

0361-7688/02/2806- $27.00 © 2002

åÄIä “Nauka

/Interperiodica”0333

Programming and Computer Software, Vol. 28, No. 6, 2002, pp. 333–341. Translated from Programmirovanie, Vol. 28, No. 6, 2002.
Original Russian Text Copyright © 2002 by Kalinov, Lastovetsky, Ledovskih, Posypkin.

1. INTRODUCTION

Operations on arrays are important components of
the majority of computational mathematics algorithms.
Therefore, a number of languages have been developed
that support such operations. Programming languages
supporting operations on arrays, which are further
referred to as

vector operations

, can be classified into
three groups. The first group includes languages of the
MATLAB [1] and APL [2] types, in which these oper-
ations have been available from the very beginning.
The second group includes languages like ZPL [3] and
SAC [4], which have been developed on the basis of the
existing languages (ZPL is based on Modula-2, and
SAC, on C) but are not their extensions. They, for
example, lack such an important construct of the proto-
type languages as pointers. Finally, the third group
includes languages that are extensions of the earlier
existing languages, such as, e.g., FORTRAN 90/95 [5].
We consider FORTRAN 90 as an extension of FOR-
TRAN 77 since only obsolete constructs of the latter,
which do not reduce its expressiveness, are removed.

In this paper, the current version of the C[] language
[6, 7], which is classified among the third group, is
described. The C[] language, in turn, is a subset of the
parallel programming language mpC [8].

C[] is a strict extension of the programming language
C. In C, an array in expressions is transformed to a
pointer to the type of its elements. In C[], by means of the
special grid and block operators, which are discussed in
detail in Section 2, this transformation is prevented, and
the array takes part in arithmetic operators as a whole.

C[] allows one to code various algorithms more
compactly compared to C. On the other hand, addi-
tional semantic information included in vector expres-
sions gives the compiler more possibilities for perform-
ing optimizing transformations. Studies carried out [9]
show that such information can efficiently be
employed, for example, for optimizing cache use.

In Section 2, a description of C[] is given. Syntax
and semantics of vector operators are considered in

detail. Differences of the current version of C[] from
that published earlier are discussed. In Section 3, C[] is
compared with other vector languages.

2. DESCRIPTION OF THE C[] LANGUAGE

2.1. Types

2.1.1. Vectors.

 In C, the notion of an

object

 is intro-
duced as a memory area the content of which can rep-
resent values [10]. The C[] language introduces the
notions of a

vector of objects

, or simply

vector

, and a

vector type

, which is the type of a vector.

A

vector

 is defined as an ordered sequence of objects
or vectors of one type

T

. Here,

T

 is any type of C[] differ-
ent from functional. Elements of the sequence forming a
vector are called

elements of the vector

, and the

i

th ele-
ments of a vector

v

 is denoted as

v

i

. The number of ele-
ments in this sequence is referred to as the

vector length

,
and the type

T

, the

type of the vector element.

A vector type is specified by two attributes: the
number of elements (or length) of vectors of this type
and the type of the elements. If

T

 is a vector type, then

Dim

(

T

) denotes its length, and

VET

(

T

), the type of its
elements. All types of C[] that are not vector types are
referred to as

nonvector types

.

As is known, an object in C can represent a value.
Similarly, in C[], a vector represents a

vector value.

 A
value of a vector in C[] is said to be a vector value. A
vector value is an ordered sequence of values of ele-
ments of the vector. A vector value has the same type as
the vector that represents this value.

Let us introduce the notion of the

rank of a vector
type.

 Let

T

 be a vector type. Then, its rank

Rank

(

T

) is
defined by the formula

Rank T()
1, if VET T() is a nonvektor type,

Rank VET T()() 1,+

if VET T() is a vector type.





=

Refined Description of the C[] Language

A. Ya. Kalinov, A. L. Lastovetsky, I. N. Ledovskih, and M. A. Posypkin

Institute of System Programming, Russian Academy of Sciences,
ul. Bol’shaya Kommunisticheskaya 25, Moscow, 109004 Russia

e-mail: posypkin@ispras.ru

Received August 15, 2001

Abstract

—In the paper, an accurate and detailed description of the programming language C[] is given. Unlike
previous publications on the language, this paper gives a formal definition of a vector, which is used for the
description of the semantics of basic constructs. The language updates that appeared after the first publication
are discussed. Other vector programming languages are surveyed and compared with C[].

334

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 28

No. 6

2002

KALINOV

et al

.

