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Abstract 
 
Heterogeneous networks of computers (HNOCs) are becoming an increasingly popular platform 

for executing parallel applications. HNOCs have been proposed as a viable and cost-effective 

alternative to supercomputers because of the computation power they offer. The use of such 

networks for parallel high-performance computing is limited only by the absence of appropriate 

system software.  

We propose Heterogeneous Message Passing Interface (HMPI), a unifying framework 

designed specially for programming high-performance computations on HNOCs. HMPI provides 

all the features to the user to write portable and efficient parallel applications on HNOCs. These 

features automate all the main stages involved in application development on HNOCs: 

Stage-1). Determination of the characterization parameters relevant to the computational 

requirements of the applications and the machine capabilities of the heterogeneous system. These 

are mainly the speeds of processors, the latencies and bandwidths of the communication links 

between them, and the user-available memory capacity of each machine. The largest problem 

size that can be run is limited by the user-available memory capacity on a given machine. These 

parameters are determined before the application execution and form the model of executing 

network of computers. HMPI provides interfaces to update the parameters of the model at 

runtime taking into account the fluctuations of the network load. 

Stage-2). Decomposition of the whole problem into a set of sub-problems that can be solved 

in parallel by interacting processes. This step of heterogeneous decomposition is parameterized 

by the characterization parameters determined in the first step. We propose Heterogeneous Data 

Partitioning Interface (HDPI), which automates this step of heterogeneous decomposition. HDPI 

provides API that allows the application programmers to specify simple and basic partitioning 
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criteria in the form of parameters and functions to partition the mathematical objects used in their 

parallel applications. 

Stage-3). Selection of the optimal set of processes running on different computers of the 

heterogeneous network by taking into account the speeds of the processors, and the latencies and 

the bandwidths of the communications links between them. HMPI provides a small set of 

extensions to MPI, which automate the process of selection of such a group of processes that 

executes the heterogeneous algorithm faster than any other group. The main goal of the design of 

this API in HMPI is to smoothly and naturally extend the MPI model for HNOCs.  

Stage-4). Application program execution on the HNOCs. The command line user interface of 

HMPI developed consists of a number of shell commands supporting the creation of a virtual 

parallel machine and the execution of the HMPI application programs on the virtual parallel 

machine. The notion of virtual parallel machine enables a collection of heterogeneous computers 

to be used as single large parallel computer. 

The merits of HMPI are demonstrated through the design, analysis, and implementation of 

three applications on HNOCs. They are Matrix-matrix multiplication, Cholesky Factorization, 

and EM3D. These applications are representative of many scientific applications. Experimental 

results show that carefully designed HMPI applications can show very good improvements in 

execution performance on HNOCs. 

Once developed, an HMPI application will run efficiently on any HNOCs without any 

changes to its source code (we call the property efficient portability). It can be seen that the 

improved performance of the HMPI applications is not due to the fine-tuning of these 

applications to a specific environment. By hiding the non-uniformity of the underlying 
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heterogeneous system from the application programmer, the HMPI offers an environment that 

encourages the design of heterogeneous parallel software in an architecture-independent manner. 
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CHAPTER 1 
 

Introduction 
 
Heterogeneous networks of computers (HNOCs) are becoming an increasingly popular platform 

for executing parallel applications [ACP95, SDA96]. HNOCs have been proposed as a viable 

and cost-effective alternative to supercomputers because of the computation power they offer. 

The use of such networks for parallel high-performance computing is limited only by the absence 

of appropriate system software.  

The standard Message Passing Interface (MPI) [SOJ+96] is the main programming tool used 

for programming high-performance computations on homogeneous distributed-memory 

computer systems such as supercomputers and clusters of workstations. It is also normally used 

to write parallel programs for heterogeneous networks of computers (HNOCs). However, it does 

not provide tools that address some additional challenges posed by HNOCs, which are outlined 

below: 

•  Heterogeneity of processors. A good parallel application for HNOCs must distribute 

computations unevenly taking into account the speeds of the processors. The efficiency 

of the parallel application also depends on the accuracy of estimation of the speeds of the 

processors of the HNOCs, which is difficult because the processors may demonstrate 

different speeds for different applications due to differences in the set of instructions, the 

number of instruction execution units, the number of registers, the structure of memory 

hierarchy and so on. 

•  Ad hoc communication network. The common communication network is normally 

heterogeneous. The latency and bandwidth of communication links between different 

pairs of processors may differ significantly. This makes the problem of optimal 
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distribution of computations and communications across the HNOCs much more difficult 

than across a dedicated cluster of workstations interconnected with a homogeneous high-

performance communication network.  

•  Multi-user decentralized computer system. Unlike dedicated clusters and 

supercomputers, HNOCs are not strongly centralized computer systems. A typical HNOC 

consists of relatively autonomous computers, where each one may be used and 

administered independently by its users. The first implication with the multi-user 

decentralized nature of HNOCs is the unstable performance characteristics of processors 

during the execution of a parallel program as the computers may be used for other 

computations and communications.  

Thus the standard MPI does not provide features, which facilitate the writing of parallel 

programs that distribute computations and communications unevenly, taking into account the 

speeds of the processors, and the latencies and bandwidths of communication links. To the best 

of our knowledge, there is no research effort made to address this challenge. We present an effort 

in this direction – a small set of extensions to MPI, called HMPI (Heterogeneous MPI), aimed at 

efficient parallel computing on HNOCs, and its research implementation. The main goal of the 

design of the API in HMPI is to smoothly and naturally extend the MPI model for heterogeneous 

networks of computers. This involves the design of a layer above MPI that does not involve any 

changes to the existing MPI API. The HMPI API must be easy-to-use and suitable for most 

scientific applications. The HMPI API must also facilitate transformation of MPI applications to 

HMPI applications that run efficiently on HNOCs. 

Application development on HNOCs consists of four stages: 
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Stage-1). Determination of characterization parameters relevant to both the computational 

requirements of the applications and the machine capabilities of the heterogeneous system using 

information about the expected types of application problems and the machines in the 

heterogeneous system. For example, for floating-point operations, the computational 

requirements to be quantified are the number of each type of floating-point operation needed to 

perform the calculation, and the capabilities of the machines to be quantified are the speeds for 

these different types of floating-point operations, the latencies and the bandwidths of the 

communication links between each pair of machines, and the user-available memory capacity of 

each machine. The largest problem size that can be run is limited by the user-available memory 

capacity on a given machine. Other parameters such as the number of memory levels of the 

memory hierarchy and the size of each level of the memory hierarchy on each machine, memory 

latency associated with each level of memory hierarchy, multiple instruction issue, instruction 

pipelining etc are incorporated into the notion of speed of a processor. 

Stage-2). Decomposition of the whole problem into a set of sub-problems that can be solved 

in parallel by interacting processes. This step of heterogeneous decomposition is parameterized 

by the characterization parameters determined in the first step, mainly, the speeds of processors 

and the latencies and bandwidths of the communication links between them, and the user-

available memory capacity of the machine. 

Stage-3). Matching and scheduling (mapping). The information generated in the previous 

stages are used to derive the estimated execution time for a given sub-problem on a given 

machine and the intermachine communication overhead associated with a given assignment of 

sub-problems to machines. These static results and dynamic information about the current load 

and status of the interconnection network can be used to determine the assignment of the sub-
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problems to parallel processes and the mapping of these parallel processes to the computers of 

the executing network, that is, the selection of an optimal set of processes running on different 

computers of the heterogeneous network by taking into account the speeds of the processors, and 

the latencies and the bandwidths of the communications links between them. 

Stage-4). Application program execution on the HNOCs. 

The first stage in the development of HMPI involved the automation of steps 1, 3, and 4. It 

involved the design of a small set of extensions to MPI that can be used for 

•  Determination of the characterization parameters relevant to the computational 

requirements of the applications and the machine capabilities of the heterogeneous 

system, and  

•  Selection of the optimal set of processes running on different computers of the 

heterogeneous network.  

This was followed by an implementation of these set of extensions. The command line user 

interface of HMPI developed consists of a number of shell commands supporting the creation of 

a virtual parallel machine and the execution of the HMPI application programs on the virtual 

parallel machine. The notion of virtual parallel machine enables a collection of heterogeneous 

computers to be used as single large parallel computer. Rather than leaving the parallel 

programmer to manually select each individual computer where tasks are to execute and then log 

into each machine in turn to actually spawn the tasks and monitor the execution, the virtual 

machine provides a simple abstraction to encompass the disparate machines. 

While using HMPI for parallel solution of regular and irregular problems on HNOCs, we 

found that the second step of heterogeneous decomposition can be very tedious and error-prone.  
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An irregular problem is characterized by some inherent coarse-grained or large-grained 

structure. This structure implies a quite deterministic decomposition of the whole problem into 

relatively small number of subtasks, which are of different size and can be solved in parallel. 

Correspondingly, a natural way of decomposition of the whole program, which solves the 

irregular problem on a network of computers, is a set of parallel processes, each solving its 

subtask and all together interacting via message passing. As sizes of these subtasks are typically 

different, the processes perform different volumes of computation. Therefore, the mapping of 

these processes to the computers of the executing HNOC should be performed very carefully to 

ensure the best execution time of the program.  

The most natural decomposition of a regular problem is a large number of small identical 

subtasks that can be solved in parallel. As those subtasks are identical, they are all of the same 

size. Multiplication of two nn ×  dense matrices is an example of a regular problem. This 

problem is naturally decomposed into 2n  identical subtasks, each of which is to compute one 

element of the resulting matrix. The main idea behind an efficient solution to a regular problem 

on a heterogeneous network of computers is to transform the problem into an irregular problem, 

the structure of which is determined by the structure of the executing network rather than the 

structure of the problem itself. So, the whole regular problem is decomposed into a set of 

relatively large sub-problems, each made of a number of small identical subtasks stuck together. 

The size of each subproblem, that is, the number of elementary identical subtasks constituting the 

subproblem, depends on the speed of the processor, on which the subproblem will be solved. 

Correspondingly, the parallel program, which solves the problem on the heterogeneous network 

of computers, is a set of parallel processes, each solving one subproblem on a separate physical 
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processor and all together interacting via message passing. The volume of computations 

performed by each of these processes should be proportional to its speed. 

Thus while the step of problem decomposition is trivial for irregular problems, it becomes 

key for a regular problem. In fact, at this very step the application programmer designs a 

heterogeneous data parallel algorithm by working out a generic decomposition of the regular 

problem parameterized by the number and speed of processors. Most typically the generic 

decomposition takes the form of data partitioning. The application programmers need to solve 

corresponding data partitioning problems and design and implement all supportive code from 

scratch. Existing programming systems for heterogeneous parallel computing [AKL+99, 

LAK+00, Las02] support the mapping of parallel algorithms to the executing network but 

provide very poor support for generic heterogeneous decomposition of regular problems 

parameterized by the number and speed of processors. This motivated us to try and automate the 

step of heterogeneous decomposition of regular problems by designing a library of functions 

solving typical partitioning problems for networks of heterogeneous computers. Our original 

approach was to do it by just collecting existing algorithms, designing an API to these algorithms 

and implementing the API. The main problem we came across was that no classification of 

partitioning problems was found which could be used as a basis of API design. Existing 

algorithms created a very fragmented picture. Therefore an important goal of our research 

became to classify partitioning problems for networks of heterogeneous computers. Such 

classification had to help to specify problems with known efficient solutions and identify open 

problems. Then based on this classification an API would have to be designed and partially 

implemented (for problems that have known efficient solutions). An additional requirement to 

this classification was that it had to be useful for distributed computing on networks as well. 
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Therefore, we propose a classification of mathematical problems encountered during 

partitioning of data when designing parallel algorithms on networks of heterogeneous computers. 

Our approach to this classification is based on two corner stones: 

•  A realistic performance model of networks of heterogeneous computers, 

•  A natural classification of mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) problem solving on 

networks of heterogeneous computers. 

Our classification of problems consists of two categories: problems with known efficient 

solutions and open problems. Based on this classification, we suggest an API for partitioning 

mathematical objects commonly used in scientific and engineering domains for solving problems 

on networks of heterogeneous computers. The API is part of the Heterogeneous Data Partitioning 

Interface (HDPI). These interfaces allow the application programmers to specify simple and 

basic partitioning criteria in the form of parameters and functions to partition their mathematical 

objects. These partitioning interfaces are designed to be used along with various programming 

tools for parallel and distributed computing on heterogeneous networks. 

We evaluate HMPI using three applications on HNOCs. They are Matrix-matrix 

multiplication, Cholesky Factorization, and the EM3D application simulating the interaction of 

electric and magnetic fields on a three-dimensional object. These applications are representative 

of many scientific applications. Experimental results show that carefully designed HMPI 

applications can show very good improvements in execution performance on HNOCs. 

The ultimate goal of this work is to provide a unifying framework designed specially for 

programming high-performance computations on HNOCs. We seek to demonstrate that HMPI 
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can provide a simple programming approach, portable applications, efficient performance, and 

predictable execution on HNOCs. Our results fall into the following categories: 

•  Extensions to MPI. 

•  Heterogeneous Data Partitioning Interface (HDPI). 

•  HMPI application programming. 

•  Programming environment to support HMPI programming. 

•  Experimentation demonstrating the effectiveness of HMPI in writing portable and 

efficient parallel applications.  

The rest of the thesis addresses each of the above contributions. Chapter 2 provides a survey 

of related work. Chapter 3 presents the model of HMPI. The high-level architectural details of a 

research implementation of HMPI are also presented in this chapter. The classification of 

partitioning problems and the Heterogeneous Data Partitioning Interface (HDPI) are presented in 

Chapter 4. The methodology and features of the HMPI library are illustrated with some 

representative parallel HMPI applications in Chapter 5. Results of experiments with these 

applications on HNOCs investigate the merits of using HMPI. Conclusions and directions for 

future work follow in Chapters 6 and 7. 
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CHAPTER 2 
 

Related Work 
 
The section surveys related work from the literature, which includes mainly: 

•  High-level tools facilitating the implementation of parallel algorithms on distributed-

memory architectures. 

•  Extensions to Message Passing Interface (MPI) and runtime systems that distribute data 

efficiently and automatically when there are changes in the application or the underlying 

environment.  

•  Implementations of MPI that adopt runtime adaptation schemes to find an efficient data 

distribution when workload and communication characteristics of a program change at 

runtime. 

•  Research dealing with a combined approach of compile-time analysis, runtime load 

distribution, and cooperation of operating system scheduler for improved utilization of 

resources on HNOCs. 

•  Data partitioning algorithms for mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) solving problems on 

HNOCs and performance models used for such data partitioning algorithms. 

•  Performance models of parallel architectures, execution-time estimation models for 

HNOCs, and models analysing the scalability of heterogeneous parallel algorithms. 

•  Static and dynamic mapping strategies used for matching and scheduling of application 

tasks to the machines. 

•  High performance computing on global networks. 
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2.1 High-level Parallel Programming Tools 

The parallel programming tools developed to facilitate the implementation of parallel 

algorithms on distributed memory-architectures include (MPI) [SOJ+96], Parallel Virtual 

Machine (PVM) [GBD+94], High Performance Fortran (HPF) ([HPF94], [HPF97]), 

Dataparallel-C [HQ91], and mpC [AKL+99, LAK+00, Las02]. 

PVM and MPI are the main programming tools used for programming high-performance 

computations on homogeneous distributed-memory computer systems such as supercomputers 

and clusters of workstations. They are also normally used to write parallel programs for 

heterogeneous networks of computers (HNOCs). They are message passing packages providing, 

in fact, the assembler level of parallel programming for HNOCs.  

The most important new concept introduced by MPI is the communicator. The communicator 

allows the programmer to safely separate messages that do not have to be logically mixed, even 

when the messages are transferred between processes of the same group. Logically a 

communicator may be seen as a separate communication layer associated with a group of 

processes. There may be several communicators associated with the same group, providing 

nonintersecting communication layers. It is this very feature that allows the programmer to use 

MPI for writing parallel libraries. In other words, the programmer can write an MPI subprogram 

that can be safely used by other programmers in their MPI programs without any knowledge of 

the details of its implementation. In contrast, PVM does not have the capacity to separate safely 

communication layers for message passing, and therefore it cannot be used for implementation of 

parallel libraries. The point is that the only unique attribute characterizing a PVM process is its 

ID assigned at runtime to each process of the PBM program. All other communication attributes, 

which could be used to separate messages, such as groups and tags, are user-defined. Therefore 
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they do not have to be unique at runtime, especially if different modules of the program are 

written by different programmers. 

Central to the design of PVM is the notion of a “virtual machine” – a set of heterogeneous 

hosts connected by a network that appears logically to the user as a single large parallel 

computer. The virtual machine in PVM also serves to encapsulate and organize resources for 

parallel programs. Further, this resource abstraction is carefully layered to allow varying degrees 

of control. The user might create an arbitrary collection of machines and then treat them as 

uniform computational nodes, regardless of their architectural differences. Although MPI does 

not have a concept of a virtual machine, MPI provides a higher level of abstraction on top of the 

computing resources in terms of message passing topology. In MPI a group of tasks can be 

arranged in a specific logical interconnection topology. A clear distinction must be made 

between the virtual process topology and the topology of the underlying, physical hardware. The 

virtual topology can be exploited by the system in the assignment of processes to physical 

processors.  

However, these tools do not provide features to facilitate the development of adaptable 

parallel applications: that is, such applications that distribute computations and communications 

in accordance with input data and the peculiarities of the executing heterogeneous network. Even 

the topological facilities of the MPI have turned out to be insufficient to solve the problem. So, 

to ensure the efficient execution of the program on a particular network, the user must use 

facilities external to the program, such as boot schemes and application schemes [BDV94]. If the 

user is familiar with both the topology (that is, the structure and processor/link performances) of 

the target network and the topology (that is, the parallel structure) of the application, then, by 

means of use of such configuration files, he or she can map the processes, which constitute the 
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program, onto processors of the network to provide the most efficient execution of the program. 

Some tools that support and facilitate such a static mapping have appeared, but if the application 

topology is defined at run time (that is, if it depends on the input data) this approach will not 

work.  

The standard MPI specification does not provide tools that address some additional 

challenges posed by HNOCs, which are outlined below: 

•  Heterogeneity of processors. A good parallel application for HNOCs must distribute 

computations unevenly taking into account the speeds of the processors. The efficiency 

of the parallel application also depends on the accuracy of estimation of the speeds of the 

processors of the HNOCs, which is difficult because the processors may demonstrate 

different speeds for different applications due to differences in the set of instructions, the 

number of instruction execution units, the number of registers, the structure of memory 

hierarchy and so on. 

•  Ad hoc communication network. The common communication network is normally 

heterogeneous. The latency and bandwidth of communication links between different 

pairs of processors may differ significantly. This makes the problem of optimal 

distribution of computations and communications across the HNOCs much more difficult 

than across a dedicated cluster of workstations interconnected with a homogeneous high-

performance communication network. Other issue is that the common communication 

network can use multiple network protocols for communication between different pairs 

of processors. A good parallel application should be able to use multiple network 

protocols between different pairs of processors within the same application for faster 

execution of communication operations.  
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•  Multi-user decentralized computer system. Unlike dedicated clusters and 

supercomputers, HNOCs are not strongly centralized computer systems. A typical HNOC 

consists of relatively autonomous computers, where each one may be used and 

administered independently by its users. The first implication with the multi-user 

decentralized nature of HNOCs is the unstable performance characteristics of processors 

during the execution of a parallel program as the computers may be used for other 

computations and communications. The second implication is the much higher 

probability of resource failures in HNOCs compared to dedicated cluster of workstations, 

which makes fault tolerance a necessary feature for parallel applications running on 

HNOCs.  

Thus, there are three important challenges (though these are not the only ones) posed by 

HNOCs, which are not addressed by the standard MPI specification.  

Firstly, the standard MPI does not provide a means for employment of multiple network 

protocols between different pairs of processors for efficient communication in the same MPI 

application. A standard implementation of MPI does not address the challenge either. There have 

been majority of vendor implementations addressing this issue especially the use of shared 

memory and TCP/IP in MPICH [GLD+96], the support for multiple communication mediums 

(but not more than one device simultaneously) TCP, SMP, Myrinet, and InfiniBand in MPI/Pro 

[RS99, Dim01], and support of multiple communication devices simultaneously in WMPI 

[MS98b]. At the same time, there have been some research efforts to address this challenge 

implicitly, via advanced non-standard implementations of the standard MPI specification (Nexus 

[FGK+97], Madeleine [ABN00]). 
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Secondly, the standard MPI does not provide a means for the writing of fault-tolerant parallel 

applications for HNOCs. There are some research efforts made recently to address this challenge 

such as MPI-FT [LNL+00], MPI/FT [BNC+01], and the fault-tolerant MPI (FT-MPI) [FBD01]. 

MPI-FT proposes a fault tolerant and recovery scheme for MPI, consisting of a detection 

mechanism for detecting process failures and a recovery mechanism. The recovery function 

simulates all the communication of the processes with the dead one by re-sending to the 

replacement process all the messages destined for the dead one. In MPI-FT, each process keeps a 

buffer with its own message traffic, or a monitoring process, called the Observer, receives and 

stores all message traffic. MPI/FT is a high-performance MPI-1.2 implementation enhanced with 

low-overhead functionality to detect and recover from process failures. FT-MPI is also an MPI-

1.2 specification implementation that provides process level fault tolerance at the MPI API level. 

FT-MPI survives the crash of n-1 processes in an n-process job, and, if required, can 

respawn/restart them. It allows the application to continue using a communicator with the failed 

rank while explicitly excluding communication with the failed rank, or to shrink the 

communicator by excluding the failed rank, or to spawn a new process to take the place of the 

failed process. However, it is still the responsibility of the application to recover the data-

structures and the data on the crashed processes.  

Thirdly, the standard MPI does not provide features, which facilitate the writing of parallel 

programs that distribute computations and communications unevenly, taking into account the 

speeds of the processors, and the latencies and bandwidths of communication links. 

High Performance Fortran (HPF) is a high-level parallel language that was originally 

designed for (homogeneous) supercomputers as the target architecture. HPF was standardized in 

1994 as HPF 1.1 [HPF94]. It only provided regular mapping patterns and did not support uneven 
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distribution of the array elements over processors, necessary for balanced mappings of 

heterogeneous algorithms. HPF 2.0 [HPF97] was standardized in 1997. HPF 2.0 provides 

extended mapping features that permit greater control over the mapping of data, including 

facilities for dynamic realignment and redistribution of arrays at runtime (REALIGN, 

REDISTRIBUTE, DYNAMIC directives), mapping of data among subsets of processors, 

mapping of pointers and components of derived types, and support for irregular distribution of 

data (GEN_BLOCK and INDIRECT distributions). The “generalized” block distribution, 

GEN_BLOCK, allows contiguous segments of an array, of possibly unequal sizes, to be mapped 

onto processors. The INDIRECT distribution allows a many-to-one mapping of elements of a 

dimension of a data array to a dimension of a target processor arrangement. Thus, HPF-2 

provides some basic support for programming heterogeneous algorithms. At the same time, HPF-

2 provides no language constructs allowing the programmer to better control mapping of the 

heterogeneous algorithms to HNOCs. The HPF programmer has to rely on some default mapping 

provided by the HPF compiler.  

Dataparallel-C is an extension to ANSI C that allows programmers to write efficient code for 

parallel systems. It brings the data parallel programming model to C. It presents the model of 

computation characterized by a global name space, synchronous execution, and virtual 

processors as the unit of parallelism. Virtual processors are allocated in groups of like type. Each 

virtual processor in the group has an identical memory layout. The Dataparallel C programmer 

specifies a virtual processor’s memory layout using syntax similar to the C struct using a new 

keyword domain. Dataparallel C allows additional information to be provided by the 

programmer in order to aid the compiler in the mapping of virtual processors to physical 

processors. The array dimension of the domain array establishes a virtual topology. A one-
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dimensional domain array is considered to be a ring of virtual processors; a two-dimensional 

domain array is considered to be a torus (doughnut topology). Dynamic load balancing is 

accomplished through periodic exchange of load information during calls to the routing library at 

runtime. 

The mpC language is an ANSI C superset designed specially for programming high-

performance computations on HNOCs. The main idea underlying mpC language, is to provide 

language constructs that allow the user to define in detail an abstract heterogeneous parallel 

machine that is most appropriate to his/her parallel algorithm. The mpC language allows the 

programmer to define at runtime all the main features of parallel algorithm, which have an 

impact on the execution performance of the application on heterogeneous platforms, including: 

•  The total number of processes executing the algorithm, 

•  The total volume of computations to be performed by each of the processes in the group 

during the execution of the algorithm, 

•  The total volume of data to be transferred between each pair of processes in the group 

during the execution of the algorithm, and 

•  The order of execution of the computations and communications by the involved parallel 

processes in the group, that is, define exactly how the processes interact during the 

execution of the algorithm. 

Such an abstraction of parallel algorithm is called a network type. The mpC programming 

system uses the information extracted from the definition of network type together with 

information about actual performances of processors and communication links of the executing 

network to map the processes of the parallel program to this network in such a way that better 

execution time is achieved. The most important features of mpC are: 
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•  once developed, an mpC application will run efficiently on HNOCs without any changes 

to its source code. 

•  it allows one to write applications adapting not only to nominal performances of 

processors but also to redistribute computations and communications dependent on 

dynamic changes of workload of separate computers of the executing network. 

The mpC language provides all the facilities lacking in the other high-level tools. It expresses 

both data and control parallelism. Like HPF, it includes a vector subset, named the C[] language 

[GL94] to provide data parallelism. It provides implicit communication through message 

passing, that is, the programmer does not have to program the communication. It also supplies 

mechanisms, in the form of network types, to the user to guide the mapping process essential for 

exploiting his or her knowledge of the application. 

 

2.1.1 Summary 

The various programming environments for HNOCs surveyed, excluding mpC, lack either the 

facilities to describe the virtual parallel system, or such facilities are too poor to specify an 

efficient distribution of computations and communications over the target network. The 

problems with mpC are mainly to do with the learning curve associated with a high-level parallel 

language. The other issue is the limitation on its adaptability to unanticipated machines, 

algorithmic models and data structures. In many cases these require new semantics to be added 

to the language for efficient implementations to be automatically generated. 

2.2 MPI Extensions/Implementations for HNOCs 

Dyn-MPI [WLN+03] extends MPI by providing specialized facilities for memory allocation, 

communication, and node participation. The key component of Dyn-MPI is its run-time system, 
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which efficiently and automatically redistributes data on the fly when there are changes in the 

application or the underlying environment. Dyn-MPI also provides a facility for removing nodes 

from the computation when their participation degrades performance. However converting an 

MPI program to a Dyn-MPI program can require major modifications for it to run efficiently on 

HNOCs. These include allocation functions for all potentially re-distributable arrays and 

determination of Deferred Regular Section Descriptors (DRSDs) for each array. Also the 

computational model of Dyn-MPI is essentially Single Program Multiple Data (SPMD), in which 

each node executes the same program text but will take different execution paths through this 

text depending on the input data. 

AMPI [BKS+01, LBK02] is an implementation of a significant subset of MPI 1.1 Standard 

over CHARM++ [KK93]. AMPI utilizes the dynamic load-balancing capabilities of CHARM++ 

by associating a “user-level” thread with each CHARM++ migratable object. User’s code runs 

inside this thread, so that it can issue blocking receive calls similar to MPI, and still present the 

underlying scheduler an opportunity to schedule other computations on the same processor. The 

runtime system keeps track of computation loads of each thread as well as communication graph 

between AMPI threads, and can migrate these threads in order to balance the overall load while 

simultaneously minimizing communication overhead. However converting an MPI program to 

an AMPI program can require major modifications for it to run efficiently on HNOCs. These 

include privatization of global variables, registering chunk data and providing a packing 

subroutine to the AMPI runtime system to pack the thread’s data, and the migration decision has 

to be made by the user through a call to migration subroutine even though the actual migration of 

the chunk is done by the system’s load balancing strategy. 
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Tern [KS01] is an implementation of a subset of the MPI standard for message passing 

parallel programming, and augments the MPI standard to provide for multithreaded execution. It 

provides the ability to transparently migrate threads between the nodes executing the parallel 

application thus achieving parallel program performance improvement through load balance and 

improved fault tolerance. Tern makes use of a novel lazy heap migration protocol, which can 

greatly reduce the amount of time necessary to migrate a thread and its corresponding data 

regions. However in a threaded environment, static and global variables will be shared among all 

threads executing in the same process and so need to be made thread-specific. Tern provides a 

compiler directive prefix that is required to be added to each global variable and static-local 

variable declaration. This allocates thread-specific instances of all variables utilizing the concept 

of thread-local storage. Tern exposes the policy mechanisms used to guide migration decisions to 

the user, allowing for customizable thread migration policies. Tern provides two mechanisms for 

safely migrating a user thread. The first mechanism allows the user to insert migration calls in 

the user thread. However this mechanism requires that the user knows exactly where to insert the 

migration calls. Alternatively, Tern runtime system migrates the thread depending on the policy 

mechanisms devised by the user.   

CRAUL [RD01] is a runtime system that combines compile-time analysis, runtime load 

balancing and locality considerations, and cooperative scheduling support from the operating 

system for improved performance of parallel programs on HNOCs. The CRAUL compiler is a 

Stanford University Intermediate Format (SUIF) compiler [AAL+95] with two additional passes. 

The first pass works before the parallel code generation and inserts code with access information 

about each parallel region’s access patterns. The second pass works on parallelized programs and 

modifies the loop structure so that a task queue is used. The runtime system uses this loop and 
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accesses information to partition the available work based on locality of data access as well as 

resource availability. The operating system responds to application-specific information on 

scheduling needs while respecting fairness. The operating system also provides feedback to the 

application about the scheduling status of the cooperating processes, allowing the runtime to 

make resource management decisions based on this information. 

However, the CRAUL compiler lacks the more complex translation mechanisms essential to 

extract parallelism from less easily analyzable loops. In such cases, the user needs to insert the 

required data structures manually into an already parallelized program. The problem of 

portability and reusability of the parallel code generated is not addressed. Also CRAUL does not 

provide features required to capture programmer’s knowledge of an application to the level 

necessary to automatically provide an efficient implementation on a heterogeneous system. 

CRAUL shields the user from data distribution details but does not supply mechanisms for the 

user to guide the mapping process essential for exploiting his or her knowledge of the 

application. 

2.2.1 Summary 

The various extensions to MPI and its implementations surveyed shield the user from data 

distribution details. These research efforts provide compiler and runtime systems that perform 

the tedious and error-prone chore of load balancing. However the tasks of mapping of the 

parallel processes to the executing heterogeneous network and scheduling are not addressed. 

These tools also do not provide mechanisms to the programmer to guide the load balancing, 

mapping and scheduling processes that can exploit his or her knowledge of the application. 

Instead they tend to automatically discover the algorithmic properties from the code, which is 

non-trivial in many aspects. Ideally a tool must supply mechanisms to the programmer so that he 
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or she can provide information to it that can assist in finding the most efficient implementation 

on a HNOCs. Combining the system’s detailed analysis with the programmer’s high-level 

knowledge of the application is essential in finding more efficient mappings than either one 

alone is capable of achieving. 

 

2.3 Data Partitioning 

The core of scientific, engineering or business applications is the processing of some 

mathematical objects that are used in modeling corresponding real-life problems. In particular, 

partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of 

various scientific, engineering and business domains resulted in the following short list of 

mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and 

non-ordered), dense matrices (and multidimensional arrangements) and sparse matrices, 

graphs, and trees (a tree is a graph in which any two vertices are connected by exactly one path). 

Sets 

A set is a well-defined collection of objects considered as a whole. The objects of a set are called 

elements or members. We consider the elements of the set to represent independent chunks of 

computations, each of equal size (i.e., each requiring the same amount of work), which can be 

computed without reference to each other i.e., without communication. 

There are two main criteria used for partitioning a set: 

1) The number of elements in each partition should be proportional to the speed of the 

processor owning that partition.  

2) The sum of weights of the elements in each partition should be proportional to the speed 

of the processor owning that partition. 
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Additional restrictions that may be imposed on partitioning of an ordered set are: 

•  The elements in the set are well ordered and should be distributed into disjoint contiguous 

chunks of elements.  

The most general problem of partitioning a set can be formulated as follows: 

•  Given: (1) A set of n elements with weights wi (i=0,…,n-1), and (2) A well-ordered set of p 

processors whose speeds are functions of the size of the problem x (We define the size of 

the problem to be the amount of data stored and processed by the sequential algorithm), 

si=fi(x), with an upper bound bi on the number of elements stored by each processor 

(i=0,…,p-1), 

•  Partition the set into p disjoint partitions such that: (1) The sum of weights in each partition 

is proportional to the speed of the processor owning that partition, and (2) The number of 

elements assigned to each processor does not exceed the upper bound on the number of 

elements stored by it. 

The most general partitioning problems for a set and an ordered set are very difficult and open 

for research. 

One example of a special partitioning problem for a set is: 

•  Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are 

represented by single constant numbers, s0,s1,…,sp-1, and (3) There are no limits on the 

maximal number of elements assigned to a processor, 

•  Partition the set into p disjoint partitions such that the number of elements in each partition 

is proportional to the speed of the processor owning that partition. 
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The algorithm used to perform the partitioning is quite straightforward, of complexity O(p2) 

[BBP+01]. The algorithm uses a naive implementation. The complexity can be reduced down to 

O(p×log2p) using ad hoc data structures [BBP+01]. 

Dense Matrices 

Matrix partitioning algorithms are usually designed during the implementation of heterogeneous 

parallel algorithms for linear algebra ([CQ93], [KL01], [BBR+01], [BBP+01]). These are 

modifications of traditional homogeneous algorithms with mappings for HNOCs. The mappings 

take into account all peculiarities of the corresponding parallel algorithms and are based on very 

careful performance analysis. The typical partitioning of a matrix uses block-cyclic distribution 

of matrices on either a one-dimensional or on a two-dimensional grid of processors. Blocked 

versions of the parallel algorithms for matrix multiplication and linear system solvers are used in 

ScaLAPACK (Scalable Linear Algebra Package) [CDD+96] to squeeze the most out of state-of-

the-art processors with pipelined arithmetic units and multilevel memory hierarchy. The block 

cyclic distribution has been also incorporated in the HPF language [HPF97].  

Sparse Matrices 

A sparse matrix is a matrix populated primarily with zeros. More precisely, a matrix is 

considered sparse if a computation involving it can utilize the number and location of its nonzero 

elements to reduce the run time over the same computation on a dense matrix of the same size. It 

is customary to store an n×n matrix in an n×n array. However, if the matrix is sparse, storage is 

wasted because a majority of the elements of the matrix are zero and need not be stored 

explicitly. For sparse matrices, it is common practice to store only the nonzero entities and to 

keep track of their locations in the matrix. A variety of storage schemes are used to store and  
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Figure 2.1: A 6×6 sparse matrix and its representation in Compressed Storage Row (CSR) format. 

 

manipulate sparse matrices [KGG+94]. There is no single best data structure for storing sparse 

matrices. Different data structures are suitable for different operations. 

There are two methods to partition a sparse matrix: 

•  The application of set partitioning algorithms to the data storage scheme used for storing 

a sparse matrix. For example, assuming that a sparse matrix is stored in CSR 

(Compressed Sparse Row) format. In CSR format illustrated in Figure 2.1, there are three 

arrays to store an n×n sparse matrix with q nonzero entries: 1). A q×1 array VAL contains 

the nonzero elements. These are stored in the order of their rows. 2) A q×1 array J that 

stores the column numbers of each nonzero element. 3) An n×1 array I, the i-th entry of 

which points to the first entry of the i-th row in VAL and J. The sparse matrix is then 
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partitioned such that the number of elements in the array VAL (the array is assumed to be 

an ordered set) is proportional to the speed of the processor. 

•  Transformation of a sparse matrix into a graph and application of graph partitioning 

algorithms to the graph. 

Balay et al. [BGM+97] propose PETSc, which is a suite of data structures and routines for 

scalable (parallel) solution of scientific applications modeled by partial differential equations. 

PETSc supports variety of sparse storage formats because no single sparse storage format is 

appropriate for all problems.  

Birov et al. [BPB+99] present a parallel mathematical library suite for sparse matrices. The 

Parallel Mathematical Libraries Project (PMLP) constitutes a concerted effort to create a 

supportable, comprehensive “Sparse Object-oriented Mathematical Library Suite.” PMLP 

includes operations on various matrix types such as general, banded, symmetric, banded 

symmetric, skew symmetric, hermitian, skew hermitian, and lower and upper triangular matrices. 

Furthermore, PMLP provides functionality independent of the internal data representation of 

irregular sparse objects and different storage matrix formats (e.g. coordinate, compressed sparse 

column, compressed sparse row, sparse diagonal, dense, Ellpack/Itpack, and skyline) are 

included. 

Graphs 

The standard graph partitioning approach has been to divide the vertices of the graph into 

approximately equal-weight partitions (balance computations) and minimize the number of cut 

edges between partitions (minimize total runtime communication). Formally, the k-way graph 

partitioning problem is defined as follows: Given a graph G=(V,E) with nV = , partition V into k 

subsets, V1,V2,…,Vk such that =ji VV I Ø for i≠j, knVi = , and VVii =U , and the number of  
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Figure 2.2: Edge cuts versus communication volume. 
 

edges of E whose incident vertices belong to different subsets is minimized. The k-way graph 

partitioning problem can be naturally extended to graphs that have weights associated with the 

vertices and the edges of the graph. In this case, the goal is to partition the vertices into k disjoint 

subsets such that the sum of the vertex-weights in each subset is the same, and the sum of the 

edge-weights whose incident vertices belong to different subsets is minimized. A k-way graph 

partition of V is commonly represented by a partition vector P of length n, such that for every 

vertex v∈ V, P[v] is an integer between 1 and k, indicating the partition to which vertex v 

belongs. Given a partition P, the number of edges whose incident vertices belong to different 

subsets is called the edge-cut of the partition. 

Unfortunately, the standard graph partitioning approach has several significant shortcomings. 

Firstly, the edge cut metric that it tries to minimize is, at best, an imperfect model of 

communication in a parallel computation. Edge cuts are not proportional to the total 

communication volume as illustrated in Figure 2.2. The ovals correspond to different processors 

among which the vertices of the graph are partitioned. Assume that each edge has a weight of 

two corresponding to one unit of data being communicated in each direction, so the weight of the 
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cut edges is ten. However, observe that the data from node v2 on processor P1 need only be 

communicated once to processor P2; similarly with nodes v4 and v7. Thus, the actual 

communication volume is only seven. In general, the edge cut metric does not recognize that two 

or more edges may represent the same information flow, so it overcounts the true volume of 

communication. The model also suffers from a lack of expressibility that limits the applications 

it can address.  

Secondly, the time to send a message on a parallel computer is a function of the latency (or 

start-up time) as well as the size of the message. As has been observed by a number of 

researchers, graph partitioning approaches try to (approximately) minimize the total volume but 

not the total number of messages. Depending on the machine architecture and problem size, 

message latencies can be more important than message volume.  

Third, the performance of a parallel application is generally limited by the slowest processor. 

Even if the computational work is well balanced, the communication effort might not be. Rather 

than minimizing the total communication volume or even the total number of messages, we may 

instead wish to minimize the maximum volume and/or number of messages handled by any 

single processor. As several researchers have noted, the standard edge cuts measure does not 

encapsulate this type of objective. 

The standard model using an undirected graph can only encode symmetric data dependencies 

and symmetric partitions. These limitations are a particular problem for iterative solvers on 

unsymmetrical and non-square matrices. Hendrickson and Kolda [HK00] propose a bipartite 

graph model (A bipartite graph is a special graph where the set of vertices can be divided into 

two disjoint sets with two vertices of the same set never sharing an edge) for describing matrix-



Related Work 

28 

vector multiplication that addresses some of these shortcomings. The bipartite model can also be 

applied to other problems involving unsymmetrical dependencies and multiple phases.  

Edge cuts are not equal to communication volume, as illustrated in Figure 2.2. The true 

communication volume is not a function of the number of edges being cut, but rather the sum of 

the number of processors to which each vertex has connections. More formally, Given a graph 

G=(V,E) with nV = , and a partition vector P of length n such that P[v] stores the number of the 

partition that vertex v belongs to. Let VVb ⊂ be the subset of interface vertices. That is, each 

vertex v∈ Vb is connected to at least one vertex that belongs to a different partition. For each 

vertex v∈ Vb let Nadj[v] be the number of domains other than P[v] that the vertices adjacent to v 

belong to. The total communication volume is defined as∑
∈ bVv

vNadj ][ . This is the total 

communication volume incurred by the partitioning because each interface vertex v needs to be 

sent to all of its Nadj[v] partitions. This is also called the boundary cut of the partition. In 

particular, if wv is the amount of data that needs to be sent for vertex v, then the boundary cut 

is∑
∈

×
bVv

v vNadjw ][ . Minimizing boundary cuts is a non-traditional graph partitioning problem, but 

it can be addressed using the same algorithmic tools that have been developed for other 

partitioning variants. A more elegant expression of this metric is in the hypergraph model 

proposed by [CA96, PCA+96]. By partitioning the hypergraph so that hyperedges are split 

among as few processors as possible, the model correctly minimizes communication volume. 

The constraint partitioning model proposed by Karypis and Kumar [KK98a] can be used for 

multi-phase calculations. In the multi-constraint model, each vertex is assigned a vector of m 

weights that represent the work associated with that vertex in each of the m computational 

phases. The goal is to partition the vertices of that graph in such a way that communication is 
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minimized and each of the m weights is balanced. In this way, each phase of the computation 

will be load balanced. The goal is to compute a k-way partitioning such that each one of the m 

weights is individually balanced within a specified tolerance. As an example, consider the 

multiphysics simulation (Multiphysics simulation is based on a single computational framework 

for the modeling of multiple interacting physical phenomena) in which the amount of 

computation as well as the memory requirements is not uniform across the mesh. Existing single-

constraint graph partitioning algorithms allow us to easily partition the mesh among the 

processors such that either the amount of computations is balanced or the amount of memory 

required by each partition is balanced; however, they do not allow to compute a partitioning that 

simultaneously balances both of these quantities. 

A related model is the multi-objective approach of Schloegel et al. [SKK99a]. This model 

attempts to address the common situation in which a partition should simultaneously minimize 

several cost functions. To achieve this, each edge is given a vector of m weights, each of which 

reflects one of the m different cost functions. The goal of the partitioning is to balance the vertex 

weights in such a way that each of the cost functions is kept small. They discuss two ways of 

disambiguating the definition of a good multi-objective solution, which are (i) to prioritize the 

objectives, and (ii) to combine the objectives into a single objective. In the priority based 

formulation, the user is allowed to assign a priority ranging from one to m to each of the m 

objectives. The multi-objective partitioning problem becomes that of computing a k-way 

partitioning such that it simultaneously optimizes all the m objectives, giving preferences to the 

objectives with higher priorities. In the combination-based formulation, multiple objectives are 

combined into a single objective and then the single objective optimization technique is used.  
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Figure 2.3: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph 

is successively decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and 

during the uncoarsening phase, the bisection is successively refined as it is projected to the larger graphs. During the 

uncoarsening phase the light lines indicate projected partitions, and dark lines indicate partitions that were produced 

after refinement. 

 

Typically, this is done by taking the sum of the elements of the objective vector weighted by a 

preference vector, p. 

In the skewed model developed by Pellegrini [Pel94] and Hendrickson et al. [HLD97], each 

vertex is allowed a set of k preference values expressing its relative desire to be in each of the k 

sets. When partitioning a graph, let each vertex i have a desire to be in set k denoted by dk(i). The 

goal then is to minimize the cut edges and maximize the satisfied desires. Let s(i) be the set to 

which vertex i is assigned. We want to find a mapping s, which minimizes the following 

objective function. 
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where eij denotes an edge between vertices i and j and wv(i) and we(eij) representing weights of 

vertices and edges respectively. 

The different graph partitioning models described above are only viable if efficient and 

effective algorithms can be developed to partition them. Spectral partitioning algorithms are 

known to produce good partitions for a wide class of problems, and they are used extensively 

[PSL90, HL93b, BS89]. Geometric partitioning algorithms use the geometric information of the 

graph to find a good partition [Rag93, MTV91]. Multilevel algorithms [BJ93, HL93a] have been 

a universal approach to solving the graph partitioning problem on homogeneous networks of 

computers. There are three different stages to multilevel graph partitioning algorithms as shown 

for multilevel graph bisection in Figure 2.3. First, a sequence of smaller and smaller graphs is 

created from the original graph. Second, the smallest graph is partitioned. And third, the partition 

is propagated back through the sequence of graphs, with an occasional local refinement. Some of 

the options applicable to the three phases in the multilevel partitioning algorithms are outlined 

below: 

(1). Coarsening Phase 

•  Procedure to determine the maximal matching. We define a matching of a graph G as 

a subset Em of the edges E with the property that no two edges in Em share an 

endpoint. A maximum matching of graph G is a matching of G with the greatest 

number of edges while a maximal matching is a matching which is not contained in 

any larger matching. While any maximum matching is certainly maximal, the reverse  

we(eij)   if s(i) ≠ s(j) 
0          otherwise         ∑eij

{   − ∑ds(i)(i) ∀  i = 0, 1,…,n 

 
Minimize 
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Figure 2.4: A sample graph. 

 

is not generally true. In the graph shown in Figure 2.4, {a}, {b,d}, and {c,e} are all 

maximal matchings, but only the last two are maximum matchings. 

o Random Edge Matching (RM) [BJ93, HL93a], 

o Heavy Edge Matching (HEM) [KK95], 

o Light Edge Matching (LEM) [KK95], 

o Heavy Clique Matching (HCM) [KK95]. 

•  Node reduction between successive coarsening levels, 

•  Maximum number of vertices in the coarsest graph. 

(2). Partitioning Phase 

•  Spectral Bisection (SB) [BS89, HL93a], 

•  Kernighan-Lin Algorithm (KL)/Fiduccia-Mattheyses [KL70, FM82], 

•  Graph Growing Algorithm (GGP) [GL81, GS94, CL94], 

•  Greedy Graph Growing Algorithm (GGGP) [KK95].  

(3). Uncoarsening Phase 

•  Kernighan-Lin Refinement [KL70, HL93a, KK95], 

•  Boundary Kernighan-Lin Refinement [KL70, HL93a, KK95]. 

METIS [KK95] is a set of programs for partitioning graphs, partitioning finite element 

meshes, and for producing fill reducing orderings for sparse matrices. The algorithms 
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implemented in METIS are based on the multilevel graph partitioning schemes. ParMETIS is an 

MPI-based parallel library that implements a variety of algorithms for partitioning unstructured 

graphs, meshes, and for computing fill-reducing orderings of sparse matrices. ParMETIS extends 

the functionality provided by METIS and includes routines that are especially suited for parallel 

Adaptive Mesh Refinement (AMR) computations and large scale numerical simulations. The 

algorithms implemented in ParMETIS are based on the parallel multilevel k-way graph-

partitioning algorithms described in [KK97], the adaptive repartitioning algorithm described in 

[SKK00], and the parallel multi-constrained algorithms described in [SKK99b]. hMETIS is a set 

of programs for partitioning hypergraphs such as those corresponding to VLSI circuits. The 

algorithms implemented by hMETIS are based on the multilevel hypergraph partitioning scheme 

described in [KAK+97] and [KK98b]. 

Chaco [HL94] contains a variety of graph partitioning algorithms including spectral 

bisection, quadrisection and octasection, the inertial method, the Kernighan-Lin/Fiduccia-

Mattheyses algorithm and multilevel partitioners. Advanced techniques that are new to version 

2.0 include terminal propagation (a method for improving data locality adapted from the circuit 

community), the ability to map partitions intelligently to hypercube and mesh architectures, and 

easy access to the Fiedler vector to assist the development of new applications of spectral graph 

algorithms.  

JOSTLE [WC00] is a software package designed to partition unstructured meshes (for 

example, finite element or finite volume meshes) for use on distributed memory parallel 

computers. It can also be used to repartition and load-balance existing partitions (such as those 

deriving from adaptive refined meshes). It achieves this by modeling the mesh as an undirected 

graph and then using state-of-the-art graph partitioning techniques. JOSTLE takes into account 
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heterogeneous CPU performance using integral load-balancing capabilities. For example, given a 

graph of say 75 vertices and two processors, with processor 1 twice as fast as processor 2, the 

user may impose a penalty weight (based on the relative speeds and the total vertex weight; in 

this case 25) on processor 2 to simulate its slower performance. The load-balancer within 

JOSTLE then balances the total graph weight plus any penalty weights (in this example 

75+25=100) and gives an equal share (50) to each processor. Because processor 2 has a penalty 

weight of 25, its share of the vertices is 25 as compared with the 50 of processor 1 and so the 

partition is balanced to reflect the relative performance of the processors.  

Walshaw and Cross [WC01] modify the multilevel algorithms in order to minimize a cost 

function based on a model of the communications network supplied by the user at runtime. They 

deal with networks in which the communications cost (both latency and bandwidth) is not 

uniform across the inter-processor network. Let G=(V,E) be an undirected graph of vertices V, 

with edges E which represent the data dependencies in the mesh. To model the true 

communication cost and build the cost function, a weight is assigned to the link between every 

pair of processors giving a network N represented by a weighted graph N(P, L), where P is the 

set of p processors and L the set of interprocessor edges which is complete (i.e., there is an edge 

for every pair of processors) and weighted. The contribution to the cost function from every cut 

edge (v,w) with v∈ Sp and w∈ Sq (Sp and Sq are the subdomains assigned to processors p and q 

respectively)is defined to be ),(),( qpwv ⋅ , the weight of the cut edge multiplied by the weight 

of the link over which it passes. Thus given a partition PV →:π , the cost function is given by  

∑
∈

⋅=Γ
cEwv

wvwv
),(

))(),((),( ππ  

where Ec is the set of cut edges. The mapping problem can then be defined as: given a graph 

G=(V,E) and a processor network N(P, L), find PV →:π , a mapping of vertices to processors, 
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such that 
_

SS p ≤  where  PVS /:
_

=  for all subdomains Sp and such that Γ is minimized. They 

do not address the issue of heterogeneous CPU performance. This is taken care of by load 

balancer within JOSTLE. The mapping algorithm is then compared with the two stage approach 

of partitioning of the graph such that edge cut is minimized followed by mapping of subdomains 

to processors (also known as processor assignment). 

