous cluster of multicore CPUs,

[26] show that optimizing for performance alone results in average and

maximum dynamic energy reductions of 24% and 68%, but optimizing for

dynamic energy alone results in performance degradations of 95% and

100%. For a 2D fast Fourier transform application based on FFTW, the

average and maximum dynamic energy reductions are 29% and 55% and the

average and maximum performance degradations are both 100%. Research

work [35] proposes a solution method called ALEPH to solve BOPPE on

homogeneous clusters of modern multicore CPUs. ALEPH is shown to

determine a diverse set of globally Pareto-optimal solutions whereas existing

solution methods give only one solution when the problem size and number

of processors are fixed. The methods target homogeneous HPC platforms.

Khaleghzadeh et al. [36] propose a solution method solving the bi-objective

optimization problem on heterogeneous processors. The authors prove that

for an arbitrary number of processors with linear execution time and dynamic

energy functions, the globally Pareto-optimal front is linear and contains an

infinite number of solutions out of which one solution is load balanced while

the rest are load imbalanced. A data partitioning algorithm is presented that

takes as an input discrete performance and dynamic energy functions with no

shape assumptions. The research works [26], [27], [35], [36] are theoretical

demonstrating performance and energy improvements based on simulations

of clusters of homogeneous and heterogeneous nodes.

All these works done on bi-objective optimization for performance and

energy do not consider the optimization on a single multicore CPU.

Furthermore, the works [26], [27], [35], [36] are theoretical and use only

workload distribution as a decision variable. However, one of the findings of

14

1.1. MOTIVATION BEHIND THIS THESIS

this thesis is that modern multicore CPUs are not energy proportional and a

trade-off between energy and performance can be found on such platforms.

This finding opens an opportunity for bi-objective optimization for

performance and energy on a single multicore CPU and makes it meaningful.

To the best of author’s knowledge, this is the first work studying bi-objective

optimization for performance and energy consumption on a single multicore

CPU.

This thesis studies the influence of three-dimensional decision variable

space on bi-objective optimization of applications for performance and energy

on multicore CPUs. The three decision variables are: a). The number of

identical multithreaded kernels (threadgroups) involved in the parallel

execution of an application; b). The number of threads in each threadgroup;

and c). The workload distribution between the threadgroups. The author

focuses exclusively on the first two decision variables in this work. The

number of possible workload distributions increases exponentially with

increasing number of threadgroups employed in the execution of a

data-parallel application and it would require employment of

threadgroup-specific performance and energy models to reduce the

complexity. It is a subject of future work.

The thesis proposes the first application-level method for bi-objective

optimization of multithreaded data-parallel applications on a single multicore

CPU for performance and energy. The method uses two decision variables,

the number of identical multithreaded kernels (threadgroups) executing the

application in parallel and the number of threads in each threadgroup. The

workload distribution is not a decision variable. It is fixed so that a given

workload is always partitioned equally between the threadgroups. The

method allows full reuse of highly optimized scientific codes and does not

require any changes to hardware or OS.

Based on the experiments conducted on a dual-socket Intel Skylake CPU

consisting of 56 cores, it was observed that the number of Pareto optimal

solutions can be up to 11 for FFTW-3.3.7.. Figure 1.5 shows these solutions

for problem size m = n = 30464. One can observe, choosing the best

configuration for performance (g,t)=(1,96), increases the dynamic energy

15

1.2. THESIS CONTRIBUTIONS

Figure 1.5: Pareto frontier of FFTW PFFTTG application on HCLServer4 (S4)
for workload size m = n = 30464.

consumption by 35% in comparison with the optimal configuration for energy

(8,12), and choosing the optimal configuration for energy (8,12), degrades the

performance by 49% in comparison with the optimal configuration for

performance (1,96). The average number of globally Pareto-optimal solutions

for FFTW-3.3.7 is 3. On a single-socket Intel Skylake CPU consisting of 22

physical cores, the average and the maximum number of globally

Pareto-optimal solutions for IMKL DGEMM and IMKL FFT are (2.3,3) and

(2.6,3).

Finally, this thesis proposes a predictive dynamic energy model based on

non-negative linear regression and employing performance monitoring

counters (PMCs) as predictor variables to explain the Pareto-optimal

solutions determined by solution method proposed in this thesis for multicore

CPUs.

1.2 Thesis Contributions

The main contributions of this thesis are the following:

1. Demonstration of the challenges posed by inherent complexities in

modern multicore CPUs such as severe resource contention and

16

1.2. THESIS CONTRIBUTIONS

NUMA to the performance of multi-threaded data-parallel applications

executing on such platforms.

2. Studying the performance profiles of multithreaded 2D FFT and

matrix-matrix multiplication provided in highly optimized packages,

FFTW-3.3.7, IMKL FFT, OpenBALS DGEMM and IMKL DGEMM on a

modern Intel Haswell multicore processor consisting of thirty-six cores.

It is shown that all routines demonstrate drastic performance variations

and that their average performances therefore are considerably lower

than their peak performances.

3. Three novel optimization methods specifically designed for optimization

of 2D-FFTW, 2D-FFT-IMKL, OpenBLAS-DGEMM and IMKL-DGEMM

for performance. The methods employ workload distribution as the

decision variable and are based on model-based parallel computing

method using load-imbalancing data partitioning technique. The

technique determines optimal solutions (workload distributions) that

may not load-balance the application in terms of execution time.

4. Application-level methods for single-objective optimization of

multithreaded data-parallel applications for performance and energy.

The method uses two decision variables, the number of identical

multithreaded kernels (threadgroups) and the number of threads in

each threadgroup.

5. Detection and demonstration of that the energy proportionality does not

hold true for multicore CPUs thereby affording an opportunity for

bi-objective optimization for performance and energy.

6. The first application-level method for bi-objective optimization of

multithreaded data-parallel applications for performance and energy.

The method uses two decision variables, the number of identical

multithreaded kernels (threadgroups) and the number of threads in

each threadgroup. The method is demonstrated using four highly

optimized data-parallel applications. It is shown that the proposed

17

1.3. THESIS STRUCTURE

method determines good numbers of globally Pareto-optimal

configurations of the applications allowing for a better balance between

performance and energy consumption.

7. Predictive dynamic energy model based on linear regression and

employing PMCs as predictor variables to explain the Pareto-optimal

solutions determined by the method proposed in this thesis for

dual-socket multicore CPUs.

1.3 Thesis Structure

The rest of the thesis is organized as follows: chapter 2 covers the review of

state-of-the-art methods of single-objective optimization for performance and

energy, bi-objective optimization for performance and energy on modern

multicore CPUs, and performance and energy models of computation.

Chapter 3 presents novel methods for single-objective optimization

performance and energy using three decision variables - workload

distribution, the number of threadgroups and the number of threads in each

threadgroup. Chapter 4 proposes bi-objective optimization for performance

and energy on modern multicore CPUs using the number of threadgroups

and the number of threads per threadgroup as decision variables. The

conclusion of this thesis is in chapter 5.

18

Chapter 2

Background and Related Work

This section starts with survey of research works focusing on single-objective

optimization for performance and energy on modern multicore CPUs. Then,

solution methods for bi-objective optimization for performance and energy and

multi-objective optimization on multicore CPU platforms are presented.

2.1 Multicore CPUs: Performance Optimization

In the era of uniprocessors prior to the advent of multicore CPUs, computer

users came to expect performance doubling every 18 months due to Moore’s

law and Dennard scaling. However, achieving the high performance of

applications on multicore CPUs is not as simple. There are complex issues

surrounding the migration forward to multicore architecture which affect the

performance. They are: a). Severe resource contention due to tight

integration of tens of cores organized in multiple sockets with multi-level

cache hierarchy and contending for shared on-chip resources such as last

level cache (LLC), interconnect (For example: Intel’s Quick Path Interconnect,

AMD’s Hyper Transport), and DRAM controllers, b). Non-uniform memory

access (NUMA) where the time for memory access between a core and main

memory is not uniform and where main memory is distributed between

locality domains or groups called NUMA nodes, and c). Dynamic power

management (DPM) of multiple power domains (CPU sockets, DRAM).

19

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

Figure 2.1: A representative architecture of modern multicore CPU
processors.

These complexities pose serious challenges to model and algorithm

designers.

Figure 2.1 depicts a representative architecture of modern multicore CPU

processors. It comprises two sockets (NUMA node 0 and NUMA node 1) with

four physical cores each. Each core has its own L1 and L2 caches. All the

cores in a socket share the last level cache (L3). The time taken to access a

data item depends on where it is in the multi-level cache and memory

hierarchy. The closer the memory to the core, the less is the access time. For

example: time to access data in the L1 cache is considerably less than that

for L2 and L3 caches. Time is longer for access to the memory of the

neighbour NUMA node since in this case the slow on-chip interconnect is

used. Furthermore, all cores share the same last level cache (L3) leading to

severe resource contention for it between threads. Hence, programmers and

algorithm designers must take into account the inherent complexities to port

or write high performance codes for such architectures.

Next, we look at the performance models designed to analyze or predict

the performance of applications on multicore CPUs, wich is followed by the

most popular methods for performance optimization on modern multicore

processors.

20

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

2.1.1 Performance Models of Computation

Roofline model [19] is a well known and standard model for performance

estimation of a given compute kernel or application running on multi-core,

many-core, or accelerator processor architectures. This model visually

depicts inherent hardware limitations and potential benefit of optimization by

determination of an upper bound on feasible performance. More complex

performance models employ the informaton from hardware and/or software

performance counters [37], [38], [39], [40], [41]. They build a linear or

non-linear relationship between performance and counter’s information. The

state-of-the-art models include the functional performance model (FPM) of a

given application [9], [12], [13], [14], [15], [42], [43], [44]. This model

represents the processor speed by a function of problem size. It is built

empirically and integrates many important features characterizing the

performance of both the architecture and the application.

2.1.2 Code Tuning

Code optimization is typically the first approach adopted to improve the

performance of an application. The roofline model [19] is used to visually

depict the trend of performance gains accrued from code tuning towards the

theoretical peak performance of a multicore processor. Using this model, the

highly optimized scientific applications such as Intel Math Kernel Library

(IMKL) (BLAS, FFT) consistently demonstrate the superior performance of

their codes for new platforms.

The code optimization is usually performed at two levels: at the algorithm

level, and the microkernel level. The algorithm level implies different

implementation of the same function to gain better performance. For

instance, in matrix multiplication, one of the most optimized packages,

OpenBLAS [30], uses the GotoBLAS [45] algorithm, that is far faster than a

naive ijk algorithm. At the kernel level, the code is tuned for the specific

architecture of the processors. Usually, it requires coding in low-level

programming languages, for example, assembly language. Both approaches

involve different techniques such as loop transformation, pointers, SIMD

21

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

registers, blocking, etc., to avoid the unprofitable use of cache resources and

improve CPU utilization that in turn leads to higher performance [20], [21],

[22].

Furthermore, based on hardcoded pieces of code, vendors provide

autotuning, which involves automatic generation of a search space of

possible implementations of a computation that are evaluated through models

and/or empirical measurement to identify the most desirable implementation

[46]. The simplest approach in autotuning is to execute each code variant,

measure its runtime (or other objective function), evaluate the performance of

all variants and select the best one to be run. For instance, ATLAS [47]

provides self-adapting implementations that search for optimal parameters

and code structure to find the optimal configuration for the target platform.

FFTW [31] has its own "wisdom" implementation that tracks the performance

of execution candidates and chooses the optimal for execution. However, it is

shown in chapter 3 using FFTW as an example that such kind of optimization

can be very time-consuming and may perform poorly compared to one that

does not use the optimization.

Other examples of autotuning are based on model-based approaches.

Here, autotuners perform complete enumeration of all possible or pruned

parameter configurations obtained by knowledge about architecture-specific

and/or application-specific information [48], [49], [21]. Koliai et al. [48]

introduce a combined methodology for the optimization process. Their

strategy combines static assembly analysis using MAQAO [50] with dynamic

information from hardware performance monitoring (HPM) and memory

traces. Then they present a technique called decremental analysis (DECAN)

to iteratively identify the individual instructions responsible for performance

bottlenecks.

Hashimito et al. [51] use evidence-based performance tuning (EBT) that

aims at helping performance engineers gain and share evidence of

performance improvement to make better decisions. They developed a tool,

CCA/EBT, which assists performance engineers in comprehending source

code written in Fortran, especially to identify loop kernels. Eventually, their

goal is to construct a database of facts extracted from performance tuning

22

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

histories of computational kernels that is then used for promising optimization

patterns that fit a given computational kernel.

To summarise, all these methods require source code modification at the

initial stage that makes them time-consuming and requires enormous human

efforts. Porting code to a different processor architecture requires the

repetition of pattern search. There is no specific number of attempts and

configuration parameters which should be tried, to find the best configuration.

Moreover, some verdors, for example Intel, do not disclose the source code of

their applications that makes code modification impossible at the kernel level.

2.1.3 Scheduling

As processor architects have turned to multi-core designs, where cores share

resources, scheduling is a promising approach for performance optimization.

Choosing which threads to run concurrently on a processor is important since

cache contention and bus traffic can significantly impact application

performance. It can also be important to decide which threads to run on each

core since simultaneous multithreaded cores (SMT) share low-level hardware

resources such as TLBs among all threads [52]. Traditional scheduling uses

an explicit thread and data placement. Most thread library implementations

provide support for pinning threads to assign threads to specific CPUs (i.e.,

hardware threads) and to restrict their migration. Others use performance

data that is provided by hardware and software counters, that are embedded

in all popular processor architectures.

D. Chandra et al. [53] study the impact of L2 cache sharing on threads

that simultaneously share the cache, on a Chip Multi-Processor (CMP)

architecture. They propose a performance model which uses L2 cache

profile, for predicting which thread slows down the performance.

Radojkovic et al. [54] propose BlackBox scheduler, a systematic method

for thread assignment of multithreaded network applications running on

multicore processors. Their method requires minimum information about the

target processor architecture and no data about the hardware requirements

of the application under study. The method demonstrates performance

23

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

improvements from 5 to 48 percent over the load balancing algorithms for

threads assignment.

Ebrahimi et al. [55] propose a memory scheduling algorithm designed

specifically for parallel applications. Their approach has two main

components: locks and barriers. The idea is to design a memory scheduler

that reduces parallel application execution time by managing inter-thread

DRAM interference. They show that by intelligently prioritizing requests in a

thread-aware manner, memory controller significantly improves the

performance of parallel applications compared to state-of-the-art memory

controller designs.

Jeong et al. [56] propose to partition the internal memory banks between

cores to isolate their access streams and eliminate locality interference. They

extend the physical frame allocation algorithm of the OS such that physical

frames mapped to the same DRAM bank can be exclusively allocated to a

single thread. They use together bank partitioning and memory sub-ranking

that balance the conflicting demands for rowbuffer locality and bank

parallelism. This combination, unlike using each separately, is able to

simultaneously increase overall performance and significantly reduce

memory power consumption.

Matthew DeVuyst et al. [57] study both, balanced and unbalanced

schedules. They show that unbalanced schedules often outperform balanced

schedules when threads are distributed unevenly between cores. Higher

performance is obtained by clumping badly behaving threads together on the

same core than by spreading them around. They conclude that the best

scheduling policies are those that consider both balanced and unbalanced

schedules.

Wen et al. [58] consider heterogeneous systems consisting of multiple

CPUs and GPUs. They propose an efficient OpenCL task scheduling scheme

which schedules multiple kernels from multiple programs on CPU/GPU

platforms. The model predicts a kernel’s speedup based on its static code

structure. The input data to the scheduler are prediction and runtime input

data size.

Khaleghzadeh et al. [59] propose a thread mapping technique that

24

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

minimizes remote communications and cache coherency costs of

multi-threaded applications due to the maximization of data reuse. This

technique includes components such as data sharing estimator, affine

mapping finder and maximum speedup predictor. Using Phoenix benchmark

suite they demonstrate improvement in performance by 25% compared to

default Linux scheduler.

2.1.4 Data Partitioning

2.1.4.1 Load Balancing Algorithms

Load balancing is a widely used method for performance optimization of data-

parallel applications on parallel platforms. There are different classifications of

it: static or dynamic, and synchronous or asynchronous.

Static algorithms use a priori information about the parallel application

and platform [9], [12]. They are particularly useful for applications where data

locality is important because they do not require data redistribution. In its

turn, static load balancing algorithms may be either deterministic or

probabilistic. The first one uses information about the properties of nodes

and the features of the processes. The second uses the information of the

system such as the number of nodes, the processing capability of each node,

the network topology, etc. The goal of static load balancing method is to

reduce the overall execution time while minimizing the communication delays.

In [60] presented a simple method that uses static load-balancing to balance

parallel FDTD codes. FDTD is a collection of open source, Finite-Difference

Time-Domain, demo programs. The author shows that the described method

for partitioning in a single mesh dimension can be adapted also for 2D and

3D partitioning in an approximate way. Results show that this method gives

significant improvements in running times and it can be comparable with

optimization that is more expensive. The static algorithms however are

unsuitable for non-dedicated platforms, where load changes with time.

Dynamic algorithms, on the other hand, balance the load by moving

fine-grained tasks between processors during the execution [13], [14], [15].

They often use static partitioning for their initial step due to its provably

25

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

near-optimal communication cost, bounded small load imbalance, and lesser

scheduling overhead. Dynamic load balancing can be categorized as

centralized and distributed. In a centralized load balancing technique, global

load information is stored at a central location, while in a distributed load

balancing the information is distributed among the processors. In other

words, in centralized load balancing, there is a centralized load balancer that

decides when to distribute data based on global load information [61], [62]. In

the distributed load balancing, at some point of computation, each processor

find neighbours that are less loaded than itself and redistributes data

between them [63], [64].

The synchronous algorithm means that for each processor to balance its

load at time t+ 1, a processor needs to have the load of its neighbor at time t

[65]. In other words, there is time-synchronization between all processors. In

an asynchronous algorithm, the time synchronization is absent [66].

The most advanced load balancing algorithms use functional performance

models (FPMs), which are application-specific and assume the speed of a

processor to be a continuous function of problem size satisfying some

assumptions on its shape [8], [9]. These FPMs capture accurately the real-life

behavior of applications executing on nodes consisting of uniprocessors

(single-core CPUs).

Zhong et al. [42] extend the FPM based data partitioning to

heterogeneous multicore and multi-GPU platforms. To show the efficiency of

the partial FPM based data partitioning algorithm, they compare its execution

time with different partitioning algorithms (homogeneous, CPM (constant

performance model) and FPM (functional performance model)). The result is

depicted in figure 2.2. The FPM based data partitioning outperforms

homogeneous and CPM-based partitioning by up to 13% and 22%

respectively.

2.1.4.2 Load Imbalancing Algorithms

Modern multicore CPUs contain tens of cores tightly integrated with

multi-level cache hierarchy. This tight integration has resulted in the cores

26

2.1. MULTICORE CPUS: PERFORMANCE OPTIMIZATION

Figure 2.2: Execution time of the parallel matrix multiplication application with
different data partitioning algorithms [42].

contending for various shared on-chip resources such as Last Level Cache

and interconnect leading to resource contention and NUMA. Due to these

newly introduced complexities, the performance and energy profiles of

real-life scientific applications executing on these platforms are not smooth

and may deviate significantly from the shapes that allowed traditional and

state-of-the-art load balancing algorithms to find optimal solutions.

Lastovetsky et al. [16], [17] study these variations in performance profile

for a real-life data-parallel scientific application, Multidimensional Positive

Definite Advection Transport Algorithm (MPDATA), on a Xeon Phi

co-processor. MPDATA is one of the major parts of the dynamic core of the

EULAG (Eulerian/semi-Lagrangian fluid solver) geophysical model [67]. They

use functional performance models of the application to find partitioning that

minimizes its computation time but not necessarily balances the load of

processors. The processors are divided into two equal teams, called the left

team and the right team. Then, they experimentally build the performance

profiles of each team for a wide range of problem sizes separated by a

minimum granularity ∆x. After, the algorithm goes through a number of

iterations. At each iteration, the workload of each processor from the right

team is increased by ∆x, while the workload of each processor from the left

team is decreased by the same amount, ∆x. It returns the distribution with

the minimal calculated execution time. The distribution is not always even, i.e.

27

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

does not balance the workload. This is the first work where the

load-imbalancing technique is applied to distribute the workload unevenly,

minimizing the computation time of its parallel execution.

The research works [68], [69] propose model-based data partitioning

methods that take as input discrete performance and dynamic energy

functions with no shape assumptions, which accurately and realistically

account for resource contention and NUMA inherent in modern multicore

CPU platforms. Using a simulation of the execution of a data-parallel matrix

multiplication application based on OpenBLAS DGEMM on a homogeneous

cluster of multicore CPUs, they show that optimizing for performance alone

results in average and maximum dynamic energy reductions of 24% and

68%, but optimizing for dynamic energy alone results in performance

degradations of 95% and 100%. For a 2D fast Fourier transform application

based on FFTW, the average and maximum dynamic energy reductions are

29% and 55% and the average and maximum performance degradations are

both 100%. The methods target homogeneous HPC platforms.

Khaleghzadeh et al. [70] propose a solution method solving the

bi-objective optimization problem on heterogeneous processors. The authors

prove that for an arbitrary number of processors with linear execution time

and dynamic energy functions, the globally Pareto-optimal front is linear and

contains an infinite number of solutions out of which one solution is load

balanced while the rest are load imbalanced. A data partitioning algorithm is

presented that takes as an input discrete performance and dynamic energy

functions with no shape assumptions. The research works [68]–[70] are

theoretical demonstrating performance and energy improvements based on

simulations of clusters of homogeneous and heterogeneous nodes.

2.2 Multicore CPUs: Energy Optimization

In this section, we introduce the terminology for power and energy in

computing. This is followed by survey of research works on system-level

energy optimization employing hardware parameters as decision variables.

Then we focus on energy optimization of applications using application-level

28

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

parameters.

2.2.1 Terminology

There are two types of energy consumptions, static energy and dynamic

energy [71], [72]. We define the static energy consumption as the energy

consumption of the platform without the given application execution. Dynamic

energy consumption is calculated by subtracting this static energy

consumption from the total energy consumption of the platform during the

given application execution. If PS is the static power consumption of the

platform, ET is the total energy consumption of the platform during the

execution of an application, which takes TE seconds, then the dynamic

energy ED can be calculated as,

ED = ET − (PS × TE) (2.1)

In this thesis, we focus purely on minimization of the dynamic energy

consumption for reasons below:

1. Static energy consumption is a constant (or a inherent property) of a

platform that can not be optimized. It does not depend on the application

configuration.

2. Although static energy consumption is a major concern in embedded

systems, it is becoming less compared to the dynamic energy

consumption due to advancements in hardware architecture design in

HPC systems.

3. We target applications and platforms where dynamic energy

consumption is the dominating energy dissipator.

4. Finally, we believe its inclusion can underestimate the true worth of an

optimization technique that minimizes the dynamic energy consumption.

We elucidate using two examples from published results.

29

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

• In our first example, consider a model that reports predicted and

measured total energy consumption of a system to be 16500J and

18000J. It would report the prediction error to be 8.3%. If it is known

that the static energy consumption of the system is 9000J, then

the actual prediction error (based on dynamic energy consumptions

only) would be 16.6% instead.

• In our second example, consider two different energy prediction

models (MA and MB) with same prediction errors of 5% for an

application execution on two different machines (A and B) with

same total energy consumption of 10000J. One would consider

both the models to be equally accurate. But supposing it is known

that the dynamic energy proportions for the machines are 30%

and 60%. Now, the true prediction errors (using dynamic energy

consumptions only) for the models would be 16.6% and 8.3%.

Therefore, the second model MB should be considered more

accurate than the first.

2.2.2 Energy Models of Computation

A big survey of energy models was done by O’brien et al. in [73]. They review

the energy models for CPU, GPU along with Xeon Phis and FPGAs. As this

thesis focuses only on multicore CPU, a simple linear energy model for CPU

can be expressed as follows:

P = Cbase + C1 ∗ UCPU ,

where Cbase is the idle state power consumption, C1 is the difference in

maximum power consumption between fully utilized processor (100%) and

the idle, and Ui is total CPU utilization. This model implies that power

consumption linearly increases when the CPU utilization increases. In [74] is

also proposed linear model, however, they comprise one more parameter

such as hard disk utilization.

30

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

Economou et al. [75] present a linear model that based on four parameters:

P = C0 + C1 ∗ UCPU + C2 ∗ Umem + C3 ∗ Udisk + C4 ∗ Unet,

where UCPU - CPU utilization, Umem - off-chip memory access count, Udisk -

hard disk I/O rate, Unet - network I/O rate. The use hardware performance

counters to obtain the utilization data of the memory.

An analogous work can be found in [76] that uses the PowerPack tool.

This work focuses on profiling actual power consumption in a cluster of

homogeneous nodes and measure the power consumption by a parallel

application. This is done by isolating power by component and measuring the

power consumed in the CPU, memory, disk and network interface

components. A digital multi meter measures the voltage on each resistor

taking 4 measurements per second. The data measured by the meters are

then logged and processed.

The SimplePower framework is presented in [77]. The framework is

focusing on providing information about the energy hotspots in the system

and estimation the implications of applying architectural and software

optimizations simultaneously on the overall energy consumption. They

observed that the compiler optimizations gains the most significant energy

reduction of the computing environment.

Gschwandtner et al. [78] propose in-band energy consumption models for

the IBM POWER7 processor that are based on hardware counters and use

linear regression. They study the effects of compiler and parallelism on the

energy consumption. Furthermore, they also investigate energy consumption

model for memory. For this, they use scope of performance counters such as

memory reads and writes, cache misses, prefetching instructions, etc.

Zamani et al. [79] study the correlation between performance monitoring

counters (PMCs) and power consumption from a stochastic perspective.

They show the goodness of autoregressive moving average (ARMA) for

trend’s modelling in performance and power. For better accuracy, they use

algorithms such as recursive least-squares (RLS) filter, Kalman filter (KF), or

multivariate normal regression (MVNR). Furthermore, they attempt to predict

31

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

near-future power and PMC values with an average error of 8% for dynamic

power consumption and an average error of less than 11.1% and 7% for

dynamic runtime power and instructions per cycle respectively.

Shahid et al. [80] introduce a new parameter, additivity, which should be

taken into account under selecting PMCs for energy predictive modelling.

Additivity means that the value of a PMC for a serial execution of two

applications should be equal to the sum of its values obtained for the

individual execution of each application. Using linear regression, random

forests and neural networks they demonstrate that this is an important

parameter which has significant impact on the accuracy of energy predictive

model.

2.2.3 System-level and Component-level Optimization

The techniques for system-level and component-level energy optimization can

be classified into following three principal categories:

1. Dynamic voltage and frequency scaling (DVFS): Techniques based on

scaling voltage and/or frequency levels of a computing system based on

performance and power requirements.

2. Dynamic power management (DPM): Techniques that use different

configurations-modes of operating system. For instance, the mode that

puts unutilized system components at a low level of power consumption

(by scaling the core frequency, voltage) or switches them off.

3. Component-level management (CPM): Techniques that deal with the

minimizing energy consumption by the components of the system like

main memory, caches, TLB and their reconfiguration.

2.2.3.1 Dynamic voltage and frequency scaling (DVFS)

Dynamic voltage and frequency scaling (DVFS) is the most dominant system-

level approach in the area of energy efficiency in HPC. Modern multicore CPUs

allow scaling of operating frequency of each core. The frequency f , however,

has a relationship with core voltage V as shown in figure 2.3.

32

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

We can simply define that the dynamic power Pdyn of CMOS circuit is

strongly dependent on the core voltage V and the clock frequency f :

P∞fV 2

Based on the assumption that the number of clock cycles used in the

computation is independent of the core frequency, the execution time is

inversely proportional to the frequency [81]. Consequently, the total energy

consumption of computations E is square proportional to the core voltage:

E∞V 2

Although from this model we can see that the energy does not depend on the

frequency, the reducing of core voltage that reduces overall energy

consumption requires a reduction of the clock frequency (Figure 2.3) that

summons longer execution time. Hence, one should always scale CPU

voltage-frequency for depreciation energy consumption with minimal damage

to the performance.

Figure 2.3: Relationship between core voltage and frequency.

Deng et al. [82] study the dynamic voltage and frequency scaling of both

CPU and the memory system. They present CoScale, the method for

effectively coordinating such kind of scaling under performance constraints.

This method based on execution profiling of cores via performance counters,

33

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

models of core and memory performance, power consumption. CoScale

goes through the set of possible frequency settings and finds those that

efficiently minimizes the full-system energy consumption within the

performance constrains.

Lai et al. [83] examine the latency of DVFS on a real many-core platform.

The proposed latency-aware DVFS algorithm achieves profile-guided power

management to avoid aggressive power state transitions.

Chen et al. [84] propose energy optimization technique which optimally

combines DVFS and dynamic power management (DPM) in real-time

multicore systems. This method is applicable in multicore systems where

DVFS and DPM can be applied for each core independently and each core

operates at several discrete voltage and frequency levels.

Datta et al. [85] present two CPU scheduling algorithms, Algorithm Cache

Miss Priority CPU Scheduler (CM-PCS) and Algorithm Context Switch

Priority CPU Scheduler (CS-PCS) for reducing energy consumption. These

algorithms deal with a process’s cache miss/reference ratio, number of

context switches and CPU migrations, and system load. Thus, they match

processes to cores better suited to execute those processes which lower the

average task completion time.

Rizvandi et al. [86] propose an approach for energy reduction based on

MVFS-DVFS algorithm wich find the best combination of frequencies.

Furthermore, using a linear combination of more than one voltage-frequency

variable, they proved that the optimal energy will be always achieved by using

only one frequency if the working frequency of processor is assumed to be

continues and that for real processors with a discrete set of working

frequencies, the optimal energy is always achieved by using at most two

frequencies.