A

form of a vector type (vector)

1

T

 is a sequence of
integers

Form

(

T

) of length

Rank

(

T

) formed by the rule

Two vector types

T

1

 and

T

2

, such that

Rank

(

T

1

) =

n

1

,

Rank

(

T

2

) =

n

2

, and

n

1

 <

n

2

, are said to be

conformal

 if
the form

Form

(

T

1

) is an initial subsequence of the form

Form

(

T

2

), i.e., if

Form

(

T

2

) = {

Form

(

T

1

) , …, }.

For example, the vector types with the forms {5, 8}
and {5, 8, 7, 3} are conformal.

By definition, any nonvector type is assumed to be
conformal to any vector type.

If a vector (vector value)

v

 has a vector type

T

, then
the object (value) , where 0

≤

i

j

 <

Form

(

T

)

j

for 1

≤

j

≤

Rank

(

T

), is called a

terminal element with
index

 {

i

1

, …,

i

Rank

(

T

)

}.
The

terminal type for a given vector type

T

 is
defined as the type of its terminal element and denoted
as

VTT

(

T

).

2.1.2. Arrays.

 An array in C is defined as a set of
objects of one type located in the memory in succes-
sion. C[] extends this notion by introducing a new
attribute, step. The step is a positive integer that deter-
mines the distance between the initial addresses of suc-
cessive elements of the array measured in the units
equal to the element of the given array.

Thus, arrays in C[] are composed of objects of one
type located in the memory at a certain distance, equal
to a given step, one from another. Figure 1 shows an
array with the step equal to 3.

2.1.3. Pointers.

 The notion of a pointer is extended
in a similar way, such that a pointer in C[] may have a
step. As in the case of arrays, a pointer step is a positive
integer, which is used for defining various arithmetic
operators with pointers. Ordinary C pointers are viewed
as pointers with the unit step.

If an integer is added to or subtracted from a pointer,
it is first multiplied by the product of the size of the

1

The notion of a form of a vector type is defined in a similar way in
the languages FORTRAN 90, C*, ZPL, as well as in some other
vector languages.

Form T()

=

Dim T(){ } , if VET T() is a nonvektor type,

Dim T() Form VET T()(),{ } ,

if VET T() is a vector type.





f n1 1+ f n2

v i1 … iRank T(), ,

object to which the pointer refers to and the pointer
step.

In C[], the difference of pointers is determined only
for pointers of one type, i.e., for pointers that have one
step and refer to one type. When two pointers to ele-
ments of one array with the step equal to the step of the
pointers are subtracted, their difference is divided by
the size of the element of this array multiplied by the
step. The result is the difference of values of indices of
two elements of the array. If two pointers taking part in
the operator do not refer to elements of one and the
same array, the behavior is not determined.

2.1.4. Dynamic types. The C[] language permits the
use of a nonconstant expression as a specifier of an
array dimension, array step, or a pointer. Such arrays
and pointers are further referred to as dynamic. Only
arrays with automatic storage duration may be
dynamic. An expression for array dimensions must not
contain subexpressions with side effects and subex-
pressions of vector type. The same rules are used for
pointers in C[].

Listing 2.1. Access to diagonal elements by means
of a pointer to an array with a step.

typedef (* tDiag)[N + 1];
int A[N][N];
tDiag p;
…
p = (tDiag)A;
…
(*p)[i] = 1;
Arrays and pointers with a step are a convenient tool

for accessing various collections of elements of a given
array. For example, in the program fragment repre-
sented in Listing 2.1, the pointer to the array p makes it
possible to access diagonal elements of the matrix
stored in the array A. The type tDiag is the type of the
pointer to the array with the step N + 1 . Since arrays
in C are stored in memory by rows, the diagonal ele-
ments of the array are located in memory with the step
N + 1 , and the expression (*p)[i] denotes the ith
diagonal element.

2.2. Type Transformations

2.2.1. Classification of type transformations. In
C[], transformations of types are classified into two
groups: scalar type transformations and vector type
transformations.

All transformations of nonvector types fall into the
group of scalar transformations.

Vector transformations, in turn, are divided into two
groups: transformations of terminal types and confor-
mal extensions.

2.2.2. Transformations of terminal type. A trans-
formation of a terminal type to a scalar type S is a type
transformation applied to the value of an expression of
vector type T that results in a vector of type T ' the form

a[0] a[1] a[2]

Fig. 1. Location of elements of a one-dimensional array
with the step 3.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

REFINED DESCRIPTION OF THE C[] LANGUAGE 335

of which coincides with the form of the vector type T,
and the type of the terminal element is S.