Kumar et al. [KDB02] employ a multilevel heterogeneous partitioner developed for 

distributed heterogeneous systems that differs from existing partitioners in that it takes into 

account both the system and work load graphs. In their model, the heterogeneous system consists 

of processors with varying processing power and an underlying non-uniform communication 

network. The partitioning algorithm employed, called Minimax, generates and maps partitions 

onto a heterogeneous system with the objective of minimizing the maximum execution time of 

the distributed parallel application. 

Trees 

In graph theory, a tree is a graph in which any two vertices are connected by exactly one path. 

The most general problem of partitioning a tree can be formulated as follows: Given a tree T 

consisting of n vertices }1,,1,0{ −nL  with weights vi )1,,1,0( −= ni L  and m edges 

}1,,1,0{ −mL  with weights ej )1,,1,0( −= mj L and given a linear array of p processors whose 

speeds are functions of the size of the problem x, )(),...,(),( 111100 xfsxfsxfs pp −− ===  and 

there is an upper bound bk )1,,1,0( −= pk L  on the number of vertices that each processor can 

hold, partition the tree into p disjoint subtrees such that 

•  The sum of weights of the vertices in each partition (subtree) is proportional to the speed 

of the processor owning that partition.  
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•  The number of vertices assigned to each processor does not exceed the upper bound on 

the number of vertices stored by it. 

•  The edgecut is minimal. 

This is an open problem for research. The partitioning operations on graphs can be used to 

partition a tree into disjoint partitions when there is no restriction that all the disjoint partitions 

have to be subtrees. 

Perl and Schach [PS81] present efficient algorithms for a max-min k-partitioning problem, 

which can be formulated as follows: Given a tree T with n vertices and m edges and a 

nonnegative weight associated with each vertex. Let k < n be a positive integer. The problem is 

to delete k edges in the tree so as to maximize the weight of the lightest of the resulting 

connected subtrees. 

Becker et al. [BPS82] present efficient algorithms for min-max k-partitioning problem, 

which can be formulated as follows: Given a tree T with n vertices and m edges and a 

nonnegative weight associated with each vertex. Let k < n be a positive integer. The problem is 

to delete k edges in the tree so as to minimize the weight of the heaviest of the resulting 

connected subtrees. 

Frederickson [Fre91] present linear time algorithms for partitioning a tree with weights on 

the nodes by removing k edges so as to either minimize the maximum weight component or 

maximize the minimum-weight component.  

The data partitioning approaches described above use different performance models of 

HNOCs to distribute computations amongst the processors involved in their execution. All the 

models use a single positive number to represent the speed of a processor, and computations are 

distributed amongst the processors such that their volume is proportional to this speed of the 
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processor. However these models are efficient only if the relative speeds of the processors 

involved in the execution of the application are a constant function of the size of the problem and 

can be approximated by a single number. This is true mainly for homogeneous distributed 

memory systems where: 

•  The processors have almost the same size at each level of their memory hierarchies, and  

•  Each computational task assigned to a processor fits in its main memory. 

But these models become inefficient in the following cases: 

•  The processors have significantly different memory structure with different sizes of 

memory at each level of memory hierarchy. Therefore, beginning from some problem size, 

the same task will still fit into the main memory of some processors and stop fitting into 

the main memory of others, causing the paging and visible degradation of the speed of 

these processors. This means that their relative speed will start significantly changing in 

favor of non-paging processors as soon as the problem size exceeds the critical value. 

•  Even if the processors of different architectures have almost the same size at each level of 

the memory hierarchy, they may employ different paging algorithms resulting in different 

levels of speed degradation for the task of the same size, which again means the change of 

their relative speed as the problem size exceeds the threshold causing the paging. 

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the effects 

of paging significantly complicates the design of algorithms distributing computations in 

proportion with the relative speed of heterogeneous processors. One approach to this problem is 

to just avoid the paging as it is normally done in the case of parallel computing on homogeneous 

multi-processors. However avoiding paging in local and global HNOCs may not make sense 

because in such networks it is likely to have one processor running in the presence of paging 
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faster than other processors without paging. It is even more difficult to avoid paging in the case 

of distributed computing on global networks. There may not be a server available to solve the 

task of the size you need without paging.  

Therefore, to achieve acceptable accuracy of distribution of computations across 

heterogeneous processors in the possible presence of paging, a more realistic performance model 

of a set of heterogeneous processors is needed. This model must integrate the essential features 

underlying applications run on HNOCs, mainly, the speeds of the processors, the latency and the 

bandwidth of the communication links between the processors, the memory heterogeneity in 

terms of the number of memory levels of the memory hierarchy and the size of each level of the 

memory hierarchy, and the effects of paging. 

 

2.3.1 Summary 

From the survey on data partitioning, it can be concluded that no classification of partitioning 

problems currently exists. Only matrix and graph partitioning problems have been widely 

studied. It is to be noted also that the algorithms solving these problems use performance models 

that do not take into account all the essential features underlying applications run on HNOCs, 

mainly, the speeds of the processors, the latency and the bandwidth of the communication links 

between the processors, the memory heterogeneity in terms of the number of memory levels of 

the memory hierarchy and the size of each level of the memory hierarchy, and the effects of 

paging. 
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2.4 Performance Models of Parallel Computers 

A good deal of theoretical research has focused on models of parallel computers. The most 

widely used parallel models are the parallel random access machine (PRAM) [FW78], the bulk-

synchronous parallel model (BSP) [Val90], and the LogP model [CKP+93]. All the models 

assume a parallel computer to be a homogeneous multiprocessor.  

The PRAM is the most simplistic parallel computational model. The PRAM model consists 

of p sequential processors sharing a global memory. During each time step or cycle, each 

processor executes a RAM instruction or accesses global memory. After each cycle, all 

processors implicitly synchronize to execute the next instruction. The PRAM model assumes that 

synchronization and communication is essentially cost free. However, these overheads can 

significantly affect algorithm performance. By ignoring costs associated with exploiting 

parallelism, the PRAM is a simple abstraction, which allows the designer to expose the 

maximum possible computational parallelism in a given task. Many modifications to the PRAM 

have been proposed that attempt to bring it closer to practical parallel computers.  

The BSP model is a bridging model that consists of p parallel/memory modules, a 

communication network, and a mechanism for efficient barrier synchronization of all the 

processors. It is referred to as a bridging model because it lies between hardware and 

programming models. It is efficient both in implementing high-level language features and 

algorithms, as well as in being implemented in hardware. A computation consists of a sequence 

of supersteps. During a superstep, each processor performs synchronously some combination of 

local computation, message transmissions, and message arrivals. Three parameters characterize 

the performance of a BSP computer. p represents the number of processors, L measures the 

minimal number of time steps between successive synchronization operations, and g represents 
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the minimum time interval between consecutive message transmissions on a per-processor basis. 

The total execution time for the program is the sum of all superstep times.  

An approach related to BSP is the LogP model. LogP models the performance of point-to-

point messages with three parameters: o (computation overhead of handling a message), g (time 

interval between consecutive message transmissions at a processor), and L (latency for 

transmitting a single message). The LogP model has been successfully used for developing fast 

and portable parallel algorithms for (homogeneous) supercomputers. LogGP [AIS+95] is an 

extension of LogP used to study the impact of long messages on algorithm design. LoGPC 

[MF98] models the network contention effects. PLogP model [KBV00] is an extension of the 

LogP model. PLogP model is defined in terms of end-to-end latency L, sender and receiver 

overheads, os(m) and or(m) respectively, gap per message g(m), and number of nodes involved in 

communication P. In this model sender and receiver overheads and gap per message depend on 

the message size. Notion of latency and gap in PLogP model slightly differs from that of the 

LogP/LogGP model. Latency in PLogP model includes all contributing factors, such as copying 

data to and from network interfaces, in addition to the message transfer time. Gap parameter in 

PLogP model is defined as the minimum time interval between consecutive message 

transmissions or receptions, implying that at all times g(m) >= os(m) and g(m) <= or(m). 

Nonetheless, the LogP model or its extensions are inappropriate to model HNOCs, mainly due to 

their non-deterministic nature and irregularity.  

There are a few computational approaches to support heterogeneous parallel computation, 

namely, Heterogeneous Coarse-grained Multicomputer (HCGM) [Mor98], Heterogeneous Bulk 

Synchronous Parallel (HBSP) [WP00], and k-Heterogeneous Bulk Synchronous Parallel  

(HBSPk) [Wil00]. HCGM models parallel computers consisting of p heterogeneous processors. 
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Since processors have varying computing capabilities, si represents the speed of processor Pi. 

The model assumes memory and communication speeds of the processors are proportional to 

their computational speeds.  

The HBSPk model is an extension of the BSP model of parallel computation. In the HBSPk 

model, HBSP is synonymous with HBSP1. The HBSPk model extends BSP hierarchically to 

address k-level heterogeneous parallel systems. Here, k represents the number of network layers 

present in the heterogeneous environment. Unlike BSP, the HBSPk model describes multiple 

heterogeneous parallel systems connected by some combination of internal buses, local-area 

networks, campus-area networks, and wide-area networks. Furthermore, the HBSPk incorporates 

parameters that reflect the relative computational and communication speeds of each of the k 

levels. An HBSPk computation consists of some combination of superi-steps. During a superi-

step, each level i node performs asynchronously some combination of local computation, 

message transmissions to other level i machines, and message arrivals from its peers. A message 

sent in one superi-step is guaranteed to be available to the destination machine at the beginning 

of the next superi-step. Each superi-step is followed by a global synchronization of all the level i 

computers. 

Communication models have been developed recently for improving the performance of 

point-to-point and collective communication operations on HNOCs. The Efficient Collective 

Operations package [LB96], built on top of PVM, proposes heuristics to partition the 

participating workstations of a collective communication operation into subnetworks based on 

pair-wise round-trip latencies. Next, it divides the required communication steps into two major 

phases: inter-subnetwork and intra-subnetwork. Different trees are used for performing collective 

communication operations in each of these phases. However such latency measurements do not 
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show the impact of heterogeneity on communication send/receive overhead (the fixed component 

and the variable component depending on the message length). Banikazemi et al. [BMD98] 

propose a model that addresses this issue by estimating the cost of point-to-point communication 

on HNOCs and uses it for characterizing the performance of different collective communication 

operations. The model takes into account both the fixed component of communication 

send/receive overhead and the variable component of communication overhead and the 

transmission component. 

The performance of the MPI’s collective communications is critical in most MPI-based 

applications. A general algorithm (which employs a best collective communication algorithm 

using best buffer size with optimal number of processors involved in the collective 

communication) for a given collective communication operation may not give good performance 

on all systems due to the differences in architectures, network parameters and the storage 

capacity of the underlying MPI implementation. [VFD00a, VFD04b] discuss an approach in 

which the optimum algorithm and optimum buffer size for a given collective communication on 

a system is determined by conducting experiments on the system. The experiments were 

conducted in several phases. In the first phase, the best buffer size for a given algorithm for a 

given number of processors is determined by evaluating the performance of the algorithm for 

different buffer sizes. In the second phase, the best algorithm for a given message size is chosen 

by repeating the first phase with a known set of algorithms and choosing the best algorithm that 

gives the best result. In the third phase, the first and second phases are repeated for different 

numbers of processors. They present techniques to reduce the large number of experiments. 

[GAB+05] attempt to analyze and improve collective communication in the context of the 

widely deployed MPI programming paradigm by extending accepted models of point-to-point 
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communication, such as Hockney, LogP/LogGP, and PLogP. The predictions from the models 

were compared with the experimentally gathered data and the findings were used to optimize the 

implementations of collective operations in the FT-MPI library. 

Bhat et al. [BRP99] propose a framework, which deals with the development of efficient 

collective communication systems on grid-based distributed computing systems. It consists of 

analytical models of the heterogeneous system, scheduling algorithms for the collective 

communication pattern, and performance evaluation mechanisms. Kielman et al. [KBG00] 

present a performance model dealing with the optimization of MPI’s collective operations on 

clustered wide-area systems. They use two techniques: selecting suitable communication graph 

shapes, and splitting messages into multiple segments that are sent in parallel over different 

WAN links. 

The HiHCoCP model [CFM+01] (for Hierarchical Hyperclusters of Heterogeneous 

Processors) builds on these existing models. A hypercluster is a cluster of cluster of … of cluster 

of processors. It characterizes a hypercluster via parameters that reflect its tri-axial 

heterogeneity: the individual processors’ message-processing times for the various network 

levels, and the latencies, link-bandwidths, and capacities of the networks at each level of the 

hierarchy. 

Lastovetsky [Las02] uses a model of the executing network of computers, where each 

computer is characterized by seven parameters. These are  

a) the number of processors,  

b) the speed of the computer demonstrated on execution of some serial test code. This value 

is updated at runtime by the execution of the recon statement.  

c) the total number of parallel processes to run on the computer,  
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d) the scalability of the communication layer provided by the computer, and  

e) the last three parameters determine the speed of point-to-point data transfer between 

processes running on the same computer as function of size of the transferred data block. 

The fifth parameter specifies the speed of transfer of data block of 64 bytes (measured in 

bytes per second), 

f) the speed of transfer of data block of 642 bytes, and  

g) the speed of transfer of data block of 643 bytes. 

The speed of transfer of a data block of an arbitrary size is calculated by interpolation of the 

measured speeds.  

Several research efforts have dealt with the problem of performance prediction for parallel 

applications executed on HNOCs, that is, predict the execution times of these applications on 

HNOCs. Yan et al. [YZS96] present a two-level model to study performance predictions for 

parallel computing on HNOCs. On the top level a semi-deterministic task graph is used to 

capture the parallel execution behavior including the variances of communications and 

synchronizations. On the bottom level, a discrete time model is used to quantify effects from 

NOW systems. An iterative process is used to determine the interactive effects between network 

contention and task execution. Figueira and Berman [FB96] present a model, which predicts 

contention effects in Host/MPP coupled heterogeneous platforms. The model provides a 

contention measure, the slowdown factor, to adjust the computation times and communication 

costs of an application to accommodate for system load. The adjusted applications can be used to 

rank candidate schedules of application tasks to system resources.  

Kishimoto and Ichikawa [KI04] adopt a multiprocessing approach to estimate the best 

processing element (PE) configuration and process allocation based on an execution-time model 
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of the application. The execution time is modeled from the measurement results of various 

configurations. Then, a derived model is used to estimate the optimal PE configuration and 

process allocation. 

Anglano [Ang98] developed a methodology for the construction of performance models 

whose analysis allows the estimation of the execution time of parallel applications on HNOCs. 

The methodology uses Timed Petri Nets to represent the behavior of parallel programs, and a 

contention model based on queuing theory to quantify the effects of resource contention on the 

execution time of the applications processes. 

Clematis and Corana [CC99] propose a performance model of heterogeneous networks of 

computers for analysis of the performance of heterogeneous parallel algorithms in order to 

predict their efficiency without real execution of the algorithms in heterogeneous environments. 

Lastovetsky [Las02] uses execution time estimation models to predict the total time of 

execution of the algorithm on the underlying hardware without its real execution. The 

estimations are then used to solve the problem of selection of optimal set of processes executing 

on different computers of the heterogeneous network. These estimation models are based on the 

performance model of the parallel algorithm, and the performance model of the executing 

network of computers, which reflects the state of this network just before the execution of the 

parallel algorithm.  

Several authors consider scalability more important for heterogeneous parallel algorithms 

than efficiency. 

Zhang and Yan [ZY95] present models which quantify the heterogeneity of networks and 

characterize the performance effects. The models consider effects of both the heterogeneity and 

time-sharing in a non-dedicated environment. Speedup, efficiency, and scalability are defined. 
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These metrics define heterogeneity based on the different loads on the participating machines. 

The models assumed a cluster of similar machines connected by a uniform network and each 

machine can execute on task (process) at a given point of time. Al-Jaroodi et al. [AMJ+03] 

extend the metrics to evaluate the performance of heterogeneous parallel applications. The 

extensions mainly accommodate the varying platforms and operating environments used and the 

possibility of having multiple tasks of the parallel application on each machine. 

Donaldson et al. [DBP94] consider a theoretical basis for calculating speedup in a 

heterogeneous environment, and give definitions for speedup and superlinear speedup in a 

heterogeneous network. Based on these definitions, it is observed that speedup for an arbitrary 

task graph can be viewed as having both a heterogeneous component and a parallel component. 

Additional analysis of the special case of linear task graphs shows that in a heterogeneous 

network, not only is superlinear speedup (When adding more CPUs to parallel execution of a 

program, the program normally speeds up in conformity with Amdahl's Law. However, when 

adding CPUs accidentally relieves some other bottleneck, the speedup can exceed the number of 

CPUs added. This is superlinear speedup: improvement out of proportion to the hardware added) 

possible, but unbounded speedup is possible even without exploiting parallelism across 

machines. 

Post and Goosen [PG01] suggest that traditional measures used for evaluating parallel 

performance, such as speedup and efficiency, are not appropriate for evaluating parallel 

performance of a heterogeneous system. They illustrate the use of linear speed to be a better 

alternative. Linear speed is essentially the inverse of elapsed time. They also show how linear 

efficiency may be used to evaluate parallel performance of a heterogeneous system, and help 

assess how efficient the system is. Linear efficiency is an extension to the linear speed and is 
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calculated by dividing the potential linear speed of a system (sum of serial linear speeds of 

processors used) by the actual linear speed achieved by the system for a parallel execution. 

Sun [Sun02] studies the relation between scalability and execution time. Based on newly 

uncovered relations, the concept of range comparison is introduced. Unlike conventional 

execution time comparison in which performance is compared at a given parallel platform and at 

a specified system and problem size, range comparison compares performance over a wide range 

of ensemble and problem size via performance crossing point analysis. Crossing point analysis 

finds slow/fast performance crossing points of parallel algorithms and machines. 

 

2.4.1 Summary 

The proposed models demonstrate that a small set of machine characteristics must be taken into 

consideration when programming high-performance computations on HNOCs: computing 

bandwidth, communication latency, communication overhead, communication bandwidth, 

network contention effects and memory hierarchy. Early computational models used a few 

parameters to describe the features of parallel machines. However recent models attempt to 

bridge the gap between software and hardware by using more parameters to capture the essential 

characteristics of parallel machines. A comprehensive performance model of heterogeneous 

networks of computers should be able to accomplish the following tasks: 

•  Analysis of the performance of heterogeneous parallel algorithms in order to accurately 

predict their efficiency without real execution of the algorithms in heterogeneous 

environments, 

•  Accurately predict the execution time of parallel applications to provide efficient 

mappings on HNOCs. 
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Such a comprehensive model is still far away from realization. 

 

2.5 Static and Dynamic Mapping Strategies 

To minimize the execution time of a parallel application running on a heterogeneous computing 

system, an appropriate mapping scheme to allocate the application tasks to the processors is 

needed. The general problem of mapping tasks to processors (defined as matching and 

scheduling) has been shown to be NP-complete [IK77, Fer89]. Norman and Thanisch [NT93] 

classify versions of the mapping problem and present existing research results. We present a 

brief summary of their work here for completeness. 

No Task Precedence 

The simplest and the most computationally tractable models of parallel computation are those 

where computations are modeled as tasks, each of which is executed sequentially on a single 

processor and between which there is no communication. The problem is simply an assignment 

problem, one of balancing the load on the various processors to which the computation is being 

mapped.  

Model 1: No Precedence 

An instance of the model can be formulated as follows: An instance A of the model is a 3-Tuple, 

a tuple is a finite sequence of objects, (P, Γ, f), where P is a set of n processors, Γ is set of l tasks 

and +→Γ 0: Zf  (where +
0Z  is a set of positive integers including zero) is a function such that f(γ) 

returns the time to compute task γ. Let FA denote the set of all surjective mappings from Γ to the 

collection of singleton subsets of P. A function f from a set X to a set Y is said to be surjective, if 

and only if for every element y of Y , there is an element x in X such that  f(x) = y ,  that is,  f is 

surjective if and only if  f(X ) = Y . A singleton is a set containing a single element. FA may be 
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thought of as the set of possible task mapping functions. For each gm∈ FA let Γ→ 2: Phm  denote 

the function which returns the set of tasks mapped to a given processor by mapping function gm. 

The makespan Mm associated with the mapping function gm is defined as: 
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We can pose the following decision problem: 

Decision Problem 1 Given an instance A of the above model and a positive integer k does there 

exist a function gm∈ FA such that Mm < k? 

Decision Problem 1 is NP-complete in the case of two or more identical processors.  

Tasks with Precedence 

Multicomputer programs with inter-task communications are better modeled by an alternative 

formulation. Below a model of non-preemptive scheduling is described where tasks show 

dependencies, and the dependency is satisfied at the termination of the precedent task.  

Model 2: Precedence With No Cost 

An instance A of the model is a 3-Tuple (P, Λ, fc), where P is a set of n processors; Λ = (Γ,∆) is a 

directed acyclic graph DAG (A DAG is a directed graph that contains no cycles) where Γ is a set 

of l tasks and ∆ represents a partial order on the tasks; +→Γ 0: Zfc  is a function such that fc(γ) 

returns the time to compute task γ. Let FA denote the set of all surjective mappings from Γ to the 

collection of singleton subsets of P. FA may be thought of as the set of possible task mapping 

functions. For each gm∈ FA let Γ→ 2: Phm  denote the function which returns the set of tasks 

mapped to a given processor by mapping function gm. For each gm∈ FA let Sm denote the set of 

valid schedules for a given mapping gm. The makespan Ms of a schedule s∈ Sm is given simply 

by: 
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Decision Problem 2 Given an instance A of the model 2 and an integer k, does there exist a 

mapping function gm∈ FA such that there exists a schedule s∈ Sm such that Ms < k? 

Decision Problem 2 is NP-complete for general n, even if the range of fc is {1}, or in the case of 

n = 2 if the range of fc is {1,2} (the range of a function is the set of all values produced by a 

function).  

Task Precedence and Communication Delays 

The model described before captures the essence of interprocessor communication in terms of 

the implied precedence, but fails to capture any of the overheads associated with message 

transfer. This and the following models are extensions to the previous model which attempt to 

characterize the overheads of communication in different ways. 

Model 3: Precedence With Communication Delay 

An instance A of the model is a 4-Tuple (P, Λ, fc, τ), where P is a set of n processors; Λ = (Γ,∆) is 

a DAG where Γ is a set of l tasks and ∆ represents a partial order on the tasks; +→Γ 0: Zfc  is a 

function such that fc(γ) returns the time to compute task γ and τ is an integer communication 

delay. Let FA denote the set of all task mapping functions gm, such that P
mg 2: →Γ . Function 

gm∈ FA returns the set of processors on which a task is executed in the mapping defined by gm. 

For each gm we define a corresponding function let Γ→ 2: Phm  denote the function which 

returns the set of tasks mapped to a given processor by mapping function gm. For each gm we 

define the set Sm of allowable schedules s such that +→×Γ 0: ZPs  where, for any given s∈ Sm, if 

γ∉ hm(p), then s(γ,p) is undefined, otherwise s(γ,p) is the time at which task γ is executed on 

processor p. The makespan Ms of a schedule s∈ Sm is given simply by: 
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Decision Problem 3 Given an integer k and a 3-tuple B=(Λ, fc, τ), where the range of fc is 

restricted to {1}, does there exist an instance A = (P, Λ, fc, τ) of Model 3 for which there is a 

mapping function gm∈ FA , and an associated scheduling function s∈ Sm such that Ms < k? 

Decision Problem 3 is NP-complete.  

Cost Based Models 

Model 4: Communication Costs and Computation Costs 

An instance A of the model is a 4-Tuple (P, Λ, fd, fe), where P is a set of n processors; Λ = (Γ,∆) 

is an undirected graph where Γ is a set of l tasks and ∆ is a set of undirected edges corresponding 

to communication between processes; +→×Γ 0: ZPfd  is a function such that fd(γ,p) returns the 

time to compute task γ on processor p; +→∆ 0: Zfe  is a function returning the cost associated 

with communication between processes if they are mapped to different processors. Given A, we 

can consider FA of functions which map from Γ onto P. This may be thought of as the set of all 

task mapping functions. For each gm∈ FA we can define a corresponding function Γ→ 2: Phm , 

which returns the set of tasks mapped to a given processor by mapping function gm. Now, the 

global cost of computation associated with mapping function gm, is given by:  
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and the global cost of communication associated with gm is: 
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And the total cost Rm of a mapping is given by: 

Rm = Um+Vm 
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Decision Problem 3 Given an instance A of Model 4 and an integer k: does there exist a  

mapping function gm∈ FA such that Rm< k? 

Stone [Sto77a, Sto77b, Sto78] shows an optimal algorithm for Model 4 with n=2. Fernandez-

Baca [Fer89] has proved that Decision Problem 4 is NP-complete if all of the following 

restrictions hold:  

•  The range of fd is {0}, 

•  The range of fe is {1}, 

•  n=3, 

•  Λ is both planar and bipartite. In graph theory, a planar graph is a graph that can be 

embedded in a plane so that no edges intersect and a bipartite graph is a special graph 

where the set of vertices can be divided into two disjoint sets with two vertices of the 

same set never sharing an edge. 

Many heuristics (approximation algorithms) have been developed to obtain near-optimal 

solutions to the mapping problem. Mapping algorithms are usually classified as static or 

dynamic. In static mapping, mapping decisions are taken before executing the application and 

are not changed until the end of the application. In dynamic mapping, mapping decisions are 

taken while the program is running. 

In [BSB+99], a collection of eleven static mapping heuristics has been studied and compared 

by simulation studies under one set of common assumptions. First, some preliminary terms must 

be defined. Let a meta-task be defined as a collection of independent tasks with no data 

dependencies. It is assumed that the size of the meta-task (number of tasks to execute), t, and the 

number of machines in the heterogeneous computing environment, m, are static and known a 

priori. It is assumed that an accurate estimate of the expected execution time for each task on 
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each machine is known priori to execution and contained within an ETC (expected time to 

compute) matrix. ETC(i,j) gives the estimated execution time for task i on machine j. Machine 

availability time, mat(j), is the earliest time a machine j can complete the execution of all the 

tasks that have been previously assigned to it. Completion time, ct(i,j), is the machine availability 

time plus the execution time of task i on machine j, i.e., ct(i,j) = mat(j) + ETC(i,j), where . The 

performance criterion used to compare the results of the heuristics is the maximum value of 

ct(i,j), for 0 ≤ i < t and 0 ≤ j < m, for each mapping, also known as the makespan. Each heuristic 

is attempting to minimize the makespan (i.e., finish execution of the meta-task as soon as 

possible). 

The static mapping heuristics are  

•  Opportunistic Load Balancing (OLB). OLB assigns each task, in arbitrary order, to the 

next available machine, regardless of the task’s expected machine time on that machine. 

•  User Directed Assignment (UDA). UDA assigns each task, in arbitrary order, to the 

machine with the best expected execution time for that task, regardless of that machine’s 

availability. 

•  Fast Greedy. Fast Greedy assigns each task, in arbitrary order, to the machine with the 

minimum completion time for that task. 

•  Min-min. The Min-min heuristic begins with the set of all unmapped tasks. Then, the set 

of minimum completion times is found. Next, the task with the overall minimum 

completion time is selected and assigned to the corresponding machine. Intuitively, Min-

min attempts to map as many tasks as possible to their first choice of machine (on the 

basis of completion time), under the assumption that this will result in shorter makespan. 
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Figure 2.5: General procedure for a Genetic Algorithm, based on [SP94]. 
 

•  Max-min. The Max-min heuristic is similar to Min-min heuristic except that the task 

with the overall maximum completion time is selected and assigned to the corresponding 

machine. The motivation behind Max-min is to attempt to minimize the penalties 

incurred by delaying the scheduling of long-running tasks. 

•  Greedy. The Greedy heuristic is literally a combination of Min-min and Max-min 

heuristics. It performs both of the Min-min and Max-min heuristics, and uses the better 

solution. 

•  Genetic Algorithm (GA). Genetic Algorithms (GAs) are a popular technique used for 

searching large solution spaces (e.g., [SY96, WSR+97]). Figure 2.5 shows the steps in a 

general Genetic Algorithm: (1) an encoding, (2) an initial population, (3) an evaluation 

using a particular fitness function, (4) a selection mechanism, (5) a crossover mechanism, 

(6) a mutation mechanism, and (7) a set of stopping criteria. 

The characteristics of this GA-based approach [WSR+97] include: separation of the 

matching and the scheduling representations, independence of the chromosome structure 

from the details of the communication subsystem, and consideration of overlap among all 
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computations and communications that obey subtask precedence constraints. Each 

chromosome consists of two parts: the matching string and the scheduling string. Thus, a 

chromosome represents the subtask-to-machine assignments (matching) and the 

execution ordering of the subtasks assigned to the same machine. 

The GA implemented operates on a population of 200 chromosomes (possible 

mappings) for a given meta-task. The initial population is generated using two methods: 

(a) 200 randomly generated chromosomes from a uniform distribution, or (b) one 

chromosome that is a Min-min solution and 199 random solutions (mappings). The GA 

executes eight times (four times with initial populations from each method), and the best 

of the eight mappings is used as the final solution.  

After the generation of the initial population, all of the chromosomes in the 

population are evaluated (i.e., ranked) based on their fitness value (i.e., makespan), with 

the smaller fitness value being a better mapping. Then the main loop in Figure 2.5 is 

entered and a rank based roulette wheel scheme [SP94] is used for selection.  

Next, the crossover operation selects a pair of chromosomes and chooses a random 

point in the first chromosome. After crossover, the mutation operation is performed. 

Mutation randomly selects a task within the chromosome, and randomly reassigns it to a 

new machine. 

Finally, the chromosomes from this modified population are evaluated again. The GA 

stops when any one of three conditions is met: (a) 1000 total iterations, (b) no change in 

the elite chromosome for 150 iterations, and (c) all chromosomes converge. 

•  Simulated Annealing (SA). SA is an iterative technique that considers only one possible 

solution (mapping) for each meta-task at a time. This solution uses the same 
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representation for a solution as the chromosome for the GA. SA uses a procedure that 

probabilistically allows poorer solutions to be accepted to attempt to obtain a better 

search of the solution space (e.g., [CP96, KGV83, RN95]). This probability is based on a 

system temperature that decreases for each iteration. As the system temperature “cools,” 

it is more difficult for currently poorer solutions to be accepted. The initial system 

temperature is the makespan of the initial mapping. 

The specfic SA procedure implemented here is as follows. The initial mapping is 

generated from a uniform random distribution. The mapping is mutated in the same 

manner as the GA, and the new makespan is evaluated. The decision algorithm for 

accepting or rejecting the new mapping is based on [CP96]. If the new makespan is 

better, the new mapping replaces the old one. If the new makespan is worse (larger), a 

uniform random number z∈ [0,1) is selected. Then, z is compared with y, where 
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 If z>y the new (poorer) mapping is accepted, otherwise it is rejected, and the old mapping  

 is kept. 

After each mutation, the system temperature is decreased by 10%. This defines one 

iteration of SA. The heuristic stops when there is no change in the makespan for 150 

iterations or the system temperature reaches zero. 

•  Genetic Simulated Annealing (GSA). The GSA heuristic is a combination of the GA 

and SA techniques. In general, GSA follows procedures similar to the GA heuristic. 

However, for the selection process, GSA uses the SA cooling schedule and system 

temperature. 
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•  Tabu. Tabu search is a solution space search that keeps track of the regions in solution 

space, which have already been searched so as not to repeat a search near these areas. 

•  A*. A* is a tree search beginning at a root node that is usually a null solution. As the tree 

grows, intermediate nodes represent partial solutions  (a subset of tasks are assigned to 

machines), and leaf nodes represent final solutions (all tasks are assigned to machines). 

The results obtained from executing these heuristics show that GA was the best heuristic for 

most cases, followed closely by Min-min. If the best mapping available in less than one minute is 

desired, Min-min should be used; if more time is available for finding the best mapping, GA and 

A* should be considered. 

Wu and Shu [WS01] propose an algorithm, named Relative Cost (RC) algorithm, to obtain 

optimal mapping. The proposed algorithm retains the advantage of the Min-min algorithm and 

achieves good load balance at the same time. As one of its limitations, Min-min algorithm gives 

small tasks higher priorities and therefore assigns them early, going against the general principle 

that the large tasks should be mapped first for a balanced load. When small tasks execute first, it 

tends to execute a few larger tasks near the end, leaving some machine sitting idle, which results 

in poor system utilization. The RC algorithm uses a new criterion of relative cost to determine 

the mapping order of tasks. In the RC algorithm, the higher priority is given to tasks that  

•  have a good match between tasks and machines; and 

•  minimize the completion time. 

Baraglia et al. [BFR03] propose a static graph-based mapping algorithm, called 

Heterogeneous Multi-Phase Mapping (HMM) that permits a suboptimal mapping of a parallel 

application onto a heterogeneous computing distributed system by using a local search technique 

together with a tabu search heuristic. 
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Maheswaran et al. ([MAS+99a], [MAS+99b]) study two types of dynamic mapping 

heuristics: on-line and batch mode heuristics. In the on-line mode, a task is mapped into a 

machine as soon as it arrives at the mapper. In the batch mode, tasks are not mapped onto the 

machines as they arrive; instead they are collected into a set that is examined for mapping at 

prescheduled times called mapping events. While on-line mode heuristics consider a task for 

mapping only once, batch mode heuristics consider a task for mapping at each mapping event 

until the task begins execution. Each heuristic is attempting to minimize the makespan (i.e., 

finish execution of the meta-task as soon as possible). 

The on-line mode mapping heuristics are: 

•  Minimum Completion Time (MCT). The MCT heuristic assigns each task to the 

machine that results in the task’s earliest completion time. This causes some tasks to be 

assigned to machines that do not have the minimum execution time for them. 

•  Minimum Execution Time (MET). The MET heuristic assigns each task to the machine 

that performs the task’s computation in the least amount of execution time. This heuristic, 

in contrast to MCT, does not consider machine ready times. 

•  Switching Algorithm (SA). The SA heuristic uses the MCT and MET heuristics in a 

cyclic fashion depending on the load distribution across the machines. 

•  K-percent Best (KPB). The KPB heuristic considers only a subset of machines while 

mapping a task. The subset is formed by picking the (k×m/100) (where m is the number 

of machines) best machines based on the execution times for the task, where 100/m ≤ k 

≤ 100. The task is assigned to a machine that provides the earliest completion time. 
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•  Opportunistic Load Balancing (OLB). OLB assigns the task to the machine that 

becomes ready next. If multiple machines become ready at the same time, then one 

machine is arbitrarily chosen. 

The batch mode mapping heuristics use two interval strategies. The regular time interval 

strategy maps the meta-tasks at regular intervals of time except when all the machines are busy. 

In the fixed count strategy, the length of the mapping intervals will depend on the arrival rate and 

the completion rate. The batch mode mapping heuristics studied are: 

•  Min-min and Max-Min. These heuristic are similar to the static mapping heuristics 

discussed above.  

•  Sufferage. The sufferage heuristic is based on the idea that better mappings can be 

generated by assigning a machine to a task that would “suffer” most in terms of expected 

completion time if that particular machine is not assigned to it. 

Batch mode heuristics can cause some tasks to be starved of machines. To reduce starvation, 

ageing schemes are implemented.  

In the on-line mode, the KPB heuristic outperformed the other heuristics on all performance 

metrics. In the batch mode, the Min-min heuristic outperformed the Sufferage and Max-min 

heuristics in the average sharing penalty. However, the Sufferage heuristic performed the best 

with respect to makespan. 

Maheswaran and Siegel [MS98a] present a dynamic mapping heuristic called the hybrid 

remapper. The hybrid remapper is based on a centralized policy and improves a statically 

obtained initial mapping and scheduling by remapping to reduce the overall execution time. 

During application execution, the hybrid remapper uses run-time values for the subtask 
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completion times and machine availability times whenever possible. The hybrid remapper 

assumes a fully connected, contention-free communication model. 

Tan et al. [TSA+97] present a mathematical framework that models the matching of subtasks 

to machines, scheduling of subtasks’ computation, scheduling of intermachine communication 

steps, and selection of sources of shared data items for intermachine communication (data 

relocation). Initially, it is assumed at any instant of time, only one machine is being used for 

program execution and only one subtask is being executed. Based on this assumption, a 

polynomial algorithm is introduced to optimize scheduling and data relocation with respect to 

any given matching of subtasks to machines. It is assumed that matching is static and has already 

been done.  

Cierniak et al. [CLZ97] propose compile-time techniques for scheduling parallel loops for a 

HNOCs. They propose a simple model for use in compiling for a network of processors, and 

develop compiler algorithms for generating optimal and near-optimal schedules of loops for load 

balancing, communication optimizations, network contention, and memory heterogeneity. 

All the static and dynamic strategies discussed above make very little suggestions about the 

nature of scheduled tasks (if any) considering them as a set of independent equal units. They pay 

more attention to the model of the heterogeneous hardware. Also it is assumed that the 

application program is decomposed into subtasks, each of which is computationally 

homogeneous. But this process of decomposition is itself a tedious and error-prone task. 

Lastovetsky [Las02] present a mapping algorithm that solves the problem of optimal 

mapping of processes into the set of processes executing on different computers of the 

heterogeneous network. The solution to the problem is based on the following: 
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•  The mpC model of the parallel algorithm, which should be executed. This model allows 

the programmer to define at runtime all the main features of parallel algorithm, which 

have an impact on the execution performance of the application on heterogeneous 

platforms. 

•  The performance model of the executing network of computers, which reflects the state 

of this network just before the execution of the parallel algorithm. 

•  A map of processes of the parallel program, for each computer displaying both the total 

number of running processes and the number of free processes. 

Each particular mapping is characterized by the estimation of the time of execution of the 

algorithm on the network of computers. The estimation is calculated based on the performance 

model of the parallel algorithm and the model of the executing network of computers. The mpC 

runtime system finds a mapping at runtime using an approximate solution obtained in a 

reasonable amount of time.  

 

2.5.1 Summary 

A heterogeneous computing system provides a variety of different machines executing an 

application whose subtasks have diverse execution requirements. The subtasks must be assigned 

to machines (matching) and ordered for execution (scheduling) such that the overall application 

execution time is minimized. It is well known that such a matching and scheduling (mapping) 

problem is, in general, NP-complete. Therefore, many heuristics have been developed to obtain 

near-optimal solutions to the mapping problems. The heuristics can be static or dynamic. The 

heuristics depend on the performance models of the computers in the executing heterogeneous 

network discussed previously. The quality of these heuristics depends on how accurately the 



Related Work 

62 

performance models of the computers in the executing heterogeneous network estimate the 

subtask computation times on various machines and inter-machine data transfer times. 

 

2.6 High-Performance Computing on Global Networks 

A few approaches to high-performance computing on global networks have been proposed. The 

main software challenges include achieving high performance via parallelism, managing and 

exploiting component heterogeneity, resource management, file and data access, fault-tolerance, 

ease-of-use and user interfaces, protection and authentication, and exploitation of high-

performance protocols. 

NetSolve [CD96] is a system used to support high-performance scientific computations on 

global networks. NetSolve offers the ability to look for computational resources on a network, 

choose the best available, solve the problem, and return the solution to the user. Good 

performance is ensured by a load-balancing policy that enables NetSolve to use the 

computational resources as efficiently as possible. NetSolve is designed to run on any 

heterogeneous network and is implemented as a fault-tolerant client-server application. 

Computational Grid [FK98] is a platform for the implementation of high-performance 

applications using widely dispersed computational resources. NASA's Information Power Grid 

(IPG) [JGN99] is a high-performance computing and data grid. Grid users can access widely 

distributed heterogeneous resources from any location, with IPG middleware adding security, 

uniformity, and control. 

Legion [GW97] is an object-based, meta-systems software project, which connects networks, 

workstations, supercomputers, and other computer resources together into a system that can 

encompass different architectures, operating systems, and physical locations. Legion provides a 
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coherent framework in which these elements can be combined into a metasystem. One can draw 

on these combined resources to parallelize complex problems and run programs more efficiently 

without worrying about different languages, conflicting platforms, or hardware failure. Legion 

seamlessly schedules and distributes your processes on available and appropriate hosts, then 

returns the results. 

The goal of the Condor Project [LLM88] is to develop, implement, deploy and evaluate 

mechanisms and policies that support High Throughput Computing (HTC) on large collections 

of distributively owned computing resources. Condor is a specialized workload management 

system for compute-intensive jobs. Like other full-featured batch systems, Condor provides a job 

queuing mechanism, scheduling policy, priority scheme, resource monitoring, and resource 

management. Users submit their serial or parallel jobs to Condor, Condor places them into a 

queue, chooses when and where to run the jobs based upon a policy, carefully monitors their 

progress, and ultimately informs the user upon completion. Condor’s periodic checkpointing 

provides fault tolerance.   

The core part of any software system for high-performance computing on global networks is 

a tool for monitoring the network performance of a global computing network. The Network 

Weather Service (NWS) [WS97] is such a tool that periodically monitors and dynamically 

forecasts the performance various network and computational resources can deliver over a given 

time interval. The service operates a distributed set of performance sensors (network monitors, 

CPU monitors, etc.) from which it gathers readings of the instantaneous conditions. It then uses 

numerical models to generate forecasts of what the conditions will be for a given time frame. 

NWS is used by dynamic schedulers and to provide statistical Quality-of-Service readings in a 

networked computational environment. The forecaster module in NWS applies a set of 
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forecasting models and dynamically chooses the forecasting technique that has been most 

accurate over the recent set of measurements. The forecaster process in NWS produces a 

predicted value of deliverable performance during a specified time frame for a specified 

resource. 

Gloperf [ASW+98] is a network performance monitoring system for grid computations built 

as a part of the Globus grid computing toolkit [FK97]. Globus is used to develop the 

fundamental technology that is needed to build computational grids, execution environments that 

enable an application to integrate geographically-distributed instruments, displays, and 

computational and information resources. Gloperf makes simple, end-to-end TCP measurements 

requiring no special host permissions. Gloperf is primarily a sensor and collection mechanism; it 

does not contain any prediction models. 

The AppLeS project [BWF+96] is developing scheduling protocols from an applications 

point of view to provide a mechanism for scheduling individual applications at machine speeds 

on production heterogeneous systems. AppLeS agents utilize a network performance monitoring 

system such as NWS or Gloperf to monitor the varying performance of resources potentially 

usable by their applications. Each AppLeS uses static and dynamic application and system 

information to select viable resource configurations and evaluate their potential performance. 

AppLeS then interacts with the relevant resource management system to implement application 

tasks. 

SmartNet [FGA+98] is a resource scheduling system for distribution environments. It allows 

users to execute jobs on complex networks of different computers as if they were a single 

machine, or meta-computer. In general, optimal multiprocessor scheduling is NP-complete, and 
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hence SmartNet employs heuristics when it searches for a near-optimal mapping of jobs to 

machines and job execution schedule.  

The Management System for Heterogeneous Networks (MSHN) [HKJ+99] is a resource 

management system for use in heterogeneous environments. Its main goal is to determine the 

best way to support the execution of many different applications, each with its own quality of 

service (QoS) requirements in a distributed, heterogeneous environment. MSHN evolved in part 

from the scheduling framework SmartNet but its research expanded into the following areas 

relevant to most resource management systems (RMS). 

•  An RMS needs to consider that the overhead of jobs sharing resources, such as networks 

and file servers, can have significant impact on mapping and scheduling decisions. 

•  An RMS must support adaptive applications. 

•  An RMS must deliver good QoS to many different sets of simultaneous users, some of 

whom may be executing compute-intensive jobs and some of whom jobs with real-time 

requirements. 

 

2.7 Summary 

The tools designed for programming high-performance computations on HNOCs must provide 

mechanisms to automate the tedious and error-prone tasks: 

•  Parameter determination characterizing the computational requirements of the parallel 

application and the capabilities of the machines, 

•  Data partitioning, 

•  Matching and Scheduling, and  

•  Task execution. 
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Ideally a tool must supply mechanisms to the programmer so that he or she can provide 

information to it that can assist in finding the most efficient implementation on HNOCs. 

Combining the system’s detailed analysis with the programmer’s high-level knowledge of the 

application is essential in finding more efficient mappings than either one alone is capable of 

achieving. The performance models used by the tools must take into account all the essential 

features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects 

of paging and the latency and the bandwidth of the communication links between the processors. 

The model of the executing network of computers must take into consideration the essential set 

of machine characteristics such as computing bandwidth, communication latency, 

communication overhead, communication bandwidth, network contention effects and the 

memory hierarchy. Such a model must have enough parameters for it to be efficient and 

accurate. 

We present, in the chapters to follow, tools that automate the main steps involved in 

application development on HNOCs. These tools employ performance model of the executing 

network of computers that takes into account the main features that have an essential impact on 

application execution performance on HNOCs. 
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CHAPTER 3 
 

Outline of HMPI 
 
This chapter presents a small set of extensions to MPI that can be used for 

•  Determination of the characterization parameters relevant to the computational 

requirements of the applications and the machine capabilities of the heterogeneous 

system, and  

•  Selection of the optimal set of processes running on different computers of the 

heterogeneous network.  

The standard Message Passing Interface (MPI) specification provides communicator and 

group constructors, which allow the application programmers to create a group of processes that 

execute together some parallel computations to solve a logical unit of a parallel algorithm. The 

participating processes in the group are explicitly chosen from an ordered set of processes. This 

approach to the group creation is quite acceptable if the MPI application runs on homogeneous 

distributed-memory computer systems, one process per processor. In this case, the explicitly 

created group will execute the parallel algorithm typically with the same execution time as any 

other group with the same number of processes, because the processors have the same computing 

power, and the latency and the bandwidth of communication links between different pairs of 

processors are the same. However on HNOCs, a group of processes optimally selected by taking 

into account the speeds of the processors, and the latencies and the bandwidths of the 

communication links between them, will execute the parallel algorithm faster than any other 

group of processes. Selection of processes in such a group is usually a very difficult task. It 

requires the programmers to write a lot of complex code to detect the actual speeds of the 

processors and the latencies of the communication links between them, and then to use this 
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information to select the optimal set of processes running on different computers of 

heterogeneous network. 

The main idea of HMPI is to automate the process of selection of such a group of processes 

that executes the heterogeneous algorithm faster than any other group. 

The first step in this process of automation is the specification of the performance model of 

the heterogeneous parallel algorithm in performance model definition language. Performance 

model is a tool supplied to the programmer to specify his or her high-level knowledge of the 

application that can assist in finding the most efficient implementation on HNOCs.  

The second step involves the writing of an HMPI application. A typical HMPI application 

consists of HMPI group management operations and the execution of the computations and 

communications involved in the execution of the parallel algorithm employed in the application 

by the members of the group. During the creation of a group of processes, HMPI runtime system 

solves the problem of selection of the optimal set of processes running on different computers of 

the heterogeneous network. The solution to the problem is based on the following: 

•  The performance model of the parallel algorithm in the form of the set of functions 

generated by the compiler from the description of the performance model. 

•  The performance model of the executing network of computers, which reflects the state 

of this network just before the execution of the parallel algorithm. 

The accuracy of the performance model of the executing network of computers depends upon 

the accuracy of the estimation of the actual speeds of processors and the communication model 

of the executing network of computers. HMPI provides operations to dynamically update the 

estimation of processor speeds and parameters of communication model at runtime. 
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Thus if the performance model of the parallel algorithm embodies the programmer’s high 

level knowledge of the application, the performance model of the executing network of 

computers expresses the detailed analysis of the executing network of computers. Using these 

two models is essential in finding more efficient mappings than either one alone is capable of 

achieving. 

The main contributions in this chapter are: 

a) The design of HMPI API. The main goal of the design of the API in HMPI is to smoothly 

and naturally extend the MPI model for heterogeneous networks of computers. This 

involves the design of a layer above MPI that does not involve any changes to the 

existing MPI API. The HMPI API must be easy-to-use and suitable for most scientific 

applications. The HMPI API must also facilitate transformation of MPI applications to 

HMPI applications that run efficiently on HNOCs.  

b) The first research implementation of HMPI.  

c) The design and application of HMPI+ScaLAPACK tool to speed up ScaLAPACK 

applications on heterogeneous networks of computers. 

While presenting the HMPI API, we present additional background material just to make this 

chapter self-contained. This material is mainly the mapping algorithms used to solve the problem 

of selection of processes, the estimation procedure to estimate the time of execution for a 

particular mapping, and the model of a heterogeneous network of computers. 

This chapter is structured as follows: 

•  Section 3.1 presents the specification of the performance model definition language. 

•  Section 3.2 presents the HMPI group management operations. 
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•  Section 3.3 presents the HMPI operation HMPI_Recon that enables the user to 

dynamically update the estimation of processor speeds at runtime. This operation 

facilitates writing parallel programs sensitive to dynamic changing loads. 

•  Section 3.4 presents the HMPI operation HMPI_Timeof that allows the user to predict 

the total time of the algorithm execution on the underlying hardware without its real 

execution. This feature allows the programmer to write such a parallel program that can 

follow different parallel algorithms to solve the same problem, making choice at runtime 

depending on the particular executing network and its actual performance. 

•  Section 3.5 presents the HMPI group constructor operation 

HMPI_Group_auto_create that detects the optimal number of processes that can 

execute the parallel application. 

•  Section 3.6 outlines the typical steps involved in the development of an HMPI program. 

•  Section 3.7 presents the steps involved in the transformation of an MPI program to an 

HMPI program. 

