

Experimental Study of Six Different Parallel Matrix-Matrix Multiplication

Applications for Heterogeneous Computational Clusters of Multicore

Processors

Pedro Alonso

1
, Ravi Reddy

2
, Alexey Lastovetsky

2

School of Computer Science and Informatics, University College Dublin

Technical Report UCD-CSI-2009-2

February, 2009

Abstract
In this document, we describe two strategies of distribution of computations that can be used to

implement parallel solvers for dense linear algebra problems for Heterogeneous Computational Clusters

of Multicore Processors (HCoMs). These strategies are called Heterogeneous Process Distribution

Strategy (HPS) and Heterogeneous Data Distribution Strategy (HDS). They are not novel and have

already been researched thoroughly. However, the advent of multicores necessitates enhancements to

them.

We conduct experiments using six applications utilizing the various distribution strategies to perform

parallel matrix-matrix multiplication (PMM) on a local HCoM. The first application calls ScaLAPACK

PBLAS routine PDGEMM, which uses the traditional homogeneous strategy of distribution of

computations. The second application is an MPI application, which utilizes HDS to perform the PMM.

The application requires an input, which is the two-dimensional processor grid arrangement to use during

the execution of the PMM. The third application is also an MPI application but that uses HPS to perform

the PMM. The application requires two inputs, which are the number of threads to run per process and the

two-dimensional process grid arrangement to use during the execution of the PMM. The fourth

application is the HeteroMPI application using the HDS strategy. It calls the HeteroMPI group

management routines to determine the optimal two-dimensional processor grid arrangement and uses it

during the execution of the PMM. The fifth application is the HeteroMPI application using the HPS

strategy. It calls the HeteroMPI group management routines to determine the optimal two-dimensional

process grid arrangement given the number of threads per process is preconfigured and uses it during the

execution of the PMM. The final application is the Heterogeneous ScaLAPACK application, which

applies the HPS strategy and reuses the ScaLAPACK PBLAS routine PDGEMM. The number of threads

to run per process must be preconfigured.

We then compare the results of execution of these six applications. The results reveal that the two

strategies can compete with each other. The MPI applications employing HDS perform the best since they

fully exploit the increased thread-level parallelism (TLP) provided by the multicore processors. However,

for large problem sizes, the non-cartesian nature of the data distribution may lead to excessive

communications that can be very expensive. For such cases, the HPS strategy has been shown to equal

and even out-perform the HDS strategy. We also conclude that HeteroMPI is a valuable tool to implement

heterogeneous parallel algorithms on HCoMs because it provides desirable features that determine

optimal values of the algorithmic parameters such as the total number of processors and the 2D processor

grid arrangement.

__
1

Department of Information Systems and Computation, Polytechnic University of Valencia

(palonso@dsic.upv.es)
2

School of Computer Science and Informatics, University College Dublin

(manumachu.reddy, alexey.lastovetsky)@ucd.ie

Contents

1 Introduction... 3

2 Homogeneous ScaLAPACK Application Using PDGEMM ... 8

3 MPI Application Using HDS.. 9

4 HeteroMPI Application Using HDS .. 12

4.1 Determination of the Optimal Algorithmic Parameters ... 17

4.1.1 Data Distribution Blocking Factor .. 18

4.1.2 Two-dimensional Process Grid Arrangement.. 19

5 MPI Application Using HPS .. 21

6 HeteroMPI Application Using HPS .. 21

7 Heterogeneous ScaLAPACK Application Using HPS... 21

8 Experimental Results.. 25

9 Conclusions.. 44

10 Summary and Future Work .. 45

References .. 46

1 Introduction

Parallel platforms employing multicores are becoming dominant systems in High Performance

Computing (HPC). Almost 90% of the supercomputing systems in the Top500 list [1] are based

on dual-core or quad-core architectures. This rapid widespread utilization of multicore

processors is due to several factors [2]. First, system builders have encountered insurmountable

physical barriers to further increases in processor clock speeds. These are excessive production

of heat, consumption of power, and leakage of voltage. Multicore designs are a natural response

to this situation. By putting multiple processor cores on a single die, architects can continue to

increase the number of gates on a chip without increasing the power densities. Second, the pins

that connect the processor to main memory have become a bottleneck, with both the rate of pin

growth and the bandwidth per pin slowing down. Physical limits on the number of pins and

bandwidth on a single chip mean that gap between processor performance and memory

performance will get progressively worse. And finally, due to the aforementioned fundamental

physical limitations, commodity off-the-shelf (COTS) processors which were used to build tera-

and petascale systems, due to their economic viability, will be unlikely to deliver the capabilities

that cutting-edge research applications require. This would imply that these systems would now

be built using heterogeneous constellations of special purpose processing elements from different

vendors. Examples include hardware accelerators, GPUs, FGPAs, and communication

processors (NIC-processing, RDMA).

Therefore, to summarize, computers containing multicore processors will become ubiquitous

soon and will be widely deployed in clusters purposely built to tackle the most challenging

scientific and engineering problems. A cluster built from such computers, called the

Heterogeneous Computational Cluster of Multicore Processors (HCoM), will be inherently

heterogeneous due to the following reasons:

• Different computers in a HCoM may contain differing number of multicore processors from

different vendors with different processing capabilities. Already, a computer built using

heterogeneous multicore processors, for example, CELL BE, GPUs etc, has become a reality;

• Communications between multicore processors inside a computer will be faster compared to

the communications between computers because they use shared memory, and therefore a

HCoM should be visualized and modeled as a tree/multilevel hierarchy of interconnected sets

of multicore processors.

Therefore, the heterogeneity can arise from two different sources:

• Heterogeneity of the multicore processors. The heterogeneity could be due to the multicore

processors having different processing speeds. This could be because either they are from the

same vendor but have different number of cores or they are from different hardware vendors

or some of them are old and some new, the old obviously exhibiting slower processing speed;

• Heterogeneity of the communications. A HCoM should be visualized and modeled as a

tree/multilevel hierarchy of interconnected sets of multicore processors. The communications

between different computers connected by a common nework on the same level (for

example, ethernet) are more expensive compared to communications between multicore

processors inside a computer (typically using shared memory). The communication segments

connecting different computers on different levels could also have differing latencies and

bandwidths.

Therefore, the advent of multicores pose many challenges to writing parallel solvers for dense

linear algebra problems for a HCoM. Addressing these challenges would entail redesign and

rewriting of parallel algorithms to take into account the increased TLP, and the hierarchical

nature of communications, satisfying the criteria of fine granularity, as cores are associated with

relatively small local memories, and asynchronicity, to hide the latency of access to memory.

Algorithms hitherto considered unsuitable/unscalable for being communication-intensive or due

to high computation-to-communication ratio (granularity) will therefore have to be revisited.

These criteria can be satisfied when an algorithm can generate a collection of independent tasks,

each having a high ratio of floating point calculations to data required, that is, all the tasks

involved are of Level 3 BLAS.

These solvers must take into account the aforementioned heterogeneities and provide

“scalable” parallelism where speedups obtained are proportional to the number of cores as one

scales from 4-16-128 and more cores. They must be written using hybrid programming models,

for example MPI [3] plus OpenMP/Pthreads [4] where the communications between multicore

processors are performed using optimized MPI communication routines and the computations

locally are performed using threads exploiting the increased TLP provided by the multicores. To

state the obvious, these solvers must also be automatically tuned for a HCoM, which means that

they must automate the following complex optimization tasks, which are also described in [5]:

• Determination of the accurate values of platform parameters such as speeds of the processors,

latencies and bandwidths of the communication links connecting different pairs of

processors;

• Using an efficient communication model that would reflect the hierarchical nature of

communications and would accurately predict the time of different types of communications,

for example p2p, broadcast, gather, scatter etc. between different sets of processors on

different levels;

• Determination of the optimal values of algorithmic parameters such as data distribution

blocking factor and two-dimensional processor grid arrangement to be used during the

execution of the parallel linear algebra routines, and finally

• Efficient mapping of the processes executing the parallel algorithm to the computers of the

HCoM.

There are two strategies of distribution of computations that can be used to implement parallel

solvers for dense linear algebra problems for a HCoM [6]. These strategies are not novel and

have already been researched thoroughly. However, the advent of multicores necessitates

enhancements to them.

Heterogeneous Process Distribution Strategy (HPS): In this strategy, more than one process is

executed per computer. Each process gets the same amount of data, for example a sub-matrix

obtained from partitioning the matrix between the processes. The number of processes executed

on the computer multiplied by the number of threads run per process is equal to the number of

cores in the computer. It is assumed that the native compiler produces code that treats a process

as a thread, that is, it does not differentiate between a process and a thread. So two processes

executed with two threads each would be equivalent to a single process with four threads and

would utilize four cores. So depending on the problem size, there is an optimal number of

processes to be executed on a computer and an optimal number of threads to run per process, that

is, there is an optimal (process, thread) combination. The local computations are performed using

optimized threaded BLAS library.

This definition differs from the original definition, which can be summarized as follows:

• The whole computation is partitioned into a large number of equal chunks;

• Each chunk is performed by a separate process;

• The number of processes run by each processor is proportional to its speed.

Thus, while distributed evenly across parallel processes, data and computations are distributed

unevenly over processors of the heterogeneous computational cluster so that each processor

performs the volume of computations proportional to its speed.

The difference is that the number of processes executed per computer in the modified strategy is

equal to the number of cores. Therefore, the condition of proportionality of the number of

processes run per processor proportional to its speed is relaxed.

Heterogeneous Data Distribution Strategy (HDS): In this strategy, one process is executed per

computer (the computer may have one or more processors). The volume of data allocated to a

computer is proportional to the speed of the computer. The number of threads run per computer

is equal to the number of cores in the computer. This is to ensure that all the cores are fully

utilized during the execution of the program. There is an unstated assumption here that the native

compiler on the computer generates optimized code that fully utilizes all the cores by producing

a one-to-one mapping between the cores and the threads. However, it is likely that there is an

optimal number of threads that may exceed the number of cores. This must be pre-determined

using optimized sequential routines.

It should also be noted the terms computer/process/processor are used interchangably for

applications using this strategy, for we consider a computer with one or more processors

(multicore or not) as a single entity. That is, one process is executed per computer even though

the computer may have one or more processors (multicore or not). The local computations are

performed using optimized threaded BLAS library.

There are subtle differences from the original definition of this strategy, where a processor is

considered the single entity and not a computer, which may have one or more processors.

Traditionally, in this strategy, one process is executed per processor and data is distributed over

the processes using heterogeneous block-cyclic distribution such that the volume of data

allocated to a processor is proportional to its speed. In the modified definition, a computer is

considered as a whole due to two reasons.

First, it is assumed that a computer solving a problem size given the number of threads set

equal to the number of cores will complete the execution faster than some or all of its processors

solving the same problem size. The difference is that in the first case, the solver is a sequential

one employing optimized BLAS library with the number of threads set equal to the number of

cores. In the second case, the solver is parallel because the problem is divided between the

processors in a computer. In both the cases, the time of computations is the same. However, there

are no communication overheads in the first case, whereas in the second case, there are

communication overheads due to shared-memory communications between the processors.

Notice that in both the cases the increased TLP of the cores can be exploited to the fullest extent

by making sure that the number of processes multiplied by the number of threads executed per

process is equal to the number of cores. This assumption will be invalid, of course, if the BLAS

library performing the local computations is not optimized and not threaded.

Secondly, the solution space of 2D processor arrangements to evaluate will increase

enormously if the (processor, thread) combinations need to be considered as is the case in the

original definition of the strategy. Therefore, by treating a computer as a single entity, we

eliminate this complexity.

The HPS strategy is a multiprocessing approach that is used to accelerate legacy parallel linear

algebra programs on HCoMs. It allows the complete reuse of high-quality legacy parallel linear

algebra software such as ScaLAPACK [7] on HCoMs with no redesign efforts and provides good

P
11

P
12

P
13

P
11

P
21

P
22

P
23

P
21

P
31

P
32

P
33

P
31

P
11

P
12

P
13

P
11

P
12

P
13

P
11

P
12

P
22

P
23

P
21

P
11

P
13

P
11

P
11

P
11

P
12

P
13

P
23

P
11

P
21

P
31

P
12

P
13

P
11

P
12

P
22

P
32

P
21

P
31

P
11

P
22

P
23

P
33

P
32

P
13

P
12

P
11

P
13

P
23

P
33

P
12

P
13

P
22

P
23

P
32

P
33

P
13

P
12

P
23

P
22

P
21

P
23

P
22

P
21

P
31

P
32

P
33

P
31

P
11

P
13

P
12

P
11

P
21

P
23

P
22

P
21

P
21

P
22

P
31

P
32

P
33

P
13

P
11

P
12

P
13

P
23

P
22

P
21

P
23

P
33

P
32

P
31

P
33

P
13

P
12

P
11

P
13

P
23

P
22

P
21

P
23

P
32

P
33

P
31

P
11

P
12

P
13

P
11

P
12

P
22

P
21

P
23

P
32

P
31

P
22

P
33

P
12

P
21

P
32

P
11

P
13

P
12

P
23

P
31

P
33

P
11

P
13

P
22

P
21

P
23

P
22

P
21

P
23

P
22

P
21

P
32

P
31

P
12

P
22

P
11

P
21

P
31

P
11

P
21

P
31

P
11

P
21

P
31

P
11

P
21

P
31

P
32

P
33

P
31

P
32

P
33

P
12

P
13

P
11

P
12

P
13

P
22

P
23

P
21

P
22

P
23

P
32

P
33

P
31

P
32

P
33

P
12

P
13

P
11

P
12

P
13

P
22

P
23

P
21

P
22

P
23

P
32

P
33

P
31

P
32

P
33

P
12

P
13

P
11

P
12

P
13

P
22

P
23

P
21

P
22

P
23

P
32

P
33

P
31

P
32

P
33

P
31

P
32

P
33

P
31

P
32

P
33

P
31

P
21

P
22

P
23

P
21

P
22

P
23

P
21

P
11

P
12

P
13

P
11

P
12

P
13

P
11

P
31

P
32

P
33

P
31

P
32

P
33

P
31

P
21

P
22

P
23

P
21

P
22

P
23

P
21

P
11

P
12

P
13

P
11

P
12

P
13

P
11

P
31

P
32

P
33

P
31

P
32

P
33

P
31

P
31

P
11

P
21

P
32

P
12

P
22

P
33

P
13

P
23

P
31

P
11

P
21

P
32

P
33

P
12

P
13

P
22

P
23

P
31

P
11

P
21

P
32

P
33

P
31

P
32

P
33

P
12

P
13

P
11

P
12

P
13

P
22

P
23

P
21

P
22

P
23

P
32

P
33

P
31

P
32

P
33

P
13

P
12

P
11

P
13

P
12

P
22

P
23

P
21

P
22

P
23

P
32

P
33

P
31

P
32

P
33

P
12

P
13

P
11

P
12

P
13

P
22

P
23

P
21

P
22

P
23

P
33

P
32

P
31

P
33

P
32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

(a) Block cyclic distribution over 3x3 grid.