The result of a transformation is determined as fol-
lows. Let S be a scalar type and T be a vector type of an
expression E the value of which is a vector value v.
Then, the result of the application to the expression E
of a transformation of a terminal type to the type S is a
vector value the elements of which are obtained from
elements of the vector value v by applying either the
transformation of a terminal type to the type S if
VET(T) is a vector type or a scalar transformation to the
type S otherwise.

2.2.3. Conformal extensions. Conformal exten-
sions make it possible to transform vector values of dif-
ferent (but conformal) types to one type, as well as to
transform scalar values to a vector type.

Let a be a value of a scalar type, and T be a vector
type. Then, the conformal extension of a to the type T is
a vector v of type T ', where Form(T) = Form(T ') and
VTT(T) = Type(a). Note that all terminal elements of the
vector v coincide with a.

Let T and T ' be conformal types of rank m and n,
respectively, m < n. Then, the conformal extension of
the vector value v of type T to the type T ' is a vector
value v ' of the form Form(T ') with the terminal type
equal to VTT(T). In this case, terminal elements of v '
are calculated by the formula = .

2.2.4. Transformations of types of operators
operands. In this section, we consider implicit trans-
formations of types and restrictions imposed on types
of the C operators extended to the vector case.

C[] permits only conformal operands in any opera-
tors admitting vector operands (an exception is opera-
tors of access to elements of structures, see Section
2.3.11). Terminal types of the operands are subject to
the same restrictions as the operand types in C. Types
are transformed by the following scheme:

(1) operands are transformed to vector types of one
form by means of a conformal extension;

(2) to the vector types obtained, transformations of
terminal type are applied in accordance with the rules
of the type transformation for the given operator, which
are specified in the C standard.

The reverse order is also possible.
Specific features of type transformations for various

operators are considered in detail in Section 2.3.

2.3. Expressions of the C[] Language

2.3.1. Lvectors. In C, the notion lvalue is used. It is
defined as an expression denoting an object [11]. By
analogy, in C[], the notion of an lvector is defined as an
expression denoting a vector.

2.3.2. Vector construction. In addition to all C
operators available in C[], operators on vectors are
introduced. There are two operators designed for con-

v i1 … in, ,' v i1 … im, ,

structing a vector from an array or a pointer. These are
grid and block operators.

The grid operator has the following syntax:

expr[l : r : s],

where an expression expr has the type “array of ele-
ments of type T ” or a “pointer to the type T” and oper-
ands l, r, and s are of integer type and denote the left
boundary, the right boundary, and the step, respectively.
The operands must satisfy the conditions: l ≤ r, l ≥ 0, r ≥
0, and s > 0. The result of the expression is a vector v
containing  (r – l)/s + 1 elements of type T, with the
value of the ith element of the vector v being the value
of the expression expr[l + s ∗ i]. If e[l + s ∗ i] is an
address expression, then v i denotes the same object in
the memory as expr[l + s ∗ i].

The left and right boundaries of the grid, as well as
the step, can be omitted. In this case, their values are
taken by default. If the expression for the step is omit-
ted, then the second colon in the notation for the grid
operator must be omitted as well. The default value for
the step is one; the default value for the left boundary is
zero; and the default value for the right boundary either
is equal to the number of the array elements minus one
or, if the grid operator is applied to the pointer, is deter-
mined from the context.

Example. Figure 2 shows variants of the determina-
tion of the dropped parameters of the grid operator for
an operand of the type “array.”

If a grid operator is applied to a pointer, the default
value r for the right boundary is determined from the
context of the expression by the following rules:

(1) if the expression expr[l : r : s] is one of the oper-
ands of a binary operator, and the other operand has the
type “vector of length N,” then r is set equal to N – 1;

(2) if the expression expr[l : r : s] is one of the oper-
ands of a conditional operator, and one of the two

a[0] a[3]a[1] a[2] a[4]a[1:3:2]

a[1:3]

a[::2]

a[:]

a[0] a[3]a[1] a[2] a[4]

a[0] a[3]a[1] a[2] a[4]

a[0] a[3]a[1] a[2] a[4]

Fig. 2. Variants of the application of the grid operator to a
one-dimensional array. The shaded squares correspond to
the selected elements.

336

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

KALINOV et al.

remaining operands has the type “vector of length N,”
then r is set equal to N – 1.

In all other cases, the default value of the right
boundary cannot be calculated from the context, and
the corresponding operand cannot be dropped.