•  Section 3.8 gives an overview of a research implementation of HMPI.  

•  Section 3.9 summarizes the features of HMPI.  

 

3.1 Outline of Performance Model Definition Language 

HMPI allows application programmers to describe a performance model of their implemented 

heterogeneous algorithm. This model allows specification of all the main features of the 

underlying parallel algorithm that have an essential impact on application execution performance 

on HNOCs. These features are: 

•  The total number of processes executing the algorithm.  
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•  The total volume of computations to be performed by each of the processes in the group 

during the execution of the algorithm, 

•  The total volume of data to be transferred between each pair of processes in the group 

during the execution of the algorithm, and 

•  The order of execution of the computations and communications by the involved parallel 

processes in the group, that is, how exactly the processes interact during the execution of 

the algorithm. 

HMPI provides a small and dedicated model definition language for specifying this 

performance model. This language uses most of the features in the specification of network types 

of the mpC language presented in [AKL+99, LAK+00, Las02].  

mpC is a high-level parallel language (an extension of ANSI C), designed specially to 

develop portable adaptable applications for heterogeneous networks of computers. mpC allows 

the programmer to define at runtime all the main features of the underlying parallel algorithm, 

which have an impact on the application execution performance, namely, the total number of 

participating parallel processes, the total volume of computations to be performed by each of the 

processes, the total volume of data be transferred between each pair of processes, and how 

exactly the processes interact during the execution of the algorithm. Such an abstraction of 

parallel algorithm is called a network type in mpC. Given a network type, the programmer can 

define a network object of this type and describe in details all the computations and 

communications to be performed on the network object. 

HMPI’s performance model definition language only uses the specification of the network 

types in mpC. The specification of performance model in HMPI is the same as the specification 

of the performance model in mpC in the form of network type. Thus it can be said that HMPI’s 
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model definition language is a subset of mpC language in that it uses only the feature of network 

types in mpC. 

A compiler compiles the description of this performance model to generate a set of functions. 

The functions make up an algorithm-specific part of the HMPI runtime system. 

We illustrate the features of the HMPI’s performance model definition language with a tool, 

which automatically transforms ScaLAPACK [CDD+96] programs solving dense linear algebra 

problems on massively parallel processors (MPP) into programs solving the same problems on 

HNOCs with good performance improvements.  

 

3.1.1 Homogeneous Distribution of Data with Heterogeneous Distribution 

of Processes 

In this section we present a tool that transforms ScaLAPACK programs that solve dense linear 

algebra problems on massively parallel processors (MPP) into parallel applications that solve the 

same problems on HNOCs with good performance improvements.  

The input to the tool is a homogeneous parallel algorithm that solves the problem on MPPs. 

The transformed application for HNOCs distributes data across parallel processes exactly in the 

same fashion as its homogeneous prototype. However, the transformed application uses a 

modified algorithm that allows more than one process involved in its execution to be run on each 

processor so that the number of processes running on the processor is proportional to its speed. 

In other words, while distributed evenly across parallel processes, data and computations are 

distributed unevenly over processors of the heterogeneous network, and this way each processor 

performs the volume of computations proportional to its speed.  
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The strategy employed by the tool is based on HeHo strategy (heterogeneous distribution of 

processes over processors and homogeneous block distribution of data over the processes) 

presented by Kalinov and Lastovetsky [KL01]. They analyze two strategies, which are HeHo and 

HoHe (homogeneous distribution of processes over processors with each process running on a 

separate processor and heterogeneous block cyclic distribution of data over the processes). Both 

strategies were implemented in the mpC language. The first strategy is implemented using calls 

to ScaLAPACK; the second strategy is implemented with calls to LAPACK [ABB+92] and 

BLAS [DCD+90]. They compare the strategies using Cholesky factorization on a network of 

workstations. They show that for heterogeneous parallel environments both the strategies HeHo 

and HoHe are more efficient that the traditional homogeneous strategy HoHo (homogeneous 

distribution of processes over processors and homogeneous distribution of data over the 

processes as implemented in ScaLAPACK). They also show that HoHe strategy is more efficient 

than the HeHo strategy (speedup of 40% observed on networks where the ratio of the speed of 

the fastest processor to the speed of the slowest processor is 7.1).  

The main disadvantage of the HoHe strategy is non-Cartesian nature of the data distribution 

(Cartesian data distribution is shown in Figure 3.16). This leads to additional communications 

that can be essential in the case of large networks. The HeHo strategy is easy to accomplish. It 

allows the usage of high-quality software, such as ScaLAPACK, developed for homogeneous 

distributed memory systems in heterogeneous environments and to obtain a good speedup with 

minimal expenses. However the HeHo strategy does not take into account processor memory 

size. For an application dealing with big matrices, it can cause paging, which in turn causes 

slowing down of the parallel application. Therefore to use this strategy it is necessary to restrict 

the number of processes running on processors in accordance with the estimated size of the 
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application and the main memory available. We aim to do further research to find the crossover 

point between HoHe and HeHo strategies in case of large networks.  

Thus the main purpose of the tool is to allow the application programmers to convert 

conventional parallel applications that are designed to run on MPPs to applications that run 

efficiently on HNOCs without rewriting these applications. The tool adopts a multiprocessing 

approach, which does not aim to extract the maximum performance from a heterogeneous 

network but provides an easy and simple way to execute a wide range of conventional 

applications on HNOCs with good performance improvements. 

We illustrate the features of the tool by transforming a sample ScaLAPACK [CDD+96] 

program. ScaLAPACK is a well-known standard package of high-performance linear algebra 

routines for distributed-memory message passing MIMD computers and networks of 

workstations supporting PVM and/or MPI . It is a continuation of the LAPACK project, which 

designed and produced analogous software for workstations, vector supercomputers, and shared-

memory parallel computers. Both libraries contain routines for solving systems of linear 

equations, least squares problems, and eigenvalue problems. 

Consider the ScaLAPACK program computing matrix multiplication using the routine 

PDGEMM shown in Figure 3.1. This routine performs any of the following matrix-matrix 

operations: 

C = α×A×B+β×C  
C = α×A×BT+β×C 
C = α×AT×B+β×C 
C = α×AT×BT+β×C 

 
where α and β are scalars and A, B, and C are matrices. 
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Figure 3.1: The most relevant fragments of code of the ScaLAPACK program computing matrix-matrix 

multiplication using PDGEMM. 

   PROGRAM HPDGEMM 
 
   INTEGER            DLEN_, M, K, N, NB, ICTXT, INFO, MYCOL, MYROW,  
   $                  NPCOL, NPROW, MP, KP, KQ, NQ,  
   $                  DESCA( DLEN_ ), DESCB( DLEN_ ), DESCC( DLEN_ ) 
   PARAMETER          ( DLEN_ = 9, LLD_ = 9 ) 
   EXTERNAL           BLACS_EXIT, BLACS_GRIDEXIT, BLACS_GRIDINFO, 
   $                  DESCINIT, PDGEMM 
* 
*  Define process grid 
* 
   CALL BLACS_GET( -1, 0, ICTXT ) 
   CALL BLACS_GRIDINIT( ICTXT, ‘Row-major’, NPROW, NPCOL ) 
   CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL ) 
 
   MP = NUMROC( M, NB, MYROW, 0, NPROW ) 
   KP = NUMROC( K, NB, MYROW, 0, NPROW ) 
   KQ = NUMROC( K, NB, MYCOL, 0, NPCOL ) 
   NQ = NUMROC( N, NB, MYCOL, 0, NPCOL ) 
* 
*  Initialize the array descriptors for the matrices A, B, and C 
* 
   CALL DESCINIT( DESCA, M, K, NB, NB, 0, 0, ICTXT, MAX( 1, MP ),    
   $              INFO ) 
   CALL DESCINIT( DESCB, K, N, NB, NB, 0, 0, ICTXT, MAX( 1, KP ), 
   $              INFO ) 
   CALL DESCINIT( DESCC, M, N, NB, NB, 0, 0, ICTXT, MAX( 1, MP ), 
   $              INFO ) 
* 
*  Generate random matrices A, B, and C 
* 
   CALL PDMATGEN( … ) 
* 
*  Call the ScaLAPACK routine PDGEMM 
* 
   CALL PDGEMM( ‘No transpose’, ‘No transpose’, M, N, K, 1., A, 1, 1, 
        DESCA, B, 1, 1, DESCB, 1., C, 1, 1, DESCC ) 
* 
*  Release the process grid 
*  Free the BLACS context 
* 
   CALL BLACS_GRIDEXIT( ICTXT ) 
* 
*  Exit the BLACS 
* 
   CALL BLACS_EXIT( 0 ) 
* 
   STOP 
   END 
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Figure 3.2: The most relevant fragments of generated HMPI code computing matrix-matrix multiplication using 

PDGEMM on heterogeneous networks. 

   int main(int argc, char **argv) { 
        static int p, q, m, n, k, kb, kp, kq, mycol, myrow, ictxt, desca[9], input_p[2],  
                  descb[9], descc[9], rc, info, i, mp, mq, info, i__1, nrhs,  
                  iaseed, ibseed, icseed, c__0 = 0, c__1 = 1, nd, **dp, output_p; 
        static double *a, *b, *c;  
        void *model_params; 
        HMPI_Group gid; 
        HMPI_Init(argc, argv); 
        // Estimation of speeds of the processors 
        if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP) 
           HMPI_Recon(&fdgemm, input_p, 2, &output_p); 
        // Model parameter initialization 
        if (HMPI_Is_host()) { 
           model_params[0] = n; 
           model_params[1] = kb; 
        } 
        // HMPI Group creation 
        if (HMPI_Is_host()) 
           HMPI_Group_auto_create(&gid, &HMPI_Model_pdgemm, model_params);    
        if (HMPI_Is_free()) 
           HMPI_Group_auto_create(&gid, &HMPI_Model_pdgemm, NULL);    
        // Execution of the algorithm 
        if (HMPI_Is_member(&gid)) { 
           MPI_Comm algocomm = *(MPI_Comm*)HMPI_Get_comm(&gid); 
           HMPI_Group_topology(&gid, &nd, dp); 
           p = (*dp)[0]; 
           q = (*dp)[1]; 
           ictxt = Csys2blacs_handle(algocomm); 
           // Form BLACS context based on algocomm 
           Cblacs_gridinit(&ictxt, "r", p, q);  
           // Initialize the process grid   
           blacs_gridinfo__(&ictxt, &p, &q, &myrow, &mycol); 
           mp = numroc_(&m, &kb, &myrow, &c__0, &p); 
           kp = numroc_(&k, &kb, &myrow, &c__0, &p); 
           kq = numroc_(&k, &kb, &mycol, &c__0, &q); 
           nq = numroc_(&n, &kb, &mycol, &c__0, &q); 
           i__1 = max(1,mp); 
           descinit_(desca, &m, &k, &nb, &nb, &c__0, &c__0, &ictxt, &i__1, &info); 
           i__1 = max(1,kp); 
           descinit_(descb, &k, &n, &nb, &nb, &c__0, &c__0, &ictxt, &i__1, &info); 
           i__1 = max(1,mp); 
           descinit_(descc, &m, &n, &nb, &nb, &c__0, &c__0, &ictxt, &i__1, &info); 
           iaseed = 100; 
           pdmatgen_(&ictxt, "No transpose", "No transpose", &desca[2],  
                 &desca[3], &desca[4], &desca[5], a, &desca[8], &desca[6],  
                 &desca[7], &iaseed, &c__0, &mp, &c__0, &kq, &myrow, &mycol, &p, &q); 
           ibseed = 200; 
           pdmatgen_(&ictxt, "No transpose", "No transpose", &descb[2],  
                 &descb[3], &descb[4], &descb[5], b, &descb[8], &descb[6],  
                 &descb[7], &ibseed, &c__0, &kp, &c__0, &nq, &myrow, &mycol, &p, &q); 
           // Compute C=A×B 
           pdgemm_( &ictxt, "No transpose", "No transpose", &descc[2], &descc[3],  
           &descc[4], &descc[5], c, &descc[8], &descc[6], &descc[7], &icseed, &c__0, &mp,  
           &c__0, &nq, &myrow, &mycol, &p, &q); 
           // Release the process grid, Free the BLACS context 
           blacs_gridexit__(&ictxt); 
        } 
        // HMPI Group Destruction 
        if (HMPI_Is_member(&gid)) 
           HMPI_Group_free(&gid);     
        HMPI_Finalize(0);      
   } 



Outline of HMPI 

77 

There are four basic steps involved in calling a ScaLAPACK routine. 

1. Initialize the process grid. The BLACS_GET routine returns the default system context 

for input to BLACS_GRIDINIT. The routine BLACS_GRIDINIT is called to map the 

processes sequentially in row-major order into the process grid. The first parameter to 

this routine is the system context to be used in creating the BLACS context. The second 

parameter to this routine indicates how to map processes into the process grid. The third 

and fourth parameters indicate the number of rows and number of columns in the process 

grid. The routine BLACS_GRIDINFO returns the row and column index in the process 

grid of the calling process. 

2. Distribution of the matrix on the process grid. Each global matrix that is to be distributed 

across the process grid must be assigned an array descriptor using the ScaLAPACK 

TOOLS routine DESCINIT. A mapping of the global matrix onto the process grid is 

accomplished using the user-defined routine PDMATGEN. 

3. Call the ScaLAPACK routine PDGEMM. 

4. Release the process grid via a call to BLACS_GRIDEXIT. When all the computations 

have been completed, the program is exited with a call to BLACS_EXIT. 

 

3.1.2 Main Constructs of Performance Model Definition Language 

This program is input to the tool, which generates a C program shown in Figure 3.2. The tool 

uses the performance model definition pdgemm shown below: 

/* 1 */ algorithm pdgemm(int n, int b, int p, int q) 
/* 2 */ { 
/* 3 */   coord I=p, J=q; 
/* 4 */   node {I>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n/b));}; 
/* 5 */   link (K=p, L=q) 
/* 6 */   { 
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/* 7 */      I>=0 && J>=0 && I!=K : 
/* 8 */        length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 9 */              [I, J]->[K, J]; 
/* 10 */     I>=0 && J>=0 && J!=L: 
/* 11 */       length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 12 */             [I, J]->[I, L]; 
/* 13 */   }; 
/* 14 */   parent[0,0]; 
/* 15 */   scheme 
/* 16 */   { 
/* 17 */     int i, j, k; 
/* 18 */     for(k = 0; k < n; k+=b) 
/* 19 */     { 
/* 20 */       par(i = 0; i < p; i++) 
/* 21 */          par(j = 0; j < q; j++) 
/* 22 */             if (j != ((k/b)%q)) 
/* 23 */               (100.0/(n/(b*q))) %% [i,((k/b)%q)]->[i,j]; 
/* 24 */       par(i = 0; i < p; i++) 
/* 25 */          par(j = 0; j < q; j++) 
/* 26 */             if (i != ((k/b)%p)) 
/* 27 */               (100.0/(n/(b*p))) %% [((k/b)%p),j]->[i,j]; 
/* 28 */       par(i = 0; i < p; i++) 
/* 29 */         par(j = 0; j < q; i++) 
/* 30 */           ((100.0×b)/n) %% [i,j]; 
/* 31 */     } 
/* 32 */   };    
/* 33 */ }; 
 

This performance model definition describes the simplest scenario performed by the pdgemm 

routine in ScaLAPACK, which uses outer-product algorithm using the logical LCM hybrid 

algorithmic blocking strategy [PD99]. The performance model definition describes the parallel 

matrix-matrix multiplication of two dense square matrices A and B of size n×n. The distribution 

blocking factor b used in the matrix-matrix multiplication is assumed to be equal to the 

algorithmic blocking factor. The performance model definition also assumes that the matrices are 

divided into whole number of blocks of size equal to distribution blocking factor, that is, 

(n%(b×p)) and (n%(b×q)) (see explanation of variables below) are both equal to zero. 

 

Coordinate Declaration 
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Line 1 is a header of the performance model declaration. It introduces the name of the 

performance model pdgemm parameterized with the scalar integer parameters n, b, p, and q. 

Parameter n is the size of square matrices A, B, and C. Parameter b is the size of the distribution 

blocking factor. Parameters p and q are output parameters representing the number of processes 

along the row and the column in the process grid arrangement. The scope of the parameters is the 

corresponding performance model declaration. The declaration of the performance model is also 

called a topology. 

The body of the performance model declaration starts at line 3. Line 3 is a coordinate 

declaration declaring the coordinate system to which the processor nodes of the network are 

related. It introduces integer coordinate variable I ranging from 0 to p-1, and integer 

coordinate variable J ranging from 0 to q-1. For example, the coordinate declaration 

coord x = 100, y = 10, z = p;  
 
declares a 3-D coordinate system, which a network containing up to 100×10×p nodes may be 

related to. 

 

Node Declaration 

Line 4 is a node declaration. It relates the virtual processors to the coordinate system declared 

and specifies the (absolute) volume of computations to be performed by each of the processors. 

Line 4 declares that the relative volume of computations to be performed by the virtual processor 

with coordinates (I,J) is ((n/(b*p))*(n/(b*q))*(n/b)). Line 4 also stands for the 

predicate for all 0≤I<p and 0≤J<q then a virtual processor, whose relative volume of 

computations is ((n/(b*p))*(n/(b*q))*(n/b)), is related to the point with coordinate 

[I,J]. 
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Consider the following performance model definition 

algorithm Web(int m, int n, int d[m][n]) { 
     coord I=m, J=n; 
     node { 
       I==0 && J>0: void; 
       I==0 && J==0: d[I][J]; 
       default: d[I][J]*n; 
     };  
     parent [0, 0]; 
   }; 
 
In the node declaration, a processor node of the type void has no data and does not take part in 

computations. The equivalent interpretation is that the type void indicates that no processor is 

related to the positions with the corresponding coordinates. In this example, the keyword void in 

the position of the processor type indicates that no processors are related to the points with 

coordinates [0,J], where (0≤J<n). 

When processing a node declarator, the compiler evaluates the (logical) expression for every 

permissible set of values of the coordinate variables. If the value is non-zero (that corresponds to 

the logical value true), a processor of the specified type and performing the specified volume of 

computations is related to the coordinates.  

The default node declarator declares the volume of computations performed by all the 

processor nodes whose coordinates do not satisfy any (logical) expression in the rest of the node 

declarators of the node declaration. If there does not exist a default node declarator, these 

processor nodes shall have the type void. 

Therefore in this example, the virtual processor with coordinates [0,0] performs relative 

volume of computations equal to d[0][0] whereas the rest of the virtual processors, that is 

processors with coordinates [I,J], where (0<I<m) and (0≤J<n), perform relative 

volume of computations equal to d[I][J]*n. 
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Specification of the volume of computation is not as easy. What is the natural unit of 

computation to measure the volume of computations performed by the process? The main 

requirement is that if given the volume of computation measured in those units, the HMPI 

runtime system should be able to accurately estimate the time of execution of the corresponding 

computations by any process of the program. 

The solution proposed in the performance model definition language is that the very code 

that was used to estimate the speed of physical processors of the executing network can also 

serve as a unit of measure for the volume of computation performed by processes of the parallel 

algorithm. 

The line 4 of node declaration specifies that the volume of computations to be performed by 

the virtual processor with coordinates (I,J) is ((n/(b*p))*(n/(b*q))*(n/b)) times 

bigger than the volume of computations performed by the benchmark code. The statement 

bench just specifies that as a unit of measurement, the volume of computation performed by 

some benchmark code is used. It is presumed that the benchmark code, which is used for 

estimation of speed of physical processors, multiplies two dense square b×b matrices. 

 

Link Declaration 

Lines 5-13 are a link declaration. This specifies: 

•  the links between the virtual processors,  

•  the pattern of communication among the abstract processors, meaning a set of 

communication links over which the abstract processors communicate with each other, 

and  
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•  the total volume of data to be transferred between each pair of virtual processors during 

the execution of the algorithm.  

Lines 7-9 of the link declaration describe communications related to matrix A. Obviously, 

abstract processors from the same column of the processor grid do not send each other elements 

of matrix A. Only abstract processors from the same row of the processor grid send each other 

elements of matrix A. Abstract processor PIJ will send (n/(b×p))×(n/(b×q))×b×b number 

of elements of matrix A to processor PKJ. The volume of data in one b×b block is given by 

(b*b)*sizeof(double) and so the total volume of data transferred from processor PIJ to 

processor PKJ will be given by (n/(b×p))×(n/(b×q))×b×b×sizeof(double). 

Lines 7-9 also stand for the predicate  for all 0≤I<p and 0≤J<q if I≠K then there exists 

a link connecting virtual processors with coordinates [I,J] and [K,J] and the total amount of 

data transferred through this link from [I,J] to [K,J] is 

(n/(b*p))*(n/(b*q))*(b*b)*sizeof(double) during the execution of 

the algorithm. 

The second statement in the link declaration describes communications related to matrix B. 

Obviously, only abstract processors from the same column of the processor grid send each other 

elements of matrix B. In particular, processor PIJ will send all its b×b blocks of matrix B to all 

other processors from column J of the processor grid. Abstract processor PIJ will send 

(n/(b×p))×(n/(b×q))×b×b number of elements of matrix B to processor PIL. The volume 

of data in one b×b block is given by (b*b)*sizeof(double) and so the total volume of 

data transferred from processor PIJ to processor PIL will be given by 

(n/(b×p))×(n/(b×q))×b×b×sizeof(double). 
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Figure 3.3: The pattern of communication among the processors. (a) A star communication pattern, (b) A ring 

communication pattern, and (c) A tree communication pattern.  

 

In general, the performance model definition language allows static and dynamic 

communication patterns. 

The communication pattern shown in Figure 3.3(a) with the performance model definition 

shown below represents star pattern. 

  algorithm Star(int p, int comm) { 
    coord I=p; 
    link { 

 I>0: length*(comm*sizeof(double)) [I]->[0]; 
    }; 
    … 
  }; 

The communication pattern shown in Figure 3.3(b) with the performance model definition 

shown below represents ring pattern. 

  algorithm Ring(int p, int comm) { 
    coord I=p; 
    link { 

 I>=0: length*(comm*sizeof(double)) [I]->[(I+1)%p]; 
    }; 
    … 
  }; 
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The communication pattern shown in Figure 3.3(c) with the performance model definition 

shown below represents tree pattern. 

  algorithm Tree(int p, int comm) { 
    coord I=p; 
    link { 

 I>=0: length*(comm*sizeof(double)) [I]->[2*I+1], 
                                    [I]->[2*i+2]; 

    }; 
    … 
  }; 
 

The following performance model definition represents a dynamic communication pattern,  

  algorithm DynamicPattern(int p, int pattern) { 
    coord I=p; 
    node {I>=0: bench*I;};  
    link { 

 pattern==STAR: length*(I*sizeof(double)) [0]->[I]; 
 pattern==RING: length*(I*sizeof(double)) 
                       [I]->[(I+1)/p]; 
}; 

   }; 
 

which describes the star or ring communication topology depending on parameter pattern. 

 

Parent Declaration 

Line 14 is a parent declaration. It specifies the coordinates of the parent processor node in a 

given coordinate system. If a performance model declaration does not contain a parent node 

declaration, the parent is specified implicitly and has zero number in the natural numeration of 

processor nodes. The parent is the so-called virtual host-processor, which always maps onto the 

host-process associated with the user’s terminal. 

If we need the parent of the performance model pdgemm to have not the least but the 

greatest coordinates, line  

parent [p-1,q-1]; 
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has to be used in the definition of performance model pdgemm instead of line 

parent [0,0]; 

The HMPI groups are not absolutely independent of each other. Every newly created group 

has exactly one process shared with already existing groups. That process is called a parent of 

this newly created group, and is the connecting link, through which results of computations are 

passed if the group ceases to exist.  

 

Scheme Declaration 

Line 15 introduces the scheme declaration. The scheme block describes how exactly virtual 

processors interact during the execution of the algorithm. The scheme block is composed mainly 

of two types of units. They are computation and communication units. Each computation unit is 

of the form ]%%[ie  specifying that e percent of the total volume of computations is performed 

by the virtual processor with the coordinates (i). Each communication unit is of the form 

][]%%[ jie →  specifying transfer of data from virtual processor with coordinates i to the virtual 

processor with coordinates j. There are two types of algorithmic patterns in the scheme 

declaration. They are sequential and parallel. Some examples of the sequential algorithmic 

patterns are  

for (e1; e2; e3) a 
 
for (e1; e2; e3)  
  for (ee1; ee2; ee3)  
      a 
 
if (e) a1 else a2 
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The parallel algorithmic patterns are specified by the keyword par and they describe parallel 

execution of some actions (mixtures of computations and communications). Some examples of 

the parallel algorithmic patterns are  

par (e1; e2; e3) a 
 
par (e1; e2; e3)  
  par (ee1; ee2; ee3)  
      if (e) a1 else a2 
 
The scheme declaration describes (n/b) successive steps of the algorithm. At each step k,  

•  Lines 21-23 describe communications related to matrix A. A column of b×b blocks of 

matrix A is communicated horizontally. If processors PIJ and PKJ are involved in this 

communication so that PIJ sends a part of this column to PKJ, then the number of b×b 

blocks transferred from PIJ to PKJ will be (n/(b×p)). The total number of b×b blocks 

of matrix A, which processor PIJ sends to processor PKJ, is 

(n/(b×p))×(n/(b×q)).Therefore, 100
q))(n/(b

1
100

q))(n/(bp))(n/(b

p))(n/(b ×
×

=×
×××

×
 

percent of data that should be in total sent from processor PIJ to processor PKJ will be sent 

at the step. The second nested par statement in the main for loop of the scheme 

declaration specifies this fact. Again, we use the par algorithmic patterns in this 

specification to stress that during the execution of this communication, data transfer 

between different pairs of processors is carried out in parallel. 

•  Lines 24-27 describe communications related to matrix B. A row of b×b blocks of matrix 

B is communicated vertically. For each pair of abstract processors PIJ and PIL involved in 

this communication, PIJ sends a part of this row to PIL. The number of b×b blocks 

transferred from PIJ to PIL will be (n/(b×q)). The total number of b×b blocks of 
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matrix B, which processor PIJ sends to processor PIL, is (n/(b×p))×(n/(b×q)). 

Therefore, 100
p))(n/(b

1
100

q))(n/(bp))(n/(b

q))(n/(b ×
×

=×
×××

×
 percent of data that should be 

in total sent from processor PIJ to processor PIL will be sent at the step. The first nested 

par statement in the main for loop of the scheme declaration just specifies this fact. 

The par algorithmic patterns are used to specify that during the execution of this 

communication, data transfer between different pairs of processors is carried out in 

parallel. 

•  Lines 28-30 describe computations. Each abstract processor updates each its b×b block 

of matrix C with one block from the pivot column and one block from the pivot row, so 

that each block ijc  ( , {1, , }i j n∈ K ) of matrix C will be updated, kjikijij bacc ×+= . The 

processor performs the same volume of computation at each step of the algorithm. 

Therefore, at each of (n/b) steps of the algorithm the processor will perform 
n

b100×
 

percent of the volume of computations it performs during the execution of the algorithm. 

The third nested par statement in the main for loop of the scheme declaration just 

specifies this fact. The par algorithmic patterns are used here to specify that all abstract 

processors perform their computations in parallel. 

The scheme declaration shown is relatively simple. It just reflects the relative simplicity of 

the underlying parallel algorithm. In general, the performance model definition language allows 

the programmer to describe quite sophisticated heterogeneous parallel algorithms by means of 

wide use of parameters, locally declared variables, functions, expressions and statements. 
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3.1.3 Structure of Target Program 
 
The transformed HMPI application performs typically the following steps. The HMPI calls are 

explained in detail in the sections that follow. 

1. The initialization of HMPI runtime using the function HMPI_Init. 

2. This is followed by dynamic refreshment of the estimation of the processor speeds using 

the function HMPI_Recon. The benchmark code used in the call to HMPI_Recon is a 

serial BLAS version of the parallel ScaLAPACK routine. In this case, the BLAS routine 

DGEMM multiplying two dense square matrices is used to dynamically refresh the 

processor speeds. An interesting issue is the choice of size of the matrix that is to be used 

in the benchmark code. An approximation of the size of the matrix used is equal to the 

size of the matrix used in the parallel application divided by the square root of the total 

number of processes that are available for computation. For example, if the total number 

of processes available for computation are m and the size of the matrix to be solved is n, 

the size of the matrix used in the benchmark code in the call to HMPI_Recon can be 

n/ m . This is an approximation because the optimal number of processes that can 

execute the parallel application (detected by HMPI_Group_auto_create) may not 

be equal to the total number processes available for computation. 

3. Creation of a HMPI group of processes using the function 

HMPI_Group_auto_create to obtain a handle to the HMPI group of MPI processes. 

This function detects the optimal number of processes that can execute the parallel 

application, that is, finds the optimal arrangement of processes in a grid. During the 

creation of a HMPI group of processes, the mapping of the parallel processes to the 

executing network of computers is performed such that the number of processes running 
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on each processor is proportional to its speed. In other words, while distributed evenly 

across parallel processes, data and computations are distributed unevenly over processors 

of the heterogeneous network, and this way each processor performs the volume of 

computations proportional to its speed. The function calls HMPI_Is_host, 

HMPI_Is_free, and HMPI_Is_member are explained in sections on HMPI group 

management functions. 

4. Conversion of the handle to the HMPI group of MPI processes obtained previously to an 

MPI communicator using the function call HMPI_Get_comm. 

5. Conversion of the MPI communicator to an integer BLACS handle, which can be passed 

into grid creation routine. This is done using the interim BLACS routine 

Csys2blacs_handle. 

6. Creation of the BLACS context using the integer BLACS handle. This is done using the 

interim BLACS routine Cblacs_gridinit. 

7. The four basic steps involved in calling a ScaLAPACK routine described previously are 

then performed. 

An interesting issue is the choice of the total number of processes to be allocated to each 

participating computer when the user starts up the application. Some basic rules to choose the 

number of processes to allocate per each processor can be followed: 

1. First of all, the number of processes running on each computer should not be less than the 

number of processors of the computer just to be able to exploit all the available processor 

resources.  

2. The upper bound on the number of processes to allocate per computer is limited by the 

underlying operating system and/or the underlying MPI implementation. For example,  



Outline of HMPI 

90 

Name (Number of 
Processors) Architecture 

cpu 
MHz 

Total Main 
Memory 
(mBytes) 

Cache 
(kBytes) 

pg1cluster01 (2) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster02 (2) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster03 (2) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster04 (2) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

csserver (4) 
Linux 2.6.5-1.358smp 
Intel(R) XEON(TM) 

2867 8192 512 

Table 3.1: Specifications of the five computers used for running a simple HMPI application involving HMPI group 

creation and destruction. 

 
Figure 3.4: A simple HMPI application that calls HMPI runtime initialization, group creation and HMPI runtime 

finalization. 

 

the LAM/MPI 7.1.1 installed under the operating systems Solaris 2.9 and Linux 2.6.8-

1.521smp does not specify any limit on the number of LAM processes that can 

beexecuted on each processor. Therefore the maximum number of processes in this case 

is  

int main(int argc, char **argv)  
{ 
   int p; 
   HMPI_Group gid; 
   HMPI_Init(argc, argv); 
   if (HMPI_Is_host()) 
      p = 5; 
   if (HMPI_Is_host()) 
      HMPI_Group_create(&gid, &HMPI_Model_simple, &p);    
   if (HMPI_Is_free()) 
      HMPI_Group_create(&gid, &HMPI_Model_simple, NULL);    
   if (HMPI_Is_member(&gid)) 
      HMPI_Group_free(&gid); 
   HMPI_Finalize(0);  

     } 
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Simple HMPI application
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Figure 3.5: Demonstration of the influence of the growth of the number of processes on the overhead associated 

with HMPI group creation and destruction. The execution times are for a simple HMPI application shown in Figure 

3.4 run on the network shown in Table 3.1. Only 5 processes are members of the HMPI group and are involved in 

the execution of the algorithm whereas the rest of the processes are idle and not involved in any computations. For 

the first point, a process is run on each computer of the network. For experimental point i (i>1), 5×i processes are 

run on each computer of the network. 

 

limited by the operating system and can be obtained by using the UNIX command 

‘ulimit -u’. However, the upper bound on the number of processes executed on each 

processor is roughly equal to the ratio of speed of the fastest processor to speed of the 

slowest processor on the executing network of computers.   

3. The other factor affecting the execution performance of the application is the size of main 

memory on the computer. It must be ensured that the sum total of the amount of main 

memory used by all the processes allocated to a computer not exceed the size of main 

memory of the computer. This is because when the data size of the application is larger 

than the main memory size of the computer, the performance is adversely affected  
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Name (Number of 
Processors) Architecture 

cpu 
MHz 

Total Main 
Memory 
(mBytes) 

Cache 
(kBytes) 

pg1cluster01 (1) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster02 (1) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster03 (1) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

pg1cluster04 (1) 
Linux 2.6.8-1.521smp 
Intel(R) XEON(TM) 

2048 1024 512 

csultra01 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra02 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra03 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra04 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra05 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra06 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra07 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

Table 3.2: Specifications of the eleven computers used for running a simple HMPI application involving HMPI 

group creation and destruction (only one process run per processor). 

 
Figure 3.6: A simple HMPI application that calls HMPI runtime initialization, group creation and HMPI runtime 

finalization (HMPI group consists of one process per computer). 

int main(int argc, char **argv) { 
   int p; 
   HMPI_Group gid; 
   HMPI_Init(argc, argv); 
   if (HMPI_Is_host()) 
      p = HMPI_Group_size(HMPI_COMM_WORLD_GROUP); 
   if (HMPI_Is_host()) 
      HMPI_Group_create(&gid, &HMPI_Model_simple, &p);    
   if (HMPI_Is_free()) 
      HMPI_Group_create(&gid, &HMPI_Model_simple, NULL);    
   if (HMPI_Is_member(&gid)) 
      HMPI_Group_free(&gid); 
   HMPI_Finalize(0);  

     } 
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Simple HMPI application
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Figure 3.7: Demonstration of the influence of the growth of the number of computers on the overhead associated 

with HMPI group creation and destruction. The execution times are for a simple HMPI application shown in Figure 

3.6 run on the network shown in Table 3.2. 

 

because the dominant computation times were used by the operating system to do context 

switch and page swapping between main memory and disk.  

If an HMPI application does not define a significant amount of static data, then all the 

processes, which are not involved in the execution of the parallel algorithm, are very light-

weighted and do not consume too many resources such as processor cycles or memory. The 

overheads associated with these processes are the initialization and finalization of HMPI runtime 

and the communications associated with the synchronizations involved during the creation and 

the destruction of the HMPI groups. It is observed that these overheads do not grow rapidly with 

the growth of the total number of processes but is more sensitive to the number of computers 

used. Figure 3.5 shows that the growth of the number of processes does not result in a large 

increase in the overheads. The experiments are performed on local network of 5 Linux  

 



Outline of HMPI 

94 

Name (Number 
of Processors) 

Architecture cpu 
MHz 

Total 
Main 

Memory 
(mBytes) 

Cache 
(kBytes) 

Absolute 
Speed 

(dgemm) 
(MFlops) 

Absolute 
Speed 
(dgesv) 

(MFlops) 

pg1cluster01 (2) 

Linux 2.6.8-
1.521smp 
Intel(R) 

XEON(TM) 

2048 1024 512 2429 2139 

pg1cluster02 (2) 

Linux 2.6.8-
1.521smp 
Intel(R) 

XEON(TM) 

2048 1024 512 2429 2139 

pg1cluster03 (2) 

Linux 2.6.8-
1.521smp 
Intel(R) 

XEON(TM) 

2048 1024 512 2429 2139 

pg1cluster04 (2) 

Linux 2.6.8-
1.521smp 
Intel(R) 

XEON(TM) 

2048 1024 512 2429 2139 

zaphod (1) 
Linux 2.4.18-3 

i686 Intel Pentium 
III 

997 256 256 563 494 

maxft (1) 
Linux 2.6.5-1.358 

Pentium III 
731 128 256 412 392 

Table 3.3: Specifications of six computers of a heterogeneous network to determine the influence of blocking factor 

on HMPI+ScaLAPACK application. 

 

computers shown in Table 3.1. Figure 3.7 shows the influence of the growth of the number of 

processes on the overhead associated with HMPI group creation and destruction. The 

experiments are performed on local network of eleven heterogeneous computers shown in Table 

3.2. 

There are two other important issues, one is the optimal arrangement of processes in the grid 

and the other is the blocking factor used to distribute the rows and the columns of the matrices 

involved in the computation. The optimal arrangement of processes in the process grid is 

determined by the HMPI function HMPI_Group_auto_create.  

To determine the optimal blocking factor to be used to distribute the rows and the columns of 

the matrices involved in the computation, a heterogeneous local network of 6 Linux computers  
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    b 

 
   n 

18 36 54 72 90 180 

1080 7.19 6.52 7.28 7.55 6.98 7.14 

2160 18.39 19.35 20.18 19.83 18.94 20.05 

3240 48.52 48.77 49.38 48.33 47.33 47.35 

4320 101.56 100.43 100.77 104.72 100.44 104.91 

5400 190.81 188.37 203.19 195.60 189.64 181.68 

Table 3.4: Results of experiments on network shown in Table 3.3. n is the size of the matrix. b is the distribution 

blocking factor. The execution times of the parallel matrix-matrix multiplication obtained by executing the routine 

pdgemm are given in seconds. The process grid used in the experiments is p=3,q=3 (one process per processor 

configuration).  

    b 

 
   n 

18 36 54 72 90 180 

1080 7.71 7.49 8.17 8.27 7.78 8.43 

2160 15.30 13.62 14.47 13.21 13.10 13.31 

3240 30.75 23.14 23.54 22.85 22.37 24.66 
4320 55.68 48.41 48.78 45.80 44.96 45.07 

5400 99.22 86.21 81.80 76.05 82.20 81.55 

Table 3.5: Results of experiments on network shown in Table 3.3. n is the size of the matrix. b is the distribution 

blocking factor. The execution times obtained by executing the routine pdgesv are given in seconds. The process 

grid used in the experiments is p=3,q=3 (one process per processor configuration).  

 
shown in Table 3.3 is used in the experiments. The computers used in the experiments are 

connected to communication network, which is based on 100 Mbit Ethernet with a switch 

enabling parallel communications between the computers. The experimental results are obtained 

by averaging the execution times over a number of experiments. It is observed that the execution 

times are the same no matter what algorithmic blocking factor is used. Table 3.4 shows the 

experimental results using the routine pdgemm performing parallel matrix-matrix multiplication.  
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Figure 3.8: Results obtained using the network of heterogeneous computers shown in Table 3.3. (a) Comparison of 

speedups of matrix-matrix multiplication using the routine pdgemm. (b) Comparison of speedups of solving linear 

system of equations using the routine pdgesv.  

 

Table 3.5 shows the experimental results using the routine pdgesv, which computes the 

solution to a real system of equations.  

However to ensure efficient data distribution, it is recommended that any blocking factor 

between 32 to 64 be used to distribute the rows and the columns of the matrices involved in the 

computation of the linear algebra kernel [BCC+97].  
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Figure 3.8(a) shows the experimental results using the routine pdgemm performing parallel 

matrix-matrix multiplication on the heterogeneous network shown in Table 3.3. Figure 3.8(b) 

shows the experimental results using the routine pdgesv, which computes the solution to a real 

system of equations on the heterogeneous network shown in Table 3.3. The speedup calculated is 

the ratio of the execution time of the ScaLAPACK program over the execution time of the HMPI 

program. 

The absolute speeds of the processors are obtained based on serial versions dgemm and 

dgesv of the corresponding parallel routines pdgemm and pdgesv. For dgemm, the size of the 

square matrix used is 1000×1000. For dgesv, the size of the square matrix used is 

2000×2000. It can be seen that the fastest processors are on the pg1cluster computers and the 

slowest processor is maxft. The number of processes to be run on each processor is equal to the 

ratio of the absolute speed of the fastest processor to the absolute speed of the slowest processor. 

For the experiments shown in Figure 3.8, the number of processes run on each processor in 

pg1cluster is 6, on zaphod is 2, and on maxft is 1. This is because each processor on pg1cluster 

computers is 6 times faster than the processor on maxft and the processor on zaphod is 2 times 

faster than the processor on maxft. So the total number of processes available to the HMPI 

program for computation is 6×8 + 2×1 + 1×1 = 51. 

The HMPI program detects the optimal process grid arrangement from the set of possible 2D 

process grid arrangements of 51 processes. Since the number of 2D process grid arrangements is 

large, the HMPI program uses the HMPI function 

HMPI_Group_heuristic_auto_create instead of the HMPI function 

HMPI_Group_auto_create, which evaluates all the possible 2D process grid arrangements. 

The function HMPI_Group_heuristic_auto_create uses heuristics to reduce the 
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number of process arrangements to evaluate. The heuristics used are that for a 2D process grid 

arrangement, the row and column distribution blocking factors must be an integer multiple of the 

number of processes along the row of the grid and number of processes along the column of the 

grid respectively. The ScaLAPACK program uses a 2×5 grid of processes (using one process 

per processor configuration). 

It should also be noted that the HMPI functions HMPI_Group_auto_create and 

HMPI_Group_heuristic_auto_create find the optimal process arrangement and not 

the optimal number of processes to run on each processor. 

The Figures 3.8(a) and (b) show the speedup of the HMPI programs over ScaLAPACK 

programs.  

 

3.2 HMPI Group Management Functions 

Having provided such a description of the performance model, application programmers can use 

a new operation, whose interface is shown below, which tries to create a group that would 

execute the heterogeneous algorithm faster than any other group of processes,  

HMPI_Group_create(HMPI_Group* gid,  
const HMPI_Model* perf_model,  
const void* model_parameters) 

 
where perf_model is a handle that encapsulates all the features of the performance model in 

the form of a set of functions generated by the compiler from the description of the performance 

model, model_parameters are the parameters of the performance model. This function 

returns an HMPI handle to the group of MPI processes in gid.  

Users can use gid, the HMPI handle to the group of MPI processes to perform various group 

management operations. This handle is intended to be opaque to the application. The users 
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should not attempt to predict its values or modify it without using functions supplied with this 

library. 

 
Figure 3.9: Specification of the performance model of the parallel algorithm of the simulation of evolution of 

bodies in the HMPI’s performance definition language. 

 

algorithm Nbody(int p, int k, int n[p])  
{ 
   coord I=p; 
   node { 
     I>=0: bench*((n[I]/k)*(n[I]/k)); 
   }; 
   link { 
     I>0: length*(n[I]*sizeof(Body)) [I]->[0]; 
   }; 
   parent[0]; 
   scheme { 
     int i; 
     par (i = 0; i < p; i++) 100%%[i]; 
     par (i = 0; i < p; i++) 100%%[i]->[0]; 
   }; 
};   
 

int main(int argc, char **argv) { 
   int p, k, i, *model_params, *nbodies; 
   HMPI_Group gid; 
   HMPI_Init(argc, argv); 
   if (HMPI_Is_host()) { 
      // First parameter to the performance model 
      model_params[0] = p; 
      // Second parameter to the performance model 
      model_params[1] = k;  
      // Values of third vector parameter  
      // to the performance model 
      for (i = 0; i < p; i++) 
         model_params[1+1+i] = nbodies[i];   
   }  
   if (HMPI_Is_host()) 
      HMPI_Group_create(&gid, &HMPI_Model_Nbody, model_params);    
   if (HMPI_Is_free()) 
      HMPI_Group_create(&gid, &HMPI_Model_Nbody, NULL);    
   if (HMPI_Is_member(&gid)) { 
      // computations and communications are performed here 
      … 
   } 
   … 
   HMPI_Finalize(0);  

     } 
 



Outline of HMPI 

100 

Figure 3.10: The most principal code of the HMPI program illustrating the creation of the optimal group of 

processes using the operation HMPI_Group_create. 

In HMPI, groups are not absolutely independent of each other. Every newly created group 

has exactly one process shared with already existing groups. That process is called a parent of 

this newly created group, and is the connecting link, through which results of computations are 

passed if the group ceases to exist. HMPI_Group_create is a collective operation and must 

be called by the parent and all the processes, which are not members of any HMPI group. 

To illustrate the usage of the function HMPI_Group_create, consider the HMPI 

application shown in Figures 3.9 and 3.10. This program simulates the evolution of a system of 

stars in a galaxy (or a set of galaxies) under the influence of Newtonian gravitational attraction. 

Consider the block of code containing the call to HMPI_Group_create shown in Figure 

3.10. The first parameter gid is an output parameter, which is an HMPI handle to the group of 

MPI processes. The second parameter HMPI_Model_Nbody is an input parameter, which is a 

handle to the performance model. It is a structure generated by the performance model definition 

language compiler from the compilation of the performance model definition shown in Figure 

3.9. The generated code is shown in appendix A. In the current implementation of HMPI, the 

scalar and the vector parameters to the performance model must be of type integer. Vector 

parameters can be multidimensional arrays. However, the declaration of any vector parameter 

with dimensions parameterized by scalar parameters must follow the declaration of the scalar 

parameters. In the example shown in Figure 3.9, the vector parameter n, which is an indexed set 

of integers of size p, follows the scalar parameter p. 

The third parameter model_params is a one-dimensional array containing all the values of 

the parameters to the performance model. As can be seen from the Figure 3.10, the host process 
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fills the parameter model_params with the first parameter to the performance model, which is 

the number of processes p involved in the execution of the heterogeneous algorithm, the second 

parameter to the performance model, which is the number of bodies in the group used in the 

benchmark code, and finally the last parameter to the performance model, which is the vector 

parameter of p groups where i-th element contains the number of bodies in i-th group. Only the 

parent of the group, which is the host process in this case, need only fill in the model parameters. 

HMPI_Group_create is a collective operation called by the parent and all the processes, 

which are not members of any HMPI group. The parent of the group in this case is the host 

process. The host process is a member of the pre-defined HMPI group HMPI_HOST_GROUP. 

This group consists of exactly one virtual processor, which always maps onto the host process 

associated with the user’s terminal. The function HMPI_Is_host returns true if the process 

calling this function is the host process otherwise false. The function HMPI_Is_free 

returns true if the process is free, that is, the process is not a member of any group and false 

otherwise.  

The application programmers should avoid using groups created with the MPI group 

constructor operations, to perform computations and communications in parallel with HMPI 

groups, as it may not result in the best execution performance of the application. The point is that 

the HMPI runtime system is not aware of any group of MPI processes, which is not created 

under its control. Therefore, the HMPI runtime system cannot guarantee that an HMPI group will 

execute its parallel algorithm faster than any other group of MPI processes if some groups of 

MPI processes, other than HMPI groups, are active during the algorithm execution.  

Application programmers must use the group destructor operation, whose interface is shown 

below, to free resources associated with a group, 
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HMPI_Group_free(HMPI_Group* gid) 

where gid is the HMPI handle to the group of MPI processes. This is a collective operation and 

must be called by all the members of this group. There are no analogs of other group constructors 

of MPI such as the set-like operations on groups and the range operations on groups in HMPI. 

This is because: 

•  Firstly, HMPI does not guarantee that groups composed using these operations can 

execute a logical unit of parallel algorithm faster than any other group of processes, and 

•  Secondly, it is relatively straightforward for application programmers to perform such 

group operations by obtaining the groups associated with the MPI communicator given 

by the HMPI_Get_comm operation, whose interface is shown below. 

const MPI_Comm* HMPI_Get_comm ( 

const HMPI_Group* gid) 

This function returns an MPI communicator with communication group of MPI processes 

defined by gid. This is a local operation not requiring inter-process communication. 

The other additional group management operations provided by HMPI apart from the group 

constructor and destructor are the following group accessors: 

•  HMPI_Group_rank to get the rank of the process in the HMPI group,  

•  HMPI_Group_size to get the number of processes in this group,  

•  HMPI_Group_parent to get the rank of the parent of this group, and 

•  HMPI_Group_performances to get the relative speeds of the processes in this 

group. 
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When describing the features of the performance model definition language, we mentioned 

that the declaration of the performance model is also called a topology. Thus in HMPI, there is 

an implicit virtual process topology associated with HMPI groups. The operations used to get the 

information about the topology of the HMPI group of processes are: 

•  HMPI_Group_topo_size to get the number of dimensions of the process 

arrangement of the virtual process topology of the HMPI group, 

•  HMPI_Group_topology to get the number of processes in each dimension of the 

process arrangement of the virtual process topology of this HMPI group,  

•  HMPI_Group_coordof to get the coordinates of the process in the virtual process 

topology of this HMPI group, 

•  HMPI_Rank to get the rank of the process in a group given its coordinates in the virtual 

process topology of this HMPI group, and  

•  HMPI_Coordof to get the coordinates of the process in the virtual process topology of 

the HMPI group given the rank of the process in this HMPI group. 

 

3.2.1 Mapping Algorithm 

During the creation of this group of processes, HMPI runtime system solves the problem of 

selection of the optimal set of processes running on different computers of the heterogeneous 

network. The solution to the problem is based on the following: 

•  The performance model of the parallel algorithm in the form of the set of functions 

generated by the compiler from the description of the performance model. 
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•  The performance model of the executing network of computers, which reflects the state 

of this network just before the execution of the parallel algorithm. This model considers 

the executing heterogeneous network as a multilevel hierarchy of interconnected sets of 

heterogeneous multiprocessors. This model takes into account the material nature of 

communication links and their heterogeneity. 

 

3.2.1.1 Model of a Heterogeneous Network of Computers 

The model of a heterogeneous network of computers allows for the material nature of 

communication links and their heterogeneity. Each computer in this model is characterized by 

two attributes: 

•  The time of execution of a (serial) test code on the computer; 

•  The number of physical processors. 

The first attribute is a function of time, and it can vary even during the execution of the same 

HMPI application. The second attribute is a constant and it determines how many noninteracting 

processes can run in parallel on the computer without loss of speed. 

