
 

Experience of Using mpC to Improve Performance 
of CORBA-Based Distributed Applications on 

Heterogeneous Networks 
 
 

Alexey Lastovetsky 
University College Dublin, Ireland 

 
 
Abstract The paper demonstrates that 
performance of CORBA-based distributed programs 
can be easily and drastically improved with the 
mpC parallel programming system. It presents a 
typical distributed application, parallel mpC 
implementation of its remote computationally 
intensive operations and performance results on a 
network of workstations. 
 
Keywords: CORBA, distributed systems, parallel 
processing, mpC, heterogeneous networks 

1. Introduction 
CORBA [1] is widely used to develop and 

integrate highly complex distributed technical 
applications in industries as diverse as health 
care, telecommunications, banking, and 
manufacturing. CORBA is supported on almost 
every combination of hardware and operating 
system in existence, available from a large 
number of vendors, and supports a large 
number of programming languages. CORBA-
based distributed applications support the 
“client-server” programming paradigm. A 
typical CORBA-based application server 
provides a number of operations that can be 
invoked by remote clients. 

One of the most important qualities of the 
service, provided by the remote server, is the 
execution time of the remote operations. The 
total time of execution of a remote operation 
includes the time of communication between 
client and server and the time of computation 
on the server side. In case of computationally 
intensive operations, maximal effect would 
come from acceleration of computations on the 
server-side hardware, which is typically a 
heterogeneous network of diverse computers. 
There are two ways typically used to speedup 
execution of remote operations on a network of 
computers. The first way is to balance the 
workload of available computers. This means 
that the CORBA implementation tries to start 
up the server providing the requested operation 

on the computer that is the fastest at the 
moment of the receipt of the request. The 
second way is a multithreaded implementation 
of the remote operation and its execution on a 
shared-memory multiprocessor computer if the 
latter is available. 

One more way is a parallel implementation 
of the remote operation and its execution on the 
network of computers treated as a distributed-
memory parallel computer system. 
Theoretically, this can provide much more 
essential speedup independent on availability 
of a multiprocessor computer. Practically, this 
way is not used due to two main reasons. The 
first one is the lack of experience of integration 
of distributed-memory parallel computing into 
CORBA-based distributed applications. The 
second and the most important reason is that 
technologies and tools for parallel computing 
on heterogeneous networks of computers only 
take first steps and are not as mature and 
widespread as those for homogeneous 
multiprocessors.  

The paper demonstrates that computationally 
intensive remote operations in CORBA-based 
distributed applications can be easily and 
drastically accelerated with help of tools for 
parallel computing on heterogeneous clusters. 
Orbix [2] was used as a particular 
implementation of CORBA, and the mpC 
language [3,4] was used for parallel 
implementation of such remote operations. 

 The paper is organized as follows. Section 2 
describes a sample CORBA-based distributed 
application. Section 3 briefly introduces the 
mpC language and outlines the mpC 
implementation of one of the computationally 
intensive operations provided by the 
application server. Section 4 presents 
experimental results. Section 5 concludes the 
paper.  



2. Chain of supermarkets 
distributed application 

The following sample distributed application 
is used in the paper. Let there be a chain of 
supermarkets. Let each cash register send 
information about every basket of items 
purchased by a customer to the central 
information center (CIC), where the 
information is stored. A single basket of items 
is stored in the form of a file record, so that a 
single file contains data about a fixed number 
of baskets. All those files together accumulate 
the full information about the structure of 
customer baskets during some period of time. 
This data dump is used for extraction of diverse 
useful information, and any supermarket can 
require the CIC for one or another information. 
That service is implemented by a CORBA-
based application server providing a set of 
corresponding remote operations. In particular, 
a supermarket can require the CIC for 
recommendation on optimal distribution of 
different items over a given number of 
sections.  A fragment of the CORBA IDL 
specification of the full service relevant to this 
particular request is depicted in Figure 1. 