Yang et al. [87] propose a technique for determination of the most energy

efficient resource in a heterogeneous platform and the DVFS settings to apply

for application execution given a performance requirement. The teqnique uses

power/performance model based on hypotheses about the affect of frequency

and voltage on the current and latency for each resource.

34

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

2.2.3.2 Dynamic Power Management

Each electronic system follows the standard for power management provided

by the Advanced Configuration and Power Interface (ACPI) [88]. This standard

states that operating systems can configure computer hardware components

to perform power management, and perform status monitoring. For instance,

they can putt unused or partially unexploited components to sleep, or set on

the mode with minimum energy consumption. Dynamic power management

(DPM) is a methodology that dynamically configures an electronic system to

provide desired performance levels and services with a minimum number of

active components in a way of energy efficiency [89].

Bircher et al, [90] investigate the power management of a multi-core

processor such as the AMD Quad-Core Opteron and Phenom. Their

optimization method considers the effects of the idle core frequency on the

performance and power of the active cores. It adjusts the idle frequency of

core in a way of the least detrimental effect on the active core performance.

Huang et al. [91] present method which adaptively controls the power

mode of the system according to historical data about arrivals of tasks. It

uses the earliest deadline first and fixed-priority preemptive scheduling.

Chung [92] propose a DPM scheme that manages power based on the

output of adaptive learning trees algorithm that takes as an input the idle period

information. The basic idea of this algorithm is the prediction of the future idle

periods with high accuracy by observing idle periods in the recent past. This

scheme is especially useful for multiple sleep state components.

Beloglazov et al. [93] study power management in data centers. They

propose an energy efficient resource management system that reallocates

VMs in run-time. They gain energy savings by the distribution of VMs

according to virtual network topologies between VMs and thermal state of

computing nodes and current resource utilization.

Lee et al. [94] propose a hibrid model for dynamic power management that

combines moving average, time delay neural network and random walk model.

The idea is to predict idle period based on the on central tendency of the past

idle period time series. The main advantage of this model is that it combines

35

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

these techniques and as a result yields higher power savings in most cases

compared to other models.

Niu et al. [71] propose a model for power management that balances

dynamic and leak power consumption under processor activity. This model

also uses earliest deadline first strategy. The benefit of this model is that it

more precisely estimates the delay for the coming task instances.

Imes et al. [95] study resource allocation strategies for minimization of

energy consumption. They demonstrate that different hardware platforms have

fundamentally different resource allocation strategies. The investigations show

that there are two classes of the systems: a race-to-idle and a never-idle to

achieve energy consumption.

2.2.3.3 Component-level Management

In today’s computing systems the main memory (DRAM) consumes as much

as half of the total system power consumption due to the increasing demand

for memory capacity and bandwidth. Hence, it is crucial to pay attention to this

component under the energy optimization of the whole system.

Trajkovic et al. [96] propose a technique for reducing the energy

consumption of SDRAM. They embedded to the memory controller two

buffers: high speedfetch buffer and a write-combine buffer. This adjustment

allows DRAM to read prefetching and combined write access to the main

memory with reducing in time and energy consumption.

Song et al. [97] present an iso-energy-efficiency model to analyze,

evaluate and predict energy-performance of data intensive parallel

applications with various execution patterns. Their model helps users to scale

system parameters (e.g. processor count, CPU power/frequency, workload

size and network bandwidth) to balance energy and performance.

Ahn et al. [98] propose Multicore DIMM, a memory module where DRAM

chips are grouped into multiple virtual memory devices. Each group has its

own data path and receives separate commands. They demonstrate a

simultaneous improvement in memory power, IPC, and system energy-delay

product on 22%, 7.6%, and 18% respectively.

36

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

Labeck et al. [99] propose a technique that manages DRAM chips to

reduce overall power consumption. The technique works by controlling virtual

address to physical address mapping such that the physical pages of an

application are clustered into a minimum number of DRAM chips and the

unused chips are transitioned to low power modes. Then, it can turn off the

chips that are in a low power mode. Furthermore, their technique also

monitors the time period between accesses to a chip as a metric for

measuring the frequency of reuse of a chip. When this time is greater than a

certain threshold, the chip is transitioned to the low-power mode.

As DRAM power also depends on operating frequency and supply voltage,

the works [100], [101], [102] aim to save DRAM memory power by dynamic

voltage and frequency scaling.

The next system-level methods for energy optimization can be grouped

into four solution’s approaches: thread schedulers, cache partitioners, thermal

management and symmetry-aware schedulers.

Thread schedulers

In CMP cores are not independent processors but rather share common

resources among cores such as the last level cache (LLC). Shared resource

contention can lead to severe and unpredictable performance and energy

impact on the CMP system. Hence, thread schedulers attempt to map

threads to certain cores by avoiding high contention for the shared resources

leading to the improvements in energy efficiency and performance.

Banikazemi et al. [103] introduce the design and implementation of a

Performance/power Aware Meta-scheduler called PAM. The scheduler uses

performance and power data from performance counters and power

monitoring hardware. Based on this information, PAM gives directions to the

OS scheduler for remapping software threads to the hardware threads in a

way that reduces power and energy consumption.

Merkel et al. [104] analyze energy-delay product scheduling by avoiding

resource contention and utilising optimal CPU frequency. They distribute

tasks between cores based on their similar characteristics, i.e. run all

37

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

memory-bound tasks on core 0 and all compute-bound tasks on core 1 of a

dual-core processor.

Petrucci et al. [105] propose an approach for the optimal threads-to-core

mapping that reduces energy consumption under the performance

requirements and based on an integer linear programming model. The inputs

to the model are IPC and LLC miss rates. The output is predicted at runtime

the performance of threads. They use the Linux scheduler (CPU affinity) to

place a thread on a specified core at runtime.

Qian et al. [106] study I/O threads scheduling in non-volatile memory

express based NUMA systems. They found that energy-efficiency penalty is

higher due to remote access of NVMe SSDs. To solve this challenge, they

developed ESN scheduler that maps the I/O threads to the local or remote

socket based on the number of concurrently running I/O threads on a socket.

Hankendi et al. [107] propose a multi-level technique for co-scheduling

multiple workloads on a multi-core processor. The method is based on the

analyzation of various co-scheduling policies such as cache misses, bus

access and instruction-per-cycle. It determines the best co-scheduling policy

that reduces energy consumption, depending on the characteristics of the

workload sets.

Cache partitioners

The modern multicore architecture allocates some amount of memory

(caches) to each core and even the common amount for all cores to reduce

access data time and increase their performance. However, in some

circumstances, some part of this memory is wasted or suffers from

contentions among parallel running tasks that makes cores energy inefficient.

The cache partitioning approaches aim to avoid these circumstances.

Wang et al. [108] propose an energy optimization technique that

simultaneously uses dynamic reconfiguration of private caches and

partitioning of the shared cache for multicore platforms. Dynamic

programming with discretization in the energy values is used to find the

optimal L1 configurations for each task and L2 partition factors for each core.

38

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

Chen et al. [109] present a framework that utilizes cache management for

real-time MPSoCs. The framework supports dynamic way-based cache

partitioning at hardware level, building time-triggered reconfigurable-cache

MPSoCs for each task. It automatically determines timetriggered schedule

and cache configuration for each task to improve the system performance

while guarantee the realtime constraints.

Delaluz et al. [110] study the energy consumption of translation

look-aside buffer (TLB), that used to translate virtual addresses to physical

addresses. They especially focus on data TLB (dTLB) and propose solution

employs dynamically resizing of it. The idea is to give the application the

minimum dTLB size without damaging performance.

Hajimiri et al. [25] propose technique that based on dynamic cache

reconfiguration and partitioning to improve performance and energy efficiency

in multicore systems. They developed a genetic algorithm to find beneficial

IL1/DL1 cache configurations as well as L1/L2 cache partition.

Sundararajan et al. [111] present Cooperative Partitioning, an approach

to last-level cache partitioning for reducing both dynamic and static power.

They designed "sets-ways" partitioning scheme where the data belonging to

each core align along with way across all sets. An average dynamic and static

energy savings of 35% and 25% compared to a fixed partitioning scheme.

Thermal management

Because of processor temperature has a significant impact on energy

consumption, the thermal management is widely used in the challenge to

reduce energy consumption in processors and overall system.

Liu et al. [112] present a thermal optimization framework based on a

temperature-aware power model. The model is built on carefully planning

DVFS at design time. The energy reduction is gained through optimization of

system thermal profile, prevent run-time thermal emergencies and minimize

cooling costs.

Huang et al. [113] present a framework for dynamic energy efficiency and

temperature management (DEETM) that focuses on both energy efficiency

39

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

and temperature control. The framework employs different energy

management techniques such as light sleep mode, reducing memory voltage,

DVFS, etc.

Skadron et al. [114] propose HotSpot, a practical and computationally

efficient approach to modelling thermal behaviour in architecture-level

power/performance simulators. HotSpot helps to determine which the hottest

microarchitectural units; understand the purpose of different thermal

packages on architecture, performance, and temperature; understand the

thermal behaviour of programs; and evaluate a number of techniques for

regulating on-chip temperature.

Cohen et al. [115] study dynamic thermal management (DTM) strategies

based on dynamic voltage scaling (DVS). They show that when the processor

works below the limit temperature it is best to start with a high frequency and

decrease it exponentially until the limit temperature is reached, and when it

works close to the limit temperature, the best tactics is to stay there.

Ayoub et al. [116] propose a joint energy, thermal and cooling

management technique (JETC) that dynamically optimizes the energy

consumption of server cooling and memory. JETC maximizes the energy

efficiency in the server by controlling the number of active memory modules.

Furthermore, for the alleviation of the thermal coupling effect of the sockets

and their thermal hot spots, JETC schedules the workload between the CPU

sockets. Results show the average reduction in energy consumption of

memory and cooling subsystems in 50.7%.

Asymmetry-aware schedulers

We incorporate in asymmetry-aware scheduling the schedulers that deal with

asymmetric systems by its design feature or hardware faults [117]. For

instance, adaptive scheduler for systems with asymmetric memory

hierarchies is presented in [118]. The scheduler automatically maps threads

to the system hierarchies. It uses AMS-Greedy and AMS-DP mapping

algorithms, where the first one performs multiple rounds of cache partitioning

and the second finds the optimal schedule given the performance model.

40

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

Saez et al. [119] propose a comprehensive scheduling for asymmetric

multicore processors (CAMP). The scheduler based on the estimation of the

speedup factor gained through the measuring of last-level cache (LLC) miss

rate and utility factor. The method employs both efficiency specialization, that

guarantees fast core utilization for CPU-intensive application and slow cores

for memory-intensive application and thread-level parallelism, that ensures

fast cores are used to accelerate sequential phases of parallel applications

while leaving slow cores for energy-efficient execution of parallel phases.

Fan et al. [120] present a contention-aware scheduling for a commercial

asymmetric multicore processors platform ARM big.LITTLE. The scheduler

dynamically picking an appropriate application-to-core mapping in a real

asymmetric system. It consists of two stages: an offline stage that builds a

performance interference model, and an online stage that schedules a set of

applications to the most appropriate core types based on both the speedup

factor and the predicted performance interference model.

Li et al. [121] propose AMPS operating system scheduler, that efficiently

supports both SMP and NUMA-style performance-asymmetric architectures.

It employs three strategies: asymmetry-aware load balancing, fast-core first

scheduling and NUMA-aware migration based on predictions of threads

overheads. The thread’s overhead is defined if the thread provokes a high

number of LLC misses after the migration and a large portion of these LLC

misses requires remote memory access.

Wang et al. [122] present a VM scheduling that based on the

heterogeneity of the core’s performance for optimization the overall system

energy efficiency. To map VMs to heterogeneous cores they use

energy-efficiency factors defined as the ratio performance to system power

consumption. This solution can improve the system energy efficiency by

13.5% on average compared to the default Xen scheduler.

Bower et al. [123] study thread scheduling in dynamically heterogeneous

multicore processors. In such systems, the scheduler must trace the dynamic

knowledge of core status and thread demand. It should not map the thread to

the core that has some faults or power wasting.

41

2.2. MULTICORE CPUS: ENERGY OPTIMIZATION

2.2.4 Application-level Optimization

Application-level optimization aims to optimize application for reducing energy

consumption using application-level parameters such as data partitioning,

algorithmic cost, communication cost etc.

For instance, Demmel et al. in their work [124] focus on saving energy at

the algorithm level. On the example of matrix multiplication and the direct n-

body problem, they show the existence of perfect strong scaling in energy. The

energy remains constant with increasing the number of processors by some

factor that leads to decreasing in runtime by the same factor.

Choi et al. [125] presented an energy-based analogue of the time based

roofline model. The model describes algorithms in terms of operations,

concurrency, memory traffic, and characterizes the machine based on a small

number of simple cost parameters, such as the time and energy costs per

operation or per word of communication.

Alessi et al. in their work [126] present OpenMPE that is an extension to

OpenMP that deals with the power management of the system. The

OpenMPE assists multi-objective goals and constraints and application

adaptation, through several techniques such as DVFS, dynamic concurrency

throttling (DCT), and application-level content adaptation.

Silva at al. [127] present a method that finds energy-optimal frequency

and number of active cores to run single-node HPC applications. Their

method employs an application-agnostic power model of the architecture and

an architecture-aware performance model of the application. The power

model is established by modelling of Complementary

Metal-Oxide-Semiconductor (CMOS) logic in the function of the operating

frequency. The performance model is based on the application parameters.

Its decision parameters are the operating frequency, the number of active

cores and the input size.

Wang et al. [128] study energy optimization in a single chip

heterogeneous processor (SCHP). They demonstrate that the collective

optimization of workload and power partitioning between the CPU and GPU

outperforms the optimization of workload partitioning alone under a fixed

42

2.3. BI- AND MULTI-OBJECTIVE OPTIMIZATION IN HPC

power budget allocation to the CPU and GPU on 13%. Furthermore, they

designed an effective runtime algorithm for the determination of near-optimal

or optimal combinations of workload and power budget partitioning.

2.3 Bi- and Multi-objective Optimization in HPC

This section classifies related literature into two categories. The first category

lists a few works done on multi-objective optimization in HPC. The second

category focuses on solution methods solving bi-objective optimization

problem for performance and energy on HPC platforms.

2.3.1 Multi-Objective Optimization in HPC

ChiŞ et al. [129] introduce an automatic 4D methodology that simultaneously

optimizes four objectives using multi-objective optimization tool called FADSE

(Framework for Automatic Design Space Exploration). The targeted

objectives are the followings: chip area - integration area of the chip must be

as small as possible, performance, energy consumption and temperature of

the chip. To find the best configuration which optimizes all objectives they

varied both hardware (cache associativity and size, number of cores) and

software (number of threads and schedulers) parameters.

Subramaniam et al. [130] propose multi-objective optimization techniques

for power and energy modeling of the HPL benchmark. They use multi-variable

regression with input parameters such as problem size, block size, process

mapping, etc. They show that the minimum energy consumption is not always

reached at the highest performance.

Sheikh et al. [131] present a dynamic method which simultaneously

optimizes performance, energy, and temperature under dynamically varying

task and system conditions. Based on the available information of execution

times and the system model, they employ SPEA-II, multi-objective

evolutionary algorithm (MOEA), to obtain an initial set of a set of Pareto

optimal solutions. After, this set of solutions is evolved stage by stage to

minimize the deviation of the objective parameters from the Pareto optimal

43

2.3. BI- AND MULTI-OBJECTIVE OPTIMIZATION IN HPC

values. The method shows up to 8% improvement compared to the statically

selected schedule. [132]–[134] focus on the energy reduction in data centers

by scheduling workload.

2.3.2 Bi-objective Optimization for Performance and

Energy

There are methods aiming to optimize several objectives of the system or the

environment in computing settings such as cloud computing infrastructures,

data centers, etc. The common feature of these methods is to model

performance and energy consumption of applications based on heuristic

models [135]–[140]. The methods consider various parameters that include

number of nodes, computation and communication cost, processor utilization,

and DVFS. The dominant decision variable in this category is DVFS.

Freeh et al. [141] study trade-off between energy consumption and

performance in high-performance computing applications. Especially they

investigate how memory and communication bottlenecks affect power

consumption. They show that DVFS clusters can reduce energy consumption

in programs that have a memory or communication bottleneck. Furthermore,

they found that one can reduce energy consumption and execution time by

increasing the number of nodes while reducing the frequency-voltage setting

of each node.

Langer et al. [142] analyze bi-objective optimizaton for performance and

energy in overprovisioned data centers where nodes are power capped to run

below their Thermal Design Power (TDP). They show that there are

configurations with a selected number of nodes and power cap that lead to

significantly reduced energy consumption with negligible damage to

performance.

The other methods predict the performance and energy consumption of

applications based on application-level parameters. They can be classified

into two categories: (i) Intra-node methods [143]–[148], and (ii) Inter-node

and Intra-node methods [35], [149]–[155]. The parameters employed in these

methods are memory costs, communication costs, DVFS, execution time,

44

2.4. SUMMARY

computation costs, problem size, static power, the number of processors, etc.

The key decision variables are DVFS, number of processors, and workload

distribution.

In [156] Samee Ullah and Khan study the multi-objective problem of

mapping independent tasks onto a set of computational grid machines that

simultaneously minimizes the energy consumption and response time. They

propose an algorithm based on goal programming that effectively converges

to the compromised Pareto optimal solution. The solution is based on DVFS.

Reddy et al. [35] experimentally study the performance and energy

profiles of real-life data-parallel applications on state-of-art multicore CPUs

and demonstrate that there exist a complex (non-linear and non-convex)

relationship between performance and problem size and energy and problem

size. They propose an algorithm to solve bi-objective optimization for

performance and energy of applications execution on homogeneous

multicore platforms where it considers only one decision variable, the

workload distribution.

Research works [26], [27], [35] propose model-based data partitioning

methods that take as input discrete performance and dynamic energy

functions with no shape assumptions. Using a simulation of the execution of a

data-parallel matrix multiplication application based on OpenBLAS DGEMM

on a homogeneous cluster of multicore CPUs, [26] show that optimizing for

performance alone results in average and maximum dynamic energy

reductions of 24% and 68%, but optimizing for dynamic energy alone results

in performance degradations of 95% and 100%. For a 2D FFT application

based on FFTW, the average and maximum dynamic energy reductions are

29% and 55% with 100% average and maximum performance degradations.

2.4 Summary

This section reviewed notable works on performance and energy optimization

as well as the bi-objective optimization for performance and energy on

modern multicore CPUs. Due to complexities inherent in multicore CPU

platforms such as severe resource contention and non-uniform memory

45

2.4. SUMMARY

access (NUMA), the optimization for performance and energy on these

platforms faced serious challenges. Apart from source code modification that

is a time- and labor-consuming process, the load balancing algorithms

developed in a single-core era and based on FPMs also became not

applicable in today’s multicore era due to the newly introduced challenges.

Other methods for performance and energy optimization mostly rely on

performance data from hardware and software counters, scheduling and

DVFS, that is not the focus of this work.

With these issues in mind, this thesis proposes single-objective as well as

bi-objective optimization methods for performance and energy of data-parallel

applications on modern multicore CPUs that are model-based and use

application-level decision variables. In the first method, for one approach

workload distribution is used as a decision variable for solving performance

issue on modern multicore CPUs. Like [69] proposed for homogeneous

multicore CPU platforms,[70] study the same approach for heterogeneous

platforms. The works are theoretical and mainly focus on the design of data

partitioning algorithms. The purpose of the work in this thesis is not to design

new algorithms, but to use the existing algorithms and with their aid develop

methods for performance and energy optimizations of data-parallel

applications on a single multicore CPU. Another approach along with

bi-objective optimization is based on the partitioning of the computation

kernel into several groups of threads that are executed in parallel, where the

workload is divided equally among them. The decision variables in these

methods are the number of threadgroups and the number of threads in each

threadgroup. Despite vast amount of literature studying the impact of thread

management on the performance and energy [157]–[160], to the best of

author’s knowledge, there is no similar work that uses application-level

decision variables such as the number of threadgroups and the number of

threads in each threadgroup, for single- and bi-objective optimizations for

performance and energy on a single multicore CPU. The following chapter

introduces single-objective optimization methods for performance and energy.

46

Chapter 3

Novel Single-objective

Optimization Methods for

Performance and Energy On

Modern Multicore CPUs

This chapter starts with overview of the challenges posed by inherent

complexities in modern multicore CPUs to performance and energy

optimization of data-parallel applications on such platforms. The influence of

three-dimensional decision variable space on single-objective optimization of

applications for performance and energy on multicore CPUs is studied. The

three decision variables are: a). The number of identical multithreaded

kernels (threadgroups) involved in the parallel execution of application; b).

The number of threads in each threadgroup; and c). The workload

distribution between the threadgroups.

Then, the chapter proposes novel solution methods for optimization of two

well-known highly optimized multithreaded scientific routines, matrix-matrix

multiplication (DGEMM) and 2D fast Fourier transform (2D-FFT), for

performance using only workload distribution as the decision variable.

The chapter is completed by proposing the first application-level method

for single-objective optimization of multithreaded data-parallel applications for

47

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

performance and energy that uses two decision variables, the number of

identical multithreaded kernels (threadgroups) executing the application and

the number of threads in each threadgroup, so that a given workload is

partitioned equally between the threadgroups.

3.1 Performance and Energy Optimization on

Modern Multicore CPUs: Challenges

In the era of uniprocessors prior to the advent of multicore CPUs, computer

users came to expect performance doubling every 18 months due to Moore’s

law and Dennard scaling. However, achieving the high performance along

with energy efficiency of applications on multicore CPUs is not as simple.

There are complex challenges that need to be addressed to achieve

maximize performance and minimize energy consumption on modern

multicore CPUs. They are: a). Severe resource contention due to tight

integration of tens of cores organized in multiple sockets with multi-level

cache hierarchy and contending for shared on-chip resources such as last

level cache (LLC), interconnect (For example: Intel’s Quick Path Interconnect,

AMD’s Hyper Transport), and DRAM controllers, b). Non-uniform memory

access (NUMA) where the time for memory access between a core and main

memory is not uniform and where main memory is distributed between

locality domains or groups called NUMA nodes, and c). Dynamic power

management (DPM) of multiple power domains (CPU sockets, DRAM).

These complexities pose serious challenges to model and algorithm

designers to develop highly energy-efficient and prompt codes for HPC

data-parallel applications on such platforms.

To elucidate the challenges, we first look at the performance and dynamic

energy profiles of 2D-FFT using IMKL on a Intel Haswell server consisting of

36 physical cores (HCLServer3) and a Intel Skylake server consisting of 56

physical cores (HCLServer4). The specification of the servers is shown in

table 3.1. The 2D-FFT application computes the 2D discrete Fourier transform

of a complex signal matrix of size N ×N .

48

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

Table 3.1: Specifications of the Intel multicore CPUs, HCLServer01-04, with increasing
number of sockets and an increasing number of cores per socket.

Technical Specifications HCLServer3 (S3) HCLServer4 (S4)
Processor Intel Xeon CPU E5-2699 Intel Xeon Platinum 8180
Core(s) per socket 18 28
Socket(s) 2 2
L1d cache, L1i cache 32 KB, 32 KB 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 46080 KB 1024 KB, 39424 KB
Total main memory 256 GB 187 GB
Power meter - Yokogawa WT310

Figure 3.1 shows the performance profile of 2D-FFT on dual-socket S3.

One can see there are large variations in the performance profile of the

application. The variation is related to the difference of speed between two

subsequent local minima (s1) and maxima (s2) and is defined as:

variation(%) = |s1−s2|
min(s1,s2)

× 100. The maximum variation can be up to 24%.

The detailed study of performance profiles of the 2D-FFT application using

three vendor packages, FFTW-2.1.5, FFTW-3.3.7 and IMKL FFT, can be

found in the Appendix A, where also is show that the FFT routines in the

packages demonstrate low average performance due to these variations.

Figure 3.1: Speed function of IMKL FFT application executing with 36 cores
on the Intel Haswell server.

Figure 3.2 depicts the dynamic energy consumption profile of 2D-FFT on

S4. The dynamic energy consumption is measured with Yokogawa WT310

49

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

power meter. The maximum variation can be up to 73% that represents the

maximum amount of energy savings possible.

Figure 3.2: Dynamic Energy Consumption of IMKL FFT application executing
with 56 cores on the Intel Xeon Platinum server.

To make sure the experimental results are reliable and not noise, a

statistical methodology described in Appendix B is used. Briefly, for every

data point in the functions, the automation software executes the application

repeatedly until the sample mean lies in the 95% confidence interval with

precision of 0.025 (2.5%). Hence, these variations are consequences of tight

integration which has resulted in the cores contending for various shared

on-chip resources such as Last Level Cache (LLC) and interconnect (NUMA).

Next, it is described why such performance and energy profiles pose

daunting challenges to state-of-the-art load balancing methods.

State-of-the-art load balancing methods use functional performance

model (FPM) of the given application [42]–[44]. This model represents the

processor speed by a function of problem size. It is built empirically and

integrates many important features characterizing the performance of both

the architecture and the application. These FPMs capture accurately the

real-life behavior of applications executing on nodes consisting of

uniprocessors (single-core CPUs). The assumptions require them to be

50

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

smooth enough in order to guarantee that optimal solutions minimizing the

computation time are always load balanced. However, the profiles of real

applications executed on multicore CPUs are not smooth and may deviate

significantly from the shapes that allowed traditional and state-of-the-art load

balancing algorithms to find optimal solutions (Figure 3.1, 3.2). As described

in [161] the balanced configuration of an application will execute faster than

any unbalanced configuration but assumes that the speed function si(x)

satisfies the condition:

∀x > 0 :
si(x)

x
≥ si(x+ ∆x)

x+ ∆x
(3.1)

As can be seen from Figure 3.3 (left graph) angle α(x) between the straight

line, connecting the point (0, 0) and the point (x, s(x)) on the speed curve, and

the x-axis will be inversely proportional to the execution time of the workload

of size x by the processor. Indeed, the cotangent of this angle is directly

proportional to the ratio x
s(x)

representing the execution time of the workload x.

Note, that the graph represents the function of several processes in parallel like

on the right graph. The behaviour of function of these processes is identical.

Larger angles correspond to shorter execution times. We can see that if we

give different workloads to processes then the parallel execution time will be

represented by a smaller angle - longer execution time. Thus, the condition 3.1

means that the increase of the workload, x, will never result in the decrease of

the execution time, or equivalently in the increase of the angle α(x).

(a) (b)

Figure 3.3: a). Intuition behind load balancing. b). Load imbalancing.

However, the performance and energy profiles of real-life scientific

51

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

applications on modern parallel platforms (Fig. 3.3 (right graph)) may

significantly deviate from the conditions, which guarantee that load balancing

will always optimize their computational performance. For instance, we can

see, that the angle α, that represents the computation time, for the certain

size m is less than the angle α for the size m+ ∆m. It means that the task of

a smaller size is computed longer than the task of a bigger size that does not

satisfy the condition 3.1 and disrupts the theory of load balancing. Hence,

these variations are the main reason why traditional load balancing may not

work on modern multicore CPUs.

Furthermore, reducing energy consumption is of paramount concern to

the HPC community since its pervasiveness in data centers and cloud

computing infrastructures. Energy in HPC is now an environment concern not

only because of the maintenance cost of HPC systems but also of high

carbon footprint which affects environmental sustainability as modern data

centers already can rival cities in power consumption. This was not an issue

in the past since until now we have followed Moore’s Law enhancements in

photolithography techniques which are proportional reductions in dynamic

power consumption per transistor and consequent improvements in clock

frequency at the same level of power dissipation. However, below 90 nm, the

static power dissipation dominates over the dynamic power dissipation. This

effect summons clock frequency freezing in order to stay within thermal

power emission limits [24].

To address these challenges, this chapter proposes single-objective

optimization methods for performance and energy that employ

application-level parameters, functional performance model of applications

and its analysis. Next, we look at the application-level parameters used in the

methods and their importance.

Workload Distribution as a Decision Variable

The importance of workload distribution is depicted in the example above

(Figure 3.3), where small uneven distribution can improve the whole outcome.

Thus, the methods for performance optimisation proposed in this thesis use

52

3.1. PERFORMANCE AND ENERGY OPTIMIZATION ON MODERN
MULTICORE CPUS: CHALLENGES

the workload distribution as a decision variable. For finding the best workload

distribution they use algorithms proposed in [162] and [43]. The algorithms

obtain as input the performance profiles of application from each processor or

device on which data-parallel application is executed and return the optimal

workload distribution. Should be noticed that the optimal solutions returned

by these new algorithms may not be balanced in terms of execution time.

Number of Threadgroups and Threads Per Group as Decision Variables

It is well known that vendors of highly optimized packages of scientific

data-parallel applications (OpenBLAS DGEMM, IMKL DGEMM and FFT,

FFTW) offer the possibility of varying threads to gain the maximum possible

computation performance on multicore CPUs. Due to contention for shared

resources, reducing or increasing the number of threads positively affects

both performance and energy. The application also plays a role here. This

thread management was studied in a vast amount of literature [157]–[160].

The main decision variables they use are the number of threads, the number

of nodes, problem size, etc, however, no one performs the optimization of

both performance and energy on a single multicore CPU as it is done in this

work, using threadgroups as a decision parameter. It was experienced by the

author that in some circumstances, it is not enough to vary only the number

of threads for the improvement of energy efficiency and performance. The

partitioning of execution kernel into several groups named threadgroups

executed in parallel can yield more performance and less energy

consumption in comparison with thread varying alone. As an example, using

this approach, the speedup can be up to 80% with energy reduction of 35%

for the application such as 2D fast Fourier transform. The author believes this

observation makes a newly introduced decision variable, thredgroups, crucial

in the optimization of data-parallel applications on modern multicore CPUs.