The first operand of a grid operator may be an
expression of a vector type. In this case, the grid oper-
ator is applied to elements of a vector value. This makes
it possible to successively apply several grid operators
and, thus, to extract different collections of elements
from multidimensional arrays.

The expression expr[l : r : s] is an address vector. It
is a modifiable address vector if all expressions expr[l +
s ∗ i] are modifiable address values or modifiable
address vectors.

Example. Figure 3 shows an expression obtained by
applying successively two grid operators to the array A
defined as int A[3][3] .

The result of the expression A[0 : 2 : 2][0 : 5 : 2]
is interpreted as follows. The expression A[0 : 2 : 2]
denotes the vector consisting of two arrays of the type
“array of five elements of the type int .” This expres-
sion is a nonmodifiable lvector, since the expressions
A[0] and A[2] are nonmodifiable lvalues. The second
grid operator is applied to each element of this vector.
Hence, the expression A[0 : 2 : 2][0 : 5 : 2] denotes
a vector of two vectors that are obtained by applying the
grid operator with the boundaries 0 and 5 and the step
2 to the array of five integers (i.e., both latter vectors
consist of three integers). This expression is a modifi-
able address vector, since the result of the application of
the grid operator to an array of five integers is a modi-
fiable address vector.

Another operator of vector construction is the block
operator with the syntax

expr[],

where the expression expr has an array or pointer type.
If it has a pointer type, then the expression expr[] is
equivalent to the expression expr[:]; if it has the array
type, the expression expr[] is equivalent to the expres-
sion expr[:] … [:], where the grid operator with

dropped expressions for the boundaries and step is
applied the number of times that is equal to the rank of
the array.

As in the case of the grid operator, an operand of the
block operator may be an expression of vector type. In
this case, the operator is applied element-wise to the
elements of the vector value of the expression.

2.3.3. Cast operator. The syntax of the cast opera-
tor is given by

(type_name) expression.

The type type_name may be any scalar type of C[].
If the expression expression has a vector type, the cast
operator is considered to be the cast of the terminal type
of the expression value. By analogy with C, the cast
expression is not an lvector.

2.3.4. Address operator. The operator & of getting
an address is applicable to lvectors only. If an expres-
sion expr is an lvector of a type T, the value of the
expression &(expr) is the value of the vector type with
the form Form(T) and terminal type “pointer to
VTT(T).” In this case, terminal elements of this vector
value are pointers to the terminal elements of the vector
denoted by the expression expr.

2.3.5. Indirection operator. An operand of the indi-
rection operator * may be an expression of vector type.
If an expression expr has a vector type T and VTT(T) is
the type “pointer to the type T ',” then the expression
* (expr) is an address vector denoting the vector whose
terminal elements are objects addressed by the terminal
elements of the vector value of the expression expr. The
expression * (expr) has the vector type with the form
Form(T) and the terminal element T '.

2.3.6. Postfix increment and decrement opera-
tors. C[] permits the use of operands of vector type in
the postfix increment and decrement operators. If the
value of an expression expr is of vector type, the result
of the expression expr++ is a vector value that coin-
cides with the vector value of the expression expr. The
expression expr must be lvector. Terminal elements of
the vector denoted by the expression expr are increased
by one. The postfix decrement operator is defined sim-
ilarly.

2.3.7. Prefix increment and decrement operators.
C[] permits the use of operands of vector type in the
prefix increment and decrement operators. If the result
of an expression expr has a vector type T, the result of
the expression ++expr is a vector value of the form
Form(T), terminal elements of which are obtained by
applying the prefix operator ++ to the terminal elements
of the vector value of the expression expr. The expres-
sion expr must be an address vector. Terminal elements
of the vector denoted by the expression expr are
increased by one. The prefix decrement operator is
defined similarly.

2.3.8. Other unary operators. The unary operators
+, –, ~, and ! may have vector operands. The result of
the application of an operator op to an expression expr

Fig. 3. Vector denoted by the expression
A[0 : 2 : 2][0 : 5 : 2] , where A is described as int
A[3][5] . The shaded squares correspond to the selected
elements.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

REFINED DESCRIPTION OF THE C[] LANGUAGE 337

of a vector type T is a vector value of the form Form(T)
the terminal elements of which are obtained by apply-
ing the operator op to the corresponding terminal ele-
ments of the vector value v of the expression expr. On
the value of the expression expr, transformations of ter-
minal type defined in C for these operators are per-
formed.

2.3.9. Assignment operators. The syntax of the
assignment expression is given by

lexpr op rexpr, (1)

where op denotes one of the following assignment
operators: =, *= , /= , %=, +=, –=, <<=, >>=, &=, ̂ = , and
|= . Operands of the assignment operator may have a
vector type.