1 4 7 10 13 16 2 5 8 11 14 17 3 6 9 12 15 18

1

4

7

10

13

16

2

5

8

11

14

17

3

6

9

12

15

18

P
11

P
12

P
13

P
21

P
22

P
23

P
31

P
32

P
33

(b) Data distribution from process point-of-view.

Figure 1. A matrix with 18×18 blocks is distributed over a 3×3 process grid. The numbers

on the left and on the top of the matrix represent indices of a row of blocks and a column of

blocks, respectively. (a) The labelled squares represent blocks of elements, and the label

indicates at which location in the process grid the block is stored – all blocks labelled with

the same name are stored in the same process. Each shaded and unshaded area represents

different generalised blocks. (b) Each processor has 6×6 blocks.

speedups. The Heterogeneous ScaLAPACK library [8], currently under development, uses this

strategy and is built on top of HeteroMPI [9] and ScaLAPACK. It provides automatically tuned

parallel linear algebra programs for HCoMs but most importantly performs all the

aforementioned critical automations of the complex optimization tasks.

The rest of the document is organized as follows. In Section 2, we present the homogeneous

application, which calls the ScaLAPACK PBLAS PDGEMM routine to perform the parallel

matrix-matrix multiplication (PMM). We describe the ScaLAPACK outer-product algorithm

used to perform the matrix product. In Section 3, we present the MPI application utilizing the

HDS strategy. This application requires as input, the two-dimensional computer grid

arrangement to use during the execution of the PMM. The parallel algorithm used for the

execution of the matrix-matrix multiplication is a heterogeneous counterpart of the ScaLAPACK

outer-product algorithm. In Section 4, we present the HeteroMPI application using the HDS

strategy to perform the PMM. This application detects the optimal two-dimensional computer

grid arrangement using the HeteroMPI group management functions. In Section 5, we present

the MPI application utilizing the HPS strategy. This application requires as inputs, the number of

threads to run per process and the two-dimensional process grid arrangement to use during the

execution of the PMM. In Section 6, we present the HeteroMPI application using the HPS

strategy to perform the PMM. This application requires as input, the number of threads to run per

process. It detects the optimal two-dimensional process grid arrangement using the HeteroMPI

group management functions. In Section 7, we describe the Heterogeneous ScaLAPACK

application employing the multiprocessing HPS strategy and which calls the ScaLAPACK

PBLAS PDGEMM routine to perform the PMM. The number of threads per process must also be

preconfigured for this application. In Section 8, we present the experimental results comparing

the performance of the six applications. We complete this document with conclusions and future

work.

Figure 2. One step of the algorithm of parallel matrix-matrix multiplication (from the

process point-of-view). First, the pivot column ka• of b×b blocks of matrix A (emitting the

curly arrows) is broadcast horizontally, and the pivot row •kb of b×b blocks of matrix B

(emitting the curly arrows) is broadcast vertically. Then, each b×b block ijc of matrix C is

updated, kjikijij bacc ×+= .

P11

P21

P31

P12

P22

P32

P13

P23

P33

B

P11

P21

P31

P12

P22

P32

P13

P23

P33

•kb

C = A×B

P11

P31

P12

P22

P32

P13

P23

P33

A

k
a•

2 Homogeneous ScaLAPACK Application Using PDGEMM

This section presents the ScaLAPACK outer-product algorithm used in the parallel matrix-

matrix multiplication (PMM) of two dense nn × matrices A and B on a 2D process grid of size

p×q, [] []qjpiPij ,1,1, ∈∧∈∀ . The routine performing the PMM is PDGEMM. The algorithm can

be summarized as follows:

• The matrices A, B and C are distributed over the processes using the two-dimensional block

cyclic distribution illustrated in Figure 1. Figure 1(a) shows the distribution from the matrix

point-of-view. Figure 1(b) shows the distribution from the process point-of-view. The

distribution scheme can be summarized as follows:

o Each element in A, B, and C is a square b×b block. The unit of computation is the

updating of one block, i.e., a matrix multiplication of size b;

o The blocks are scattered in a cyclic fashion along both dimensions of the p×q process

grid, so that for all },,1{,
b

n
ji K∈ blocks ijijij cba ,, will be mapped to process IJP so

that 1mod)1(+−= piI and 1mod)1(+−= qjJ .

• The algorithm consists of
b

n
 steps. Figure 2 shows the operation of the algorithm from the

process point-of-view. As shown in the figure, there is one-to-one mapping between the

squares and the processes. Each process is responsible for computing its C square. At each

step k = 








b

n
,,1K of the algorithm,

o The pivot column ka• is owned by the column of processes
p

iiKP 1}{
1 =

where () 1mod11 +−= qkK and the pivot row •kb is owned by the row of processes

q

jjKP 1}{
2 = , where () 1mod12 +−= pkK ;

o Each process PiK1
 (for all },,1{ pi K∈) horizontally broadcasts its part of the pivot

column ka• to processes •iP (see Figure 2);

o Each process PK2j (for all },,1{ qj K∈) vertically broadcasts its part of the pivot row

•kb to processes jP• (see Figure 2);

o Each process Pij receives the corresponding part of the pivot column and pivot row and

uses them to update each b×b block of its C square (implemented using a level-3 BLAS

call) (see Figure 2).

Thus, after
b

n
 steps of the algorithm, each block ijc of matrix C will be

∑
=

×=
b

n

k

kjikij bac
1

,

i.e., BAC ×= .

P
12

P
22

P
23

P
33

P
32

P
31

P
11

P
13

P
21

1 2 3 4 5 6 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

3•P
2•P

1•P

(a) Partition between processor columns. (b) Partition inside each processor column.

Figure 3. Example of two-step distribution of a 6×6 square over a 3×3 processor grid. The

relative speed of processors is given by matrix
















=
03.017.005.0

08.009.017.0

05.025.011.0

s . (a) At the first step,

the 6×6 square is distributed in a one-dimensional block fashion over processors columns of

the 3×3 processor grid in proportion 1:3:216.0:51.0:33.0 ≈ . (b) At the second step,

each vertical rectangle is distributed independently in a one-dimensional block fashion over

processors of its column. The first rectangle is distributed in proportion

1:3:205.0:17.0:11.0 ≈ . The second one is distributed in proportion

2:1:317.0:09.0:25.0 ≈ . The third is distributed in proportion

1:3:203.0:08.0:05.0 ≈ .

3 MPI Application Using HDS

This section presents the PMM application multiplying matrix A and matrix B, where A, B, and C

are dense matrices of size m×k, k×n, and m×n matrix elements respectively on a 2D

heterogeneous processor grid of size p×q, [] []qjpiPij ,1,1, ∈∧∈∀ . We use dense square matrices

and a 2D heterogeneous processor grid of size 3×3 for illustration purposes in Figure 4. Each

matrix element is a square block of size b×b. The heterogeneous parallel algorithm [10] used to

compute this matrix product is a modification of the ScaLAPACK outer-product algorithm. It

should be noted the terms computer/process/processor are interchangable, for we consider a

computer with one or more processors (multicore or not) as a single entity. That is, one process

is executed per computer even though the computer may have one or more processors (multicore

or not). The algorithm can be summarized as follows:

• The matrices A, B, and C are divided into rectangles such that there is one-to-one mapping

between the rectangles and the processors, and the area of each rectangle is proportional to

the speed of the processor owning it. The procedure of data distribution invokes the data

partitioning algorithm [6,10], which determines the optimal 2D column-based partitioning of

a rectangular area/matrix of size m×n on a 2D heterogeneous processor grid of size p×q. The

area is partitioned into uneven rectangles so that they are arranged into a 2D grid of size p×q

and the area of a rectangle is proportional to the speed of the processor owning it. The inputs

to the procedure are

o The rectangular area of size m×n;

o The 2D processor grid of size p×q, [] []qjpiPij ,1,1, ∈∧∈∀ ;

o The single number speeds of the processors, [] []qjpisij ,1,1, ∈∧∈∀ .

The output is the heights and the widths of the rectangles, () [] []qjpicr ijij ,1,1,, ∈∧∈∀ . The

procedure can be summarized as follows:

o First, the area m×n is partitioned into q vertical slices, so that the area of the j-th slice is

proportional to ∑ =

p

i ijs
1

(see Figure 3(a)). It is supposed that blocks of the j-th slice will be

assigned to processors of the j-th column in the p×q processor grid. Thus, at this step, the

load between processor columns in the p×q processor grid is balanced, so that each

processor column will store a vertical slice whose area is proportional to the total speed of

its processors;

o Then, each vertical slice is partitioned independently into p horizontal slices, so that the

area of the i-th horizontal slice in the j-th vertical slice is proportional to sij (see Figure

3(b)). It is supposed that blocks of the i-th horizontal slice in the j-th vertical slice will be

assigned to processor Pij. Thus, at this step, the load of processors within each processor

column is balanced independently.

• The algorithm consists of
b

n
 steps. At each step k = 









b

n
,,1K of the algorithm,

o The pivot column ka• is owned by the column of processors
p

iiKP 1}{
1 = and the pivot row

•kb is owned by the row of processors
q

jjKP 1}{
2 = , where expressions for K1 and K2 are

involved;

o Each processor PiK1
 (for all },,1{ pi K∈) horizontally broadcasts its part of the pivot

column ka• to processors (horizontal neighbors) •iP (see Figure 4). For example, the

horizontal neighbors of P32 shown in Figure 4 are {P21,P31,P23,P33};

o Each processor PK2j (for all },,1{ qj K∈) vertically broadcasts its part of the pivot row

•kb to processors jP• (see Figure 4);

o Each processor Pij receives the corresponding part of the pivot column and pivot row and

uses them to update each b×b block of its C square (implemented using a level-3 BLAS

call) (see Figure 4).

Thus, after
b

n
 steps of the algorithm, each block ijc of matrix C will be

∑
=

×=
b

n

k

kjikij bac
1

,

i.e., BAC ×= .

Figure 4. One step of the algorithm of parallel matrix-matrix multiplication employing a

2D heterogeneous processor grid of size 3×3. Matrices A, B, and C are partitioned such that

the area of the rectangle is proportional to the speed of the processor owning it. First, each

b×b block of the pivot column ka• of matrix A (emitting the curly arrows) is broadcast

horizontally, and each b×b block of the pivot row •kb of matrix B (emitting the curly

arrows) is broadcast vertically. Then, each b×b block ijc of matrix C is updated,

kjikijij bacc ×+= .

Figure 5. The computational kernel (shown here for processor P12 for example) performs a

matrix update of a dense matrix Cb of size mb×nb using Ab of size mb×1 and Bb of size 1×nb.

The matrix elements represent b×b matrix blocks.

For this application, the core computational kernel performs a matrix update of a matrix Cb of

size mb×nb using Ab of size mb×1 and Bb of size 1×nb as shown in Figure 5. The size of the

problem is represented by two parameters, mb and nb. The total number of matrix elements stored

and processed on each processor is (mb×nb+mb+nb). We use a combined computation unit, which

is made up of one addition and one multiplication, to express the volume of computation.

Therefore, the total number of computation units (namely, multiplications of two b×b matrices)

performed during the execution of the benchmark code will be approximately equal to mb×nb.

The absolute speed of the processor exposed by the application when solving the problem of size

(mb,nb) can be calculated as mb×nb divided by the execution time of the matrix update.

Ab

P12

Bb

 ×

P12

 +=

Cb

P12

bm

bn

bm

bn

A B

P11

P21

P31

P12

P22

P32

P13

P23

P33

P11

P21

P31

P12

P22

P32

P13

P23

P33

k
a•

•kb

C = A×B

P11

P21

P31

P12

P22

P32

P13

P23

P33

The column-based matrix partitioning algorithm is based on the traditional performance

model, which represents the speed of a processor by a constant positive number and

computations are distributed amongst the processors such that their volume is proportional to this

speed of the processor. However, this model is less accurate in the presence of paging. The

functional performance model of heterogeneous processors [11] has proven to be more realistic

than the traditional model because it integrates many important features of heterogeneous

processors such as the processor heterogeneity, the heterogeneity of memory hierarchy, and the

effects of paging. So we use a distributed iterative data partitioning algorithm, called DIPA-2D

[12], which employs a 2D grid of heterogeneous processors and their FPMs to partition the

matrices. It has three features distinguishing it from the traditional heterogeneous parallel and

distributed algorithms employing a 2D grid of heterogeneous processors. Firstly, instead of

accepting pre-built continuous speed functions of the processors, it uses as input a computational

kernel whose execution time on a processor for a given number of computational chunks can be

used to calculate the absolute speed of the processor. Secondly, it is a distributed algorithm by

nature, and finally, it builds and uses a partially estimated FPM instead of the full FPM to

provide optimal data distribution.

4 HeteroMPI Application Using HDS

This section presents the PMM application, which is composed of two parts. First, it calls the

HeteroMPI routines to determine the optimal values of the algorithmic parameters, which are the

total number of computers and the 2D computer grid arrangement to be used in the execution of

the PMM. Second, the computers, which are members of the optimal 2D computer grid, perform

the heterogeneous PMM explained in the preceding section. It should be noted the terms

computer/process/processor are interchangable, for we consider a computer with one or more

processors (multicore or not) as a single entity. That is, one process is executed per computer

even though the computer may have one or more processors (multicore or not).

To summarize, HeteroMPI is an extension of MPI for programming high-performance

computations on heterogeneous computational clusters (HCCs). The main idea of HeteroMPI is

to automate the process of selection of a group of processes, which would execute the parallel

algorithm faster than any other group.

The first step in this process of automation is the writing/specification of the performance

model of the parallel algorithm, in this case, the performance model of the heterogeneous PMM

algorithm. Performance model is a tool supplied to the programmer to specify her high-level

knowledge of the application that can assist in finding the most efficient implementation on

HCCs. This model allows description of all the main features of the underlying parallel

algorithm that impact the execution performance of parallel applications on HCCs. These

features are:

• The total number of processes executing the algorithm;

• The total volume of computations to be performed by each of the processes in the group

during the execution of the algorithm;

• The total volume of data to be transferred between each pair of processes in the group during

the execution of the algorithm;

• The order of execution of the computations and communications by the parallel processes in

the group, that is, how exactly the processes interact during the execution of the algorithm.

Figure 6. The performance model of the heterogeneous PMM written in the performance

model definition language (first part).

