
mpC + ScaLAPACK = Efficient Solving Linear

Algebra Problems on Heterogeneous Networks

Alexey Kalinov and Alexey Lastovetsky

Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia

{ka,lastov}@ispras.ru

Abstract. The paper presents experience of using mpC for accelerat-
ing ScaLAPACK applications on heterogeneous networks of computers.
The mpC is a language, specially designed for parallel programming for
heterogeneous networks. It has facilities for distribution of participating
processes over processors in accordance with performances of the latters.
An mpC application carring out Cholesky factorization on a heteroge-
neous network of workstations is used to demonstrate that the heteroge-
neous process distribution has an essential advantage over the traditional
homogeneous distribution. The application is implemented using calls to
ScaLAPACK routines by means of the interface mpC - ScaLAPACK.

1 Introduction

ScaLAPACK [1] is the most famous library for solving linear algebra problems
on distributed-memory, concurrent computers. The main target platforms for
ScaLAPACK are distributed-memory supercomputers consisting of identical pro-
cessors, because present high-performance scientific computations concentrate
mostly on them.

On the other hand, progress in network technologies is making networks
of computers (in particular, networks of PCs and workstations) more and more
attractive for high-performance parallel computing. The main difference between
supercomputers and networks is heterogeneity of the latters.

The heterogeneity is displayed at least in two forms. Firstly, in the form
of heterogeneity of machine arithmetics of such parallel systems. Related chal-
lenges existing in writing reliable numerical library software for heterogeneous
computing environments have been analyzed in [2].

Secondly, in the form of heterogeneity of hardware performance of individual
processors. ScaLAPACK has been developed and tested with one process per
processor running [3]. We will refer to that processes distribution as homoge-
neous. Let see what happens when a parallel linear algebra application, that
provides good distribution of computations and communications when running
one process per processor in homogeneous environments, runs with one process
per processor on a heterogeneous network of computers. Since volumes of compu-
tations executed by different processors are approximately equal to each other,

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1024–1031, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



mpC + ScaLAPACK = Efficient Solving Linear Algebra Problems 1025

more powerful processors will wait for the slowest one at synchronization points.
Therefore, the total time of computations will be determined by the time elapsed
on the slowest processor.

We have done an experiment corroborating that statement. We considered
two local subnetworks of our local network: homogeneous abcd consisting of
four SUN workstations a, b, c, and d, and heterogeneous aEFG consisting of
four SUN workstations a, E, F, and G. Workstation a belongs to the both net-
works and other workstations of the heterogeneous network are more powerful
then workstation a. Performances of the workstations were estimated by means
of Cholesky factorization of a matrix of the same dimension with a sequential
LAPACK [4] Cholesky factorization routine dpotf2. The total power of the het-
erogeneous subnetwork is about 1.9 times greater then that of the homogeneous
one. It could be expected that, for example, the parallel ScaLAPACK Cholesky
solver [3] would be executed on the heterogeneous subnetwork about 1.9 times
faster then on the homogeneous one. But the real situation, shown in figure 1,
turned out quite different.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

400 600 800 1000 1200 1400 1600 1800
Matrix dimension

theoretical speed-up
actual speed-up

Fig. 1. Speed-up achieved by ScaLAPACK Cholesky solver on the heteroge-
neous network relative to the homogeneous one. The both networks consist of
four workstations. One workstation of the heterogeneous network belongs to the
homogeneous one. Other workstations of the heterogeneous network are more
powerful. Drawn line represents increase in computing power of the heteroge-
neous network or theoretical speed-up. Dotted line represents actual speed-up.



1026 Alexey Kalinov and Alexey Lastovetsky

A natural solution of this problem is heterogeneous distribution of processes
of the parallel program over the processors, taking into account at least differ-
ences in performances of processors. The distribution may be done by means of
configurational files. But it is a difficult task, and if the application topology
is defined at run time (for example, process grid parameters depends on input
data), this approach will not work.

An alternative approach is to write such applications that do not need a
sophisticated process mapping to start up the applications efficiently. Designed
specially to write efficient and portable parallel applications for heterogeneous
networks of computers, the mpC language [5] allows to do that. This language
is an ANSI C superset allowing to write applications adapting to differences
in performances of both processors and communication links of any particular
executing network. The basic idea is that an mpC application explicitly builds
at run time an abstract heterogeneous computing network and distributes data,
computations and communications over the network. The abstract network con-
sists of virtual processors of different performances and different links. The mpC
programming system uses this information at run time to map the abstract net-
work to any real executing network of computers in such a way that ensures
efficient running of the application on the real network. More about mpC as well
as the mpC free software can be found at http://www.ispras.ru/̃ mpc.