The left-hand side of the assignment expression is
either a modifiable lvalue or a modifiable lvector. The
expressions lexpr and rexpr must have conformal types,
and the value type rank of the expression lexpr must be
not less than the value type rank of the expression
rexpr. The value of the expression rexpr is transformed
to the type of the expression lexpr in accordance with
the rules discussed in Section 2.2.4.

Let l be a vector denoted by the expression lexpr and
r be a vector value of the expression rexpr transformed
to the type of lexpr. As a result of a simple assignment
operator, the vector value r replaces the value of the
vector l in the memory. This replacement is imple-
mented by elements; i.e., the values of the objects cor-
responding to the terminal elements of the vector l are
replaced by the values corresponding to the terminal
elements of the vector value r.

The expression for the complex assignment lexpr op =
rexpr is equivalent to the expression lexpr = (lexpr)op(rexpr)
with one exception that the expression lexpr is calcu-
lated only once.

Below is an example of the use of a binary assign-
ment operator.

Listing 2.2. Elements of the ith row of the array A
are assigned the value of the ith element of the array b.

int A[M][N];
int b[M];
…
…
A[:][:] = b[:];
2.3.10. Access to array elements. As in C, in C[],

the expression expr1[expr2] is equivalent to the expres-
sion * ((expr1) + (expr2)), where the expressions expr1
and expr2 may have a vector type. This definition makes
it possible to use vector values for addressing several
array elements simultaneously.

Example. In the code presented in Listing 2.3, ele-
ments of the array A with indices 0, 1, and 3 are
assigned the value of 1.

Listing 2.3. Elements of the array A with indices 0,
1, and 3 are assigned the value of 1:

int A[M];

int ind[3] = {0, 1, 3};
…
…
A[ind[:]] = 1;
2.3.11. Access to elements of structures and

unions. The first operand of the operator “.” may have
a vector type the terminal type of which is a structure or
union type, and the second operand is an identifier, a
name of a structure or union member. The value of the
expression lexpr.rexpr has a vector type of the same
form as the type of lexpr, with the terminal type coin-
ciding with the type of the named structure member.

The value of the expression lexpr.rexpr is a vector
value the terminal elements of which are values of
named members of the corresponding terminal ele-
ments of the vector denoted by lexpr. If the expression
lexpr is lvector, then the expression lexpr.rexpr is an
lvector the terminal elements of which are objects
denoted by named members of the corresponding ter-
minal elements of the vector denoted by lexpr.

The expression lexpr– > rexpr is equivalent to the
expression (*lexpr).rexpr.

2.3.12. Other binary operators. The set of C
binary operators is extended in C[] through the addition
of two new binary operators ?> and ?<. The result of
the binary maximum operator ?> is the maximum of
two operands. The restrictions on the operand types, the
resulting type, and rules of the operand type transfor-
mations are the same as for the operator <.

Binary operators in C[] may have vector operands.
Types of the operands must be conformal. If the type
rank of one of the operands is less than the type rank of
the other operand, the vector value of this operand is
extended conformally to the type of the other operand.
Then, to the values of both operands, the transforma-
tion of terminal types is applied in accordance with the
C rules for the given binary operator.

A binary operator is applied element-wise to the
corresponding elements of values of the vector oper-
ands. If u and v are results of the above-considered
transformations of values of the operands lexpr and
rexpr, the value of the expression lexpr op rexpr is a
vector value w the terminal elements of which are
obtained by applying the operator to the corresponding
elements of the vector values u and v.

The application of binary operators to vector oper-
ands is exemplified by a code for the calculation of the
element-wise sum of two arrays shown in Listing 2.4.

Listing 2.4. A fragment of the C[] code for the cal-
culation of the element-wise sum of two arrays.

int a[M][N], b[M][N], c[M][N];
c[] = a[] + b[];

2.4. Reduction Operators

The binary C operators +, * , | , &, ^ , || , &&, ?>, and
?< are associated with the reduction operators in C[].

338

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

KALINOV et al.

If op is a binary operator, the reduction operator corre-
sponding to it is denoted as [op]. It has the following
syntax:

red_oper expr,

where red_oper stands for one of the reduction opera-
tors [+] , [*] , [|] , [&] , [^] , [||] , [&&] , [?>] ,
[?<] , and expr is an expression of vector type. If the
expression expr has type T, then the reduction operator
[op] is applicable to the expression expr if the corre-
sponding binary operator op is applicable to operands
of type VET(T). The type of the value of the expression
[op]expr coincides with the type of the value of type
VET(T). On a vector type T, the same transformation of
terminal type is performed as for the type VET(T) in the
case of a binary operator op with the operands of type
VET(T).