/* 1 */ #define HMPI_RECT_INDEX(a, b, c, d, p, q) (a*p*q*q+b*p* q+c*q+d)
/* 2 */ nettype heteropmm(int p, int q, int n, int b, int bp, int bq, int w[p*q*p*q],
/* 3 */ int h[p*q*p*q]) {
/* 4 */ coord I=p, J=q;
/* 5 */ node {I>=0 && J>=0: bench *((double)(n/b)*
/* 6 */ ((double)(w[HMPI_RECT_INDEX(I, J, I, J, p, q)]*b*bp)/(double)n)*
/* 7 */ ((double)(h[HMPI_RECT_INDEX(I, J, I, J, p, q)]*b*bq)/(double)n));};
/* 8 */ link (K=p, L=q) {
/* 9 */ I>=0 && J>=0 && J!=L && (h[HMPI_REC T_INDEX(I, J, K, L, p, q)]>0) : length *
/* 10 */ (w[HMPI_RECT_INDEX(I, J, I, J, p, q)]*h[HMPI_RECT_INDEX(I, J, K, L, p, q)]
/* 11 */ *(b*b)* sizeof (double)) [I, J]->[K, L];
/* 12 */ I>=0 && J>=0 && I!=K : length *(w[HMPI_RECT_INDEX(I, J, I, J, p, q)]
/* 13 */ *h[HMPI_RECT_INDEX(I, J, I, J, p, q)]
/* 14 */ *(b*b)* sizeof (double)) [I, J] -> [K, J];
/* 15 */ };
/* 16 */ parent [0,0];
/* 17 */ scheme {
/* 18 */ int i, j, k, CurrentI, CurrentJ, RootI, RootJ, Receive rI, ReceiverJ, PivotI,
/* 19 */ PivotJ;
/* 20 */ for (k = 0; k < (n/b); k++) {
/* 21 */ /*
/* 22 */ * P(i,k) broadcasts a(i,k) to p(i,*) horizontally.
/* 23 */ * The processes holding the pivo t column would be
/* 24 */ * (*, RootJ);
/* 25 */ */
/* 26 */ int RootJ = q-1;
/* 27 */ int cumj = w[HMPI_RECT_INDEX(0, 0, 0, 0, p, q)];
/* 28 */ for (j = 1; j < q; j++) {
/* 29 */ if (k < cumj) {
/* 30 */ RootJ = j-1;
/* 31 */ break;
/* 32 */ }
/* 33 */ cumj += w[HMPI_RECT_INDEX(0, j, 0, j, p, q)];
/* 34 */ }
/* 35 */ par (RootI = 0; RootI < p; RootI++) {
/* 36 */ for (ReceiverI = 0; ReceiverI < p; ReceiverI++) {
/* 37 */ for (ReceiverJ = 0; ReceiverJ < q; ReceiverJ++) {
/* 38 */ if (RootJ != ReceiverJ) {
/* 39 */ int ncommon = h[HMPI_RECT_INDEX(RootI, RootJ, Receiver I,
/* 40 */ ReceiverJ, p, q)];
/* 41 */ int nsendf = w[HMPI_RECT_INDEX(RootI, RootJ, RootI, Ro otJ,
/* 42 */ p, q)];
/* 43 */ if ((ncommon > 0) && (nsendf > 0))
/* 44 */ (100./nsendf) %% [(RootI), (RootJ)] ->
/* 45 */ [(ReceiverI), (ReceiverJ)];
/* 46 */ }
/* 47 */ }
/* 48 */ }
/* 49 */ }
/* 50 */ /*
/* 51 */ * P(k,j) broadcasts a(k,j) to p(*,j) vertically.
/* 52 */ */
/* 53 */ par (ReceiverJ = 0; ReceiverJ < q; ReceiverJ++) {
/* 54 */ /*
/* 55 */ * The processes holding the pivot row would be
/* 56 */ * (RootI, *);
/* 57 */ */
/* 58 */ int RootI = p-1; int RootJ = ReceiverJ;
/* 59 */ int cumi = h[HMPI_RECT_INDEX(0, j, 0, j, p, q)];
/* 60 */ for (i = 1; i < p; i++) {
/* 61 */ if (k < cumi) {
/* 62 */ RootI = i-1;
/* 63 */ break;
/* 64 */ }
/* 65 */ cumi += h[HMPI_RECT_INDEX (i, j, i, j, p, q)];
/* 66 */ }

Figure 7. The performance model of the heterogeneous PMM written in the performance

model definition language (second part).

HeteroMPI provides a dedicated performance model definition language (PMDL) for writing

this performance model. The model and the PMDL are borrowed from the mpC programming

language [13,14]. The PMDL compiler compiles the performance model written in PMDL to

generate a set of functions, which make up the algorithm-specific part of the HeteroMPI runtime

system. These functions are called by the mapping algorithms of HeteroMPI runtime system to

estimate the execution time of the parallel algorithm.

A typical HeteroMPI application contains HeteroMPI group management function calls to

create and destroy a HeteroMPI group, and the execution of the computations and

communications involved in the execution of the parallel algorithm employed in the application

by the members of the group. The principal group constructor routine

HMPI_Group_auto_create determines the optimal number of processes and the optimal

process grid arrangement, and thereby, relieving the application programmers from having to

specify these parameters during the execution of the parallel application.

During the creation of a group of processes, the HeteroMPI runtime system solves the problem

of selection of the optimal set of processes running on different computers of the HCC. It should

be noted that this problem of mapping, in general, is NP-complete. The mapping algorithms used

to solve the problem of selection of processes are explained in [9,14]. The solution is based on

the following:

• The performance model of the parallel algorithm in the form of the set of functions generated

by the compiler from the compilation of the performance model written in PMDL;

• The performance model of the executing network of computers, which reflects the state of

this network just before the execution of the parallel algorithm. This model considers the

executing heterogeneous network as a multilevel hierarchy of interconnected sets of

heterogeneous multiprocessors [14]. This model takes into account the material nature of

communication links and their heterogeneity.

The performance model definition in PMDL of the heterogeneous parallel algorithm

(presented in the preceding section) used to perform the PMM is shown in Figure 6 and Figure 7.

/* 67 */ for (ReceiverI = 0; ReceiverI < p; ReceiverI++) {
/* 68 */ if (RootI != ReceiverI) {
/* 69 */ int ncommon = w[HMPI_RECT_INDEX(RootI, RootJ, Receiver I, RootJ,
/* 70 */ p, q)];
/* 71 */ int nsendf = h[HMPI_RECT_INDEX(RootI, RootJ, RootI, Ro otJ,
/* 72 */ p, q)];
/* 73 */ if ((ncommon > 0) && (nsendf > 0))
/* 74 */ (100./nsendf) %% [(RootI), (RootJ)] ->
/* 75 */ [(ReceiverI), (RootJ)];
/* 76 */ }
/* 77 */ }
/* 78 */ }
/* 79 */ /*
/* 80 */ * Perform local update
/* 81 */ */
/* 82 */ par (CurrentI = 0; CurrentI < p; CurrentI++)
/* 83 */ par (CurrentJ = 0; CurrentJ < q; CurrentJ++)
/* 84 */ (100./(n/b)) %% [CurrentI , CurrentJ];
/* 85 */ }
/* 86 */ };
/* 87 */ };

Lines 1-2 is a header of the performance model declaration. It introduces the name of the

performance model heteropmm . It takes as input 8 parameters. Parameters p and q represent

the number of processes along the row and the column of the 2D process grid arrangement

respectively. Parameter n is the size of square matrices A, B, and C. Parameter b specifies the

size of a square block of matrix elements, the updating of which is the unit of computation of the

algorithm. Parameters bp and bq are used in the execution of the benchmark code, which

performs a matrix update of a matrix Cb of size (n/bp)×(n/bq) using Ab of size
(n/bp)×(b) and Bb of size (b)×(n/bq) . The value of the parameter bp is the square root of

the total number of processes available for computation. The value of parameter bq is equal to

total number of processes divided by bp .

Vector parameter w specifies the widths of the rectangles of assigned to different processes of

the p×q grid. It logically represents a four-dimensional array of size [p][q][p][q] . The

width of the rectangle assigned to process PIJ is given by element w[HMPI_RECT_INDEX(I,
J, I, J, p, q)] of the parameter, logically representing the element w[I][J][I][J] .

All widths are measured in b×b blocks. Parameter h specifies the heights of rectangles of

matrix A, which are horizontally communicated between different pairs of processes. Let RIJ

and RKL be the rectangles of matrix A assigned to processes PIJ and PKL respectively. Then,

h[I][J][K][L] gives the height of the rectangle of RIJ, which is required by process PKL to

perform its computations. All heights are measured in b×b blocks. The possible combinations

are illustrated in [9].

The coord declaration introduces 2 coordinate variables, I ranging from 0 to p-1 , and J
ranging from 0 to q-1 .

The node declaration associates the processes with this coordinate system to form a p×q

process grid. It also describes the absolute volume of computation to be performed by each of the

processes. The total volume of computations performed by each process in the benchmark code

is (n/bp)×(n/bq)×b . The total volume of computation performed by each process PIJ at

each step of the parallel algorithm is

w[I][[J][I][J]*h[I][J][I][J]*(b)*(b)*(b) . Since there are n/b steps in the

parallel algorithm, the total volume would be

w[I][[J][I][J]*h[I][J][I][J]*(b)*(b)*(b)*(n/b) . The expression in the node

declaration describes the ratio of this total volume to the total volume of computations involved

in the execution of the benchmark code.

The link declaration specifies the volumes of data to be transferred between the processes

during the execution of the algorithm. The first statement in this declaration describes horizontal

communications related to matrix A. Obviously, processes from the same column of the process

grid do not send each other elements of matrix A. Process PIJ will send elements of matrix A to

process PKL only if its rectangle RIJ has horizontal neighbours of the rectangle RKL assigned to

process PKL. In that case, process PIJ will send all such neighbours to process PKL. Thus, in total,

process PIJ will send NIJKL×b×b blocks of matrix A to process PKL, where NIJKL is the number of

horizontal neighbours of rectangle RKL in rectangle RIJ. NIJKL is given by

w[I][J][I][J]*h[I][J][K][L] , and the volume of data in one b×b block is given by

(b*b)*sizeof(double) . Therefore the total volume of data transferred from process PIJ to

process PKL will be given by

w[I][J][I][J]*h[I][J][K][L]*(b*b)*sizeof(double) .

Figure 8. The main fragments of HeteroMPI program. It shows the usage of function

HMPI_Group_pauto_create , which detects the optimal 2D processor grid arrangement

to execute the heterogeneous PMM algorithm.

The second statement in the link declaration describes vertical communications related to

matrix B. Obviously, only processes from the same column of the process grid send each other

elements of matrix B. In particular, process PIJ will send all its b×b blocks of matrix B to all

other processes from column J of the process grid. The total number of b×b blocks of matrix B

assigned to process PIJ is given by w[I][J][I][J]*h[I][J][I][J]*(n/l)*(n/l) .

The scheme declaration describes n/b successive steps of the algorithm. At each step k ,

• A column of b×b blocks of matrix A is communicated horizontally. If processes PIJ and PKL

are involved in this communication so that PIJ sends a part of this column to PKL, then the

number of b×b blocks transferred from PIJ to PKL will be H[I][J][K][L] , which is the

height of the rectangle area that is communicated from PIJ to PKL. The total number of b×b

blocks of matrix A, which process PIJ sends to process PKL, is

w[I][J][I][J]*h[I][J][K][L] . Therefore,

int main(int argc, char ** argv) {
 int opt_p, opt_q, *model_params, nd, *dp;
 HMPI_Group gid;
 // Initialize HeteroMPI runtime
 HMPI_Init (&argc, &argv);
 // Refresh the speeds of the processors
 int nc = HMPI_Get_number_of_computers();
 int bp = sqrt(nc); int bq = nc/bp;
 int output_p, input_p[4] = {n, b, bp, bq};

HMPI_Recon(&dgemm_benchmark, input_p, 4, &output_p);
// Create a HeteroMPI group of MPI processes
if (HMPI_Is_host ()) {
 // The performance model parameters are filled
 model_params[0] = p;
 model_params[1] = q;
 model_params[2] = n;
 model_params[3] = b;
 …

 }
 HMPI_Group_pauto_create (&gid, &HMPI_Model_heteropmm,
 model_params);
 if (HMPI_Is_member (&gid)) {
 HMPI_Group_topology (&gid, &nd, &dp);
 opt_p = dp[0];
 opt_q = dp[1];
 MPI_Comm *pmmcomm = HMPI_Get_comm(&gid);

 // Heterogeneous PMM algorithm is performed h ere
 // calling standard MPI routines using MPI co mmunicator ‘pmmcomm’

 HMPI_Group_free (&gid);
 }
 HMPI_Finalize (0);
}

h[I][J][K][L]/(w[I][J][I][J]*h[I][J][K][L])*100=(100./
w[I][J][I][J]) percent of all data that should be sent from process PIJ to process PKL

will be sent at the step. The nested par statement in the main for loop of the scheme

declaration specifies this fact. Again, we use the par algorithmic patterns in this

specification to stress that during the execution of this communication, data transfer between

different pairs of processes is carried out in parallel;

• A row of b×b blocks of matrix B is communicated vertically. For each pair of processes PIJ

and PKJ involved in this communication, PIJ sends a part of this row to PKJ. The number of

b×b blocks transferred from PIJ to PKJ will be w[I][J][I][J] . The total number of b×b

blocks of matrix B, which process PIJ sends to process PKJ, is

w[I][J][I][J]*h[I][J][I][J] . Therefore,

w[I][J][I][J]/(w[I][J][I][J]*h[I][J][I][J])*100=(100./
h[I][J][I][J]) percent of all data that should be sent from process PIJ to process PKJ

will be sent at the step;

• Each process updates each of its b×b block of matrix C with one block from the pivot

column and one block from the pivot row, so that each block ijc (},,1{,
b

n
ji K∈) of matrix

C will be updated to have the values kjikijij bacc ×+= . The process performs the same

volume of computation at each step of the algorithm. Therefore, at each of n/b steps of the

algorithm the process will perform (100./(n/b)) percent of the volume of computations

it performs during the execution of the algorithm. The third nested par statement in the main

for loop of the scheme declaration just specifies this fact. The par algorithmic patterns

are used here to specify that all processes perform their computations in parallel.

The most interesting fragments of the rest code of the HeteroMPI parallel application are

shown in Figure 8. The HeteroMPI runtime system is initialised using operation HMPI_Init .

Then, the operation HMPI_Recon refreshes the speeds of processors. All the processors peform

the benchmark code, dgemm_benchmark , which performs a matrix update of a matrix Cb of

size (n/bp)×(n/bq) using Ab of size (n/bp)×(b) and Bb of size (b)×(n/bq) . This is

followed by the creation of a HeteroMPI group of MPI processes using the operation

HMPI_Group_pauto_create . The second parameter to this operation,

HMPI_Model_heteropmm , is a handle generated from the compilation of the performance

model, heteropmm , by the PMDL compiler. The members of this group then perform the

computations and communications of the heterogeneous PMM algorithm using standard MPI

means. This is followed by freeing the group using operation HMPI_Group_free and the

finalization of HeteroMPI runtime system using operation HMPI_Finalize .

4.1 Determination of the Optimal Algorithmic Parameters

This section describes how the optimal values of the algorithmic parameters are determined.

These are the data distribution blocking factor (b) and the 2D processor grid arrangement

(p,q) .