The model considers the executing heterogeneous network as a multilevel hierarchy of 

interconnected sets of heterogeneous multiprocessors. The hierarchy reflects the heterogeneity of 

communication links and can be represented in the form of an attributed tree. 

Each node of the tree represents a homogeneous communication space of the heterogeneous 

network. The first attribute associated with an internal node is the set of computers, which is just 

a union of sets of computers associated with its children. 

The second is the speed of data transfer between two computers from different sets 

associated with its children. This attribute characterizes point-to-point communication at this 
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communication layer and is a function of size of the transferred data block, s(d). Note, that s(0) 

is not zero and equal to startup time of point-to-point communication at this layer. 

The third attribute specifies if the communication layer allows parallel point-to-point 

communications between different pairs of computers without loss of data transfer speed, or the 

layer serializes all communications. This attribute can have two values – Serial and Parallel. A 

pure Ethernet network is serial. At the same time, the use of switches can make it parallel. 

The next group of attributes is only applicable to a parallel communication layer. It 

characterizes collective communication operations such as broadcast, scatter, gather, and 

reduction. The point is that a collective communication operation cannot be considered as a set 

of independent point-to-point communications. It normally has some special process, called root, 

which is involved in more communications than other participating processes.  

The level of parallelism of each of the collective communication operations depends on its 

implementation and is reflected in the model by means of the corresponding attribute. For 

example, the attribute fb characterizes the level of parallelism of the broadcast operation. It is 

supposed that the execution time t of this operation can be calculated as follows 

t = fb * tp + (1- fb)*ts 

where t
s
 is the time of purely serial execution of the operation, and t

p
 is the time of ideally 

parallel execution of this operation (0 <= f
b
 <= 1). 

Each leaf node of this tree represents a single (homogeneous) multiprocessor computer.  

This communication model addresses n-level heterogeneous parallel systems, where n 

represents the number of network layers present in the heterogeneous environment. This model 

describes multiple heterogeneous parallel computers connected by some combination of internal 
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buses, local-area networks, campus-area networks, and wide-area networks. As a result, it can 

guide the design of applications for traditional parallel systems, heterogeneous or homogeneous  
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Figure 3.11: Hierarchical model of a heterogeneous network of five computers. 

 

clusters, the Internet, and computational grids. Furthermore, this model incorporates parameters 

that reflect the relative computational and communication speeds at each of the n levels. 

Figure 3.11 depicts the model for a local network of 5 computers, named A, B, C, D and E. 

Computer A is a distributed-memory 8-processor computer, D is a shared-memory 2-processor 
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server. Computers B, C and E are uniprocessor workstations. The local network consists of 2 

segments with A, B and C belonging to the first segment. Computers D and E belong to the 

second segment. 

The speed of transfer of a data block of k bytes from a process running on computer C to a 

process running on computer D is estimated by s
0
(k), meanwhile the speed of transfer of the 

same data block from a process running on computer C to a process running on computer A is 

estimated by s
1
(k). 

The level of parallelism of a broadcast involving processes running on computers B, C, and E 

is f
b0

, meanwhile that of a broadcast involving processes running on computer A is f
bA

. 

The communication model presented is simple and rough enough. It is used at runtime by the 

HMPI programming system to predict the execution time of the implemented parallel algorithm. 

It uses a small number of integral attributes presenting some average characteristics rather than 

detailed and fine-structured description.  

The main reason of this simplicity is that the target architecture for HMPI is common 

networks of computers, which normally are multi-user environments of irregular structure with 

not very stable characteristics. Therefore, fine-grained communication effects can hardly be 

reliably predicted for that architecture.  

Secondly, HMPI is aimed at programming applications, in which computations prevail over 

communications, i.e., the contribution of computations in the total execution time is much higher 

than that of communications. If it is not the case, it normally means that the main goal of the 

application is not to speed up the solution of some individual problem, and the distribution of its 

components over different computers is its intrinsic feature, i.e., the application is actually 

distributed not parallel one. 
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Thus, HMPI needs an efficient communication model of common heterogeneous networks of 

computers suitable for prediction of the execution time of data transfer operations involving the 

transfer of relatively big volumes of data. The accuracy of the prediction does not need to be too 

high because the contribution of communications in the total execution time is supposed to be 

relatively small. Actually, the accuracy cannot be high because of the nature of the modelled 

hardware. 

The main disadvantage of the communication model that should be addressed in the future 

work is that it is static. An efficient way to update its parameters at runtime to reflect the current 

situation could improve its accuracy. Another possible direction of improvement is the model of 

parallel communication layer and collective communication operations. More experiments with 

different network configurations are needed to make the model more accurate for a wide range of 

common networks.  

 

3.2.1.2 Overview of the Mapping Algorithm 

The algorithms used to solve the problem of selection of processes are discussed in [Las02]. We 

describe the mapping algorithm here in order to make this composition self-contained. 

Each particular mapping, µ:I->C, where I is a set of processes of the group, and C={c0, 

c1,…,cM-1} is a set of computers of the executing network, is characterized by the estimation of 

the time of execution of the algorithm on the network of computers. The estimation is calculated 

based on the performance model of the parallel algorithm and the model of the executing 

network of computers. 

Ideally, the HMPI runtime system should find such a mapping that is estimated to ensure the 

fastest execution of the parallel algorithm. In general, for an accurate solution of this problem as 

many as MK possible mappings have to be probated to find the best one (here, K is the power of 



Outline of HMPI 

109 

the set I of processes of the group). Obviously, that computational complexity is not acceptable 

for a practical algorithm that should be performed at runtime. Therefore, the HMPI runtime 

system searches for some approximate solution that can be found in some reasonable interval of 

time, namely, after probation of M×K possible mappings instead of MK.  

The underlying algorithm is the following. At the preliminary step, the set I is re-ordered in 

accordance with the volume of computations to be performed by the virtual processors, so that 

the most loaded virtual processor will come first. Let P={pk}(k=0,…,K-1) be this well-

ordered set. Let Qj be a subgroup of the abstract group formed by the set Pj={pi}(i=0,…,j) 

of virtual processors. By definition, a subgroup is a result of projection of the abstract group onto 

some subset of its virtual processors. Semantically, the subgroup is equivalent to its supergroup 

modified in the following way: 

•  The zero volume of computations is set for each virtual processor not included in the 

subgroup; 

•  The zero volume of communications is set for each pair of virtual processors such that 

at least one of which not included in the subgroup. 

Finally, let cj denote the j-th computer from the set C. Then the main loop of the algorithm can 

be described by the following pseudo-code: 

 for(k=0; k<K; k++) { 
   for(j=0, tbest=MAXTIME, cbest=c0; j<M; j++) { 
     if(pk is not a parent of the group) { 

Map pk to cj 
Estimate execution time t for this mapping of Qk to C 
if(t<tbest) { 
   tbest=t; 
   cbest=cj; 
} 
Unmap pk 

     } 
   } 
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   Map pk to cbest 
 } 

The presented algorithm reflects the focus of HMPI on applications with computations 

prevailing over communications. Therefore, the algorithm is driven by virtual processors not 

communication links. Another argument for that approach is that the maximal number of virtual 

communication links is equal to the total number of virtual processors squared. Therefore, in 

general, an algorithm driven by virtual links would be more expensive. 

Informally, the algorithm first maps the most loaded virtual processor not taking into account 

other virtual processors as well as communications. Then, given the first virtual processor 

mapped, it maps the second most loaded virtual processor only taking into account 

communications between these two processors and so on. At the i-th step, it maps the i-th most 

loaded virtual processor only taking into account data transfer between these i virtual processors. 

This algorithm exploits the obvious observation that the smaller are things, the easier they can be 

evenly distributed. Hence, bigger things should be distributed under weaker constraints than 

smaller ones. For example, if you want to distribute a number of balls of different size over a 

number of baskets of different size, you better start from the biggest ball and put it into the 

biggest basket; then put the second biggest ball into the basket having the biggest free space and 

so on. This algorithm keeps balance between ball sizes and free basket space and guarantees that 

if at some step you don’t have enough space for the next ball, it simply means that there is no 

way to put all the balls in the baskets. Similarly, if the above algorithm cannot balance the load 

of actual processors in case of practically zero communication costs, it simply means that there is 

no way to balance them at all. This algorithm will also work well if data transfer between more 

loaded virtual processors is more significant than data transfer between less loaded ones. In this 



Outline of HMPI 

111 

case, more loaded virtual communication links are taken into account at earlier stages of the 

algorithm. 

An obvious case when this mapping algorithm may not work well is when the least loaded 

virtual processor is involved in transfer of much bigger volume of data than more loaded ones, 

and the contribution of communications in the total execution time is significant. But even quick 

analysis shows that it is not the case for most parallel algorithms. 

 

3.3 Dynamic Updating of Processor Performances Using HMPI_Recon 

During the creation of a group of processes, HMPI runtime system solves the problem of 

selection of the optimal set of processes running on different computers of the heterogeneous 

network. The solution to the problem is based on the following: 

•  The performance model of the parallel algorithm in the form of the set of functions 

generated by the compiler from the description of the performance model. 

•  The performance model of the executing network of computers, which reflects the state 

of this network just before the execution of the parallel algorithm. 

The accuracy of the performance model of the executing network of computers depends upon 

the accuracy of the estimation of the actual speeds of processors. HMPI provides an operation to 

dynamically update the estimation of processor speeds at runtime. It is especially important if 

computers, executing the target program, are used for other computations as well. In this case, 

the actual speeds of processors can dynamically change dependent on the external computations. 

The use of this operation, whose interface is shown below, allows the application programmers 

to write parallel programs, sensitive to such dynamic variation of the workload of the underlying 

computer system,  
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typedef void (*HMPI_Benchmark_function)( 
              const void*, int, void*); 
HMPI_Recon(HMPI_Benchmark_function func,  

const void* input_p,  
int  num_of_parameters, void* output_p) 

 
where all the processors execute the benchmark function func in parallel, and the time elapsed 

by each of the processors to execute the code is used to refresh the estimation of its speed. This is 

a collective operation and must be called by all the processors in the group associated with the 

predefined communication universe HMPI_PROC_WORLD of HMPI.  

This interface is designed based on the recon statement provided by the mpC language to 

perform refreshment of the relative performances of processors of the executing network of 

heterogeneous computers. HMPI_Recon call is executed by all the processors, which are 

members of HMPI_PROC_WORLD_GROUP. 

HMPI provides a predefined communication universe HMPI_COMM_WORLD, which is a 

communicator consisting of all processes available for the computation in a HMPI application; 

this communicator has the same value in all processes. It is an analog of 

MPI_COMM_WORLD, the predefined communication universe defined in the standard MPI 

specification. It cannot be deallocated during the life of the process. The group corresponding to 

this communicator is a pre-defined constant HMPI_COMM_WORLD_GROUP. HMPI also 

provides a communication universe HMPI_PROC_WORLD, which is a communicator 

consisting of one process per processor. The group corresponding to this communicator is a pre-

defined constant HMPI_PROC_WORLD_GROUP. 

A typical parallel application is composed of one or more phases, which are sections of code 

comprised of computations and communications. If the phases are distinct, the application 

programmer has to optimally distribute computations involved in each phase amongst processors 

involved in executing the phase. To achieve load balance in each phase, we distribute  
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Figure 3.12: An example illustrating the usage of the operation HMPI_Recon to write parallel programs sensitive 

to dynamic changing loads. 

 

computations in that phase such that the volume of computations that is executed by each 

processor is proportional to its speed. Thus if the phases are distinct, the application programmer 

has to determine the speeds of the processors for each phase. To determine the speeds of the 

processors for each phase, the application programmer provides benchmark code that is 

representative of the basic computations performed in that phase to HMPI_Recon. For each 

phase, all the processes, which are the members of HMPI_PROC_WORLD_GROUP, execute the 

benchmark code. The relative speeds are determined from the time taken to execute the 

benchmark code. It is to be noted that the computation portions of each communication operation 

in a phase (preparation of the message by adding header, trailer, and error correction 

  void Phase1_benchmark_code(const void*, int, void*); 
  void Phase2_benchmark_code(const void*, int, void*); 
  int main() { 
     … 
     for (i = 0; i < number_of_iterations; i++) { 
        double *phase1_speeds, *phase2_speeds;   
        //Phase1    
        if ((HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) { 
           HMPI_Recon(&Phase1_benchmark_code,…); 
           HMPI_Get_processors_info(phase1_speeds); 
        } 
        //Distribute computations using the speeds 
        HMPI_Group_create(…); 
        //Execution of the computations and communications  
        //Free the group    
        //Phase2 
        if ((HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) { 
           HMPI_Recon(&Phase2_benchmark_code,…); 
           HMPI_Get_processors_info(phase2_speeds); 
        } 
        //Distribute computations using the speeds  
        HMPI_Group_create(…); 
        //Execution of the computations and communications  
        //Free the group 
        … 
      } 
   } 
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information, execution of the routing algorithm) must be taken into account. If the phases are not 

distinct, it is sufficient to use the speeds determined for one phase to be used in all the phases. 

However if the processors used in the execution of the parallel application are used for external 

computations, it is recommended that HMPI_Recon be used to determine the speeds of the 

processors for each phase so that computations are distributed over the processors in accordance 

to their actual performances at the moment of execution of the computations.  

The accuracy of HMPI_Recon depends upon how accurately the benchmark code provided 

by the user reflects the core computations of each phase. If the benchmark code provided is an 

accurate measurement of the core computations in each phase, HMPI_Recon gives an accurate 

measure of the speeds. 

Figure 3.12 illustrates the usage of HMPI_Recon to write parallel programs sensitive to the 

dynamic variation of the workload of the underlying computer system. As can be seen from the 

figure, the combination of calls HMPI_Recon and HMPI_Group_create can be used for 

each distinct phase of the parallel application to create a group of processes that executes the 

computations and communications in that phase with best execution performance. One of the 

approaches to tackle applications that do not have very uniform iterations is to break down the 

non-uniform iterations in the application into sets of uniform iterations. For each such set of 

uniform iterations, a performance model is designed. A group of processes is then created that 

can execute the set of uniform iterations with best execution performance and destroyed at the 

end of execution of the set.  
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3.4 Estimation of Execution Time of an Algorithm using HMPI_Timeof 

Another principal operation provided by HMPI allows application programmers to predict the 

total time of execution of the algorithm on the underlying hardware without its real execution. Its 

interface is shown below, 

HMPI_Timeof(const HMPI_Model* perf_model,  
const void* model_parameters) 

 
This function allows the application programmers to write such a parallel application that can 

follow different parallel algorithms to solve the same problem, making choice at runtime 

depending on the particular executing network and its actual performance. This is a local 

operation that can be called by any process, which is a member of the group associated with the 

predefined communication universe HMPI_COMM_WORLD of HMPI. 

This interface is designed based on the timeof operator provided by the mpC language, 

which predicts the total time of the algorithm execution on the underlying hardware without its 

real execution. 

This function invokes the HMPI runtime system, which selects the optimal set of processes 

based on the performance model of the parallel algorithm perf_model, and the performance 

model of the executing network of computers, which reflects the state of this network just before 

the execution of the parallel algorithm. The estimated execution time of the algorithm by this 

optimal set of processes is then returned. The parameters model_parameters to the 

performance model are usually the following: 

•  Number of processes in each dimension of the process arrangement.  

•  Data distribution parameters specifying how the data is distributed amongst the 

processes, and the amount of data that is transferred between the pair of processes. 
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The process calling this function provides this information to the HMPI runtime system, 

which uses it along with the model of the executing network of computers to estimate the time of 

execution of the algorithm.  

The estimation procedure is explained in detail in [Las02] and is presented here in order to 

make this composition self-contained. The time of execution for each mapping, µ:I->C, where I 

is a set of the processes of the group, and { }110 ,,, −= McccC L  is a set of computers of the 

executing network, is estimated. The estimation time for the optimal mapping, which would 

ensure the fastest execution of the parallel algorithm, is returned. In general, for accurate solution 

of this problem as many as MK possible mappings have to be probated to find the best one (here, 

K is the power of the set I of processes of the group). Obviously, that computational complexity 

is not acceptable for a practical algorithm that should be performed at runtime. Therefore, the 

HMPI runtime system searches for some approximate solution that can be found in some 

reasonable interval of time, namely, after probation of M×K possible mappings instead of MK. 

The estimation procedure is summarized here. Each computation unit in the scheme 

declaration of the form ]%%[ie  is estimated as follows: 

timeof(e%%[i]) = (e/100)×vi×bµ(i)(t0), 
 
where vi is the total volume of computations to be performed by the virtual processor with the 

coordinates i, and  bµ(i)(t0) is the time of execution of the benchmark code on the computer 

µ(i) provided by the execution of the HMPI_Recon call (t0 denotes that time when this 

execution took place). 

Each communication unit of the form ][]%%[ jie →  specifying transfer of data from virtual 

processor with coordinates i to the virtual processor with coordinates j is estimated as follows: 

timeof(e%%[i]->[j]) = (e/100)×wi->j×sµ(i)->µ(j)(wi->j), 
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where wi->j is the total volume of data to be transferred from the virtual processor with the 

coordinates i to the virtual processor with the coordinates j, and sµ(i)->µ(j)(wi->j) is the 

speed of transfer of data block of wi->j bytes between computers µ(i) and µ(j). 

Simple calculation rules are used to estimate the sequential algorithmic patterns in the 

scheme declaration. For example, the estimation of the pattern  

for (e1; e2; e3) a 

is calculated as follows: 

for (T=0, e1; e2; e3)  
   T += time taken to execute action a 

 
The rules just reflect semantics of the corresponding serial algorithmic patterns. The rule to 

estimate time for a parallel algorithmic pattern 

par (e1; e2; e3) a 

is more complicated. 

Let A={a0,a1,…,aN-1} be a set of the actions ordered in accordance with the estimation of 

the time of their execution, namely,  timeof(a0)>=timeof(a1)>=…>=timeof(aN-1). Let 

B be a subset of A consisting of all actions that only perform communications, B={b0, b1, …, 

bQ-1}. Let C={c0,c1,…,cM-1}. Finally, let vi be the number of virtual processors mapped on 

the computer ci, and fi be the total number of physical processors of the computer. Then the 

rule to calculate the estimation T of the pattern looks as follows: 

for(j=0, T=0; j<M; j++) { 
  for(i=0, T0=0, k=0; k<Upper(vj, fj) && i<N; i++) { 
    if(ai performs some computations on cj) { 
      T0 += timeof(ai); 
      k++; 
    } 
  } 
  T = max(T, T0); 
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} 
T = max(T, timeof(B)); 

 
Here, the function Upper is defined as follows: 

     Upper(x, y) = if(x/y <= 1) 
                   then 1 
                   else if ((x/y)*y == x) 
                        then x/y 
                        else x/y+1 
 
Informally, the above system of loops first computes for each computer the estimation T0 of the 

time of parallel execution of those actions, which use that computer for some computations. The 

estimation is calculated, proceeding from the assumption, that if the number of parallel actions 

on one computer exceeds the number of its physical processors, then 

•  The actions are distributed evenly over the physical processors, that is, the number of 

actions executed by different physical processors differs by at most one; 

•  The most computationally intensive actions are executed on the same physical processor. 

Then those parallel actions, which are not related to computations, that is, perform pure 

communications, are taken into account. These communication actions make up the set B. Let 

l(B) be the least communication layer covering all communication links involved in B, and let 

fb, fg be the level of parallelism of broadcast and gather correspondingly for this layer. Then the 

rule to calculate the estimation T of parallel execution of communication operations from set B 

looks as follows:  

if(l(B) is serial) 
  for(i=0, T=0; i<Q; i++) 
    T += timeof(bi); 
else if(B matches broadcast/scatter) { 
  for(i=0, Tserial=0, Tparallel=0; i<Q; i++) { 
    Tserial += timeof(bi); 
    Tparallel = max(T2, timeof(bi)); 
  } 
  T = fb*Tparallel +(1-fb)*Tserial 
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} 
else if(B matches gather) { 
  for(i=0, Tserial=0, Tparallel=0; i<Q; i++) { 
    Tserial += timeof(bi); 
    Tparallel = max(T2, timeof(bi)); 
  } 
  T = fg*Tparallel +(1-fg)*Tserial 
} 
else 
  for(i=0, T=0; i<Q; i++) 
    T += max(T, timeof(bi)); 

 

The rule just sums the execution time of parallel communication operations if the underlying 

communication layer serializes all data packages. Otherwise we have a parallel communication 

layer, and if the set B of communication operations looks like broadcasting or scattering, i.e., one 

virtual processor sends data to other involved virtual processors, then the time of parallel 

execution of the communication operations is calculated as if they performed broadcast. 

Similarly, if B looks like gathering, i.e., one virtual processor receives data from other involved 

virtual processors, then the time of parallel execution of the communication operations is 

calculated as if they performed gather. In all other cases, it is assumed that B is a set of 

independent point-to-point communications. It is responsibility of the programmer not to specify 

different communication operations sharing the same communication link as parallel ones. 

The rule for estimation of the execution time of the parallel algorithmic pattern is the core of 

the entire mapping algorithm determining its accuracy and efficiency. It takes into account 

material nature and heterogeneity of both processors and network equipment. It relies on fairly 

allocating processes to processors in a shared-memory multiprocessor normally implemented by 

operating systems for processes of the same priority (HMPI processes are just the case). At the 

same time, it proceeds from the pessimistic point of view when estimating workload of different 

processors of that multiprocessor. Estimation of communication cost by the rule is sensitive to 

scalability of the underlying network technology. It treats differently communication layers 
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serializing data packages and supporting their parallel transfer. The most typical and widely used 

collective communication operations are treated specifically to provide better accuracy of the 

estimation of their execution time. An important advantage of the rule is its relative simplicity 

and effectiveness. The effectiveness is critical because the algorithm is supposed to be multiply 

executed at runtime. 

Most disadvantages of the rule are just the backside of its simplicity and the necessity to keep 

it effective. Except some common collective communication operations, it is not sensitive to 

different collective communication patterns such as ring data shifting, tree reduction, etc., 

treating all them as a set of independent point-to-point communications. The main problem is 

that recognition of such patterns is very expensive. A possible solution is introduction in the 

performance model definition language some explicit constructs for communication pattern 

specification as a part of the scheme description. Another disadvantage of the rule affecting the 

accuracy of estimation is that any set of parallel communications is treated as if they all take 

place at the same communication layer in the hierarchy, namely, at the lowest communication 

layer covering all involved processors. In reality, some of the communications may use different 

communication layers. Incorporation of multi-layer parallel communications in this algorithm 

without significant loss of its efficiency is a very difficult problem, which is supposed to be 

addressed in future work.  

HMPI_Timeof can thus be used to estimate the execution time on HNOCs for each 

possible set of model parameters model_parameters. Application programmers can use this 

function creatively to design best possible heuristics for the set of parameters. Depending on the 

time estimated for each set, the optimal values of the parameters are determined. These values 
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are then passed to the performance model during the actual creation of the group of processes 

using the function HMPI_Group_create. 

The accuracy of the estimation by HMPI_Timeof is dependent on the following: 

•  The accuracy of the performance model of the algorithm designed by the user, 

•  The quality of the heuristics designed for the set of parameters provided to the 

performance model, 

•  The accuracy of the performance model of the executing network of computers. This 

depends on the accuracy of the measurements of the processor speeds given by 

HMPI_Recon and the communication model of the executing  network of computers. 

Currently the communication model used in HMPI runtime system is static. Future works 

would address the issue of efficiently updating the parameters of communication model 

at runtime. 
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3.5 Detection of Optimal Number of Processes using 

HMPI_Group_auto_create 

One of the most important parameters, which influence the performance of the parallel 

application on HNOCs, is the number of processes used to execute the parallel application. 

Another principal operation provided by HMPI allows application programmers not to bother 

about finding the optimal number of processes that can execute the parallel application. They can 

specify only the rest of the parameters thus leaving the detection of the optimal number of 

processes to the HMPI runtime system. Its interface is shown below. 

HMPI_Group_auto_create ( 
HMPI_Group* gid, const HMPI_Model* perf_model, 
const void* model_parameters) 

 
This function returns an HMPI handle to the group of MPI processes in gid.  

The parameter perf_model is a handle that encapsulates all the features of the 

performance model in the form of a set of functions generated by the compiler from the 

description of the performance model. 

The parameter model_parameters is an input parameter. User fills the parameter 

model_parameters with values of the input parameters and ignores the return parameters 

specifying the number of processes to be involved in executing the algorithm and their relative 

performances.  

HMPI_Group_auto_create is a collective operation and must be called by the parent 

and all the processes, which are not members of any HMPI group. 

There are no restrictions imposed by the function HMPI_Group_create. It just uses the 

input parameters provided to create a group of MPI processes. However, the function 

HMPI_Group_auto_create imposes certain restrictions, which are explained below: 
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1. The application programmers describe a performance model of their implemented 

heterogeneous algorithm. The output parameters to the performance model are placed last 

in the list of parameters to the performance model. The output parameters are the number 

of processes in each dimension of the processor arrangement and an array representing 

the relative performances of the processors. Consider for example the performance model 

of an application multiplying two dense n×n matrices on one-dimensional processor 

arrangement. 

algorithm AxB_1d(int n, int p, int speeds[p]) { 
  … 
}; 

 
In this performance model, the scalar parameter n is an input parameter whereas the 

scalar parameter p representing the number of processes in the linear array and the vector 

parameter speeds of size p representing the relative performances are the output 

parameters. These are the output parameters because these are determined by the function 

call HMPI_Group_auto_create. Consider for example the performance model of an 

application multiplying two dense n×n matrices on two dimensional processor grid. 

algorithm AxB_2d(int n, int p, int q, int speeds[p×q]) { 
     … 
  }; 
 
In this performance model, the scalar parameter n is an input parameter whereas the 

scalar parameter p representing the number of processes in the column dimension of the 

processor grid arrangement, scalar parameter q representing the number of processes in 

the row dimension of the processor grid arrangement and the vector parameter speeds 

of size p×q representing the relative performances are the output parameters.  
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So generally speaking, the output parameter list contains scalar parameters, each 

parameter representing the number of processes in a dimension of the processor 

arrangement and a vector parameter representing the relative performances of the 

processors, the size of the vector being equal to the product of these scalar parameters. 

2. If the value of any parameter used in the body of the performance model declaration is 

dependent on the output parameters, then it should be obtained using functions. This is 

mainly the case for data distribution parameters, whose values are parameterized by 

number of processes in each dimension of the processor arrangement and the relative 

performances of the processors. This is because the function 

HMPI_Group_auto_create executes the performance model for different processor 

arrangements and hence the values of the parameters dependent on the arrangement of 

processors and their speeds should be obtained by using functions. Consider for example 

the performance model of an application implementing a parallel algorithm of the 

simulation of evolution of n bodies on one-dimensional processor arrangement. 

int My_allocation_using_function( 
    int I, int p, int *speeds, int n); 
algorithm Nbody(int n, int p, int speeds[p]) { 
  coord I=p; 
  node { 
    I>=0: bench*(n* 
       My_allocation_using_function(I, p, speeds, n)); 
  } ; 
  … 
}; 

In this performance model, to calculate the volume of computations in the node 

declaration performed by the processor with coordinate I, a function must be used (a 

user-defined function My_allocation_using_function is used in this case) 
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which calculates and returns the number of bodies allocated to the processor I 

proportional to its speed.  

3. For the function call to HMPI_Group_auto_create, the application programmers 

supply values for the input parameters in the parameter list to the performance model. 

The output parameters are ignored. 

After the call to the function HMPI_Group_auto_create, the output parameters, 

namely, the number of processes in each dimension of the processor arrangement can be 

obtained by using the HMPI group accessor function HMPI_Group_topology and the 

relative performances of the processors can be obtained by using the HMPI accessor function 

HMPI_Group_performances. All the members of the group then use the optimal 

performances to distribute computations such that the volumes of computations are proportional 

to their performances. This is followed by execution of the algorithm by the members of the 

group. 

The function HMPI_Group_auto_create evaluates all the possible process 

arrangements. For each process arrangement, the function call HMPI_Timeof is used to 

estimate the time of execution of the algorithm. The estimation is calculated based on the 

performance model of the parallel algorithm and the model of the executing network of 

computers. The function HMPI_Group_auto_create returns the process arrangement that 

results in the least estimated time of execution of the algorithm. As discussed in Section 3.4, the 

function call HMPI_Timeof invokes the mapping algorithms of the HMPI runtime system to 

select such a mapping that is estimated to ensure the fastest execution of the parallel algorithm. 

During the execution of the mapping algorithm, the HMPI runtime system searches for some 

approximate solution that can be found in some reasonable interval of time by probation of a 
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subset of all possible mappings. During the execution of the mapping algorithm at the 

preliminary step, the HMPI runtime system re-orders the set of processors in accordance with the 

volume of computations to be performed by the processors, so that the most loaded processor 

comes first. The mapping algorithm thus re-orders processors in a non-increasing order of their 

speeds along each dimension of the processor arrangement. Beaumont et al. [BBP+01] show that 

the optimal mapping is one of the possible non-increasing arrangements where processors are 

arranged in a non-increasing order of their speed along each row and along each column of the 

2D processor grid arrangement. The function HMPI_Group_auto_create thus internally 

invokes mapping algorithms that use this heuristic, which is to arrange the processors in a non-

increasing order of their speed along each row and along each column of the 2D processor grid 

arrangement, in order to find the optimal number of processes that can execute the parallel 

application on HNOCs. The heuristics used may not be the best possible heuristics in most 

particular cases. 

The pseudo-code of our research implementation of the function 

HMPI_Group_auto_create is shown below: 

int i, pa, *opt_a, *a; 
double t, T, *speeds, *opt_speeds; 
void *model_parameters; 
// Parent of the group 
if (!HMPI_Is_free()) {   
   int p = HMPI_Get_number_of_free_processes() + 1; 
   GetProcessSpeeds(speeds); 
   GenerateProcessArrangements(p, a, &pa); 
   for (i=0, T=DBL_MAX; i<pa; i++) { 
      // Estimate the time of execution for  
      // process arrangement ai 
      FillModelParameters(perf_model, &a[i], speeds, 
                          model_parameters); 

   t = HMPI_Timeof(perf_model, model_parameters); 
   if (t < T) { 
      T = t; 
      opt_a = &a[i]; 
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      opt_speeds = speeds; 
   } 

   } 
   FillModelParameters(perf_model, opt_a, opt_speeds, 
                       model_parameters); 
   HMPI_Group_create(gid, perf_model, model_parameters); 
   return HMPI_SUCCESS; 
} 
// Processes that are not members of any group 
HMPI_Group_create(gid, perf_model, NULL); 
return HMPI_SUCCESS; 

 
The function HMPI_Group_auto_create first computes the number of processes 

available for computation. This includes the parent and all the processes, which are not members 

of any HMPI group. The function 

HMPI_Get_number_of_free_processes() 
 
returns the number of processes, which are not members of any HMPI group. This number is 

incremented by one to account for the parent of the group. 

The function GetProcessSpeeds returns the relative performances of the processes that 

are available for computation. 

Then the function GenerateProcessArrangements generates all the possible process 

arrangements. For example, if the number of processes available for computation is 9 and the 

topology (given by the performance model definition) is a 2-D process grid arrangement (p,q), 

where p and q are the number of processes along the row and along the column of the process 

grid respectively, this function returns the following process arrangements: 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) 

(2,1) (2,2) (2,3) (2,4) 

(3,1) (3,2) (3,3) 

(4,1) (4,2) 
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(5,1) 

(6,1) 

(7,1) 

(8,1) 

(9,1) 

For each process arrangement generated above, the time of execution of the algorithm is 

estimated using the function HMPI_Timeof discussed in Section 3.4. The process arrangement 

that results in the least estimated time of execution is returned along with the relative 

performances of the processes in this process arrangement. 

Complexity. Assume that the number of processes available for computation is p and the 

number of computers in the executing network is M. For each process arrangement generated, the 

time of execution of the algorithm is estimated using HMPI_Timeof. Assume there are pa 

number of process arrangements and the set of process arrangements is represented by a. 

The overhead of the estimation of time of execution of the algorithm for each process 

arrangement is a product of two terms. The first term is the number of mappings probated. This 

is equal to the number of computers of the executing network multiplied by the number of 

processes in the process arrangement (Refer to Section 3.2.1.2). The second term is the overhead 

associated with estimation of time of execution of the algorithm for each such mapping. This is 

dependent on the code written by the user in the scheme declaration of the performance model 

definition to model how exactly the processes interact during the execution of the algorithm.  

The calculation of the total overhead involved in a call to the function 

HMPI_Group_auto_create becomes complicated if this overhead associated with the 

estimation of execution time of the algorithm is a function of the number of processes involved 
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in the execution of the algorithm and the size of the problem. To simplify the calculation of the 

total overhead, we assume the time of estimation of execution time of the algorithm for each 

mapping to be a function of the size of the problem F(n) . We assume this dependency on the size 

of the problem to be the same for every process arrangement. We also assume only two-

dimensional process arrangements. 

The total overhead involved in a call to the function HMPI_Group_auto_create is 
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Now consider for example p=5, then the possible two-dimensional process arrangements are 

{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(3,1),(4,1),(5,1)}, the term 

( ) at  arrangemen  processin   processes ofnumber 
pa

1
i∑

=i

is equal to 1×1 + 1×2 + 1×3 + 1×4 + 1×5 + 

2×1 + 2×2 + 3×1 + 4×1 + 5×1, which can be rearranged as (1+2+3+4+5) + 2×(1+5/2) + 3×(5/3) 

+ 4×(5/4) + 5×(5/5).  

Thus the total overhead is equal to 
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HMPI provides a variant of the operation HMPI_Group_auto_create that allows 

application programmers to supply heuristics that minimize the number of process arrangements 

evaluated. Its interface is shown below. 

   typedef int (*HMPI_Heuristic_function)( 
          int np, int *dp, void *model_params, int param_count); 

HMPI_Group_heuristic_auto_create ( 
HMPI_Group* gid, const HMPI_Model* perf_model, 
HMPI_Heuristic_function hfunc,  
void* model_parameters) 
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Application programmers provide the heuristic function hfunc. The input parameter np is the 

number of dimensions in the process arrangement. The input parameter dp is an integer array of 

size np containing the number of processes in each dimension of the process arrangement. The 

input parameter model_params are the parameters supplied to the performance model. The 

input parameter param_count is the number of parameters in model_params.  

The function HMPI_Group_heuristic_auto_create evaluates a process arrangement 

only if the heuristic function hfunc returns true. A simple heuristic function is shown below, 

which returns a value true if and only if the process arrangement is a square grid. 

   int Square_grid_only( 
         int np, int *dp, void *model_params, int param_count){ 
         if ((np == 2) && (dp[0] == dp[1])) 
            return true; 
         return false; 
     } 
 
The function HMPI_Group_heuristic_auto_create evaluates process arrangements 

that are square grids if this heuristic function is provided as an input. HMPI also provides 

predefined heuristic functions. The rest of the parameters to the function 

HMPI_Group_heuristic_auto_create have same meaning as those for the operation 

HMPI_Group_auto_create.  

 

3.5.1 Experimental Results using HMPI_Group_auto_create 

The example shown in Figures 3.13, 3.14, 3.15, and 3.16 illustrates the usage of the function 

HMPI_Group_auto_create on 1-D processor arrangements. The example used is an 

application multiplying matrix A and the transposition of matrix B on p interconnected 

heterogeneous processors, i.e., implementing matrix operation C=A×BT, where A, B are dense 
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n×n matrices. This application assumes one process per processor configuration and implements 

a naive heterogeneous algorithm shown in Figures 3.13 and 3.14. It can be summarized as 

follows: 

•  Each element in C is a square r×r block and the unit of computation is the computation 

of one block, i.e., a multiplication of r×n and n×r matrices.  

•  The A, B, and C matrices are identically partitioned into p horizontal slices. There is one-

to-one mapping between these slices and the processors. Each processor is responsible 

for computing its C slice. 

, =>

A B C=AxBT

 

Figure 3.13: Matrix operation C=A×BT with matrices A, B, and C unevenly partitioned in one dimension. The 

slices mapped onto a single processor are shaded in black. 

, =>

A B C

 

Figure 3.14: One step of parallel multiplication of matrices A and B. The pivot row of matrix B (shown slashed) is 

first broadcast to all processors. Then each processor computes, in parallel with the others, its part of the 

corresponding column of the resulting matrix C. 
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•  At each step, a row of matrix B (the pivot row), representing a column of blocks of 

matrix BT, is communicated (broadcast) vertically; and all processors compute the 

corresponding column of C in parallel. 

•  Because all C elements require the same amount of arithmetic operations, each processor 

executes an amount of work proportional to the number of blocks that are allocated to it, 

hence, proportional to the area of its slice. Therefore, to balance the load of the processor, 

the area of the slice mapped to each processor is proportional to it speed. 

•  Communication overheads may exceed gains due to parallel execution of computations. 

Therefore, there exists some optimal subset of available processors to perform the matrix 

multiplication. The function HMPI_Group_auto_create detects this optimal 

subset. 

The definition of ParallelAxBT given in Figure 3.15 describes the performance model of 

this heterogeneous algorithm. 

The performance model ParallelAxBT describing the algorithm has 5 parameters. 

Parameter n is the size of square matrices A, B, and C. It is assumed that the test code, used for 

the estimation of the speed of actual processors, multiplies r×n and n×t matrices, where t is 

small enough compared to n and supposed to be a multiple of r.  

Parameters p and speeds are output parameters. They represent the number and the 

performances of processors in the optimal subset respectively. 

Function Get_my_partition used in the node and link declarations is a set 

partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI) 

presented in Chapter 4. It partitions a set of n elements into p disjoint partitions such that the 

number of elements in each partition is proportional to the speed of the processor owning that  
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Figure 3.15: Specification of the performance model of an algorithm of parallel matrix multiplication in the HMPI’s 

performance definition language. 

 

partition. It returns the number of elements in the i-th partition belonging to the i-th processor. 

The node declaration specifies the volume of computations to be performed by the i-th 

processor executing the algorithm. The unit of computation used to measure the volume is the 

computation of one element of the resulting matrix C. It is presumed that function 

serialAxBT used in HMPI_Recon to update the performance model of the executing 

network of computers just implements this elementary computation. The link declaration 

specifies that each processor will send its B slice to all other processors executing the algorithm.  

   int Get_my_partition(int i, int p, const int *speeds, int n); 
   algorithm ParallelAxBT(int n, int r, int t, int p,  
                          int speeds[p]) { 
      coord I=p; 
      node { 
        I>=0: bench*((n/r/t)*Get_my_partition(I, p, speeds, n)); 
      };  
      link (J=p) { 
        I!=J: length*(Get_my_partition(J, p, speeds, n) 
                    *n*sizeof(double)) [J]->[I] 
      }; 
      parent [0];   
      scheme { 
         int i, j, PivotProcessor=0, PivotRow=0, d[p]; 
         Partition_unordered_set(p, 1, speeds, NULL, NULL, n,  
                       NULL, -1, NULL, NULL, d); 
         for (i = 0; i < (n/r); i++, PivotRow+=1) { 
            if (PivotRow >= d[PivotProcessor]) {  
               PivotProcessor++; 
               PivotRow = 0; 
            } 
            for (j = 0; j < p; j++)  
               if (j != PivotProcessor) 
                  ((100.00*r)/d[PivotProcessor]) %%  
                  [PivotProcessor]->[j]; 
            par (j = 0; j < p; j++) 
               ((100.00*r)/n) %% [j]; 
         } 
     }; 
   }; 
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Figure 3.16: The most principal fragments of the usage of function HMPI_Group_auto_create for detection 

of the optimal subset of processors to execute the parallel matrix multiplication and creation of the corresponding 

optimal group of processes (one process per processor configuration is assumed).  

 

The scheme declaration specifies n/r successive steps of the algorithm. At each step, the 

processor PivotProcessor, which hold the pivot row, sends it to rest of the processors thus 

   int main() { 
       int opt_p, *opt_speeds, *model_params, n, r, t, nd, **dp; 
       int output_p, input_p[3]= {n, r, t}; 
       HMPI_Group gid; 
 
       HMPI_Init(argc, argv); 
 
       if ((HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) { 
          HMPI_Recon(&serialAxBT, input_p, 3, &output_p); 
       }    
       if (HMPI_Is_host()) { 
          // The user fills in only the first three parameters 
          // Parameters ‘p’ and ‘speeds’ returned by  
          // the call to function HMPI_Group_auto_create 
          model_params[0] = n; 
          model_params[1] = r; 
          model_params[2] = t; 
       } 
       if (HMPI_Is_host()) 
          HMPI_Group_auto_create (&gid, &HMPI_Model_parallelAxBT,  
                                  model_params)                   
       if (HMPI_Is_free()) 
          HMPI_Group_auto_create (&gid, &HMPI_Model_parallelAxBT,  
                                  NULL)                   
       if (HMPI_Is_member(&gid)){ 
          HMPI_Group_topology(&gid, &nd, dp); 
          opt_p = (*dp)[0]; 
          HMPI_Group_performances(&gid, opt_speeds); 
          // Distribute computations using the optimal speeds of  
          // processes.  
          // computations and communications are performed here 
       } 
 
       if (HMPI_Is_member(&gid))  
       { 
          HMPI_Group_free(&gid); 
       } 
 
       HMPI_Finalize(0); 
   } 
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executing (r/d[PivotProcessor])×100 percent of total data transfer through the 

corresponding data link. Then, all processors compute the corresponding column of blocks of 

matrix C in parallel, each thus executing (r/n)×100 percent of the total volume of 

computation to be performed by the processor. 

Function Partition_unordered_set used in the scheme declaration is a set 

partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI) 

presented in Chapter 4. It is used to partition a set of size n into p disjoint subsets on a linear 

array of p processors such that the number of elements in each subset is proportional to the speed 

of the processor owning that subset.  

The most principal fragments of rest of the code of the parallel application are shown in the 

main function in Figure 3.16. 

HMPI runtime system is initialized using operation HMPI_Init. Then, operation 

HMPI_Recon updates the estimation of performances of processors using some serial 

multiplication of test matrices using function serialAxBT.  

This is followed by the creation of a group of processes using operation 

HMPI_Group_auto_create. Users specify only the first three model parameters to the 

performance model and ignore the return parameters specifying the number of processes to be 

involved in executing the algorithm and their performances. This function calculates the optimal 

number of actual processes to be involved in the parallel matrix multiplication and their 

performances. After the execution of the function HMPI_Group_auto_create, the optimal 

number of actual processes opt_p is obtained by using the HMPI group accessor function 

HMPI_Group_topology and their performances opt_speeds are obtained by using the 

HMPI group accessor function HMPI_Group_peformances.  
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Name (Number of 
Processors) Architecture 

cpu 
MHz 

Total Main 
Memory 
(mBytes) 

Cache 
(kBytes) 

afflatus(1) 

FreeBSD 5.2.1-RELEASE 

i386 Intel® Pentium® 4 
Processor supporting HT† 

technology 

2867 2048 1024 

aries2(1) 
FreeBSD 5.2.1-RELEASE 

i386 Intel® Pentium® 4 
Processor 

2457 512 1024 

pg1cluster01 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

pg1cluster02 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

pg1cluster03 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

maxft (1) 
Linux 2.6.5-1.358 Pentium 

III 
731 128 256 

zaphod (1) Linux 2.4.18-14 497 128 512 

csultra01 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra02 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra03 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra04 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra05 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra06 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

Table 3.6: Specifications of the sixteen heterogeneous processors used for the parallel matrix multiplication (only 

one process is run per processor).  

 

The members of this group then perform the computations and communications of the 

heterogeneous parallel algorithm using standard MPI means. This is followed by freeing the 

group using operation HMPI_Group_free and the finalization of HMPI runtime system using 

operation HMPI_Finalize. 
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HMPI application using  
HMPI_Group_auto_create 

HMPI application using  
HMPI_Group_create 

 

MPI  
 

Size of 
matrix 

(n) 

Optimal 
number of 
processors 

(p) 

Execution time 
(sec) 

Execution Time (sec) 
(p=16) 

Execution 
Time (sec) 

(p=16) 

1280 7/8 79 98 114 
1408 7/7 98 114 141 
1536 7/7 116 134 162 
1664 7/7 135 155 194 
1792 7/8 160 179 224 
1920 7/8 173 203 244 
2048 7/7 193 225 282 
2176 7/7 208 247 321 
2304 8 240 280 360 
2432 16 325 280 406 
2560 16 353 308 441 
3840 16 558 545 1979 
5120 16 832 847 3584 
6400 16 1593 1574 8385 
7680 16 1820 1815 16024 

Table 3.7: Comparison of execution times of the parallel matrix multiplication. There are a total of 16 processes 

available for computation in the parallel matrix multiplication. For each problem size, the HMPI application using 

HMPI_Group_auto_create finds the optimal number of processes whereas the HMPI application using 

HMPI_Group_create and the MPI application use all the available 16 processes. The MPI application does not 

take into account the speeds of the processors and the latencies and the bandwidths of the communication links 

between them. 

 

A heterogeneous local network of 16 different FreeBSD, Solaris, and Linux workstations 

shown in Table 3.6 is used in the experiments. The computers used in the experiments are 

connected to communication network, which is based on 100 Mbit Ethernet with a switch 

enabling parallel communications between the computers. The experimental results are obtained  
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(a)                                                                                           (b) 
Figure 3.17:  Results obtained using the heterogeneous network of computers shown in Table 3.6. The results for 

‘HMPI auto’ are for the HMPI application using the function HMPI_Group_auto_create. The results for 

‘HMPI’ are for the HMPI application using the function HMPI_Group_auto_create and ‘MPI’ are for the 

MPI application using all the available 16 processes. (a) Comparison of execution times of Matrix-matrix 

multiplication using horizontal striped partitioning of matrices for the sizes of the matrix in the range 1000-3000. (b) 

Comparison of execution times of Matrix-matrix multiplication using horizontal striped partitioning of matrices for 

the sizes of the matrix in the range 3000-8000. 

 

by averaging the execution times over a number of experiments. Table 3.7 and Figure 3.17 show 

the experimental results using the parallel matrix multiplication for different matrix sizes. 

It can be seen that for problem sizes ranging from 1280 to 2304, the optimal number of 

processes detected by the function HMPI_Group_auto_create is 7 or 8 depending on the 

size of the matrix and the current performance demonstrated by different processors. For 

problem sizes beyond 2304, the optimal number of processes detected is 16, which is equal to the 

total number of parallel processes available for computation. It can also be seen that when the 

optimal number of processes detected by the function HMPI_Group_auto_create is equal 

to the total number of parallel processes available for computation, the execution times of the 
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HMPI application using the function HMPI_Group_auto_create are almost the same as the 

execution times of the HMPI application using the function HMPI_Group_create, which 

creates a group consisting of all the parallel processes available for computation. This is to be 

expected because the function HMPI_Group_auto_create essentially detects the optimal 

number of processes and calls the function HMPI_Group_create providing the optimal 

number of processes as an input parameter. Thus the function HMPI_Group_auto_create 

by choosing the optimal number of processes to be involved in executing the application 

automatically removes some nodes from the computation when their participation degrades 

performance or when their participation does not affect the performance. The MPI application 

performs very poorly on this network because it does not take into account the speeds of the 

processors and the latencies and the bandwidths of the communication links between them.  

The example described above illustrates the usage of the function 

HMPI_Group_auto_create to create a group of processes with optimal number of 

processes arranged linearly to solve the problem of parallel matrix-matrix multiplication. Hence 

the example demonstrates mainly the utility of the function HMPI_Group_auto_create on 

1-D processor arrangements. However this function can be used for different arrangements of 

processors and its significance is demonstrated below on parallel matrix-matrix multiplication 

employing heterogeneous 2D block cyclic distribution. 

Consider the problem of parallel matrix multiplication (MM) on HNOCs. The algorithm of 

execution of the matrix operation C=A×B on a HNOC is obtained by modification of the 

ScaLAPACK [CDD+96] 2D block-cyclic MM algorithm. The modification is that the Cartesian 

heterogeneous 2D block-cyclic data distribution (shown in Figure 3.18) is used instead of the 

standard homogeneous data distribution. Thus, the heterogeneous algorithm of multiplication of  
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(c) Final Partition. 

Figure 3.18: Example of two-step Cartesian distribution of a 66 ×  generalized block over a 33×  processor grid. 

The relative speed of processors is given by matrix 















=

03.025.005.0

08.009.017.0

05.017.011.0

s . (a) At the first step, the 66 ×  

square is distributed in a one-dimensional block fashion over processors columns of the 33×  processor grid in 

proportion 1:3:216.0:51.0:33.0 ≈ . (b) At the second step, the 66 ×  square is distributed in a one-

dimensional block fashion over processors rows of the 33×  processor grid in proportion 

2:2:233.0:34.0:33.0 ≈ . (c) Final partition. 
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two dense square (n×r)×(n×r) matrices A and B on an p×q grid of heterogeneous processors 

can be summarised as follows (graphically illustrated in Figure 3.19): 

•  Each element in A, B, and C is a square r×r block and the unit of computation is the 

updating of one block, i.e., a matrix multiplication of size r. Each matrix is partitioned 

into generalized blocks of the same size (l_p×r)×(l_q×r), where p≤l_p≤n, 

q≤l_q≤n. The generalized blocks are identically partitioned into p×q rectangles, each 

being assigned to a different processor. The area of each rectangle is proportional to the 

speed of the processor that stores the rectangle. The partitioning of a generalized block is 

performed as follows: 

o Each element in the generalized block is a square r×r block of matrix elements. 