The result of the application of an operator [op] to
an expression expr is a value calculated by the formula
(…(v 0 op v 1) op v 2…)op v n – 1 , where v is the result of
the expression expr.

The reduction operators [>?] and [<?] corre-
sponding to the maximum and minimum operators
make it possible to find maximal and minimal values of
the elements of a vector. A code fragment presented in
Listing 2.5 illustrates the application of the combina-
tion of the element-wise multiplication and the reduc-
tion sum operator for the calculation of the scalar prod-
uct of vectors.

Listing 2.5. Scalar multiplication of a[] and b[] .

int a[N];

int b[N];

int c;

…

…

c = [+](a[] * b[]);

2.5 Differences of the Current Version of the Language
from That Published Earlier

During the time that passed after the first publica-
tion [6], C[] has been updated, with the updates being
aimed at improving its expressiveness. The basic two of
them are as follows. First, in the descriptions of arrays,
the expression for the array dimension may now be of
arbitrary integer type rather than only constant; i.e.,
dynamic arrays have been incorporated into the lan-
guage. Second, the semantics of the grid operator has
been changed; now, it is closer to that accepted in FOR-
TRAN 90.

Operators of access to elements of structures and
unions are extended to the vector case.

Notions of conformal vector types and conformal
extensions have been introduced, which made it possi-
ble to more rigorously describe the semantics of
expressions.

The operators pipe and par for explicit constructing
vector values have been excluded from the language.

3. COMPARISON WITH OTHER VECTOR
LANGUAGES

Unlike C and C[], which consider multidimensional
arrays as “arrays of arrays,” all languages to be dis-
cussed in this section consider an array as an aggregate
of a data vector and a form vector. The form vector is a
vector consisting of integers the number of elements of
which is equal to the number of the array dimensions,
and the elements themselves are equal to the values of
the corresponding dimensions. The data vector con-
tains all array elements.

3.1. Single Assignment C

The SAC (Single Assignment C) language [4] is
based on C but is not its strict extension. It does not
have such important C constructs as pointers and global
variables.

The notion of an array in the Single Assignment C
is different from that in C. An array is considered as an
aggregate of a data vector and a form vector. The
description of an array in the SAC is syntactically dif-
ferent from the C description (see Listing 3.1).

The language includes a number of built-in opera-
tors on arrays (Table 1) that are used to describe various
calculations on arrays.

The basic means to express calculations on arrays in
the SAC are with loops. The heading of such a loop
contains the description of the range of index variation,
and the body contains one of three—genarray ,
modarray , and fold —statements, which are used to
describe various expressions over arrays (Table 2).

The heading of a with loop has the syntax with
(a <= v <= b)step s width w and specifies the

Table 1. Base operations of Single Assignment C

dim (A) Dimension of the array A

shape (A) Form vector of the array A

psi (v, A) Subarray (or element) of the array A

corresponding to the index vector v

take (v, A) Subarray of the array A of form v consisting
of elements of the array A taken for the index
vectors that are not greater than v

drop (v, A) drop (v, A) = take (v – shape (A), A)

reshape (v, A) Array of form v consisting of elements of
the array A

cat (m, A, B) Concatenation of the arrays A and B along
the dimension m

rotate (m, n, A) Rotation of elements of the array A along
axis m by n positions

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

REFINED DESCRIPTION OF THE C[] LANGUAGE 339

set of index vectors v such that ai <= v i <= bi, where
(v i – ai)modsi < wi .

For an example of using with loops, we consider a
SAC code calculating the element-wise sum of two
arrays.

Listing 3.1. SAC code for array summation.
double[100] A;
double[100] B;
double[100] C;
C = with (. <= i_vec <= .)

modarray(A, i_vec, A[i_vec] +
B[i_vec]);

The Single Assignment C has a greater set of opera-
tors on arrays compared to C[]. In particular, built-in
operators for array concatenation and rotation are not
available in C[]. Moreover, the with construct is a
more general means for the expression of calculations
than just successive application of the reduction and
binary operators used in C[]. For example, the construct

C = with (. <= i_vec <= .)
modarray(A, i_vec, f(B[i_vec]));

which assigns to the elements of an array A the result of
the application of a function f to the elements of an
array B, cannot be replaced by one vector expression
in C[].