A client invokes operation BasketOfItems to 
add a basket to the server’s data store. A basket 
is just a sequence of codes of purchased items. 
To get an optimal distribution of items over a 
number of sections, the client invokes the 
operation getDistribution passing this number 
as an input parameter. The operation returns a 
sequence of sequences of items representing 

the requested distribution. To initialize a 
session with the remote server the client 
invokes operation Hello.  To finalize the 
session, it invokes operation Bye. 

Operation getDistribution is computationally 
intensive and implements the following 
algorithm. First, it reads all files one by one 
and forms a vector S and a matrix P 
representing mappings S:I->N and P:IxI->N 
respectively, where I is a set of all items, N is a 
set of positive integers, S(i) is the total number 
of baskets containing item i, and P(i,j) is the 
total number of baskets containing both item i 
and item j. Then it uses the mappings to divide 
set I into M non-intersecting subsets I0,…, IM-1, 
where M is the number of sections. M most 
frequently bought items head separate sections. 
The rest items are distributed over the sections 
in the following way: 
delete i0,…,iM-1 from I 
for(k=0; I is not empty; k=(k+1)%M) 
{ 
  find i: P(i,ik)==max{P(I,ik)} 
  add i to Ik 
  delete i from I 
} 

Here i0,…,iM-1 are leaders of the sections, and 
the operation % computes the modulus of two 
integers. 

Intuitively, the algorithm tries to make each 
section have at least one very popular item 
surrounded by the items that most often 
accompany this popular one. It is assumed that 
such a distribution will stimulate customers to 
buy items of secondary necessity and reduce 
the total shopping duration. Due to the data 

store is very large and input/output operations 
are relatively slow, the execution time of the 
algorithm is practically equal to the time of 
computation of mappings S and P. Obviously, 

more accurate distribution can be obtained by 
taking into account the popularity of triplets of 
items and so on, not only that of single items 
and their pairs. But this leads to much more 

typedef short Item; 
typedef sequence<Item> Basket; 
typedef sequence<Item> Section; 
typedef sequence<Section> Distribution; 
interface  central_office { 
  void BasketOfItems(in Basket b); 
  Distribution getDistribution(in short number_of_sections); 
  void Hello(); 
  void Bye(); 
  ... 
}; 
 

Figure 1. CORBA IDL specification of the chain of supermarkets application server. 



computationally intensive and slower 
algorithms. Thus, although the presented 
algorithm is computationally intensive, it 
performs the minimal volume of computation 
that is necessary to solve the problem. 

Both client and server parts of the described 
distributed application were originally 
implemented in Orbix 3 C++ programming 
system. 

3. Parallel implementation of 
remote operations in mpC 

The traditional purely serial implementation 
of the presented application server causes the 
operation getDistribution to be very slow from 
the client’s point of view. At the same time, the 
application server normally runs on a network 
of computers whose total performance is very 
high. Therefore, a parallel implementation of 
the operation getDistribution that enables it to 
use effectively all available performance 
potential could essentially accelerate the 
operation. 

Let the data store consist of a big number, F, 
of files each of which containing B basket 
records. Let the network of computers to 
execute the operation be heterogeneous one 
possibly running some other applications as 
well. Under those assumptions, an obvious 
parallel modification of the original serial 
algorithm consists in parallel computing 
mappings S and P by all available processors. 
Namely, i-th processor computes mappings  Si 
and Pi by processing a subset of the full set of 

files. The number of files in subsets processed 
by different processors is proportional to the 
relative performance of the processors. The 
resulting  mapping  S (P) is obtained by means 
of the merge of mappings Si (Pi). 
Mathematically, the merge is nothing more 
than computation of the sum of all vectors Si 
(matrices Pi).  Thus, the parallel algorithm 
looks as depicted in Figure 2.  