4.1.1 Data Distribution Blocking Factor

The HeteroMPI function HMPI_Timeof , as shown below, is used to determine the optimal

value of the data distribution blocking factor.

int b, opt_b;
double time, min_time = DBL_MAX; void *model_params;
for (b = 1; b <= n; b++) {
 // Fill the parameters to the performance model
 model_params[0] = p; model_params[1] = q;
 …
 HMPI_Recon(&dgemm_benchmark, model_params);
 if (HMPI_Is_host ())
 time = HMPI_Timeof (&HMPI_Model_heteropmm, model_params);
 if (time < min_time) {
 opt_b = b; min_time = time;
 }
}

The function HMPI_Timeof is used to estimate the execution time of the algorithm on the

underlying hardware without its real execution. This is a local operation that can be called by any

process, which is a member of the group associated with the predefined communication universe

of HeteroMPI. The parameters to this function are the handle, HMPI_Model_heteropmm ,

generated from the compilation of the performance model of the heterogeneous PMM algorithm,

and the parameters to this performance model. As one can see from the code snippet, this

estimation is performed for each possible set of values to the parameters to the performance

model. Using the execution time predicted for each set, the optimal value can be determined,

which would be the one resulting in minimum estimated execution time.

The estimation is based on the performance model of the heterogeneous PMM algorithm and

the performance model of the executing network of computers, which reflects the state of this

network just before the execution of the heterogeneous PMM algorithm. The function

HMPI_Recon is used to dynamically update the estimation of processor speeds at runtime. This

is a collective operation and must be called by all the processes running in the application. The

performance model of the executing network of computers is summarized as follows:

• The performance of each processor is characterized by the execution time of the same serial

code (takes place during the execution of HMPI_Recon)

o The serial code is provided by the application programmer;

o It is supposed that the code is representative for the computations performed during the

execution of the application;

o The code is performed at runtime in the points of the application specified by the

application programmer. Thus, the performance model of the processors provides

current estimation of their speed demonstrated on the code representative for the

particular application.

In this case, the serial code, hscal_dgemm_benchmark, performs a local DGEMM update of

(N/bp)×b and b×(N/bq) matrices where b is the data distribution blocking factor;

• The communication model [14] is seen as a hierarchy of homogeneous communication

layers. Each is characterized by the latency and bandwidth. Unlike the performance model of

processors, the communication model is static, a shortcoming that would be addressed in our

future work. Its parameters are obtained during the initialization of the HeteroMPI runtime

and are not refreshed later.

The estimation procedure is explained in detail in [14] and is summarized here. The time of

execution for each mapping, � :I->C, where I is a set of the processes of the group, and

C={c0,c1,…,cM-1} is a set of computers of the executing network, is estimated. The estimation

time for the optimal mapping, which would ensure the fastest execution of the parallel algorithm,

is returned. In general, for accurate solution of this problem as many as M
K
 possible mappings

have to be probated to find the best one (here, K is the number of processes of the group).

Obviously, that computational complexity is not acceptable for a practical algorithm that should

be performed at runtime. Therefore, the HeteroMPI runtime system searches for some

approximate solution that can be found in some reasonable interval of time, namely, after

probation of M×K possible mappings instead of M
K
.

Each computation unit in the scheme declaration of the form]%%[ie is estimated. Each

communication unit of the form][]%%[jie → specifying transfer of data from virtual processor

with coordinates i to the virtual processor with coordinates j is estimated. Simple calculation

rules are used to estimate the sequential algorithmic patterns in the scheme declaration. For

example, the estimation of the pattern
for (e1; e2; e3) a

is calculated as follows:
for (T=0, e1; e2; e3)
 T += time taken to execute action a

The rules just reflect semantics of the corresponding serial algorithmic patterns.

The rule to estimate time for a parallel algorithmic pattern
par (e1; e2; e3) a

is more complicated and is explained in detail in [12]. This is the core of the entire mapping

algorithm determining its accuracy and efficiency. It takes into account material nature and

heterogeneity of both processors and network equipment. It relies on fairly allocating processes

to processors in a shared-memory multiprocessor normally implemented by operating systems

for processes of the same priority (HeteroMPI processes are just the case). At the same time, it

proceeds from the pessimistic point of view when estimating workload of different processors of

that multiprocessor. Estimation of communication cost by the rule is sensitive to scalability of

the underlying network technology. It treats differently communication layers serializing data

packages and supporting their parallel transfer. The most typical and widely used collective

communication operations are treated specifically to provide better accuracy of the estimation of

their execution time. An important advantage of the rule is its relative simplicity and

effectiveness. The effectiveness is critical because the algorithm is supposed to be multiply

executed at runtime.

4.1.2 Two-dimensional Process Grid Arrangement

The HeteroMPI function HMPI_Group_pauto_create is used to determine the optimal

values for the total number of processes, the number of process rows, the number of process

columns, and efficient mapping of the processes to the executing computers of the network.

Again the terms process/processor/computer are interchangable. Its operation is shown below:

int i, k, pa, p, opt_p, q, opt_q, *a, terminate = 0 ;

double t, mint=DBL_MAX; void *model_params = NULL;
// The host process
if (HMPI_Is_host ()) {
 // The total number of processes available for c omputation
 int np = HMPI_Group_size (HMPI_COMM_WORLD_GROUP);
 for (k=np; k>=1; k--) {
 // The possible two dimensional process arran gements (p,q)
 HMPI_Get_2D_process_arrangements (k, &pa, &a);
 // For each two dimensional process arrangeme nt (p,q)
 for (i=0; i<pa; i++) {
 // Fill the parameters to the performance model
 // Estimate the execution time for each pr ocess arrangement (p,q)
 t = HMPI_Timeof (&HMPI_Model_heteropmm, model_params);
 if (t < mint)
 // A better process arrangement found, continue the algorithm
 terminate = 0; mint = t; opt_p = p; opt _q = q;
 }
 if (terminate) { break ; }
 terminate=1;
 }
 // Create a HeteroMPI group of processes with th e optimal values of
 // algorithmic parameters
 model_params[0] = opt_p; // Optimal value of p
 model_params[1] = opt_q; // Optimal value of q
 model_params[2] = n;
 model_params[3] = b; // Optimal value of b
 …
}
// Create a HeteroMPI group of processes
HMPI_Group_create (gid, model_params);
return HMPI_SUCCESS;

The algorithm can be summarized as follows: The number of steps of the algorithm is

represented by the variable, k . For k=1, the total number of processes available for computation,

np , is determined. All the possible two-dimensional process arrangements, (p,q) , whose

product is np , are obtained using the function, HMPI_Get_2D_process_arrangements .

For example, if the total number of processes available is 25, then the possible two dimensional

process arrangements are {(1,25), (5,5), (25,1)}.

Each such process arrangement, (p,q) , is filled into the array of parameters to the

performance model of the heterogeneous PMM algorithm. The function call HMPI_Timeof is

then invoked to estimate the execution time of the algorithm. One of the inputs to this function

call is the handle, HMPI_Model_heteropmm , which encapsulates all the features of the

performance model in the form of a set of functions generated by the compiler from the

description of the performance model of the heterogeneous PMM algorithm. The function call

HMPI_Timeof invokes the mapping algorithms of the HeteroMPI runtime system to select

such a mapping that is estimated to ensure the fastest execution of the parallel algorithm for that

process arrangement. The selection process is described in detail in [9,14]. It is based on the

performance model of the heterogeneous PMM algorithm and the performance model of the

executing network of computers, which reflects the state of the network just before the execution

of the heterogeneous PMM algorithm. During the selection process, the HeteroMPI runtime

system searches for some approximate solution that can be found in some reasonable interval of

time by probation of a subset of all possible mappings. From the execution times predicted for all

the possible process arrangements, the process arrangement, (opt_p,opt_q) , that results in

the least estimated time of execution of the algorithm is determined.

For the next step, the total number of processes is decremented by one. The possible two-

dimensional process grid arrangements are again obtained and evaluated using the function

HMPI_Timeof . The algorithm continues if a process arrangement is found for which the

estimated execution time is less than the estimated execution time of the process arrangement

(opt_p,opt_q) determined in the previous step. Otherwise the algorithm terminates.

The optimal values of the blocking factor and the 2D process grid arrangement

(opt_p,opt_q) are then passed as performance model parameters to the function call,

HMPI_Group_create , which creates a HeteroMPI group of MPI processes that participate in

the execution of the PMM application. This function call is a collective operation and must be

called by all the processes available for computation in the predefined communication universe

of HeteroMPI.

Heuristics are used to reduce the number of process arrangements evaluated. For example,

one-dimensional arrangements are not evaluated in the case of matrix-matrix multiplication on

ethernet where it can be proved using simple formulas [15] that they perform poorly compared to

two-dimensional arrangements and do not minimize the objective function for networks with

either sequential communications or parallel communications.

5 MPI Application Using HPS

This application requires two inputs, which are the number of threads per process and the two-

dimensional process arrangement. It uses homogeneous distribution of computations, that is,

each process gets the same amount of data. It reuses the code of the MPI application utilizing the

HDS strategy.

6 HeteroMPI Application Using HPS

This application reuses the code of the HeteroMPI application utilizing the HDS strategy with

some exceptions. It uses homogeneous distribution of computations, that is, each process gets the

same amount of data. The number of threads per process must be preconfigured. This is due to a

shortcoming in HeteroMPI, which is the feature that would detect the optimal (process, thread)

combination in the HPS strategy.

7 Heterogeneous ScaLAPACK Application Using HPS

This section presents the Heterogeneous ScaLAPACK application, which utilizes the HPS

strategy. Before we describe the application, we present an overview of Heterogeneous

ScaLAPACK software.

The flowchart of the main routines of Heterogeneous ScaLAPACK package is shown in Figure

9. The high-level building blocks of Heterogeneous ScaLAPACK are HeteroMPI and

ScaLAPACK. The principal routines in Heterogeneous ScaLAPACK package are the context

creation functions for the ScaLAPACK routines (which include the PBLAS routines as well).

Figure 9. Flow of the Heterogeneous ScaLAPACK context creation routine call. The

percentages give the breakup of Heterogeneous ScaLAPACK development efforts.

There is a context creation function for each and every ScaLAPACK routine. It provides a

context for the execution of the ScaLAPACK routine but most importantly, performs the critical

work of automating the difficult optimization tasks.

All the context creation routines have names of the form hscal_pxyyzzz_ctxt . The

second letter, x , indicates the data type. For example, d would mean double precision real data.

The next two letters, yy , indicate the type of matrix (or of the most significant matrix). For

example, ge would represent a general matrix. The last three letters zzz indicate the

computation performed. For example, the context creation function for the PDGEMM routine

has an interface, which is shown below:

int hscal_pdgemm_ctxt(char * transa, char * transb, int * m, int *
n, int * k, double * alpha, int * ia, int * ja, int * desca, int
* ib, int * jb, int * descb, double * beta, int * ic, int * jc,
int * descc, int * ictxt)

This function call returns a handle to a HeteroMPI group of processes in ictxt and a return

value of HSCAL_SUCCESS on successful execution. It differs from the ScaLAPACK

PDGEMM call in the following ways:

• It returns a context but does not actually execute the PDGEMM routine;

HeteroMPI
runtime

MPI runtime

Heterogeneous
PBLAS/ScaLAPACK serial

information
routines

(10%)

IBLACS

User
Interface

(20%)

Internals
(80%) Performance models

of PBLAS/ScaLAPACK
routines in PMDL

(75%)

ISCALAPACK

HeteroMPI
routines

IBLAS

IPBLAS

Heterogeneous
PBLAS/ScaLAPACK parallel

context creation
routines

(10%)

Compiled performance

model (functions,
data structures)

ILAPACK

HeteroMPI
PMDL

compiler

mpC runtime

ScaLAPACK

HeteroMPI (5%)

• The input arguments are the same as for the PDGEMM call except

o The matrices A, B, and C containing the data are not passed as arguments;

• The output arguments differ as follows:

o An extra return argument, ictxt , which contains the handle to a group of MPI

processes that is subsequently used in the actual execution of the PDGEMM routine;

o A return value of HSCAL_SUCCESS indicating successful execution or otherwise an

appropriate error code.

The function call is a collective operation and must be called by all the processes running in

the Heterogeneous ScaLAPACK application. The context contains a handle to a HeteroMPI

group of processes, which tries to execute the ScaLAPACK routine faster than any other group

of processes. This context can be reused in multiple calls of the same routine or any routine that

uses similar parallel algorithm as PDGEMM. The reader is referred to the Heterogeneous

ScaLAPACK programmer’s manual for more details of the user interface.

The Heterogeneous ScaLAPACK context creation/destruction routines call interface functions

of HeteroMPI runtime system (the main routines being HMPI_Recon, HMPI_Timeof ,

HMPI_Group_auto_create). The Heterogeneous ScaLAPACK information functions

calculate the total number of computations (arithmetical operations) performed by each process

and the total number of communications in bytes between a pair of processes involved in the

execution of the homogeneous ScaLAPACK routine. These routines are serial and can be called

by any process. They do not actually execute the corresponding ScaLAPACK routine but just

calculate the total number of computations and communications involved. The block

ISCALAPACK (‘I’ standing for instrumented) represents the instrumented code of

ScaLAPACK, which reuses the existing code base of ScaLAPACK completely. The

instrumentations made to it are (a) Wrapping of the parallel regions of the code (ScaLAPACK

and PBLAS routines) in mpC par loops recognized by the PMDL compiler and (b) Replacement

of the serial BLAS computation routines and the BLACS communication routines by calls to

information functions, which return the number of arithmetical operations performed by each

process and number of communications in bytes between different pairs of processes

respectively.

The first step in the implementation of the context creation routine for a Heterogeneous

ScaLAPACK routine is the writing of its performance model using the PMDL. The performance

model definitions contain the instrumented code components. The HeteroMPI compiler compiles

this performance model to generate a set of functions. During the creation of the context, the

mapping algorithms of HeteroMPI runtime system calls these functions to estimate the execution

time of the ScaLAPACK routine.

The full performance model definition of PDGEMM can be studied from the file

/PBLAS/SRC/pm_pdgemm.mpc in the Heterogeneous ScaLAPACK package. Figure 10

shows the essential steps involved in calling the ScaLAPACK PDGESV routine in a

Heterogeneous ScaLAPACK program. The Heterogeneous ScaLAPACK runtime is initialized

using the operation hscal_init . The heterogeneous PDGEMM context is obtained using the

context constructor routine hscal_pdgemm_ctxt . The function call hscal_in_ctxt

returns a value of 1 for the processes chosen to execute the PDGEMM routine, otherwise 0. Then

the homogeneous ScaLAPACK PDGEMM routine is executed. The heterogeneous PDGEMM

context is freed using the context destructor operation hscal_free_ctxt . When all the

computations have been completed, the program is exited with a call to hscal_finalize ,

which finalizes the Heterogeneous ScaLAPACK runtime.

Figure 10. Heterogeneous ScaLAPACK program employing ScaLAPACK PDGEMM.