The generalized block is an l_p×l_q rectangle of r×r blocks.  

o First, the generalized block l_p×l_q is partitioned into q vertical slices, so that 

the area of the j-th slice is proportional to ∑
=

p

i
ijs

1

(see Figure 3.18(a)). It is 

supposed that blocks of the j-th slice will be assigned to processors of the j-th 

column in the p×q processor grid. Thus, at this step, we balance the load between 

processor columns in the p×q processor grid, so that each processor column will 

store a vertical slice whose area is proportional to the total speed of its processors. 

o Then, the generalized l_p×l_q is partitioned into p horizontal slices, so that the 

area of the i-th slice is proportional to ∑
=

q

j
ijs

1

(see Figure 3.18(b)). It is supposed 

that blocks of the i-th slice will be assigned to processors of the i-th row in the 

p×q processor grid. Thus, at this step, we balance the load between processor  
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A ka•

         

•

B

 
 

Figure 3.19: One step of the algorithm of parallel matrix-matrix multiplication based on heterogeneous two-

dimensional block distribution of matrices A, B, and C. First, each r×r block of the pivot column ka•  of matrix A 

(shown shaded dark grey) is broadcast horizontally, and each r×r block of the pivot row •kb  of matrix B (shown 

shaded dark grey) is broadcast vertically. 

 

rows in the p×q processor grid, so that each processor row will store a horizontal 

slice whose area is proportional to the total speed of its processors. 

•  At each step k,  

o Each r×r block aik of the pivot column of matrix A is sent horizontally from the 

processor, which stores this block, to q-1 processors (see Figure 3.19); 

o Each r×r block bkj of the pivot row of matrix B is sent vertically from the 

processor, which stores this block, to p-1 processors (see Figure 3.19); 

•  Each processor updates its rectangle in the C matrix with one block from the pivot row 

and one block from the pivot column. 
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Figure 3.20: Specification of the performance model of the algorithm of parallel matrix multiplication based on 

heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI’s performance definition 

language. 

 

    int Get_my_width(int i, int j, int p, int q, const int *speeds,  
                     int td, int l_p, int l_q); 

int Get_my_height(int i, int j, int p, int q, const int *speeds,  
                 int td, int l_p, int l_q); 
typedef struct {int I; int J;} Processor; 
algorithm ParallelAxB(int n, int r, int l_p, int l_q, 
                      int p, int q, int speeds[p×q]) 
{ 
  coord I=p, J=q; 
  node {I>=0 && J>=0: 
        bench*(Get_my_width(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
             *(Get_my_height(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
             *(n/l_p)*(n/l_q)*n);}; 
  link (K=p, L=q) 
  { 
    I>=0 && J>=0 && I!=K: 
      length*(Get_my_width(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
      *Get_my_height(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
      *(n/l_p)*(n/l_q)*(r*r)*sizeof(double)) [I, J] -> [K, J]; 
    I>=0 && J>=0 && J!=L: 
      length*(Get_my_width(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
      *Get_my_height(I, J, p, q, speeds, CARTESIAN, l_p, l_q) 
      *(n/l_p)*(n/l_q)*(r*r)*sizeof(double)) [I, J] -> [I, L]; 
  }; 
  parent[0,0]; 
  scheme { 
    int k, *w, *h, *trow, *tcol; 
    Processor Root, Receiver, Current;  
    Partition_matrix_2d(p, q, 1, speeds, NULL, NULL, l_p, l_q, CARTESIAN,  
                        w, h, trow, tcol, NULL, NULL); 
    for(k = 0; k < n; k++) { 
      int Acolumn = k%l_q, Arow; 
      int Brow = k%l_p, Bcolumn; 
      par(Arow = 0; Arow < l_p; ) 
      { 
        Get_matrix_processor(Arow, Acolumn, p, q, w, h, trow, tcol, &Root); 
        par(Receiver.J = 0; Receiver.J < q; Receiver.J++) 
          if(Root.J != Receiver.J) 
            (100.00/(w[Root.J]*(n/l_q))) 
            %% [Root.I, Root.J] -> [Root.I, Receiver.J]; 
        Arow += h[Root.I]; 
      }              
      par(Bcolumn = 0; Bcolumn < l_q; ) 
      { 
        Get_matrix_processor(Brow, Bcolumn, p, q, w, h, trow, tcol, &Root); 
        par(Receiver.I = 0; Receiver.I < p; Receiver.I++) 
          if(Root.I != Receiver.I) 
            (100.00/((h[Root.I])*(n/l_p))) 
            %% [Root.I, Root.J] -> [Receiver.I, Root.J]; 
        Bcolumn += w[Root.J]; 
      } 
      par(Current.I = 0; Current.I < p; Current.I++) 
        par(Current.J = 0; Current.J < q; Current.J++) 
          (100.00/n) %% [Current.I, Current.J]; 
    } 
  };    
}; 
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The definition of ParallelAxB given in Figure 3.20 describes the performance model of 

this heterogeneous algorithm. 

The performance model ParallelAxB describing the algorithm has 6 parameters. 

Parameter r specifies the size of a square block of matrix elements, the updating of which is the 

unit of computation of the algorithm. Parameter n is the size of square matrices A, B, and C 

measured in r×r blocks. Parameters l_p, and l_q are the sizes of the generalized block along 

the row and along the column and are also measured in r×r blocks.  

Parameters p, q, and speeds are output parameters. They represent the number of processes 

along the row and the column in the process grid arrangement and the performances of 

processors in the optimal subset respectively. 

The function Get_my_width and Get_my_heigth used in the node and link 

declarations and the function Partition_matrix_2d used in the scheme declaration is a 

matrix partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI) 

discussed in Chapter 4. 

The function Partition_matrix_2d is used to partition a matrix of size l_p×l_q 

into p×q disjoint rectangles on a 2D processor grid arrangement (p,q) such that the area of 

each rectangle is proportional to the speed of the processor owning that rectangle.  

The function Get_my_width(I,J,…) returns the width of the J-th rectangle belonging 

to the processor whose column index in the process grid is J (see Figure 3.18(a)). All widths are 

measured in r×r blocks. The function Get_my_height(I,J,…) returns the width of the I-

th rectangle belonging to the processor whose row index in the process grid is I (see Figure 

3.18(b)). All heights are measured in r×r blocks.  
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The coord declaration introduces 2 coordinate variables, I ranging from 0 to p-1, and J 

ranging from 0 to q-1. 

The node declaration associates the abstract processors with this coordinate system to form 

a p×q grid. It also describes the absolute volume of computation to be performed by each of the 

processors. As a unit of measure, the volume of computation performed by the code multiplying 

two r×r matrices is used. At each step of the algorithm, abstract processor PIJ updates 

gIJIJ nhw ×× )(  r×r blocks, where IJIJ hw ,  are the width and height of the rectangle of a 

generalised block assigned to processor PIJ, and gn  is the total number of generalised blocks. As 

computations during the updating of one r×r block mainly fall into the multiplication of two 

r×r blocks, the volume of computations performed by the processor PIJ at each step of the 

algorithm will be approximately gIJIJ nhw ×× )(  times larger than the volume of computations 

performed to multiply two r×r matrices. As IJw  is given by w[J], IJh  is given by h[I], gn  is 

given by (n/l_p)*(n/l_q), and the total number of steps of the algorithm is given by n, the 

total volume of computation performed by abstract processor PIJ will be 

w[J]*h[I]*(n/l_p)*(n/l_q)*n times bigger than the volume of computation 

performed by the code multiplying two r×r matrices.  

The link declaration specifies the volumes of data to be transferred between the abstract 

processors during the execution of the algorithm. The first statement in this declaration describes 

communications related to matrix A. Obviously, abstract processors from the same column of the 

processor grid do not send each other elements of matrix A. Only abstract processors from the 

same row of the processor grid send each other elements of matrix A. Abstract processor PIJ will 

send elements of matrix A to processor PKL only if its rectangle RIJ in a generalised block has 
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horizontal neighbours of the rectangle RKL assigned to processor PKL. In that case, processor PIJ 

will send all such neighbours to processor PKL. Thus, in total processor PIJ will send gIJKL nN ×  

r×r blocks of matrix A to processor PKL, where IJKLN  is the number of horizontal neighbours of 

rectangle RKL in rectangle RIJ, and gn  is the total number of generalised blocks. As IJKLN  is given 

by w[J]* h[I], gn  is given by (n/l_p)*(n/l_q), and the volume of data in one r×r 

block is given by (r*r)*sizeof(double), the total volume of data transferred from 

processor PIJ to processor PKL will be given by 

w[J]*h[I]*(n/l_p)*(n/l_q)*(r*r)*sizeof(double). 

The second statement in the link declaration describes communications related to matrix B. 

Obviously, only abstract processors from the same column of the processor grid send each other 

elements of matrix B. In particular, processor PIJ will send all its r×r blocks of matrix B to all 

other processors from column J of the processor grid. The total number of r×r blocks of matrix 

B assigned to processor PIJ is given by w[J]*h[I]*(n/l_p)*(n/l_q). 

The scheme declaration describes n successive steps of the algorithm. At each step k, 

•  A row of r×r blocks of matrix B is communicated vertically. For each pair of abstract 

processors PIJ and PKJ involved in this communication, PIJ sends a part of this row to PKJ. 

The number of r×r blocks transferred from PIJ to PKJ will be 
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sent from processor PIJ to processor PKJ will be sent at the step. The first nested par 

statement in the main for loop of the scheme declaration just specifies this fact. The 

par algorithmic patterns are used to specify that during the execution of this 

communication, data transfer between different pairs of processors is carried out in 

parallel. 

•  A column of r×r blocks of matrix A is communicated horizontally. If processors PIJ and 

PKL are involved in this communication so that PIJ sends a part of this column to PKL, 

then the number of r×r blocks transferred from PIJ to PKL will be 
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, where 

IJKLH  is the height of the rectangle area in a generalised block, which is communicated 

from PIJ to PKL, and 
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percent of data that should be in total sent from processor PIJ to processor PKL will be 

sent at the step. The second nested par statement in the main for loop of the scheme 

declaration specifies this fact. Again, we use the par algorithmic patterns in this 
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specification to stress that during the execution of this communication, data transfer 

between different pairs of processors is carried out in parallel. 

•  Each abstract processor updates each its r×r block of matrix C with one block from the 

pivot column and one block from the pivot row, so that each block ijc  ( , {1, , }i j n∈ K ) of 

matrix C will be updated, kjikijij bacc ×+= . The processor performs the same volume of 

computation at each step of the algorithm. Therefore, at each of n steps of the algorithm 

the processor will perform 
100

n
 percent of the volume of computations it performs during 

the execution of the algorithm. The third nested par statement in the main for loop of 

the scheme declaration just specifies this fact. The par algorithmic patterns are used 

here to specify that all abstract processors perform their computations in parallel. 

Function Get_matrix_processor is used in the scheme declaration to iterate over 

abstract processors that store the pivot row and the pivot column of r×r blocks. It returns in its 

last parameter the grid coordinates of the abstract processor storing the r×r block, whose 

coordinates in a generalised block of a matrix are specified by its first two parameters. This 

function is also a matrix partitioning API, which is part of the Heterogeneous Data Partitioning 

Interface (HDPI) discussed in Chapter 4. 

The performance model ParallelAxB shown in the Figure 3.20 is applicable to the 

heterogeneous algorithm with CARTESIAN data distribution. However this model can be made 

generic and applicable for any type of distribution by adding an extra parameter to its parameter 

list (the type of distribution) and using heterogeneous data partitioning API (presented in Chapter 

4) in the body of the performance model. This extra parameter is the type of data distribution 

such as COLUMN_BASED or ROW_BASED or CARTESIAN or RECURSIVE. 
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Figure 3.21: The most principal fragments of the usage of function HMPI_Group_auto_create for detection 

of the optimal processor grid arrangement to execute the parallel matrix multiplication implementing the algorithm 

of parallel matrix multiplication based on heterogeneous two-dimensional block-cyclic distribution of matrices and 

creation of the corresponding optimal group of processes (one process per processor configuration is assumed). 

 

algorithm ParallelAxB(int n, int r, int l_p, int l_q,  

    int type_of_distribution, int p, int q, int speeds[p*q]) 

 

int main(int argc, char** argv) { 
   int opt_p, opt_q, *opt_speeds, *model_params, nd, **dp; 
   int output_p, input_p[2] = {n, r}; 
   int n, r, l_p, l_q; 
   HMPI_Group gid; 
 
   HMPI_Init(argc, argv); 

if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP))  
   HMPI_Recon(&rMxM, input_p, 1, &output_p); 
 
if (HMPI_Is_host()) { 
   // The user fills in only the first four parameters 
   // Parameters ‘p’, ‘q’, and ‘speeds’ returned by 
   // the call to function HMPI_Group_auto_create 
   model_params[0] = n; 
   model_params[1] = r; 
   model_params[2] = l_p; 
   model_params[3] = l_q; 

   } 
   if (HMPI_Is_host()) 
      HMPI_Group_auto_create(&gid, &HMPI_Model_ParallelAxB, 
                             model_params); 
   if (HMPI_Is_free()) 
      HMPI_Group_auto_create(&gid, &HMPI_Model_ParallelAxB, 
                             NULL); 
 
   if (HMPI_Is_member(&gid)) { 
      HMPI_Group_topology(&gid, &nd, dp); 
      opt_p = (*dp)[0];       
      opt_q = (*dp)[1];       
      HMPI_Group_performances(&gid, opt_speeds); 
      // computations and communications are performed here  
      // using standard MPI routines. 
   } 
   if (HMPI_Is_member(&gid)) { 
      HMPI_Group_free(&gid); 
   } 
   HMPI_Finalize(0); 
} 
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The most principal fragments of the rest code of the parallel application are shown in the 

main function in Figure 3.21. 

HMPI runtime system is initialised using operation HMPI_Init. Then, operation 

HMPI_Recon updates the estimation of performances of processors using the serial 

multiplication of test matrices of size r×r. The computations performed by each processor 

mainly fall into the execution of calls to function rMxM.  

This is followed by the creation of a group of processes using operation 

HMPI_Group_auto_create. Users specify only the first four model parameters to the 

performance model and ignore the return parameters specifying the number of processes in each 

dimension of the processor grid arrangement to be involved in executing the algorithm and their 

performances. This function detects the optimal grid arrangement of processes to be involved in 

the parallel matrix multiplication and their performances. After the execution of the function 

HMPI_Group_auto_create, the optimal grid arrangement of processes (opt_p,opt_q) is 

obtained by using the HMPI group accessor function HMPI_Group_topology and their 

performances opt_speeds are obtained by using the HMPI group accessor function 

HMPI_Group_peformances.  

The members of this group then perform the computations and communications of the 

heterogeneous parallel algorithm using standard MPI means. This is followed by freeing the 

group using operation HMPI_Group_free and the finalization of HMPI runtime system using 

operation HMPI_Finalize. 

A heterogeneous local network of 12 different FreeBSD, Solaris, and Linux workstations 

shown in Table 3.8 is used in the experiments. The computers used in the experiments are 

connected to communication network, which is based on 100 Mbit Ethernet with a switch  
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Name (Number of 
Processors) Architecture 

cpu 
MHz 

Total Main 
Memory 
(mBytes) 

Cache 
(kBytes) 

afflatus(1) 

FreeBSD 5.2.1-RELEASE 

i386 Intel® Pentium® 4 
Processor supporting HT† 

technology 

2867 2048 1024 

aries2(1) 
FreeBSD 5.2.1-RELEASE 

i386 Intel® Pentium® 4 
Processor 

2457 512 1024 

pg1cluster01 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

pg1cluster02 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

pg1cluster03 (1) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 

csultra01 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra02 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra03 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra04 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

csultra05 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 

Table 3.8: Specifications of the twelve heterogeneous processors used for the parallel matrix multiplication using 

heterogeneous 2D block cyclic distribution. pg1cluster01, pg1cluster02, and pg1cluster03 are all dual processor 

machines whereas the rest of them are all single processor machines. Only one processor on pg1cluster03 is used for 

the experiments. Only one process is run per processor. 

 

enabling parallel communications between the computers. The experimental results are obtained 

by averaging the execution times over a number of experiments. Tables 3.10 and 3.12 show the 

experimental results using the parallel matrix multiplication using heterogeneous block-cyclic 

distribution for different matrix sizes. 
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MPI 

(p,q)=(3,4) 

Size of matrix 
(n) 

Execution time (sec) 

1536 248 

3072 1252 

4608 3447 

6144 7692 
 

Table 3.9: Execution times of the parallel matrix multiplication using homogeneous block cyclic distribution. There 

are a total of 12 processes available for computation. The values of p=3, q=4, r=32, l_p=1536, and l_q =1536 are 

used in the experiments. 

 
HMPI application using  
HMPI_Group_create 

HMPI application using  
HMPI_Group_auto_create

(p,q) 

Optimal grid arrangement 
(p,q)=(3,4) 

(1,12) (2,6) (3,4) (4,3) (6,2) (12,1) 

Size of 
matrix 

(n) 

Execution time (sec) Execution time (sec) 

1536 35 86 47 35 42 48 87 

3072 167 347 208 164 178 197 351 

4608 452 843 651 442 507 543 813 

6144 905 1723 1582 875 1286 1229 1536 

 

Table 3.10: Comparison of execution times of the parallel matrix multiplication using heterogeneous block cyclic 

distribution. There are a total of 12 processes available for computation. For each problem size, the HMPI 

application using HMPI_Group_auto_create finds the optimal arrangement of processes in a grid. The values 

of r=32, l_p=1536, and l_q =1536 are used in the experiments. 
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MPI 

(p,q)=(3,4) 

Size of matrix 
(n) 

Execution time (sec) 

2304 622 

4608 3914 

6912 14220 
 

Table 3.11: Execution times of the parallel matrix multiplication using homogeneous block cyclic distribution. 

There are a total of 12 processes available for computation. The values of p=3, q=4, r=32, l_p=2304, and l_q 

=2304 are used in the experiments. 

 
HMPI application using  
HMPI_Group_create 

 

HMPI application using  
HMPI_Group_auto_create

(p,q) 

Optimal grid arrangement 
(p,q)=(4,3) 

(1,12) (2,6) (3,4) (4,3) (6,2) (12, 1) 

Size of 
matrix 

(n) 

Execution time (sec) Execution time (sec) 

2304 97 187 106 83 80 102 193 

4608 530 875 643 515 517 557 815 

6912 1855 2486 2182 1800 1802 2052 2236 

 

Table 3.12: Comparison of execution times of the parallel matrix multiplication using heterogeneous block cyclic 

distribution. The values of r=32, l_p=2304, and l_q =2304 are used in the experiments. 

 

For the values of r=32, l_p=1536, and l_q=1536 used in the experiments, the optimal grid 

arrangement of processes (p,q) detected by the function HMPI_Group_auto_create is 

(3,4). For the optimal processor grid arrangement (3,4), it can be seen that the execution  
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(p,q) (1,2) (1,3) (1,4) (1,6) (1,8) (1,9) (1,12) (2,1) (2,2) (2,3) 

Estimated 
Execution 

time 
7198 4798 3599 2052 1772 1772 1772 7198 3599 2043 

(p,q) (2,4) (2,6) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (6,1) 

Estimated 
Execution 

time 
1699 1699 4798 2068 1652 1651 3599 1678 1617 2052 

(p,q) (6,2) (8,1) (9,1) (12,1) 

Estimated 
Execution 

time 
1652 1772 1772 1772 

Table 3.13: Estimated execution times of the parallel matrix multiplication using heterogeneous block cyclic 

distribution for all the possible processor grid arrangements such that ((l_p/r)%(p), (l_q/r)%(q)) are 

zero (that is the matrices are partitioned into an whole number of generalized blocks). There are a total of 12 

processes available for computation. The values of r=32, l_p=2304, l_q=2304, and size of the matrix n×r=6912 

are used in the experiments.  

 

times of the HMPI application using the function HMPI_Group_auto_create are greater 

than the execution times of the HMPI application using the function HMPI_Group_create by 

some seconds. This is because the function HMPI_Group_auto_create tries to estimate the 

execution time of the parallel matrix-matrix multiplication for each possible processor grid 

arrangement and calls the function HMPI_Group_create, providing the optimal grid 

arrangement of processes as an input parameter. Thus this marginal difference in the execution 

times between the HMPI application using the function HMPI_Group_auto_create and the 

HMPI application using the function HMPI_Group_create is the extra time involved in 

detecting the optimal grid arrangement of processes by the function 

HMPI_Group_auto_create.  
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For the values of r=32, l_p=2304, and l_q=2304 used in the experiments, the optimal grid 

arrangement of processes detected by the function HMPI_Group_auto_create is (4,3). It 

can be seen from the execution times of the HMPI application using the function 

HMPI_Group_create that the optimal processor grid arrangements are (3,4), and (4,3) 

from all the possible grid arrangements. For the values of r=32, l_p=2304, l_q=2304, and size 

of the matrix n×r=6912 used in the experiments, the Table 3.13 shows the estimated execution 

times for all the possible processor grid arrangements. 

The experimental results for the MPI application are shown in Tables 3.9 and 3.11. It 

performs very poorly on this network compared to the HMPI equivalent because it does not take 

into account the speeds of the processors and the latencies and the bandwidths of the 

communication links between them. 

 

3.6 Model of HMPI Program 

A typical HMPI application starts with the initialization of the HMPI runtime system using the 

operation  

HMPI_Init (int argc, char** argv) 

where argc and argv are the same arguments, passed into the application, as the arguments to 

main. This routine must be called before any other HMPI routine and must be called once. This 

routine must be called by all the processes running in the HMPI application. 

After the initialization, application programmers can call any other HMPI routines. In 

addition, MPI users can use normal MPI routines, with the exception of MPI initialization and 

finalization, including the standard group management and communicator management routines 

to create and free groups of MPI processes. However, they must use the predefined 
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communication universe HMPI_COMM_WORLD of HMPI instead of MPI_COMM_WORLD of 

MPI.  

The initialization of HMPI runtime system is typically followed by 

•  Updating of the estimation of the speeds of processors with HMPI_Recon; 

•  Finding the optimal values of the parameters of the parallel algorithm with 

HMPI_Timeof; 

•  Creation of a group of processes, which will perform the parallel algorithm, by using 

HMPI_Group_create or HMPI_Group_auto_create; 

•  Execution of the parallel algorithm by the members of the group. At this point, control is 

handed over to MPI. MPI and HMPI are interconnected by the operation 

HMPI_Get_comm, which returns an MPI communicator associated with communication 

group of MPI processes. Application programmers can use this communicator to call the 

standard MPI communication routines during the execution of the parallel algorithm. 

This communicator can safely be used in other MPI routines. 

•  Freeing the HMPI groups with HMPI_Group_free.  

•  Finalizing the HMPI runtime system by using operation 

HMPI_Finalize (int exitcode). 

An HMPI application is like any other MPI application and can be deployed to run in any 

environment where MPI applications are used. HMPI applications can be run in environments 

where batch queuing and resource management systems are used. However HMPI uses its own  
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Figure 3.22: Development process of an HMPI application. To build HMPI applications, an application 

programmer describes a performance model using the model definition language, compiles the performance model 

description into a set of functions, writes the application using the HMPI interfaces to create groups of processes to 

execute the parallel algorithm. 

 

measurements and performance models of the underlying system for running parallel 

applications efficiently. 

Note, that in general, the architecture of HMPI summarized in Figure 3.20 has similarities to 

the architectural framework of the CORBA specification [OMG98].  

 

3.7 Transformation of MPI to HMPI 

The section explains the steps involved in the transformation from an MPI program to an HMPI 

program.  

Performance model 
in model 
definition 
language 

Model 
definition 
language 
Compiler 

Performance model in 
the form of a set of 
functions 

HMPI 
application 

HMPI runtime system

  User’s view 

HMPI  
interfaces 

Hidden from 
the user 
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Figure 3.23: The most relevant fragments of code of the MPI program implementing the parallel matrix-matrix 

multiplication algorithm shown in Figures 3.13 and 3.14. 

 

Consider the example multiplying matrix A and the transposition of matrix B on p 

interconnected heterogeneous processors, i.e., implementing matrix operation C=A×BT, where 

A, B are dense n×n matrices. This application assumes one process per processor configuration 

and implements a naive heterogeneous algorithm shown in Figures 3.11 and 3.12. Figure 3.21 

shows the MPI program. Figure 3.15 shows the performance model of the matrix-matrix 

multiplication algorithm and Figure 3.24 shows the HMPI program.   

   int main(int argc, char **argv) { 
       int i, x, y, l, m, t, n, r, me, p, *d;  
       double val, *A, *B, *C, *temp; 
 
       MPI_Init(&argc, &argv); 
       MPI_Comm_rank(MPI_COMM_WORLD, &me); 
       MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
       // Homogeneous data distribution 
       Partition_unordered_set(p, 1, NULL, NULL, NULL, n,  
                NULL, -1, NULL, NULL, d); 
        
        // Execution of the algorithm by the members of MPI_COMM_WORLD 
       for (i = 0; i < (n/r); i++) { 
          int PivotProcessor = Get_set_processor(i, n/r, p, 0, d); 
          MPI_Bcast(temp, n*r, MPI_DOUBLE, PivotProcessor,  
                    *MPI_COMM_WORLD);   
          for (x = 0; x < d[me]; x++)  
             for (y = 0; y < (n/r); y++)  
                for (l = 0; l < r; l++)  
                   for (m = 0; m < r; m++) { 
                      for (val = 0, t = 0; t < r; t++) { 
                          val += A[x*r*n + i*r + l*n + t] 
                                 *temp[y*r + t*r + m]; 
                      } 
                      C[x*r*n + y*r + l*r + m] += val; 
                   } 
       }     
       MPI_Finalize(); 
   } 
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The straightforward transformations consist of one-to-one replacement of the MPI 

components by the HMPI counterparts. They are:  

•  HMPI_Init for MPI_Init, HMPI_Finalize for MPI_Finalize.  

•  HMPI pre-defined universe HMPI_Comm_world for MPI pre-defined universe 

MPI_Comm_world. 

•  HMPI group accessors HMPI_Group_rank, and HMPI_Group_size for MPI group 

accessors MPI_Group_rank, and MPI_Group_size. 

There is absolutely no change in the code consisting of computations and communications of 

the parallel algorithm between an HMPI program and the MPI program. The MPI communicator 

used in this code can be replaced with the MPI communicator provided by the operation 

HMPI_Get_comm on the HMPI group of processes. 

The other transformations are a bit involved and are outlined below in the order of increasing 

complexity: 

•  Determination of the speeds of the processors using HMPI_Recon.  

•  Creation of an HMPI group of processes that will execute the heterogeneous parallel 

algorithm using the operation HMPI_Group_create. The parameters to the 

performance model passed to this operation can be packed using the function 

HMPI_Pack_model_parameters. 

•  Destruction of an HMPI group once the execution of the algorithm is finished using the 

operation HMPI_Group_free. This is similar to the group destructor for an MPI group 

of processes MPI_Group_free. 

•  Description of the heterogeneous algorithm in the form of a performance model. 
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Figure 3.24: The most relevant fragments of code of the HMPI program implementing the parallel matrix-matrix 

multiplication algorithm shown in Figures 3.13 and 3.14. 

   int main(int argc, char **argv) { 
       int i, x, y, l, m, t, n, r, me, p, *d, nd, **dp, *opt_speeds, opt_p; 
       int output_p, input_p[3] = {n, r, t}; 
       double val, *A, *B, *C, *temp; 
       double *speeds; 
       void *model_params; 
       HMPI_Group gid; 
       HMPI_Init(argc, argv); 
       MPI_Comm_size(HMPI_COMM_WORLD, &p); 
       // Estimation of speeds and data distribution using the speeds 
       if ((HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) 
          HMPI_Recon(&serialAxBT, input_p, 3, &output_p); 
       HMPI_Group_performances(HMPI_COMM_WORLD_GROUP, &speeds);    
       // Heterogeneous data distribution 
       Partition_unordered_set(p, 1, speeds, NULL, NULL,  
              n, NULL, -1, NULL, NULL, d); 
       // HMPI Group creation 
       if (HMPI_Is_host()) { 
          model_params[0]=n;                   
          model_params[1]=r; 
          model_params[2]=t;   
          HMPI_Group_auto_create(&gid, &HMPI_Model_parallelAxBT, model_params);        
       } 
       if (HMPI_Is_free()) 
          HMPI_Group_auto_create(&gid, &HMPI_Model_parallelAxBT, NULL);                
       // Execution of the algorithm by the members of the group 
       me = HMPI_Group_rank(&gid); 
       if (HMPI_Is_member(&gid)) { 
         HMPI_Group_topology(&gid, &nd, dp); 
         opt_p = (*dp)[0]; 
         HMPI_Group_performances(&gid, opt_speeds); 
          Partition_unordered_set(opt_p, 1, opt_speeds, NULL, NULL, n,  
                     NULL, -1, NULL, NULL, d); 
          MPI_Comm mxm_comm = *(MPI_Comm*)HMPI_Get_comm(&gid);  
          for (i = 0; i < (n/r); i++) { 
             int PivotProcessor = Get_set_processor(i, n/r, p, 0, d); 
             MPI_Bcast(temp, n*r, MPI_DOUBLE, PivotProcessor, mxm_comm); 
             for (x = 0; x < d[me]; x++) 
                for (y = 0; y < (n/r); y++)  
                   for (l = 0; l < r; l++)  
                      for (m = 0; m < r; m++) { 
                         for (val = 0, t = 0; t < r; t++) 
                            val += A[x*r*n + i*r + l*n + t] 
                                   *temp[y*r + t*r + m]; 
                         C[x*r*n + y*r + l*r + m] += val; 
                } 
          } 
       } 
       // HMPI Group Destruction 
       if (HMPI_Is_member(&gid)){ 
          HMPI_Group_free(&gid);     
       } 
       HMPI_Finalize(0);      
   } 
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It can be seen that the most involved part in the transformation process is the design of the 

performance model.  

The main constructs of the specification of the performance model definition language are 

briefly described here. The coord declaration specifies the arrangement of processes. The node 

declaration describes the total volume of computations to be performed by each of the processes 

in the group during the execution of the algorithm. The link declaration specifies the total 

volume of data to be transferred between each pair of processes in the group during the execution 

of the algorithm. The scheme declaration describes the order of execution of the computations 

and communications by the involved parallel processes in the group, that is, how exactly the 

processes interact during the execution of the algorithm. 

The parameters to the performance model are mainly and usually the number of processes in 

each dimension of the process arrangement and data distribution parameters specifying how the 

data is distributed amongst the processes, and the amount of data that is transferred between the 

pair of processes. For example, if the mathematical objects used in the parallel algorithm are sets, 

the data distribution parameters are usually an array giving the number of elements in the set 

assigned to each processor proportional to the speed of the processor and an array giving the 

number of elements transferred between pairs of processors. If the mathematical objects used are 

matrices, the data distribution parameters are arrays giving the geometric dimensions of the 

partitions, which are rectangles assigned to each processor. If the mathematical objects used are 

graphs and trees, the data distribution parameters are arrays giving the number of nodes assigned 

to each processor and the edges that cross between pairs of processors. 

It would appear that the description of the heterogeneous algorithm in the form of the 

performance model could be very complicated. However the user who has designed an MPI 
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application has complete knowledge of the essential features of the parallel algorithm used in the 

MPI application. While designing the performance model, all that the user has to do is to 

explicitly specify these features in a parametric way. The specification of the performance model 

provides all the features to allow the user to specify all these features outlined previously in a 

general way without going into the nitty-gritty of the parallel algorithm. 

The complexity of the performance model depends on how complex is the algorithm that the 

user has designed for the parallel application. The user can simplify the design of the 

performance model by ignoring some details of the parallel algorithm that have little or no 

influence on the performance of the parallel application. The performance model language offers 

all the features allowing the users to design all types of performance models ranging from the 

simplest to most complicated, and from not very accurate to very accurate for their parallel 

application. In some cases, a simple performance model can be designed that can accurately 

represent the essential features of the parallel algorithm used in their parallel applications. The 

specification of the performance model is comprehensive enough for expressing many scientific 

applications, as shown by the examples presented in this chapter and the scientific applications 

presented in Chapter 5 on HMPI application programming. At the same time it is expected to be 

improved based on the feedback from the scientific community using it. 

An interesting topic is applications where different parallel algorithms are coupled. There are 

many ways of writing performance models and programming such applications in HMPI. If the 

application is composed of two algorithms that are loosely coupled, two different groups of 

different performance models executing the algorithms in parallel can be created. The HMPI 

runtime system will try to map the algorithms in such a way to ensure the best execution 

performance of the whole application. Alternatively, two different groups of different 
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performance models executing the algorithms serially can be created (especially, in the case of 

strong data dependency). In the latter case, the first group must be destroyed before the second 

one is created to make all resources available when mapping each of the algorithms on the 

underlying hardware. If the two algorithms are tightly coupled, they can be described using a 

single performance model and executed on the same group. 

Future work may involve the development of a tool that would automatically make some 

straightforward transformations to an MPI program to convert it into an HMPI program. The tool 

could be as simple as a script or a preprocessor that generates a basic working version of an 

HMPI program from an input MPI program. All that the application programmer will have to do 

is to design a performance model and input this performance model and MPI programs to the 

compiler or preprocessor. Hooks can be provided that allow the application programmers to 

specify the different stages of an MPI program that would aid the transformation process. These 

are the following: 

•  MPI initialization, 

•  Data distribution, 

•  Execution of the algorithm by the processes of MPI_COMM_WORLD, and 

•  MPI finalization. 

Based on this information, a basic working version of a HMPI program can be generated from 

the performance model provided by the application programmer and the static program analysis 

of the MPI program. The basic working version would contain the following:   

•  HMPI initialization replacing the MPI initialization, 

•  Data distribution using the speeds of the processors. This step uses the Heterogeneous 

Data Partitioning Interface (HDPI) presented in Chapter 4. The application programmer 



Outline of HMPI 

165 

must dynamically update the processor speeds at runtime using HMPI_Recon before 

distributing the data. 

•  Creation of a HMPI group of processes. The call to the HMPI group creation function 

HMPI_Group_create is inserted. The handle to the performance model in the group 

creation function is generated by compiling the performance model provided as input by 

the application programmer. The application programmer will have to fill in the model 

parameters using the function HMPI_Pack_model_parameters. 

•  Execution of the algorithm by the processes of MPI communicator associated with the 

HMPI group of processes. This piece of code is similar to the MPI code except that the 

MPI communicator MPI_COMM_WORLD is replaced by the MPI communicator 

associated with the HMPI group of processes 

•  Destruction of the HMPI group of processes. The call to the group destruction function 

HMPI_Group_free is inserted, and  

•  HMPI finalization replacing the MPI finalization. 

 
3.8 A Research Implementation of HMPI 

 
The first version of a research implementation of HMPI is available from our homepage 

http://cs-www.ucd.ie/~hmpi. 

The HMPI programming system includes the following components: 

•  A compiler to compile the performance model definitions. 

•  Run-time support system (RTSS). 
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•  Library consisting of extensions to MPI and data partitioning API called HDPI (presented 

in Chapter 4). Currently this API has bindings to only ANSI C. Future work will involve 

design of bindings to C++, FORTRAN, and Java.  

•  Command-line user interface.  

The compiler compiles the description of a performance model to generate a set of functions 

with calls to functions of RTSS. RTSS manages processes, constituting the parallel program, and 

provides communications. It encapsulates a particular communication platform (currently, a 

subset of MPI) ensuring platform-independence of the rest of system components. The 

command-line interface consists of tools for virtual parallel machine (VPM) management and 

execution of HMPI applications on the VPM. 

Appendix B contains the HMPI Programmer’s guide and installation guide. The 

Programmer’s guide presents the HMPI library consisting of extensions to MPI and 

Heterogeneous Data Partitioning Interface (HPDI presented in Chapter 4) and the command-line 

interface to manage virtual parallel machine (VPM) and execute HMPI applications on VPM. 

The installation guide presents instructions to install HMPI on UNIX platforms (currently HMPI 

is available only for UNIX platforms).  

In the following sections, we explain how to describe a VPM followed by the structure of the 

topology file, representing the model of the executing network of computers, generated during 

the creation of a VPM. We then present the model of HMPI program. This is followed by 

explanation of the synchronization functions and functions of RTSS performing process 

management tasks ensuring proper execution of HMPI applications. 
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3.8.1 Virtual parallel machine 
 
The description of a virtual parallel machine (VPM) on which the HMPI applications are 

executed is provided in a VPM description file. A VPM description file consists of lines of two 

kinds. Lines starting with symbol ‘#’ are treated as comments. All other lines should be of the 

following format: 

<name> <number_of_processes> [number_of_processors] 

where <name> is the name of the corresponding computer as it appears in the system 

‘/etc/hosts’ file, <number_of_processes> is the number of processes to run on the 

computer, and [number_of_processors] is the number of processors present on the 

computer (this is not mandatory). The host computer must go first in the file.  

For example, the following file describes VPM consisting of three computers (alpha, 

beta, and gamma), five processes running on each computer, and the host computer is alpha: 

alpha 5 
beta 5 
gamma 5 

 
The VPM can be created, opened, closed or queried using VPM management tools. During the 

creation of the VPM, a topology file is generated that contains information on the model of the 

executing network of computers. The topology file for the VPM described previously is shown 

below: 

parallel(0.49, 0.97) c62377 c967039 c801049 
#alpha 
s2 p6667 n5 serial c2285064 c107326590 c99523787 
#beta 
s2 p5556 n5 serial c1312665 c80473880 c98430419 
#gamma 
s2 p5556 n5 serial c1956722 c78885862 c99667528 
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In the topology file, each computer is characterized by 7 parameters. The first parameter, s, 

called scalability determines how many non-interacting processes may run on the computer in 

parallel without loss of speed. This is useful, for example, if the computer is a multiprocessor 

workstation. If the field [number_of_processors] is specified in the VPM description 

file, the parameter s represents the number of processors. The second parameter, p, determines 

the performance of the computer demonstrated on executed of some serial test code. One can see 

that the computer alpha is the most powerful and the computer gamma is the least powerful. 

Note that at runtime HMPI_Recon updates the value of the parameter for each participated 

computer. 

The third parameter, n, determines the total number of parallel processes to run on the 

computer. One can see that five processes are run on each computer. 

The fourth parameter determines the scalability of the communication layer provided by the 

computer. In this case, all computers provide serial communication layers. 

Finally, the last three parameters determine the speed of point-to-point data transfer between 

processes running on the same computer as a function of size of the transferred data block. The 

first of them specifies the speed of transfer of a data block of 64 bytes (measured in bytes per 

second), and the second and third specify that of 642 and 643 bytes corresponding. 

The homogeneous communication space of higher level is also characterized by those three 

parameters. Besides, the layer is detected as a parallel communication layer with factors 0.49 and 

0.97 characterizing the level of parallelism of broadcast and gather correspondingly. 

 
3.8.2 Model of HMPI program 

 
All processes constituting the target HMPI program are divided into two groups: special process, 

the so-called dispatcher, playing the role of computing space manager, and common processes. 
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The dispatcher works as a server. It receives requests from the common processes and sends 

them commands. 

At any time of the target program running, any process is either free (unemployed) or a 

member (employed) of one or several HMPI groups. Employing processes in created groups and 

dismissing them are the responsibility of the dispatcher. The only exception is the host-process 

representing the pre-defined virtual host processor, which always maps onto the first process 

associated with the user’s terminal (host computer). Thus, just after initialization of HMPI 

runtime the computing space is represented by the host and a set of temporarily free 

(unemployed) processes. The main problem in managing processes is employing them in HMPI 

groups and dismissing them. The solution to this problem establishes the whole structure of a 

HMPI program and forms the requirements for the synchronization functions and the functions 

of the RTSS. 

During the HMPI runtime initialization, the host-process reads and parses the topology file to 

initialize the HMPI runtime environment. The topology file is an ASCII file, which is generated 

during the creation of a virtual parallel machine on which the HMPI applications are executed. 

This file contains information on the model of the executing network of computers. The topology 

information is then sent to the dispatcher, which stores the information. 

To create a HMPI group, its parent sends a creation request to the dispatcher. The request 

contains the full topological information on the group to be created. To compute the topological 

information, the parent uses the set of functions generated by the compiler from the description 

of the performance model of the parallel algorithm. Consider the description of the performance 

model Nbody shown in Figure 3.9 and the generated code shown in appendix A.  
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The function MPC_NetType_Nbody_power returns the number of processes in the group. 

Since the RTSS uses a linear numeration of processes from 0 to n-1, where n is the total 

number of processes, the functions MPC_NetType_Nbody_coord2number and 

MPC_NetType_Nbody_number2coord convert the coordinates of a process into its linear 

number and vice versa. This linear numeration is determined by the lexicographic ordering on 

the set of coordinates of processors. The function MPC_NetType_Nbody_parent returns the 

linear number of the parent process. The function MPC_NetType_Nbody_node returns the 

type and relative performance of the specified processor. The function 

MPC_NetType_Nbody_link returns the length of the directed link connecting a pair of 

processors. And finally the function MPC_NetType_Nbody_mapping estimates the time of 

execution of the parallel algorithm for a mapping. 

On the other hand, the dispatcher keeps information on the performance model of the 

executing network of computers, which reflects the state of this network just before the 

execution of the parallel algorithm. Based on the topological information sent by the parent and 

the performance model of the executing network of computers that it stores, the dispatcher 

selects a set of free processes, which are the most appropriate to be employed in the group to be 

created. After that, it sends to every free process a message saying that whether the process is 

employed in the group or not. 

To destroy a HMPI group, its parent sends a message to the dispatcher. Note, that the parent 

remains employed in other groups, which share it with the group to be destroyed. In HMPI, 

groups are not absolutely independent of each other. Every newly created group has exactly one 

process shared with already existing groups. That process is the parent of this newly created 

group, and is the connecting link, through which results of computations are passed if the group 
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ceases to exist. The rest of the members of the destroyed group become free and begin waiting 

for commands from the dispatcher. 

Any process can detect its member/free status. It is employed and not free if a call to function 

HMPI_Is_free returns false. Otherwise the process is free. Any process can detect if it is a 

member of a HMPI group. A HMPI group is represented via its descriptor. If the descriptor gid 

corresponds to a HMPI group, then a process is a member of the HMPI group if and only if the 

function call HMPI_Is_member(&gid) returns true. In this case, the descriptor gid allows 

the process to obtain comprehensive information about the group as well as identify itself in the 

group. 

Creating a group involves its parent, all free processes and the dispatcher. The parent of the 

group calls the function  

HMPI_Group_create(&gid, &perf_model, modelp) 
 
where gid is the group descriptor, perf_model is the handle to the performance model, and 

modelp are the parameters to the performance model. For the creation of the first HMPI group, 

the host-process can be used as the parent. The function HMPI_Group_create computes all 

the topological information and sends a creation request to the dispatcher. In the meantime, free 

processes are waiting for commands from the dispatcher at a so-called waiting point in the 

function call 

HMPI_Group_create(&gid, &perf_model, NULL) 
 

A free process leaves the waiting point either after it becomes employed in the group the 

descriptor of which is pointed to by gid or after the dispatcher sends, to all free processes, the 

command to leave the current waiting point. 
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3.8.3 Structure of HMPI program 
 
The basic HMPI program model permits and supports the creation of no more than one group at 

a time and the existence of no more than one group at a time. The structure of a HMPI program 

using the basic model is explained using an example shown below: 

/* 1 */   int main(int argc, char **argv) { 
/* 2 */       void *modelp; 
/* 3 */       HMPI_Group gid1, gid2; 
/* 4 */       HMPI_Init(argc, argv); 
/* 5 */       // Parent sends a creation request to the dispatcher.  
/* 6 */       // After the group is created, Host sends a message 
/* 7 */       // to the dispatcher. After receiving the message the 
/* 8 */       // dispatcher sends all free processes a command ordering 
/* 9 */      // them to leave the waiting point on line 14 
/* 10 */      if (HMPI_Is_host())  
/* 11 */         HMPI_Group_create(&gid1, &perf_model, modelp);  
/* 12 */      // Free processes wait here for commands from dispatcher 
/* 13 */      if (HMPI_Is_free()) 
/* 14 */         HMPI_Group_create(&gid1, &perf_model, NULL);  
/* 18 */      // Execution of the algorithm by the members of the group 
/* 19 */      if (HMPI_Is_member(&gid1)) {…} 
/* 20 */      // Parent sends a destroy request to the dispatcher  
/* 21 */      // Other members of the group become free here 
/* 22 */      if (HMPI_Is_member(&gid1)) 
/* 23 */         HMPI_Group_free(&gid1); 
/* 24 */      // The process is repeated for the creation of the second 
/* 25 */      // group 
/* 26 */      if (HMPI_Is_host())  
/* 27 */         HMPI_Group_create(&gid2, &perf_model, modelp);  
/* 28 */      // Free processes wait here for commands from dispatcher 
/* 29 */      if (HMPI_Is_free()) 
/* 30 */         HMPI_Group_create(&gid2, &perf_model, NULL);  
/* 31 */      // Execution of the algorithm by the members of the group 
/* 32 */      if (HMPI_Is_member(&gid2)) {…} 
/* 33 */      // Parent sends a destroy request to the dispatcher  
/* 34 */      // Other members of the group become free here 
/* 35 */      if (HMPI_Is_member(&gid2)) 
/* 36 */         HMPI_Group_free(&gid2); 
/* 37 */      // Free processes wait here for commands from dispatcher 
/* 38 */      // All common processes sync here 
/* 39 */      HMPI_Finalize(0);  
/* 40 */   } 
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If creation of more than one group in parallel and existence of more than one group is 

required, additional synchronization functions are provided, which must be used to write correct 

HMPI programs. However it is to be noted that no synchronization functions are necessary if the 

basic model is followed. We have noticed that the programming becomes complicated when 

synchronization functions are used. From the applications experimented with HMPI, we have 

observed that such complicated programming is not required. However, we explain the usage of 

the additional synchronization functions below for completeness.  

/* 1 */   int main(int argc, char **argv) { 
/* 2 */       void *modelp; 
/* 3 */       HMPI_Group gid; 
/* 4 */       HMPI_Init(argc, argv); 
/* 5 */       // Parent sends a creation request to the dispatcher 
/* 6 */       if (HMPI_Is_host()) 
/* 7 */          HMPI_Group_create(&gid, &perf_model, modelp);  
/* 8 */       // Free processes wait here for commands from dispatcher 
/* 9 */       if (HMPI_Is_free()) 
/* 10 */         HMPI_Group_create(&gid, &perf_model, NULL);  
/* 11 */      // Host sends a message to the dispatcher. After receiving 
/* 12 */      // the message the dispatcher sends all free processes a  
/* 13 */     // command ordering them to leave the waiting point on line 10 
/* 14 */      if (HMPI_Is_host()) 
/* 15 */         HMPI_Notify_free_processes(); 
/* 16 */      // Epilogue of waiting point. All common processes sync here  
/* 17 */      // Execution of the algorithm by the members of the group 
/* 18 */      if (HMPI_Is_member(&gid)) {…} 
/* 19 */      // Parent sends a destroy request to the dispatcher  
/* 20 */      // Other members of the group become free here 
/* 21 */      if (HMPI_Is_member(&gid)) 
/* 22 */         HMPI_Group_free(&gid); 
/* 23 */      // Free processes wait here for commands from dispatcher 
/* 24 */      if (HMPI_Is_free()) 
/* 25 */         HMPI_Wait_free_processes(); 
/* 26 */      if (HMPI_Is_host()) 
/* 27 */         HMPI_Notify_free_processes(); 
/* 28 */      // Epilogue of waiting point. All common processes sync here 
/* 29 */      HMPI_Finalize(0);  
/* 30 */   } 
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In general, a HMPI program involving the creation of a HMPI group has two waiting points. 

The first waiting point on line 10 is called the creation waiting point. Here free processes wait 

for commands on group creation. The second waiting point on line 25 is called the destruction 

waiting point. Here the free processes wait for commands on group destruction in the function 

call HMPI_Wait_free_processes on line 25. In general, free processes not only 

participate in the creation/destruction of HMPI groups but also take part in overall computations  

(that is, in computations distributed over the entire computing space) and/or in the creation and 

destruction of HMPI groups defined in nested blocks.  

The coordinated arrival of all the common processes must be made sure at the epilogue of the 

waiting points at lines 16 and 28. The following steps ensure it: 

•  It must be made sure that all other employed processes, which might send a 

creation/destruction request expected in the waiting point, have already reached the 

epilogue. This can be ensured by putting barriers using the function call 

HMPI_Barrier; 

•  The host sends a message to the dispatcher in the function call 

HMPI_Notify_free_processes (shown on lines 15 and 27) saying that any 

creation/destruction request expected at this waiting point will not come yet and that the 

free processes should be ordered to leave the waiting point (shown on lines 10 and 25 

respectively); 

•  After receiving the message, the dispatcher sends all free processes a command ordering 

them to leave the waiting point; 

•  After receiving the command, each free process leaves the waiting point and reaches the 

epilogue. 



Outline of HMPI 

175 

Figure 3.25: HMPI program illustrating the coordinated arrival of processes at the epilogues of the waiting points. 