In this paper, we consider only the heterogeneity of processor performances.
We propose a heterogeneous distribution of processes over processors when the
number of processes involved in computations on a separate processor depends
on its performance. We investigate the distribution using a typical linear al-
gebra problem - the Cholesky factorization of square dense matrices. The het-
erogeneous distribution of the involved processes is performed by an mpC pro-
gram, while the latter calls a parallel ScaLAPACK solver to perform the parallel
Cholesky factorization proper.

Section 2 shortly introduces the mpC language and describes an implemen-
tation of the heterogeneous distribution in mpC with calls to ScaLAPACK func-
tions as well as interface mpC - ScaLAPACK. Section 3 gives experimental results
of the Cholesky factorization on a network of heterogeneous workstations using
the homogeneous and heterogeneous processes distribution.

2 Implementation of Heterogeneous Distribution of
Processes over Processors in mpC

The language mpC [5] is a parallel language that allows an efficiently-portable
modular programming heterogeneous networks of computers. It provides facili-
ties for specification of requirements on resources, necessary for efficient execu-
tion of parallel application, and the mpC programming system tries to satisfy the
requirements taking into account peculiarities of any particular heterogeneous
network of computers.

The mpC language is an ANSI C superset that introduces a new kind of
managed resource, the computing space, defined as a set of virtual processors of



mpC + ScaLAPACK = Efficient Solving Linear Algebra Problems 1027

difference performances. At run time, the virtual processors are represented by
actual processes of the particular running parallel application. The programmer
manages the computing space by means of creating and discarding regions of the
computing space, named network objects, just like he manages storage creating
and discarding data objects (regions of storage). At any moment of program
execution, just a set of defined network objects represents the abstract computing
network.

The following mpC function HeHo implements the heterogeneous distribution
of processes involved in computations and calls ScaLAPACK to perform parallel
Cholesky factorization properly.

/*1 */ #define N 100
/*2 */ nettype Grid(nr,nc) {
/*3 */ coord I=nr, J=nc;
/*4 */ };
/*5 */ int [net Grid(nr,nc) v] mpC2Cblacs_gridinit(int *, char *);
/*6 */ void [*]HeHo(repl int P, repl int Q) {
/*7 */ {
/*8 */ int n=N,info;
/*9 */ double a[N][N];
/*10*/ init(a);
/*11*/ recon dpotf2_("U",&n,a,&n,&info);
/*12*/ }
/*13*/ {
/*14*/ net Grid(P,Q) w;
/*15*/ [w]: {
/*16*/ int ConTxt;
/*17*/ ([(P,Q)w])mpC2Cblacs_gridinit(&ConTxt,"R");
/*18*/ pdlltdriver1_(&ConTxt);
/*19*/ mpC2Cblacs_gridexit(ConTxt);
/*20*/ }
/*21*/ }
/*22*/ }

The heterogeneous strategy is implemented in three steps:

1. Performances of real processors for a relevant benchmark, Cholesky factor-
ization by means of the LAPACK routine dpotf2, are determined in lines
7-12 with the help of statement recon. The statement (line 11) updates
at run time the information about processor performances of the executing
real network by means of execution of the corresponding computations as
a benchmark (in our case, it is a call to function dpotf2). It is supposed
that performances estimated when matrix dimension is 100 are not essen-
tialy different from that estimated when matrix dimension is different. Our
experiments confirm the supposition.

2. The network object w, executing the corresponding computations, is defined
in line 14 (see also lines 2-4) as consisting of P · Q virtual processors of the



1028 Alexey Kalinov and Alexey Lastovetsky

same performance (by default). Its parent, the virtual host-processor, has
coordinates I=0, J=0 (by default). At run time, that definition of w leads
to such a mapping of its virtual processors into processes of the running
parallel program that the number of processes involved in computations on
a separate real processor depends on its performance. The algorithm of the
mapping is presented in [7].