The parallel algorithm is hard to be 
implemented in a portable form using 
traditional parallel tools like PVM [5] or MPI 
[5], which are oriented on dedicated 
homogeneous distributed-memory parallel 
systems, but can be easily implemented in mpC 
– a language specially designed for parallel 
computing on common heterogeneous 
networks of computers. The mpC language is a 
strict extension of the ANSI C language; 
therefore the corresponding parallel mpC code 
is obtained by very slim modification of the 
original serial C code used in the Orbix C++ 
implementation of the application server. 

The core of the mpC code is a description of 
such features of the implemented parallel 
algorithm that influence the running time. The 
description looks like a description of an 
abstract heterogeneous network executing the 
algorithm. From the mpC language’s point of 
view, that description defines a parameterized 
type of abstract networks and is called the 
network type definition. Thus, the key 
fragments of the parallel mpC code looks as

 depicted in Figure 3. 
In this code, the network type definition 

introduces the name ParallelDataMining of the 
network type, a list of parameters – integer 

scalar parameter n and vector parameter f of n 
integers, and coordinate variable I ranging from 
0 to n-1. Finally, it associates abstract 
processors with this coordinate system and 

 
 
detect the total number of available processors 
detect relative performances pi of the processors 
compute number ni of files processed by i-th processor 
compute mappings Si and Pi in parallel 
merge Si into resulting mapping S and Pi into P 
compute the distribution of I over sections based on S and P 
 
 

Figure 2. Parallel algorithm of distribution of items over a given number of sections. 



declares relative volumes of computations to be 
performed by each of the processors. It is 
assumed that i-th element of vector f is equal to 
the number of files processed by i-th abstract 
processor. 

Execution of the statement recon is that all 
physical processors running the program 
execute in parallel some test code, and the time 
elapsed by each of the real processors is used 
to refresh the estimation of its performance. 

 The library function 
MPC_Get_processors_info returns the number 
of available physical processors (in variable 
nprocs) and their relative performances (in 
array powers). 

Based on the number and relative 
performances of the actual processors, the 
library function Partition computes how many 
files of the data store each actual processor will 
process. So, after this call files[i] holds the 
number of files processed by i-th actual 
processor. In general, MPC_Partition divides a 
given whole (specified in the above call with 
num_of_files) into a number of parts in 
accordance with the given proportions. 

Next key line of the code defines the abstract 
network the_net of type ParallelDataMining 
with actual parameters nprocs – the actual 
number of physical processors, and files – an 
integer array of nprocs elements containing 
actual numbers of files to be processed by the 
processors. 

The rest computations and communications 
will be performed on this abstract network. The 
mpC programming system maps abstract 
processors of the abstract network the_net to 
real parallel processes constituting the running 
parallel program. This mapping is based, on the 
one hand, on information about the 
performance of physical processors of the real 
network executing the program, and on the 
other hand, on the above information about the 
parallel algorithm to be performed by the 
defined abstract network. The programming 
system does the mapping at run time and tries 
to minimize the execution time of the parallel 
algorithm. 

The rest modifications of the original Orbix 
implementation of the application server are 
minor and rather technical. They are aimed at 
smooth integration of the mpC parallel 
environment into the Orbix distributed 
environment. Code implementing operations 
Hello and Bye is modified to initialize and 
finalize the mpC programming environment 
respectively. In addition, the code 
implementing operation getDistribution is 
modified to enable passing input data (the 
number of sections) from the Orbix framework 
of the application server to the mpC inserted 
component and output data (the recommended 
distribution) from the mpC component back to 
the Orbix layer. The input data is passed to the 
mpC program as an external argument, and a 
temporary file is used for passing the results

computed by the mpC program to the main 
Orbix body of the application server. In 
general, the modifications integrating the mpC 
parallel application into the Orbix distributed 
application are pretty obvious and easy to 

make. Although there is possible some deeper 
integration of the two technologies, say, on the 
language level, it does not look reasonable. 
Such a deeper integration would be much more 
sophisticated and, at the same time, would 

nettype ParallelDataMining(int n, int f[n]) { 
  coord I=n; 
  node {I>=0: files[I];}; 
}; 
... 
repl nprocs, num_of_files, *files; 
repl double *powers; 
... 
recon; 
MPC_Get_processors_info(&nprocs, powers); 
Partition(nprocs, powers, files, num_of_files); 
{ 
  net ParallelDataMining(nprocs, files) the_net; 
  ... 
} 