Figure 3.25 shows an example HMPI program demonstrating the coordinated arrival of 

processes at epilogues of the waiting points. 

   int main(int argc, char **argv) { 
       HMPI_Group gid1, gid2, gid3; 
       HMPI_Init(argc, argv); 
       if (HMPI_Is_host()) 
          HMPI_Group_create(&gid1, &perf_model, modelp);                   
       // Creation waiting point 1 
       if (HMPI_Is_free()) 
          HMPI_Group_create(&gid1, &perf_model, NULL); 
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       // Epilogue of waiting point 1 
       // Execution of the algorithm by the members of the group gid1 
       if (HMPI_Is_parent(&gid1)) 
          HMPI_Group_create(&gid2, &perf_model, modelp);                   
       // Creation waiting point 2 
       if (HMPI_Is_free()) 
          HMPI_Group_create(&gid2, &perf_model, NULL); 
       if (HMPI_Is_member(&gid1)) 
          HMPI_Barrier(&gid1);  
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       // Epilogue of waiting point 2 
       // Execution of the algorithm by the members of the group gid2 
       if (HMPI_Is_member(&gid2)) 
          HMPI_Group_free(&gid2); 
       // Destruction waiting point 3     
       if (HMPI_Is_free()) 
          HMPI_Wait_free_processes(); 
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       if (HMPI_Is_member(&gid1)) 
          HMPI_Barrier(&gid1);  
       // Epilogue of waiting point 3     
       if (HMPI_Is_parent(&gid1)) 
          HMPI_Group_create(&gid3, &perf_model, modelp);                   
       // Creation waiting point 4    
       if (HMPI_Is_free()) 
          HMPI_Group_create(&gid3, &perf_model, NULL); 
       if (HMPI_Is_member(&gid1)) 
          HMPI_Barrier(&gid1);  
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       // Epilogue of waiting point 4 
       // Execution of the algorithm by the members of the group gid3 
       if (HMPI_Is_member(&gid3)) 
          HMPI_Group_free(&gid3); 
       // Destruction waiting point 5     
       if (HMPI_Is_free()) 
          HMPI_Wait_free_processes(); 
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       // Epilogue of waiting point 5 
       if (HMPI_Is_member(&gid1)) 
          HMPI_Group_free(&gid1); 
       // Destruction waiting point 6     
       if (HMPI_Is_free()) 
          HMPI_Wait_free_processes(); 
       if (HMPI_Is_host()) 
          HMPI_Notify_free_processes(); 
       // Epilogue of waiting point 6 
       HMPI_Finalize(0);      
   } 
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3.9 Summary 
 
We have presented HMPI, an extension of MPI for programming high-performance 

computations on heterogeneous networks of computers. The main idea of HMPI is to automate 

the process of selection of a group of processes, which would execute the heterogeneous 

algorithm faster than any other group. HMPI provides features that allow the user to carefully 

design their parallel applications that can run efficiently on HNOCs. The features that affect the 

efficiency of the process of selection are: 

•  The accuracy of the performance model designed by the application programmers to 

describe their implemented heterogeneous algorithm. The performance model definition 

language is used to describe their implemented heterogeneous algorithm. It provides 

comprehensive features to express many scientific parallel applications. These features 

allow the application programmers to design all types of performance models ranging 

from the simplest to most complicated, and not very accurate to most accurate for their 

parallel applications.  

•  The accuracy of HMPI_Recon. The accuracy of HMPI_Recon depends upon how 

accurately the benchmark code provided by the application programmers reflects the core 

computations of each phase of their parallel applications. If the benchmark code provided 

is an accurate measurement of the core computations in each phase, HMPI_Recon gives 

an accurate measure of the speeds. 

•  The accuracy of HMPI_Timeof. The accuracy of the estimation by HMPI_Timeof is 

dependent upon the following: 

o The accuracy of the performance model, 
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o The quality of the heuristics designed for the set of parameters provided to the 

performance model, 

o The accuracy of the model of the executing network of computers. This depends 

on the accuracy of the measurements of the processor speeds given by 

HMPI_Recon and the communication model of the executing network of 

computers. Currently the communication model used in HMPI runtime system is 

static. Future works would address the issue of efficiently updating the parameters 

of communication model at runtime.  

From the performance models presented in this chapter and in Chapter 5 on HMPI 

application programming, it can be seen that a performance model can be written that is generic 

enough to be used for any type of data distribution. The generality of the performance model is 

achieved through using generic parameters in its parameter list and using data partitioning HPDI 

API (presented in Chapter 4) in the body of the performance model. Such performance models 

are only written once and used for different types of data distribution. 

Thus HMPI provides all the features to the user to write portable and efficient parallel 

applications on HNOCs. 

In the next chapter, we present Heterogeneous Data Partitioning Interface (HDPI) that 

automates one of the important stages of application development on HNOCs, namely, 

decomposition of the whole problem into a set of sub-problems that can be solved in parallel by 

interacting processes. This step of heterogeneous decomposition is parameterized by the speeds 

of processors and the latencies and bandwidths of the communication links between them, the 

number of memory levels of the memory hierarchy and the size of each level of the memory 

hierarchy on each machine. 
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CHAPTER 4 
 

The Heterogeneous Data Partitioning Interface (HDPI):  
Overview, Design and Preliminary Results 

 
Parallel solution of regular and irregular problems on a HNOCs typically consists of following 

macro-steps: 

1. Determination of characterization parameters relevant to both the computational 

requirements of the applications and the machine capabilities of the heterogeneous 

system using information about the expected types of application problems and the 

machines in the heterogeneous system. 

2. Decomposition of the whole problem into a set of sub-problems that can be solved in 

parallel by interacting processes. 

3. The mapping of these parallel processes to the computers of the network. 

4. Application program execution on the HNOCs. 

An irregular problem is characterized by some inherent coarse-grained or large-grained 

structure. This structure implies a quite deterministic decomposition of the whole problem into 

relatively small number of subtasks, which are of different size and can be solved in parallel. 

Correspondingly, a natural way of decomposition of the whole program, which solves the 

irregular problem on a network of computers, is a set of parallel processes, each solving its 

subtask and all together interacting via message passing. As sizes of these subtasks are typically 

different, the processes perform different volumes of computation. Therefore, the mapping of 

these processes to the computers of the executing HNOC should be performed very carefully to 

ensure the best execution time of the program. 

The most natural decomposition of a regular problem is a large number of small identical 

subtasks that can be solved in parallel. As those subtasks are identical, they are all of the same 
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size. Multiplication of two nn ×  dense matrices is an example of a regular problem. This 

problem is naturally decomposed into 2n  identical subtasks, each of which is to compute one 

element of the resulting matrix. The main idea behind an efficient solution to a regular problem 

on a heterogeneous network of computers is to transform the problem into an irregular problem, 

the structure of which is determined by the structure of the executing network rather than the 

structure of the problem itself. So, the whole regular problem is decomposed into a set of 

relatively large sub-problems, each made of a number of small identical subtasks stuck together. 

The size of each subproblem, that is, the number of elementary identical subtasks constituting the 

subproblem, depends on the speed of the processor, on which the subproblem will be solved. 

Correspondingly, the parallel program, which solves the problem on the heterogeneous network 

of computers, is a set of parallel processes, each solving one subproblem on a separate physical 

processor and all together interacting via message passing. The volume of computations 

performed by each of these processes should be proportional to its speed. 

Thus, while step 2 of problem decomposition is trivial for irregular problems, it becomes key 

for a regular problem. In fact, at this very step the application programmer designs a 

heterogeneous data parallel algorithm by working out a generic decomposition of the regular 

problem parameterized by the number and speed of processors. Most typically the generic 

decomposition takes the form of data partitioning. 

Existing programming systems for heterogeneous parallel computing [AKL+99, LAK+00, 

Las02] automate the steps 1, 3, and 4 of application development on HNOCs, that is, provide 

features that determine the characterization parameters of applications run on HNOCs, support 

the mapping of parallel algorithms to the executing network, and the execution of applications on 

HNOCs. However, they provide very poor support for generic heterogeneous decomposition of 
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regular problems implied by the number and speed of processors. The application programmers 

need to solve corresponding data partitioning problems and design and implement all supportive 

code from scratch. Our own experience with using mpC and HMPI for parallel solution of 

regular problems on networks of computers has shown how tedious and error-prone this step of 

application development can be. 

This motivated us to try and automate the step of heterogeneous decomposition of regular 

problems by designing a library of functions solving typical partitioning problems for networks 

of heterogeneous computers. Our original approach was to do it by just collecting existing 

algorithms, designing an API to these algorithms and implementing the API. The main problem 

we came across was that no classification of partitioning problems was found which could be 

used as a basis of API design. Existing algorithms created a very fragmented picture. Therefore 

the main goal of our research became to classify partitioning problems for networks of 

heterogeneous computers. Such classification had to help to specify problems with known 

efficient solutions and identify open problems. Then based on this classification an API would 

have to be designed and partially implemented (for problems that have known efficient 

solutions). An additional requirement to this classification was that it had to be useful for 

distributed computing on networks as well. 

Our approach to classification of partitioning problems is based on two corner stones: 

•  A realistic performance model of networks of heterogeneous computers, 

•  A natural classification of mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) solving problems on networks of 

heterogeneous computers. 

The main contributions in this chapter are: 
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a) The design of HDPI API based on a realistic performance model of networks of 

heterogeneous computers. 

b) The design of efficient set partitioning algorithms using a realistic performance model of 

networks of heterogeneous computers. These algorithms solve the problem of optimal 

distribution of computational tasks on a network of heterogeneous computers when one or 

more tasks do not fit into the main memory of the processors and when relative speeds 

cannot be accurately approximated by constant functions of problem size. 

This chapter is structured as follows.  

•  Section 4.1 presents a realistic performance model of networks of heterogeneous 

computers.  

o Section 4.1.1 presents an efficient procedure for building a piecewise linear 

function approximation of the speed function of a processor with hierarchical 

memory structure. The procedure tries to minimize the experimental time used for 

building the speed function approximation. 

•  Section 4.2 presents the list of mathematical objects commonly used in parallel and 

distributed algorithms.  

•  Section 4.3 presents the classification of the problems encountered during partitioning of 

sets. Based on this classification, we suggest an API for partitioning sets. 

•  Section 4.4 presents the classification of the problems encountered during partitioning of 

dense matrices. Based on this classification, we suggest an API for partitioning dense 

matrices.  

•  Section 4.5 presents the classification of the problems encountered during partitioning of 

graphs. Based on this classification, we suggest an API for partitioning graphs.  
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•  Section 4.6 presents the classification of the problems encountered during partitioning of 

trees. Based on this classification, we suggest an API for partitioning trees.  

•  Section 4.7 presents algorithms of partitioning sets. 

o Section 4.7.1 presents the formulation of a problem of partitioning of an n-element 

set over p heterogeneous processors using the performance model presented in 

section 4.1. We present an efficient solution to the problem of the complexity 

O(p2×log
2
n).  

o Section 4.7.2 presents the formulation of a problem of partitioning of an n-element 

set over p heterogeneous processors when there is an upper bound on the size of 

the task that can be solved by each processor. We extend the performance model 

presented in section 4.1 for solving this problem and give an efficient solution to 

the problem of the complexity O(p3×log
2
n). 

 

4.1 A Realistic Performance Model of Networks of Heterogeneous Computers 
 

This section presents a performance model of a network of heterogeneous computers that 

integrates some of the essential features of a heterogeneous network of computers having a major 

impact on the performance, such as the processor heterogeneity, the heterogeneity of memory 

structure, and the effects of paging. 

A number of algorithms of parallel solution of scientific and engineering problems on 

HNOCs have been designed and implemented [CQ93, CQ95, KL01, BBR+01]. They use 

different performance models of HNOCs to distribute computations amongst the processors 

involved in their execution. All the models use a single positive number to represent the speed of 
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a processor, and computations are distributed amongst the processors such that their volume is 

proportional to this speed of the processor. Cierniak et al. [CLZ97] use the notion of normalized 

processor speed (NPS) in their machine model to solve the problem of scheduling parallel loops 

at compile time for HNOCs. NPS is a single number and is defined as the ratio of time taken to 

execute on the processor under consideration, with respect to the time taken on a base processor. 

In [BBP+01] and [PD99], normalized cycle-times are used, i.e. application dependent elemental 

computation times, which are computed via small-scale experiments (repeated several times, 

with an averaging of the results). Several scheduling and mapping heuristics have been proposed 

to map task graphs onto HNOCs [TSA+97, MS98a, IO98]. These heuristics employ a model of a 

heterogeneous computing environment that uses a single number for the computation time of a 

subtask on a machine. Yan et al. [YZS96] use a two-level model to study performance 

predictions for parallel computing on HNOCs. The model uses two parameters to capture the 

effects of an owner workload. These are the average execution time of the owner task on a 

machine and the average probability of the owner task arriving on a machine during a given time 

step.  

However these models are efficient only if the relative speeds of the processors involved in the 

execution of the application are a constant function of the size of the problem and can be 

approximated by a single number. This is true mainly for homogeneous distributed memory 

systems where: 

•  The processors have almost the same size at each level of their memory hierarchies, and  

•  Each computational task assigned to a processor fits in its main memory. 

But these models become inefficient in the following cases: 
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•  The processors have significantly different memory structure with different sizes of 

memory at each level of memory hierarchy. Therefore, beginning from some problem size, 

the same task will still fit into the main memory of some processors and stop fitting into 

the main memory of others, causing the paging and visible degradation of the speed of 

these processors. This means that their relative speed will start significantly changing in 

favor of non-paging processors as soon as the problem size exceeds the critical value. 

•  Even if the processors of different architectures have almost the same size at each level of 

the memory hierarchy, they may employ different paging algorithms resulting in different 

levels of speed degradation for the task of the same size, which again means the change of 

their relative speed as the problem size exceeds the threshold causing the paging. 

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the effects 

of paging significantly complicates the design of algorithms distributing computations in 

proportion with the relative speed of heterogeneous processors. One approach to this problem is 

to just avoid the paging as it is normally done in the case of parallel computing on homogeneous 

multi-processors. However avoiding paging in local and global HNOCs may not make sense 

because in such networks it is likely to have one processor running in the presence of paging 

faster than other processors without paging. It is even more difficult to avoid paging in the case 

of distributed computing on global networks. There may not be a server available to solve the 

task of the size you need without paging.  

Therefore, to achieve acceptable accuracy of distribution of computations across 

heterogeneous processors in the possible presence of paging, a more realistic performance model 

of a set of heterogeneous processors is needed. Therefore we suggest a model where the speed of 

each processor is represented by a continuous and relatively smooth function of the problem size 
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whereas standard models use a single number to represent the speed. This model integrates some 

of the essential features underlying applications run on general-purpose common heterogeneous 

networks, such as the processor heterogeneity in terms of the speeds of the processors, the 

memory heterogeneity in terms of the number of memory levels of the memory hierarchy and the 

size of each level of the memory hierarchy, and the effects of paging. This model is application-

centric in the sense that generally speaking different applications will characterize the speed of 

the processor by different functions. 

In this model, we do not incorporate one feature, which has a significant impact on the optimal 

distribution of computations over heterogeneous processors. This feature is the latency and the 

bandwidth of the communication links interconnecting the processors. This factor can be ignored 

if the contribution of communication operations in the total execution time of the application is 

negligible compared to that of computations. Otherwise, any algorithm of distribution of 

computations aimed at the minimization of the total execution time should take into account not 

only the heterogeneous processors but also the communication links whose maximal number is 

equal to the total number of heterogeneous processors squared. This significantly increases the 

space of possible solutions and increases the complexity of data partitioning algorithms. Any 

performance model must also take into account the contention that may be caused in the 

network. On a heterogeneous network of workstations using Ethernet as the interconnect, the 

performance will suffer if many messages are being sent at the same time. Therefore it is 

desirable to schedule a parallel program in such a way that only one processor sends a message 

at a given time. So optimal communication schedules must be obtained to reduce the overall 

communication time. The communication scheduling algorithms must be adaptive to variations 

in network performance and that derive the schedule at runtime based on current information  
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Machine 
Name Architecture cpu MHz 

Total Main 
Memory 
(kBytes) 

Cache 
(kBytes) 

Comp1 Linux 2.4.20-8 Intel(R) 
Pentium(R) 4 

2793 513304 512 

Comp2 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 524288 2048 

Comp3 Windows AMD Athlon XP 3000 1030388 512 

Comp4 Linux 2.4.7-10 i686 730 254524 256 
Table 4.1: Specifications of four heterogeneous computers, on which applications are run to determine the effect of 

caching and paging in reducing their execution speed.  
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Figure 4.1: The effect of caching and paging in reducing the execution speed of each of the four applications run on 

network of heterogeneous computers shown in Table 4.1. (a) ArrayOpsF, (b) MatrixMultATLAS, and (c) 

MatrixMult. P is the point where paging starts occurring. 
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about network load. However the problem of finding the optimal communication schedule is NP-

complete. The issues involved in including the cost of communications are discussed in more 

detail in [DL04]. Bhat et al. [BPR99] present a heuristic algorithm that is based on a 

communication model that represents the communication performance between every processor 

pair using two parameters: a start-up time and a data transmission rate. The incorporation of 

communication cost in our functional model and subsequent derivation of efficient data 

partitioning algorithms using this model is a subject of our future research. In this work, we 

intend to fully focus on the impact of the heterogeneity of processors on optimal distribution of 

computations.  

There are two main motivations behind the representation of the speed of the processor by a 

continuous and relatively smooth function of the problem size. First of all, we want the model to 

adequately reflect the behavior of common, not very carefully designed applications. Consider 

the experiments with a range of applications differently using memory hierarchy that are 

presented in [LT04] and shown in Figure 4.1. Carefully designed applications ArrayOpsF and 

MatrixMultAtlas, which efficiently use memory hierarchy, demonstrate quite a sharp and 

distinctive performance curve of dependence of the absolute speed on the problem size. For these 

applications, the speed of the processor can be approximated by a step-wise function of the 

problem size. At the same time, application MatrixMult, which implements a straightforward 

algorithm of multiplication of two dense square matrices and uses inefficient memory reference 

patterns, displays quite a smooth dependence of speed on the problem size. For such 

applications, the speed of the processor can not be accurately approximated by a step-wise 

function. It should be approximated by a continuous and relatively smooth function of the 

problem size if we want the performance model to be accurate enough.  
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Figure 4.2: Effect of workload fluctuations on the execution of application MatrixMultATLAS on computers shown 

in Table 4.1. The width of the performance bands is given in percentage of the maximum speed of execution of the 

application. (a) Performance band for Comp1, (b) Performance band for Comp2, and (c) Performance band for 

Comp4. 

 

The other main motivation is that we target general-purpose common heterogeneous networks 

rather than dedicated high performance computer systems. A computer in such a network is 

persistently performing some minor routine computations and communications just as an 

integrated node of the network. Examples of such routine applications include email clients, 

browsers, text editors, audio applications, etc. As a result, the computer will experience constant 

and stochastic fluctuations in the workload. This changing transient load will cause a fluctuation 

in the speed of the computer in the sense that the execution time of the same task of the same 
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size will vary for different runs at different times. The natural way to represent the inherent 

fluctuations in the speed is to use a speed band rather than a speed function. The width of the 

band characterizes the level of fluctuation in the performance due to changes in load over time. 

The shape of the band makes the dependence of the speed of the computer on the problem size 

less distinctive and sharp even in the case of carefully designed applications efficiently using the 

memory hierarchy. Therefore, even for such applications the speed of the processor can be 

realistically approximated by a continuous and relatively smooth function of the problem size. 

Figure 4.2 shows experiments conducted with application MatrixMultATLAS on a set of 

computers whose specifications are shown in Table 4.1. The application employs the level-3 

BLAS routine dgemm [DCD+90] supplied by Automatically Tuned Linear Algebra Software 

(ATLAS) [WPD00]. ATLAS is a package that generates efficient code for basic linear algebra 

operations. The package, which contains code generators, sophisticated timers, and robust search 

routines, achieves this by adapting itself to differing architectures via code generation coupled 

with timing. The computers have varying specifications and varying levels of network 

integration and are representative of the range of computers typically used in networks of 

heterogeneous computers. 

Representation of the dependence of the speed on the problem size by a single curve is 

reasonable for computers with moderate fluctuations in workload because in this case the width 

of the performance band is quite narrow. On networks with significant workload fluctuations, the 

speed function of the problem size should be characterized by a band of curves rather than by a 

single curve. In the experiments that we have conducted, we observed that computers with high 

level of integration into the network produce fluctuations in speed that is in the order of 40% for 

small problem sizes declining to approximately 6% for the maximum problem size solvable on 
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the computer. The influence of workload fluctuations on the speed becomes less significant as 

the execution time increases. There is a close to linear decrease in the width of the performance 

band as the execution time increases. For computers with low level of integration, the width of 

the performance band was not greater than around 5-7% even when there was heavy file sharing 

activity. It is observed that for computers already engaged in heavy computational tasks, the 

addition of heavy loads just shifts the band to a lower level with the width of the band remaining 

constant, that is, the upper and lower levels of speed are reduced with the width representing the 

difference between the levels remaining the same. However more experimental study needs to be 

carried out to accurately represent the width of the performance bands for computers with 

varying levels of integration to increase the efficiency of the model. This is a subject of our 

future research where we intend to improve our functional model by adding an additional 

parameter that reflects the level of workload fluctuations in the network. 

The functional model does not take into account the effects on the performance of the 

processor caused by several users running heavy computational tasks simultaneously. It supposes 

only one user running heavy computational tasks and multiple users performing routine 

computations and communications, which are not heavy like email clients, browsers, audio 

applications, text editors etc. 

In the next section, we present a practical procedure to build a piecewise linear function 

approximation of the speed band of a processor, the width of the band representing the 

fluctuations in speed due to changes in load over time. However, the problem of efficiently 

building and maintaining the functional model requires further study and is open for research.  

The problem of optimally scheduling divisible loads has been studied extensively and the 

theory is commonly referred to as Divisible Load Theory (DLT). The main features of earlier  
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works in DLT [BGM+96, DW03a] are they assume distributed systems with a flat memory 

model and use a linear mathematical model where the speed of the processor is represented by a 

constant function of the problem size. Drozdowski and Wolniewicz [DW03b] propose a new 

mathematical model that relaxes the above two assumptions. They study distributed systems, 

which have both the hierarchical memory model and a piecewise constant dependence of the 

speed of the processor on the problem size. However the model they formulate is targeted mainly 

towards optimal distribution of arbitrary tasks for carefully designed applications on dedicated 

distributed multiprocessor computer systems whereas our model is aimed towards optimal 

distribution of arbitrary tasks for any arbitrary application on general-purpose common 

heterogeneous networks. 

 

4.1.1 Procedure for Building the Functional Performance Model 

We use piecewise linear function approximation illustrated in Figure 4.3 to represent the speed 

band of a processor, the width of the band representing the fluctuations in speed due to changes 

in load over time. Each of the approximations is built using a set of few experimentally obtained 

points. The more points used to build the approximation, the more accurate the approximation is. 

However it is prohibitively expensive to use large number of points. Hence an optimal set of few 

points needs to be chosen to build an efficient piecewise linear function approximation of the 

speed band. Such an approximation built gives the speed of the processor for any problem size 

with certain accuracy within the inherent deviation of the performance of computers typically 

observed in the network.  
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Figure 4.3: Using piecewise linear approximation to build speed bands for 2 processors. The circular points are 

experimentally obtained whereas the square points are calculated using heuristics. The speed band for processor 

s1(x) is built from 3 experimentally obtained points (application run on this processor uses memory hierarchy 

inefficiently) whereas the speed band s2(x) (application run on this processor uses memory hierarchy efficiently) is 

built from 4 experimentally obtained points. 

 

This section is organized as follows. We start with the formulation of the speed band 

approximation building problem. This is followed by a section on obtaining the load functions 

characterizing the level of fluctuation in load over time. Then we present the assumptions 

adopted by our procedure and some operations and relations related to the piecewise linear 

function approximation of the speed band. We then explain our procedure to build the piecewise 

linear function approximation. And finally we demonstrate the efficiency of our procedure by 

performing experiments using a matrix multiplication application and a Cholesky Factorization 

application that use memory hierarchy efficiently and a matrix multiplication application that 

uses memory hierarchy inefficiently on a local network of heterogeneous computers.  
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(c)                                                                                      (d) 

Figure 4.4: (a) Real-life speed band of a processor, (b) Real-life speed band of a processor and a piecewise linear 

function approximation of a processor, (c) The speeds smax(x) and smin(x) representing a cut of the real band used to 

build the piecewise linear approximation, and (d) Piecewise linear approximation built by connecting the cuts. 

 

4.1.1.1 Problem Formulation 

For a given application in a real-life situation, the performance demonstrated by the processor is 

characterized by a speed band representing the speed function of the processor with the width of 

the band characterizing the level of fluctuation in the speed due to changes in load over time. 

This is shown in Figure 4.4(a).  

The problem is to find experimentally an approximation of the speed band of the processor 

that can represent the speed band with sufficient accuracy and at the same time spend minimum 
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experimental time to build the approximation. One such approximation is a piecewise linear 

function approximation which accurately represents the real-life speed band with a finite number 

of points. This is shown in Figure 4.4(b). 

The piecewise linear function approximation of the speed band of the processor is built using 

a set of experimentally obtained points for different problem sizes.To obtain an experimental 

point for a problem size x (we define the size of the problem to be the amount of data stored and 

processed by the application), we execute the application for this problem size. We measure the 

ideal execution time tideal and not the real time of execution. We define tideal as the time it would 

require to solve the problem on a completely idle processor. For example on UNIX platforms, 

this information can be obtained by using the time utility or the getrusage() system call. The 

ideal speed of execution sideal is then equal to the volume of computations divided by tideal. We 

assume we have the load functions of historical load data lmax(t) and lmin(t), which are the 

maximum and minimum load averages observed over increasing time periods. The load average 

is the number of active processes running on the processor at any time. We make a prediction of 

the maximum and minimum average load, lmax,predicted(x) and lmin,predicted(x) respectively, that 

would occur during the execution of the application for the problem size x. The creation of the 

functions lmax(t) and lmin(t) and predicting the load averages are explained in detail in the next 

section. Using sideal and the load averages predicted, we calculate smax(x) and smin(x) for a 

problem size x: 

)()()()( min,max xSxlxSxS idealpredictedideal ×−=  

)()()()( max,min xSxlxSxS idealpredictedideal ×−=  

The experimental point is then given by a vertical line connecting the points (x, smax(x)) and 

(x, smin(x)). We call this vertical line the “cut” of the real band. This is illustrated in Figure 

4.4(c). The difference between the speeds smax(x) and smin(x) represents the level of fluctuation in 
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the speed due to changes in load during the execution of the problem size x. The piecewise linear 

approximation is obtained by connecting these experimental points as shown in Figure 4.4(d). So 

the problem of building the piecewise linear function approximation is to find a set of such 

experimental points that can represent the speed band with sufficient accuracy and at the same 

time spend minimum experimental time to build the piecewise linear function approximation.  

Mathematically the problem of building piecewise linear function approximation can be 

formulated as follows: 

Definition. Piecewise Linear Function Approximation Building Problem PLFABP(lmin(t),lmax(t)): 

Given the functions lmin(t) and lmax(t) (lmin(t) and lmax(t) are functions of time, characterizing the 

level of fluctuation in load), obtain a set of n experimental points representing the piecewise 

linear function approximation of the speed band of a processor, each point representing a cut 

given by (xi,smax(xi)) and (xi,smin(xi)) where xi is the size of the problem and smax(xi) and smin(xi)  
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Figure 4.5: The non-empty intersectional area of piecewise linear function approximation with the real-life speed 

band is a simply connected surface. 
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are speeds calculated based on the functions lmin(t) and lmax(t) and ideal speed sideal at point i, 

such that: 

•  The non-empty intersectional area of piecewise linear function approximation with the 

real-life speed band is a simply connected surface (A surface is said to be connected if a 

path can be drawn from every point contained within its boundaries to every other point. A 

topological space is simply connected if it is path connected and it has no holes. This is 

illustrated in Figure 4.5), and  

•  the sum ∑
=

n

1i
it  of the times is minimal where ti is the experimental time used to obtain 

point i.  

We provide an efficient and a practical procedure to build a piecewise linear function 

approximation of the speed function of a processor. 

 

4.1.1.2 Load Functions 

There are a number of experimental methods that can be used to obtain the functions lmin(t) and 

lmax(t) (characterizing the level of fluctuation in load over time) input to our procedure for 

building the piecewise linear function approximation. 

One of the methods is to use the metric of Load Average. Load Average measures the number 

of active processes at any time. High load averages usually means that the system is being used 

heavily and the response time is correspondingly slow. The operating system maintains three 

figures for averages over one, five and fifteen minute periods. There are alternative metrics 

available through many utilities on various platforms such as vmstat (UNIX), top (UNIX), 

perfmon (Windows) or through performance probes and they may be combined to more  
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Figure 4.6: (a) lmax(t) and lmin(t) are generated from the load history. (b) A plot of points in matrix A. (c) lmax(t) and 

lmin(t), the maximum and minimum loads calculated from the matrix of load averages A. 

 

accurately represent utilization of a system under a variety of conditions [WSS00]. In this work, 

we will use the load average metric only. 

The load average data is represented by two piecewise linear functions: lmax(t) and lmin(t). The 

functions describe load averaged over increasing periods of time up to a limit w as shown in 

Figure 4.6(c). This limit should be at most the running time of the largest foreseeable problem, 

which is the problem size where the speed of the processor can be assumed to be zero (this is 

given by problem size b discussed in section on speed function approximation building 

procedure). For execution of a problem with a running time greater than this limit, the values of 
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the load functions at w may be extended to infinity. The functions are built from load averages 

observed every ∆  time units. One, five or fifteen minutes are convenient values for ∆  as 

statistics for these time periods are provided by the operating system (using a system call 

getloadavg()). Alternate values of ∆  would require additional monitoring of the load average and 

translation into ∆  time unit load average.  

The amount of load observations used in the calculation of lmax(t) and lmin(t) is given by h, the 

history. A sliding window with a length of w passes over the h most recent observations. At each 

position of the window a set of load averages is created. The set consists of load averages 

generated from the observations inside the window. If ∆  were one minute, a one minute average 

would be given by the first observation in the window, a two minute average would be the 

average of the first and second observations in the window, and so on. While the window is 

positioned completely within the history, a total of w load averages would be created in each set, 

the load averages having periods of ∆ , 2∆ , … w∆  time units. The window can move a total of w 

times, but after the (h – w)-th time, its end will slide outside of the history. The sets of averages 

created at these positions will not range as far as w∆  but they are still useful. From all of these 

sets of averages, maximum and minimum load averages for each time period ∆ , 2∆ , … w∆  are 

extracted and used to create the functions lmax(t) and lmin(t). 

More formally, if we have a sequence of observed loads: l1,l2,...,lh , then the matrix A of load 

averages created from observations is defined as follows: 

h<j+i and ...1;...1 allfor  ,   where
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The elements marked as ×  in the matrix A are not evaluated as the calculations would operate on 

observations taken beyond lh. lmax(t) and lmin(t), are then defined by the maximum and minimum 

calculated j-th load averages respectively, i.e. the maximum or minimum value of a row j in the 

matrix (see Figure 4.6). Points are connected in sequence by straight-line segments to give a 

continuous piecewise function. The points are given by:  

lmax j( )=
i=1

h

max aij( )

lmin j( )=
i=1

h

min aij( )
 (2) 

Initial generation of the array has been implemented with a complexity of h × w( )2
. Maintaining 

the functions lmax(t) and lmin(t) after a new observation is made has a complexity of 2w . ∆ , h, 

and w may be adjusted to ensure the generation and maintenance of the functions is not an 

intensive task. 

When building the speed functions Smin(x) and Smax(x), we execute the application for a 

problem size x. We then measure the ideal time of execution tideal. We define tideal as the time it 

would require to solve the problem on a completely idle processor. On UNIX platforms it is 

possible to measure the number of CPU seconds a process has used during the total time of its 

execution. This information is provided by the time utility or by the getrusage() system call. We 

assume that the number of CPU seconds a process has used is equivalent to time it would take to 

complete execution on a completely idle processor: tideal. We can then estimate the time of 

execution for the problem running under any load l with the following function: 

( ) idealt
l

lt ×
−

=
1

1
 (3) 

This formula assumes that the system is uniprocessor, that no jobs are scheduled if the load is 

one or greater and that the task we are scheduling is to run as a nice’d process (nice is an  
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Figure 4.7: Intersection of load and running time functions (Formula 3). 

 

operating system call that allows a process to change its priority), only using idle CPU cycles. 

These limitations fit the target of execution on non-dedicated platforms. If a job is introduced 

onto a system with a load of, for example, 0.1, the system has a 90% idle CPU, then the formula 

predicts that the job will take 1/0.9 times longer than the optimal time of execution: tideal.  

In order to calculate the speed functions Smin(x) and Smax(x), we need to find the points where 

the function of performance degradation due to load (Formula 3) intersects with the history of 

maximal and minimal load lmax(t) and lmin(t) as shown in Figure 4.7. For a problem size x, the 

intersection points give the maximum and minimum predicted loads lmax,predicted(x) and 

lmin,predicted(x). Using these loads, the speeds Smin(x) and Smax(x) for a problem size x are 

calculated as: 

)()()()( min,max xSxlxSxS idealpredictedideal ×−=                    (4) 

)()()()( max,min xSxlxSxS idealpredictedideal ×−=                    (5) 
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Figure 4.8: Permissible shapes of the graphs representing the real-life speed bands of two processors. 
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 (a)                                                                                      (b) 

Figure 4.9: (a) Shape of real-life speed function of processor for applications that use memory hierarchy efficiently, 

(b) Shape of real-life speed function of processor for applications that use memory hierarchy inefficiently.  

 

where )(xSideal  is equal to the volume of computations involved in solving the problem size x 

divided by the ideal time of execution tideal.  

 

4.1.1.3 Assumptions 

We make some assumptions on the real-life speed band of a processor. Firstly, there are some 

shape requirements.  
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(a) We assume that the upper and lower curves of the speed band are continuous functions of 

the size of the problem. 

(b) The permissible shapes of the real-life speed band are: 

•  The upper curve and the lower curve are both a non-increasing function of the size of 

the problem for all problem sizes (as shown by s1(x) in Figure 4.8). 

•  The upper curve and the lower curve are both a non-decreasing function of the size of 

the problem followed by a non-increasing function of the size of the problem (as 

shown by s2(x) in Figure 4.8).  

(c) A straight line intersects the upper curve of the real-life speed band in no more than one 

point between its endpoints and the lower curve of the real-life speed band in no more than 

one point between its endpoints as shown for applications that use memory hierarchy 

efficiently in Figure 4.9(a) and for applications that use memory hierarchy inefficiently as 

shown in Figure 4.9(b).  

(d) We assume that the width of the real-life speed band, representing the level of fluctuations 

in speed due to changes in load over time, decreases as the problem size increases. 

These assumptions are justified by experiments conducted with a range of applications 

differently using memory hierarchy presented in [LT04].  

Secondly, we do not take into account the effects on the performance of the processor caused 

by several users running heavy computational tasks simultaneously. We suppose only one user 

running heavy computational tasks and multiple users performing routine computations and 

communications, which are not heavy like email clients, browsers, audio applications, text 

editors etc. 
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4.1.1.4 Definitions 

Before we present our procedure to build a piecewise linear function approximation of the speed 

band of a processor, we present some operations and relations on cuts that we use to describe the 

procedure. The piecewise linear function approximation of the speed band of the processor is 

built by connecting these cuts. 

1. We use Ix at problem size x to represent the interval (smin(x),smax(x)). Ix is the projection 

of the cut Cx connecting the points (x,smin(x)) and (x,smax(x)) on the y-axis. 

2. Ix≤Iy if and only if smax(x)≤smax(y) and smin(x)≤smin(y).  

3. Ix∩Iy represents intersection between the intervals (smin(x),smax(x)) and (smin(y),smax(y)). If 

Ix∩Iy=Ø where Ø represents an empty set with no elements, then the intervals are 

disjoint. If Ix∩Iy=Iy, then the interval (smin(x),smax(x)) contains the interval 

(smin(y),smax(y)), that is, smax(x)≥smax(y) and smin(x)≤smin(y). 

4. Ix=Iy if and only if Ix≤Iy and Iy≤Ix. 

 

4.1.1.5 Speed Function Approximation Building Procedure 

Procedure Geometric Bisection Building Procedure GBBP(lmax(t),lmin(t)). The procedure to build 

the piecewise linear function approximation of the speed band of a processor consists of the 

following steps and is illustrated in Figure 4.10: 

1. We select an interval [a,b] of problem sizes where a is some small size and b is the 

problem size large enough to make the speed of the processor practically zero. In most 

cases, a is the problem size that can fit into the top level of memory hierarchy of the 

computer (L1 cache) and b is the problem size that is obtained based on the maximum 

amount of memory that can be allocated on heap. To calculate the problem size b, we run  
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Figure 4.10: (a) to (f) Illustration of the procedure to obtain the piecewise linear function approximation of the 

speed band for a processor. Circular points are experimentally obtained points. Square points are points of 

intersection that are calculated but not experimentally obtained. White circular points are experimentally obtained 

and that fall in the current approximation of the speed band. 
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a modified version of the application, which includes only the code that allocates memory 

on heap. For example consider a matrix-matrix multiplication application of two dense 

square matrices A and B of size n×n to calculate resulting matrix C of size n×n, the 

modified version of the application would just contain the allocation and de-allocation of 

matrices A, B, and C on heap. This modified version is then run until the application fails  

due to exhaustion of heap memory, the problem size at this point gives b. It should be 

noted that finding the problem size b by running the modified version should take just 

few seconds.  

We obtain experimentally the speeds of the processor at point a given by smax(a) and 

smin(a) and we set the absolute speed of the processor at point b to 0. Our initial 

approximation of the speed band is a speed band connecting cuts Ca and Cb. This is 

illustrated in Figure 4.10(a). 

2. We experiment with problem sizes a and 2a. If I2a≤Ia or I2a∩Ia=I2a, we replace the current 

approximation of the trapezoidal speed band with two trapezoidal connected bands, the 

first one connecting the cuts Ca and C2a and the second one connecting the cuts C2a and 

Cb. We then consider the interval [2a,b] and apply step 3 of our procedure to this interval. 

The speed band in this interval connecting the cuts at problem sizes 2a and b is input to 

step 3 of the procedure. We set xleft to 2a and xright to b. 

If Ia≤I2a, we recursively apply this step until I(k+1)×a≤Ika or I(k+1)×a≤Ika=I(k+1)×a. We 

replace the current approximation of the speed band in the interval [k×a,b] with two 

connected bands, the first one connecting the cuts Cka and C(k+1)×a and the second one 

connecting the cuts C(k+1)×a and Cb. We then consider the interval [(k+1)×a,b] and apply 

the step 3 of our procedure to this interval. The speed band in this interval connecting the 
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cuts C(k+1)×a and Cb is input to step 3 of the procedure. We set xleft to (k+1)×a and xright to 

b. This is illustrated in Figure 4.10(b). 

It should be noted that the time taken to obtain the cuts at problem sizes {a, 2a, 

3a,…,(k+1)×a} is relatively small (usually milliseconds to seconds) compared to that for 

larger problem sizes (usually minutes to hours). 

3. We bisect this interval [xleft,xright] into sub-intervals [xleft,xb1
] and [xb1

,xright] of equal 

length. We obtain experimentally the cut Cxb1
 at problem size xb1

. We also calculate the 

cut of intersection of the line x=xb1 
with the current approximation of the speed band 

connecting the cuts Cx
left

 and Cx
right

. The cut of intersection is given by C'xb1
. 

a. If Ix
left
∩Ixb1

≠Ø, we replace the current approximation of the speed band with two 

connected bands, the first one connecting the cuts Cx
left

 and Cxb1 
and the second 

one connecting the cuts Cxb1
 and Cx

right
. This is illustrated in Figure 4.10(c). We 

stop building the approximation of the speed band in the interval [xleft,xb1
] and 

recursively apply step 3 for the interval [xb1
,xright]. We set xleft to xb1

. 

b. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

≠Ø, we replace the current approximation of the 

speed band with two connected bands, the first one connecting the cuts Cx
left

 and 

Cxb1 
and the second one connecting the cuts Cxb1

 and Cx
right

. This is illustrated in 

Figure 4.10(d). We stop building the approximation of the speed band in the 

interval [xb1
,xright] and recursively apply step 3 for the interval [xleft,xb1

]. We set 

xright to xb1
. 

c. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and Ixb1
∩I'xb1

≠Ø, then we have two scenarios 

illustrated in Figures 4.10(e) and 4.10(f) where experimental point at the first  
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Figure 4.11: (a) to (f) Illustration of the procedure to obtain the piecewise linear function approximation of the 

speed band for a processor. Circular points are experimentally obtained points. Square points are points of 

intersection that are calculated but not experimentally obtained. White circular points are experimentally obtained 

and that fall in the current approximation of the speed band. 
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point of bisection falls in the current approximation of the speed band just by 

accident.  

Consider the interval [xleft,xb1
]. This interval is bisected at the point xb2

. We 

obtain experimentally the cut Cxb2 
at problem size xb2

. We also calculate the cut of 

intersection C'xb2 
of the line x=xb2 

with the current approximation of the speed 

band. If Ixb2
∩I'xb2

≠Ø, we stop building the approximation of the speed function in 

the interval [xleft,xb1
] and we replace the current approximation of the trapezoidal 

speed band in the interval [xleft,xb1
] with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb2 
and the second one connecting the points Cxb1

 

and Cxb2
. Since we have obtained the cut at problem size xb2

 experimentally, we 

use it in our approximation. This is chosen as our final piece of our piece-wise 

linear function approximation in the interval [xleft,xb1
]. If Ixb2

∩I'xb2
=Ø, the 

intervals [xleft,xb2
] and [xb2

,xb1
] are recursively bisected using step 3. Figure 

4.11(a) illustrates the procedure.  

Consider the interval [xb1
,xright]. This interval is recursively bisected using step 

3. We set xleft to xb1
. Figure 4.11(b) illustrates the procedure.  

d. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and Ixb1
≤I'xb1 

and Ixb1
∩I'xb1

=Ø, we replace the 

current approximation of the speed band with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb1 
and the second one connecting the cuts Cxb1

 

and Cx
right

. This is illustrated in Figure 4.11(c). The intervals [xleft,xb1
] and 

[xb1
,xright] are recursively bisected using step 3. Figure 4.11(d) illustrates the 

procedure. 
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 (a)                                                                                      (b) 

Figure 4.12: (a) The final piecewise linear function approximation of the speed band of a processor for an 

application that utilizes memory hierarchy efficiently. (b) The final piecewise linear function approximation of the 

speed band of a processor for an application that utilizes memory hierarchy inefficiently. 

 

e. If Ix
left
∩Ixb1

=Ø and Ix
right
∩Ixb1

=Ø and I'xb1
≤Ixb1 

and Ixb1
∩I'xb1

=Ø, we replace the 

current approximation of the speed band with two connected bands, the first one 

connecting the cuts Cx
left

 and Cxb1 
and the second one connecting the cuts Cxb1

 

and Cx
right

. This is illustrated in Figure 4.11(e). The interval [xleft,xb1
] and 

[xb1
,xright] are recursively bisected using step 3. Figure 4.11(f) illustrates the 

procedure.  

4. The stopping criterion of the procedure is satisfied when we don’t have any sub-interval 

to divide. Figures 4.12(a) and 4.12(b) show the final piecewise linear function 

approximation of the speed band of the processor for an application that uses memory 

hierarchy efficiently and an application that uses memory hierarchy inefficiently.  
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Matrix-matrix 
multiplication 

(dgemm) 
& 

Inefficient 
Matrix-matrix 
multiplication  

Cholesky 
Factorization 

(dpotrf) 

Processor Architecture cpu 
MHz 

Total Main 
Memory 
(kBytes) 

Available 
Main 

Memory 
(kBytes) 

Cache 
(kBytes) 

Size of 
matrix 

(na) 

Size of 
matrix 

(nb) 

Size of 
matrix 

(na) 

Size of 
matrix 

(nb) 

X1 

Linux 
2.6.8-1.521smp 

Intel(R) 
XEON(TM) 

1977 1033908 460368 512 100 13000 100 19500 

X2 
SunOS 5.9 

UltraSPARC-Iii 
440 524288 401408 2048 100 7000 100 13000 

Table 4.2: Specifications of two heterogeneous processors used to demonstrate the efficiency of the GBBP 
procedure. 

 
Matrix-matrix 
multiplication 

(ATLAS) 

Cholesky Factorization 
(ATLAS) 

Inefficient Matrix-matrix 
multiplication 

 

Processor 

Speedup (Number of points 
taken to build using GBBP) 

Speedup (Number of points 
taken to build using GBBP) 

Speedup (Number of points 
taken to build using GBBP) 

X1 8.5(7) 6.5(19) 5.9(5) 
X2 5.7(10) 15(8) 5.7(5) 

Table 4.3: Speedup of GBBP procedure over naïve procedure. 

 

4.1.1.6 Experimental Results 

We consider a Linux workstation and a Solaris workstation, which are integrated into local 

departmental network in the experiments. The specifications of the computer are shown in Table 

4.2. The amount of memory, which is the difference between the total main memory and 

available main memory shown in the tables, is used by the operating system processes and few 

other user application processes that perform routine computations and communications such as 

email clients, browsers, text editors, audio applications etc. These processes use a constant 

percentage of CPU. 

There are three applications used to demonstrate the efficiency of our procedure to build the 

piecewise linear function approximation of the speed band of a processor. The first application is 

Cholesky Factorization of a dense square matrix employing the LAPACK [ABB+92] routine 

dpotrf. The second application is matrix-matrix multiplication of two dense matrices using  
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(e)                                                                                 (f)  

Figure 4.13: Piecewise linear approximation of the speed band against the real-life speed function. Circular points 

are experimentally obtained points. Square points are calculated but not experimentally obtained. (a) Cholesky 

Factorization using ATLAS on X1. (b) Cholesky Factorization using ATLAS on X2. (c) Matrix-matrix 

multiplication using memory hierarchy inefficiently on X1. (d) Matrix-matrix multiplication using memory 

hierarchy inefficiently on X2. (e) Matrix-matrix multiplication using ATLAS on X1. (f) Matrix-matrix 

multiplication using ATLAS on X2. 



The Heterogeneous Data Partitioning Interface (HDPI) 

212 

memory hierarchy inefficiently. The third application is based on matrix-matrix multiplication of 

two dense matrices employing the level-3 BLAS routine dgemm [DCD+90] supplied by 

Automatically Tuned Linear Algebra Software (ATLAS) [WPD00]. 

Figures 4.13(a) to (f) show the real-life speed function and the piecewise linear function 

approximation of the speed band of the processors X1 and X2 for the matrix multiplication and 

Cholesky Factorization applications. The real-life speed function for a processor is built using a 

set of experimentally obtained points (x,s) . To obtain an experimental point for a problem size x, 

we execute the application for the problem size at that point. The absolute speed of the processor 

s for this problem size is obtained by dividing the total volume of computations by the real 

execution time (and not the ideal execution time).  

Table 4.3 shows the speedup of Geometric Bisection Building Procedure (GBBP) over a 

naïve procedure. The naïve procedure divides the interval [a,b] of problem sizes equally into n 

points. The application is executed for each of the problem sizes {(a),(a+(b-a)/n),(a+2×(b-

a)/n),…,(b)} to obtain the experimental points to build the piecewise linear function 

approximation of the speed band. In our experiments, we have used 20 points. The speedup 

calculated is equal to the ratio of the experimental time taken to build the piecewise linear 

function approximation of the speed band using the naïve procedure over the experimental time 

taken to build the piecewise linear function approximation of the speed band.  

We measured the accuracy of the load average functions lmax(t) and lmin(t) by counting how 

often a future load was found to be within the bounds of the curves and by measuring the area 

between the curves. A very wide band will encompass almost all future loads but the prediction 

of maximum and minimum load will be poor. We fixed w, the window size, and varied h to 

examine how the hit ratio and area of the band changed. X1, a machine operating as a desktop  
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(c)                                                                                      (d) 

Figure 4.14: (a) Load functions for X1. (b) Load functions for X2. (c) Load functions for a departmental server 

running loads at all times. (d) Load functions generated with average periods beyond one hour. 

 

with constant minor fluctuations in load, shows that a 60 minute window size gives good 

accuracy with 4 hours of historical data. X2 is used for running intensive jobs with relative 

infrequency. Figures 4.14(a) and 4.14(b) shows a sample of the load functions for processors X1-

X2. Figure 4.14(c) shows a load function for a departmental server with loads running at all 

times. 

4.1.1.7 Discussion and Future Work 

Most real-life speed bands shown by applications running on variety of operating systems satisfy 

the requirements of the GBBP procedure. However for some operating systems, the shape of the 

real-life speed band has a plateau in the region of paging as shown in Figure 4.13(f), which fails 
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the requirement (c) of the GBBP procedure. This figure shows the real-life speed function and 

the piecewise linear function approximation of the speed band of an UltraSparc processor X2 for 

a matrix multiplication application using ATLAS. In this case, due to just one plateau in the 

region of paging, GBBP procedure manages to build piecewise linear function approximation. 

However it is inefficient since it takes two additional experimental points at problem sizes 5000 

and 6500 in the region 4000-7000. In general, GBBP procedure fails to build an efficient 

piecewise linear function approximation for such shapes. We aim to extend our procedure to 

build piecewise linear function approximation efficiently for such shapes. 

During the building of the piecewise linear function approximation using the GBBP 

procedure, we consider the cut of the real-life speed band experimentally obtained for a problem 

size is accurate enough if there is a non-empty intersectional area with cut of the current 

approximation of the speed band. That is if Ix∩Iy≠Φ where Ix and Iy represent the intervals 

(smin(x),smax(x)) and (smin(y),smax(y)) of reflections of cuts Cx and Cy on y-axis respectively. The 

procedure thus uses implicitly the notion of distance between the intervals to represent accuracy 

of the building procedure. This notion of distance between the intervals can be included in the 

parameter list to the GBBP procedure without any modifications to the procedure.  

Further consideration should be put into choosing the maximum and minimum loads to 

represent a particular n minute load average. The averages have a distribution that fits a normal 

curve and the limits of the load functions could be set to encompass a certain percentage of this 

curve. This would result in a narrower pair of load curves and could give a more accurate 

representation of the band. 

The general shape of lmax(t) and lmin(t) showed that for problems executing for very long time 

frames, beyond one hour to one day (shown in Figure 4.14(d)), the predicted deviation in 
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performance is less than 1.6%. Variation in load average is very small at these time scales on all 

our machines, despite their differing roles. This would indicate that the importance of the band 

lies in scheduling jobs that run for lesser periods of time. The window size, w, could be 

dynamically assigned so that the final pair of maximum and minimum load averages represents a 

variation in performance of some user-defined percentage, and after this point the band could be 

considered a constant function. 