3. A slightly modified version of the ScaLAPACK test driver for Cholesky fac-
torization is called on the network object w (lines 15-20). This driver reads
from a file problem parameters (matrix and block sizes), forms a test matrix
and performs its Cholesky factorization. The only parameter of the driver
is a context which is a ScaLAPACK analog of an mpC network object. The
context is created by means of a call to function mpC2Cblacs gridinit in
line 17. This call creates the ScaLAPACK context ConTxt associated with
the process grid in which network object w has been mapped. More details
of the interface mpC - ScaLAPACK are described below in 2.1. A call to
function mpC2Cblacs gridexit in line 19 releases resources, allocated on
creation of context ConTxt.

In mpC, there exist three kinds of functions: basic, network, and nodal.
Basic functions are called and executed on the entire computing space. Net-

work objects can be defined only in basic functions. Function HeHo is a basic
function, what is specified with construct [*] in line 6 placed just before the
name of the function.

A network function is called and executed on a network object. Function
mpC2Cblacs gridinit, declared in line 5, is an example of a network function.
It has 3 special formal parameters, v,nr,nc. Parameter v corresponds to a net-
work object on which the function is executed. Parameters nr,nc is regarded as
integer variables replicated over network object v. Network object v is of net-
work type Grid(nr,nc). In line 17, this function is called with network object w
and parameters P,Q of its type as arguments corresponding to the above formal
parameters.

A nodal function can be executed on any separate virtual processor. In mpC,
all C functions are considered nodal.

If declared without any special distribution specifier, a variable, declared in a
basic function, is considered distributed over the entire computing space, while
a variable, declared in a network function, is considered distributed over the
corresponding network object. Distribution specifier [w] in line 15 specifies the
network object executing the compound statement in lines 15-20.

2.1 Interface mpC - ScaLAPACK

The BLACS (Basic Linear Algebra Communication Subprograms) [6] provide
a linear algebra oriented message passing interface that may be implemented
efficiently and uniformly across a large range of distributed memory platforms.
It is used as the communication layer of ScaLAPACK.



mpC + ScaLAPACK = Efficient Solving Linear Algebra Problems 1029

In the BLACS, there are two grid creation routines (Cblacs gridinit and
Cblacs gridmap) which create a process grid and its enclosing context. These
routines return context handles, which are simple integers. Subsequent BLACS
routines will be passed these handles, which allow the BLACS to determine what
context/grid a routine is being called from. Releasing contexts is done via the
routine Cblacs gridexit.

The mpC programming system allows to call parallel ScaLAPACK routines
providing mpC analogs of the above BLACS routines. In particular, mpC pro-
vides the following network function

int [net Grid(nr,nc) v] mpC2Cblacs gridinit(int *pConTxt, char
*order);

as an analog of the BLACS grid creation routine

int Cblacs gridinit(int *pConTxt, char *order, int nr, int nc);

where pConTxt is a pointer to the context to be created, nr and nc are num-
bers of rows and columns in the process grid associated with the context, and
order indicates how to map processes to the BLACS grid. The BLACS grid and
corresponding context are created by network function mpC2Cblacs gridinit
from the processes representing virtual processors of the network object v. The
created context can be used to call ScaLAPACK routines, for example, routine
pdlltdriver1 in line 18.

The BLACS grid releasing routine Cblacs gridexit has the mpC analog
mpC2Cblacs gridexit.

Currently, the mpC programming system uses MPI as a communication plat-
form. So, the above interface works only for the BLACS implementation built
on the top of MPI.

3 Experimental Results

We compared two processes distributions:

– The traditional homogeneous processes distribution (one process per proces-
sor) implemented in ScaLAPACK.

– The heterogeneous distribution of processes over processors implemented in
mpC.

As a factor of the comparison, we used speed-up achieved by the heteroge-
neous process distribution relative to the homogeneous one when running with
the same process grid parameters and block size.

The comparison was performed for the Cholesky factorization on a network
of workstations. For our experiments, we used a part of a local network consist-
ing of 8 uniprocessor Sun workstations of different performances interconnected
via 10 Mbits Ethernet. MPICH 1.0.13 was used as a particular communication
platform. All workstations executed the same copy of code. Performances of the



1030 Alexey Kalinov and Alexey Lastovetsky

workstations, obtained by means of execution of the LAPACK routine dpotf2
performing serial Cholesky factorization, is the following: a - 200, b - 200, c -
200, d - 200, e - 267, f - 267, G - 801, h - 100. Only two workstations G (the
fastest one) and h (the slowest one) have performances essentialy different from
others.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

400 600 800 1000 1200 1400 1600 1800

Speed-up

Matrix dimension

network afGh grid 2x2
network abcfGh grid 2x3

network abcdefGh grid 2x4

Fig. 2. Speed-up achieved by the heterogeneous processes distribution relative
to the homogeneous one on networks afGh consisting of 4 workstations a, f, G,
and h, abcfGh consisting of 6 workstations a, b, c, f, G, h, abcdefGh consisting
of 8 workstations a, b, c, d, e, f, G, h.