Figure 3. mpC implementation of parallel distribution of items . 



provide no visible improvement of the quality 
of services compared to the above light-weight 
integration scheme. 

 

4. Experimental results 
 This section presents some results of 

experiments with the chain of supermarkets 
application. 

A small network of workstations was used 
for the experiments. The client ran on an IBM 
RS6000 workstation, the serial application 
server ran on a 4-processor Sun E450 
workstation, and the parallel application server 
ran on a network of two 4-processor Sun E450 
workstations and one 6-processor HP 
9000/K570 workstation. Table 1 shows relative 
performances of the three computers obtained 
automatically by an mpC utility that executed 
some serial test code on each of the computers. 

The data store consisted of 60 files each 
containing 8000 basket records. Up to 100 
different items could appear in a single basket. 
The client code invoked the remote operation 
getDistribution to get an optimal distribution of 

the 100 items over 5 sections and measured the 
execution time of the operation. This time 
obtained for different configurations of the 
application server are presented in Table 2. 
There were 4 configurations that only differed 
in the way of execution of the operation 
getDistribution: 

• The original serial version of this 
operation was executed on a Sun 
workstation; 

• The mpC parallel version of the 
operation was executed on the same 4-
processor Sun workstation as the serial 
one; 

• The mpC version was executed on the 
cluster of the two 4-processor Sun 
workstations; 

• The mpC version was executed on the 
cluster of the two 4-processor Sun 
workstations and one 6-processor HP 
workstation. 

One can see that parallel configurations of 
the application server demonstrated much 
better performance. 

 

5. Conclusion 
The paper has presented an experience of 

integration of the mpC-based technology of 

parallel computing on heterogeneous clusters 
into the CORBA-based technology of 
distributed computing. It has demonstrated that 
the presented light-weighted integration 
techniques is easy to make and does not require 
any changes in the combined technologies. At 

Workstation’s number 1 2 3 

Model Sun E450 Sun E450 HP 9000/K570 

Number of processors 4 4 6 

Relative performance 2658 3280 6067 

 
Table 1. Cluster of computers executing the application server. 

Workstations involved in 
execution of the remote operation 

 
1 

 
1 

 
1,2 

 
1,2,3 

 
Mode of the remote operation 

 
Serial 

 
Parallel 

 
Parallel 

 
Parallel 

 
Execution time (seconds) 

 
332 

 
168 

 
96 

 
42 

 
 

Table 2. Execution time of the remote operation getDistribution invoked to calculate an 
optimal distribution of 100 items over 5 sections. 



the same time, the integration essentially 
improves performance of application servers 
providing computationally intensive operations 
and running on networks of computers. 

References 
[1] Object Management Group, The Common 

Object Request Broker: Architecture and 
Specification, Revision 2.3, 1999. 

 [2] Sean Baker, CORBA Distributed Objects – 
Using Orbix, ACM Press, Adison Wesley, 
1997. 

 [3] A.Lastovetsky, D.Arapov, A.Kalinov, and 
I.Ledovskih. A Parallel Language and Its 
Programming System for Heterogeneous 
Networks. Concurrency: Practice and 
Experience, 12(13): 1317-1343, 2000. 

[4] D.Arapov, A.Kalinov, A.Lastovetsky, and 
I.Ledovskih. A Language Approach to 
High Performance Computing on 
Heterogeneous Networks. Parallel and 
Distributed Computing Practices, 2(3): 87-
96, 1999. 