The incorporation of many built-in operators on
arrays and with loops made the developers of the SAC
exclude such key elements of C as pointers and global
variables. Unlike the SAC, C[] completely preserves
the syntax and semantics of C, which allows one to use
an earlier written C code and facilitates the learning of
the language for the programmers working with C.

In addition, the existence of many built-in functions
is inconvenient for the user, who must either remember
them or permanently address the manual. It is for this
reason that C[] contains a minimum number of new
syntactic constructs, which have a natural form and,
thus, are easy-to-remember.

3.2. ZPL

The ZPL language [3] is an extension of a subset of
Modula-2. To simplify the compilation and facilitate
the use of optimizing transformations, pointers and
unconditional transfers are excluded from the base lan-
guage.

The ZPL language supports traditional arrays used
in Modula-2, which are referred to as indexed arrays in
ZPL. In addition to the indexing operator, the so-called
absent array reference operator, which is syntactically
represented as square brackets with dropped index
expression, is introduced in the language. Being
applied the number of times that is equal to the number
of the array dimensions, this operator makes it possible
to address the array as a whole. Such an expression may
be used as an operand of a binary or unary operators,
which, in this case, are applied by elements. For oper-

ands of a binary operator, only arrays of the same form
can be used, or one of the operands is to be a scalar.
Listing 3.2 gives an example of a ZPL program for find-
ing the sum of arrays.

Listing 3.2. ZPL code for the summation of arrays.
type array1 = array[1..10, 1..5] of

integer;
var a, b, c : array1;
c[][] := a[][] + b[][];

The support of calculations over arrays in the ZPL
language is considerably poorer than in C[]: no reduc-
tion operators are available in ZPL, and element-wise
operators can be applied only to arrays of the same
form.

A wider set of operators are provided in ZPL for the
so-called parallel arrays. Parallel arrays are distributed
in the computational space such that each node of the
computational space gets a certain number of the array
elements and each element belongs to only one node.
Parallel arrays also may be operands of arithmetic and
assignment operators, as well as operands of reduc-
tions. Since parallel arrays are means for expressing
program parallelism, we will not further discuss them:
possibilities of ZPL related to its parallel implementa-
tion are reasonable to compare with those of mpC
rather than C[], which suggests a one-processor target
platform.

3.3. FORTRAN 90

One of the most well-known modern FORTRAN
extensions, FORTRAN 90, supports various operations
on arrays. This language seems to be conceptually clos-
est to C[], and we consider it in a more detail.

FORTRAN 90 permits the use of arrays as operands
of binary and unary operators, which are applied ele-
ment-wise. Operands of a binary operator must have
the same form. The result of an operator is an array of
the same form as the operands.

FORTRAN 90 contains built-in functions for con-
structing arrays. For example, the function RESHAPE
is used to obtain an array from elements of another
array. The function SPREAD is designed for construct-
ing an array whose dimension is greater than that of a
given array by one, by creating the required number of

Table 2. Single Assignment C statements

genarray (v, expr) Returns an array of form v with the
elements calculated by the expression expr

modarray (A, v, expr) Returns a modified version of the
array A: on the positions corresponding
to v, elements of the vector are equal
to the values of the expression expr

fold (fold_op, neutral, expr) Calculates the reduction of all elements
from the range of indices by means of
the binary operator fold_op

340

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

KALINOV et al.

copies of the given array and placing them along the
given dimension.

Reduction operators are realized through built-in
functions listed in Table 3. The reduction functions can
be applied either to the whole array to get a scalar result
or along a given dimension to get an array whose rank
is less than the rank of the operand by one.

FORTRAN 90 has facilities for addressing seg-
ments of arrays. Within one dimension, boundaries of
the segment are indicated by means of the expression
l : r : s , where l and r are the left and right bound-
aries and s is the selection step.

There are a number of other built-in functions for
work with arrays, including the functions
DOT_PRODUCT and MATMUL designed for the calcula-
tion of the scalar product of vectors and the product of
a matrix and a vector, respectively.

Listing 3.3 presents a fragment of a code in FOR-
TRAN 90 computing the sum of two arrays.

Listing 3.3. FORTRAN 90 code for the summation
of arrays.

REAL DIMENSION (5,5) :: A
REAL DIMENSION (5,5) :: B
REAL DIMENSION (5,5) :: C
C = A + B
C[] and FORTRAN 90 are similar in many respects;

for example, binary operators are defined for operands–
arrays, it is possible to address segments of arrays, etc.