The PDGEMM context constructor routine hscal_pdgemm_ctxt is the main function

automating the difficult optimization tasks of parallel programming on HCCs. They are the

determination of the accurate values of the platform parameters such as the speeds of the

processors and the latencies and bandwidths of the communication links connecting different

pairs of processors, the optimal values of the algorithmic parameters such as the 2D process grid

arrangement and efficient mapping of the processes executing the parallel algorithm to the

executing nodes of the HCC. The execution of the context creation routine consists of the

following steps:

1. Refreshing of the speeds of the processors using the HeteroMPI routine HMPI_Recon. A

benchmark code representing the core computations involved in the execution of the

PDGEMM routine is provided to this function call to accurately estimate the speeds of the

processors. For example in this case, the benchmark code provided is a local GEMM update

of (n/bp)×b and b×(n/bq) matrices where b is the optimal data distribution blocking

factor. The optimal value of the blocking factor is determined using the HeteroMPI routine

HMPI_Timeof (this is now performed during the installation of the Heterogeneous

ScaLAPACK package);

int main(int argc, char **argv) {
 int nprow, npcol, pdgemmctxt, myrow, mycol, c__0 = 0;
/* Problem parameters */
 char *TRANSA, *TRANSB;
 int *M, *N, *K, *IA, *JA, *DESCA, *IB, *JB, *DESCB, * IC, *JC,
 *DESCC;
 double *ALPHA, *A, *B, *BETA, *C;
/* Initialize the Heterogeneous ScaLAPACK runtime * /
 hscal_init (&argc, &argv);
/* Get the heterogeneous PDGEMM context */
 hscal_pdgemm_ctxt (TRANSA, TRANSB, M, N, K, ALPHA, IA, JA, DESCA,
 IB, JB, DESCB, BETA, IC, JC , DESCC, &pdgemmctxt);
 if (! hscal_in_ctxt (&pdgemmctxt))
 hscal_finalize (c__0);
/* Retrieve the process grid information */
 Cblacs_gridinfo(pdgesvctxt, &nprow, &npcol, & myrow, &mycol);
/* Initialize the array descriptors for the matrice s A, B, and C */
 descinit_(DESCA, …, &pdgemmctxt); /* for Mat rix A */
 descinit_(DESCB, …, &pdgemmctxt); /* for Mat rix B */
 descinit_(DESCC, …, &pdgemmctxt); /* for Mat rix C */
/* Distribute matrices on the process grid using us er-defined pdmatgen */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix A */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix B */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix C */
/* Call the PBLAS ‘pdgemm’ routine */
 pdgemm_(TRANSA, TRANSB, M, N, K, ALPHA, A, IA , JA, DESCA, B, IB,
 JB, DESCB, BETA, C, IC, JC, DESCC);
/* Release the heterogeneous PDGESV context */
 hscal_free_ctxt (&pdgemmctxt);
/* Finalize the Heterogeneous ScaLAPACK runtime */
 hscal_finalize (c__0);
 }

2. Creation of a HeteroMPI group of MPI processes using the HeteroMPI’s group constructor

routine HMPI_Group_pauto_create . One of the inputs to this function call is the

handle, which encapsulates all the features of the performance model in the form of a set of

functions generated by the compiler from the description of the performance model of the

ScaLAPACK routine. During this function call, the HeteroMPI runtime system detects the

optimal process arrangement as well as solves the problem of selection of the optimal set of

processes running on different computers of the heterogeneous network. The selection

process is described in detail in [9, 14]. It is based the performance model of the

ScaLAPACK routine and the performance model of the executing network of computers,

which reflects the state of this network just before the execution of the ScaLAPACK routine;

3. The handle to the HeteroMPI group is passed as input to the HeteroMPI routine

HMPI_Get_comm to obtain the MPI communicator. This MPI communicator is translated

to a BLACS handle using the BLACS routine Csys2blacs_handle ;

4. The BLACS handle is then passed to the BLACS routine Cblacs_gridinit , which

creates the BLACS context. This context is returned in the output parameter.

The Heterogeneous ScaLAPACK program uses the multiprocessing HPS strategy, which

allows more than one process involved in its execution to be run on each processor. The number

of processes to run on each processor during the program startup is determined automatically by

the Heterogeneous ScaLAPACK command-line interface tools. During the creation of a

HeteroMPI group in the context creation routine, the mapping of the parallel processes in the

group is performed such that the number of processes running on each processor is as

proportional to its speed as possible. In other words, while distributed evenly across parallel

processes, data and computations are distributed unevenly over processors of the heterogeneous

network, and this way each processor performs the volume of computations as proportional to its

speed as possible. At the same time, the mapping algorithm invoked tries to arrange the

processors along a 2D grid so as to optimally load balance the work of the processors.

8 Experimental Results

A small local heterogeneous cluster (Rosebud) consisting of multicore computers, SMPs, and

single-processor workstations is used in the experiments. The specifications of this cluster are

shown in Table 1. rosebud01 and rosebud02 are single-processor workstations. rosebud03 and

rosebud04 are SMPs with two processors each. rosebud05 and rosebud06 are computers with

four Itanium dual-core processors. rosebud07 and rosebud08 are computers with two Itanium

dual-core processors. All the computers are running Linux OS. rosebud01 to rosebud04 have 32-

bit OS whereas the rest have 64-bit OS. The communication network is based on 1 Gbit Ethernet.

The software used is OpenMPI-1.2.8, ScaLAPACK-1.8.0, HeteroMPI-1.2.0, Heterogeneous

ScaLAPACK-1.0.6-BETA, and Intel MKL toolkit, which provides an optimized BLAS library

using OpenMP. The compiler used on all these machines is the Intel icc (version 9.1).

For the applications utilizing the HDS strategy, the number of threads configured per computer

is equal to the number of cores on the computer. This is to ensure that all the cores are fully

utilized during the execution of the application. For SMP machines, the number of threads

configured per computer is equal to the number of processors. For the single-processor

workstations, the number of threads is set to 1. The absolute speeds of the computers is obtained

by performing a local DGEMM update of two matrices 2048×99 and 99×2048 where

HDS Computer Total main

memory

(kB)

No. of

processors

No. of

cores No. of threads Absolute speed

(Mflops)

rosebud01 1035492 1 - 1 2295

rosebud02 1035688 1 - 1 2295

rosebud03 3635424 2 - 2 6515

rosebud04 3635424 2 - 2 6515

rosebud05 8240240 4 8 8 34600

rosebud06 8240512 4 8 8 34600

rosebud07 8240528 2 4 4 19130

rosebud08 8240672 2 4 4 19130

Table 1. Specifications of the eight computers in the Rosebud cluster.

99 is the optimal blocking factor. These speeds are shown in million flop/s. The heterogeneity of

the network due to the heterogeneity of the computers is calculated as the ratio of the absolute

speed of the fastest computer to the absolute speed of the slowest computer. As one can see,

rosebud05/rosebud06 is the fastest computer and rosebud01/rosebud02 is the slowest computer.

The heterogeneity in this case ≈ 15. If we exclude the computers rosebud01 and rosebud02, the

heterogeneity would be ≈ 5.

Table 2 shows the results of using different number of threads during the execution of

sequential matrix-matrix multiplication application on different computers. The application calls

optimized level-3 BLAS routine ‘dgemm’ to perform the matrix-matrix multiplication. There are

two trends that can be observed in the execution performance. The first trend concerns problem

sizes before the computer starts paging. For these problem sizes, the execution performance of

the applications reduces when the number of threads exceeds the number of processors (single-

processor or SMP) or the number of cores (multicore computers) on the computer. Further study

must be done to conclude whether this is an intrinsic property of the multicore systems and is

applicable for wide range of applications or whether the operating system/compiler can be tuned

to enable execution of large number of threads that increases the execution performance of the

applications. The second trend relates to the execution performance in the area of paging. It can

be concluded that there is no definite rule to use for the optimal number of threads except that the

number of threads to run per process must be greater than the number of processors or the

number of cores.

Table 3 and Figure 11 shows the execution of two solvers on the computer rosebud06

performing the same matrix-matrix multiplication. The solver ‘Threads’ is sequential. It calls the

local optimized level-3 BLAS routine ‘dgemm’ to perform the matrix-matrix multiplication.

During the execution of this solver, the number of threads is set equal to the number of cores

(=8). The solver ‘Processes’ adopts the original HDS strategy where one process is executed per

processor and data is distributed over the processes using heterogeneous block-cyclic distribution

such that the volume of data allocated to a processor is proportional to its speed. The number of

threads is set to 1. The figures demonstrate that the sequential solver is more efficient than the

the parallel solver. This justifies our modifications to the original HDS strategy, which is that a

rosebud01/rosebud02 (Number of threads) Size of the

matrix (n) 1 2 4 8 10 12 16

594 0.2 0.2 0.2 0.3 0.3 0.3 0.3

1188 1.6 1.8 1.8 1.9 1.9 2 2

2376 13 20 15 16 17 19 19

4752 100 101 104 107 109 109 111

7128 697 635 507 508 467 512 512

9504 4892 3273 3647 9600 10671 17752 6506

(a)

rosebud03/rosebud04 (Number of threads) Size of the

matrix (n) 1 2 4 8 10 12 16

594 0.16 0.1 0.16 0.20 0.20 0.20 0.24

1188 1.27 0.71 0.75 0.76 0.79 0.9 0.97

2376 7.8 4.23 4.56 5 5 4.7 5

4752 60 32 32 33 35 35 37

7128 202 105 107 108 108 111 118

9504 620 249 261 267 298 267 298

(b)

rosebud05/rosebud06 (Number of threads) Size of the

matrix (n) 1 2 4 8 10 12 16

594 0.08 0.05 0.03 0.02 0.12 0.12 0.13

1188 0.65 0.34 0.19 0.12 0.18 0.18 0.21

2376 5 2.59 1.36 0.74 0.96 0.92 0.81

4752 39 20 10 5 7 6 6

7128 132 67 35 18 22 18 18

9504 314 158 80 42 50 42 42

11880 613 308 155 81 97 81 82

14256 1057 530 268 138 166 139 140

16632 1681 843 427 217 264 221 226

19008 2705 1473 859 730 465 415 395

21384 5824 3641 2248 1755 1443 1431 1587

(c)

rosebud07/rosebud08 (Number of threads) Size of the

matrix (n) 1 2 4 8 10 12 16

594 0.09 0.05 0.03 0.12 0.12 0.12 0.12

1188 0.66 0.34 0.19 0.23 0.27 0.24 0.29

2376 5 2.6 1.3 1.43 1.7 1.45 1.55

4752 40 20 10 10 10 10 10

7128 133 67 34 35 35 35 35

9504 315 158 80 82 82 82 82

11880 614 308 156 160 160 160 161

14256 1058 533 269 274 275 274 274

16632 1684 845 427 428 438 437 440

19008 2724 1370 772 738 680 701 688

21384 5276 3035 1918 1407 1539 1474 1478

(d)

Table 2. The execution times for different number of threads. The application performs

sequential matrix-matrix multiplication of three square matrices of size n×n using the

optimized BLAS library provided by Intel MKL.

Processes Size of the matrix

(n) 2×4 4×2

Threads

594 0.38 0.27 0.034

1188 0.16 0.15 0.12

2376 0.99 0.98 0.75

4752 7.06 7.14 5.37

7128 23.22 22.72 17.84

9504 52.88 52.56 41.7

11880 104.17 99.64 81.43

14256 176.58 173.60 138.55

16632 284.25 271.93 216.37

19008 773.70 830.09 646.34

Table 3. Execution of matrix-matrix multiplication on rosebud06. The solver ‘Threads’ is

sequential whereas ‘Processes’ is parallel. The number of threads set in the sequential

solver and the number of processes used in the parallel solver is 8.

Matrix-Matrix Multiplication (Threads vs. Processes)

0

100

200

300

400

500

600

700

800

900

0 5000 10000 15000 20000

Size of matrix (n)

E
x
e
c
u

ti
o

n
 t
im

e
 (
s
e
c
)

Processes

Threads

Figure 11. The solver using threads is efficient than the parallel solver on a computer

performing the same matrix-matrix multiplication.

computer must be considered as a single entity instead of its processors for distribution of

computations.

It would be worthwhile to present some notes on the procedure to find the optimal blocking

factor. One approach investigated in [15] determines the optimal blocking factor for each

computer, which can be a drawback. This is because a single value of the blocking factor must

be used as input to the routines in the legacy linear algebra packages (this is a interface

requirement). Modifying this approach to determine the single optimal value to use in the

parallel application is not a trivial exercise. The procedure explained in section 4 determines the

Optimal block size

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

Block size (b)

E
s
ti

m
a
te

d
 e

x
e
c
u

ti
o

n

ti
m

e
 (

s
e
c
)

1188

2376

4752

30888

16632

N

N

(a)

Optimal block size

1

10

100

1000

10000

50 70 90 110 130 150 170 190

Block size (b)

E
s
ti

m
a
te

d
 e

x
e
c
u

ti
o

n

ti
m

e
 (

s
e
c
)

99

1188

2376

4752

30888

16632

N

N

(b)

Figure 12. Optimal block size estimated by the Heterogeneous ScaLAPACK library for

various problem sizes (1188≤n≤30888). The execution times are on a log scale.

optimal value that minimizes the total execution time of the parallel algorithm. The MPI-HDS

application is run using the 2D processor arrangement (p,q) of 4×2 for the range of problem sizes

(1188≤n≤30888). The optimal values of the blocking factor are in the range (54≤b≤144) as

shown in Figure 12. We use the value of 99. This procedure is executed separately and before the

execution of all the parallel applications. So ideally this procedure must be executed during the

installation of the software (as is done in the case of Heterogeneous ScaLAPACK).

For all the experimental results shown in the tables, the 2D process/processor/computer

arrangements are shown below the tables. The processes/processors/computers are arranged in

the grid in decreasing order of their speeds along each process row and along each process

column. For example, a 2×4 computer grid arrangement containing all the computers shown in

Table 1 will have the computers arranged as follows:

{rosebud05, rosebud06, rosebud07, rosebud08, rosebud04, rosebud03, rosebud02, rosebud01}

Similarly, a 3×8 process grid arrangement involving the computers {rosebud05, rosebud06,

rosebud07, rosebud08} shown in Table 1, the number of processes run per computer being 8, 8,

4, 4, respectively, will have the processes arranged as follows:

MPI-HDS Size of

the

matrix

(n)
1 2×1 3×1 4×1 2×2 3×2 4×2 8×1

MPI-HDS

(Best)

594 0.03 0.15 0.23 0.36 0.14 0.20 0.27 0.7 0.03 (1)

1188 0.12 0.55 0.95 1.4 0.55 0.80 1 3 0.12 (1)

2376 1 2 4 6 2 3 4 24 1 (1)

4752 5 11 17 24 11 13 18 78 5 (1)

7128 18 28 43 57 26 31 51 146 18 (1)

9504 42 57 81 114 50 62 86 249 42 (1)

11880 81 99 134 179 84 99 125 383 81 (1)

14256 139 155 203 264 133 167 184 551 133 (2×2)

16632 216 222 291 370 191 214 283 750 191 (2×2)

19008 646 313 398 501 250 320 353 987 250 (2×2)

21384 - 424 525 649 350 385 461 1260 350 (2×2)

23760 - 588 692 827 453 498 623 1575 453 (2×2)

26136 - 798 870 1029 577 670 773 1926 577 (2×2)

28512 - 2280 1065 1261 756 852 928 2320 756 (2×2)

30888 - 4305 1881 1520 1016 1006 1172 2750 1006 (3×2)

33264 - - - - 1618 1203 1605 - 1203 (3×2)

35640 - - - - 3264 2091 3053 - 2091 (3×2)

38016 - - - - 4878 3423 5238 - 3423 (3×2)

40392 - - - - 8879 5575 7638 - 5575 (3×2)

Table 4. MPI application utilizing the HDS strategy. “-” indicates very large execution

times not useful for analysis.