53

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

3.2 Performance Optimization Using Workload

Distribution as a Decision Variable

This section presents novel optimization methods for performance optimization

of the data-parallel applications on modern multicore CPUs using FPMs and

workload distribution.

3.2.1 Load Imbalancing Using Uneven Workload

Distribution

The main idea of workload distribution can be defined as follows: assume we

want to design and implement a parallel version of the application of workload

size N × N , where N = 24704. It can be executed using, for example, two

identical abstract processors named threadgroups in parallel. In this scenario,

the workload is load balanced between threadgroups, i.e. each threadgroup

has the same amount of data, N × M , where M = N
2

. However, this

distribution is not guaranteed to be the best, hence to determine the best

distribution, we build the profile of execution time against 2D problem size

N ×M in each threadgroup. For this, we keep one dimension constant, here

N is constant, and increasing M in each threadgroup with a constant step of

∆x, where ∆x ≤ M ≤ 24704. In the end, we obtain performance profile of

each threadgroup as depicted in figure 3.4. As we can see, if one

threadgroup receives workload of size N × x1 and the other N × x2, where

x1 + x2 = 24704 and x1 < x2, then the speed of this load imbalanced

application is higher than that for load balanced with workload sizes N × N
2

.

Hence, this section inroduces novel performance optimization methods

specifically designed for 2D parallel FFT (PFFT-FPM and PFFT-FPM-PAD)

and parallel matrix-matrix multiplication (PMM-FPM). The methods employ

workload distribution as the decision variable and are based on model-based

parallel computing technique using load-imbalancing data partitioning. The

technique determines optimal solutions (workload distributions) that may not

load-balance the application in terms of execution time. The methods take as

54

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.4: Each curve is the speed of one threadgroup.

inputs the discrete functions of the performance of the threadgroups against

2D problem size N ×M . FFT-FPM-PAD is different from FFT-FPM only that it

uses padding determined from FPMs along with the optimal data distribution.

Next, the application of these methods is shown in the example of real-life

data-parallel applications.

3.2.2 PFFT-FPM Employing 2D Fast Fourier Transform

This section starts with description of the sequential 2D-FFT algorithm using

the row-column decomposition method. Then it explains the parallel 2D-FFT

algorithm based on the sequential 2D-FFT algorithm that uses load balancing

technique. Finally, it proposes new single-objective optimization method for

performance that uses load imbalancing and FPMs.

3.2.2.1 Sequential 2D-FFT Algorithm

The sequential algorithm computes the DFT on a two-dimensional point

discrete signalM of size N ×N . M is the signal matrix where each element

M[i][j] is a complex number. The definition of 2D-DFT ofM is below:

55

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

M[k][l] =
N−1∑
i=0

N−1∑
j=0

M[i][j] × ωki
N × ωlj

N , ωN = e−
2π
N , 0 ≤ k, l ≤ N − 1

The total number of complex multiplications required to compute the

2D-DFT is Θ(N4). The row-column decomposition method reduces this

complexity by computing the 2D-DFT using a series of 1D-DFTs, which are

implemented using a fast 1D-FFT algorithm. The method consists of two

phases called the row-transform phase and column-transform phase. Figure

3.5 depicts the method, which is mathematically summarized below:

M[k][l] =
N−1∑
i=0

N−1∑
j=0

M[i][j]× ωki
N × ω

lj
N =

N−1∑
i=0

ωki
N × (

N−1∑
j=0

M[i][j]× ωlj
N)

=
N−1∑
i=0

ωki
N × (M̃[i][l]) =

N−1∑
i=0

(M̃[i][l])× ωki
N , ωN = e−

2π
N , 0 ≤ k, l ≤ N − 1

It computes a series of ordered 1D-FFTs on the N rows of x. That is, each

row i (of length N) is transformed via a fast 1D-FFT to X̃[i][l],∀l ∈ [0, N − 1].

The total cost of this row-transform phase is Θ(N2 log2N). Then, it computes

a series of ordered 1D-FFTs on the N columns of X̃. The column l of X̃ is

transformed to X[k][l],∀k ∈ [0, N − 1]. The total cost of this column-transform

phase is Θ(N2 log2N).

Therefore, by using the row-column decomposition method, the complexity

of 2D-FFT is reduced from Θ(N4) to Θ(N2 log2N).

3.2.2.2 PFFT-LB: Parallel 2D-FFT Algorithm Using Load Balancing

The parallel 2D-FFT algorithm is based on the sequential 2D-FFT

row-column decomposition method and is executed using p threadgroups,

{P1, ..., Pp}. To aid clear exposition, we assume N is divisible by p. The rows

of the complex matrix x are partitioned equally between the p threadgroups

where each threadgroup gets N
p

rows. The other input to the algorithm is the

signal matrix M. The output from the algorithm is the transformed signal

matrixM. All the FFTs discussed in this work are considered in-place.

56

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

PFFT-LB consists of four steps:

Step 1. 1D-FFTs on rows: Threadgroups Pi executes sequential 1D-FFTs

on rows (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 2. Matrix Transposition: Transpose the matrixM.

Step 3. 1D-FFTs on rows: Threadgroups Pi executes sequential 1D-FFTs

on rows (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 4. Matrix Transposition: Transpose the matrixM.

The computational complexity of Steps 1 and 3 is Θ(N
2

p
log2N). The

computational complexity of Steps 2 and 4 is Θ(N
2

p
). Therefore, the total

computational complexity of PFFT-LB is Θ(N
2

p
log2N).

The algorithm is illustrated in the Figure 3.5.

Figure 3.5: PFFT-LB performing 2D-DFT of signal matrix M of size N × N
(N = 16) using four threadgroups. Each threadgroup gets four rows each. (a).
Each threadgroup performs series of row 1D-FFTs locally indicated by solid
arrows. (b). MatrixM is transposed. (c). Each threadgroup performs series
of row 1D-FFTs locally indicated by solid arrows. (d). MatrixM is transposed
again. It is the output of PFFT-LB.

3.2.2.3 PFFT-FPM: Performance Optimization Using FPMs and Load

Imbalancing

This section describes novel optimization method called PFFT-FPM that

takes functional performance models (FPMs) as input and that employs load

imbalancing parallel computing technique.

PFFT-FPM is executed using p threadgroups, {P1, ..., Pp}. The inputs to

PFFT-FPM are the number of available threadgroups, p, the number of rows

of the signal matrix, N , the speed functions of the threadgroups, S, and the

57

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

user-input tolerance ε. The output from PFFT-FPM is the transformed signal

matrixM.

The discrete speed function of threadgroup Pi is given by

Si = {si(x1, y1), ..., si(xm, ym)}) where si(x, y) represents the speed of

execution of x number of 1D-FFTs of length y by the threadgroup Pi. The

speed is equal to 5.0×x×y×log2(y)
t

, where t is the time of execution of x number

of 1D-FFTs of length y.

Figure 3.6: PFFT-FPM performing 2D-DFT of signal matrixM of size N ×N
(N = 16) using four threadgroups. Each threadgroup gets different number
of rows given by the data distribution, d = {5, 3, 3, 5}. (a). Each threadgroup
performs series of row (padded row) 1D-FFTs locally indicated by solid arrows.
(b). Matrix M is transposed. (a). Each threadgroup performs series of row
(padded row) 1D-FFTs locally indicated by solid arrows. (d). Matrix M is
transposed again. It is the output of PFFT-FPM

It consists of following main steps:

Step 1. Partition rows:

1a. Plane intersection of speed functions: Speed functions S are

sectioned by the plane y = N . A set of p curves on this plane are produced

which represent the speed functions against variable x given parameter y is

fixed.

1b. Are speed functions identical?: if

∃(xk, N), 1 ≤ k ≤ m, (
maxpi=1 si(xk,N)−minpi=1 si(xk,N)

minpi=1 si(xk,N)
> ε), go to Step 1d.

Otherwise, go to Step 1c. If there exists a (xk, N), the speed functions are

not considered identical. To determine if the speed functions are identical, the

difference between the maximum and minimum speeds for a point (xk, N) is

calculated and compared with tolerance ε.

1c. Partition rows using POPTA: Construct a speed function Savg =

58

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

{savg,i(x)},∀i ∈ [1,m], where savg,i(x) = p∑p
j=1

1
sj(x,N)

. Each speed savg,i(x)

in the function is the average of the speeds {s1(x,N), · · · , sp(x,N)}. POPTA

[68] is then invoked using this speed function as an input to obtain an optimal

distribution of the rows, d.

1d. Partition rows using HPOPTA: HPOPTA [70] is invoked using the

p speed curves as input to obtain an optimal distribution of the rows, d.

Step 2. 1D-FFTs on rows: Threadgroup Pi executes sequential 1D-FFTs

on its rows given by {
∑i−1

k=1 d[i] + 1, · · · ,
∑i

k=1 d[i]}.
Step 3. Matrix Transposition: Transpose the matrixM.

Step 4. 1D-FFTs on rows: Same as Step 2.

Step 5. Matrix Transposition: Same as Step 3.

The method is illustrated in the figure 3.6 for four threadgroups solving

2D-DFT of size N ×N(N = 16).

The data partitioning algorithms POPTA and HPOPTA are described in

detail in Lastovetsky et al. [68] and Khaleghzadeh et al. [70]. Briefly, POPTA

determines the optimal data distribution for minimization of time for the most

general performance profiles of data parallel applications executing on

homogeneous multicore clusters. One of its inputs is a speed function of the

processors involved in its execution since they are considered identical.

HPOPTA is the extension of POPTA for heterogeneous clusters of multicore

processors. The inputs to it are the S different speed functions of the p

processors involved in its execution. Unlike load balancing algorithms, these

algorithms output optimal solutions that may not load-balance an application

in terms of execution time. The output from the data partitioning algorithms is

the data distribution of the rows, d = {d1, · · · , dp}.
Figures 3.7, 3.8 illustrate the data partitioning algorithm employed in

PFFT-FPM for two threadgroups solving 2D-DFT of size N × N where

N = 24704 using IMKL FFT on a Intel multicore server. The speed functions

shown are segments of the full functions (given in Appendix C). Each

threadgroup consists of 18 threads. Figure 3.7 shows a plane y = N = 24704

intersecting the two speed functions S = {S1, S2} producing two curves, one

for each group showing speed versus x given y = N = 24704 constant

(Figure 3.7). One can see that the two curves are not identical

59

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.7: Speed functions of two threadgroups, each a group of 18 threads.
Each group executes 2D-DFT of size x×y using IMKL FFT on a Intel multicore
server consisting of two sockets of 18 cores each. The plane y = N = 24704
intersects the speed functions.

(heterogeneous). That is, there are points where the speeds differ from each

other by more than 5% (ε = 0.05). That means the speed functions are

inputted to HPOPTA, which determines the optimal partitioning of rows,

(d[1], d[2]) = (11648, 13056), where each row is of length N = 24704.

3.2.2.4 Shared Memory Implementation of PFFT-FPM

This section describes shared memory implementations of PFFT-FPM.

The inputs to the implementation are the signal matrixM of size N × N ,

the number of threadgroups p, the speed functions represented by a set S
containing problem sizes and speeds, and number of threads in each

threadgroup represented by t. The output is the transformed signal matrixM
(considering that we are performing in-place FFT).

Algorithm 1 shows the pseudocode of the algorithm. The first step (Line

2) is to determine the partitioning of rows by invoking the routine PARTITION.

The routine PARTITION can be found in Appendix C. This routine gives the

array of data distribution, d = {d1, · · · , dp} based on user-input tolerance ε.

If all the variations are less than or equal to ε, the data partition algorithm

60

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.8: Each intersection produces two curves for the two threadgroups
showing speed versus x keeping y = N = 24704. Application of HPOPTA to
determine optimal distribution of rows provides the partitioning, (d[1] = x1 =
11648, d[2] = x2 = 13056).

POPTA [68] determinates the data distribution. If all the variations are more

than ε, HPOPTA [70] determinates the data distribution.

Then the routine PFFT_LIMB (Line 3) is invoked to execute the basic

steps 1-4 of PFFT-LB. These are series of row 1D-FFTs computed in parallel

(Algorithm 2, Lines 2-4), parallel transpose (Line 5), series of row 1D-FFTs

computed in parallel (Lines 6-8), and parallel transpose (Line 9).

Each threadgroup performs the series of row 1D-FFTs locally using the

routine 1D_ROW_FFTS_LOCAL. The number of row 1D-FFTs performed by

threadgroup Pi is given by first argument, di. Algorithm 3 illustrates the

implementation of this routine using FFTW interface.

3.2.3 PFFT-FPM-PAD Employing 2D FFT

This section presents PFFT-FPM-PAD, an extension of PFFT-FPM where the

partitions (problem sizes) are padded (extended) by lengths determined from

the FPMs. The inputs and the outputs of this method are the same as those

for PFFT-FPM. The data partitioning algorithms invoked in PFFT-FPM-PAD

are the same as those employed in PFFT-FPM. But the series of 1D-FFTs are

61

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Algorithm 1 Parallel algorithm computing 2D-DFT of signal matrix M of size N × N
employing functional performance models (FPMs).

1: procedure PFFT-FPM(N,M, p,S, t)
Input:
M, Signal matrix of size N ×N,N ∈ Z>0

Number of threadgroups, p ∈ Z>0

Functional performance model (speed functions) represented by,
S = {S1, ..., Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈ [1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
User tolerance, ε ∈ R>0

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: d← Partition(N, p,S, ε, d)
3: pfft_limb(p, d,N,M)
4: returnM
5: end procedure

performed locally on rows whose length is extended (padded with zeroes) by

an extent determined from the FPM of the threadgroup. The determination of

the length of padding is a local computation and is specific to the threadgroup.

That is, the lengths can be different for different threadgroups. In some cases,

there is no necessity for padding and therefore the length of the padding is

zero.

PFFT-FPM-PAD consists of following main steps:

Step 1. Partition rows: This step is the same as that for the Algorithm

PFFT-FPM.

Step 2. 1D-FFTs on padded rows: Threadgroup Pi executes sequential

1D-FFTs on its rows inM given by d[i].

The length of each row N is padded to Npadded. It is determined as follows

using the FPM, Si = si(x, y):

Npadded = arg min
V∈Nym

(
d[i]× V
si(d[i],V)

<
d[i]×N
si(d[i], N)

)

The argument V ranges from problem size yN+1 to ym in the speed

function s(x, y). The ratio x×y
si(x,y)

gives the execution time of problem size

x × y. Essentially we select the point (problem size) (d[i], yopt) in the range

{(d[i], yN+1), ..., (d[i], ym)} that has better execution time than the point

62

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Algorithm 2 Parallel algorithm computing 2D-DFT of signal matrixM of size N ×N .

1: procedure PFFT_LIMB(p, d,N,M)
Input:
M, Signal matrix of size N ×N,N ∈ Z>0

Number of threadgroups, p ∈ Z>0

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: Par (proc← 1, p)
3: 1D_ROW_FFTS_LOCAL(proc, dproc, N,M)
4: End Par
5: Parallel_Tranpose(M)
6: Par (proc← 1, p)
7: 1D_ROW_FFTS_LOCAL(proc, dproc, N,M)
8: End Par
9: Parallel_Tranpose(M)

10: returnM
11: end procedure

(d[i], N). Npadded is set to the problem size yopt. If no such point is found, the

padding length is set to 0 and Npadded will be equal to N . The elements in the

padded regionM[∗, c],∀c ∈ [yN+1, Npadded] are set to 0.

Step 3. Matrix Transposition: The matrix M (excluding the padded

region) is transposed.

Step 4. 1D-FFTs on padded rows: The lengths of the paddings already

determined in Step 2 are reused. Threadgroup Pi executes sequential 1D-

FFTs on its padded rows.

Step 5. Matrix Transposition: Same as Step 3.

All the steps of PFFT-FPM-PAD are the same as PFFT-FPM except the

determination of the lengths of the paddings. Figures 3.9, 3.10 illustrate how

they are determined from the FPMs for two threadgroups solving 2D-DFT of

size N × N where N = 24704 using IMKL FFT on a Intel multicore server.

The speed functions shown are segments of the full functions (given in

Appendix C). Each threadgroup consists of 18 threads. Figure 3.9 shows two

planes x1 = 11648 and x2 = 13056 (that is the optimal distribution)

intersecting the two speed functions S = {S1, S2} producing two curves, one

for each group showing speed versus y keeping x constant (Figure 3.10).

The padded lengths (Npadded,1, Npadded,2) corresponding to x1 and x2 are

63

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Algorithm 3 Series of x row 1D-FFTs using FFTW interface function fftw_plan_many_dft.

1: procedure 1D_ROW_FFTS_LOCAL(id, x,N,M, f lag)
Input:

Threadgroup identifier, id ∈ Z>0

Problem size x ∈ Z>0

M, Signal matrix of size N ×N,N ∈ Z>0

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: rank ← 1; howmany ← x; s← N ;
3: idist← N ; odist← N ; istride← 1;
4: ostride← 1; inembed← s; onembed← s;
5: plan← fftw_plan_many_dft(rank, s, howmany,

M, inembed, istride, idist,
M, onembed, ostride, odist,
FFTW_FORWARD,FFTW_ESTIMATE)

6: fftw_execute(plan)
7: fftw_destroy_plan(plan)
8: returnM
9: end procedure

Figure 3.9: Speed function for threadgroup1 intersected by the plane x1 =
11648. Speed function for threadgroup2 intersected by the plane x2 = 13056.

determined from the curves and are equal to 24960.

64

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.10: Each intersection produces a curve for the threadgroup showing
speed versus y keeping x constant. The lengths of padding for the two
threadgroups, Npadded, is the same and is equal to 24960.

3.2.3.1 Shared Memory Implementation of PFFT-FPM-PAD

The implementations of PFFT-FPM-PAD are similar to those for PFFT-FPM

except that the routine 1D_ROW_FFTS_LOCAL_PADDED determines the

length of the padding from the FPMs using the function

Determine_Pad_Length before executing the series of row 1D-FFTs.

Each threadgroup performs the series of padded row 1D-FFTs locally

using the routine 1D_ROW_FFTS_LOCAL_PADDED. The number of row

1D-FFTs performed by threadgroup Pi is given by first argument, di.

Algorithm 4 illustrates the implementation of this routine using FFTW

interface.

The shared memory implementation of PFFT-FPM and PFFT-FPM-PAD

that specifically designed for FFTW and IMKL FFT can be found in Appendix

C.

65

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Algorithm 4 Series of x row 1D-FFTs using FFTW interface function fftw_plan_many_dft.
Each row is padded to Npadded.

1: procedure 1D_ROW_FFTS_LOCAL_PADDED(id, x,N,M)
Input:

Threadgroup identifier, id ∈ Z>0

Problem size x ∈ Z>0

M, Signal matrix of size N ×N,N ∈ Z>0

Functional performance model (speed functions) represented by,
S = {S1, ..., Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈ [1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: Npadded ← Determine_Pad_Length(id, x,N,S)
3: rank ← 1; howmany ← x; s← Npadded;
4: idist← Npadded; odist← Npadded; istride← 1;
5: ostride← 1; inembed← s; onembed← s;
6: plan← fftw_plan_many_dft(rank, s, howmany,

M, inembed, istride, idist,
M, onembed, ostride, odist,
FFTW_FORWARD,FFTW_ESTIMATE)

7: fftw_execute(plan)
8: fftw_destroy_plan(plan)
9: returnM

10: end procedure

3.2.4 PMM-FPM Employing Parallel Matrix Multiplication

This section starts with the description of load-balanced multithreaded

algorithm (PMM-LB) computing the matrix product (C = α× A× B + β × C)

of two dense square matrices A and B of size N × N . Then, the PMM-FPM

algorithm that uses imbalancing technique for performance optimization is

proposed. The algorithms are executed using p threadgroups, P1, ..., Pp. The

input matrices A, B, and C are assumed to be stored in threadgroup P1. To

simplify the exposition of the algorithms, we assume N to be divisible by p.

3.2.4.1 PMM-LB Using Horizontal Decomposition and Load Balancing

The matrices A and C are partitioned horizontally such that each threadgroup

is assigned N
p

of the rows of A and C as shown in the figure 3.11. In matrices

A and C, each threadgroup is assigned a sub-matrix of size N
p
×N .

66

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.11: PMM-LB: Matrix B is replicated at all the threadgroups. Matrices
A and C of size (N × N), N = 16, are horizontally partitioned among the
threadgroups. Each threadgroup receives the same number of rows N

p
= 4.

The main steps of the algorithm are:

Step 1. Replicate B: The matrix B is replicated to all the threadgroups.

Step 2. Scatter A and C: The horizontal partitions of A and C are

scattered to the threadgroups as depicted in the Figure 3.11.

Step 3. Matrix Multiplication: Each threadgroup Pi computes its

horizontal partition CPi using the matrix product,

CPi = α× APi ×B + β × CPi .

Step 4. Gather C: All the computed horizontal partitions CPi are gathered

at threadgroup P1 into the result, C.

3.2.4.2 PMM-FPM Using Horizontal Decomposition, FPMs and Load

Imbalancing

This section describes the novel optimization method called PMM-FPM that

takes functional performance models (FPMs) as input and that employs load

imbalancing parallel computing technique.

PMM-FPM is executed using p threadgroups, {P1, ..., Pp}. The inputs to

PMM-FPM are the number of threadgroups, p, the number N of rows of

matrices A, B and C, the speed functions of the threadgroups, S, and the

user-input tolerance ε. The output of PMM-FPM is the resulting matrix C.

The discrete speed function of threadgroup Pi is given by

Si = {si(x1, N), ..., si(xm, N)}) where si(x,N) represents the speed

computation of a block of size x×N of the resulting matrix C by threadgroup

Pi. The speed is calculated as 2.0∗N∗x∗N∗e−6

t
, where t is measured.

67

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

The method consists of the following main steps:

Step 1. Partition rows of matrices A and C:

1a. Plane intersection of speed functions: Speed functions S are

sectioned by the plane y = N . A set of p curves on this plane are produced

which represent the speed functions against variable x given parameter y is

fixed.

1b. Are speed functions identical?: if

∃(xk, N), 1 ≤ k ≤ m, (
maxpi=1 si(xk,N)−minpi=1 si(xk,N)

minpi=1 si(xk,N)
> ε), go to Step 1d.

Otherwise, go to Step 1c. If there exists a (xk, N), the speed functions are

not considered identical. To determine if the speed functions are identical, the

difference between the maximum and minimum speeds for a point (xk, N) is

calculated and compared with tolerance ε.

1c. Partition rows using POPTA: Construct a speed function Savg =

{savg,i(x)},∀i ∈ [1,m], where savg,i(x) = p∑p
j=1

1
sj(x,N)

. Each speed savg,i(x)

in the function is the average of the speeds {s1(x,N), · · · , sp(x,N)}. POPTA

[68] is then invoked using this speed function as an input to obtain an optimal

distribution of the rows, d.

1d. Partition rows using HPOPTA: HPOPTA [70] is invoked using the

p speed curves as input to obtain an optimal distribution of the rows, d.

Step 2. Replicate B: The matrix B is replicated to all the threadgroups.

Step 3. Scatter A and C: The horizontal partitions of A and C are

scattered to the threadgroups as depicted in the Figure 3.12.

Step 4. Matrix Multiplication: Each threadgroup Pi computes its

horizontal partition CPi using the matrix product,

CPi = α× APi ×B + β × CPi .

Step 5. Gather C: All the computed horizontal partitions CPi are gathered

at threadgroup P1 into the result, C.

The method is illustrated in the figure 3.12 for four threadgroups computing

CPi = α× APi ×B + β × CPi of size N ×N .

Figures 3.13, 3.14 illustrate the data partitioning algorithm employed in

PMM-FPM for four threadgroups solving C = α×A×B+β×C of size N×N
where N = 18176 consisting of 18 threads each. Figure 3.13 shows a plane

y = N = 18176 intersecting the four speed functions S = {S1, S2, S3, S4}

68

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.12: PMM-LB: Matrix B is replicated at all the threadgroups. Matrices
A and C of size (N × N), N = 16, are horizontally partitioned among the
threadgroups. Each threadgroups receives the different number of rows given
by the data distribution, d = {5, 3, 3, 5}.

Group 1, 18 threads
Group 2, 18 threads
Group 3, 18 threads
Group 4, 18 threads

Figure 3.13: Speed functions of four threadgroups, each a group of 18 threads.
Each group executes matrix product C = α × A × B + β × C of size N ×N
of size x × y on a Intel multicore server consisting of two sockets of 18 cores
each. The plane y = N = 18176 intersects the speed functions.

producing four curves, one for each threadgroups showing speed versus x

given y = N = 18176 constant (Figure 3.14). One can see that the curves

are almost identical (homogeneous). The speeds differ from each other by

less than 5% (ε = 0.05). That means we average these four functions and the

resulting average function input to POPTA algorithm, which determines the

optimal partitioning of rows, (d[1], d[2], d[3], d[4]) = (4352, 4608, 4608, 4608),

where each row is of length N = 18176.

69

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

X1 X2= X X=
3 4

X + X + X + X = 181761 2 3 4

Figure 3.14: Each intersection produces four curves for the four threadgroups
showing speed versus x keeping y = N = 18176 constant. Application of
POPTA to determine optimal distribution of rows provides the partitioning,
(d[1] = x1 = 4352, d[2] = x2 = d[3] = x3 = d[4] = x4 = 4608).

3.2.4.3 Shared Memory Implementation of PMM-FPM

The algorithm is similar to that for FFT. The inputs to the implementation are

matrices A, B and C of size N × N , the number of threadgroups p, the

speed functions represented by a set S containing problem sizes and speeds,

and number of threads in each threadgroup represented by t. The output is

the product of two dense matrices A and B - matrix C. The first step

(Algorithm 5, Line 2) is to determine the partitioning of rows by invoking the

routine PARTITION (Appendix C). This routine gives the array of data

distribution, d = {d1, · · · , dp} based on user-input tolerance ε. If all the

variations are less than or equal to ε, the data partition algorithm POPTA [68]

determinates the data distribution. If all the variations are more than ε,

HPOPTA [70] determinates the data distribution.

70

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Algorithm 5 Parallel algorithm computing product (C = α×A×B + β ×C) of two dense
square matrices A and B of size N ×N employing functional performance models (FPMs).

1: procedure PMM-FPM(N,A,B,C, p,S, t)
Input:

A,B and C are matrices of size N ×N,N ∈ Z>0

Number of threadgroups, p ∈ Z>0

Functional performance model (speed functions) represented by,

S = {S1, ..., Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈ [1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
User tolerance, ε ∈ R>0

Number of threads, t

Output:
matrix C - the product of two dense square matrices A and B of size N ×N,N ∈ Z>0

2: d← Partition(N, p,S, ε, d)
3: pmm_limb(p, d,N,A,B,C)

4: return C
5: end procedure

Then the routine PMM_LIMB (Line 3) is invoked to execute the basic steps

1-4 of PMM-LB. This is the replication of matrices (Algorithm 6, Lines 2-4),

dgemm call (Line 5-7), product gathering (Lines 8-10).

Algorithm 6 Parallel algorithm computing product of two matrices A and B of size N ×N .

1: procedure PMM_LIMB(p, d,N,A,B,C)
Input:

A,B and C, matrices of size N ×N,N ∈ Z>0

Number of threadgroups, p ∈ Z>0

Output:
C, product matrix of size N ×N,N ∈ Z>0

2: Par (proc← 1, p)
3: MEMCPY (proc, dproc, N,A,C)
4: End Par
5: Par (proc← 1, p)
6: DGEMM(proc, dproc, N,A,B,C)
7: End Par
8: Par (proc← 1, p)
9: MEMCPY (proc, dproc, N,A,C)

10: End Par
11: return C
12: end procedure

71

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

The shared memory implementation of PMM-FPM that specifically

designed for OpenBLAS DGEMM and IMKL DGEMM can be found in

Appendix C.

3.2.5 Experimental Analysis

This section presents experimental results that demonstrate the performance

improvements provided by PFFT-FPM, PFFT-FPM-PAD and PMM-FPM. All

experiments were performed on an Intel Haswell server containing of 36

physical cores (Table 3.2). To build each point in a function, a statistical

methodology described in Appendix B was used. Briefly, for each data point

in the speed functions, the procedure executes the application repeatedly

until the sample mean lies in the 95% confidence interval with precision of

0.025 (2.5%). For this purpose, Student’s t-test is used but assuming that the

individual observations are independent and their population follows the

normal distribution.

Technical Specifications Intel Haswell Server
Processor Intel Xeon CPU E5-2699 v3 @ 2.30GHz

OS CentOS 7.1.1503
Microarchitecture Haswell

Memory 256 GB
Core(s) per socket 18

Socket(s) 2
NUMA node(s) 2

L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 46080 KB

NUMA node0 CPU(s) 0-17,36-53
NUMA node1 CPU(s) 18-35,54-71

Table 3.2: Specification of the Intel Haswell server used to construct the performance
profiles.

3.2.5.1 PFFT-FPM and PFFT-FPM-PAD Using FFTW and IMKL FFT

For FFT, two packages, FFTW-3.3.7 and IMKL FFT, were used for the

implementations of the methods. FFTW-2.1.5 is not used since the

implementation of series of row 1D-FFTs is poor using fftw_threads

72

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

compared to the implementation of fftw_plan_many_dft in FFTW-3.3.7 and

IMKL FFT.

The FFTW-3.3.7 package is installed with multithreading, SSE/SSE2,

AVX2, and FMA (fused multiply-add) optimizations enabled. For IMKL FFT,

there are not used any special environment variables. The experiments were

performed with three planner flags, FFTW_ESTIMATE, FFTW_MEASURE,

FFTW_PATIENT. The experimental results are shown for only one planner

flag, FFTW_ESTIMATE. The execution times for these flags however are

prohibitively larger compared to FFTW_ESTIMATE (Table 3.3) and severe

variations are present. The long execution times are due to the lengthy times

to create the plans because FFTW_MEASURE tries to find an optimized plan

by computing several FFTs whereas FFTW_PATIENT considers a wider

range of algorithms to find a more optimal plan.