Still, there are a number of differences between
them. In particular, reduction operators in FORTRAN
90 are implemented as built-in functions, whereas, in
C[], they are denoted by the symbol of the correspond-
ing binary operator enclosed in square brackets. The
C[] approach seems to be more convenient, since the
language is not overloaded by additional key words.
Moreover, the number of the reduction operators in C[]
is greater than that in FORTRAN 90.

4. CONCLUSION
The C[] language considered in the paper extends

the ANSI C through the support of element-wise and
reduction operators on vectors. These operators are
convenient-to-use means for writing codes containing

computations over array data. The approach based on
the C[] language is original, and, to our best knowl-
edge, is different from other approaches to the develop-
ment of vector languages.

In the future, we plan to improve the compiler from
C[] by adding to it optimizing transformations aimed at
the minimization of time expenditures and more effi-
cient use of interprocessor parallelism.

A free version of the C[] compiler and user’s manual
are available in the Internet at the address
www.ispras.ru/~cbr. For the compilation of codes in
C[], the compiler from mpC can also be used, the free
version of which is also available in the Internet at the
site www.ispras.ru/~mpc.

APPENDIX. EXAMPLES OF C[] CODES

A.1 Matrix Multiplication

In this example, the product of matrices A and B is
calculated, and the result is written to matrix C. The
algorithm used is based on the fact the ith row of matrix
C is a linear combination of rows of B with the coeffi-
cients equal to the elements of the ith row of A.

Listing A.1. Matrix multiplication.
double A[M][L];
double B[L][N];
double C[M][N];

for(i = 0; i < M; i ++)
C[i][] = [+](A[i][] * B[]);

A.2 LU Decomposition

The listing below presents a fragment of the code
for the LU decomposition of a matrix A by the Gauss
method.

Listing A.2. LU decomposition.
for(i = 0; i < N–1; i ++)

for(j = i+1; j < N; j ++) {
double t;
t = A[j][i]/A[i][i];
if(A[j][i]!= 0) A[j][i:N–1]–=
t*A[i][i:N–1];

}

REFERENCES
1. Higham, D. and Higham, N., The Matlab Guide, SIAM,

2000.
2. ISO, Programming Language APL, extended, 1996.
3. Lin, C. and Snyder, L., ZPL: An Array Sublanguage, in

Languages and Compilers for Parallel Computing,
1993, pp. 96–114.

4. Scholz, S.-B., On defining Application-Specific High-
Level Array Operations by Means of Shape-Invariant
Programming Facilities, Proc. of APL’98, ACM-
SIGAPL, 1998, pp. 40–45.

Table 3. FORTRAN 90 reduction statements

ALL Returns true if all elements of
the array are equal to true

ANY Returns true if any of the elements
of the array are equal to true

COUNT The number of the array elements

MAXVAL The maximum element of the array

MINVAL The minimum element of the array

PRODUCT Product of the array elements

SUM Sum of the array elements

PROGRAMMING AND COMPUTER SOFTWARE Vol. 28 No. 6 2002

REFINED DESCRIPTION OF THE C[] LANGUAGE 341

5. ISO & IEC, FORTRAN 95, X3J3/95-007R1, Working
Draft, 1996.

6. Gaissaryan, S.S. and Lastovetsky, A.L,, ANSI C Super-
set for Vector and Superscalar Computers and Its Retar-
getable Compiler, J. C Language Translation, 1994,
vol. 5, no. 3, pp. 183–198.

7. Gaissaryan, S.S. and Lastovetsky, A.L., Extension of
ANCI C for Vector and Superscalar Computers, Pro-
grammirovanie, 1995, vol. 21, no. 1.

8. Lastovetsky, A., Arapov, D., Kalinov, A., and Ledovs-
kih, I., A Parallel Language and Its Programming Sys-
tem for Heterogeneous Networks, Concurrency: Prac-
tice and Experience, 2000, vol. 12, pp. 1317–1343.

9. Kalinov, A.Ya., Lastovetsky, A.L., Ledovskih, I.N., and
Posypkin, M.A., Compilation of Vector Statements of
C[] Language for Architectures with Multilevel Memory
Hierarchy, Programmirovanie, 2001, vol. 26, no. 3,
pp. 3–18.

10. ISO & IEC, Programming Language C, WG14/N843,
Committee Draft, 1998.

11. Kernighan, B.W. and Ritchie, M., The C Programming
Language, Englewood Cliffs (USA): Prentice–Hall,
1978. Translated under the title Yazyk programmiro-
vaniya Ci, St. Petersburg: Nevskii Dialekt, 2001.