2D computer grid arrangements:
No. of threads run per computer shown in brackets

rosebud01 (1), rosebud02 (1), rosebud03 (2), rosebud04 (2), rosebud05 (8), rosebud06 (8), rosebud07 (4), rosebud08

(4)

1: {rosebud05 | rosebud06}

2×1: {rosebud05, rosebud06}

3×1: {rosebud05, rosebud06, rosebud07}

4×1: {rosebud05, rosebud06, rosebud07, rosebud08}

2×2: {rosebud05, rosebud06, rosebud07, rosebud08}

3×2: {rosebud05, rosebud06, rosebud07, rosebud08, rosebud03, rosebud04}

4×2: {rosebud05, rosebud06, rosebud07, rosebud08, rosebud03, rosebud04, rosebud01, rosebud02}

8×1: {rosebud05, rosebud06, rosebud07, rosebud08, rosebud03, rosebud04, rosebud01, rosebud02}

{rosebud05, rosebud05, rosebud05, rosebud05, rosebud05, rosebud05, rosebud05, rosebud05,

 rosebud06, rosebud06, rosebud06, rosebud06, rosebud06, rosebud06, rosebud06, rosebud06,

 rosebud07, rosebud07, rosebud07, rosebud07, rosebud08, rosebud08, rosebud08, rosebud08}

The experimental results of the MPI-HDS application are shown in Table 4. The computers

used in the different 2D computer grid arrangements are shown at the bottom of the table. The

data distribution used is column-based [6,10]. The number of threads configured to run per

MPI-HDS

2×2 3×2 4×2 Size of

the

matrix

(n)

DIPA-

2D

Time

(sec)

Execution

time

(sec)

DIPA-

2D

Time

(sec)

Execution

time

(sec)

DIPA-

2D

Time

(sec)

Execution

time

(sec)

MPI-HDS

(Best)

28512 11 (4) 745 12 (3) 852 32 (10) 896 756 (2×2)

30888 10 (3) 1006 14 (3) 1006 18 (3) 1155 1016 (2×2)

33264 11 (3) 1607 19 (4) 1203 220 (10) 1285 1222 (3×2)

35640 13 (3) 3251 19 (3) 2091 810 (5) 2143 2110 (3×2)

38016 15 (3) 4863 30 (5) 3423 1196 (3) 3442 3453 (3×2)

40392 22 (4) 8857 29 (4) 5575 1365 (5) 5673 5604 (3×2)

Table 5. Heterogeneous MPI application utilizing the HDS strategy for large problem sizes.

IPADL2D is the distributed iterative 2D data partitioning algorithm used to distribute the

matrices.

Figure 13. The column-based distribution for the arrangement 3×2 is actually cartesian

whereas that of the arrangement 2×3 is non-cartesian. The number of communications

(horizontal+vertical) at each step of the PMM for the arrangements {2×3, 3×2} is {24,18}.

The matrix elements are square blocks of size 99×99.

computer is shown in the brackets. The final column shows the best execution times and the 2D

computer grid arrangements, which varies with the problem size. As one can see, only the

multicore computers and the SMPs are used in the best configurations for all problem sizes. The

slow single-processor workstations rosebud01 and rosebud02 do not figure at all.

 140 108 64

265

P12

47 P22

233

P13

79P23

204

108

P11

P21

 156 156

P12

P22

P32

177

101

 34

P11

P21

P31

 2×3 3×2

1

2

3

4

5

6

1

2

3

4

5

6

3•P2•P
1•P

1 2 3 4 5 6 1 2 3 4 5 6

•1P

•2P

•3P

(a) Partition between processor columns. (b) Partition between processor rows.

P
11

P
12

P
13

P
21

P
22

P
23

P
31

P
32

P
33

1 2 3 4 5 6

1

2

3

4

5

6

(c) Final Partition.

Figure 14. Example of two-step Cartesian distribution of a 66 × generalized block over a

33× processor grid. The relative speed of processors is given by matrix

















=
03.025.005.0

08.009.017.0

05.017.011.0

s . (a) At the first step, the 66 × square is distributed in a one-

dimensional block fashion over processors columns of the 33× processor grid in

proportion 1:3:216.0:51.0:33.0 ≈ . (b) At the second step, the 66 × square is

distributed in a one-dimensional block fashion over processors rows of the 33× processor

grid in proportion 2:2:233.0:34.0:33.0 ≈ . (c) Final partition.

The experimental results in Table 5 show in detail the execution of the MPI-HDS application.

It shows the execution times for large problem sizes where one or more computers start paging,

which entails the use of sophisticated distributed iterative data partitioning algorithms [12] to

determine the optimal data distribution. The computers rosebud01 and rosebud02 start paging

for problem sizes (n>30000). The execution of the MPI-HDS application consists of two parts.

Size of the

matrix

(n)

MPI-HDS

(COLUMN-

BASED

distribution)

(p=3,q=2)

MPI-HDS

(COLUMN-BASED

distribution)

(p=2,q=3)

MPI-HDS

(CARTESIAN

distribution)

(p=3,q=2)

MPI-HDS

(CARTESIAN

distribution)

(p=2,q=3)

594 0.20 0.30 0.20 0.20

1188 0.80 1 0.80 0.77

2376 3 4 3 3

4752 13 20 13 15

7128 31 49 31 37

9504 62 93 61 72

11880 99 145 100 121

14256 167 211 151 181

16632 214 294 214 254

19008 320 395 292 342

21384 385 513 386 450

23760 498 651 498 575

26136 670 814 649 727

28512 852 995 780 901

30888 1006 1211 951 1101

33264 1203 1434 1171 -

35640 2091 2551 1900 -

38016 3423 4448 3402 -

40392 5575 6478 5335 -

Table 6. The execution times of MPI-HDS applications using COLUMN-BASED and

CARTESIAN distributions of the matrices. The 2D computer arrangement used in the

execution is (p,q). “-” indicates failure of one or more processors.

Firstly, all the computers execute the DIPA-2D data partitioning algorithm to partition the

matrices and secondly, they perform the PMM. The parameters to the DIPA-2D algorithm are

the problem size (n), the 2D computer grid arrangement (p,q), and the termination criterion ε =0.05. Each computer arrangement has two columns. The first column shows the execution

time of the DIPA-2D algorithm (first part of the parallel application). The total number of

iterations of DIPA-2D is shown in the brackets. This also represents the total number of

executions of the benchmark code/computational kernel. The second column shows the

execution time of the PMM (second part of the parallel application). The final column shows the

best execution times and the 2D computer grid arrangements.

The interesting computer arrangement to observe in this table is 4×2 where all the computers

of the network are used including the slow ones rosebud01 and rosebud02. It can be seen that the

DIPA-2D algorithm spends large execution times to determine the optimal data distribution. This

is because the slow computers rosebud01 and rosebud02 start paging as the problem size n

exceeds 30000 and spend large times executing the initial benchmark. The optimal data

distribution determined however does not include the slow computers and as a result the

processor arrangement used in the PMM (second part of the parallel application) is 3×2. One can

MPI-HDS (Best)

HeteroMPI-HDS

Size of the

matrix

(n) (p×q) Execution

time (sec)

Predicted

(p×q)

Predicted

execution

time (sec)

Group

creation

time (sec)

Actual

Time (sec)

594 1×1 0.03 1×1 0.04 0.1 0.15

1188 1×1 0.12 1×1 0.18 0.4 0.52

2376 1×1 1 1×1 1 1 2

4752 1×1 5 1×1 6 2 7

7128 1×1 18 1×1 19 3 21

9504 1×1 42 1×1 44 4 46

11880 1×1 81 1×1 85 5 86

14256 2×2 133 2×2 131 6 140

16632 2×2 191 2×2 191 8 201

19008 2×2 250 2×2 263 8 260

21384 2×2 350 2×2 347 9 360

23760 2×2 453 2×2 452 11 467

26136 2×2 577 2×2 576 11 593

28512 2×2 756 2×2 757 12 790

30888 3×2 1006 3×2 1010 13 1048

33264 3×2 1203 3×2 1225 15 1460

35640 3×2 2091 3×2 2167 15 2993

38016 3×2 3423 3×2 3552 17 4766

40392 3×2 5575 3×2 5773 18 7156

Table 7. HeteroMPI application utilizing the HDS strategy.

see that the execution times do not differ significantly from the execution times shown in the

column for the processor arrangement 3×2.

It is also observed that in the case of this network, the 2D computer grid arrangements {3×2,

4×2} perform better than {2×3, 2×4} respectively. The column-based data distribution for the

two 2D computer grid arrangements {2×3, 3×2} is shown in Figure 13 for the problem size

n=30888. The slow computers {rosebud01, rosebud02} are not included in the

arrangements{2×3, 3×2}. The reason why the column-based data distribution for 3×2 is efficient

is because the matrix data distribution is actually cartesian (each processor has only two

neighbors, one horizontal and one vertical). The column-based matrix data distribution for 2×3 is

not cartesian, which results in more communications than in the case of the arrangement 3×2.

We performed further experiments to investigate the two matrix data distributions {column-

based, cartesian}. The cartesian distribution of the matrices is illustrated in Figure 14. The results

shown in Table 6 shows the execution times of MPI-HDS applications using column-based and

cartesian distributions of the matrices. The best performing 2D computer arrangements are {3×2,

Figure 15. The cartesian data distributions for the arrangements 2×3 and 3×2. The matrix

elements are square blocks of size 99×99. Process P11 is allocated large number of matrix

elements in the case of 2×3.

3×2} with the respective matrix data distributions being {column-based, cartesian}. In fact, if we

look closely at the matrix data distributions, the data distribution for the best performing 2D

computer arrangement {3×2, column-based} is actually cartesian. The 2D computer grid

arrangement {2×3, column-based} performs poorly due to non-cartesian distribution resulting in

large number of communications. The 2D computer grid arrangement {2×3, cartesian} performs

poorly due to load imbalance resulting from non-optimal matrix data distribution. The load

imbalance is so large in this case that it results in failure of processors for problem sizes

n>30888. Figure 15 shows the cartesian distributions for the 2D computer grid arrangements

{2×3, 3×2} for the problem size n=30888. The respective allocations to the computer rosebud05

(P11) are {231×139,178×156} square blocks of size 99×99. The speeds used for the calculation

of the allocations are shown in Table 1. The large allocation in the case of the arrangement 2×3

results in the failure of the computer. So in some cases, it is very difficult to achieve the

proportionality (volume of data to the speed of the processors) in the case of cartesian data

distribution. Figure 14 illustrates the problem where true proportionality is not achieved.

Therefore, there are two observations that can be made from these experimental results.

Firstly, there is an optimal 2D computer grid arrangement (also optimal total number of

computers), which varies with the problem size. Secondly, the DIPA-2D algorithm must be used

to determine the optimal data distribution as it employs functional performance model of

heterogeneous processors, which has proven to be more realistic than the traditional models.

The experimental results highlight the importance of a tool that can provide features that can

determine the optimal values of the algorithmic parameters such as the total number of

computers and the 2D computer grid arrangement. HeteroMPI is one such tool. The experimental

results of the HeteroMPI-HDS application are shown in Table 7. The second column shows the

best execution times and the 2D computer grid arrangements from the MPI-HDS application.

These are compared with the predictions of HeteroMPI. The results of the HeteroMPI-HDS

application in the third column are organized as follows. The first column shows the optimal 2D

 156 156

P12

P22

P32

P11

P21

P31

 3×2 2×3

 139 108 65

P12

231

 81

P11

P22

P21

P13

P23

178

100

34

MPI-HPS Size of the

matrix

(n)
2×4

(1 t)

2×2

(2 t)

2×2

(4 t)

2×2
*

(4 t)

2×8

(1 t)

2×4

(2 t)

3×8

(1 t)

3×4

(2 t)

3×2

(4 t)

MPI-HPS

(Best)

594 0.27 0.04 0.5 0.14 1.64 0.14 1.64 0.25 0.25 0.04 (2×2, 2 t)

1188 0.15 0.15 0.5 0.5 0.66 0.5 0.66 0.92 0.92 0.15 (2×2, 2 t)

2376 1 1 2.4 2.3 2.5 2.3 5 4 4 1 (2×2, 2 t)

4752 7 7 11 11 12 11 19 16 16 7 (2×2, 2 t)

7128 23 22 28 27 30 27 48 39 41 22 (2×2, 2 t)

9504 53 52 56 53 60 53 99 81 80 52 (2×2, 2 t)

11880 104 100 97 92 105 95 160 127 130 92 (2×2, 4 t)

14256 177 172 154 149 169 149 226 192 199 149 (2×2, 4 t)

16632 284 276 232 221 250 223 308 259 282 221 (2×2, 4 t)

19008 773 746 325 305 350 311 408 364 385 305 (2×2, 4 t)

21384 - - 443 413 460 431 530 478 505 413 (2×2, 4 t)

23760 - - 582 545 615 572 682 620 647 545 (2×2, 4 t)

26136 - - 809 706 949 824 853 784 822 706 (2×2, 4 t)

28512 - - 1876 870 2286 2185 1043 965 1006 870 (2×2, 4 t)

30888 - - 3401 1090 4232 3898 1266 1179 1226 1090 (2×2, 4 t)

33264 - - - 1320 - - 2077 1857 1763 1320 (2×2, 4 t)

35640 - - - 1597 - - 3288 3257 2596 1597 (2×2, 4 t)

38016 - - - 2654 - - 5045 5702 4738 2654 (2×2, 4 t)

40392 - - - 4355 - - 7427 7191 6430 4355 (2×2, 4 t)

Table 8. MPI application utilizing the HPS strategy. “-” indicates very large execution

times not useful for analysis.