N FFTW_ESTIMATE (Sec) FFTW_MEASURE (Sec) PATIENT (Sec)
20160 3 31 5015
20480 16 41 2549
20672 6.5 3004 8228
21120 3.6 31 2746
21440 4 32 1367
21632 14.5 2937 9754

Table 3.3: Execution times in seconds for FFTW-3.3.7 on the Intel Haswell multicore server
for three different planner flags.

For the implementations using FFTW-3.3.7, the combination consisting of

4 groups of 9 threads each is used, (p = 4, t = 9) since this pair performs the

best among the following combinations: {(2, 18), (4, 9), (6, 6), (9, 4), (12, 3)}.
For IMKL FFT, the combination consisting of 2 groups of 18 threads each is

used, (p = 2, t = 18) since this is the best combination found experimentally

among the following combinations: {(2, 18), (4, 9), (6, 6), (9, 4), (12, 3)}.
The full speed functions constructed for IMKL FFT and FFTW-3.3.7 are

shown in the Appendix C. The set of problem sizes (x, y) used for the

construction of speed functions is

{(x, y) | 128 ≤ x ≤ y, 128 ≤ y ≤ 64000, x mod 128, y mod 128} =

{128× 128, 128× 256, 256× 256, · · · , 64000× 64000}. All threadgroups build

a data point ((x, y), si(x, y)) in their speed functions simultaneously. That is,

all of them execute the same problem size x × y in parallel to determine the

73

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

speed si(x, y) in their speed functions. For large problem sizes (for example:

{(x, y) | 128 ≤ x ≤ 64000, y = 64000), all the data points (x, y) can not be

built due to main memory constraint. Therefore, the speed functions are

constructed until permissible problem size.

The time to build the full speed functions can be expensive. This takes

into account the fact that for each data point, statistical averaging is

performed to determine its sample mean. One approach is to build partial

speed functions [163],[164]. These are input to the data partitioning algorithm

[68], which would return sub-optimal workload distributions (but better than

load balanced solution) to be used in PFFT-FPM and PFFT-FPM-PAD. To

build a partial speed function, data points in the neighbourhood of

homogeneous distribution, di = n
p
, ∀i ∈ [1, p], are constructed until the

allowed user-input execution time is exceeded.

To demonstrate the performance improvements of the solutions

determined by PFFT-FPM and PFFT-FPM-PAD, the average and maximum

speedups over to the basic FFT versions (that employ one group of 36

threads in their execution) are used. The speedup is determined as follows:

Speedup = tbasic
tpfft−fpm−pad

, where where tbasic is the execution time obtained

using the basic FFT version (IMKL FFT or FFTW-3.3.7) and tpfft−fpm−pad is

the execution time obtained using PFFT-FPM-PAD.

FFTW

Figure 3.15 shows the execution times of PFFT-FPM and PFFT-FPM-PAD

versus basic FFTW-3.3.7. One can see that for problem sizes N > 33000,

while the speedups are still good (6x for FFTW-3.3.7), major variations still

remain. However, for basic implementation these variations start from the

size N = 17000.

Figure 3.16 shows the speedups of PFFT-FPM and PFFT-FPM-PAD over

basic FFTW-3.3.7 which computes the 2D-DFT using one group consisting of

36 threads. Each data point in the speed functions involves a complex 2D-

DFT of size N × N . The average and maximum performance improvements

for PFFT-FPM-PAD are 2.3x and 9.4x, and for PFFT-FPM are 2x and 6.8x.

74

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.15: Execution times of PFFT-FPM and PFFT-FPM-PAD against the
basic FFTW-3.3.7 executed using 36 threads.

Furthermore, we can see that forN < 31000, the PFFT-FPM-PAD outperforms

PFFT-FPM, however, for N > 31000 their performance is practically the same.

Figure 3.16: Speedup of PFFT-FPM and PFFT-FPM-PAD against the basic
FFTW-3.3.7 executed using 36 threads.

75

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

IMKL FFT

Figure 3.17 shows the execution times of PFFT-FPM and PFFT-FPM-PAD

versus basic IMKL FFT. One can see that for problem sizes N > 33000, while

the speedups are still good (2x for IMKL FFT), the variations are still

significant.

Figure 3.17: Execution times of PFFT-FPM and PFFT-FPM-PAD against the
basic FFTW-3.3.7 executed using 36 threads.

Figure 3.18 compares the speedups PFFT-FPM and PFFT-FPM-PAD over

basic IMKL FFT which computes the 2D-DFT using one group consisting of 36

threads. The average and maximum speedups for PFFT-FPM-PAD are 1.4x

and 5.9x, and for PFFT-FPM are 1.1x and 2.4x. Also, it can be seen clearly

that in the range of problem sizes (10000 ≤ N ≤ 30144) the PFFT-FPM-

PAD outperforms PFFT-FPM, however, outside this range their performance is

always the same.

3.2.5.2 PMM-FPM Using OpenBLAS DGEMM and IMKL DGEMM

For implementation of matrix-matrix multiplication, two packages are used,

OpenBLAS DGEMM that is part of OpenBLAS-0.2.19 and IMKL DGEMM that

is part of Intel Math Kernel Library v.2017. The default settings were used

under installations and compilations of packages.

76

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.18: Speedups of PFFT-FPM and PFFT-FPM-PAD against the basic
IMKL FFT executed using 36 threads.

For the implementations using OpenBLAS DGEMM, the combination

consisting of four groups of 9 threads each is used, (p = 4, t = 9) since this

pair performs the best among the following combinations:

{(2, 18), (4, 9), (6, 6), (9, 4), (12, 3)}. For the IMKL DGEMM, the combination

consisting of two groups of 18 threads each is used, (p = 2, t = 18) since this

is the best combination found experimentally among the following

combinations: {(2, 18), (4, 9), (6, 6), (9, 4), (12, 3)}.
The set of problem sizes (x, y) used for the construction of speed

functions is

{(x, y) | 10240 ≤ x ≤ y, 10240 ≤ y ≤ 20992, x mod 64, y mod 64} =

{10240 × 10240, 10240 × 10304, 10304 × 10304, · · · , 20992 × 20992}. All

threadgroups build a data point ((x, y), si(x, y)) in their speed functions

simultaneously. That is, all of them execute the same problem size x × y in

parallel to determine the speed si(x, y) in their speed functions.

OpenBLAS DGEMM

Figure 3.19 shows the execution times of PMM-FPM versus basic OpenBLAS

DGEMM. The average and maximum performance improvements are 17%

77

3.2. PERFORMANCE OPTIMIZATION USING WORKLOAD DISTRIBUTION
AS A DECISION VARIABLE

Figure 3.19: Execution times of PMM-FPM against the basic OpenBLAS
DGEMM executed using 36 threads.

and 28.5%. Furthermore, the method removes noticeable drops in

performance for sizes N = 10624, N = 12608, N = 13952 and N = 17472.

IMKL DGEMM

Figure 3.20 shows the execution times of PMM-FPM versus basic IMKL

DGEMM. The average and maximum performance improvements are 11%

and 27%. Our method removes noticeable drops in performance for sizes

N = 12288, N = 14336, N = 16384, N = 18432 and N = 20480.

3.2.6 Summary

This section proposed three novel methods for performance optimization of

data-parallel applications namely matrix-matrix multiplication and 2D-FFT on

modern multicore CPUs. The methods employ workload distribution as the

decision variable and are beased on model-based parallel computing

technique using load-imbalancing data partitioning. The experimental results

obtained on a modern Intel Haswell multicore server consisting of two sockets

of 18 physical cores each, demonstrated the superiority of the methods over

the base implementations of those applications.

However, the methods have some limitations. First, they were not well

78

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

Figure 3.20: Execution times of PMM-FPM against the basic IMKL DGEMM
executed using 36 threads.

studied on a single-socket multicore CPUs. This study is an object for future

work. Second, they are not applicable for energy optimization on a single

multicore CPUs as it is not straightforward to measure the energy profiles of

each team of cores which is a subset of cores making one socket. Usually,

on modern multicore CPUs, the energy is measured only on a socket level

and a whole system. Hence, we cannot build the energy profiles of each

team of cores involved in the implementation of the methods to find the best

partitioning in term of energy consumption among them. This challenge is left

for future work while now the following section proposes a method that uses

the number of threadgroups and the number of threads in each threadgroup as

decision variables and able to deal with the optimization of both performance

and energy.

3.3 Performance and Energy Optimization Using

Threadgroups and Threads per Group as

Decision Variables

This section introduces the solution method, SOPPETG, for solving the single-

objective optimization problem of a multithreaded data-parallel application on

79

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

multicore CPUs for performance and energy (SOPPE).

3.3.1 Solution Method Using Threadgroups and Threads as

Decision Variables (SOPPETG)

SOPPETG uses two decision variables, the number of identical multithreaded

kernels (threadgroups) and the number of threads in each threadgroup. A

given workload is always partitioned equally between the threadgroups.

The inputs to the solution method are the workload size of the

multi-threaded data-parallel application, n; the number of logical cores in the

multicore CPU, l; the multithreaded kernel, mtkernel; the base power of the

multicore CPU platform, Pb. The outputs are the optimal number of

threadgroups, gopt and the optimal number of threads per group, topt.

The main steps of SOPPETG are as follows:

Step 1. Parallel implementation configurable using (g,t): Design and

implement a parallel version of the application that can be executed using g

identical multithreaded kernels (mtkernel) in parallel. Each kernel is executed

by a threadgroup containing t threads. The application should essentially allow

its runtime configuration using number of threadgroups and number of threads

per group with the workload equally partitioned between the threadgroups.

Step 2. Initialize g and t: All the application configurations, (g,t), where

the product, g × t, is less than or equal to the total number of logical cores (l)

in the multicore platform are considered. g ← 1, t← 1. Go to Step 3.

Step 3. Determine time and dynamic energy of (g,t): For each (g,t)

combination, the starting execution time (ti) is measured. The total energy

consumption (ei) is set to 0 J. This is followed by execution of the application,

which is g identical multithreaded kernels, mtkernel, executed in parallel

where each kernel employs t threads. The workload n is divided equally

between the threadgroups g during the execution of the application. The

ending execution time (tf) and the total energy consumption (ef) are

measured. Go to Step 4.

Step 4. Determine the best configuration (g,t) for time or energy: The

execution time and dynamic energy consumption of the application are

80

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

determined as follows: so = tf − ti, eo = ef − ei − Pb × so. The temporary

variable Sopt stores the optimal solution, (so, eo). Depends on the

requirement, wich is the minimum execution time or dynamic energy

consumption, the Sopt is updated. Go to Step 5.

Step 5. Test and Increment (g,t): If t < l, t ← t + 1, go to Step 3. Set

g ← g+1, t← 1. If g×t ≤ l, go to Step 3. Else return the optimal configuration

(gopt, topt).

In the following section, the application of SOPPETG to two data-parallel

applications, matrix-matrix multiplication and 2D fast Fourier transform is

illustrated. It is shown in particular how SOPPETG can reuse highly

optimized scientific kernels with careful design and development of parallel

versions of the application.

3.3.2 Parallel Matrix-Matrix Multiplication Using SOPPETG

This section presents the single-objective optimization of matrix-matrix

multiplication using SOPPETG (PMMTG).

The PMMTG application computes the matrix product (C = α × A × B +

β×C) of two dense square matrices A and B of size N×N . The application is

executed using p threadgroups, {P1, ..., Pp}. To simplify the exposition of the

algorithms, we assume N to be divisible by p.

There are three parallel algorithmic variants of PMMTG. In PMMTG-V, the

matrices B and C are partitioned vertically such that each threadgroup is

assigned N
p

of the columns of B and C as shown in the figure 3.21a. Each

threadgroup Pi computes its vertical partition CPi using the matrix product,

CPi = α × A × BPi + β × CPi . In PMMTG-H, the matrices A and C are

partitioned horizontally such that each threadgroup is assigned N
p

of the rows

of B and C as shown in the figure 3.21b. Each threadgroup Pi computes its

horizontal partition CPi using the matrix product,

CPi = α × APi × B + β × CPi . In PMMTG-S, the p threadgroups {P1, ..., Pp}
are arranged in a square grid Qst, s ∈ [1,

√
p], t ∈ [1,

√
p]. The matrices A, B,

and C are partitioned into equal squares among the threadgroups as shown

in the figure 3.21c. In each matrix, each threadgroup Pi(= Qst) is assigned a

81

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

sub-matrix of size N√
p
× N√

p
and computes its square partition CQst using the

matrix product, CQst = α ×
∑√

p

k=1(Ask × Bkt) + β × CQst . Ask is the square

block in matrix A located at (s, k). Bkt is the square block in matrix B located

at (k, t). To exclude the decision variable such as form of partitioning, the

performance of the best configuration for each form is compared in Appendix

C. It is found that the difference between them is less than 3%, hence, all

experiments are performed based on the horizontal form of partitioning.

The shared memory implementations of PMMTG-H based on OpenBLAS

DGEMM and IMKL DGEMM are described in Appendix C.

(a)

(b)

(c)

Figure 3.21: (a). PMMTG-V: Matrices B and C are vertically partitioned
among the threadgroups. (b). PMMTG-H: Matrices A and C are horizontally
partitioned among the threadgroups. (c). PMMTG-S: The p threadgroups are
arranged in a square grid of size

√
p×√p. All the matrices are partitioned into

squares among the threadgroups.

82

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

3.3.3 2D Fast Fourier Transform Using SOPPETG

The PFFTTG application employing our solution method computes the 2D-

DFT of the signal matrix of size N × N using p threadgroups, {P1, ..., Pp}. It

is based on the sequential 2D-FFT row-column decomposition method. There

are two parallel algorithmic variants of PFFTTG, PFFTTG-H and PFFTTG-V.

To simplify the exposition of the algorithms, we assume N to be divisible by p.

Figure 3.22: 2D-DFT of signal matrix M of sizeN×N using p threadgroups. a).
PFFTTG-V using vertical decomposition of the signal matrix. b). PFFTTG-H
using horizontal decomposition of the signal matrix.

PFFTTG-H: Using Horizontal Decomposition of Signal Matrix M

The parallel 2D-FFT algorithm, PFFTTG-H, consists of four steps:

Step 1. 1D-FFTs on rows: Threadgroup Pi executes sequential 1D-FFTs

on rows (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 2. Matrix Transposition: Transpose the matrix M.

Step 3. 1D-FFTs on rows: Threadgroup Pi executes sequential 1D-FFTs

on rows (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 4. Matrix Transposition: Transpose the matrix M.

The computational complexity of Steps 1 and 3 is Θ(N
2

p
log2N). The

computational complexity of Steps 2 and 4 is Θ(N
2

p
). Therefore, the total

computational complexity of PFFTTG-H is Θ(N
2

p
log2N).

The algorithm is illustrated in the Figure 3.22.

83

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

PFFTTG-V: Using Vertical Decomposition of Signal Matrix M

The parallel 2D-FFT algorithm, PFFTTG-V, consists of four steps:

Step 1. 1D-FFTs on columns: Threadgroup Pi executes sequential 1D-

FFTs on columns (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 2. Matrix Transposition: Transpose the matrix M.

Step 3. 1D-FFTs on columns: Threadgroup Pi executes sequential 1D-

FFTs on columns (i− 1)× N
p

+ 1, ..., i× N
p

.

Step 4. Matrix Transposition: Transpose the matrix M.

The computational complexity of Steps 1 and 3 is Θ(N
2

p
log2N). The

computational complexity of Steps 2 and 4 is Θ(N
2

p
). Therefore, the total

computational complexity of PFFTTG-V is Θ(N
2

p
log2N).

The algorithms are illustrated in the figure 3.22. Here, the performance of

the vertical form of partitioning is considerably lower than that for the horizontal

form of partitioning. Consequentially, all experiments for FFT performed with

the horizontal form of partitioning. The shared memory implementations of

PFFTTG-H based on FFTW and IMKL FFT are described in Appendix C.

3.3.4 Experimental Analysis for Performance

This section presents experimental results for performance for PMMTG and

PFFTTG which were obtained on four multicore CPUs shown in the table 3.4.

To make sure the experimental results are reliable, a statistical

methodology described in the Appendix B is used. Briefly, for every data point

in the functions, the automation software executes the application repeatedly

until the sample mean lies in the 95% confidence interval and a precision of

Table 3.4: Specifications of the Intel multicore CPUs, HCLServer01-04, ordered by
increasing number of sockets and an increasing number of cores per socket.

Technical Specifications HCLServer1 (S1) HCLServer2 (S2) HCLServer3 (S3) HCLServer4 (S4)
Processor Intel Xeon Gold 6152 Intel Haswell E5-2670V3 Intel Xeon CPU E5-2699 Intel Xeon Platinum 8180
Core(s) per socket 22 12 18 28
Socket(s) 1 2 2 2
L1d cache, L1i cache 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB 256 KB, 30976 KB 256 KB, 46080 KB 1024 KB, 39424 KB
Total main memory 96 GB 64 GB 256 GB 187 GB
Power meter WattsUp Pro WattsUp Pro - Yokogawa WT310

84

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

0.025 (2.5%) has been achieved. For this purpose, Student’s t-test is used

assuming that the individual observations are independent and their

population follows the normal distribution. The speed/performance/energy

values shown in the graphical plots are the sample means.

3.3.4.1 PMMTG Using OpenBLAS DGEMM and IMKL DGEMM

Optimization on Single-socket Multicore CPU

Figure 3.23a shows the execution time of different configurations (g,t) for

PMMTG using OpenBLAS DGEMM on a single-socket multicore CPU (S1). It

can be seen that the performance of application depends on the number of

(a)

(b)

Figure 3.23: (a). Performance of PMMTG application employing OpenBLAS
DGEMM with varying number of threadgroups on HCLServer1. (b). Execution
time of PMMTG versus the best base configuration (g,t) employing OpenBLAS
DGEMM on HCLServer1.

85

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

threadgroups and the number of threads in each threadgroup executing the

application. The best configuration with minimum execution time is

(g,t)=(22,1) and it is the same for all three sizes. Using this configuration we

can improve performance over the best base configuration (g,t)=(1,44) by

more than 20% for N = 29696 and N = 35328, and aroungd 10.5% for

N = 30720. The worst performance configurations are (11,2) and (22,2) they

degrade performance of the best base configuration 5-6 times.

Figure 3.23b shows the execution time of PMMTG using OpenBLAS

DGEMM versus its best base implementation for a range of sizes

16000 < N < 35000. Each point in the pmmtg function represents the best

configuration of (g,t) for a given problem size. All combinations are depicted

as legends in figure 3.23a. The average and maximum performance

improvements of PMMTG over the best base configuration are 7% and

26.3%. However, there are sizes where our method cannot optimize the best

base implementation.

Figure 3.24a shows the execution time of different configurations (g,t) for

PMMTG using IMKL DGEMM. One can observe that the best configuration

with minimum execution time is (g,t)=(4,11) and it is the same for all three

sizes. However, there is a configuration (g,t)=(2,22) where the execution time

is almost the same as execution time of (4,11). They both outperform the best

base configuration (1,44) by 5.5% for all three sizes. The worst performance

configurations are (11,2) and (22,1). They damage performance 2.5 times for

all three sizes.

Figure 3.24b shows the execution time of PMMTG using Intel MLK

DGEMM versus its best base configuration for a range of sizes

16000 < N < 35000. Each point in the pmmtg function represents the best

configuration of (g,t) for the given problem size. All configurations are

depicted as legends in figure 3.24a. The average and maximum performance

improvements of PMMTG over the best base configuration are 4.1% and

6.5%.

86

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.24: (a). Performance of PMMTG application employing IMKL
DGEMM with varying number of threadgroups on HCLServer1. (b). Execution
time of PMMTG versus the best base configuration (g,t) employing IMKL
DGEMM on HCLServer1.

Optimization on Dual-socket Multicore CPU

Figure 3.25a shows the execution time of PMMTG between the different

configurations employing IMKL DGEMM on HCLServer3. One can observe,

that the execution time of application depends on the number of threadgroups

and the number of threads in each threadgroup executing the application.

There are three different configurations with the minimum execution time

distinct from each other by less than 5%, (g,t)=(12,3),(18,2),(36,1). The

performance improvements using these configurations over the best base

87

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.25: (a). Performance of PMMTG application employing IMKL
DGEMM with varying number of threadgroups on HCLServer3. (b). Execution
time of PMMTG versus the best base configuration (g,t) employing IMKL
DGEMM on HCLServer3.

implementation can reach 10%.

Figure 3.25b shows the execution time of PMMTG versus its base

implementation employing IMKL DGEMM on HCLServer3. The base

implementation corresponds to application configuration employing one

threadgroup with optimal number of threads. Each point in the pmmtg

function represents the best configuration of (g,t) for a given problem size. It

can be seen that PMMTG removes huge drops for N = 16384, N = 20480

and N = 24576 with performance improvements of 36.5%, 14.5% and 21.5%

respectively. The average and maximum improvements of PMMGT over the

88

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

base version are 7% and 42.1%.

(a)

(b)

Figure 3.26: (a). Performance of PMMTG application employing OpenBLAS
DGEMM with varying number of threadgroups on HCLServer3. (b). Execution
time of PMMTG versus the best base configuration (g,t) employing OpenBLAS
DGEMM on HCLServer3.

Figure 3.26a shows the performance of PMMTG for different configurations

employing OpenBLAS DGEMM on HCLServer3. The best configuration with

the minimum execution time is the same for all sizes and is (g,t)=(12,6). It

outperforms the best base configuration by 13.3%, 20.7% and 15.9% for sizes

N = 22528, N = 24192 and N = 24512 respectively.

Figure 3.26b shows the execution time of PMMGT versus its base version

employing OpenBLAS DGEMM on HCLServer3. The base version

corresponds to application configuration employing one threadgroup with

89

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

optimal number of threads. Each point in the pmmtg function represents the

best configuration of (g,t) for a given problem size. The average and

maximum performance improvements of PMMTG over the best base

implementation are 19% and 31.7%. Furthermore, PMMTG removes notable

drops in the performance profile of the base version.

(a)

(b)

Figure 3.27: (a). Performance of PFFTTG application employing IMKL FFT
with varying number of threadgroups on HCLServer1. (b). Eexecution time
of PFFTG versus the best base congregation (g,t) employing IMKL FFT on
HCLServer1.

90

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

3.3.4.2 PFFTTG Using FFTW and IMKL FFT

Optimization on Single-socket Multicore CPU

Figure 3.27a shows the comparison of the execution time between the

different configurations (g,t) of PFFTGT using IMKL FFT on a single-socket

multicore CPU (S1). It can be seen that different configurations (g,t) have

different execution times. The best configuration with minimum execution time

for all three sizes is (g,t)=(2,22). Its performance improvements over the best

base configuration are 7.9%, 15% and 27% for sizes N = 16384, N = 20480

and N = 30720 respectively.

Figure 3.27b shows the execution time of PFFTGT using IMKL FFT

versus its best base configuration. Each point in the pffttg function represents

the best configuration (g,t) for the given problem size. The average and

maximum performance improvements of PFFTTG over the best base

configuration are 7% and 13%. The best base configuration corresponds to

application configuration employing one threadgroup with optimal number of

threads.

Figure 3.28a shows the results for PFFTTG employing FFTW. The best

combination with minimum execution time is (g, t)=(4,11) and is the same for

problem sizes m = n = 31936 and m = n = 32704. Its improvements over

the best base configuration (g, t)=(1,22) are 55% and 57% respectively. For

problem size m = n = 35648 the base configuration (1,44) is the best and

outperforms the closest configuration (g, t)=(2,22) by 5%.

Figure 3.28b depicts the performance profile of PFFTTG over the best base

implementation employing FFTW on HCLServer1. Each point in both functions

represents the best configuration of (g,t) for a given problem size. The average

and maximum improvements of PFFTTG over the best base implementation

are 25% and 51%.

Optimization on Dual-socket Multicore CPU

All results in this section are represented by a surface in the 3D space

represented by axes for performance or energy, number of threadgroups (g)

91

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

and the number of threads in each threadgroup, t. The location of the

minimum in the surface is shown by a red dot.

Figure 3.29a presents the results of PFFTTG using FFTW3.3.7 on

HCLServer3 for matrix dimension m = n = 17728. The minimum is centred

around numbers of threadsgroups equal to {4,7,8}. The minimum is achieved

for the combination, (g, t)=(4,16). The speedup is 80% in comparison with

(g, t)=(1,72), which is the best combination for one group.

Figure 3.29b shows the comparison of PFFTTG versus the best base

implementation employing FFTW. Each point in both functions represents the

(a)

(b)

Figure 3.28: (a). Performance of PFFTTG application employing FFTW
with varying number of threadgroups on HCLServer1. (b). Eexecution time
of PFFTTG versus the best base congregation (g,t) employing FFTW on
HCLServer1.

92

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.29: (a). Performance profile of FFTW PFFTTG application with
varying number of threadgroups and number of threads per group on
HCLServer3 (S3) for workload size, m = n = 17728. Red dot represents
the minimum. (b). Performance profiles of FFTW PFFTTG application versus
the best base implementation employing FFTW on HCLServer3 (S3).

best configuration (g,t) for a given problem size. The average and maximum

performance improvements of PFFTTG over the best base version are 85%

and 90%.

93

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

3.3.5 Experimental Analysis for Energy

This section presents experimental results for energy for matrix-matrix

multiplication (PMMTG) and 2D fast Fourier transform (PFFTTG) employing

proposed solution method. The statistical methodology of experiments is the

same as for the previous section. The same multicore CPUs shown in the

table 3.4 are used, where three platforms (HCLServer1, HCLServer2,

HCLServer4) have a power meter installed between their input power sockets

and the wall A/C outlets. HCLServer1 and HCLServer2 are connected with a

Watts Up Pro power meter; HCLServer4 is connected with a Yokogawa

WT310 power meter.

The power meter captures the total power consumption of the server. It

has data cable connected to one USB port of the server. A script written in

Perl collects the data from the power meter using the serial USB interface.

The execution of the script is non-intrusive and consumes insignificant power.

Watts Up Pro power meters are periodically calibrated using the ANSI C12.20

revenue-grade power meter, Yokogawa WT310. The maximum sampling

speed of Watts Up Pro power meters is one sample every second. The

accuracy specified in the data-sheets is ±3%. The minimum measurable

power is 0.5 watts. The accuracy at 0.5 watts is ±0.3 watts. The accuracy of

Yokogawa WT310 is 0.1% and the sampling rate is 100k samples per second.

HCLWattsUp API [165] is used to gather the readings from the power

meter to determine the dynamic energy consumption during the execution of

PMMTG and PFFTTG applications. HCLWattsUp has no extra overhead and

therefore does not influence the energy consumption of the application

execution.

Fans are significant contributors to energy consumption. On those three

platforms, fans are controlled in two zones: a) zone 0: CPU or System fans, b)

zone 1: Peripheral zone fans. There are 4 levels to control the speed of fans:

• Standard : BMC control of both fan zones, with CPU zone based on

CPU temp (target speed 50%) and Peripheral zone based on PCH temp

(target speed 50%)

94

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

• Optimal : BMC control of the CPU zone (target speed 30%), with

Peripheral zone fixed at low speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed 50%), Peripheral

zone fixed at 75%

• Full : all fans running at 100%

To rule out the contribution of fans in dynamic energy consumption, the

fans set at full speed before executing the applications. When set at full

speed, the fans run constantly at ∼13400 rpm until they are set to a different

speed level. In this way, energy consumption due to fans is included only in

the static power consumption of the platform. The temperature of the platform

and speeds of the fans (with Full setting) are monitored with the help of

Intelligent Platform Management Interface (IPMI) sensors, both with and

without the application run. An insignificant difference in the speeds of fans

was found in both scenarios.

3.3.5.1 PMMTG Using OpenBLAS DGEMM and IMKL DGEMM

Optimization on Single-socket Multicore CPU

Figure 3.30a shows the comparison of dynamic energy consumption between

the different configurations in PMMTG using OpenBLAS DGEMM on a

single-socket CPU (S1). It can be seen that each configuration (g,t) differently

consumes energy. The best configuration with the minimum energy

consumption for sizes N = 29696 and N = 30720 is (g,t)=(22,1). It

outperforms the best base configuration (g,t)=(1,44) by more than 21%.

However, the best configuration for N = 35328 is the best base (g,t)=(1,22)

which outperforms (1,44) by 22.5% and the closest (22,1) by 11%. The worst

configurations (g,t) in terms of energy efficiency for all sizes are (11,2) and

(22,2). They can increase energy consumption up to 3 times.

Figure 3.30b depicts the energy profiles of the best configuration (g,t) for

a given problem size using PMMTG and the best base configuration (g,t) for

the given problem size employing OpenBLAS DGEMM, for a range of sizes

16000 < N < 36000. The average and maximum energy savings of PMMTG

95

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.30: (a). Dynamic energy consumption of PMMTG application
employing OpenBLAS DGEMM with varying number of threadgroups on
HCLServer1. (b). Dynamic energy consumption of PMMTG versus the best
base configuration (g,t) employing OpenBLAS DGEMM on HCLServer1.

over the best base implementation are 7.9% and 30%. However, there are

sizes where our method cannot reduce energy consumption.

Figure 3.31a shows the comparison of dynamic energy consumption

between different configurations of PMMTG using IMKL DGEMM. One can

observe that there are three configurations in each problem size that

consume the minimum energy and they are (g,t)=(11,4),(22,2),(44,1). The

improvement in energy consumption using these configurations over the best

base configuration (1,44) can reach 37%.