Figure 2 presents the speed-up achieved by the heterogeneous processes dis-
tribution when running on the following networks: afGh consisting of 4 worksta-
tions a, f, G, and h) (process grid 2x2), abcfGh consisting of 6 workstations a,
b, c, f, G, and h (process grid 2x3), and abcdefGh consisting of 8 workstations
a, b, c, d, e, f, G, and h (process grid 2x4). It is interesting that in all cases
the mpC run-time system distributes the involved processes with two processes
running on the most powerful workstation G and no processes running on the
slowest workstation h.

4 Conclusion

Numerical software developed for computations in homogeneous environments
does not allow to utilize all performance potential of heterogeneous networks.



mpC + ScaLAPACK = Efficient Solving Linear Algebra Problems 1031

It has been demonstrated that in this case a heterogeneous network behaves
as a homogeneous network obtained from the heterogeneous one by means of
replacing all its processors with the slowest processor.

A natural way to answer this challenge is to develop dedicated numerical soft-
ware aimed at heterogeneous environments. Such software should at least take
into account the heterogeneity of processor performances. The paper presents a
way to do that via adapting legacy numerical software .

The mpC parallel language is just aimed at portable and efficient program-
ming for heterogeneous environments. It has facilities for heterogeneous distri-
bution of the processes involved in computations over processors. ScaLAPACK
is generally accepted numerical linear algebra package. Call to ScaLAPACK rou-
tines from mpC program gives a new facilities for efficiently solving linear algebra
problems on heterogeneous environments. The mpC program can perform adap-
tation to pecularities of the particular network and ScaLAPACK routines can
do calculations proper.

5 Acknowledgments

We would like to thank Jack Dongarra who gave us the idea of the research
presented in this paper.

References

[1] L.S.Blackford, J.Choi, A.Cleary, E.D’Azevedo, J.Demmel, I.Dhillon, J.Dongarra,
S. Hammarling, G. Henry, A. Petitet, K.Stanley, D.Walker, and R.C.Whaley
“ScaLAPACK: A Linear Algebra Library for Message-Passing Computers” SIAM
Conference on Parallel Processing, March 1997.

[2] L.S.Blackford, A.Cleary, J.Demmel, I.Dhillon, J.Dongarra, S.Hammarling,
A.Petitet, H.Ren, K.Stanley, and R.C.Whaley, Practical Experience in the Dan-
gers of Heterogeneous Computing UT, CS-96-330, July 1996.

[3] J.Choi, J.J.Dongarra, S.Ostrouchov, A.P.Petitet, D.W.Walker, and R.C.Whaley
”The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky
Factorization Routines” UT, CS-94-246, September, 1994.

[4] E.Anderson, Z.Bai, C.Bischof, J.Demmel, J.Dongarra, J. Du Croz, A.Greenbaum,
S.Hammarling, S.McKenney, S.Octrouchov, and D.Sorensen, “LAPACK Users’
Guide, Second Edition”, SIAM, Philadelphia, PA, 1995.

[5] A.Lastovetsky, The mpC Programming Language Specification. Technical Report,
ISPRAS, Moscow, December 1994.

[6] R. Clint Whaley, “Basic Linear Algebra Communication Subprograms: Analysis
and Implementation Across Multiple Parallel Architectures”, Tech.Rep. LAPACK
Working Note 73, University of Tennesee, TN, 1994.

[7] D.Arapov, A.Kalinov, and A.Lastovetsky, Resource management in the mpC Pro-
gramming Environment, in “Proceedings of the 30th Hawaii International Con-
ference on System Sciences (HICSS’30)”, IEEE Computer Society, Maui, HI, Jan-
uary 1997.


	Introduction
	Implementation of Heterogeneous Distribution of Processes over Processors in mpC
	Interface mpC - ScaLAPACK

	Experimental Results
	Conclusion
	Acknowledgments