Process Arrangements:
No. of processes run per computer and the number of threads per process shown in brackets
2×4: rosebud05 (8,1) | rosebud06 (8,1)

2×2: rosebud05 (4,2) | rosebud06 (4,2)

2×2: rosebud05 (2,4) + rosebud06 (2,4)

2×2
*
: rosebud05 (1,4) + rosebud06 (1,4) + rosebud07 (1,4) + rosebud08 (1,4)

2×8: rosebud05 (8,1) + rosebud06 (8,1)

2×4: rosebud05 (4,2) + rosebud06 (4,2)

3×2: rosebud05 (2,4) + rosebud06 (2,4) + rosebud07 (1,4) + rosebud08 (1,4)

3×4: rosebud05 (4,2) + rosebud06 (4,2) + rosebud07 (2,2) + rosebud08 (2,2)

3×8: rosebud05 (8,1) + rosebud06 (8,1) + rosebud07 (4,1)+ rosebud08 (4,1)

computer grid arrangement predicted by HeteroMPI. The second column shows the predicted

time of execution of the PMM. The third column shows the time taken by HeteroMPI group

constructor routine to evaluate all the the possible 2D computer grid arrangements and to arrive

at the best 2D computer grid arrangement. The final column shows the total execution time of

the HeteroMPI-HDS application. This includes the time taken to execute the DIPA-2D algorithm

and the time taken to determine the best 2D computer grid arrangement. As one can see, when it

comes to 2D computer grid arrangements, the predictions of HeteroMPI are spot-on and the

predictions of the execution times are accurate within 10%.

Parallel Matrix-Matrix Multiplication

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000
Size of matrix (n)

E
x

e
c
u

ti
o

n
 t

im
e

 (
s

e
c

) MPI-HPS

MPI-HDS

(a)

HDS vs. HPS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Size of matrix (n)

S
p

e
e

d
u

p

(b)

Figure 16. (a) The execution times of the MPI applications employing the HDS and the HPS

strategies. (b) The speedup of the MPI application utilizing the HDS strategy over the MPI

application utilizing the HPS strategy.

The experimental results in Table 8 show the execution times of the MPI application using the

HPS strategy. The final column shows the best execution times and the optimal (process,thread)

combinations, which vary with the problem size. There are interesting conclusions that can be

drawn from the results. First, there is an optimal number of threads to run per process and an

optimal number of processes to run per computer, that is, there is an optimal (process, thread)

combination. As the problem size increases, it can be seen that the optimal number of threads

per process increases from 2 to 4. For example, for the problem sizes {26136,28512,30888} and

the process arrangements in the columns {2×2 (4t), 2×8 (1t), 2×4 (2t)}, the optimal number of

threads per process has progressed from 1 to 4. This is because of fewer communications.

Parallel Matrix-Matrix Multiplication (oversubscribing nodes)

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000
Size of matrix (n)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
) MPI-HPS (3x16)

MPI-HPS (6x8)

MPI-HPS (3x12)

MPI-HPS (6x6)

MPI-HPS (3x8)

Figure 17. The execution times of the MPI application employing the HPS strategy. The

multicore computers are oversubscribed, that is, the number of processes run on the

computer is more than the number of cores.

Process Arrangements:
No. of processes run per computer shown in brackets:
3×16: rosebud05(16), rosebud06(16), rosebud07(8), rosebud08(8)

6×8: rosebud05(16), rosebud06(16), rosebud07(8), rosebud08(8)

3×12: rosebud05(12), rosebud06(12), rosebud07(6), rosebud08(6)

6×6: rosebud05(12), rosebud06(12), rosebud07(6), rosebud08(6)

3×8: rosebud05(8), rosebud06(8), rosebud07(4), rosebud08(4)

Similar results are observed for the problem sizes {33264,35640,38016,40392} for the process

arrangements in the columns {3×8 (1t), 3×4 (2t), 3×2 (4t)}.

Figure 16 shows the speedup of the MPI-HDS application over the MPI-HPS application. The

speedup calculated is the ratio of the execution time of the MPI-HPS application to the execution

time of the MPI-HDS application. The results reveal that the two strategies can compete with

each other. For the range of problem sizes (n≤35640), the MPI applications employing HDS

perform the best since they fully exploit the increased thread-level parallelism (TLP) provided by

the multicore processors. However, for large problem sizes, the non-cartesian nature of the data

distribution (where each processor has more than four neighbors) may lead to excessive

communications that can be very expensive. For such cases, the HPS strategy has been shown to

out-perform the HDS strategy.

Figure 17 shows the effect of oversubscribing the multicore computers, that is, the effect of

running more processes than the number of cores in the computer. The number of threads per

process on each computer is set to 1. One can notice the best performing 2D process grid

arrangement (3×8) is the one where the number of processes run on each computer is equal to the

number of cores.Figure 18 shows the effect of oversubscribing the multicore computers and the

SMPs, that is, the effect of running more processes than the number of cores/processors in the

computer respectively. The number of threads per process on each computer is set to 1. The

figures show that once the number of processes exceed the number of cores/processors in the

Parallel Matrix-Matrix Multiplication (oversubscribing nodes)

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000
Size of matrix (n)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
) MPI-HPS (13x4)

MPI-HPS (8x5)

MPI-HPS (8x7)

MPI-HPS (7x4)

Figure 18. The execution times of the MPI application employing the HPS strategy. The

multicore and the SMP machines are oversubscribed, that is, the number of processes run

on the computer is more than the number of cores and processors respectively.

Process Arrangements:
No. of processes run per computer shown in brackets:
13×4: rosebud05(16), rosebud06(16), rosebud07(8), rosebud08(8), rosebud03(2), rosebud04(2)

8×5: rosebud05(12), rosebud06(12), rosebud07(6), rosebud08(6), rosebud03(2), rosebud04(2)

8×7: rosebud05(16), rosebud06(16), rosebud07(8), rosebud08(8), rosebud03(4), rosebud04(4)

7×4: rosebud05(8), rosebud06(8), rosebud07(4), rosebud08(4), rosebud04(2), rosebud03(2)

computer, the execution performance of the application goes down. However, in the region of

paging for the problem sizes (n≤40000), the execution performance does converge and so the

computers can be oversubscribed. But there still remains a problem of how many processes to

run per computer and which 2D process grid arrangement to use. The problem becomes more

complicated when threads are taken into account. This necessitates the importance of a tool,

which can determine the optimal values of these algorithmic parameters automatically.

The experimental results of the HeteroMPI-HPS application are shown in Table 9. The second

column shows the best execution times and the 2D process grid arrangements from the MPI-HPS

application. These are compared with the predictions of HeteroMPI. At the moment, the number

of threads must be pre-configured. Our future work would include enhancing HeteroMPI to

determine the optimal (process, thread) combination in the HPS strategy.

The results of the HeteroMPI-HPS application in each of the main columns (3-5) are organized

as follows. The first sub-column shows the optimal 2D process grid arrangement predicted by

HeteroMPI. The second sub-column shows the estimated time of execution of the PMM. The

third sub-column shows the time taken by HeteroMPI group constructor routine to evaluate all

the the possible 2D process grid arrangements and to arrive at the best 2D process grid

arrangement. The final sub-column shows the total execution time of the HeteroMPI-HPS

application. This includes the time taken to execute the DIPA-2D algorithm and the time taken to

determine the best 2D process grid arrangement.

HeteroMPI-HPS

(1t)

HeteroMPI-HPS

(2t)

HeteroMPI-HPS

(4t)

Size of

Size of

the

matrix

(n)

HPS

(Best)

 Pre

(p×

q)

Pre

time

(s)

GC

time

(s)

Act

time

(s)

Pre

(p×

q)

Pre

time

(s)

GC

time

(s)

Act

time

(s)

Pre

(p×

q)

Pre

time

(s)

GC

time

(s)

Act

time

(s)

HeteroMPI

-HPS

 (Best)

594
0.04

(2×2, 2 t)
2×15 0.11 3 0.22 2×2 0.13 0.22 0.03 2×2 0.17 0.13 0.15

0.25

(2×2, 2 t)

1188
0.15

(2×2, 2 t)
4×2 0.39 4 0.17 2×2 0.31 0.47 0.15 2×2 0.5 0.22 0.6

0.61

(2×2, 2 t)

2376
1

(2×2, 2 t)
3×4 2 8 2.84 2×2 1.2 0.92 0.99 2×2 3 0.33 3

2

(2×2, 2 t)

4752
7

(2×2, 2 t)
3×4 9 12 13 2×2 6.4 1.8 8 2×2 9 0.58 11

4

(2×2, 2 t)

7128
22

(2×2, 2 t)
3×4 26 18 35 2×2 20 2.5 23 2×2 20 0.88 28

26

(2×2, 2 t)

9504
52

(2×2, 2 t)
4×4 52 24 102 2×2 32 4 53 2×2 40 1.2 56

58

(2×2, 2 t)

11880
92

(2×2, 4 t)
5×4 91 33 186 2×4 65 5 96 2×2 70 1.5 97

104

(2×4, 2 t)

14256
149

(2×2, 4 t)
4×4 145 36 221 2×4 95 6 149 2×3 133 2 170

157

(2×4, 2 t)

16632
221

(2×2, 4 t)
6×4 218 48 480 2×4 188 8 225 2×2 169 3.2 233

236

(2×4, 2 t)

19008
305

(2×2, 4 t)
6×4 302 58 647 3×4 259 9 316 2×2 262 2.7 324

329

(2×4, 2 t)

21384
413

(2×2, 4 t)
6×4 407 66 824 2×4 293 9 421 2×2 328 3 442

435

(2×4, 2 t)

23760
545

(2×2, 4 t)
6×4 531 76 1064 2×4 391 10 566 2×2 488 3.5 583

572

(2×4, 2 t)

26136
706

(2×2, 4 t)
6×4 689 81 1304 3×4 519 11 787 2×2 575 4 808

806

(3×4, 2 t)

28512
870 (2×2,

4 t)
6×4 850 84 1573 3×4 720 14 963 2×2 760 4.7 987

986

(3×4, 2 t)

30888
1090

(2×2, 4 t)
6×4 1053 103 1890 3×4 829 14 1181 3×2 957 5 1226

1205

(3×4, 2 t)

33264
1326

(2×2, 4 t)
6×4 1285 121 2657 3×4 1089 25 1795 2×2 1011 13 1326

1668

(2×2, 4 t)

35640
1601

(2×2, 4 t)
6×4 1571 136 3714 3×4 1277 35 2870 2×2 1161 25 1601

2123

(2×2, 4 t)

38016
2667

(2×2, 4 t)
6×4 1846 163 5303 3×4 1512 49 5637 2×2 1411 39 2667

3642

(2×2, 4 t)

40392
4360

(2×2, 4 t)
6×4 2216 182 6669 3×4 1771 66 7146 2×2 1924 56 4360

5537

(2×2, 4 t)

Table 9. HeteroMPI application utilizing the HPS strategy. The number of threads must be

pre-configured.

No. of threads run per process shown in brackets

HeteroMPI (1t):

rosebud01 (1), rosebud02 (1), rosebud03 (1), rosebud04 (1), rosebud05 (1), rosebud06 (1), rosebud07 (1), rosebud08

(1)

HeteroMPI (2t):

rosebud01 (1), rosebud02 (1), rosebud03 (2), rosebud04 (2), rosebud05 (2), rosebud06 (2), rosebud07 (2), rosebud08

(2)

HeteroMPI (4t):
rosebud01 (1), rosebud02 (1), rosebud03 (2), rosebud04 (2), rosebud05 (4), rosebud06 (4), rosebud07 (4), rosebud08

(4)

It can be observed that the estimation of the execution times and the optimal 2D process

arrangement of the PMM are not accurate. One of the reasons could be the inaccuracy of the

communication model used for the shared-memory communications between the processes

inside a computer. This issue is currently under investigation.

The experimental results in Table 10 show the execution times of the ScaLAPACK

application. The slow computers rosebud01 and rosebud02 are not used in the execution of the

ScaLAPACK-HPS

(seconds) Size of the

matrix

(n) 3×2

(1 t)

2×8

(1 t)

3×8

(1t)

3×4

(2t)

3×2

(4 t)

7×4

(1t)

7×2

(2t)

4×2

(4t)

ScaLAPACK-HPS

(Best)

594 0.3 0.3 0.41 0.3 0.4 0.48 0.53 0.5 0.3 (2×8, 1t)

1188 1.3 1.2 1 1.2 1.5 1.3 1.4 1.5 1.2 (2×8, 1t)

2376 6 3.3 3.45 4.5 5.4 4.8 8.7 7.3 3.3 (2×8, 1t)

4752 30 12 15 20 25 24 35 40 12 (2×8, 1t)

7128 77 47 34 43 63 63 97 119 34 (3×8, 1t)

9504 158 103 64 77 116 110 185 148 64 (3×8, 1t)

11880 288 197 110 133 197 175 241 227 110 (3×8, 1t)

14256 467 321 163 203 301 247 279 285 163 (3×8, 1t)

16632 712 526 245 302 433 349 460 570 245 (3×8, 1t)

19008 1021 704 344 425 599 478 621 675 344 (3×8, 1t)

21384 1426 1041 478 568 782 634 813 794 478 (3×8, 1t)

23760 1905 1315 610 750 1023 830 1067 1260 610 (3×8, 1t)

26136 2509 1799 827 980 1314 1122 1512 1428 827 (3×8, 1t)

28512 - - 1020 1213 1606 1272 1730 1764 1020 (3×8, 1t)

30888 - - 1290 1822 1974 1834 2277 2110 1290 (3×8, 1t)

33264 - - 1819 2045 2714 2012 3400 - 1819 (3×8, 1t)

35640 - - 2412 2615 3623 2410 3364 - 2410 (7×4, 1t)

38016 - - 14221 7416 6001 3347 - - 3347 (7×4, 1t)

40392 - - - 12159 9244 8224 - - 8224 (7×4, 1t)

Table 10. ScaLAPACK application using the HPS strategy. “-” indicates very large

execution times not useful for analysis.

Process Arrangements (ScaLAPACK):
No. of processes run per computer and the number of threads per process shown in brackets
3×2: rosebud05(1,1), rosebud06(1,1), rosebud07(1,1), rosebud08(1,1), rosebud03(1,1), rosebud04(1,1)

2×8: rosebud05(8,1), rosebud06(8,1)

3×8: rosebud05(8,1), rosebud06(8,1), rosebud07(4,1), rosebud08(4,1)

3×4: rosebud05(4,2), rosebud06(4,2), rosebud07(2,2), rosebud08(2,2)

3×2: rosebud05(2,4), rosebud06(2,4), rosebud07(1,4), rosebud08(1,4)

7×4: rosebud05(8,1), rosebud06(8,1), rosebud07(4,1), rosebud08(4,1), rosebud04(2,1), rosebud03(2,1)

7×2: rosebud05(4,2), rosebud06(4,2), rosebud07(2,2), rosebud08(2,2), rosebud04(1,2), rosebud03(1,2)

4×2: rosebud05(2,4), rosebud06(2,4), rosebud07(1,4), rosebud08(1,4), rosebud04(1,2), rosebud03(1,2)

ScaLAPACK application. The application performing the worst is the ScaLAPACK application

is the one that uses one process per computer and one thread per process. The results for this

combination are only shown for problem sizes (n<28512) because the processors start paging

severely beyond these problem sizes. Again, it is observed that as the problem size increases, the

optimal number of threads per process increases from 1 to 4.