96

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.31: (a). Dynamic energy consumption of PMMTG application
employing IMKL DGEMM with varying number of threadgroups on
HCLServer1. (b). Dynamic energy consumption of PMMTG versus the best
base configuration employing IMKL DGEMM on HCLServer1.

Figure 3.31b depicts the dynamic energy consumption of the best

configurations (g,t) for PMMTG and the best base configuration (g,t)

employing IMKL DGEMM for a given problem size for a range of sizes

16000 < N < 36000. The average and maximum energy savings of PMMTG

over the best base implementation are 35.7% and 67%.

97

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.32: (a). Dynamic energy consumption of PMMTG application
employing OpenBLAS DGEMM with varying number of threadgroups on
HCLServer2. (b). Dynamic energy consumption of PMMTG versus the best
base configuration employing OpenBLAS DGEMM on HCLServer2.

Optimization on Dual-socket Multicore CPU

Figure 3.32a shows the dynamic energy consumption for different

configurations (g,t) of the PMMTG application based on OpenBLAS DGEMM

on HCLServer2. One can observe there are four configurations wich are

almost equally minimizing dynamic energy consumption for workload size

16384, they are (g,t)=(2,24),(3,16),(6,8),(24,2). The energy savings for these

configurations compared with the best base configuration (1,24) is around

21%. For the workload sizes 17408 and 18432, the best configurations are

(12,4) and (4,12). The energy savings in comparison with the best base

98

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

configuration (1,24) for 17408 and (1,44) for 18432, are 15% and 18%

respectively.

Figure 3.32b depicts the dynamic enegry consumption of PMMTG and the

best base configuration employing OpenBLAS DGEMM for a range of sizes

15000 < N < 36000. Each point in the pmmtg function represents the best

configuration of (g,t) for the given problem size. All configurations depicted as

a labels in figure 3.32a. The average and maximum energy savings of PMMTG

over the best base implementation are 10% and 24.5%.

(a)

(b)

Figure 3.33: (a). Dynamic energy consumption of PMMTG application
employing IMKL DGEMM DGEMM with varying number of threadgroups on
HCLServer2. (b). Dynamic energy consumption of PMMTG versus the best
base configuration employing IMKL DGEMM on HCLServer2.

Figure 3.33a depicts the energy consumption of each configuration (g,t) of

99

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

the PMMTG application based on IMKL DGEMM for three defferent problem

sizes on HCLServer2. One can observe, the best configuration minimizing

dynamic energy consumption for workload size 28672 involves 12

threadgroups with 2 threads in each. The energy savings for this

configuration compared with the best base configuration (1,24) is 10.5%. For

the workload sizes 30720 and 31616, the best configurations are (12,4) and

(12,2). The energy savings in comparison with the best base configuration

(1,24) are 4% and 7% respectively.

Figure 3.33b illustrates the dynamic enegy consumption of PMMTG

versus the best base configuration employing IMKL DGEMM. Each point in

both functions represents the best configuration (g,t) for the given problem

size. The average and maximum energy savings of PMMTG over the best

base implementation are 13% and 67%.

3.3.5.2 PFFTTG Using FFTW and IMKL FFT

Optimization on Single-socket Multicore CPU

Figure 3.34a shows the dynamic energy comparision between different

configurations of the PMMTG application for workload sizes 31936, 32704,

and 35648 on a single-socket CPU (S1). It can be seen, the best

configuration (g, t)=(4,11) is the same for sizes 31936 and 32704. The

reductions in dynamic energy consumption using this configuration in

comparison with the best base configuration (g, t)=(1,22) are 41% and 65%

respectively. For size 35648 the best base configuration is the best and

outperforms the closest configuration (g, t)=(2,22) by less than 5%.

Figure 3.34b depicts the dynamic energy consumption of the best

configurations (g,t) for PFFTTG and the best base configuration (g,t)

employing FFTW for a given problem size for a range of sizes

16000 < N < 37000. The average and maximum energy savings of PFFTTG

over the best base implementation are 30% and 63%.

For the IMKL FFT, PFFTTG could not optimize the best base configuration

(g,t)=(1,44). Moreover, for IMKL FFT, the dynamic energy consumption

increases with the increasing number of threadgroups.

100

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

(a)

(b)

Figure 3.34: (a). Dynamic energy consumption of PFFTTG application
employing FFTW with varying number of threadgroups on HCLServer1. (b).
Dynamic energy consumption of PFFTTG versus the best base configuration
employing FFTW on HCLServer1.

Optimization on Dual-socket Multicore CPU

Figures 3.35a, 3.35b show the results for PFFTTG employing FFTW3.3.7 on

HCLServer4 for matrix sizes 30464 and 32192 respectively. The minimum for

dynamic energy is achieved for {4,7,8} threadgroups with 14 threads in each

threadgroup for workload size 32192 and 12 threads in each threadgroup for

workload size 30464. The minimum for the workload size 30464 is achieved

for the configuration (g, t)=(8,12). The dynamic energy consumption for this

combination is 661 Joules. The energy saving is around 30% in comparison

101

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

with the best base configuration (g, t)=(1,45) whose dynamic energy

consumption is 918 Joules. The minimum for the workload size 32192 is

achieved for the configuration (g, t)=(4,14). The saving is around 35% in

comparison with the best base configuration (g, t)=(1,16) where dynamic

energy is 2197 Joules. Furthermore, the average and maximum energy

savings for a range of sizes 30464 ≤ N ≤ 33280 with picked 10 sizes are

23% and 43%.

(a)

(b)

Figure 3.35: (a). Energy profile of FFTW PFFTTG application with varying
number of threadgroups and number of threads per group on HCLServer4
(S4) for workload size m = n = 30464. (b). Energy profile of FFTW PFFTTG
application with varying number of threadgroups and number of threads per
group on HCLServer4 (S4) for workload size m = n = 32192. Red dot
represents the minimum.

102

3.3. PERFORMANCE AND ENERGY OPTIMIZATION USING
THREADGROUPS AND THREADS PER GROUP AS DECISION

VARIABLES

3.3.6 Summary

This section proposed the methods for single-objective optimization for

performance and energy on multicore CPUs using application-level decision

variables such as the number of thredgroups and the number of threads in

each threadgroup. Using two highly optimized scientific routines,

matrix-matrix multiplication and 2D fast Fourier transform, it was

demonstrated that the methods successfully optimize these objectives on

both single-socket and dual-socket multicore CPUs.

103

3.4. CONCLUSION

3.4 Conclusion

This chapter overviewed the challenges posed by complexities such as

thread contention for shared resources and NUMA in modern multicore CPUs

to performance and energy optimization of data-parallel applications on such

platforms. The influence of three-dimensional decision variable space on

single-objective optimization of applications for performance and energy on

multicore CPUs was studied. The three decision variables are: a). The

number of identical multithreaded kernels (threadgroups) involved in the

parallel execution of an application; b). The number of threads in each

threadgroup; and c). The workload distribution between the threadgroups. At

first, the methods for performance optimization which use only workload

distribution as a decision variable were proposed. The methods employ

model-based parallel computing technique using load-imbalancing data

partitioning. Using the matrix-matrix multiplication and 2D fast Fourier

transform, it was demonstrated that using workload distribution as a decision

variable allow us to improve performance against the best base

implementation. However, because of the complexity of energy measurement

on modern multicore CPUs, these methods are not applicable to energy

optimization. The chapter also proposed new methods for single-objective

optimization for performance and energy on modern multicore CPUs using

two application-level decision variables, the number of threadgroups and the

number of threads per threadgroup. Using the same applications,

matrix-matrix multiplication and 2D-FFT and four modern multicore servers

(S1,S2,S3,S4), the experimental results demonstrated that these methods

successfully optimize both performance and energy on both single-socket

and dual-socket multicore CPUs. In future work, the author is looking to

merge all these three decision variables into the one method.

104

Chapter 4

Bi-objective Optimization for

Performance and Energy on

Modern Multicore CPUs

Energy proportionality is the key design goal pursued by architects of modern

multicore CPU platforms [28]. One of its implications is that optimization of an

application for performance will also optimize it for energy. Modern multicore

CPUs however have many inherent complexities, which are: a) Severe

resource contention due to tight integration of tens of cores organized in

multiple sockets with multi-level cache hierarchy and contending for shared

on-chip resources such as last level lache (LLC), interconnect (For example:

Intel’s Quick Path Interconnect, AMD’s Hyper Transport), and DRAM

controllers; b) Non-uniform memory access (NUMA) where the time for

memory access between a core and main memory is not uniform and where

main memory is distributed between locality domains or groups called NUMA

nodes; and c) Dynamic power management (DPM) of multiple power

domains (CPU sockets, DRAM). This chapter shows that due to these

complexities, energy proportionality does not hold true for multicore CPUs.

This finding creates the opportunity for bi-objective optimization of

applications for performance and energy.

Next, we review notable state-of-the-art methods solving the bi-objective

105

optimization problem of an application for performance and energy on

multicore CPU platforms. System-level methods are introduced first since

they dominated the landscape. This will be followed by recent research in

application-level methods. Then we describe the proposed solution method

solving the bi-objective optimization problem of an application for

performance and energy on a single multicore CPU.

Solution methods solving the bi-objective optimization problem for

performance and energy can be broadly classified into system-level and

application-level categories. System-level methods aim to optimize

performance and energy of the environment where the applications are

executed. The methods employ application-agnostic models and hardware

parameters as decision variables. They are principally deployed at operating

system (OS) level and therefore require changes to the OS. They do not

involve any changes to the application. The methods can be further divided

into the following prominent groups:

1. Thread schedulers that are contention-aware and that exploit

cooperative data sharing between threads [166], [167]. The goal of a

scheduler is to find thread-to-core mappings to determine

Pareto-optimal solutions for performance and energy. The schedulers

operate at both user-level and OS-level with those at OS-level requiring

changes to the OS. Thread-to-core mapping is the key decision

variable. Performance monitoring counters such as LLC miss rate and

LLC access rate are used for predicting the performance given a

thread-to-core mapping.

2. Dynamic private cache (L1 and L2) reconfiguration and shared cache

(L3) partitioning strategies [168], [169]. The proposed solutions in this

category mitigate contention for shared on-chip resources such as last

level cache by physically partitioning it and therefore require substantial

changes to the hardware or OS [170].

3. Thermal management algorithms that place or migrate threads to not

only alleviate thermal hotspots and temperature variations in a chip but

106

also reduce energy consumption during an application execution [171],

[172]. Some key strategies are dynamic power management (DPM)

where idle cores are switched off, Dynamic Voltage and Frequency

Scaling (DVFS), which throttles the frequencies of the cores based on

their utilization, sand migration of threads from hot cores to the colder

cores.

4. Asymmetry-aware schedulers that exploit the asymmetry between sets

of cores in a multicore platform to find thread-to-core mappings that

provide Pareto-optimal solutions for performance and energy [173],

[174]. Asymmetry can be explicit with fast and slow cores or implicit due

to non-uniform frequency scaling between different cores or

performance differences introduced by manufacturing variations. The

key decision variables employed here are thread-to-core mapping and

DVFS. Typical strategy is to map the most power-intensive threads to

less power-hungry cores and then apply DVFS to the cores to ensure

all threads complete at the same time whilst satisfying a power budget

constraint.

In the second category, solution methods optimize applications rather

than the executing environment. The methods use application-level decision

variables and predictive models for performance and energy consumption of

applications to solve the bi-objective optimization problem. The dominant

decision variables include the number of threads, loop tile size, workload

distribution, etc. Following the principle of energy proportionality, a dominant

class of such solution methods aim to achieve optimal energy reduction by

optimizing for performance alone. Definitive examples are scientific routines

offered by vendor-specific software packages that are extensively optimized

for performance. For example, Intel Math Kernel Library [175] provides

extensively optimized multithreaded basic linear algebra subprograms

(BLAS) and 1D, 2D, and 3D fast Fourier transform (FFT) routines for Intel

processors. Open source packages such as [31], [32], [176] offer the same

interface functions but contain portable optimizations and may exhibit better

average performance than a heavily optimized vendor package [33], [34]. The

107

optimized routines in these software packages allow employment of one key

decision variable, which is the number of threads. A given workload is

load-balanced between the threads. In this work, we show that the optimal

number of threads (and consequently load-balanced workload distribution)

maximizing the performance does not necessarily minimize the energy

consumption of multicore CPUs.

State-of-the-art research works on application-level optimization methods

[26], [27], [35] demonstrate that due to the aforementioned design

complexities of modern multicore CPU platforms, the functional relationships

between performance and workload size and between dynamic energy and

workload size for real-life data-parallel applications have complex (non-linear)

properties and show that workload distribution has become an important

decision variable that can no longer be ignored. Briefly, the total energy

consumption during an application execution is the sum of dynamic and static

energy consumptions. Static energy consumption is defined as the energy

consumed by the platform without the application execution. Dynamic energy

consumption is calculated by subtracting this static energy consumption from

the total energy consumed by the platform during the application execution.

The works [26], [27], [35] propose model-based data partitioning methods

that take as input discrete performance and dynamic energy functions with no

shape assumptions, which accurately and realistically account for resource

contention and NUMA inherent in modern multicore CPU platforms. Using a

simulation of the execution of a data-parallel matrix multiplication application

based on OpenBLAS DGEMM on a homogeneous cluster of multicore CPUs,

it is shown [26] that optimizing for performance alone results in average and

maximum dynamic energy reductions of 24% and 68%, but optimizing for

dynamic energy alone results in performance degradations of 95% and

100%. For a 2D fast Fourier transform application based on FFTW, the

average and maximum dynamic energy reductions are 29% and 55% and the

average and maximum performance degradations are both 100%. Research

work [35] proposes a solution method to solve bi-objective optimization

problem of an application for performance and energy on homogeneous

clusters of modern multicore CPUs. This method is shown to determine a

108

diverse set of globally Pareto-optimal solutions whereas existing solution

methods give only one solution when the problem size and number of

processors are fixed. The methods [26], [27], [35] target homogeneous high

performance computing (HPC) platforms. Khaleghzadeh et al. [36] propose a

solution method solving the bi-objective optimization problem on

heterogeneous processors. The authors prove that for an arbitrary number of

processors with linear execution time and dynamic energy functions, the

globally Pareto-optimal front is linear and contains an infinite number of

solutions out of which one solution is load balanced while the rest are load

imbalanced. A data partitioning algorithm is presented that takes as an input

discrete performance and dynamic energy functions with no shape

assumptions.

The research works [26], [27], [35], [36] are theoretical demonstrating

performance and energy improvements based on simulations of clusters of

homogeneous and heterogeneous nodes. Khokhriakov et al. [34] present two

novel optimization methods to improve the average performance of the FFT

routines on modern multicore CPUs. The methods employ workload

distribution as the decision variable and are based on parallel computing

employing threadgroups. They utilize load imbalancing data partitioning

technique that determines optimal workload distributions between the

threadgroups, which may not load-balance the application in terms of

execution time. The inputs to the methods are discrete functions of

performance against problem size of the threadgroups, and can be employed

as nodal optimization techniques to construct a 2D FFT routine highly

optimized for a dedicated target multicore CPU. The authors employ the

methods to demonstrate significant performance improvements over the

basic FFTW and IMKL FFT 2D routines on a modern Intel Haswell multicore

CPU consisting of thirty-six physical cores.

The findings in [26], [27], [34]–[36] motivate the author of this thesis to

study the influence of three-dimensional decision variable space on

bi-objective optimization of applications for performance and energy on

multicore CPUs. The three decision variables are: a). The number of identical

multithreaded kernels (threadgroups) involved in the parallel execution of an

109

4.1. MULTI-OBJECTIVE OPTIMIZATION: BACKGROUND

application; b). The number of threads in each threadgroup; and c). The

workload distribution between the threadgroups. The author focuses

exclusively on the first two decision variables in this work. The number of

possible workload distributions increases exponentially with increasing

number of threadgroups employed in the execution of a data-parallel

application and it would require employment of threadgroup-specific

performance and energy models to reduce the complexity. It is a subject of

our future work.

This chapter proposes and studies the first application-level method for

bi-objective optimization of multithreaded data-parallel applications on a

single multicore CPU for performance and energy. The method uses two

decision variables, the number of identical multithreaded kernels

(threadgroups) executing the application in parallel and the number of threads

in each threadgroup. The workload distribution is not a decision variable. It is

fixed so that a given workload is always partitioned equally between the

threadgroups. The method allows full reuse of highly optimized scientific

codes and does not require any changes to hardware or OS. As its first step,

the method includes writing a data-parallel version of the base kernel that can

be executed using a variable number of parallel threadgroups and solving the

same problem as the base kernel which employs one threadgroup.

The following section reviews background of multi-objective optimization.

Then, the first novel method, BOPPETG, for bi-objective optimization for

performance and energy on a single multicore CPU is proposed.

4.1 Multi-Objective Optimization: Background

A multi-objective optimization (MOP) problem may be defined as follows

[177],[178]:

minimize {F(x) = (f1(x), ..., fk(x))}

Subject to x ∈ S

110

4.1. MULTI-OBJECTIVE OPTIMIZATION: BACKGROUND

where there are k(≥ 2) objective functions fi : Rp → R. The objective is to

minimize all the objective functions simultaneously.

F(x) = (f1(x), ..., fk(x))T denotes the vector of objective functions. The

decision (variable) vectors x = (x1, ..., xp) belong to the (non-empty) feasible

region (set) S, which is a subset of the decision variable space Rp. We call the

image of the feasible region represented by Z (= f(S)), the feasible objective

region. It is a subset of the objective space Rk. The elements of Z are called

objective (function) vectors or criterion vectors and denoted by F(x) or z =

(z1, ..., zk)T , where zi = fi(x),∀i ∈ [1, k] are objective (function) values or

criterion values.

If there is no conflict between the objective functions, then a solution x∗

can be found where every objective function attains its optimum [178].

∀x ∈ S, fi(x∗) ≤ fi(x), i = 1, ..., k

However, in real-life multi-objective optimization problems, the objective

functions are at least partly conflicting. Because of this conflicting nature of

objective functions, it is not possible to find a single solution that would be

optimal for all the objectives simultaneously. In multi-objective optimization,

there is no natural ordering in the objective space because it is only partially

ordered. Therefore we must treat the concept of optimality differently from

single-objective optimization problem. The generally used concept is

Pareto-optimality.

Definition 1. A decision vector x∗ ∈ S is Pareto-optimal if there does not

exist another decision vector x ∈ S such that fi(x) ≤ fi(x
∗),∀i = 1, ..., k and

fj(x) < fj(x
∗) for at least one index j [177].

An objective vector z∗ ∈ Z is Pareto-optimal if there does not exist another

objective vector z ∈ Z such that zi ≤ z∗i ,∀i = 1, ..., k and zj < z∗j for at least

one index j.

Definition 2. A decision vector x∗ ∈ S is weakly Pareto-optimal if there does

not exist another decision vector x ∈ S such that fi(x) < fi(x
∗),∀i = 1, ..., k

[177].

111

4.2. INTRODUCTION IN BOPPETG

Figure 4.1: An example showing the set S of decision variable vectors, the
set Z of objective vectors, and Pareto-optimal objective vectors shown by bold
line. S ⊂ R3,Z ⊂ R2.

An objective vector z∗ ∈ Z is Pareto-optimal if there does not exist any

other vector for which all the component objective vector values are better.

Mathematically speaking, every Pareto-optimal point is an equally

acceptable solution of the multi-objective optimization problem. Therefore,

user preference relations (or preferences of decision maker) are provided as

input to the solution process to select one or more points from the set of

Pareto-optimal solutions [177].

In figure 4.1, a feasible region S ⊂ R3 and its image, a feasible objective

region Z ⊂ R2, are shown. The thick blue line in the figure showing the

objective space contains all the Pareto-optimal objective vectors. The vector

z∗ is one of them.

This thesis considers bi-objective optimization where performance and

dynamic energy are the objectives.

4.2 Introduction in BOPPETG

This section describes solution method, BOPPETG, for solving the

bi-objective optimization problem of a multithreaded data-parallel application

on multicore CPUs for performance and energy (BOPPE). The method uses

two decision variables, the number of identical multithreaded kernels

(threadgroups) and the number of threads in each threadgroup. A given

workload is always partitioned equally between the threadgroups.

112

4.2. INTRODUCTION IN BOPPETG

The bi-objective optimization problem (BOPPE) can be formulated as

follows: Given a multithreaded data-parallel application of workload size n

and a multicore CPU of l cores, the problem is to find a globally

Pareto-optimal front of solutions optimizing execution time and dynamic

energy consumption during the parallel execution of the workload. Each

solution is an application configuration given by (threadgroups, threads per

group).

The inputs to the solution method are the workload size of the

multi-threaded data-parallel application, n; the number of cores in the

multicore CPU, l; the multithreaded base kernel, mtkernel; the base power of

the multicore CPU platform, Pb. The outputs are the globally Pareto-optimal

front of objective solutions, Popt, and the optimal application configurations

corresponding to these solutions, Copt. Each Pareto-optimal solution of

objectives o is represented by the pair, (so, eo), where so is the execution time

and eo is the dynamic energy. Associated with this solution is an array of

application configurations, A(go, to), containing decision variable pairs,

(go, to), where go represents the number of threadgroups each containing to

threads.

The main steps of BOPPETG are as follows:

Step 1. Parallel implementation configurable using (g,t): Design and

implement a parallel version of the base kernel mtkernel and that can be

executed using g identical multithreaded kernels in parallel. Each kernel is

executed by a threadgroup containing t threads. The application should

essentially allow its runtime configuration using number of threadgroups and

number of threads per group with the workload equally partitioned between

the threadgroups.

Step 2. Initialize g and t: All the application configurations, (g,t), where

the product, g × t, is less than or equal to the total number of cores (l) in the

multicore platform are considered. g ← 1, t← 1. Go to Step 3.

Step 3. Determine time and dynamic energy of the (g,t) configuration

of the application: The data-parallel application composed in Step 1 is run

using the (g,t) configuration where the workload n is divided equally between

the g threadgroups during the execution of the application. The execution time

113

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

and dynamic energy consumption of the application are determined as follows:

so = tf − ti, eo = ef − Pb × so, where ti and tf are the starting and ending

execution times and ef is the total energy consumption during the execution of

the application. Go to Step 4.

Step 4. Update Pareto-optimal front for (g,t): The solution (so, eo) if

Pareto-optimal is added to the globally Pareto-optimal set of objective

solutions, {Popt}, and existing member solutions of the set that are inferior to

it are removed. The optimal application configurations corresponding to the

solution (so, eo) are stored in Copt. Go to Step 5.

Step 5. Test and Increment (g,t): If t < l, t ← t + 1, go to Step 3. Set

g ← g + 1, t ← 1. If g × t ≤ l, go to Step 3. Else return the globally Pareto-

optimal front and optimal application configurations given by {Popt, Copt} and

quit.

4.3 Experimental Results and Discussion

This section presents the experimental results for matrix-matrix multiplication

(PMMTG) and 2D fast Fourier transform (PFFTTG) employing proposed

solution method.

To make sure the experimental results are reliable, a statistical

methodology described in Appendix B is used. Briefly, for every data point in

the functions, the automation software executes the application repeatedly

until the sample mean lies in the 95% confidence interval and a precision of

0.025 (2.5%) has been achieved. For this purpose, Student’s t-test is used

assuming that the individual observations are independent and their

population follows the normal distribution. The speed/performance/energy

values shown in the graphical plots are the sample means.

Four multicore CPUs shown in the Table 4.1 are used for the experiments.

Three platforms (HCLServer1, HCLServer2, HCLServer4) have a power

meter installed between their input power sockets and the wall A/C outlets.

HCLServer1 and HCLServer2 are connected with a Watts Up Pro power

meter; HCLServer4 is connected with a Yokogawa WT310 power meter. The

power meter captures the total power consumption of the server. It has data

114

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

Table 4.1: Specifications of the Intel multicore CPUs, HCLServer01-04, ordered by
increasing number of sockets and an increasing number of cores per socket.

Technical Specifications HCLServer1 (S1) HCLServer2 (S2) HCLServer3 (S3) HCLServer4 (S4)
Processor Intel Xeon Gold 6152 Intel Haswell E5-2670V3 Intel Xeon CPU E5-2699 Intel Xeon Platinum 8180
Core(s) per socket 22 12 18 28
Socket(s) 1 2 2 2
L1d cache, L1i cache 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB 256 KB, 30976 KB 256 KB, 46080 KB 1024 KB, 39424 KB
Total main memory 96 GB 64 GB 256 GB 187 GB
Power meter WattsUp Pro WattsUp Pro - Yokogawa WT310

cable connected to one USB port of the server. A script written in Perl

collects the data from the power meter using the serial USB interface. The

execution of the script is non-intrusive and consumes insignificant power.

Watts Up Pro power meters are periodically calibrated using the ANSI C12.20

revenue-grade power meter, Yokogawa WT310. The maximum sampling

speed of Watts Up Pro power meters is one sample every second. The

accuracy specified in the data-sheets is ±3%. The minimum measurable

power is 0.5 watts. The accuracy at 0.5 watts is ±0.3 watts. The accuracy of

Yokogawa WT310 is 0.1% and the sampling rate is 100k samples per second.

HCLWattsUp API [165] id used to gather the readings from the power

meter to determine the dynamic energy consumption during the execution of

PMMTG and PFFTTG applications. HCLWattsUp has no extra overhead and

therefore does not influence the energy consumption of the application

execution.

Fans are significant contributors to energy consumption. The fans are

controlled in two zones: a) zone 0: CPU or System fans, b) zone 1:

Peripheral zone fans. There are 4 levels to control the speed of fans:

• Standard : BMC control of both fan zones, with CPU zone based on

CPU temp (target speed 50%) and Peripheral zone based on PCH temp

(target speed 50%)

• Optimal : BMC control of the CPU zone (target speed 30%), with

Peripheral zone fixed at low speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed 50%), Peripheral

zone fixed at 75%

115

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

• Full : all fans running at 100%

To rule out the contribution of fans in dynamic energy consumption, we

set the fans at full speed before executing the applications. When set at full

speed, the fans run constantly at ∼13400 rpm until they are set to a different

speed level. In this way, energy consumption due to fans is included only in

the static power consumption of the platform. The temperature of the platform

and speeds of the fans (with Full setting) are monitored with the help of

Intelligent Platform Management Interface (IPMI) sensors, both with and

without the application run. An insignificant difference in the speeds of fans is

found in both scenarios.

Single Socket Multicore CPU

Figure 4.2a shows the globally Pareto-optimal front for PMMTG employing

IMKL DGEMM on HCLServer1 for workload size 32768. Optimizing for

dynamic energy consumption alone degrades performance by 27%, and

optimizing for performance alone increases dynamic energy consumption by

30%. The average and maximum sizes of the Pareto-optimal fronts for IMKL

DGEMM on S1 are (2.3,3).

Figure 4.2b shows the globally Pareto-optimal front for PFFTTG based on

IMKL FFT on HCLServer1 for workload size 31744. There are 2 globally

Pareto-optimal solutions. Optimizing for dynamic energy consumption alone

degrades performance by around 31%, and optimizing for performance alone

increases dynamic energy consumption by 87%. We find the average and

maximum sizes of the Pareto-optimal fronts for IMKL DGEMM on S1 are

(2.6,3).

No bi-objective trade-offs were observed for FFTW and OpenBLAS

applications. Two lines of this research will be investigated in future work.

One is the influence of workload distribution; The other is the absence of

bi-objective trade-offs for open-source packages such as FFTW and

OpenBLAS using a dynamic energy predictive model.

116

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

Dual-socket Multicore CPU

Figures 4.3a shows the globally Pareto-optimal fronts for PFFTTG FFTW on

HCLServer4 for workload size m = n = 30464. The maximum number of

globally Pareto-optimal solutions is 11. The optimization for dynamic energy

consumption alone degrades performance by 49%, and optimizing for

performance alone increases dynamic energy consumption by 35%.

Figure 4.3b shows the globally Pareto-optimal front for PFFTTG

(a)

(b)

Figure 4.2: (a). Pareto frontier of IMKL DGEMM PMMTG application on
HCLServer1 (S1) for workload size N = 32768. (b). Pareto frontier of IMKL
FFT PFFTTG application on HCLServer1 (S1) for workload size N = 31744.

117

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

(a)

(b)

Figure 4.3: (a). Pareto frontier of FFTW PFFTTG application on HCLServer4
(S4) for workload size m = n = 30464. (b). Pareto frontier of PFFTTG
application based on IMKL FFT on HCLServer4 (S4) for workload size m =
n = 22208.

employing IMKL FFT on HCLServer2 for workload size 22208. Optimizing for

dynamic energy consumption alone degrades performance by 33%, and

optimizing for performance alone increases dynamic energy consumption by

10%. The average and maximum sizes of the Pareto-optimal fronts for FFTW

and IMKL FFT on dual-socket CPUs are (3,11) and (2.7,3) respectively.

Figure 4.4a shows the globally Pareto-optimal front for PMMTG employing

IMKL DGEMM on HCLServer2 for workload size 17408. Optimizing for

118

4.3. EXPERIMENTAL RESULTS AND DISCUSSION

(a)

(b)

Figure 4.4: (a). Pareto frontier of IMKL DGEMM PMMTG application on
HCLServer2 (S2) for workload size m = n = 17408. (b). Pareto frontier of
PMMTG application employing OpenBLAS DGEMM on HCLServer2 (S2) for
workload size m = n = 17408.

dynamic energy consumption alone degrades performance by 5.5%, and

optimizing for performance alone increases dynamic energy consumption by

50.7%. The average and maximum sizes of the Pareto-optimal fronts for

IMKL DGEMM on S2 are (1.8,4).