We understand the importance of the problem of efficient maintenance of the speed function 

approximation of the speed band. This problem is the subject of our current research.  

We aim to design efficient algorithms of data partitioning on heterogeneous networks of 

computers where the speed of a processor is represented by a speed band, the width of the band 

characterizing fluctuations in speed due to changes in load over time. 

 
 

4.2 Classification of Partitioning Problems 
 
The core of scientific, engineering or business applications is the processing of some 

mathematical objects that are used in modeling corresponding real-life problems. In particular, 

partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of 

various scientific, engineering and business domains resulted in the following short list of 

mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and 

non-ordered), dense matrices (and multidimensional arrangements) and sparse matrices, 

graphs, and trees.  

These mathematical structures give us the second dimension for our classification of 

partitioning problems. In the next section, we present our approach to classification of 
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partitioning problems using sets as mathematical objects. We also suggest an API based on the 

classification. 

 

4.3 Partitioning Problems for Sets and Ordered Sets 

A set is a well-defined collection of objects considered as a whole. The objects of a set are called 

elements or members. We consider the elements of the set to represent independent chunks of 

computations, each of equal size (i.e., each requiring the same amount of work), which can be 

computed without reference to each other i.e., without communication. 

There are two main criteria used for partitioning a set: 

1) The number of elements in each partition should be proportional to the speed of the 

processor owning that partition.  

2) The sum of weights of the elements in each partition should be proportional to the speed 

of the processor owning that partition. 

Additional restrictions that may be imposed on partitioning of an ordered set are: 

•  The elements in the set are well ordered and should be distributed into disjoint contiguous 

chunks of elements.  

The most general problem of partitioning a set can be formulated as follows: 

•  Given: (1) A set of n elements with weights wi (i=0,…,n-1), and (2) A well-ordered set of 

p processors whose speeds are functions of the size of the problem x, si=fi(x), with an 

upper bound bi on the number of elements stored by each processor (i=0,…,p-1), 

•  Partition the set into p disjoint partitions such that: (1) The sum of weights in each partition 

is proportional to the speed of the processor owning that partition, and (2) The number of 
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elements assigned to each processor does not exceed the upper bound on the number of 

elements stored by it. 

The most general partitioning problem for an ordered set can be formulated as follows: 

•  Given: (1) A well-ordered set of n elements with weights wi (i=0,…,n-1), and (2) A well-

ordered set of p processors whose speeds are functions of the size of the problem x, 

si=fi(x), with an upper bound bi on the number of elements stored by each processor 

(i=0,…,p-1), 

•  Partition the set into p disjoint contiguous chunks such that: (1) The sum of weights of the 

elements in each partition is proportional to the speed of the processor owning that 

partition, and (2) The number of elements assigned to each processor does not exceed the 

upper bound on the number of elements stored by it. 

The most general partitioning problems for a set and an ordered set are very difficult and 

open for research. At the same time, there are a number of important special cases of these 

problems with known efficient solutions. The special cases are obtained by applying one or more 

of the following simplifying assumptions: 

•  All elements in the set have the same weight. This assumption eliminates n additional 

parameters of the problem. 

•  The speed of each processor is a constant function of the problem size. 

•  There are no limits on the maximal number of elements assigned to a processor. 

One example of a special partitioning problem for a set is: 

•  Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are 

represented by single constant numbers, s0,s1,…,sp-1, and (3) There are no limits on the 

maximal number of elements assigned to a processor, 
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Model of Parallel Computation Weights of elements 
are the same 

Weights of 
elements are 

different 

Complexity Speeds are functions of problem size & a limit 
exists on number of elements stored by each 
processor. 

O(p3×log
2
n) 

No known results 

Complexity Speeds are functions of problem size & no 
limits on number of elements stored by each 
processor. 

O(p2×log
2
n) 

No known results 

Complexity Speeds are single constant numbers and a limit 
exists on number of elements stored by each 
processor. 

O(p3) 
NP-hard? 

 

Complexity Speeds are single constant numbers & no limits 
on number of elements that each processor can 
hold. 

O(p×log
2
p) 

NP-hard? 

Complexity Speeds are all the same (homogeneous case) & 
a limit exists on number of elements that each 
processor can hold. 

O(p) 

NP-hard? 

Complexity Speeds are all the same (homogeneous case) & 
a limit exists on number of elements that each 
processor can hold. The sum of the limits is 
equal to the number of elements of the set.  

O(p) 

NP-hard? 

Complexity Speeds are all the same (homogeneous case) & 
no limits on number of elements that each 
processor can hold. 

O(p) 

NP-hard? 

Table 4.4: Special cases of partitioning of a set. 

 

•  Partition the set into p disjoint partitions such that the number of elements in each partition 

is proportional to the speed of the processor owning that partition. 

The algorithm used to perform the partitioning is quite straightforward, of complexity O(p2) 

[BBP+01]. The algorithm uses a naive implementation. The complexity can be reduced down to 

O(p×log2p) using ad hoc data structures [BBP+01]. 

Another example of a special partitioning problem for a set is: 
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Weights of elements are 
different 

Rearrangement of processors 

Model of Parallel Computation Weights of 
elements are the 
same 

Allowed Not allowed 
Complexity Speeds are functions of problem size 

& a limit exists on number of elements 
stored by each processor. 

O(p3×log
2
n) 

No known 
results 

No known 
results 

Complexity Speeds are functions of the problem 
size & no limits on number of 
elements stored by each processor. O (p2×log

2
n) 

No known 
results 

No known 
results 

Complexity Speeds are single constant numbers & 
an upper bound exists on number of 
elements that each processor can hold. O(p3) 

No known 
results 

No known 
results 

Complexity Speeds are single constant numbers & 
no limits on number of elements 
stored by each processor. O(p×log

2
p) 

No known 
results 

No known 
results 

Complexity Speeds are all the same (homogeneous 
case) & a limit exists on number of 
elements that each processor can hold. O(p) 

No known 
results 

No known 
results 

Table 4.5: Special cases of partitioning of an ordered set. 

 

•  Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are 

represented by single constant numbers, s0,s1,…,sp-1, and (3) There is an upper bound bi 

on the number of elements stored by each processor (i=0,…,p-1), 

•  Partition the set into p disjoint partitions such that: (1) The number of elements in each 

partition is proportional to the speed of the processor owning that partition, and (2) The 

number of elements assigned to each processor does not exceed the upper bound on the 

number of elements stored by it 

We present an algorithm to solve this problem of partitioning of complexity O(p
3
) in Section 

4.7.2. 

The special partitioning problems for a set when the speed of the processor is represented by a 

function of the size of the problem are: 
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•  Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are 

functions of the size of the problem x, si=fi(x) (i=0,…,p-1), and (3) There are no limits 

on the maximal number of elements assigned to a processor, 

•  Partition the set into p disjoint partitions such that the number of elements in each partition 

is proportional to the speed of the processor owning that partition. 

We present an algorithm of the complexity O(p2×log
2
n) solving this problem is given in Section 

4.7.1. 

•  Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are 

functions of the size of the problem x, si=fi(x) (i=0,…,p-1), and (3) There is an upper 

bound on the maximal number of elements assigned to a processor, 

•  Partition the set into p disjoint partitions such that: (1) The number of elements in each 

partition is proportional to the speed of the processor owning that partition, and (2) The 

number of elements assigned to each processor does not exceed the upper bound on the 

number of elements stored by it 

We present an algorithm of the complexity O(p3×log
2
n) solving this problem is given in Section 

4.7.2. 

Table 4.4 and Table 4.5 summarize specific partitioning problems for a set and an ordered set 

respectively and their current state to the best knowledge of the authors. 

Based on this classification, we suggest the following API to application programmers for 

partitioning a set and an ordered set respectively into p disjoint partitions: 

typedef double (*User_defined_metric)(  
        int p, const double *speeds, const int *actual,  
        const int *ideal) 
 
int Partition_unordered_set ( 
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   int p, int pn, const double *speeds, const int *psizes,  
   const int *mlimits, int n,  const int *w,  
   int type_of_metric, User_defined_metric umf,  
   double *metric, int *np) 
 
int Partition_ordered_set ( 
   int p, int pn, const double *speeds, const int *psizes,  
   const int *mlimits, int n,  const int *w,  
   int processor_reordering, int type_of_metric,  
   User_defined_metric umf, double *metric, int *np) 

 

Parameter p is the number of partitions of the set.  Parameters speeds and psizes specify 

speeds of processors for pn different problem sizes. These parameters are 1D arrays of size 

p×pn logically representing 2D arrays of shape [p][pn]. The speed of the i-th processor for 

j-th problem size is given by the [i][j]-th element of speeds with the problem size itself 

given by the [i][j]-th element of psizes. Parameter mlimits gives the maximum number 

of elements that each processor can hold. 

Parameter n is the number of elements in the set, and parameter w is the weights of its 

elements. If w is NULL, then the set is partitioned into p disjoint partitions such that criterion (a) 

is satisfied. If parameters w, speeds, and psizes are all set to NULL, then the set is 

partitioned into p disjoint partitions such that the number of elements in each partition is the 

same. If w is not NULL and speeds and psizes are set to NULL, then the set is partitioned 

into p equally weighted disjoint partitions. If w is not NULL and speeds and psizes are not 

set to NULL, then the set is partitioned into p disjoint partitions such that criterion (b) is satisfied. 

Parameter type_of_metric specifies which metric should be used to determine the quality 

of the partitioning. If type_of_metric is USER_SPECIFIED, then the user provides a 

metric function umf, which is used to calculate the quality of the partitioning. If 

type_of_metric is SYSTEM_DEFINED, the system-defined metric is used. 



The Heterogeneous Data Partitioning Interface (HDPI) 

222 

The output parameter metric gives the quality of the partitioning, which is the deviation of 

the partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the 

output parameter metric is set to NULL, then the calculation of metric is ignored. 

If w is NULL and the set is not ordered, the output parameter np is an array of size p, where 

np[i] gives the number of elements assigned to the i-th partition. If the set is well ordered, the 

output parameter np is an array of size p+1 where processor i gets the contiguous chunk of 

elements with indexes from np[i] upto and including np[i+1]-1. 

If w is not NULL and the set is well ordered, then the user needs to specify if the 

implementations of this operation may reorder the processors before partitioning (Boolean 

parameter processor_reordering is used to do it). One typical reordering is to order the 

processors in the decreasing order of their speeds.  

If w is not NULL, the set is well ordered and the processors cannot be reordered, then the 

output parameter np is an array of size p+1, where processor i gets the contiguous chunk of 

elements with indexes from np[i] upto and including np[i+1]-1. 

If w is not NULL, the set is well ordered and the processors may be reordered, then np is an 

array of size 2×p, where np[i] gives index of a processor and np[i+1] gives the size of the 

contiguous chunk assigned to processor given by the index np[i].  

If w is not NULL and the set is not ordered, then np is an array of size n, containing the 

partitions to which the elements in the set belong. Specifically, np[i] contains the partition 

number in which element i belongs to. 

HMPI provides additional helper functions. For an ordered set, application programmers can 

use the operation, whose interface is shown below, for obtaining the coordinate of the processor 

owning the set element at index i. 
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int Get_set_processor ( 
int i, int n, int p, int processor_reordering,  
const int *np) 

 
For an unordered set, application programmers can use the operation, whose interface is 

shown below, to obtain the number of elements allocated to processor i. 

int Get_my_partition ( 
int i, int p, const double *speeds, int n) 

 
Some of the typical examples where the partitioning interfaces for sets can be used are striped 

partitioning of a matrix and simple partitioning of a graph. In striped partitioning of a matrix, a 

matrix is divided into groups of complete rows or complete columns, the number of rows or 

columns being proportional to speeds of the processors. In simple partitioning of an unweighted 

graph, the set of vertices are partitioned into disjoint partitions such that the criterion (a) is 

satisfied. In simple partitioning of a weighted graph, the set of vertices are partitioned into 

disjoint partitions such that criterion (b) is satisfied. 
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Figure 4.15: (a) Homogeneous two-dimensional block-cyclic distribution of a matrix with 1818×  elements over a 

33×  processor grid; (b) Heterogeneous two-dimensional block-cyclic distribution of a matrix of size 1818×  

elements with 66 × generalized blocks distributed over a 33×  processor grid. Each labeled (shaded and unshaded) 

area represents different rectangles of blocks, and the label indicates at which location in the processor grid the 

rectangle is stored – all rectangles labeled with the same name are stored in the same processor. Each square in a 

bold frame represents different generalised blocks. 
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4.4 Partitioning Problems for Dense Matrices 
 

A matrix of size r×c is a rectangular array of numbers arranged in r horizontal rows and c 

vertical columns. 

The typical partitioning of a matrix distributes a matrix into one-dimensional or two-

dimensional distributions of numbers. Actually, a matrix is a special case of a multidimensional 

arrangement of numbers. In general, a multidimensional distribution of numbers arranged in nd 

dimensions is partitioned into distributions of numbers arranged in 1or 2 … or nd–1 

dimensions. 

The typical partitioning of a matrix uses block-cyclic distribution of matrices on either a one-

dimensional or a two-dimensional grid of processors. The advantages of block-cyclic distribution 

are easily understood. Blocked versions of the parallel algorithms for matrix multiplication and 

linear system solvers are used in ScaLAPACK [CDD+96] to squeeze the most out of state-of-

the-art processors with pipelined arithmetic units and multilevel memory hierarchy. The block-

cyclic data layout has been selected for the dense algorithms implemented in ScaLAPACK 

principally because of its scalability [DVW94], load balance, and communication [HW94] 

properties. The block cyclic distribution has also been incorporated in the HPF language 

[HPF94, HPF97]. Suppose we have a set of processes considered as a logical process grid with 

p rows and q columns and a block-partitioned matrix with block size m×n. The generalized 

homogeneous two-dimensional block cyclic distribution partitions the matrix into generalized 

blocks of size (m×p)×(n×q), each partitioned into (p×q) blocks of the same size (m×n), going to 

separate process. In the case of generalized heterogeneous block-cyclic distribution, the blocks 

are not of the same size, but their sizes (mij×nij) depend on the performance of the processors. 

The generalized blocks are identically partitioned into p×q unequal rectangles, each being 
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assigned to a different process. The area of each rectangle should be proportional to the speed of 

the processor that stores the rectangle. Figure 4.15(a) shows homogeneous block-cyclic 

distribution of a matrix of size 1818×  over a 33×  processor grid and Figure 4.15(b) shows 

heterogeneous two-dimensional block cyclic distribution of a matrix of size 1818×  elements 

with 66 ×  generalized blocks over a 33×  process grid. Note that the elements of the matrix are 

usually small rectangular blocks and most commonly square blocks of size s×s, where optimal 

values of s depend on the memory hierarchy and on the communication-to-computation ratio of 

the target computer. The interfaces provided in this section for partitioning a matrix are 

applicable even if an element of the matrix is a rectangular block of numbers or just a number. 

In the figures presented in this section, the types of distributions should not be read as 1D data 

distributions and 2D data distributions. Instead they should be read as data distributions on a 

linear array of processors (1D processor arrangements) and data distributions on 2D processor 

grid arrangements. 

The types of distribution of a matrix over a linear processor array are:  

1) Horizontal or Vertical slices (shown in Figures 4.16(a) and 4.16(b) respectively),  

2) Naïve row or column contiguous placement of sub-blocks (shown in Figure 4.16(c)), and 

3) General rectangular distribution where the partition assigned to each processor is a 

rectangle (shown in Figures 4.16(e) to 4.16(f)). 

For distributions (1) and (2), partitioning interfaces of sets can be used. 

The general rectangular distribution is characterized by  

•  Optimization of some additional parameter such as minimization of the sum of half-

perimeters of rectangles etc. 

•  Restrictions on the shape. 
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o Row-based. 

o Column-based. 

Figures 4.16(d) and 4.16(e) show generalized row-based and column-based rectangular 

distributions of a generalized block over a linear array of eight processors. Figure 4.16(f) shows 

a general rectangular distribution of a generalized block over a linear array of eight processors. 
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Figure 4.16: Types of distribution of a matrix over a linear processor array. (a) Horizontal sliced distribution of a 

generalized block over a linear array of 3 processors, (b) Vertical sliced distribution of a generalized block over a 

linear array of 3 processors, (c) Row-contiguous distribution of the elements of a generalized block over a linear 

array of 3 processors, (d) Generalized row-based distribution of a generalized block over a linear array of 8 

processors, (e) Generalized column-based distribution of a generalized block over a linear array of 8 processors, and 

(f) General rectangular distribution of a generalized block over 9 processors. 
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Figure 4.17: Types of distribution of a matrix over a two-dimensional grid of processors. (a) Cartesian distribution 

of a generalized block over a 33×  processor grid, (b) Row-based distribution of a generalized block over a 33×  

processor grid, and (c) Column-based distribution of a generalized block over a 33×  processor grid. 

 

The row-based and column-based distributions over a linear processor array as shown in 

Figures 4.16(d) and 4.16(e) respectively are based on [BBR+01]. They present a column-based 

partitioning scheme where rectangles are tiled (the area of the rectangle assigned to a processor 

is proportional to the speed of the processor) in columns. The partitioning algorithm tries to 

minimize the communication volume, which is defined as the sum of the half-perimeters of the 

rectangles. The general rectangular distribution shown in Figure 4.16(f) is based on [CQ93, 

KRW96]. [CQ93] use an orthogonal recursive bisection to perform the matrix decomposition. 

[KRW96] devise four matrix partitioning algorithms over a linear array of processors that try to 

minimize the communication volume while simultaneously balancing the computational load 

among the processors.  

The data distributions over a linear array of processors presented here solve an optimization 

problem, which is to minimize the communication volume while simultaneously load-balancing 

the computations. Hence they have wide applicability. They could be used, for example, in an 

application employing a finite-difference scheme where the heterogeneous processors  
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Linear array of processors 2D processor grid Model of 
Parallel 

Computation 
General Row based/Column 

based 
Rectangular 

General 
Rectangular 

Cartesian Row 
based/Column 

based 
Speeds are 
functions of the 
size of the 
problem and no 
limits exist on 
number of 
elements that 
each processor 
can hold. 

 
 
 
 

No known results 

 
 
 
 

No known results 

 
 
 
 

No known 
results 

 
 
 
 

No known results 

Speeds are 
single constant 
numbers and 
an upper bound 
exists on 
number of 
elements that 
each processor 
can hold. 

 
 
 
 

No known results 

 
 
 
 

No known results 

 
 
 
 

No known 
results 

 
 
 
 

No known results 

Complexity Complexity Complexity Complexity 

∑=F  max=F  

Speeds are 
single constant 
numbers and 
no limits exist 
on number of 
elements that 
each processor 
can hold. 

Polynomial. 
[BBR+01] 

NP-complete. 
[BBL+00] 

 
 
NP-complete.  
[BBR+00] 

 
 
Approximate 
O(1). 

 
 
O(1). [KL01] 
 

∑  = Communications between the processors cannot be performed in parallel 
max = Communications between the processors performed in parallel 
 

Table 4.6: Special cases of partitioning of a dense matrix. 

 

communicate boundary elements at each step. The communication scheme in such an application 

could be anything instead of just top-bottom, left-right, top-bottom-left-right, or nearest 

neighbor. These distributions solve exactly the same optimization problem that is associated with 

such communication schemes. 

The most general problem of partitioning a matrix over a linear processor array can be 

formulated as follows: Given a matrix of size r×c with restrictions on the shape of partitions 

and a functional F computing some numerical characteristic of each partition and given an 
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ordered set of p processors whose speeds are functions of the size of the problem 

)(),...,(),( 111100 xfsxfsxfs pp −− === , with an upper bound bi )1,,1,0( −= pi L  on the number 

of elements stored by each processor, partition the matrix into p disjoint rectangles such that  

•  The area of each rectangle is proportional to the speed of the processor owning it.  

•  The number of elements of the matrix assigned to each processor does not exceed the 

upper bound on the number of elements that can be stored by it. 

•  The partition minimizes (maximizes) the functional F. 

•  The partition satisfies the shape restrictions. 

This is an open problem for research. Table 4.6 lists the specific cases of this problem.  

The shape restrictions for data distributions over a linear processor array are: for row-based 

distribution as shown in Figure 4.16(d), in each row, the number of left neighbors and the 

number of right neighbors for each processor must be the same. For column-based distribution as 

shown in Figure 4.16(e), in each column, the number of top neighbors and the number of bottom 

neighbors for each processor must be the same. 

The types of distribution of a matrix over a two-dimensional grid of processors are:  

1) Cartesian,  

2) Column-based, and  

3) Row-based. 

Figure 4.17(a) shows the Cartesian distribution of a generalized block over a 33×  processor 

grid. Figure 4.17(b) shows the row-based distribution of a generalized block over a 33×  

processor grid. Figure 4.17(c) shows the column-based distribution of a generalized block over a 

33×  processor grid. 
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The most general problem of partitioning a matrix over a 2D processor grid is the same as the 

most general problem of partitioning a matrix over a linear processor array except that the matrix 

is partitioned into p×q rectangles where p is the number of processors along the row of the grid 

and q is the number of processes along the column of the grid. 

This is an open problem for research. Table 4.6 lists the specific cases of this problem.  

The shape restrictions for data distributions on 2D processor arrangements are  

•  If there is a p×q grid of processors where p is the number of processors along the row of 

the grid and q is the number of processes along the column of the grid, the number of 

rectangles in each row must be p and in each column must be q. For example if p=3, q=3, 

the number of rectangles in the each row is 3 and the number of rectangles in each column 

is 3. Also the processors are arranged in a row-major order with their row and column 

coordinates as follows: (0,0), (0,1), (0,2) in first row, (1,0), (1,1), (1,2) in second row, and 

(2,0), (2,1), (2,2) in third row. If p=3, q =4, the number of rectangles in the each row is 4 

and the number of rectangles in each column is 3. The processors are arranged in a row-

major order with their row and column coordinates as follows: (0,0), (0,1), (0,2), (0,3) in 

first row, (1,0), (1,1), (1,2), (1,3) in second row, (2,0), (2,1), (2,2), (2,3) in third row, and 

(3,0), (3,1), (3,2), (3,3) in fourth row. 

•  For Cartesian distribution as shown in Figure 4.17(a), in each row, the number of left 

neighbors and the number of right neighbors for each processor must be the same and in 

each column, the number of top neighbors and the number of bottom neighbors for each 

processor must be the same. For row-based distribution as shown in Figure 4.17(b), in each 

row, the number of left neighbors and the number of right neighbors for each processor 

must be the same. For column-based distribution as shown in Figure 4.17(c), in each 
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column, the number of top neighbors and the number of bottom neighbors for each 

processor must be the same. 

Based on this classification, we suggest an API that allows the application programmers to 

partition a generalized block into p disjoint rectangles in the case of 1D processor arrangements 

and p×q disjoint rectangles in the case of 2D processor grid arrangements. The first operation, 

whose interface is shown below, is used for 2D processor grid arrangements. 

int Partition_matrix_2d ( 
     int p, int q, int pn, const double *speeds,  

const int *psizes, const int *mlimits, int m, int n,  
   int type_of_distribution, int *w, int *h,  
   int *trow, int *tcol, int *ci, int *cj ) 

 

The parameter p is the number of processors along the row of the processor grid. The 

parameter q is the number of processors along the column of the processor grid.    

Parameters speeds and psizes specify speeds of processors for pn different problem sizes. 

These parameters are 1D arrays of size p×q×pn logically representing arrays of shape 

[p][q][pn]. The speed of the (i,j)-th processor for k-th problem size is given by the  

[i][j][k]-th element of speeds with the problem size itself given by the [i][j][k]-th 

element of psizes. Parameter mlimits gives the maximum number of elements that each 

processor can hold. 

The parameters m and n are the sizes of the generalized block along the row and the column. 

The input parameter type_of_distribution specifies if the distribution is 

CARTESIAN, ROW-BASED, and COLUMN-BASED. 

Output parameter w gives the widths of the rectangles of the generalized block assigned to 

different processors. This parameter is an array of size p×q. 
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Figure 4.18: Different combinations of rectangles in a generalized block. (a) No s×s block of rectangle R31 is a 

horizontal neighbor of rectangle R23; therefore, h[3][1][2][3] = 0. (b) All s×s blocks of rectangle R31 are horizontal 

neighbors of rectangle R33; h[3][1][3][3] = 3. (c) Neighbors of rectangle R22 in rectangle R21 make up a 63×  

rectangle area (shaded dark grey); h[2][1][2][2] = 3. (d) Neighbors of rectangle R33 in rectangle R21 make up the last 

row of this rectangle (shaded dark grey); h[2][1][3][3] = 1. 

(a) R31 has no horizontal neighbours of R23 

 
(b) All ss ×  blocks of R31 are horizontal 

neighbours of R33 

(c) In R21, horizontal neighbours of R22 
constitute a 63× rectangle subarea 

(d) Last row of R21 consists of 
horizontal neighbours of R33 
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Output parameter h gives the heights of rectangles of the generalized block assigned to 

different processors. This parameter is an array of size p×q×p×q logically representing array of 

shape [p][q][p][q]. Parameter h specifies the heights of rectangle areas of a generalized 

block of matrix A, which are horizontally communicated between different pairs of abstract 

processors. Let RIJ and RKL be the rectangles of a generalized block of matrix A assigned to 

processors PIJ and PKL respectively. Then, h[I][J][K][L] gives the height of the rectangle 

area of RIJ, which is required by processor PKL to perform its computations. All heights are 

measured in s×s blocks. Figure 4.18 illustrates possible combinations of rectangles RIJ and RKL 

in a generalised block. Let us call an s×s block of RIJ a horizontal neighbour of RKL if the row of 

s×s blocks that contains this s×s block will also contain an s×s block of RKL. Then, the 

rectangle area of RIJ, which is required by processor PKL to perform its computations, comprises 

all horizontal neighbours of RKL. The macro H(p, q, I, J, K, L) gives the height 

h[I][J][K][L]. 

Figure 4.18(a) shows the situation when rectangles RIJ and RKL have no horizontal neighbours. 

Correspondingly, h[I][J][K][L] will be zero. Figure 4.18(b) shows the situation when all 

s×s blocks of RIJ are horizontal neighbours of RKL. In that case, both h[I][J][K][L] will be 

equal to the height of RIJ. Figures 4.18(c) and 4.18(d) shows the situation when only some of 

s×s blocks of RIJ are horizontal neighbours of RKL. In this case, h[I][J][K][L] will be 

equal to the height of the rectangle subarea of RIJ comprising the horizontal neighbours of RKL. 

Note that h[I][J][K][L] specifies the height of RIJ, and h[I][J][K][L] will be always 

equal to h[I][J][K][L]. 
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Output parameter trow gives the top leftmost point of the rectangles of the generalized block 

assigned to different processors from the first row of the generalized block. This parameter is an 

array of size p×q. 

Output parameter tcol gives the top leftmost point of the rectangles of the generalized block 

assigned to different processors from the first column of the generalized block. This parameter is 

an array of size p×q. 

Output parameters ci, and cj are each an array of size m×n. The coordinates of the 

processor in its processor grid to which the matrix element at row i and column j of the 

generalized block is assigned is given by ci[i×n+j], and cj[i×n+j] respectively. If these 

parameters are set to NULL, then they are not evaluated. 

The second set of operations, whose interfaces are shown below, is used for distribution of a 

matrix over a 1D processor grid. These set of operations allow the application programmers to 

formulate heuristic solutions for their optimization problems.  

typedef double (*Get_lower_bound)( 
    int p, const double *speeds, int m, int n); 
typedef double (*DP_function)(  
    int rowsorcolumns, int rectangles, int p,  
    const double *speeds, const double **previous_values,  
    int *r); 
typedef double (*Iterative_function)( 
    int p, const int *w, const int *h, 
    const int *trow, const int *tcol); 
typedef double (*Refining_function)( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, int m, int n,  
    int *w, int *h, int *trow, int *tcol); 
int Partition_matrix_1d_dp( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, DP_function dpf,  
  int type_of_distribution,  
  int *w, int *h, int *trow, int *tcol, int *c) 
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int Partition_matrix_1d_iterative( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, Iterative_function cf,  
  int *w, int *h, int *trow, int *tcol, int *c) 

int Partition_matrix_1d_refining( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, Refining_function impf, 
  int *w, int *h, int *trow, int *tcol, int *c) 

 

The parameter p is the number of number of disjoint rectangles the matrix is partitioned into. 

Parameters speeds and psizes specify speeds of processors for pn different problem sizes. 

These parameters are 1D arrays of size p×pn logically representing 2D arrays of shape 

[p][pn]. The speed of the i-th processor for j-th problem size is given by the [i][j]-th 

element of speeds with the problem size itself given by the [i][j]-th element of psizes. 

Parameter mlimits gives the maximum number of elements that each processor can hold. 

The parameters m and n are the sizes of the generalized block along the row and the column. 

Output parameter w gives the widths of the rectangles of the generalized block assigned to 

different processors. This parameter is an array of size p. Output parameter h gives the heights 

of rectangles of the generalized block assigned to different processors. This parameter is an array 

of size p×p. Output parameter trow gives the top leftmost point of the rectangles of the 

generalized block assigned to different processors from the first row of the generalized block. 

This parameter is an array of size p. Output parameter tcol gives the top leftmost point of the 

rectangles of the generalized block assigned to different processors from the first column of the 

generalized block. This parameter is an array of size p. 
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Figure 4.19: The parameter w gives the width of the rectangle of the generalized block assigned to different 

processors. The parameter h gives the height of rectangle of the generalized block assigned to different processors. 

The parameter trow gives the top leftmost point of the rectangle of the generalized block assigned to different 

processors from the first row of the generalized block. The parameter tcol gives the top leftmost point of the 

rectangle of the generalized block assigned to different processors from the first column of the generalized block. 

 

Output parameter c is an array of size m×n. The coordinates of the processor in its processor 

array to which the matrix element at row i and column j of the generalized block is assigned is 

given by c[i×n+j]. If this parameter is set to NULL, then the parameter is ignored. 

The meaning of these parameters is shown in the Figure 4.19. 

For general rectangular distribution over a linear array of processors, there may be a number of 

optimization problems used to partition a matrix some of which are: 

•  Given p processors with different speeds, how to allocate data so that the length of the 

largest communication is optimized. In terms of tiling, how to tile the unit square into 

nonoverlapping rectangles of prescribed area 110 ,,, −psss L  whose sum is 1 so that the 

largest perimeter is minimized.  
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•  Given an array m×n of nonnegative numbers and a positive integer p, find a partition of 

the array into p nonoverlapping rectangular arrays such that the maximum weight of any 

rectangle in the partition is minimized (the weight of the rectangle is the sum of its 

elements). 

For the operation Partition_matrix_1d_dp, the input parameter 

type_of_distribution specifies if the distribution is ROW-BASED or COLUMN-BASED. 

This operation allows the application programmers to formulate their optimization problem 

based on the dynamic programming paradigm. Dynamic programming views a problem as a set 

of interdependent subproblems. It solves subproblems and uses the results to solve larger 

subproblems until the entire problem is solved. The solution to the subproblem is expressed as a 

function of solutions to one or more subproblems at preceding levels. Application programmers 

provide a composition function dpf, whose nature depends on the problem. The function dpf is 

iteratively built by incrementing the value of parameters rowsorcolumns from 0 to p and 

rectangles from 0 to p. The aim is to find the optimal number of rows or columns and 

fitting 0 to p rectangular areas in each of these rows or columns such that the objective of the 

optimization problem is satisfied. Consider a step of the iteration where number of columns is 2 

and the number of rectangles to fit is 3, then the following arrangements are tried: one rectangle 

in the first column, two rectangles in the second column and two rectangles in the first column, 

one rectangle in the second column. The arrangement that results in the minimum value of dpf 

is returned in the output parameter r. The value of this parameter gives the total number of 

rectangles in preceding columns, that is, the solution to the subproblem at preceding level. This 

option is mainly used for generalized row-based and column-based partitioning of a matrix 

shown in Figure 4.16(d) and Figure 4.16(e) respectively. One of the examples where this option 
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can be used for obtaining an optimal column-based partitioning of the matrix is the column-

based heuristic approach proposed by Beaumont et al [BBR01]. 

The operations Partition_matrix_1d_iterative and 

Partition_matrix_1d_refining must be used when the type of distribution is general 

rectangular as shown in Figure 4.16(f). 

In the case of operation Partition_matrix_1d_iterative, the application 

programmers are allowed to provide a cost function cf that tests the optimality of a partition 

from a finite set of partitions. The initial partition in this finite set of partitions is obtained using 

a problem-specific strategy. The cost function cf is called iteratively for each of the partitions in 

the subset of partitions. The return value of this function gives an optimality value. At each step 

of the iteration, the optimality value is compared to the lower bound of the optimal solution to 

the optimization problem. Application programmers specify a function lb, which is used to 

calculate the lower bound of their optimization problem. The iteration stops when the function 

returns an optimality value less than or equal to the lower bound or a negative return value 

indicating that the partitioning cannot be improved and that the current partition is optimal. 

In the case of operation Partition_matrix_1d_refining, the application 

programmers are allowed to provide a refinement function rf that refines an old partition giving 

a new better partition. A negative return value of this function suggests that the old partition 

cannot be refined further. This function is iteratively called. The partition for the first call of this 

refining function is obtained using a problem-specific strategy. Application programmers specify 

a function lb, which is used to calculate the lower bound of their optimization problem. The 

iteration stops when the refinement function rf returns an optimality value less than or equal to 

the lower bound indicating that the current partition is optimal. 



 
The Heterogeneous Data Partitioning Interface (HDPI) 

240 

Application programmers can use a mix of these operations to obtain an optimal partitioning 

of the matrix. For example, application programmers can call the operation 

Partition_matrix_1d_dp to obtain an initial partition, which can be input to the 

operation Partition_matrix_1d_refining for further refinement. 

HMPI provides additional helper functions.  

•  Get_matrix_processor to obtain the coordinates (i,j) of the processor owning the 

matrix element at row r and column c.  

•  Get_my_width to obtain the width of the rectangle owned by the processor with 

coordinates (i,j). 

•  Get_my_height to obtain the height of the rectangle owned by the processor with 

coordinates (i,j). 

The following helper functions are useful for dense matrix factorizations on HNOCs such as 

LU factorization, QR decomposition, and Cholesky factorization. 

•  Get_diagonal to obtain the number of the diagonal elements owned by the processor 

with coordinates (i,j).  

•  Get_my_elements to obtain the number of elements owned by the processor with 

coordinates (i,j) in the upper or lower half of the matrix including the diagonal elements. 

•  Get_my_kk_elements to obtain the number of elements owned by the processor with 

coordinates (i,j) in the upper or lower half of the matrix starting from (k,k) including the 

diagonal elements. 

HMPI also provides interfaces for partitioning multidimensional arrangements of numbers. 
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4.5 Partitioning Problems for Graphs 

A graph denoted G = (V, E), consists of a nonempty set V of vertices (or nodes) and a set E of 

edges (or arcs) such that each edge corresponds to a unique ordered pair of distinct vertices {u, 

v} and no more than one edge corresponds to {u, v}. The sets V and E are assumed to be finite. 

There are five main criteria used for partitioning a graph: 

a) The number of vertices in each partition should be proportional to the speed of the 

processor owning that partition. 

b) The sum of weights of the vertices in each partition should be proportional to the speed of 

the processor owning that partition. 

c) Set of disjoint partitions satisfying criterion (a) and the edgecut should be minimal. 

Edgecut is defined as the total weight of the edges in the graph whose incident vertices 

belong to different partition. 

d) Set of disjoint partitions satisfying criterion (b) and the edgecut should be minimal. 

The partitioning operations on sets can be used to partition a graph such that either of criterion 

(a) or (b) is satisfied. 

The most general problem of partitioning a graph can be formulated as follows: Given a graph 

G consisting of n vertices }1,,1,0{ −nL with weights vi )1,,1,0( −= ni L  and m edges 

}1,,1,0{ −mL with weights ei )1,,1,0( −= mi L and given a linear array of p processors whose 

speeds are functions of the size of the problem )(),...,(),( 111100 xfsxfsxfs pp −− ===  and there 

is an upper bound bi )1,,1,0( −= pi L  on the number of vertices that each processor can hold, 

partition the graph into p disjoint partitions such that 

•  The sum of weights of the vertices in each partition is proportional to the speed of the 

processor owning that partition.  
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•  The number of elements assigned to each processor does not exceed the upper bound on 

the number of elements stored by it. 

•  The edgecut is minimal. 

This is an open problem for research. At the same time, there are a number of important special 

cases of these problems with known efficient solutions. The special cases are obtained by 

applying one or more of the following simplifying assumptions: 

•  All vertices in the graph have the same weight. This assumption eliminates n additional 

parameters of the problem. 

•  All edges in the graph have the same weight. This assumption eliminates m additional 

parameters of the problem. 

•  The speed of each processor is a constant function of the problem size. 

•  There are no limits on the maximal number of vertices assigned to a processor. 

One example of a special partitioning problem for a graph is: 

•  Given: (1) A graph G of n vertices and m edges }1,,1,0{ −mL with weights ei 

)1,,1,0( −= mi L , and (2) A well-ordered set of p processors whose speeds are represented 

by single constant numbers, 110 ,...,, −psss ,  

•  Partition the graph into p disjoint partitions such that: (1) The number of vertices in each 

partition is proportional to the speed of the processor owning that partition, and (2) The 

edgecut is minimal. 

This is an open problem for research. Kumar, Das and Biswas [KDB02] employ a multilevel 

heterogeneous partitioner, called MiniMax, developed for distributed heterogeneous systems that 

differs from existing partitioners in that it allows full heterogeneity in both the system and 

workload characteristics. In their model, the heterogeneous system consists of processors with  
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Table 4.7: Special cases of partitioning of a Graph. 

 

varying processing power and an underlying non-uniform communication network. Their 

partitioning algorithm generates and maps partitions onto a heterogeneous algorithm with the 

objective of minimizing the maximum execution time of the parallel application.  

Table 4.7 summarizes specific partitioning problems for a graph and its current state to the 

best knowledge of the authors. 

The basic approach to dealing with graph partitioning is to construct an initial partition of the 

vertices according to some problem-specific strategy such as given by criterion (a) or (b) and 

such that a vertex and as far as possible all its neighbors belong to a same partition. Then the  
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Figure 4.20: (a) A sample graph, and (b) The adjacency structure of the graph shown in (a). Adjacency structure for 

vertex 0 starts at 0 and the number of adjacent vertices are 2 given by xadj[1] – xadj[0]. The adjacent vertices of 

vertex 0 are 1 and 2 given by adjacency[0] and adjacency[1]. Similarly adjacency structure for vertex 1 starts at 2 

and the number of adjacent vertices are 2 given by xadj[2] – xadj[1]. The adjacent vertices are 0 and 3 given by 

adjacency[2] and adjacency[3]. 

 

vertices are swept one by one. A vertex is retained in the same partition if more of its neighbors 

given by its adjacency list are in the same partition. Otherwise the vertex is migrated to other 

partitions such that the edgecut is decreased. It is recommended that adjacency structure of a 

graph should have a specific structure, that is, the first adjacency list should correspond to vertex 

0, the second adjacency list should correspond to the first neighbor of vertex 0 and so on. Also it 

is recommended that the numbering of vertices should follow a specific order. That is supposing 

the starting vertex u has a neighboring vertex v and vertex v has two neighbors, which are 

vertices w1 and w2. Then vertex u should be numbered 0 followed by 1 for its first and only 

neighbor v. The neighbors of v, w1 and w2, get the numbers 2 and 3 respectively. This is 

illustrated in Figure 4.20(b) showing the adjacency structure for a sample graph shown in Figure 

4.20(a). 

Based on this classification, we suggest an API that the application programmers can use to 

partition a graph into p disjoint partitions. 
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int Partition_graph ( 
      int p, int pn, const double *speeds,  

 const int *psizes, const int *mlimits, int n, int m, 
 const int *vwgt, const int *xadj,  
 const int *adjacency, const int *adjwgt,  
 int nopts, const int *options,  
 int *vp, int *edgecut) 

 
Parameter p is the number of partitions of the graph.  Parameters speeds and psizes 

specify speeds of processors for pn different problem sizes. These parameters are 1D arrays of 

size p×pn logically representing 2D arrays of shape [p][pn]. The speed of the i-th processor 

for j-th problem size is given by the [i][j]-th element of speeds with the problem size 

itself given by the [i][j]-th element of psizes. Parameter mlimits gives the maximum 

number of elements that each processor can hold. 

The parameters n and m are the number of vertices and edges in the graph. The parameters 

vwgt and adjwgt are the weights of vertices and edges of the graph. In the case in which the 

graph is unweighted (i.e., all vertices and/or edges have the same weight), then either or both of 

the arrays vwgt and adjwgt can be set to NULL. The parameters vwgt is of size n. The 

parameter adjwgt is of size 2m because every edge is listed twice (i.e., as (v, u) and (u, v)). 

The parameters xadj and adjacency specify the adjacency structure of the graph 

represented by the compressed storage format (CSR). The adjacency structure of the graph is 

stored as follows. The adjacency list of vertex i is stored in adjacency starting at index 

xadj[i] and ending at but not including xadj[i+1]. The adjacency lists for each vertex are 

stored consecutively in the array adjacency. Figure 4.20(b) shows the adjacency structure for 

a sample graph shown in Figure 4.20(a). 

If the parameter vwgt is set to NULL and the processor speeds speeds are set to NULL, then 

the graph is partitioned into p disjoint partitions such that criterion (e) is satisfied. If the  
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                                     (a)                                                                                   (b) 

Figure 4.21: (a) A sample bipartite graph showing dependencies between black nodes and white nodes, and (b) The 

adjacency structure of the graph shown in (a).  

 

parameter vwgt is set to NULL and the processor speeds speeds are not set to NULL, then the 

graph is partitioned into p disjoint partitions such that criterion (c) is satisfied. If the parameter 

vwgt is not set to NULL and the processor speeds speeds are not set to NULL, then the graph 

is partitioned into p disjoint partitions such that criterion (d) is satisfied. 

The parameter options is an array of size nopts containing the options for the various 

phases of the partitioning algorithms employed in partitioning the graph. These options allow 

integration of third party implementations, which provide their own partitioning schemes. For 

example, the partitioning schemes such as METIS [KK95], and Chaco [HL94] employ multilevel 

strategies consisting of various phases and heuristics are employed for every phase.  

The parameter vp is an array of size n containing the partitions to which the vertices are 

assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The 

parameter edgecut contains the number of edges that are cut by the partitioning. 
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There are other types of graphs, whose partitionings are popularly used to solve parallel 

problems in scientific and engineering domains such as the bipartite graph [HK00] and 

hypergraph [CA96, PCA+96].  

A bipartite graph G = (R, C, E) is a special type of graph in which the vertices are divided 

into two disjoint subsets, R and C and E ⊂  R × C. So, no edge connects vertices in the same 

subset; instead all the edges cross between R and C.  

The main criteria used for partitioning a bipartite graph are outlined below: 

a) The number of vertices in each partition should be proportional to the speed of the 

processor owning that partition. 

b) Each disjoint subset is partitioned such that the number of vertices in each partition 

should be proportional to the speed of the processor owning that partition. 

c) The sum of weights of the vertices in each partition should be proportional to the speed of 

the processor owning that partition. 

d) Each disjoint subset is partitioned such that the sum of weights of the vertices in each 

partition should be proportional to the speed of the processor owning that partition. 

e) Set of disjoint partitions satisfying criterion (a) and the edgecut should be minimal. 

Edgecut is defined as the total number of edges in the graph whose incident vertices 

belong to different partition. 

f) Set of disjoint partitions satisfying criterion (b) and the edgecut should be minimal. 

Edgecut is defined as the total number of edges in the graph whose incident vertices 

belong to different partition. 
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g) Set of disjoint partitions satisfying criterion (c) and the edgecut should be minimal. 

Edgecut is defined as the total weight of the edges in the graph whose incident vertices 

belong to different partition. 

h) Set of disjoint partitions satisfying criterion (d) and the edgecut should be minimal. 

Edgecut is defined as the total weight of the edges in the graph whose incident vertices 

belong to different partition. 

The partitioning operations on sets can be used to partition a bipartite graph such that either of 

criterion (a), (b), (c) and (d) is satisfied. 

Application programmers can use the operation, whose interface is shown below, to partition a 

bipartite graph into p disjoint partitions. 

int Partition_bipartite_graph ( 
  int p, int pn, const double *speeds,  
     const int *psizes, const int *mlimits,  

int n, int m, const int *vtype, const int *vwgt, 
const int *xadj, const int *adjacency,  
const int *adjwgt, int type_of_partitioning,  
int nopts, const int *options, 
int *vp, int *edgecut) 

 
The meaning of the parameters p, pn, speeds, psizes, mlimits, n, m, vwgt, adjwgt, 

xadj, adjacency is identical to meaning of the corresponding parameters of 

Partition_graph. 

The parameter vtype specifies the type of vertex. The only values allowed are 0 and 1 

representing the two disjoint subsets the bipartite graph is composed of. Figure 4.21(b) shows the 

adjacency structure for a sample bipartite graph shown in Figure 4.21(a). 

The parameter type_of_partitioning specifies whether the partitioning of subsets is 

done separately or not. If the partitioning of subsets is to be done separately, then each subset is 
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partitioned such that one of the criteria (a) or (b) is satisfied and edgecut is minimal. It can take 

only one of the values PARTITION_SUBSET and PARTITION_OTHER.  

The parameter options is an array of size nopts containing the options for the various 

phases of the partitioning algorithms employed in partitioning the graph. These options allow 

integration of third party implementations, which provide their own partitioning schemes.  

The parameter vp is an array of size of size n containing the partitions to which the vertices 

are assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. 

The parameter edgecut contains the number of edges that are cut by the partitioning. 

A hypergraph, H = (V, N), consists of a set of vertices, V, and a set of hyperedges, N. Each 

hyperedge comprises a subset of vertices. Let cj denote the cost of hyperedge nj. In a partition ∏∏∏∏ 

of hypergraph H, a hyperedge that has atleast one vertex in that partition is said to connect that 

partition. Connectivity set ΛΛΛΛj of a hyperedge nj is defined as the set of partitions connected by nj. 

Connectivity λ j = |ΛΛΛΛj| of a hyperedge nj denotes the number of partitions connected by nj. A 

hyperedge nj is said to cut if it connects more than one partition, and uncut otherwise. The cut 

and uncut partitions are referred to as external nets and internal nets, respectively. The set of 

external nets of a partition ∏∏∏∏ is denoted as NE. Two relevant cutsize definitions are: 

(a) χ(∏∏∏∏) = ∑∑∑∑nj∈ NE
cj   and       (b) χ(∏∏∏∏) = ∑∑∑∑nj∈ NE

cj(λj –1) 

The main criteria to partition the hypergraph H into P disjoint partitions include the main 

criteria used to partition a normal graph except that instead of satisfying the criterion that the 

edgecut should be minimal, the criterion that cutsize should be minimized is satisfied during the 

partitioning.  
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Figure 4.22: The hptr and hind arrays that are used to describe the hyperedges of the hypergraph. 

 

Application programmers can use the operation, whose interface is shown below, to partition a 

hypergraph into p disjoint partitions. 

int Partition_hypergraph ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits,  
    int nv, int nedges, const int *vwgt, const int *hptr,  
    const int *hind, const int *hwgt,  
    int nopts, const int *options, 
    int *vp, int *edgecut) 

 
The meaning of the parameters p, pn, speeds, psizes, and mlimits is identical to 

meaning of the corresponding parameters of Partition_graph. 

The parameters nv and nedges are the number of vertices and number of hyperedges in the 

hypergraph. 

The parameters vwgt is an array of size nv that stores the weights of the vertices and hwgt is 

an array of size nedges that stores the weights of hyperedges of the graph. If the vertices in the 

hypergraph are unweighted, then vwgt can be NULL. If the hyperedges in the hypergraph are 

unweighted, then hwgt can be NULL. 



 
The Heterogeneous Data Partitioning Interface (HDPI) 

251 

The parameter hptr is an array of size nedges+1 and is an index into hind that stores the 

actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in 

consecutive locations in hind. Specifically, i-th hyperedge is stored starting at location 

hind[hptr[i]] up to but not including hind[hptr[i+1]]. Figure 4.22 illustrates the 

format for a simple hypergraph. 

The parameter options is an array of size nopts containing the options for the various 

phases of the partitioning algorithms employed in partitioning the graph. These options allow 

integration of third party implementations, which provide their own partitioning schemes. For 

example, the partitioning schemes such as hMETIS ([KAK+97], [KK98b]) employ multilevel 

strategies consisting of various phases and heuristics are employed for every phase.  

The parameter vp is an array of size of size n containing the partitions to which the vertices 

are assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. 

The parameter edgecut contains the number of hyperedges that are cut by the partitioning. 

 

4.6 Partitioning Problems for Trees 
 
A tree is a graph such that there is a unique simple path between each pair of vertices. There are 

five main criteria in partitioning a tree into a set of disjoint subtrees: 

a) The number of elements in each subtree should be proportional to the speed of the 

processor owning that subtree. 

b) The sum of weights of elements in each subtree should be proportional to the speed of the 

processor owning that subtree.  
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c) Set of disjoint partitions satisfying criterion (a) and the edgecut should be minimal. 

Edgecut is defined as the total weight of the edges in the tree whose incident vertices 

belong to different subtrees. 

d) Set of disjoint partitions satisfying criterion (b) and the edgecut should be minimal. 

e) The edgecut should be minimal. 

The implicit restriction is that the tree should be partitioned into disjoint subtrees such that one 

of the above criteria is satisfied. The partitioning operations on graphs can be used to partition a 

tree into disjoint partitions when there is no restriction that all the disjoint partitions have to be 

subtrees. Additional restrictions that may be imposed are that the number of vertices in each 

partition must be less than the maximum number of elements a processor can hold.  