The experimental results in Table 11 show the execution times of the Heterogeneous

ScaLAPACK application. All the computers are used in the execution of the application. The

slow computers rosebud01 and rosebud02 are however not picked during the execution of the

PMM. At the moment, the number of threads must be preconfigured for the Heterogeneous

Heterogeneous ScaLAPACK

(1t)

Heterogeneous ScaLAPACK

(2t)

Heterogeneous ScaLAPACK

(4t)

Size of

the

matrix

(n)
Pre

(p×q)

Pre

time

(s)

Ctxt

time

(s)

Act

time

(s)

Pre

(p×q)

Pre

time

(s)

Ctxt

time

(s)

Act

time

(s)

Pre

(p×q)

Pre

time

(s)

Ctxt

time

(s)

Act

time

(s)

594 5×6 0.68 6 0.4 2×8 1 1.5 0.6 3×3 1.4 0.9 0.3

1188 5×6 1 15 1.6 4×4 1 1.3 1.3 3×3 3 1 1.2

2376 5×6 1.8 21 6 3×5 1.6 1.8 6 2×5 5 1.6 6

4752 5×6 3.8 25 28 2×7 3.1 2.5 23 2×4 10 1.7 25

7128 3×9 10 33 77 2×6 6 4 49 2×4 17 3 63

9504 2×14 19 47 80 3×4 14 7 99 2×4 33 6 105

11880 2×14 37 68 119 3×4 25 12 163 2×3 56 7 183

14256 4×7 60 86 246 2×6 41 21 297 2×3 81 8 285

16632 2×14 98 90 380 2×6 62 26 432 2×3 114 10 424

19008 4×7 140 107 422 2×6 93 31 541 2×3 156 12 571

21384 4×7 198 130 558 2×6 132 36 572 2×3 209 14 764

23760 4×7 271 154 789 2×6 184 38 915 2×3 275 17 1018

26136 2×14 358 162 923 2×6 240 45 1116 2×3 354 19 1219

28512 2×14 460 192 1117 2×6 314 51 1391 2×3 444 22 1572

30888 2×14 591 213 1557 2×6 502 56 1690 2×3 559 32 1936

33264 2×14 758 612 1966 2×6 626 66 2175 2×3 691 345 2591

35640 4×7 922 829 2053 2×6 775 382 2840 2×3 858 642 3445

38016 4×7 1105 1377 2785 2×6 957 954 4664 3×2 1065 1094 4919

40392 4×7 1326 1645 4851 2×6 1137 1308 7190 3×2 1219 1249 7780

Table 11. Heterogeneous ScaLAPACK applications using the HPS strategy. The number of

threads must be pre-configured.

No. of threads run per process shown in brackets

Heterogeneous ScaLAPACK (1t):
rosebud01 (1), rosebud02 (1), rosebud03 (1), rosebud04 (1), rosebud05 (1), rosebud06 (1), rosebud07 (1), rosebud08

(1)

Heterogeneous ScaLAPACK (2t):
rosebud01 (1), rosebud02 (1), rosebud03 (2), rosebud04 (2), rosebud05 (2), rosebud06 (2), rosebud07 (2), rosebud08

(2)

Heterogeneous ScaLAPACK (4t):
rosebud01 (1), rosebud02 (1), rosebud03 (2), rosebud04 (2), rosebud05 (4), rosebud06 (4), rosebud07 (4), rosebud08

(4)

ScaLAPACK application. Given that the number of threads per process is preconfigured, the

Heterogeneous ScaLAPACK runtime would then determine the optimal number of processes

(also optimal 2D process arrangement). Our future work would involve enhancements to

Heterogeneous ScaLAPACK to determine the optimal (process, thread) combination. The results

Size of

the

matrix

(n)

MPI-

HDS

HeteroMPI-

HDS

MPI-

HPS

HeteroMPI-

HPS
ScaLAPACK

Heterogeneous

ScaLAPACK

594 0.03 0.15 0.04 0.25 0.3 0.4

1188 0.12 0.52 0.15 0.61 1.2 1.6

2376 1 2 1 2 3.3 6

4752 5 7 7 4 12 28

7128 18 21 22 26 34 77

9504 42 46 52 58 64 80

11880 81 86 92 104 110 119

14256 133 140 149 157 163 246

16632 191 201 221 236 245 380

19008 250 260 305 329 344 422

21384 350 360 413 435 478 558

23760 453 467 545 572 610 789

26136 577 593 706 806 827 923

28512 756 790 870 986 1020 1117

30888 1006 1048 1090 1205 1290 1557

33264 1203 1460 1320 1668 1819 1966

35640 2091 2993 1597 2123 2410 2053

38016 3423 4766 2654 3642 3347 2785

40392 5575 7156 4355 5537 8224 4851

Table 12. Execution times of all the applications.

of the application in each of the main columns (2-4) are organized as follows. The first sub-

column shows the predicted 2D process grid arrangement. The second sub-column shows the

predicted time of execution of the PMM. The third sub-column shows the context creation time,

which includes the execution of the benchmark code to refresh the speeds of the processors, and

the time taken to evaluate all the the possible 2D process grid arrangements. The fourth sub-

column shows the actual execution time of the application.

Table 12 shows the results of all the six applications. Table 13 shows the speedup of the best-

performing parallel application over the application employing serial matrix-matrix

multiplication. The application is run on a single-processor workstation (rosebud01/rosebud02),

an SMP (rosebud03/rosebud04), and a computer with cores (rosebud05/rosebud06). The number

of threads for the single-processor workstation is set to 1. The single-processor workstations and

the SMPs fail for problem sizes n≥9504.

Consider the case when the number of threads set for the SMP machines and multicore

computers is 1. The maximum speedup achieved in the case of SMPs is 15, which is almost

linear considering the fact that the number of processors in the network is 16 (excluding the slow

processors rosebud01 and rosebud02). The maximum speedup achieved in the case of multicores

computers is 17. This is sub-linear since the number of cores in the network is 24.

Speedup

(rosebud03/rosebud04)

Speedup

(rosebud05/rosebud06)

Size of

the

matrix

(n)

Speedup

(rosebud01/rosebud02) # threads

= 1

threads

= 2
threads = 1 # threads = 8

594 7.9 5.3 5.6 2.6 1

1188 14.8 10.5 5 5.4 1

2376 13 7.8 4.3 5 1

4752 20.3 12 6.3 8 1

7128 49.8 11.2 5.9 7.3 1

9504 113.3 14.8 5.9 7.5 1

11880 - - - 7.5 1

14256 - - - 8 1.04

16632 - - - 8.8 1.14

19008 - - - 10.8 2.3

21384 - - - 16.6 5.4

23760 - - - - 10

Table 13. Speedups of the best-performing application employing the PMM over the

application employing sequential matrix-matrix multiplication. “-” indicates failure of the

processor.

Consider the case when the number of threads set for the SMP machines and multicore

computers is equal to the number of processors and the number of cores respectively. The

maximum speedup achieved in the case of SMPs is 5, which is sub-linear considering the fact

that the number of processors used in the sequential application is 2 and the number of

processors in the network is 16 (excluding the slow processors rosebud01 and rosebud02). The

maximum speedup achieved in the case of multicore computers is 10 where the number of cores

used in the sequential application is 8 and the number of cores in the network is 24.

9 Conclusions

The conclusions to be drawn from these results are the following:

a. The HDS strategy is the best strategy to use since it allows to fully exploit the increased

thread-level parallelism (TLP) provided by the multicore processors. However, for large

problem sizes, the non-cartesian nature of the data distribution may lead to excessive

communications that can be very expensive. For such cases, the HPS strategy has been

shown to outperform it;

b. HeteroMPI is a valuable tool to implement heterogeneous parallel algorithms on HCoMs

using the HDS strategy owing to several reasons. It accurately predicts the execution time of

the parallel algorithm, accurately detects the optimal values of the algorithmic parameters

such as the total number of processors and the 2D processor grid arrangement;

c. The software (HeteroMPI, Heterogeneous ScaLAPACK) must be enhanced to provide

accurate predictions of the optimal (process, thread) combination in the case of the HPS

strategy. Since Heterogeneous ScaLAPACK is built on the top of HeteroMPI, the feature

only needs to be added to HeteroMPI;

d. No package is currently available using HDS strategy. A package based on this strategy

requires great effort implementing the routines and writing the associated performance

models. HeteroScaLAPACK is however completely implemented except for the eigenvalue

solvers. It uses the legacy ScaLAPACK and its associated performance models are written.

In addition, the HeteroMPI-HPS strategy followed by HeteroScaLAPACK have been shown

to be quite competitive to the HDS strategy in single core processor clusters [16,17,18] as

well as multicore processor clusters;

e. HeteroMPI has been proven to be a valuable tool in single core processor clusters [9] by

oversubscribing a fast processor with a number of processes proportional to its speed. From

the analysis of the results of this paper, this can be accomplished too in multicore processor

clusters but with one limitation: the total number of processes per node cannot be larger than

the number of cores of the node, otherwise, the performance falls down drastically due to

resource contention of the concurrent processes and loss of some aggregate computational

computation power of the heterogeneous cluster. More investigation needs to be done with

incoming growth in the number of cores per node.

10 Summary and Future Work

In this document, we present enhancements to two pre-existing strategies of distribution of

computations for Heterogeneous Computational Clusters of Multicore Processors (HCoMs).

These strategies are called Heterogeneous Process Distribution Strategy (HPS) and

Heterogeneous Data Distribution Strategy (HDS) and are used to implement parallel solvers for

dense linear algebra problems.

We perform experiments using six applications utilizing the various distribution strategies to

perform parallel matrix-matrix multiplication (PMM) on a local HCoM. We then compare the

results of execution of these six applications. The results reveal that the two strategies can

compete with each other. The MPI applications employing HDS perform the best since they fully

exploit the increased thread-level parallelism (TLP) provided by the multicore processors.

However, for large problem sizes, the non-cartesian nature of the data distribution may lead to

excessive communications that can be very expensive. For such cases, the HPS strategy has been

shown to out-perform the HDS strategy. We also conclude that HeteroMPI is a valuable tool to

implement heterogeneous parallel algorithms on HCoMs because it provides features that

determine optimal values of the algorithmic parameters such as the total number of processors

and the 2D processor grid arrangement.

Our future work would involve addition of features to the software (HeteroMPI,

Heterogeneous ScaLAPACK) to determine the optimal (process, thread) combination in the HPS

strategy. We would also look at improvements to the communication models in these softwares,

which would accurately predict the the time of different types of communications, for example,

point-to-point, broadcast, gather, scatter etc., between different sets of processors on different

levels. We would then study one of the main linear algebra problems, which are dense systems of

linear equations, least squares problems, and eigenvalue problems.

Acknowledgement

Pedro Alonso wishes to acknowledge the support provided by Vicerrectorado de Investigación,

Desarrollo e Innovación de la Universidad Politécnica de Valencia, and Generalitat Valenciana.

References

[1]. Ranking of supercomputers according to the LINPACK benchmark. http://www.top500.org.

[2]. J. Dongarra, D. Gannon, G. Fox, and K. Kennedy, “The Impact of Multicore on

Computational Science Software,” CTWatch Quarterly, Volume 3, No. 1, February 2007.

[3] The Message Passing Interface Standard. http://www-unix.mcs.anl.gov/mpi/.

[4] An API for multi-platform shared-memory parallel programming in C/C++ and Fortran.

http://openmp.org/wp/.

[5] A. Lastovetsky, “Scientific Programming for Heterogeneous Systems - Bridging the Gap

between Algorithms and Applications,” Proceedings of the 5th International Symposium on

Parallel Computing in Electrical Engineering (PARELEC 2006), Bialystok, Poland, IEEE

Computer Society Press, pp. 3-8, 13-17 Sept 2006.

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of Computations Solving

Linear Algebra Problems on Networks of Heterogeneous Computers,” Journal of Parallel and

Distributed Computing, Volume 61, No. 4, pp.520-535, April 2001.

[7] Scalable LAPACK. http://www.netlib.org/scalapack/.

[8] Heterogeneous ScaLAPACK. http://hcl.ucd.ie/project/HeteroScaLAPACK/.

[9] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a Message-Passing Library for

Heterogeneous Networks of Computers,” Journal of Parallel and Distributed Computing (JPDC),

Volume 66, No. 2, pp.197-220, Elsevier, 2006. http://hcl.ucd.ie/project/HeteroMPI/.

[10] A. Lastovetsky and R. Reddy, “On Performance Analysis of Heterogeneous Parallel

Algorithms,” In Parallel Computing, Volume 30, No. 11, pp.1195-1216, 2004.

[11] A. Lastovetsky and R. Reddy, “Data Partitioning with a Functional Performance Model of

Heterogeneous Processors”, In International Journal of High Performance Computing

Applications, Volume 21, No. 1, pp. 76-90, SAGE Publications, 2007.

[12]. A. Lastovetsky and R. Reddy, “Efficient Distributed Algorithms of Optimal Data

Partitioning for Parallel Computing on Heterogeneous Processors Based on Partial Estimation of

their Functional Performance Models,” Technical Report, University College Dublin, 2009.

[13] A. Lastovetsky, D. Arapov, A. Kalinov, and I. Ledovskih, “A Parallel Language and Its

Programming System for Heterogeneous Networks,” Concurrency: Practice and Experience,

Volume 12, No. 13, pp.1317-1343, November 2000.

[14] A. Lastovetsky, “Adaptive Parallel Computing on Heterogeneous Networks with mpC,”

Parallel Computing, Volume 28, No. 10, pp.1369-1407, October 2002.

[15] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix Multiplication on

Heterogeneous Platforms”, IEEE Transactions on Parallel and Distributed Systems, Volume 12,

No. 10, pp.1033-1051, 2001.

[16] P. Alonso and A. M. Vidal, “Cauchy-like system solution on multicore platforms,”

Workshop on State-of-the-Art in Scientific and Parallel Computing (Para 2008), May 13-16,

NTNU, Trondheim, Norway.

[17] R. Reddy, A. Lastovetsky, and P. Alonso, “Heterogeneous PBLAS: Optimization of PBLAS

for Heterogeneous Computational Clusters,” In Proceedings of the 7th International Symposium

on Parallel and Distributed Computing (ISPDC 2008), pp. 73-80, IEEE Computer Society Press.

[18] R. Reddy, A. Lastovetsky, and P. Alonso, “Scalable Dense Factorizations for

Heterogeneous Computational Clusters,” In Proceedings of the 7th International Symposium on

Parallel and Distributed Computing (ISPDC 2008), pp. 49-56, IEEE Computer Society Press.

[19] R. Reddy, A. Lastovetsky, and P. Alonso, “Parallel solvers for dense linear systems for

heterogeneous computational clusters,” In Proceedings of the 23rd International Parallel and

Distributed Processing Symposium (IPDPS 2009).