Figure 4.4b shows the globally Pareto-optimal front for PMMTG based on

OpenBLAS DGEMM on HCLServer2 for workload size 17408. There are 6

globally Pareto-optimal solutions. Optimizing for dynamic energy consumption

119

4.4. ANALYSIS USING PERFORMANCE AND DYNAMIC ENERGY
MODELS

alone degrades performance by around 5%, and optimizing for performance

alone increases dynamic energy consumption by 20%. We find the average

and maximum sizes of the Pareto-optimal fronts for OpenBLAS DGEMM on

S2 to be 2.4 and 5 respectively.

4.4 Analysis Using Performance and Dynamic

Energy Models

This section proposes dynamic energy model employing performance

monitoring counters (PMCs) as predictor variables. This model along with the

performance model employing execution time of the application is used to

analyze the Pareto-optimal front determined by proposed solution method on

multicore CPU platforms.

PMCs are special-purpose registers provided in modern microprocessors

to store the counts of software and hardware activities. We will use the

acronym PMCs to refer to software events, which are pure kernel-level

counters such as page-faults, context-switches, etc. as well as

micro-architectural events originating from the processor and its performance

monitoring unit called the hardware events such as cache-misses,

branch-instructions, etc. Software energy predictive models based on PMCs

is one of the leading methods of measurement of energy consumption of an

application.

The experimental platform, HCLServer02 (S2), and the application

OpenBLAS-DGEMM are used for the analysis. Likwid tool [179] is used to

obtain the PMCs. It offers 164 PMCs divided into 28 groups (L2CACHE,

L3CACHE, NUMA, etc.) on this platform. The list of the groups is provided in

the supplemental. All PMCs are collected for each workload size executed

using different application configurations, (#threadgroups (g),

#threads_per_group (t)). Each PMC value is the average for all the 24

physical cores. The data is analyzed to identify the major performance

groups, which are highly correlated with the dynamic energy consumption. It

is found that the highest correlation with dynamic energy consumption

120

4.4. ANALYSIS USING PERFORMANCE AND DYNAMIC ENERGY
MODELS

Table 4.2: L1 dTLB PMC data for size 16384

Comb.(g, t) DEnergy (J) Time (sec) L1 dTLB load (Cyc) L1 dTLB store (Cyc)
(1,48) 824.2743 14.112 108.373 124.326
(4,12) 740.0211 14.177 113.515 105.363
(8,6) 729.1005 14.244 104.564 89.3753
(2,24) 802.6687 14.314 105.328 82.5185
(16,3) 750.6159 14.615 100.924 90.2733
(3,16) 631.3098 14.772 97.9180 76.1889
(6,8) 667.4856 14.818 96.8957 58.0210
(12,4) 528.0411 15.057 97.0492 52.8966
(24,2) 1352.141 15.875 100.106 82.7514
(48,1) 1719.012 18.685 111.902 85.9282

Table 4.3: L1 dTLB PMC data for size 17408

Comb.(g, t) DEnergy (J) Time (sec) L1 dTLB load (Cyc) L1 dTLB store (Cyc)
(4,12) 1320.0702 16.2478 105.961 122.191
(1,48) 1271.5506 16.3034 99.5398 63.7090
(8,6) 1266.3294 16.3166 95.7896 58.9096
(2,24) 1287.6882 16.4498 98.2180 74.6859
(16,3) 1250.5616 16.6824 95.2988 58.3551
(6,8) 1130.2412 16.9668 93.4336 47.9097
(3,16) 1052.0283 17.0187 90.5275 45.7483
(24,2) 1824.5795 18.0755 106.804 55.5686
(12,4) 1795.7680 20.5520 93.6595 46.5541
(48,1) 2164.1212 20.9868 96.6999 71.4943

between different combinations (g, t) is contained in the data provided by

TLB_DATA performance group. This group provides data activity, such as

load miss rate, store miss rate and walk page duration, in L1 data translation

lookaside buffer (dTLB), a small specialized cache of recent page address

translations. If a dTLB miss occurs, a system goes through the page table

and retrieve the corresponding page table record from memory. This process

named page walk and the duration of this walk has the highest correlation

with dynamic energy consumption, based on our experiments.

Non-negative multivariate regression is employed to construct our model

of dynamic energy consumption based on the PMC data from dTLB:

Edynamic = β0 + β1 × T + β2 × L+ β3 × S (4.1)

where β0 is the intercept, β1 is the average CPU utilization, β2 and β3 are the

regression coefficients for the PMC data. T is the execution time of the

application, L is the time of page walk caused by load miss and S is the time

of page walk caused by store miss in dTLB. The coefficients of the model

121

4.4. ANALYSIS USING PERFORMANCE AND DYNAMIC ENERGY
MODELS

(a)

(b)

Figure 4.5: (a). Measured (left) and predicted (right) dynamic energy
consumption of OpenBLAS DGEMM on HCLServer2 (S2) for workload size
m = n = 16384. (b). Measured (left) and predicted (right) dynamic energy
consumption of OpenBLAS DGEMM on HCLServer2 (S2) for workload size
m = n = 17408.

({β1, β2, β3}) are forced to be non-negative to avoid situations where large

values for them can give rise to negative dynamic energy consumption

prediction violating the fundamental energy conservation law of computing.

To test this model, two workload sizes 16384 and 17408 are used. The

PMC data for these sizes used to train the model is shown in the tables 4.2

and 4.3 respectively. The rows of the tables are sorted in increasing order

of time. The blue colour in the tables shows the rows that are in the Pareto-

optimal front. The time of page walk (columns 4 and 5) is measured in cycles.

As can be seen from the tables, the dynamic energy decreases as the number

122

4.5. CONCLUSION

of cycles decreases. There is however a trade-off between the execution time

of application and the page walk time. If the execution time is too long, the

small number of cycles anyway leads to high dynamic energy consumption.

There are two dynamic energy models constructed for workload sizes

16384 (Table 4.2) and 17408 (Table 4.3). The coefficients for the workload

size 16384 are {β0 = −3125.608, β1 = 260.268, β2 = 5.618, β3 = 7.796}. The

coefficients for 17408 are

{β0 = −4988.649, β1 = 190.390, β2 = 32.177, β3 = 0.908}. Then model

predicts the dynamic energy consumption and this predicted energy is

compared with the dynamic energy measured using HCLWattsUp [165]. The

figures 4.5a and 4.5b illustrate the comparision. The x axis represents the

number of a row in tables 4.2, 4.3. It can be seen that the predicted dynamic

energy demonstrates the same trend as the measured dynamic energy.

TLB activity has been the focus of research in [180]–[182] where the

authors state that the address translation using the TLB consumes as much

as 16% of the chip power on some processors. The authors propose different

strategies to improve the reuse of TLB caches. In this work, the proposed

solution method employing threadgroups (or grouping using multithreaded

kernels) allows to fill the page table more evenly and reduce the duration of

page walk along with dynamic energy consumption.

4.5 Conclusion

This chapter studied bi-objective optimization for performance and energy on

multicore CPUs. The first application-level optimization method for

bi-objective optimization of multithreaded data-parallel applications for

performance and energy on a single multicore CPU was proposed. The

method uses two decision variables, the number of identical multithreaded

kernels (threadgroups) and the number of threads in each threadgroup. A

given workload is partitioned equally between the threadgroups.

The method was demonstrated using four highly optimized multithreaded

data-parallel applications, 2D fast Fourier transform based on FFTW and Intel

MKL, and dense matrix-matrix multiplication written using Openblas DGEMM

123

4.5. CONCLUSION

and Intel MKL, on four modern multicore CPUs one of which is a single

socket multicore CPU and the other three dual-socket with increasing number

of physical cores per socket. The experimental results demonstrated in

particular that optimizing for performance alone results in significant increase

in dynamic energy consumption whereas optimizing for dynamic energy

alone results in considerable performance degradation and that the method

determined a good number of globally Pareto-optimal solutions.

Finally, a predictive dynamic energy model was proposed to explain the

Pareto-optimal solutions determined by our bi-objective optimization solution

method proposed in this chapter.

124

Chapter 5

Conclusion

Modern multicore CPUs have several inherent complexities, which are: a)

Severe resource contention due to tight integration of tens of cores organized

in multiple sockets with multi-level cache hierarchy and contending for shared

on-chip resources such as last level lache (LLC), interconnect (For example:

Intel’s Quick Path Interconnect, AMD’s Hyper Transport), and DRAM

controllers; b) Non-uniform memory access (NUMA) where the time for

memory access between a core and main memory is not uniform and where

main memory is distributed between locality domains or groups called NUMA

nodes; and c) Dynamic power management (DPM) of multiple power

domains (CPU sockets, DRAM). These complexities pose serious challenges

to single-objective optimization methods for performance and energy and

bi-objective optimization methods for performance and energy due to the

highly variational performance and energy profiles of data-parallel

applications. They also provide the opportunity for bi-objective optimization of

applications for performance and energy. The fundamentals of the dominant

methods and algorithms currently used for performance and energy

optimization were developed in the time when single-core CPUs dominated

the computing landscape and cannot be applied to the modern profiles as

they are extremely distinguished from these in a single-core era.

This thesis studied the influence of three-dimensional decision variable

space on single-objective optimization as well as on bi-objective optimization

125

of data-parallel applications for performance and energy on modern multicore

CPUs. The three decision variables are: a). The number of identical

multithreaded kernels (threadgroups) involved in the parallel execution of an

application; b). The number of threads in each threadgroup; and c). The

workload distribution between the threadgroups. Using the highly optimized

multithreaded data-parallel applications, 2D fast Fourier transform based on

FFTW and IMKL, and dense matrix-matrix multiplication written using

Openblas DGEMM and IMKL, on four modern multicore CPUs one of which

is a single-socket multicore CPU and the other three dual-socket with an

increasing number of physical cores per socket, the importance of these

variables along with significant improvements by proposed solution methods

for single- and bi-objective optimizations for performance and energy

employing these variables were demonstrated.

Chapter 3 presented the methods for performance optimization only,

using the workload distribution as a decision variable. Based on the

experiments it was demonstrated that the solution optimizing for performance

is a load imbalancing solution where the workload distribution between the

processors is not load balanced in terms of execution time. Then, the

methods for optimization of both performance and energy using two decision

variables, the number of threadgroups and the number of threads in each

threadgroup were proposed. The workload is always distributed equally

between the threadgroups. The efficacy of the methods was demonstrated on

both single-socket CPU as well as on dual-socket CPUs.

Chapter 4 studied bi-objective optimization for performance and energy

using the same two decision variables, the number of threadgroups and the

number of threads in each threadgroup on a single multicore CPU. Based on

the experiments, it was illustrated that solution method provided good

bi-objective trade-offs for performance and energy (Pareto-optimal solutions)

on both single- and dual-socket CPUs. Furthermore, a predictive dynamic

energy model employing performance monitoring counters (PMCs) as

predictor variables was designed. It was used for the explanation of

Pareto-optimal solutions determined by our solution method. The model

employs PMCs from L1 dTLB, such as load and store miss duration, due to a

126

5.1. FUTURE WORK

strong positive correlation between dynamic energy and these PMCs.

5.1 Future Work

The following future research directions are outlined:

• In the thesis author studied the influence of three-dimensional decision

variable space on bi-objective optimization of applications for

performance and energy on multicore CPUs. The three decision

variables are: a). The number of identical multithreaded kernels

(threadgroups) involved in the parallel execution of an application; b).

The number of threads in each threadgroup; and c). The workload

distribution between the threadgroups. Author proposed solution

methods for optimization of multi-threaded data-parallel applications for

performance using uneven workload distribution but where the number

of threadgroups and number of threads per group are fixed. Author

specifically studied load-imbalanced workload distribution for two and

four threadgroups. Next, author proposed and studied the first

application-level method for bi-objective optimization of multithreaded

data-parallel applications for performance and energy. The method

uses two decision variables, the number of identical multithreaded

kernels (threadgroups) executing the application and the number of

threads in each threadgroup, so that a given workload is partitioned

equally between the threadgroups. A future line of research is a

thorough exploration of the three-dimensional decision variable space

where all the decision variables are varied. The number of possible

workload distributions increases exponentially with increasing number

of threadgroups employed in the execution of a data-parallel application

and it would require employment of threadgroup-specific performance

and energy models to reduce the complexity.

• By comparing and visualizing the patterns of the interplays between

execution time and dynamic energy for different runtime configurations

(number of threadgroups, number of threads per group, workload size),

127

5.1. FUTURE WORK

a practical optimization guide for energy proportionality and bi-objective

optimization on multicore CPUs will be explored that will serve as a

suitable alternative to roofline models for performance and energy.

• The cost of building the five dimensional discrete graph with

performance and dynamic energy as two objectives and the three

decision variables can be quite expensive and prohibitive for

employment in dynamic schedulers and self-adaptable data-parallel

applications. Heuristic approaches to reduce the cost can be explored.

• This thesis proposed a predictive dynamic energy model employing

performance monitoring counters (PMCs) as predictor variables, which

is used to explain the Pareto-optimal solutions determined by designed

method. The model can be made more comprehensive by studying

thoroughly the influence of the three dimensional decision variable

space on single-socket and dual-socket CPUs for all the four

data-parallel applications.

• Extending the proposed solution methods to performance and energy

optimization of applications especially in the current popular fields of

artificial intelligence including deep learning, and data analytics.

128

Bibliography

[1] Intel Corporation, Top500 list, July, 2019. [Online]. Available: https:

//www.top500.org/lists/2019/06/ (cit. on p. 1).

[2] Scientific interest group (GIS), Grid5000:home, 2019. [Online].

Available: https://www.grid5000.fr/w/Grid5000:Home (cit. on

p. 1).

[3] G. E. Moore, “Gramming more components onto integrated circuits,”

Electronics, vol. 38, p. 8, 1965 (cit. on p. 1).

[4] Dennard, Dennard scaling, 1974. [Online]. Available: https://en.

wikipedia.org/wiki/Dennard_scaling (cit. on p. 1).

[5] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to

multi-core: Preparing for a new exponential,” in Proceedings of the

2006 IEEE/ACM international conference on Computer-aided design,

ACM, 2006, pp. 67–72 (cit. on p. 2).

[6] QPI. (2008). Intel quickpath interconnect, [Online]. Available: https:

//en.wikipedia.org/wiki/Intel_QuickPath_Interconnect (cit.

on p. 2).

[7] AMDHT. (2001). Hypertransport, [Online]. Available: https : / / en .

wikipedia.org/wiki/HyperTransport (cit. on p. 2).

[8] A. L. Lastovetsky and R. Reddy, “Data partitioning with a realistic

performance model of networks of heterogeneous computers,” in

Parallel and Distributed Processing Symposium, 2004. Proceedings.

18th International, IEEE, 2004, p. 104 (cit. on pp. 6, 26).

129

https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://www.grid5000.fr/w/Grid5000:Home
https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/Intel_QuickPath_Interconnect
https://en.wikipedia.org/wiki/HyperTransport
https://en.wikipedia.org/wiki/HyperTransport

BIBLIOGRAPHY

[9] A. Lastovetsky and R. Reddy, “Data partitioning with a functional

performance model of heterogeneous processors,” International

Journal of High Performance Computing Applications, vol. 21, no. 1,

pp. 76–90, 2007 (cit. on pp. 6, 21, 25, 26).

[10] A. Lastovetsky and J. Twamley, “Towards a realistic performance

model for networks of heterogeneous computers,” in High

Performance Computational Science and Engineering, Springer,

2005, pp. 39–57 (cit. on p. 6).

[11] A. Lastovetsky and R. Reddy, “Data partitioning with a functional

performance model of heterogeneous processors,” The International

Journal of High Performance Computing Applications, vol. 21, no. 1,

pp. 76–90, 2007 (cit. on p. 6).

[12] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, “An efficient,

model-based CPU-GPU heterogeneous FFT library,” in Parallel and

Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, IEEE, 2008, pp. 1–10 (cit. on pp. 6, 21, 25).

[13] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: A

programming model for heterogeneous multi-core systems,” in ACM

SIGOPS operating systems review, ACM, vol. 42, 2008, pp. 287–296

(cit. on pp. 6, 21, 25).

[14] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and

R. A. Van de Geijn, “Solving dense linear systems on platforms with

multiple hardware accelerators,” in ACM Sigplan Notices, ACM,

vol. 44, 2009, pp. 121–130 (cit. on pp. 6, 21, 25).

[15] C. Augonnet, S. Thibault, and R. Namyst, “Automatic calibration of

performance models on heterogeneous multicore architectures,” in

European Conference on Parallel Processing, Springer, 2009,

pp. 56–65 (cit. on pp. 6, 21, 25).

[16] A. L. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based

optimization of MPDATA on Intel Xeon Phi through load imbalancing,”

CoRR, vol. abs/1507.01265, 2015 (cit. on pp. 7, 8, 27).

130

BIBLIOGRAPHY

[17] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based

optimization of EULAG kernel on Intel Xeon Phi through load

imbalancing,” IEEE Transactions on Parallel and Distributed Systems,

(cit. on pp. 7, 8, 27).

[18] A. Lastovetsky and R. R. Manumachu, “New model-based methods

and algorithms for performance and energy optimization of data

parallel applications on homogeneous multicore clusters,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 4,

pp. 1119–1133, 2017 (cit. on pp. 7, 8).

[19] S. WiLLiAmS, A. WAteRmAn, and D. PAtteRSon, “The roofline model

offers insight on how to improve the performance of software and

hardware.,” communicAtionS of the Acm, vol. 52, no. 4, 2009 (cit. on

pp. 7, 21).

[20] S. Ghose and J. Tse, “Cs 5220: Project 1 tuning the matrix multiply

algorithm,” (cit. on pp. 8, 22).

[21] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D.

Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization and

auto-tuning on state-of-the-art multicore architectures,” in Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press,

2008, p. 4 (cit. on pp. 8, 22).

[22] J. Huang and R. A. Van de Geijn, “Blislab: A sandbox for optimizing

gemm,” arXiv preprint arXiv:1609.00076, 2016 (cit. on pp. 8, 22).

[23] A. Shahid, M. Fahad, R. Reddy, and A. Lastovetsky, “Additivity: A

selection criterion for performance events for reliable energy predictive

modeling,” Supercomputing Frontiers and Innovations, vol. 4, no. 4,

pp. 50–65, 2017 (cit. on p. 8).

[24] S. Kamil, J. Shalf, and E. Strohmaier, “Power efficiency in high

performance computing,” in 2008 IEEE International Symposium on

Parallel and Distributed Processing, IEEE, 2008, pp. 1–8 (cit. on

pp. 10, 52).

131

BIBLIOGRAPHY

[25] H. Hajimiri, P. Mishra, and S. Bhunia, “Dynamic cache tuning for

efficient memory based computing in multicore architectures,” in 2013

26th International Conference on VLSI Design and 2013 12th

International Conference on Embedded Systems, IEEE, 2013,

pp. 49–54 (cit. on pp. 11, 39).

[26] A. Lastovetsky and R. Reddy, “New model-based methods and

algorithms for performance and energy optimization of data parallel

applications on homogeneous multicore clusters,” IEEE Transactions

on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133,

2017 (cit. on pp. 11, 14, 45, 108, 109).

[27] R. Reddy Manumachu and A. L. Lastovetsky, “Design of

self-adaptable data parallel applications on multicore clusters

automatically optimized for performance and energy through load

distribution,” Concurrency and Computation: Practice and Experience,

vol. 0, no. 0, e4958, (cit. on pp. 11, 14, 45, 108, 109).

[28] L. A. Barroso and U. Hölzle, “The case for energy-proportional

computing,” Computer, no. 12, pp. 33–37, 2007 (cit. on pp. 12, 105).

[29] Intel Corporation, Intel MKL FFT - fast fourier transforms, 2018.

[Online]. Available:

https://software.intel.com/en-us/mkl/features/fft (cit. on

pp. 13, 155, 156).

[30] OpenBLAS, OpenBLAS: An optimized BLAS library, 2016. [Online].

Available: http://www.openblas.net/ (cit. on pp. 13, 21).

[31] FFTW, Fastest fourier transform in the west, 2018. [Online]. Available:

http://www.fftw.org/ (cit. on pp. 13, 22, 107).

[32] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky.,

ZZGemmOOC: Multi-GPU out-of-core routines for dense matrix

multiplization, 2019. [Online]. Available:

https://git.ucd.ie/hcl/zzgemmooc.git (cit. on pp. 13, 107).

132

https://software.intel.com/en-us/mkl/features/fft
http://www.openblas.net/
http://www.fftw.org/
https://git.ucd.ie/hcl/zzgemmooc.git

BIBLIOGRAPHY

[33] H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky, “Out-of-

core implementation for accelerator kernels on heterogeneous clouds,”

The Journal of Supercomputing, vol. 74, no. 2, pp. 551–568, 2018 (cit.

on pp. 13, 107).

[34] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky, “Performance

optimization of multithreaded 2d fast fourier transform on multicore

processors using load imbalancing parallel computing method,” IEEE

Access, vol. 6, pp. 64 202–64 224, 2018 (cit. on pp. 13, 107, 109).

[35] R. R. Manumachu and A. Lastovetsky, “Bi-objective optimization of

data-parallel applications on homogeneous multicore clusters for

performance and energy,” IEEE Transactions on Computers, vol. 67,

no. 2, pp. 160–177, 2018 (cit. on pp. 14, 44, 45, 108, 109).

[36] H. Khaleghzadeh, M. Fahad, A. Shahid, R. Reddy, and

A. Lastovetsky, “Bi-objective optimization of data-parallel applications

on heterogeneous hpc platforms for performance and energy through

workload distribution,” CoRR, vol. abs/1907.04080, 2019. arXiv:

1907 . 04080. [Online]. Available:

http://arxiv.org/abs/1907.04080 (cit. on pp. 14, 109).

[37] N. Ding, S. Xu, Z. Song, B. Zhang, J. Li, and Z. Zheng, “Using

hardware counter-based performance model to diagnose scaling

issues of hpc applications,” Neural Computing and Applications,

vol. 31, no. 5, pp. 1563–1575, 2019 (cit. on p. 21).

[38] J.-P. Lehr, “Counting performance: Hardware performance counter and

compiler instrumentation,” Informatik 2016, 2016 (cit. on p. 21).

[39] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware

performance counters can detect malware: Myth or fact?” In

Proceedings of the 2018 on Asia Conference on Computer and

Communications Security, ACM, 2018, pp. 457–468 (cit. on p. 21).

[40] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware

performance counters,” in 2008 5th Workshop on Fault Diagnosis and

Tolerance in Cryptography, IEEE, 2008, pp. 59–67 (cit. on p. 21).

133

https://arxiv.org/abs/1907.04080
http://arxiv.org/abs/1907.04080

BIBLIOGRAPHY

[41] D. Dauwe, E. Jonardi, R. D. Friese, S. Pasricha, A. A. Maciejewski,

D. A. Bader, and H. J. Siegel, “Hpc node performance and energy

modeling with the co-location of applications,” The Journal of

Supercomputing, vol. 72, no. 12, pp. 4771–4809, 2016 (cit. on p. 21).

[42] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on

multicore and multi-gpu platforms using functional performance

models,” IEEE Transactions on Computers, vol. 64, no. 9,

pp. 2506–2518, 2014 (cit. on pp. 21, 26, 27, 50).

[43] A. Lastovetsky and R. R. Manumachu, “New model-based methods

and algorithms for performance and energy optimization of data

parallel applications on homogeneous multicore clusters,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 4,

pp. 1119–1133, 2016 (cit. on pp. 21, 50, 53).

[44] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based

optimization of eulag kernel on intel xeon phi through load

imbalancing,” IEEE Transactions on Parallel and Distributed Systems,

vol. 28, no. 3, pp. 787–797, 2016 (cit. on pp. 21, 50).

[45] K. Goto and R. A. Geijn, “Anatomy of high-performance matrix

multiplication,” ACM Transactions on Mathematical Software (TOMS),

vol. 34, no. 3, p. 12, 2008 (cit. on p. 21).

[46] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth,

B. Norris, and R. Vuduc, “Autotuning in high-performance computing

applications,” Proceedings of the IEEE, no. 99, pp. 1–16, 2018 (cit. on

p. 22).

[47] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,

R. C. Whaley, and K. Yelick, “Self-adapting linear algebra algorithms

and software,” Proceedings of the IEEE, vol. 93, no. 2, pp. 293–312,

2005 (cit. on p. 22).

[48] S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang,

and W. Jalby, “A balanced approach to application performance

134

BIBLIOGRAPHY

tuning,” in International Workshop on Languages and Compilers for

Parallel Computing, Springer, 2009, pp. 111–125 (cit. on p. 22).

[49] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, “Optimization

of a lattice boltzmann computation on state-of-the-art multicore

platforms,” Journal of Parallel and Distributed Computing, vol. 69,

no. 9, pp. 762–777, 2009 (cit. on p. 22).

[50] PeXL, Maqao (modular assembly quality analyzer and optimizer),

2004. [Online]. Available: http://www.maqao.org (cit. on p. 22).

[51] M. Hashimoto, M. Terai, T. Maeda, and K. Minami, “Cca/ebt: Code

comprehension assistance tool for evidence-based performance

tuning,” 2018 (cit. on p. 22).

[52] M. Rajagopalan, B. T. Lewis, and T. A. Anderson, “Thread scheduling

for multi-core platforms.,” in HotOS, 2007 (cit. on p. 23).

[53] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread

cache contention on a chip multi-processor architecture,” in 11th

International Symposium on High-Performance Computer

Architecture, IEEE, 2005, pp. 340–351 (cit. on p. 23).

[54] P. Radojkovic, V. Cakarevic, J. Verdu, A. Pajuelo, F. J. Cazorla,

M. Nemirovsky, and M. Valero, “Thread assignment of multithreaded

network applications in multicore/multithreaded processors,” IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 12,

pp. 2513–2525, 2013 (cit. on p. 23).

[55] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,

O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,” in

Proceedings of the 44th Annual IEEE/ACM International Symposium

on Microarchitecture, ACM, 2011, pp. 362–373 (cit. on p. 24).

[56] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and M. Erez,

“Balancing dram locality and parallelism in shared memory cmp

systems,” in IEEE International Symposium on High-Performance

Comp Architecture, IEEE, 2012, pp. 1–12 (cit. on p. 24).

135

http://www.maqao.org

BIBLIOGRAPHY

[57] M. De Vuyst, R. Kumar, and D. M. Tullsen, “Exploiting unbalanced

thread scheduling for energy and performance on a cmp of smt

processors,” in Proceedings 20th IEEE International Parallel &

Distributed Processing Symposium, IEEE, 2006, 10–pp (cit. on p. 24).

[58] Y. Wen, Z. Wang, and M. F. O’boyle, “Smart multi-task scheduling for

opencl programs on cpu/gpu heterogeneous platforms,” in 2014 21st

International Conference on High Performance Computing (HiPC),

IEEE, 2014, pp. 1–10 (cit. on p. 24).

[59] H. Khaleghzadeh, H. Deldari, R. Reddy, and A. Lastovetsky,

“Hierarchical multicore thread mapping via estimation of remote

communication,” The Journal of Supercomputing, vol. 74, no. 3,

pp. 1321–1340, 2018 (cit. on p. 24).

[60] O. Franek, “A simple method for static load balancing of parallel fdtd

codes,” in Electromagnetics in Advanced Applications (ICEAA), 2016

International Conference on, IEEE, 2016, pp. 587–590 (cit. on p. 25).

[61] R. L. Cariño and I. Banicescu, “Dynamic load balancing with adaptive

factoring methods in scientific applications,” The Journal of

Supercomputing, vol. 44, no. 1, pp. 41–63, 2008 (cit. on p. 26).

[62] J. A. Martínez, E. M. Garzón, A. Plaza, and I. García, “Automatic

tuning of iterative computation on heterogeneous multiprocessors with

ADITHE,” J. Supercomput., vol. 58, no. 2, Nov. 2011 (cit. on p. 26).

[63] G. Cybenko, “Dynamic load balancing for distributed memory

multiprocessors,” Journal of parallel and distributed computing, vol. 7,

no. 2, pp. 279–301, 1989 (cit. on p. 26).

[64] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Dynamic load

balancing and efficient load estimators for asynchronous iterative

algorithms,” IEEE transactions on parallel and distributed systems,

vol. 16, no. 4, pp. 289–299, 2005 (cit. on p. 26).

[65] J. Bahi, R. Couturier, and F. Vernier, “Synchronous distributed load

balancing on dynamic networks,” Journal of Parallel and Distributed

Computing, vol. 65, no. 11, pp. 1397–1405, 2005 (cit. on p. 26).

136

BIBLIOGRAPHY

[66] F. Liu, Y. Chen, and W. S. Wong, “An asynchronous load balancing

scheme for multi-server systems,” in Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON), IEEE

Annual, IEEE, 2016, pp. 1–7 (cit. on p. 26).

[67] P. K. Smolarkiewicz, “Multidimensional positive definite advection

transport algorithm: An overview,” International Journal for Numerical

Methods in Fluids, vol. 50, no. 10, pp. 1123–1144, 2006 (cit. on p. 27).

[68] A. Lastovetsky and R. Reddy, “New model-based methods and

algorithms for performance and energy optimization of data parallel

applications on homogeneous multicore clusters,” IEEE Transactions

on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133,

2017 (cit. on pp. 28, 59, 61, 68, 70, 74, 166).

[69] R. Reddy and A. Lastovetsky, “Bi-objective optimization of data-parallel

applications on homogeneous multicore clusters for performance and

energy,” IEEE Transactions on Computers, vol. 64, no. 2, pp. 160–177,

2017 (cit. on pp. 28, 46).

[70] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel

data-partitioning algorithm for performance optimization of

data-parallel applications on heterogeneous HPC platforms,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 10,

pp. 2176–2190, 2018. DOI: 10.1109/TPDS.2018.2827055 (cit. on

pp. 28, 46, 59, 61, 68, 70, 166).

[71] L. Niu and G. Quan, “Reducing both dynamic and leakage energy

consumption for hard real-time systems,” in Proceedings of the 2004

international conference on Compilers, architecture, and synthesis for

embedded systems, ACM, 2004, pp. 140–148 (cit. on pp. 29, 36).

[72] S. Mittal, “A survey of techniques for improving energy efficiency in

embedded computing systems,” arXiv preprint arXiv:1401.0765, 2014

(cit. on p. 29).

137

https://doi.org/10.1109/TPDS.2018.2827055

BIBLIOGRAPHY

[73] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A

survey of power and energy predictive models in hpc systems and

applications,” ACM Computing Surveys (CSUR), vol. 50, no. 3, p. 37,

2017 (cit. on p. 30).

[74] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr, and R. Bianchini, “Energy

conservation in heterogeneous server clusters,” in Proceedings of the

tenth ACM SIGPLAN symposium on Principles and practice of parallel

programming, ACM, 2005, pp. 186–195 (cit. on p. 30).

[75] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan,

“Full-system power analysis and modeling for server environments,”

International Symposium on Computer Architecture-IEEE, 2006

(cit. on p. 31).

[76] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of

scientific applications on distributed systems,” in Parallel and

Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International, IEEE, 2005, pp. 34–34 (cit. on p. 31).

[77] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,

“Energy-driven integrated hardware-software optimizations using

simplepower,” ACM SIGARCH Computer Architecture News, vol. 28,

no. 2, pp. 95–106, 2000 (cit. on p. 31).

[78] P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, and T. Fahringer,

“Modeling cpu energy consumption of hpc applications on the ibm

power7,” in 2014 22nd Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, IEEE, 2014,

pp. 536–543 (cit. on p. 31).

[79] R. Zamani and A. Afsahi, “Adaptive estimation and prediction of power

and performance in high performance computing,” Computer Science-

Research and Development, vol. 25, no. 3-4, pp. 177–186, 2010 (cit.

on p. 31).

138

BIBLIOGRAPHY

[80] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky,

“Improving the accuracy of energy predictive models for multicore

cpus using additivity of performance monitoring counters,” in

International Conference on Parallel Computing Technologies,

Springer, 2019, pp. 51–66 (cit. on p. 32).

[81] D. C. Snowdon, S. Ruocco, and G. Heiser, “Power management and

dynamic voltage scaling: Myths and facts,” in Proceedings of the 2005

workshop on power aware real-time computing, vol. 12, 2005, pp. 1–7

(cit. on p. 33).

[82] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and

R. Bianchini, “Coscale: Coordinating cpu and memory system dvfs in

server systems,” in Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture, IEEE Computer

Society, 2012, pp. 143–154 (cit. on p. 33).

[83] Z. Lai, K. T. Lam, C.-L. Wang, J. Su, Y. Yan, and W. Zhu,

“Latency-aware dynamic voltage and frequency scaling on many-core

architectures for data-intensive applications,” in 2013 International

Conference on Cloud Computing and Big Data, IEEE, 2013,

pp. 78–83 (cit. on p. 34).

[84] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time

multiprocessor system-on-chip with optimal dvfs and dpm

combination,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 13, no. 3s, p. 111, 2014 (cit. on p. 34).

[85] A. K. Datta and R. Patel, “Cpu scheduling for power/energy

management on multicore processors using cache miss and context

switch data,” IEEE Transactions on Parallel and Distributed Systems,

vol. 25, no. 5, pp. 1190–1199, 2013 (cit. on p. 34).

[86] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some observations on

optimal frequency selection in dvfs-based energy consumption

minimization,” Journal of Parallel and Distributed Computing, vol. 71,

no. 8, pp. 1154–1164, 2011 (cit. on p. 34).

139

BIBLIOGRAPHY

[87] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,

and B. M. Al-Hashimi, “Adaptive energy minimization of embedded

heterogeneous systems using regression-based learning,” in 2015

25th International Workshop on Power and Timing Modeling,

Optimization and Simulation (PATMOS), IEEE, 2015, pp. 103–110

(cit. on p. 34).

[88] F. P. Miller, A. F. Vandome, and J. McBrewster, “Advanced

configuration and power interface: Open standard, operating system,

power management, cross-platform, intel corporation, microsoft,

toshiba,... sleep mode, hibernate (os feature), synonym,” 2009 (cit. on

p. 35).

[89] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design

techniques for system-level dynamic power management,” IEEE

transactions on very large scale integration (VLSI) systems, vol. 8,

no. 3, pp. 299–316, 2000 (cit. on p. 35).

[90] W. L. Bircher and L. K. John, “Analysis of dynamic power

management on multi-core processors,” in Proceedings of the 22nd

annual international conference on Supercomputing, ACM, 2008,

pp. 327–338 (cit. on p. 35).

[91] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo,

“Adaptive power management for real-time event streams,” in

Proceedings of the 2010 Asia and South Pacific Design Automation

Conference, IEEE Press, 2010, pp. 7–12 (cit. on p. 35).

[92] E.-Y. Chung, L. Benini, and G. De Micheli, “Dynamic power

management using adaptive learning tree,” in Proceedings of the

1999 IEEE/ACM international conference on Computer-aided design,

IEEE Press, 1999, pp. 274–279 (cit. on p. 35).

[93] A. Beloglazov and R. Buyya, “Energy efficient resource management

in virtualized cloud data centers,” in Proceedings of the 2010 10th

IEEE/ACM international conference on cluster, cloud and grid

computing, IEEE Computer Society, 2010, pp. 826–831 (cit. on p. 35).

140

BIBLIOGRAPHY

[94] W.-K. Lee, S.-W. Lee, and W.-O. Siew, “Hybrid model for dynamic

power management,” IEEE Transactions on Consumer Electronics,

vol. 55, no. 2, pp. 656–664, 2009 (cit. on p. 35).

[95] C. Imes and H. Hoffmann, “Minimizing energy under performance

constraints on embedded platforms: Resource allocation heuristics for

homogeneous and single-isa heterogeneous multi-cores,” ACM

SIGBED Review, vol. 11, no. 4, pp. 49–54, 2015 (cit. on p. 36).

[96] J. Trajkovic, A. V. Veidenbaum, and A. Kejariwal, “Improving sdram

access energy efficiency for low-power embedded systems,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,

p. 24, 2008 (cit. on p. 36).

[97] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, “Iso-energy-

efficiency: An approach to power-constrained parallel computation,” in

2011 IEEE International Parallel & Distributed Processing Symposium,

IEEE, 2011, pp. 128–139 (cit. on p. 36).

[98] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore

dimm: An energy efficient memory module with independently

controlled drams,” IEEE Computer Architecture Letters, vol. 8, no. 1,

pp. 5–8, 2008 (cit. on p. 36).

[99] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page

allocation,” ACM Sigplan Notices, vol. 35, no. 11, pp. 105–116, 2000

(cit. on p. 37).

[100] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,

“Memscale: Active low-power modes for main memory,” in ACM

SIGARCH Computer Architecture News, ACM, vol. 39, 2011,

pp. 225–238 (cit. on p. 37).

[101] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang,

“Software thermal management of dram memory for multicore

systems,” ACM SIGMETRICS Performance Evaluation Review,

vol. 36, no. 1, pp. 337–348, 2008 (cit. on p. 37).

141

BIBLIOGRAPHY

[102] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,

“Memory power management via dynamic voltage/frequency scaling,”

in Proceedings of the 8th ACM international conference on Autonomic

computing, ACM, 2011, pp. 31–40 (cit. on p. 37).

[103] M. Banikazemi, D. Poff, and B. Abali, “Pam: A novel

performance/power aware meta-scheduler for multi-core systems,” in

SC’08: Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing, IEEE, 2008, pp. 1–12 (cit. on p. 37).

[104] A. Merkel, J. Stoess, and F. Bellosa, “Resource-conscious scheduling

for energy efficiency on multicore processors,” in Proceedings of the

5th European conference on Computer systems, ACM, 2010,

pp. 153–166 (cit. on p. 37).

[105] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and

S. Gobriel, “Energy-efficient thread assignment optimization for

heterogeneous multicore systems,” ACM Transactions on Embedded

Computing Systems (TECS), vol. 14, no. 1, p. 15, 2015 (cit. on p. 38).

[106] J. Qian, H. Jiang, W. Srisa-An, S. Seth, S. Skelton, and J. Moore,

“Energy-efficient i/o thread schedulers for nvme ssds on numa,” in

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), IEEE, 2017, pp. 569–578 (cit. on p. 38).

[107] C. Hankendi and A. K. Coskun, “Reducing the energy cost of

computing through efficient co-scheduling of parallel workloads,” in

2012 Design, Automation & Test in Europe Conference & Exhibition

(DATE), IEEE, 2012, pp. 994–999 (cit. on p. 38).

[108] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration

and partitioning for energy optimization in real-time multi-core

systems,” in 2011 48th ACM/EDAC/IEEE Design Automation

Conference (DAC), IEEE, 2011, pp. 948–953 (cit. on p. 38).

[109] G. Chen, B. Hu, K. Huang, A. Knoll, D. Liu, and T. Stefanov, “Automatic

cache partitioning and time-triggered scheduling for real-time mpsocs,”

142

BIBLIOGRAPHY

in 2014 International Conference on ReConFigurable Computing and

FPGAs (ReConFig14), IEEE, 2014, pp. 1–8 (cit. on p. 39).

[110] V. Delaluz, M Kandemir, A. Sivasubramaniam, M. J. Irwin, and

N. Vijaykrishnan, “Reducing dtlb energy through dynamic resizing,” in

Proceedings 21st International Conference on Computer Design,

IEEE, 2003, pp. 358–363 (cit. on p. 39).

[111] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and B.

Franke, “Cooperative partitioning: Energy-efficient cache partitioning

for high-performance cmps,” in IEEE International Symposium on High-

Performance Comp Architecture, IEEE, 2012, pp. 1–12 (cit. on p. 39).

[112] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs

energy optimization for dvfs-enabled processors in embedded

systems,” in 8th International Symposium on Quality Electronic Design

(ISQED’07), IEEE, 2007, pp. 204–209 (cit. on p. 39).

[113] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “The design of

deetm: A framework for dynamic energy efficiency and temperature

management,” Journal of Instruction-Level Parallelism, vol. 3,

pp. 1–31, 2002 (cit. on p. 39).

[114] K. Skadron, M. R. Stan, W. Huang, S. Velusamy,

K. Sankaranarayanan, and D. Tarjan, “Temperature-aware

microarchitecture,” in 30th Annual International Symposium on

Computer Architecture, 2003. Proceedings., IEEE, 2003, pp. 2–13

(cit. on p. 40).

[115] A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy, “On

estimating optimal performance of cpu dynamic thermal management,”

IEEE Computer Architecture Letters, vol. 2, no. 1, pp. 6–6, 2003 (cit. on

p. 40).

[116] R. Ayoub, R. Nath, and T. Rosing, “Jetc: Joint energy thermal and

cooling management for memory and cpu subsystems in servers,” in

IEEE International Symposium on High-Performance Comp

Architecture, IEEE, 2012, pp. 1–12 (cit. on p. 40).

143

BIBLIOGRAPHY

[117] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,

“Survey of energy-cognizant scheduling techniques,” IEEE

Transactions on Parallel and Distributed Systems, vol. 24, no. 7,

pp. 1447–1464, 2012 (cit. on p. 40).

[118] P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive scheduling for systems

with asymmetric memory hierarchies,” in 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), IEEE, 2018,

pp. 641–654 (cit. on p. 40).

[119] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A

comprehensive scheduler for asymmetric multicore systems,” in

Proceedings of the 5th European conference on Computer systems,

ACM, 2010, pp. 139–152 (cit. on p. 41).

[120] X. Fan, Y. Sui, and J. Xue, “Contention-aware scheduling for

asymmetric multicore processors,” in 2015 IEEE 21st International

Conference on Parallel and Distributed Systems (ICPADS), IEEE,

2015, pp. 742–751 (cit. on p. 41).

[121] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating

system scheduling for performance-asymmetric multi-core

architectures,” in SC’07: Proceedings of the 2007 ACM/IEEE

conference on Supercomputing, IEEE, 2007, pp. 1–11 (cit. on p. 41).

[122] Y. Wang, X. Wang, and Y. Chen, “Energy-efficient virtual machine

scheduling in performance-asymmetric multi-core architectures,” in

2012 8th international conference on network and service

management (cnsm) and 2012 workshop on systems virtualiztion

management (svm), IEEE, 2012, pp. 288–294 (cit. on p. 41).

[123] F. A. Bower, D. J. Sorin, and L. P. Cox, “The impact of dynamically

heterogeneous multicore processors on thread scheduling,” IEEE

micro, vol. 28, no. 3, pp. 17–25, 2008 (cit. on p. 41).

[124] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, “Perfect strong

scaling using no additional energy,” in 2013 IEEE 27th International

144

BIBLIOGRAPHY

Symposium on Parallel and Distributed Processing, IEEE, 2013,

pp. 649–660 (cit. on p. 42).

[125] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of

energy,” in 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, IEEE, 2013, pp. 661–672 (cit. on p. 42).

[126] F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and

D. S. Nikolopoulos, “Application-level energy awareness for openmp,”

in International Workshop on OpenMP, Springer, 2015, pp. 219–232

(cit. on p. 42).

[127] V. R. Silva, A. Furtunato, K. Georgiou, K. Eder, and

S. Xavier-de Souza, “Energy-optimal configurations for single-node

hpc applications,” arXiv preprint arXiv:1805.00998, 2018 (cit. on

p. 42).

[128] H. Wang, V. Sathish, R. Singh, M. J. Schulte, and N. S. Kim,

“Workload and power budget partitioning for single-chip

heterogeneous processors,” in Proceedings of the 21st international

conference on Parallel architectures and compilation techniques,

ACM, 2012, pp. 401–410 (cit. on p. 42).

[129] R. CHIŞ, A. Florea, C. Buduleci, and L. VINŢAN, “Multi-objective

optimization for an enhanced multi-core sniper simulator,” 2018 (cit. on

p. 43).

[130] B. Subramaniam and W.-c. Feng, “Statistical power and performance

modeling for optimizing the energy efficiency of scientific computing,”

in Proceedings of the 2010 IEEE/ACM Int’l Conference on Green

Computing and Communications & Int’l Conference on Cyber,

Physical and Social Computing, IEEE Computer Society, 2010,

pp. 139–146 (cit. on p. 43).

[131] H. F. Sheikh and I. Ahmad, “Dynamic task graph scheduling on

multicore processors for performance, energy, and temperature

optimization,” in 2013 International Green Computing Conference

Proceedings, IEEE, 2013, pp. 1–6 (cit. on p. 43).

145

BIBLIOGRAPHY

[132] H. Lei, R. Wang, T. Zhang, Y. Liu, and Y. Zha, “A multi-objective co-

evolutionary algorithm for energy-efficient scheduling on a green data

center,” Computers & Operations Research, vol. 75, pp. 103–117, 2016

(cit. on p. 44).

[133] N. K. Sharma and G. R. M. Reddy, “Multi-objective energy efficient

virtual machines allocation at the cloud data center,” IEEE Transactions

on Services Computing, vol. 12, no. 1, pp. 158–171, 2016 (cit. on p. 44).

[134] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng,

“Energy-saving virtual machine placement in cloud data centers,” in

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and

Grid Computing, IEEE, 2013, pp. 618–624 (cit. on p. 44).

[135] M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E.-G. Talbi, A. Zomaya, and

D. Tuyttens, “A parallel bi-objective hybrid metaheuristic for

energy-aware scheduling for cloud computing systems,” Journal of

Parallel and Distributed Computing, vol. 71, no. 11, pp. 1497 –1508,

2011 (cit. on p. 44).

[136] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A

multi-objective approach for workflow scheduling in heterogeneous

environments,” in Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

(Ccgrid 2012), ser. CCGRID ’12, IEEE Computer Society, 2012,

pp. 300–309 (cit. on p. 44).

[137] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource

allocation heuristics for efficient management of data centers for cloud

computing,” Future Generation Computer Systems, vol. 28, no. 5,

pp. 755 –768, 2012, Special Section: Energy efficiency in large-scale

distributed systems (cit. on p. 44).

[138] Y. Kessaci, N. Melab, and E.-G. Talbi, “A pareto-based metaheuristic

for scheduling hpc applications on a geographically distributed cloud

federation,” Cluster Computing, vol. 16, no. 3, pp. 451–468, Sep. 2013

(cit. on p. 44).

146

BIBLIOGRAPHY

[139] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective energy-efficient

workflow scheduling using list-based heuristics,” Future Generation

Computer Systems, vol. 36, pp. 221 –236, 2014 (cit. on p. 44).

[140] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, “Energy efficient

genetic-based schedulers in computational grids,” Concurr. Comput. :

Pract. Exper., vol. 27, no. 4, pp. 809–829, Mar. 2015 (cit. on p. 44).

[141] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,

B. L. Rountree, and M. E. Femal, “Analyzing the energy-time trade-off

in high-performance computing applications,” IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no. 6, pp. 835–848, 2007

(cit. on p. 44).

[142] A. Langer, H. Dokania, L. V. Kalé, and U. S. Palekar, “Analyzing

energy-time tradeoff in power overprovisioned hpc data centers,” in

2015 IEEE International Parallel and Distributed Processing

Symposium Workshop, IEEE, 2015, pp. 849–854 (cit. on p. 44).

[143] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.

Rountree, and M. E. Femal, “Analyzing the energy-time trade-off in

high-performance computing applications,” IEEE Trans. Parallel Distrib.

Syst., vol. 18, no. 6, Jun. 2007 (cit. on p. 44).

[144] I. Ahmad, S. Ranka, and S. U. Khan, “Using game theory for

scheduling tasks on multi-core processors for simultaneous

optimization of performance and energy,” in Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on,

2008, pp. 1–6 (cit. on p. 44).

[145] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of

energy,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, IEEE, 2013, pp. 661–672 (cit. on p. 44).

[146] J. Choi, M. Dukhan, X. Liu, and R. Vuduc, “Algorithmic time, energy,

and power on candidate HPC compute building blocks,” in Parallel and

Distributed Processing Symposium, 2014 IEEE 28th International,

IEEE, 2014, pp. 447–457 (cit. on p. 44).

147

BIBLIOGRAPHY

[147] P. Balaprakash, A. Tiwari, and S. M. Wild, “Multi objective optimization

of HPC kernels for performance, power, and energy,” in High

Performance Computing Systems. Performance Modeling,

Benchmarking and Simulation: 4th International Workshop, PMBS

2013, Denver, CO, USA, November 18, 2013. Revised Selected

Papers, A. S. Jarvis, A. S. Wright, and D. S. Hammond, Eds. Springer

International Publishing, 2014, pp. 239–260 (cit. on p. 44).

[148] M. A. Aba, L. Zaourar, and A. Munier, “Approximation algorithm for

scheduling a chain of tasks on heterogeneous systems,” in European

Conference on Parallel Processing, Springer, 2017, pp. 353–365 (cit.

on p. 44).

[149] B. Subramaniam and W. C. Feng, “Statistical power and performance

modeling for optimizing the energy efficiency of scientific computing,”

in 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,

Physical and Social Computing (CPSCom), 2010 (cit. on p. 44).

[150] S. Song, C. Y. Su, R. Ge, A. Vishnu, and K. W. Cameron,

“Iso-energy-efficiency: An approach to power-constrained parallel

computation,” in Parallel Distributed Processing Symposium (IPDPS),

2011 IEEE International, 2011, pp. 128–139 (cit. on p. 44).

[151] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, “Perfect strong

scaling using no additional energy,” in Parallel Distributed Processing

(IPDPS), 2013 IEEE 27th International Symposium on, 2013 (cit. on

p. 44).

[152] M. Drozdowski, J. M. Marszalkowski, and J. Marszalkowski, “Energy

trade-offs analysis using equal-energy maps,” Future Generation

Computer Systems, vol. 36, pp. 311–321, 2014 (cit. on p. 44).

[153] J. M. Marszalkowski, M. Drozdowski, and J. Marszalkowski, “Time and

energy performance of parallel systems with hierarchical memory,”

Journal of Grid Computing, vol. 14, no. 1, pp. 153–170, 2016 (cit. on

p. 44).

148

BIBLIOGRAPHY

[154] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and

E. K. Chong, “Energy and makespan tradeoffs in heterogeneous

computing systems using efficient linear programming techniques,”

IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 6,

pp. 1633–1646, 2016 (cit. on p. 44).

[155] E. Gabaldon, J. L. Lerida, F. Guirado, and J. Planes, “Blacklist

muti-objective genetic algorithm for energy saving in heterogeneous

environments,” The Journal of Supercomputing, vol. 73, no. 1,

pp. 354–369, 2017 (cit. on p. 44).

[156] S. U. Khan, “A goal programming approach for the joint optimization

of energy consumption and response time in computational grids,” in

Performance Computing and Communications Conference (IPCCC),

2009 IEEE 28th International, IEEE, 2009, pp. 410–417 (cit. on p. 45).

[157] G. Pinto, F. Castor, and Y. D. Liu, “Understanding energy behaviors

of thread management constructs,” in ACM SIGPLAN Notices, ACM,

vol. 49, 2014, pp. 345–360 (cit. on pp. 46, 53).

[158] Y. Guo, “A scalable locality-aware adaptive work-stealing scheduler for

multi-core task parallelism,” PhD thesis, 2011 (cit. on pp. 46, 53).

[159] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu,

“Work-stealing without the baggage,” ACM SIGPLAN Notices, vol. 47,

no. 10, pp. 297–314, 2012 (cit. on pp. 46, 53).

[160] H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language

runtimes,” ACM SIGARCH Computer Architecture News, vol. 42,

no. 1, pp. 513–528, 2014 (cit. on pp. 46, 53).

[161] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based

optimization of eulag kernel on intel xeon phi through load

imbalancing,” IEEE Transactions on Parallel and Distributed Systems,

vol. 28, no. 3, pp. 787–797, 2017 (cit. on p. 51).

149

BIBLIOGRAPHY

[162] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel

data-partitioning algorithm for performance optimization of

data-parallel applications on heterogeneous hpc platforms,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 10,

pp. 2176–2190, 2018 (cit. on p. 53).

[163] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balancing of

parallel computational iterative routines on highly heterogeneous HPC

platforms,” Parallel Processing Letters, vol. 21, pp. 195–217, 2011 (cit.

on p. 74).

[164] A. Lastovetsky, R. Reddy, V. Rychkov, and D. Clarke, “Design and

implementation of self-adaptable parallel algorithms for scientific

computing on highly heterogeneous HPC platforms,” arXiv preprint

arXiv:1109.3074, 2011 (cit. on p. 74).

[165] HCL, HCLWattsUp: API for power and energy measurements using

WattsUp Pro Meter, 2016. [Online]. Available: http://git.ucd.ie/

hcl/hclwattsup (cit. on pp. 94, 115, 123).

[166] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and

S. Gobriel, “Energy-efficient thread assignment optimization for

heterogeneous multicore systems,” ACM Trans. Embed. Comput.

Syst., vol. 14, no. 1, Jan. 2015 (cit. on p. 106).

[167] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy efficiency of

multimedia applications in heterogeneous mobile multi-core

processors,” IEEE Transactions on Computers, vol. 66, no. 11,

pp. 1878–1889, 2017 (cit. on p. 106).

[168] W. Wang, P. Mishra, and S. Ranka, “Dynamic cache reconfiguration

and partitioning for energy optimization in real-time multi-core

systems,” in 2011 48th ACM/EDAC/IEEE Design Automation

Conference (DAC), 2011, pp. 948–953 (cit. on p. 106).

[169] G. Chen, K. Huang, J. Huang, and A. Knoll, “Cache partitioning and

scheduling for energy optimization of real-time mpsocs,” in 2013 IEEE

150

http://git.ucd.ie/hcl/hclwattsup
http://git.ucd.ie/hcl/hclwattsup

BIBLIOGRAPHY

24th International Conference on Application-Specific Systems,

Architectures and Processors, 2013, pp. 35–41 (cit. on p. 106).

[170] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,

“Survey of scheduling techniques for addressing shared resources in

multicore processors,” ACM Comput. Surv., vol. 45, no. 1, Dec. 2012

(cit. on p. 106).

[171] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, “Dynamic thermal

management through task scheduling,” in ISPASS 2008 - IEEE

International Symposium on Performance Analysis of Systems and

software, 2008, pp. 191–201 (cit. on p. 107).

[172] R. Z. Ayoub and T. S. Rosing, “Predict and act: Dynamic thermal

management for multi-core processors,” in Proceedings of the 2009

ACM/IEEE International Symposium on Low Power Electronics and

Design, ser. ISLPED ’09, ACM, 2009, pp. 99–104 (cit. on p. 107).

[173] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operating

system scheduling for performance-asymmetric multi-core

architectures,” in SC ’07: Proceedings of the 2007 ACM/IEEE

Conference on Supercomputing, 2007, pp. 1–11 (cit. on p. 107).

[174] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process variations

on multicore performance symmetry,” in 2007 Design, Automation Test

in Europe Conference Exhibition, 2007, pp. 1–6 (cit. on p. 107).

[175] Intel R© Math Kernel Library (Intel R© MKL), Intel MKL FFT - fast fourier

transforms, 2019. [Online]. Available: https://software.intel.com/

en-us/mkl (cit. on p. 107).

[176] Z. Xianyi, Openblas, an optimized blas library, 2019. [Online].

Available: http://www.netlib.org/blas/ (cit. on p. 107).

[177] K. Miettinen, Nonlinear multiobjective optimization. Kluwer, 1999 (cit.

on pp. 110–112).

[178] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley

& Sons, 2009, vol. 74 (cit. on pp. 110, 111).

151

https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
http://www.netlib.org/blas/

BIBLIOGRAPHY

[179] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight

performance-oriented tool suite for x86 multicore environments,” in

2010 39th International Conference on Parallel Processing

Workshops, IEEE, 2010, pp. 207–216 (cit. on p. 120).

[180] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam, “Reducing

data tlb power via compiler-directed address generation,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 26, no. 2, pp. 312–324, 2007 (cit. on p. 123).

[181] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,

M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient

address translation,” in 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2016, pp. 631–643

(cit. on p. 123).

[182] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,

M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant memory

mappings for fast access to large memories,” in Proceedings of the

42Nd Annual International Symposium on Computer Architecture,

ser. ISCA ’15, ACM, 2015, pp. 66–78 (cit. on p. 123).

[183] W. Chu and B. Champagne, “A noise-robust FFT-based auditory

spectrum with application in audio classification,” IEEE Transactions

on audio, speech, and language processing, vol. 16, no. 1,

pp. 137–150, 2008 (cit. on p. 155).

[184] A. Sapena-Bañó, M. Pineda-Sanchez, R. Puche-Panadero,

J. Martinez-Roman, and D. Matić, “Fault diagnosis of rotating

electrical machines in transient regime using a single stator current’s

FFT,” IEEE Transactions on Instrumentation and Measurement,

vol. 64, no. 11, pp. 3137–3146, 2015 (cit. on p. 155).

[185] M. Kang, J. Kim, L. M. Wills, and J.-M. Kim, “Time-varying and

multiresolution envelope analysis and discriminative feature analysis

for bearing fault diagnosis.,” IEEE Trans. Industrial Electronics, vol. 62,

no. 12, pp. 7749–7761, 2015 (cit. on p. 155).

152

BIBLIOGRAPHY

[186] M. Naoues, D. Noguet, L. Alaus, and Y. Louët, “A common operator for

FFT and FEC decoding,” Microprocessors and Microsystems, vol. 35,

no. 8, pp. 708–715, 2011 (cit. on p. 155).

[187] J. P. Barbosa, A. P. Ferreira, R. C. Rocha, E. S. Albuquerque,

J. R. Reis, D. S. Albuquerque, and E. N. Barros, “A high performance

hardware accelerator for dynamic texture segmentation,” Journal of

Systems Architecture, vol. 61, no. 10, pp. 639–645, 2015 (cit. on

p. 155).

[188] cuFFT, Optimized FFT routines for Nvidia graphics processors, 2018.

[Online]. Available: https://docs.nvidia.com/cuda/cufft/index.

html (cit. on pp. 155, 156).

[189] clFFT, Optimized FFT routines for AMD graphics processors, 2018.

[Online]. Available:

https://gpuopen.com/compute-product/clfft/ (cit. on p. 155).

153

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://gpuopen.com/compute-product/clfft/

Appendix A

Analysis of Performance Profiles

of Data-parallel Applications on

Modern Multicore CPUs

Experimental Set-Up

All performance profiles (speed functions) for the applications were obtained

on a modern Intel Haswell multicore server consisting of 2 sockets of 18

physical cores each (specification shown in Table A.1). All applications using

36 threads. There are not used any special environment affinity variables

during the execution of the applications.

Technical Specifications Intel Haswell Server
Processor Intel Xeon CPU E5-2699 v3 @ 2.30GHz

OS CentOS 7.1.1503
Microarchitecture Haswell

Memory 256 GB
Core(s) per socket 18

Socket(s) 2
NUMA node(s) 2

L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 46080 KB

NUMA node0 CPU(s) 0-17,36-53
NUMA node1 CPU(s) 18-35,54-71

Table A.1: Specification of the Intel Haswell server used to construct the performance
profiles.

154

We also will be referring frequently to width of performance variations in

a performance profile. It is the difference of speeds between two subsequent

local minima (s1) and maxima (s2) as shown below:

variation(%) =
|s1 − s2|

min(s1, s2)
× 100 (A.1)

To make sure the experimental results are reliable, a statistical

methodology described in Appendix B is used. Briefly, for every data point in

the functions, the automation software executes the application repeatedly

until the sample mean lies in the 95% confidence interval with precision of

0.025 (2.5%). For this purpose, Student’s t-test is used assuming that the

individual observations are independent and their population follows the

normal distribution. The speed/performance values shown in the graphical

plots throughout this work are the sample means.

The total number of problem sizes N × N experimented is around 1000

with N ranging from 128 to 64000 with a step size of 64, {128, 192, ..., 64000}.

2D Fast Fourier Transform

Fast Fourier transform (FFT) is a key routine employed in application domains

such as molecular dynamics, computational fluid dynamics, signal

processing, image processing, and condition monitoring systems [183]–[187].

It is so fundamental that hardware vendors provide libraries containing 1D,

2D, and 3D FFT routines highly optimized for their processors. For example,

Intel Math Kernel library (IMKL) [29] provides extensively optimized FFT

routines for Intel processors, cuFFT [188] for Nvidia CUDA GPUs, and clFFT

[189] for AMD processors.

The theoretical computational complexity and arithmetic intensity of 2D

FFT lie between those for highly memory-bound and highly compute-bound

routines. For a 2D FFT of complex input and output, its computational

complexity is O(N2 × log2N), which lies between those for highly

memory-bound applications (O(N2) for matrix-vector multiplication MxV of a

dense matrix N × N) and highly compute-bound applications (O(N3) for

matrix-matrix multiplication of two dense N × N matrices). Its arithmetic

155

N FFTW_ESTIMATE (Sec) FFTW_MEASURE (Sec) PATIENT (Sec)
20160 3 31 5015
20480 16 41 2549
20672 6.5 3004 8228
21120 3.6 31 2746
21440 4 32 1367
21632 14.5 2937 9754

Table A.2: Execution times in seconds for FFTW-3.3.7 on the Intel Haswell multicore server
for three different planner flags.

intensity (IA) (IA = #flops
#memory accesses = O(log2N)) lies between those for highly

memory-bound applications (IA for MxV is 1) and highly compute-bound

applications (IA for MxM is N). Code tuning techniques such as

multithreading, Fused Multiply-Add (FMA), SIMD acceleration using

specialized instruction sets such as SSE2, AltiVec, etc. are used to optimize it

for different processor architectures.

In the experiments are used three multithreaded FFT applications for

comparison written using the packages FFTW-2.1.5, FFTW-3.3.7, and IMKL

FFT. The packages, FFTW-2.1.5 and FFTW-3.3.7, are open-source.

Hardware vendor libraries ([29], [188]) offer optimized implementations of the

FFTW interface for their processors.

The performance profiles are shown for only one planner flag,

FFTW_ESTIMATE. The experiments with two other planner flags were also

performed, {FFTW_MEASURE, FFTW_PATIENT} (Table A.2). The execution

times for these flags however are prohibitively larger compared to

FFTW_ESTIMATE and severe variations are present. The long execution

times are due to the lengthy times to create the plans because

FFTW_MEASURE tries to find an optimized plan by computing several FFTs

whereas FFTW_PATIENT considers a wider range of algorithms to find a

more optimal plan.

In the graphs showing speed functions, the speed of execution of a 2D-

DFT of complex signal matrix of size N ×N is equal to 5.0∗N2∗log2(N2)
t

, where t

is the time of execution of the 2D-DFT.

Figure A.1, A.2 show the performance profiles of FFTW 2.1.5 versus FFTW

3.3.7. Following are the key observations:

156

Figure A.1: Performance profiles of 2D-FFT computing 2D-DFT of size N ×N
using FFTW-2.1.5 and FFTW-3.3.7. The executions of 2D-FFT applications
employ 36 threads on a Intel multicore server consisting of two sockets of 18
cores each.

• The width of performance variations in FFTW-3.3.7 is considerably

greater than that for FFTW-2.1.5.

• The peak performance of FFTW-2.1.5 is 17841 MFLOPs (N = 2816)

whereas that for FFTW-3.3.7 is 16989 MFLOPs (N = 8000). The

average performances of FFTW-2.1.5 and FFTW-3.3.7 are 7033

MFLOPs and 5065 MFLOPs. The ratio of average to peak

performances of FFTW-2.1.5 and FFTW-3.3.7 are 40% and 30%.

• FFTW-2.1.5 is better than FFTW-3.3.7 by around 38% (on an average).

There are 529 problem sizes (out of 1000) where the performance of

FFTW-2.1.5 is better than FFTW-3.3.7.

Figures A.3, A.4 present the performance comparisons between FFTW-

2.1.5 and IMKL FFT. The most important observations are as follows:

• The peak performance of FFTW-2.1.5 is 17841 MFLOPs (N = 2816)

whereas that for IMKL FFT is 39424 MFLOPs (N = 1792). The ratio of

157

Figure A.2: The average speeds of FFTW-2.1.5 vs FFTW-3.3.7.

average to peak performances of FFTW-2.1.5 and IMKL FFT are 40%

and 24%.

• The average performance of IMKL FFT is around 9572 MFLOPs versus

7033 MFLOPs for FFTW-2.1.5. So, on an average, IMKL FFT is 36%

better than FFTW-2.1.5. Despite IMKL FFT demonstrating better

average performance than FFTW-2.1.5, its width of variations is

considerably greater than that for FFTW-2.1.5. The variations of IMKL

FFT fill the picture. This is the reason why IMKL FFT demonstrates

comparatively poorer average performance despite its higher peak

performance.

• There are 162 problem sizes (out of 1000) where FFTW-2.1.5 is better

than IMKL FFT.

Figures A.5, A.6 present the performance comparisons between FFTW-

3.3.7 and IMKL FFT. The crucial observations are as follows:

158

Figure A.3: Performance profiles of 2D-FFT computing 2D-DFT of size N ×
N using FFTW-2.1.5 and IMKL FFT. The executions of 2D-FFT applications
employ 36 threads on a Intel multicore server consisting of two sockets of 18
cores each.

159

Figure A.4: The average speeds of FFTW-2.1.5 and IMKL FFT.

• The peak performance of FFTW-3.3.7 is 16989 MFLOPs (N = 8000)

whereas that for IMKL FFT is 39424 MFLOPs (N = 1792). The average

performance of FFTW-3.3.7 is 5065 MFLOPs and IMKL FFT is 9572

MFLOPs. The ratio of average to peak performances of FFTW-3.3.7

and IMKL FFT are 30% and 24%.

• IMKL FFT, on an average, is 89% faster than FFTW-3.3.7. There are

199 problem sizes (out of 1000) where FFTW-3.3.7 performs better than

IMKL FFT.

• The width of variations for IMKL FFT is noticeably greater than that for

FFTW-3.3.7.

To summarize, the performance of FFT on multicore CPUs is highly

unstable. All these new complexities (NUMA, tight integration of cores

contending) cause huge variations in performance profiles. These variations

make the average performance of application very low in comparison with its

peak. Furthermore, despite IMKL FFT is known as a highly optimized

160

Figure A.5: Performance profiles of 2D-FFT computing 2D-DFT of size N ×
N using FFTW-3.3.7 and IMKL FFT. The executions of 2D-FFT applications
employ 36 threads on a Intel multicore server consisting of two sockets of 18
cores each.

Figure A.6: The average speeds of FFTW-3.3.7 and IMKL FFT.

161

package for Intel platforms, its width of variations in performance profiles is

still huge.

162

Appendix B

Methodology for Reliable

Experimental Results

The methodology described below is used to make sure the experimental

results are reliable:

• The server is fully reserved and dedicated to these experiments during

their execution. It also made certain that there are no drastic fluctuations

in the load due to abnormal events in the server by monitoring its load

continuously for a week using the tool sar. Insignificant variation in the

load was observed during this monitoring period suggesting normal and

clean behaviour of the server.

• An application during its execution is bound to the physical cores using

the numactl tool.

• To obtain a data point in the speed function, the application is

repeatedly executed until the sample mean lies in the 95% confidence

interval with precision of 0.025 (2.5%). For this purpose, Student’s t-test

is used assuming that the individual observations are independent and

their population follows the normal distribution. The validity of these

assumptions is verified using Pearson’s chi-squared test. When it is

mentioned a single number such as floating-point performance (in

MFLOPs or GFLOPs), we imply the sample mean determined using the

163

Student’s t-test.

The function MeanUsingT test, shown in Algorithm 7, determines the

sample mean for a data point. For each data point, the function

repeatedly executes the application app until one of the following three

conditions is satisfied:

1. The maximum number of repetitions (maxReps) is exceeded (Line

3).

2. The sample mean falls in the confidence interval (or the precision

of measurement eps is achieved) (Lines 13-15).

3. The elapsed time of the repetitions of application execution has

exceeded the maximum time allowed (maxT in seconds) (Lines

16-18).

So, for each data point, the function MeanUsingT test returns the

sample mean mean. The function Measure measures the execution

time using gettimeofday function.

• In the experiments, the minimum and maximum number of repetitions

are setted, minReps and maxReps, to 10 and 100000. The values of

maxT , cl, and eps are 3600, 0.95, and 0.025. If the precision of

measurement is not achieved before the completion of maximum

number of repeats, the number of repetitions and also the allowed

maximum elapsed time are increased. Therefore, it is sure that

statistical confidence is achieved for all the data points that are used in

performance profiles.

164

Algorithm 7 Function determining the mean of an experimental run using
Student’s t-test.

1: procedure MeanUsingTtest(app,minReps,maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, repsOut ∈ Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← measure(TIME)
5: Execute(app)
6: et← measure(TIME)
7: reps← reps+ 1
8: etime← etime+ et− st
9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum

< eps then
14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum

22: etimeOut← etime; mean← sum
reps

23: end procedure 165

Appendix C

HCLLIMB: Software for

Bi-objective Optimization of

DGEMM and FFT on Modern

Multicore CPUs for Performance

and Energy

Data Partitioning Algorithm Using FPMs

The routine PARTITION routine checks if the variation of the speeds for each

data point is less than or equal to user-input tolerance ε (Algorithm 8, Line

3). If a point exists for which the variation exceeds ε, then we determine the

distribution of the rows using the data partitioning algorithm HPOPTA [70] (Line

5). If all the variations are less than or equal to ε, we determine the average of

the speeds for each data point (Line 7. The averaged speed function is then

input to POPTA [68] to determine the data partitioning of the rows (Line 9).

The data distribution is output in the array, d = {d1, · · · , dp}.

166

Algorithm 8 Data partitioning of rows of signal matrixM of size N ×N using the FPMs.

1: procedure Partition(N, p,S, ε, d)

Input:
N , Number of rows in the signal matrix, N ∈ Z>0

Number of abstract processors, p ∈ Z>0

Functional performance model (speed functions) represented by,

S = {S1, ..., Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈ [1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
User tolerance, ε ∈ R>0

Output:
Optimal partitioning of the rows of the signal matrix, d = {d1, ..., dp}, di ∈ Z>0,∀i ∈ [1, p]

2: for point← 1,m do
3: rdiff ← maxp

i=1 si[point][N]−minp
i=1 si[point][N]

minp
i=1 si[point][N]

4: if (rdiff > ε) then
5: return HPOPTA(N, p, S, d)
6: end if
7: Savg[point]← p∑p

i=1
1

si[point][N]

8: end for
9: return POPTA(N, p, Savg, d)

10: end procedure

167

Transpose of square matrix of size n× n using blocking.

1 void hcl_transpose_scalar_block(

2 fftw_complex* X1,

3 fftw_complex* X2,

4 const int i, const int j,

5 const int n,

6 const int block_size)

7 {

8 int p, q;

9

10 for (p = 0; p < min(n-i,block_size); p++) {

11 for (q = 0; q < min(n-j,block_size); q++) {

12 int index1 = i*n+j + p*n+q;

13 int index2 = j*n+i + q*n+p;

14

15 if (index1 >= index2)

16 continue;

17

18 double tmpr = X1[p*n+q][0];

19 double tmpi = X1[p*n+q][1];

20 X1[p*n+q][0] = X2[q*n+p][0];

21 X1[p*n+q][1] = X2[q*n+p][1];

22 X2[q*n+p][0] = tmpr;

23 X2[q*n+p][1] = tmpi;

24 }

25 }

26 }

27

28 void hcl_transpose_block(

29 fftw_complex* X,

30 const int start, const int end,

31 const int n,

32 const unsigned int nt,

33 const int block_size)

34 {

35 int i, j;

36

37 #pragma omp parallel for shared(X) private(i, j) num_threads(nt)

38 for (i = 0; i < end; i += block_size) {

39 for (j = 0; j < end; j += block_size) {

40 hcl_transpose_scalar_block(

41 &X[start + i*n + j],

42 &X[start + j*n + i],

43 i, j, n, block_size);

44 }

45 }

46 }

168

Shared Memory Implementation of PFFT_LIMB Employing

IMKL FFT

For the implementation using IMKL FFT, two groups of 18 threads each are

used, (p = 2, t = 18).

The routine PFFT_LIMB_INTEL_MKL shows the implementation of

PFFT_LIMB using the FFTW interface. Lines 2-3 sets the number of threads

to use during the execution of a 1D-FFT. Lines 4-8 show the execution of row

1D-FFTs by the two abstract processors (groups of 18 threads each) in

parallel. Line 9 contains the fast transpose of the signal matrix. Lines 10-14

show the execution of row 1D-FFTs by the two abstract processors (groups of

18 threads each) in parallel. Line 15 contains invocation of the fast transpose.

The transpose routine using blocking can be found above.

169

Algorithm 9 IMKL implementation of PFFT_LIMB using FFTW interface employing two
groups (p = 2) of t threads each.

1: procedure PFFT_LIMB_INTEL_MKL(id, d,N,M)

Input:
M, Signal matrix of size N ×N,N ∈ Z>0

Workload distribution, d = {d1, d2}, d1, d2 ∈ Z>0

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: fftw_init_threads()

3: fftw_plan_with_nthreads(t)

4: #pragma omp parallel sections num_threads(2)
5: #pragma omp section
6: 1d_row_ffts_local_padded(1, d1, N,M)

7: #pragma omp section
8: 1d_row_ffts_local_padded(2, d2, N,M)

9: Tranpose(M)

10: #pragma omp parallel sections num_threads(2)
11: #pragma omp section
12: 1d_row_ffts_local_padded(1, d1, N,M)

13: #pragma omp section
14: 1d_row_ffts_local_padded(2, d2, N,M)

15: Tranpose(M)

16: fftw_cleanup_threads()

17: returnM
18: end procedure

170

Shared Memory Implementation of PFFT_LIMB Employing

FFTW

For the implementation using FFTW-3.3.7, four groups of 9 threads each are

used, (p = 4, t = 9).

The routine PFFT_LIMB_FFTW shows the implementation of PFFT_LIMB.

Lines 2-3 sets the number of threads to use during the execution of a 1D-FFT.

Lines 4-12 show the execution of row 1D-FFTs by the four abstract processors

(groups of 9 threads each) in parallel. The only thread-safe routine in FFTW is

fftw_execute. All the other routines such an plan creation (fftw_plan_many_dft)

and plan destruction (fftw_destroy_plan) must be called from one thread at a

time. Line 13 contains the fast transpose of the signal matrix. Lines 14-22

show the execution of row 1D-FFTs by the four abstract processors (groups of

9 threads each) in parallel. Line 15 contains invocation of the fast transpose.

The transpose routine using blocking can be found above.

171

Algorithm 10 FFTW implementation of PFFT_LIMB employing two groups (p = 4) of t
threads each.
1: procedure PFFT_LIMB_FFTW(d,N,M)

Input:
M, Signal matrix of size N ×N,N ∈ Z>0

Workload distribution, d = {d1, d2, d3, d4}, di ∈ Z>0,∀i ∈ [1, 4]

Output:
M, Signal matrix of size N ×N,N ∈ Z>0

2: fftw_init_threads()

3: fftw_plan_with_nthreads(t)

4: #pragma omp parallel sections num_threads(4)
5: #pragma omp section
6: 1d_row_ffts_local_padded(1, d1, N,M)

7: #pragma omp section
8: 1d_row_ffts_local_padded(2, d2, N,M)

9: #pragma omp section
10: 1d_row_ffts_local_padded(3, d3, N,M)

11: #pragma omp section
12: 1d_row_ffts_local_padded(4, d4, N,M)

13: Tranpose(M)

14: #pragma omp parallel sections num_threads(4)
15: #pragma omp section
16: 1d_row_ffts_local_padded(1, d1, N,M)

17: #pragma omp section
18: 1d_row_ffts_local_padded(2, d2, N,M)

19: #pragma omp section
20: 1d_row_ffts_local_padded(3, d3, N,M)

21: #pragma omp section
22: 1d_row_ffts_local_padded(4, d4, N,M)

23: Tranpose(M)

24: fftw_cleanup_threads()

25: returnM
26: end procedure

172

Shared Memory Implementation of PMM_LIMB Employing

OpenBLAS DGEMM

The implementation of OpenBLAS DGEMM using four groups of 18 threads

each (p = 4, t = 18).

The routine PMM_OPEN_BLAS shows the implementation of PMM_LIMB

using OpenBLAS DGEMM. On lines 2-6 it calls routine memcpy. We checked

that implementation with memcpy is faster than that through sending

addresses of matrixes to dgemm routine. On lines 7-15 the routine dgemm is

called on each processor. Lines 16-20 call memcpy to return the result. Line

21 returns product matrix C.

173

Algorithm 11 OpenBLAS implementation of PMM_LIMB employing four groups (p = 4) of
18 threads (t = 18) each.

1: procedure PMM_OPEN_BLAS(id, d,N,A,B,C)

Input:
A,B and C are matrices of size N ×N,N ∈ Z>0

Workload distribution, d = {d1, d2, d3, d4}, d1, d2, d3, d4 ∈ Z>0

Output:
matrix C - the product of two dense square matrices A and B of size N ×N,N ∈ Z>0

2: #pragma omp parallel for num_threads(72)
3: MEMCPY (d1, N,A_1, A,C_1, C)

4: MEMCPY (d2, N,A_2, A,C_2, C)

5: MEMCPY (d3, N,A_3, A,C_3, C)

6: MEMCPY (d4, N,A_4, A,C_4, C)

7: #pragma omp parallel sections num_threads(4)
8: #pragma omp section
9: DGEMM(1, d1, N,A_1, B,C_1)

10: #pragma omp section
11: DGEMM(2, d2, N,A_2, B,C_2)

12: #pragma omp section
13: DGEMM(3, d3, N,A_3, B,C_3)

14: #pragma omp section
15: DGEMM(4, d4, N,A_4, B,C_4)

16: #pragma omp parallel for num_threads(72)
17: MEMCPY (d1, N,A,A_1, C, C_1)

18: MEMCPY (d2, N,A,A_2, C, C_2)

19: MEMCPY (d3, N,A,A_3, C, C_3)

20: MEMCPY (d4, N,A,A_4, C, C_4)

21: return C
22: end procedure

174

Shared Memory Implementation of PMM_LIMB Employing

IMKL DGEMM

The implementation of IMKL DGEMM using two groups of 18 threads each

(p = 2, t = 18).

The routine PMM_INTEL_MKL shows the implementation of PMM_LIMB

using OpenBLAS DGEMM. On lines 2-4 it calls routine memcpy. We checked

that implementation with memcpy is faster than that through sending

addresses of matrixes to dgemm routine. On lines 5-9 the routine dgemm is

called on each processor. Lines 10-12 call memcpy to return the result. Line

21 returns product matrix C.

Algorithm 12 Intel MLK implementation of PMM_LIMB employing two groups (p = 2) of
18 threads (t = 18) each.

1: procedure PMM_INTEL_MKL(id, d,N,A,B,C)

Input:
A,B and C are matrices of size N ×N,N ∈ Z>0

Workload distribution, d = {d1, d2}, d1, d2 ∈ Z>0

Output:
matrix C - the product of two dense square matrices A and B of size N ×N,N ∈ Z>0

2: #pragma omp parallel for num_threads(72)
3: MEMCPY (d1, N,A_1, A,C_1, C)

4: MEMCPY (d2, N,A_2, A,C_2, C)

5: #pragma omp parallel sections num_threads(2)
6: #pragma omp section
7: DGEMM(1, d1, N,A_1, B,C_1)

8: #pragma omp section
9: DGEMM(2, d2, N,A_2, B,C_2)

10: #pragma omp parallel for num_threads(72)
11: MEMCPY (d1, N,A,A_1, C, C_1)

12: MEMCPY (d2, N,A,A_2, C, C_2)

13: return C
14: end procedure

175

Implementation of PMMTG-H Based on OpenBLAS DGEMM

Here is described an OpenBLAS implementation of PMMTG-H.

The inputs to an implementation are: a). Matrices A, B, and C of sizes

N ×N ; b). Constants α and β; c) The number of threadgroups, {P1, · · · , Pp};
d). The number of threads in each threadgroup represented by t. The output

matrix, C, contains the matrix product.

The vertical partitions of A and C, {APi , CPi}, i ∈ [1, p], assigned to the

threadgroups, {P1, ..., Pp}, are initialized in Lines 24-34. Then p pthreads

representing the p threadgroups are created, each a multithreaded

OpenBLAS DGEMM kernel executing t OpenMP threads (Lines 36-43).The p

threadgroups compute the matrix-matrix product (Lines 1-20). The result is

gathered in the matrix C (Lines 45-56).

The implementations using IMKL differ from those using OpenBLAS. In

IMKL, the matrix-matrix computation by a threadgroup is performed using an

OpenMP parallel region with t threads whereas the same is done in

OpenBLAS using a pthread.

176

1 void *dgemm(void *input){

2 int i = *(int*)input;

3 openblas_set_num_threads(t);

4 goto_set_num_threads(t);

5 omp_set_num_threads(t);

6 if (i == 1){

7 cblas_dgemm(CblasRowMajor, CblasNoTrans,

8 CblasNoTrans, N/p, N, N, alpha, A1, N,

9 B, N, beta, C1, N);

10 }

11 ...

12 if (i == p){

13 cblas_dgemm(CblasRowMajor, CblasNoTrans,

14 CblasNoTrans, N/p, N, N, alpha, Ap, N,

15 B, N, beta, Cp, N);

16 }

17 }

18

19 int main() {

20 int row;

21 #pragma omp parallel for num_threads(p*t)

22 for (row = 0; row < N/p; row++) {

23 memcpy(&A1[row*N], &A[row*N], N*sizeof(double));

24 ...

25 memcpy(&Ap[row*N], &A[(p-1)*N*(N/p)+row*N],

26 N*sizeof(double));

27 memcpy(&C1[row*N], &C[row*N], N*sizeof(double));

28 ...

29 memcpy(&Cp[row*N], &C[(p-1)*N*(N/p)+row*N],

30 N*sizeof(double));

31 }

32

33 pthread_t t1, ..., tp;

34 int i1 = 1, ..., ip = p;

35 pthread_create(&t1, NULL, dgemm, &i1);

36 ...

37 pthread_create(&tp, NULL, dgemm, &ip);

38 pthread_join(tp, NULL);

39 ...

40 pthread_join(t1, NULL);

41

42 #pragma omp parallel for num_threads(p*t)

43 for (row = 0; row < N/p; row++){

44 memcpy(&A[row*N], &A1[row*N], N*sizeof(double));

45 ...

46 memcpy(&A[(p-1)*N*(N/p)+row*N], &Ap[row*N],

47 N*sizeof(double));

48 memcpy(&C[row*N], &C1[row*N], N*sizeof(double));

49 ...

50 memcpy(&C[(p-1)*N*(N/p)+row*N], &Cp[row*N],

51 N*sizeof(double));

52 }

53 }

177

Implementation of PFFTTG-H Based on FFTW

Here is described FFTW implementation of PFFTTG-H.

The inputs to an implementation are: a). Signal matrix M of size N × N ;

b). The number of threadgroups, p, {P1, · · · , Pp}; c). The number of threads

in each threadgroup represented by t. The output is the transformed signal

matrix M (considering that we are performing in-place FFT).

Lines 17-18 show the initialization of FFTW multithreaded runtime. Lines

19-25 show the creation of p FFT plans, each plan executed by a threadgroup

of t threads. Lines 1-11 illustrate the creation of a plan using

fftw_dft_plan_many routine. Lines 26-39 show the execution and destruction

of the plans (1D-FFTs on rows) by the threadgroups. This is followed by

transpose of the signal matrix (Line 40). Lines 41-46 contain the creation of p

FFT plans (1D-FFTs on rows) followed by their execution by the

threadgroups. Finally, the signal matrix is transposed again (Line 61). The

FFTW runtime is then destroyed (Line 62).

The implementations based on IMKL differ from those employing FFTW.

In FFTW, only plan execution (fftw_plan_many_dft) and plan destruction

(fftw_destroy_plan) are thread-safe and can be called in an OpenMP parallel

region.

178

1 fftw_plan fftw1d_init_plan(const int sign, const int m,

2 const int n, fftw_complex* X, fftw_complex* Y){

3 int rank = 1, howmany = m;

4 int s[] = {n}, idist = n;

5 int odist = n, istride = 1;

6 int ostride = 1, *inembed = s, *onembed = s;

7 return fftw_plan_many_dft(rank, s, howmany,

8 X, inembed, istride, idist, Y, onembed,

9 ostride, odist, sign, FFTW_ESTIMATE);

10 }

11

12 int fftw2d(const int sign, const int p, const int N,

13 const unsigned int t, const unsigned int blockSize,

14 fftw_complex* X){

15 fftw_init_threads();

16 fftw_plan_with_nthreads(t);

17 fftw_plan plan1, plan2, ..., planp;

18 plan1 = fftw1d_init_plan(sign, N/p, N, X, X);

19 plan2 = fftw1d_init_plan(sign, N/p, N,

20 &X[(N/p)*N], &X[(N/p)*N]);

21 ...

22 planp = fftw1d_init_plan(sign, N-(p-1)*(N/p), N,

23 &X[(p-1)*(N/p)*N], &X[(p-1)*(N/p)*N]);

24

25 #pragma omp parallel sections num_threads(p){

26 #pragma omp section{

27 fftw_execute(plan1);

28 fftw_destroy_plan(plan1);

29 }

30 ...

31 #pragma omp section{

32 fftw_execute(plan12);

33 fftw_destroy_plan(plan12);

34 }

35 }

36 hcl_transpose_block(X, 0, N, N, t, blockSize);

37 plan1 = fftw1d_init_plan(sign, N/p, N, X, X);

38 plan2 = fftw1d_init_plan(sign, N/p, N,

39 &X[(N/p)*N], &X[(N/p)*N]);

40 ...

41 planp = fftw1d_init_plan(sign, N-(p-1)*(N/p), N,

42 &X[(p-1)*(N/p)*N], &X[(p-1)*(N/p)*N]);

43

44 #pragma omp parallel sections num_threads(p){

45 #pragma omp section{

46 fftw_execute(plan1);

47 fftw_destroy_plan(plan1);

48 }

49 ...

50 #pragma omp section{

51 fftw_execute(plan12);

52 fftw_destroy_plan(plan12);

53 }

54 }

55 hcl_transpose_block(X, 0, N, N, nt, blockSize);

56 fftw_cleanup_threads();

57 }

179

Best Form of Partitioning: OpenBLAS and IMKL DGEMM

Figures C.1 and C.2 depict the best form of partitioning between horizontal,

vertical and square for OpenBLAS DGEMM and IMKL DGEMM respectively.

The configurations of (g,t) for each form of partitioning were chosen using the

average speedup of each configuration (g,t) over the base implementation.

The difference between forms of partitioning is less than 3%.

Figure C.1: Best form of partitioning for OpenBALS DGEMM

Figure C.2: Best form of partitioning for IMKL DGEMM

180

Full speed functions using FFTW-3.3.7 and IMKL FFT

Figure C.3: Full speed function of FFTW-3.3.7.

Figure C.4: Full speed function of IMKL FFT.

181

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation Behind This Thesis
	Performance Optimization on Modern Multicore CPUs
	Energy Optimization on Modern Multicore CPUs
	Bi-Objective Optimization for Performance and Energy

	Thesis Contributions
	Thesis Structure

	Background and Related Work
	Multicore CPUs: Performance Optimization
	Performance Models of Computation
	Code Tuning
	Scheduling
	Data Partitioning

	Multicore CPUs: Energy Optimization
	Terminology
	Energy Models of Computation
	System-level and Component-level Optimization
	Application-level Optimization

	Bi- and Multi-objective Optimization in HPC
	Multi-Objective Optimization in HPC
	Bi-objective Optimization for Performance and Energy

	Summary

	Novel Single-objective Optimization Methods for Performance and Energy On Modern Multicore CPUs
	Performance and Energy Optimization on Modern Multicore CPUs: Challenges
	Performance Optimization Using Workload Distribution as a Decision Variable
	Load Imbalancing Using Uneven Workload Distribution
	PFFT-FPM Employing 2D Fast Fourier Transform
	PFFT-FPM-PAD Employing 2D FFT
	PMM-FPM Employing Parallel Matrix Multiplication
	Experimental Analysis
	Summary

	Performance and Energy Optimization Using Threadgroups and Threads per Group as Decision Variables
	Solution Method Using Threadgroups and Threads as Decision Variables (SOPPETG)
	Parallel Matrix-Matrix Multiplication Using SOPPETG
	2D Fast Fourier Transform Using SOPPETG
	Experimental Analysis for Performance
	Experimental Analysis for Energy
	Summary

	Conclusion

	Bi-objective Optimization for Performance and Energy on Modern Multicore CPUs
	Multi-Objective Optimization: Background
	Introduction in BOPPETG
	Experimental Results and Discussion
	Analysis Using Performance and Dynamic Energy Models
	Conclusion

	Conclusion
	Future Work

	Appendices
	Analysis of Performance Profiles of Data-parallel Applications on Modern Multicore CPUs
	Methodology for Reliable Experimental Results
	HCLLIMB: Software for Bi-objective Optimization of DGEMM and FFT on Modern Multicore CPUs for Performance and Energy