The partitioning operations on sets can be used to partition a tree into p disjoint partitions such 

that either of criteria (a) or (b) is satisfied.  

Application programmers can use the operation, whose interface is shown below, to partition a 

tree into p disjoint partitions. 

int Partition_tree ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, 
    int n, int nedges, const int *nwgt, const int *xadj,  
    const int *adjacency, const int *adjwgt,  
    int *vp, int *edgecut) 

 
The meaning of the parameters p, pn, speeds, psizes, and mlimits is identical to 

meaning of the corresponding parameters of Partition_graph. 

The parameters n and nedges are the number of vertices and edges in the tree. The 

parameters nwgt is an array of size n that stores the weights of the vertices and adjwgt is an 

array of size nedges that stores the weights of edges of the tree. If the vertices in the tree are 
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unweighted, then nwgt can be NULL. If the edges in the tree are unweighted, then adjwgt can 

be NULL. 

The parameters xadj and adjacency specify the adjacency structure of the tree. 

The parameter vp is an array of size of size n containing the partitions to which the vertices 

are assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The 

parameter edgecut contains the number of edges that are cut by the partitioning. 

HMPI provides an additional operation, which allows the application programmer to formulate 

the heuristic solutions for their optimization problems used to partition a tree. 



The Heterogeneous Data Partitioning Interface (HDPI) 

254 

4.7 Algorithms of Partitioning Sets 
 
In this section, we present the algorithms of partitioning sets. In the figures we present for 

illustration, we use the notion of problem size. Kumar et al. [KGG+94] define the problem size 

as the number of basic computations in the best sequential algorithm to solve the problem on a 

single processor. Because it is defined in terms of sequential time complexity, the problem size is 

a function of the size of the input. For example, the problem size is O(n3) for n×n matrix 

multiplication and for irregular applications such as EM3D [YWC+95, CDG+93] and N-body 

simulation [BN97], the problem size is O(n), where n is the number of nodes in a bipartite graph 

representing the dependencies between the nodes and number of bodies respectively.  

However we do not use this computational complexity definition for problem size because it 

does not influence the speed of the processor. We define the size of the problem to be the amount 

of data stored and processed by the sequential algorithm. For example for matrix-matrix 

multiplication of two dense n×n matrices, the size of the problem is equal to 3×n2.  

To demonstrate the efficiency of our data partitioning algorithms using the functional model, 

we perform experiments using naïve parallel algorithms for linear algebra kernel, namely, matrix 

multiplication and LU factorization using striped partitioning of matrices on a local network of 

heterogeneous computers. Our main aim is not to show how matrices can be efficiently 

multiplied or efficiently factorized but to explain in simple terms how the data partitioning 

algorithms using the functional model can be used to optimally schedule arbitrary tasks on 

networks of heterogeneous computers before moving on to solve the most advanced problem. 

We also view these algorithms as good representatives of a large class of data parallel 

computational problems and a good testing platform before experimenting with more 

challenging computational problems. 
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4.7.1 Algorithms for Partitioning Sets without Processor Memory Bounds 
 
In this section, we solve the following problem of partitioning a set, which can be formulated as: 

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors 

whose speeds are functions of the size of the problem, si=fi(x), and (3) There is no upper bound 

on the largest problem size that can be solved on each processor; 

Partition the set into p disjoint partitions such that: 

•  x0+x1+...+xp-1=n, where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1 

respectively; 

•  
1
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 where x0,x1,...,xp-1 are the number of elements assigned to the 

processors 0,1,…,p-1 respectively and s0,s1,...,sp-1 are the speeds of the processors. 

We provide an optimal solution to this problem of complexity O(p2×log2n).  

One of the criteria to partitioning a set of n elements over p heterogeneous processors is that 

the number of elements in each partition should be proportional to the speed of the processor 

owning that partition. When the speed of the processor is represented by a single number, the 

algorithm used to perform the partitioning is quite straightforward, of complexity O(p2) 

[BBP+01]. The algorithm uses a naive implementation. The complexity can be reduced down to 

O(p×log2p) using ad hoc data structures [BBP+01]. 

This problem of partitioning a set becomes non-trivial when the speeds of the processors are 

given as a function of the size of the problem. Consider a small network of two processors, 

whose speeds as functions of problem size during the execution of the matrix-matrix 

multiplication are shown in Figure 4.23. If we use the single number model, we have to choose a 

point and use the absolute speeds of the processors at that point to partition the elements of the  
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Figure 4.23: A small network of two processors whose speeds are shown against the size of the problem. The 

Matrix-Matrix Multiplication used here uses a poor solver that does not use memory hierarchy efficiently. 

 
set such that the number of elements is proportional to the speed of the processor. If we choose 

the speeds ( )0100 , ss  at points ( )00, sx  and ( )01, sx  to partition the elements of the set, the 

distribution obtained will be unacceptable for the size of the problem at points ( )10, sy  

and ( )11, sy  where processors demonstrate different relative speeds compared to the relative 

speeds at points ( )00, sx  and ( )01, sx . If we choose the speeds ( )1110 , ss  at points ( )10, sy  

and ( )11, sy  to partition the elements of the set, the distribution obtained will be unacceptable for 

the size of the problem at points ( )00, sx  and ( )01, sx  where processors demonstrate different 

relative speeds compared to the relative speeds at points ( )10, sy  and ( )11, sy . In some such cases, 

the partitioning of the set obtained could be the worst possible distribution where the number of 

elements per processor obtained could be inversely proportional to the speed of the processor. In 

such cases, it is better to use an even distribution of equal number of elements per processor than 

the distribution based on using such wrong points. 
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Figure 4.24: Optimal solution showing the geometric proportionality of the number of elements to the speed of the 

processor. s1(x), s2(x), s3(x), and s4(x) are speeds of processors 1, 2, 3, and 4 respectively, which are functions of the 

size of the problem. 

 

The algorithms we propose are based on the following observation: If a distribution of the 

elements of the set amongst the processors is obtained such that the number of elements is 

proportional to the speed of the processor, then the points, whose coordinates are number of 

elements and speed, lie on a straight line passing through the origin of the coordinate system and 

intersecting the graphs of the processors with speed versus the size of the problem in terms of the 

number of elements. This is shown by the geometric proportionality in Figure 4.24. 

Our general approach to finding the optimal straight line can be summarized as follows: 

1. We assume that the speed of each processor is represented by a continuous function of the 

size of the problem. The shape of the graph should be such that there is only one intersection  
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Figure 4.25: Typical shapes of the graphs representing the speed functions of the processors observed 

experimentally. The graph represented by s1(x) is strictly a decreasing function of the size of the problem. The graph 

represented by s2(x) is initially an increasing function of the size of the problem followed by a decreasing function 

of the size of the problem. The graph represented by s3(x) is strictly an increasing function of the size of the 

problem. 

 

point of the graph with any straight line passing through the origin. These assumptions on the 

shapes of the graph are representative of the most general shape of graphs observed for 

applications experimentally. The experiments conducted by Lastovetsky and Twamley [LT04] 

justify these assumptions. Applications that utilize memory hierarchy efficiently and applications 

that reference memory randomly deriving no benefits from caching produce speed functions that 

are an increasing function of problem size before a maximum followed by a decreasing function 

of problem size whereas applications that use inefficient memory reference patterns produce 

speed functions that are strictly decreasing functions of problem size. Some of the sample shapes 

of the graphs are shown in Figure 4.25.  
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2. At each step, we have two lines both passing through the origin. The sum of the number of 

elements at the intersection points of the first line with the graphs is less than the size of the 

problem, and the sum of the number of elements at the intersection points of second line with the 

graphs is greater than the size of the problem. 

3. The region between these two lines is divided by a line passing through the origin into two 

smaller regions, the upper region and the lower region. If the sum of the number of elements at 

the intersection points of this line with the graphs is less than the size of the problem, the optimal 

line lies in the lower region. If this sum is greater than the size of the problem, the optimal line 

lies in the upper region. 

4. In general, the exact optimal line intersects the graphs in points with non-integer sizes of 

the problem. This line is only used to obtain an approximate integer-valued solution. Therefore, 

the finding of any other straight line, which is close enough to the exact optimal one to lead to 

the same approximate integer-valued solution, will be an equally satisfactory output of the 

searching procedure. A simple stopping criterion for this iterative procedure can be the absence 

of points of the graphs with integer sizes of the problem within the current region. Once the 

stopping region is reached, the two lines limiting this region are input to the fine tuning 

procedure, which determines the optimal line. 

Note that it is the continuity and the shape of the graphs representing the speed of the 

processors that make each step of this procedure possible. The continuity guarantees that any 

straight line passing through the origin will have at least one intersection point with each of the 

graphs, and the shape of the graph guarantees no more than one such an intersection point.  

We now prove the uniqueness of the solution using mathematical induction starting by 

illustrating with an example for p=3. We safely assume that for each processor, for all x ≥ y,  
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Figure 4.26: Uniqueness of the solution. The dashed line represents the optimal solution whereas the dotted line 

represents a non-optimal solution. 

 
where x and y are problem sizes, the execution times tx and ty to execute problems of sizes x and 

y respectively are related by tx ≥  ty. We also assume that the volume of computations involved in 

the execution of a problem size is equal to the problem size. Consider a small network of three 

processors, whose speeds as functions of problem size are shown in Figure 4.26. The graph 

represented by s1(x) is strictly a decreasing function of the size of the problem. The graph 

represented by s2(x) is initially an increasing function of the size of the problem followed by a 

decreasing function of the size of the problem. The graph represented by s3(x) is strictly an 

increasing function of the size of the problem. We show two solutions for a problem size n. The 

non-optimal solution is given by (x11,x21,x31) such that x11+x21+x31=n and the optimal solution is 

given by (x1,opt,x2,opt,x3,opt) such that x1,opt+x2,opt+x3,opt=n. The time of execution for the optimal 

solution topt is (x1,opt/s1,opt) or (x2,opt/s2,opt) or (x3,opt/s3,opt) because 

(x1,opt/s1,opt)=(x2,opt/s2,opt)=(x3,opt/s3,opt). The time of execution of the non-optimal solution is 
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. Since x21>x2,opt, we can conclude that time of execution t21of the problem size x21 

equal to x21/s21 is always greater than the time of execution given by the optimal solution topt i.e., 

t21>topt. Thus it can be inferred that the time of execution of the application obtained using the 

non-optimal solution is always greater than or equal to the time of execution of the application 

using the optimal solution. We can easily prove the same for different shapes of the speed 

functions.  

Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1 

processors. For a given problem size n, let us assume the distribution given by our algorithm to 

be (x1,opt,x2,opt,…,xk+1,opt) such that (x1,opt/s1,opt)=(x2,opt/s2,opt)=…=(xk+1,opt/sk+1,opt)=topt and 

x1,opt+x2,opt+…+xk+1,opt=n where topt is the time of execution of the algorithm by the optimal 

solution. Now consider a distribution (x'1,x'2,..,x'k+1) such that x'1+x'2+…+x'k+1=n and x'i ≠ xi,opt 

for all i=1,2,…,k+1. If (x'1/s'1)=(x'2/s'2)=…=(x'k+1/s'k+1)=t'e, then it can be inferred that if t'e=topt, 

then x'i>xi,opt or x'i<xi,opt for all i=1,2,…,k+1 in which case the equality x'1+x'2+…+x'k+1=n is 

broken. If the proportionality (x'1/s'1)=(x'2/s'2)=…=(x'k+1/s'k+1) is ignored but the equality 

x'1+x'2+…+x'k+1=n is satisfied, then it can be easily seen that for atleast one processor i 

(i=1,2,…,k+1), x'i>xi,opt, thus giving an execution time t'i, which is greater than the execution 

time given by our algorithm topt. It is easy to extend this proof for cases where the volume of 

computations performed by the processor is proportional to the problem size assigned to it. 

Without loss of generality, in the figures we show the application of the algorithm only in the 

regions where absolute speed is a decreasing function of the size of the problem. 

Let us estimate the cost of one step of this procedure. At each step we need to find the points of 

intersection of p graphs y=s1(x), y=s2(x), ..., y=sp(x), representing the absolute speeds of the  
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Figure 4.27: Determination of the slope of the line equal to half of the slopes of the initial and final lines. 

 

processors, and the straight line y=c×x passing through the origin. In other words, at each step 

we need to solve p equations of the form c×x =s1(x), c×x =s2(x), ..., c×x =sp(x). As we need the 

same constant number of operations to solve each equation, the complexity of this part of one 

step will be O(p). According to our stopping criterion, a test for convergence can be reduced to 

testing p inequalities of the form li - ui <1, where li and ui are the size coordinates of the 

intersection points of the i-th graph with the lower and upper lines limiting the region 

respectively (i=1,2,…,p). This testing is also of the complexity O(p). Therefore, the total 

complexity of one step including the convergence test will still be O(p). 

The simplest particular algorithm based on this approach bisects the region between the lines 

by a line passing through the origin at a slope equal to half of the sum of the slopes of the two 

lines as shown in Figure 4.27. These slopes are angles and not the tangent of the angles. 

However in practical implementations of the algorithm, slopes that are tangents can be used 

instead of angles for efficiency from computational point of view. 

The use of bisection is shown in Figure 4.28. The first two lines drawn during step 1 are 

line1 and line2. Then line3 is drawn whose slope is half of the slopes of the lines line1  
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Figure 4.28: Use of bisection of the range to narrow down to the optimal solution satisfying the criterion that the 

number of elements should be proportional to the speed of the processor. n is the size of the problem. 

 

and line2. Since the sum of the number of elements at the intersection points of this line with 

the graphs is less than the size of the problem, bisect the lower half of the region by drawing 

line4 whose slope is half of the slopes of the lines line3 and line2. Since the sum of the 

number of elements at the intersection points of this line with the graphs is greater than the size 

of the problem, bisect the upper half of the region by drawing a line whose slope is half of the 

slopes of the lines line3 and line4. This line turns out to be the optimally sloped line. 

In most real-life situations, this algorithm will demonstrate a very good efficiency. 

Obviously, the slope of the optimal line is a decreasing function of the size of the problem, 

θopt= θopt(n). If θopt(n)=O(n-k), where k=const, then the maximal number of steps to arrive at the  
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Figure 4.29: Fine tuning procedure chooses the final p points of intersection from the p integer points closest to the 

non-integer points on line l and p integer points closest to the non-integer points on line u. There are no integers 

between the lines l and u. The integers closest to the non-integer points on lines l and u are indicated by crossed dots 

whereas integer points lying on lines l and u are indicated by dark dots. 

 

stopping criterion will be O(k×log2n). Correspondingly, the complexity of the algorithm up till 

this point will be O(p×log2n).  

Once we have reached the stopping criterion indicated by the absence of points of the graphs 

with integer sizes of the problem within the region bounded by lines l and u, we perform 

additional fine tuning to find the p integer points on the curves representing the speed functions 

of the processors thus giving us a solution closest to the optimal non-integer solution. This is 

illustrated in Figure 4.29. As can be seen from the figure, there are 2×p points, p integer points 

(xl,1,xl,2,…,xl,p), some of which could be closest to the non-integer points on line l whereas the 

rest of them lying on line l and similarly p integer points (xu,1,xu,2,…,xu,p) pertaining to line u. 
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We have to choose an optimal set of p points from these 2×p points. The fine tuning procedure 

consists of the following steps: 

1. We find out the times of execution xi/si of the problem sizes at these 2×p points where xi 

is the problem size assigned to the processor i and si is its speed exhibited at this problem 

size. This step is of complexity O(p). 

2. We then sort these 2×p execution times using Quicksort algorithm and choose the p best 

execution times. The complexity of the Quicksort algorithm is O(2×p×log2(2×p)) = 

O(p×log2p).  

The total complexity of the fine tuning process is O(p)+O(p×log2p) = O(p×log2p). So the total 

complexity of our partitioning algorithm is given by O(p×log2n)+O(p×log2p) = O(p×log2(n×p)). 

If n»p, the total complexity of our partitioning algorithm is given by O(p×log2n). 

At the same time, in some situations this algorithm may be quite expensive. For example, if 

θopt(n)=O(e-n), then the number of steps to arrive at the optimal line will be O(n). 

Correspondingly, the complexity of the algorithm will be O(p×n). After fine tuning, the 

complexity of the algorithm will be O(p×n)+O(p×log2p) = O(p×n). 

We modify this algorithm to achieve reasonable performance in all cases, independent on 

how the slope of the optimal line depends on the size of the problem. To introduce the modified 

algorithm, let us re-formulate the problem of finding the optimal straight line as follows: 

1. The space of solutions consists of all straight lines drawn through the origin and 

intersecting the graphs of the processors so that the size coordinate of at least one intersection 

point is integer. 

2. We search for a straight line from this space closest to the optimal solution. 
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Figure 4.30: Bisection of the space of solutions in the modified algorithm. 
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Figure 4.31: Modification of the algorithm shown in Figure 4.28 where the bisection results in efficient solution. n 

is the size of the problem.  
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At each step of the basic bisection algorithm, it is the region between two lines that is 

reduced, not the space of solutions. Our modified algorithm tries to reduce the space of solutions 

rather than the region where the solution lies as illustrated in Figure 4.30 and Figure 4.31. At 

each step of the algorithm, we find a processor, whose graph s(x) is intersected by the maximal 

number of lines from the current region of the space of solutions limited by the lower and upper 

lines. Then we detect a line, which divides the region into two smaller regions such that each 

region contains the same number of lines from the space of solutions intersecting this graph. To 

do it, we just need to draw a line passing through the origin and the point ((v-w)/2, s((v-w)/2)), 

where v and w are the size coordinates of the intersection points of this graph with the lower and 

upper lines limiting the current region of the space of solutions. 

This algorithm guarantees that after p such bisections the number of solutions in the region is 

reduced at least by 50%. This means we need no more than p×log2n steps to arrive at the sought 

line. Correspondingly, the complexity of this algorithm will be O(p2×log2n). After fine tuning, 

the complexity of the algorithm will be O(p2×log2n)+O(p×log2p) = O(p2×log2n). A schematic 

proof of the algorithm is shown in Figure 4.32. 

One can see that the modified bisection algorithm is not sensitive to the shape of the graphs of 

the processors, always demonstrating the same efficiency. The basic bisection algorithm is 

sensitive to their shape. It demonstrates higher efficiency than the modified one in better cases 

but much lower efficiency in worse cases. 

An ideal bisection algorithm would be of the complexity O(p×log2n) reducing at each step the 

space of solutions by 50% and being insensitive to the shape of the graphs of the processors. The 

design of such an algorithm is still a challenge.  
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Figure 4.32: Schematic proof of the complexity of the modified algorithm. The total number of bisections is 

p×log2n. At each step of bisection, p intersection points are obtained giving a total complexity of O(p2×log2n). 

 

In cases where the magnitude of the size of the problem is of order millions, it might be worth 

relaxing the stopping criterion and not using the fine-tuning procedure. However it should be 

noted that the complexity of the algorithm will remain the same as fine-tuning procedure does 

not add to the overall complexity although the cost in practice is minimized by relaxing the 

stopping criterion. If all the sub-optimal solutions are close to each other as to be 

indistinguishable as in this case, we can provide an approximate solution that is sufficiently 

accurate and at the same time economical in terms of practical cost. We intend to investigate this  
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Figure 4.33: For most real-life situations, the optimal solution lies in the region with polynomial slopes. The 

optimal solution lies between line1 and line2 and they enclose a region with all polynomial slopes. 
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Figure 4.34: Using piecewise linear approximation to build speed functions for 3 processors. The circular points are 

experimentally obtained whereas the square points are calculated using heuristics but not experimentally obtained. 

The speed function for processor s1(x) is built from 3 experimentally obtained points (application run on this 

processor uses memory hierarchy inefficiently) whereas the speed functions s2(x) and s3(x) (application run on these 

processors use memory hierarchy efficiently) are built from 4 experimentally obtained points. 

 

further in future research to provide an approximate solution that maintains a balance between 

accuracy and economy. 
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For a large range of problem sizes, it is very likely that the optimal solutions lie in the region 

with polynomial slopes as shown in Figure 4.33. In these cases, the simplest algorithm gives the 

optimal solution with best efficiency. However for very large problem sizes where the shapes of 

the speed functions tend to be horizontal, the modified algorithm gives the optimal solution with 

best efficiency. However both the simplest and the modified algorithm can be combined to solve 

data partitioning problems in real-life applications efficiently. 

One approach consists of the following steps: 

1. Speed functions are built for the processors involved in the execution of the parallel 

application using a set of few experimentally obtained points. One of the ways to build a 

speed function for a processor is to use piecewise linear function approximation as shown 

in Figure 4.34. Such approximation of the speed function is compliant with the 

requirements of the functional model. Also such an approximation of the speed function 

should give the speed of the processor for a problem size within acceptable limits of 

deviation from the speed given by an ideal speed function or the speed functions built with 

sets with more number of points. A practical procedure to build this piecewise linear 

function approximation of speed function is explained in detail in Section 4.1.1. 

2. Having built the speed functions for the processors, we use the simplest algorithm to bisect 

the region between the lower and upper lines as shown in Figure 4.35. If the solution lies 

in the upper half and the line bisecting the region between the lower and the upper lines 

intersects the graphs of the processors at polynomial slopes, we use the simplest algorithm 

to obtain the optimal solution. This is because we know that the speed functions have 

polynomial slopes in the upper region and in such a case the simplest algorithm gives an 

optimal solution with ideal complexity. In other cases such as when the solution lies in the  
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Figure 4.35: Using a combination of simplest and modified algorithm to efficiently solve problems for real-life 

applications. 

 

upper half and if the line bisecting the region between the lower and the upper lines 

intersects one or more graphs at horizontal slope or when the solution lies in the lower 

half, we use modified algorithm to obtain the optimal solution. This is because in such a 

case, we know that the modified algorithm is proven to demonstrate better efficiency than 

the simplest algorithm. 

In case of large problem sizes where the application slows down to a considerable extent due 

to severe paging, it is advisable to use out-of-core algorithms [Tol99].These algorithms are 

designed to achieve high performance when their data structures are stored on disks. When an 

algorithm is to be executed out-of-core, the ordering of independent operations must be chosen 

so as to minimize I/O. In addition, the layout of data structures on disks must be chosen so that 

I/O is performed in large blocks, and so that all or most of the data that is read in one block-I/O 

operation is used before it is evicted from main memory. Our data partitioning algorithms using  
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Figure 4.36: Illustration of the regions where our data partitioning algorithms are better compared to out-of-core 

algorithms and vice versa. C is the crossover point at which out-of-core algorithms start performing better than our 

data partitioning algorithms. 

 

the functional model of networks of heterogeneous computers gives better results when applied 

to regions left of the crossover point C as shown in Figure 4.36. Out-of-core algorithms perform 

better than our data partitioning algorithms in regions to the right of crossover point C. We aim 

to research further to find this crossover point C with minimal experimental time.  

 
4.7.1.1 Experimental Results 

 
The experimental results are divided into two sections. The first section is devoted to building 

the functional model. We present the parallel applications and the network of heterogeneous 

computers on which the applications are tested. For each application, we explain how to estimate  
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Machine 
Name 

Architecture cpu 
MHz 

Total 
Main 

Memory 
(kBytes) 

Available 
Main 

Memory 
(kBytes) 

Cache 
(kBytes) 

Paging 
(MM) 

Paging 
(LU) 

X1 
Linux 2.4.20-

20.9 i686 Intel 
Pentium III 

997 513304 363264 256 4500 6000 

X2 
Linux 2.4.18-3 

i686 Intel 
Pentium III 

997 254576 65692 256 4000 5000 

X3 

Linux 2.4.20-
20.9bigmem 
Intel(R) 
Xeon(TM) 

2783 7933500 2221436 512 6400 11000 

X4 

Linux 2.4.20-
20.9bigmem 
Intel(R) 
Xeon(TM) 

2783 7933500 3073628 512 6400 11000 

X5 
Linux 2.4.18-

10smp Intel(R) 
XEON(TM) 

1977 1030508 415904 512 6000 8500 

X6 
Linux 2.4.18-

10smp Intel(R) 
XEON(TM) 

1977 1030508 364120 512 6000 8500 

X7 
Linux 2.4.18-

10smp Intel(R) 
XEON(TM) 

1977 1030508 215752 512 6000 8000 

X8 
Linux 2.4.18-

10smp Intel(R) 
XEON(TM) 

1977 1030508 134400 512 5500 6500 

X9 
Linux 2.4.18-

10smp Intel(R) 
XEON(TM) 

1977 1030508 134400 512 5500 6500 

X10 

SunOS 5.8 
sun4u sparc 
SUNW,Ultra-
5_10 

440 524288 409600 2048 4500 5000 

X11 

SunOS 5.8 
sun4u sparc 
SUNW,Ultra-
5_10 

440 524288 418816 2048 4500 5000 

X12 

SunOS 5.8 
sun4u sparc 
SUNW,Ultra-
5_10 

440 524288 395264 2048 4500 5000 

 
Table 4.8: Specifications of the twelve heterogeneous processors to demonstrate the efficiency of the functional 

performance model. Paging is the size of the matrix beyond which point paging started happening. 
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the processor speed. The procedure to build the speed functions of the processors is explained in 

section 4.1.1. For each application, we determine the problem sizes beyond which point paging 

starts happening and we also give the cost of building the speed function of each processor. We 

discuss the cost involved in finding the optimal solution using the partitioning algorithm and find 

it negligible compared to the execution time of the applications which varies from minutes to 

hours. In the second section, we present the experimental results obtained by running these 

applications on the network of heterogeneous computers. 

 

4.7.1.1.1 Applications 

A small heterogeneous local network of 12 different Solaris and Linux workstations shown in 

Table 4.8 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch 

enabling parallel communications between the computers. The amount of memory, which is the 

difference between the total main memory and available main memory shown in the tables, is 

used by the operating system processes and few other user application processes that perform 

routine computations and communications such as email clients, browsers, text editors, audio 

applications etc. These processes use a constant percentage of CPU.  

There are two applications used to demonstrate the efficiency of our data partitioning 

algorithms using the functional model.  

Matrix-matrix multiplication 

The first application shown in Figure 4.37(a) multiplies matrix A and matrix B, i.e., 

implementing matrix operation C=A×BT, where A, B, and C are dense square n×n matrices. The 

application uses a parallel algorithm of matrix-matrix multiplication of two dense matrices using 

horizontal striped partitioning [Las03, p.199], which is based on a heterogeneous 1D clone of the  
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(a) 
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Figure 4.37: (a) Matrix operation C=A×BT with matrices A, B, and C. Matrices A, B, and C are horizontally sliced.  

The number of elements in each slice is proportional to the speed of the processor. (b) Serial matrix multiplication 

A1×B1 (B1=BT) of two dense non-square matrices of sizes n1×n2 and n2×n1 respectively to estimate the absolute 

speed of processor 1. The parameter n2 is fixed during the application of the set partitioning algorithm and is equal to 

n. 

 

parallel algorithm used in ScaLAPACK [CDD+96] for matrix multiplication. The matrices A, B, 

and C are partitioned into horizontal slices such that the total number of elements in the slice is 

proportional to the speed of the processor.  

For the application implementing matrix operation C=A×BT, the absolute speed of a 

processor must be obtained based on multiplication of two dense non-square matrices of sizes 

n1×n2 and n2×n1 respectively as illustrated in Figure 4.37(b). Even though there are two 

parameters n1 and n2 representing the size of the problem, the parameter n2 is fixed and is equal 

to n during the application of the set partitioning algorithm. To apply the set partitioning 

algorithm to determine the optimal data distribution for such an application, we need to extend it 

for problem size represented by two parameters, n1 and n. The speed function of a processor is 

,

C=AxBT

 

A B

n2

n1

A

n2

n1
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geometrically a surface when represented by a function of two parameters s=f(n1,n2). However 

since the parameter n2 is fixed and is equal to n, the surface is reduced to a line s=f(n1,n2)= 

s=f(n1,n). Thus the set partitioning problem for this application reduces to the algorithm that we 

have presented in section 4.7.1. However additional computations are involved in obtaining 

experimentally the geometric surfaces representing the speed functions of the processors and 

then reducing them to lines. 

Our algorithm of partitioning of a set can be extended easily to obtain optimal solutions for 

problem spaces with two or more parameters representing the problem size. Each such problem 

space is reduced to a problem formulated using a geometric approach and tackled by extensions 

of our geometric set-partitioning algorithm. Consider for example the case of two parameters 

representing the problem size where neither of them is fixed. In this case, the speed functions of 

the processors are represented by surfaces. The optimal solution provided by a geometric 

algorithm would divide these surfaces to produce a set of rectangular partitions equal in number 

to the number of processors such that the number of elements in each partition (the area of the 

partition) is proportional to the speed of the processor. We do not present the extensions of our 

algorithm here for such multi-dimensional representations of the size of the problem. We think it 

would complicate the presentation. 

To calculate the absolute speed of the processor, we use a serial version of the parallel 

algorithm of matrix-matrix multiplication. The serial version performs matrix-matrix 

multiplication of two dense square matrices. Though the absolute speed must be obtained by 

multiplication of two dense non-square matrices, we observed that our serial version gives 

almost the same speeds for multiplication of two dense square matrices if the number of 

elements in a dense non-square matrix is the same as the number of elements in a dense square  
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Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 
256×256 67 1024×1024 67 2304×2304 67 4096×4096 59 

128×512 68 512×2048 66 1152×4608 67 2048×8192 60 

64×1024 67 256×4096 67 576×9216 69 1024×16384 59 

32×2048 67 128×8192 67 288×18432 70 512×32768 60 

Table 4.9: Results of serial matrix-matrix multiplication to demonstrate the effect of the number of elements in a 

matrix on the absolute speed of the processor. 

 

matrix. This is illustrated in Table 4.9 for one Linux computer X8 whose specification is shown 

in Table 4.8. The behavior exhibited is the same for other computers. Thus speed functions of the 

processors built using dense square matrices will be the same as those built using dense non-

square matrices. 

LU Factorization 

The second application is based on the parallel algorithm of LU factorization of a dense square 

n×n matrix A, one step of which is shown in Figure 4.38(a). On a homogeneous p-processor 

linear array, a CYCLIC(b) distribution of columns is used to distribute the matrix A where b is 

the block size [CDO+96, BBP+01]. A cyclic distribution would assign block numbers 

0,1,2,…,n-1 to processor 0,1,2,…,p-1,0,1,2…,p-1,0,…, respectively, for a p-processor linear 

array (n»p), until all n blocks are assigned. At each step of the algorithm, the processor that 

owns the pivot block factors it and broadcasts it to all the processors, which update their 

remaining blocks. At the next step, the next block of b columns becomes the pivot panel, and the 

computation progresses. Figure 4.38(a) shows how the column panel, L11 and L21, and the row 

panel, U11 and U12, are computed and how the trailing submatrix A22 is updated. Because the 

largest fraction of the work takes place in the update of A22, therefore, to obtain maximum 

parallelism all processors should participate in the updating. Since A22 reduces in size as the  
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Figure 4.38: (a) One step of the LU factorization algorithm of a dense square matrix A of size n×n. (b) The matrix A is 

partitioned using Variable Group Block distribution. This figure illustrates the distribution for n=576,b=32,p=3. The 

distribution inside groups G1, G2, and G3 are {2,1,1,0,0,0}, {2,1,0,0,0}, and {2,2,1,1,0,0,0}. (b) Serial LU factorization of a 

dense non-square matrix is used to estimate the absolute speed of a processor. Since the Variable Group Block distribution 

uses the functional model where absolute speed of the processor is represented by a function of a size of the problem, the 

distribution uses absolute speeds at each step of the LU decomposition that are based on the size of the problem solved at 

that step. As seen in this figure, at each of the steps for processor 0, the functional dependence of the absolute speed on the 

problem size gives the speeds based on solving the problem size at that step, which is equal to the number of elements in 

matrices An,n1
, An,n2

, and An,n3
 respectively. That is at each of the steps for processor 0, the absolute speeds are based on 

serial LU decomposition of matrices An,n1
, An,n2

, and An,n3
. 
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computation progresses, a cyclic distribution is used to ensure that at any stage A22 is evenly 

distributed over all processors, thus obtaining a balanced load.  

Two load balancing algorithms, namely, Group Block algorithm [BTP00, BMP04] and 

Dynamic Programming algorithm [BBP+01] have been proposed to obtain optimal static 

distribution over p heterogeneous processors arranged in a linear array. The Group Block 

distribution partitions the matrix into groups, all of which have the same number of blocks. The 

number of blocks per group (size of the group) and the distribution of the blocks in the group 

amongst the processors are fixed and are determined based on speeds of the processors, which 

are represented by a single constant number. Same is the case with Dynamic Programming 

distribution except that the distribution of the blocks in the group amongst the processors is 

determined based on dynamic programming algorithm.  

We propose a Variable Group Block distribution, which is a modification of the Group Block 

algorithm. It uses the functional model where absolute speed of the processor is represented by a 

function of a size of the problem. Since the Variable Group Block distribution uses the functional 

model where absolute speed of the processor is represented by a function of a size of the 

problem, the distribution uses absolute speeds at each step of the LU decomposition that are 

based on the size of the problem solved at that step. That is at each step, the number of blocks 

per group and the distribution of the blocks in the group amongst the processors are determined 

based on absolute speeds of the processors given by the functional model, which are based on 

solving the problem size at that step. Thus it also takes into account the effects of paging. 

Figures 4.38(b) and 4.38(c) illustrate the Variable Group Block algorithm of a dense square 

n×n matrix A over p heterogeneous processors. Given a dense n×n square matrix A and a block 

size of b, the Variable Group Block distribution is a static data distribution that vertically 
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partitions the matrix into m groups of blocks whose column sizes are g1,g2,…,gm as shown in 

Figure 4.38(b). The groups are non-square matrices of sizes n×(g1×b),n×(g2×b),…,n×(gm×b) 

respectively. The steps involved in the distribution are: 

1). To calculate the size g1 of the first group G1 of blocks, we adopt the following procedure: 

•  Using the data partitioning algorithm, we obtain an optimal distribution of matrix A 

such that the number of elements assigned to each processor is proportional to the 

speed of the processor. The optimal distribution derived is given by (xi, si) (0≤i≤p-1), 

where xi is the size of the subproblem such that 21

0
n=∑ −

=

p

i ix  and si is the absolute 

speed of the processor used to compute the subproblem xi for processor i. Calculate the 

load index li = 
∑ −

=

1

0

is
p

k ks
 (0≤i≤p-1). 

•  The size of the group g1 is equal to  )min(/1 il  (0≤i≤p-1). If g1/p<2, 

then  )min(/2g1 il= . This condition is imposed to ensure there is sufficient number of 

blocks in the group. 

•  This group G1 is now partitioned such that the number of blocks g1,i is proportional to 

the speeds of the processors si where 1

1-p

0i 1,i gg =∑ =
 (0≤i≤p-1).  

2). To calculate the size g2 of the second group, we repeat step 1 for the number of elements 

equal to (n-g1)
2 in matrix A. This is represented by the sub-matrix An-g1,n-g1 shown in Figure 

4.38(b). We recursively apply this procedure until we have fully vertically partitioned the matrix 

A. 

3). For algorithms such as LU Factorization, only blocks below the pivot are updated. The 

global load balancing is guaranteed by the distribution in groups; however, for the group that 

holds the pivot it is not possible to balance the workload due to the lack of data. Therefore it is 
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possible to reduce the processing time if the last blocks in each group are assigned to fastest 

processors, that is when there is not enough data to balance the workload then it should be the 

fastest processors doing the work. That is in each group, processors are reordered to start from 

the slowest processors to the fastest processors for load balance purposes. 

In LU Factorization, the size of the matrix shrinks as the computation goes on. This means 

that the size of the problem to be solved shrinks with each step. Consider the first step. After the 

factorization of the first block of b columns, there remain n-b columns to be updated. At the 

second step, the number of columns to update is only n-2×b. Thus the speeds of the processors to 

be used at each step should be based on the size of the problem solved at each step, which means 

that for the first step, the absolute speed of the processors calculated should be based on the 

update of n-b columns and for the second step, the absolute speed of the processors calculated 

should be based on the update of n-2×b columns. Since the Variable Group Block distribution 

uses the functional model where absolute speed of the processor is represented by a function of a 

size of the problem, the distribution uses absolute speeds at each step that are calculated based on 

the size of the problem solved at that step. 

For the application implementing LU factorization, the absolute speed of a processor must be 

obtained based on LU factorization of a dense non-square matrix of size m1×m2 as shown in 

Figure 4.38(c). Even though there are two parameters m1 and m2 representing the size of the 

problem, the parameter m1 is fixed and is equal to n during the application of the set partitioning 

algorithm. To apply the set partitioning algorithm to determine the optimal data distribution for 

such an application, we need to extend it for problem size represented by two parameters, n and 

m2. The speed function of a processor is geometrically a surface when represented by a function 

of two parameters s=f(m1,m2). However since the parameter m1 is fixed and is equal to n, the  
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Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed(M

Flops) 
1024×1024 115 2304×2304 129 4096×4096 131 6400×6400 132 

512×2048 115 1152×4608 130 2048×8192 132 3200×12800 131 

256×4096 116 576×9216 129 1024×16384 132 1600×25600 132 

128×8192 117 288×18432 129 512×32768 131 800×51200 131 

Table 4.10: Results of serial LU factorization to demonstrate the effect of the number of elements in a matrix on the 
absolute speed of the processor. 
 

surface is reduced to a line s=f(m1,m2)= s=f(n,m2). Thus the set partitioning problem for this 

application reduces to the algorithm that we have presented in section 4.7.1. However additional 

computations are involved in obtaining experimentally the geometric surfaces representing the 

speed functions of the processors and then reducing them to lines. 

The set partitioning algorithm can also be extended here easily as explained for matrix 

multiplication. To calculate the absolute speed of the processor, we use a serial version of the 

parallel algorithm of LU factorization. The serial version performs LU factorization of a dense 

square matrix. Though the absolute speed must be obtained by using LU factorization of a dense 

non-square matrix, we observed that our serial version gives almost the same speeds for LU 

factorization of a dense square matrix if the number of elements in a dense non-square matrix is 

the same as the number of elements in a dense square matrix. This is illustrated in Table 4.10 for 

computer X8 whose specification is shown in Table 4.8. The behavior exhibited is the same for 

other computers. 

The absolute speed of the processor in number of floating point operations per second is 

calculated using the formula 

execution of time

nnnMF

execution of time

nscomputatio of volume
speed Absolute

×××==  

where n is the size of the matrix. MF is 2 for Matrix Multiplication and 2/3 for LU factorization.  

 



The Heterogeneous Data Partitioning Interface (HDPI) 

283 

Size of the problem

A
b
so

lu
te

 s
p
ee

d

)(1 xs

)(2 xs

)(3 xs

Size of the problem = n

line 1 line 2









=

p

n
x

 

Figure 4.39: Detection of the initial two lines between which the solution lies. 

 

The two lines line1 and line2, between which the solution lies, are also inputs to the 

partitioning algorithms. We detect these lines as shown in Figure 4.39. Suppose the problem size 

is n and the number of processors involved in the execution of the problem size is p. Obtain the 

speeds of the processors with each processor executing a problem size of (n/p). The first line 

line1 is drawn passing through the origin and a point, the coordinates of which are (n/p) and the 

highest speed. The second line line2 is drawn passing through the origin and a point, the 

coordinates of which are (n/p) and the lowest speed. 

For matrix-matrix multiplication, the computer X5 exhibited the fastest speed of 250 MFlops 

for multiplying two dense 4500×4500 matrices whereas the computer X10 exhibited the lowest 

speed of 31 MFlops at that problem size. The ratio 0.8
31

250 ≈ suggests that the processor set is 

reasonably heterogeneous. It should be noted that paging has not started happening at this 

problem size for both the computers. Similarly for LU factorization, the computer X6 exhibited 

the fastest speed of 130 MFlops for factorizing a dense 8500×8500 matrix whereas the computer 

X1 exhibited the lowest speed of 19 MFlops for factorizing a dense 4500×4500 matrix. The ratio  
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Figure 4.40: The cost of finding the optimal solution using the partitioning algorithm. p is the number of processors. 

 

8.6
19

130 ≈ suggests that the processor set is reasonably heterogeneous and it should also be noted 

that paging has not started happening at this problem size for both the computers.  

Figure 4.40 displays the cost in seconds of finding the optimal solution using the partitioning 

algorithm for varying number of processors for large problem sizes. The speed function for each 

processor is built using the above procedure (5 experimental points appeared enough to build the 

functions). It can be inferred that this cost is negligible compared to the execution time of the 

applications which varies from minutes to hours. 

 
4.7.1.1.2 Numerical Results 

In this section, we present the experimental results comparing the data partitioning algorithms 

using the functional model over the data partitioning algorithms using the single number model. 

In the figures, for each problem size, the speedup calculated is the ratio of the execution time of 

the application using the single number model over the execution time of the application using 

the functional model.  
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(b) 

Figure 4.41: Results obtained using the network of heterogeneous computers shown in Table 4.8. The speedup 

calculated is the ratio of the execution time of the application using the single number model over the execution time 

of the application using the functional model. (a) Comparison of speedups of matrix-matrix multiplication. For the 

single number model, the speeds are obtained using serial matrix-matrix multiplication of two dense square 

matrices. For the solid lined curve, the matrices used are of size 500×500. For the dashed curve, the matrices used 

are of size 4000×4000. (b) Comparison of speedups of LU factorization. For the single number model, the speeds 

are obtained using serial LU factorization of a dense square matrix. For the solid lined curve, the matrix used is of 

size 2000×2000. For the dashed curve, the matrix used is of size 5000×5000. 
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For each processor, the piecewise linear function approximation of the real-life speed 

function and not speed band is built. The piecewise linear function approximation of the real-life 

speed function for a processor is built using a set of experimentally obtained points (x,s) . To 

obtain an experimental point for a problem size x, we execute the application for the problem 

size at that point. The absolute speed of the processor s for this problem size is obtained by 

dividing the total volume of computations by the real execution time (and not the ideal execution 

time). 

The experimental results show that the parallel applications using the functional model 

demonstrate good speedup over parallel applications using the single number model. At a first 

glance, it may look strange that there is no problem size where the single number model 

demonstrates the same speed as the functional model. Actually in heterogeneous environment, 

the distribution given by the single number model cannot in principle be better than the 

distribution given by the functional model. This is because the speeds used in the single number 

model are obtained based on the fact that all the processors get the same number of elements and 

hence solve problems of the same size as in a homogeneous environment. Consider for example 

an application employing a serial matrix-matrix multiplication algorithm, the absolute speeds of 

the processors for this application to be used in the single number model are calculated based on 

a particular size of matrix, that is, the same number of elements. So whatever problem size is 

used, it will give wrong estimation of distribution for at least one processor.  

Figure 4.41(a) shows the speedup of the matrix-matrix multiplication executed on this network 

using the functional model over the matrix-matrix multiplication using the single number model. 

There are two curves, the solid lined curve corresponds to the single number speed of the 

processor obtained based on the multiplication of two dense 500×500 matrices and the dashed 
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curve corresponds to the single number speed of the processor obtained based on the 

multiplication of two dense 4000×4000 matrices.  

Figure 4.41(b) shows the speedup of the matrix factorization executed on this network using 

the functional model over the matrix factorization using the single number model. There are two 

curves, the solid curve corresponds to the single number speed of the processor obtained based 

on the matrix factorization of a dense 2000×2000 matrix and the dashed curve corresponds to the 

single number speed of the processor obtained based on the matrix factorization of a dense 

5000×5000 matrix.  

As can be seen from the figures, the functional model performs better than the single number 

model for a network of heterogeneous computers when one or more tasks do not fit into the main 

memory of the processors and when relative speeds cannot be accurately approximated by 

constant functions of problem size and our data partitioning algorithms using this model deliver 

efficient solutions.  
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4.7.2 Algorithms for Partitioning Sets with Processor Memory Bounds 
 
In previous section, we addressed the problem of optimal distribution of computational tasks on 

a network of heterogeneous computers when one or more tasks do not fit into the main memory 

of the processors and when relative speeds cannot be accurately approximated by constant 

functions of problem size. We designed efficient algorithms of data partitioning using a realistic 

performance model of network of heterogeneous computers. This model integrates many 

essential features of a network of heterogeneous computers having a major impact on its 

performance such as the processor heterogeneity, the heterogeneity of memory structure, and the 

effects of paging. Under this model, the speed of each processor is represented by a continuous 

and relatively smooth function of the size of the problem whereas standard models use single 

numbers to represent the speeds of the processors.  

We then formulated a problem of partitioning of an n-element set over p heterogeneous 

processors using this model and designed efficient algorithms for its solution whose worst-case 

complexity is O(p2×log2n) but the best-case complexity is O(p×log2n). The optimal solution is 

the solution where the size of the problem assigned to each processor is proportional to the speed 

of the processor. The algorithms are based on the following observation: If a distribution of the 

elements of the set amongst the processors is obtained such that the number of elements is 

proportional to the speed of the processor, then the points, whose coordinates are number of 

elements and speed, lie on a straight line passing through the origin of the coordinate system and 

intersecting the graphs of the processors with speed versus the size of the problem in terms of the 

number of elements. The algorithms use the observation that the optimal solution obtained by 

these algorithms is a straight line passing through the origin of the coordinate system and  
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Machine 
Name 

Architecture cpu 
MHz 

Total 
Main 

Memory 
(kBytes) 

Cache 
(kBytes) 

Comp1 
Linux 2.4.20-20.9bigmem 

Intel(R) Xeon(TM) 
2783 7933500 512 

Comp2 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 524288 2048 

Comp3 Windows XP 3000 1030388 512 

Comp4 Linux 2.4.7-10 i686 730 254524 256 
Table 4.11: Specifications of the four heterogeneous computers, on which applications are run to determine the 

effect of caching and paging in reducing their execution speed. 
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Figure 4.42. The effect of caching and paging in reducing the execution speed of each of the four applications run 

on network of heterogeneous computers shown in Table 4.11. (a) ArrayOpsF, (b) TreeTraverse, (c) 

MatrixMultATLAS, and (d) MatrixMult. P is the point where paging starts occurring. 
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intersecting the graphs of the processors with speed versus the size of the problem in terms of the 

number of elements. The algorithms take at most p2×log2n steps to find the optimal solution.  

However this model fails to provide optimal solutions when the network consists of computers 

that are configured to avoid paging. Consider the experiments shown in Figure 4.42. The 

experiments show that Comp1 and Comp2 do not permit paging. This is typical of computers 

used as a main server. For applications designed to efficiently use cache memory, such 

computers show a constant speed function, up to a point where the process crashes, probably 

because it tries to invoke a paging procedure, not allowed due to its configuration. So if we have 

such computers, the real speed function of the size of the problem is not continuous any more but 

discontinuous at the point where paging happens, that is, there is a break in the continuity of the 

function at the point where paging happens.  

Consider a small network of three processors, whose speeds as functions of problem size are 

shown in Figure 4.43. The processor represented by the speed function s1(x) is configured to 

permit paging. The processors represented by speed functions s2(x) and s3(x) are configured to 

avoid paging. The bold curves represent the experimentally obtained parts of the speed functions. 

Now assume that we want to obtain optimal distributions for problem sizes whose optimal 

solution lines lie beyond the bold curves. In this case we naturally extrapolate the curves in a 

continuous manner using some reasonable approximations. The extrapolations are shown by 

dotted curves. However it can be seen that sometimes the extrapolations are not accurate 

representations of the real shape of the speed functions as shown for the speed functions s1(x) 

and s2(x). The real speed functions are shown by dashed curves. Consider two data distributions 

obtained by the functional model and which are shown by dotted lines passing through the 

origin. Although the first data distribution (x11,x12,x13) is not the optimal solution just because the  
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Figure 4.43:  A small network of three processors whose speeds are shown against the size of the problem. The 

dotted lines passing through the origin represent solutions provided by the functional model. The bold curves 

represent the experimentally obtained speed functions. The dotted curves represent reasonable approximations of the 

speed functions in a continuous manner. The dashed curves represent the real behavior of the speed functions. The 

first dotted line giving the data distribution (x11,x12,x13) is a non-optimal solution. The second dotted line giving the 

data distribution (x21,x22,x23) is not a solution at all.  

 
extrapolated speed functions s1(x) and s2(x) are not accurate representations of the real speed 

functions, it still give a reasonable sub-optimal solution of the problem. At the same time, the 

second data distribution (x21,x22,x23) is not a solution at all. This is because at the points x22 and 

x23 the paging starts occurring for computers with speed functions s2(x) and s3(x) and since these 

computers are configured to avoid paging, they crash. Therefore in order to obtain optimal and 

working solutions for such networks, we need to extend the functional model. 

We naturally extend the functional model by including an additional parameter of maximum 

problem size. The maximum problem size represents the upper bound on the size of the problem 
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that each processor can solve. For computers that are configured to avoid paging, it represents 

the point where the computer crashes due to the occurrence of paging and where the speed 

function of the size of the problem becomes discontinuous. 

In the next section, we present the modified functional model. This is followed by a 

formulation of a general set-partitioning problem, which is the problem of partitioning of an n-

element set over p heterogeneous processors using this modified functional model. Then we give 

its efficient solution of the complexity O(p3×log2n). This problem is a simple variant of the most 

advanced problem of partitioning a set with weighted elements formulated in Section 4.3. We 

use the simple variant to explain how complex the problem of scheduling tasks amongst 

processors is when: (a) the processors have significantly different memory structure, and (b) 

there are memory limitations on the size of task that can be solved by each processor. We also 

use this variant to explain in simple terms how the modified functional model can be used to 

achieve better data partitioning on networks of heterogeneous computers before moving on to 

solve the most advanced problem. 

To demonstrate the efficiency of the modified functional model, we perform experiments 

using naïve parallel algorithms for linear algebra kernel, namely, matrix multiplication and LU 

factorization using striped partitioning of matrices on a local network of heterogeneous 

computers. Our main aim is not to show how matrices can be efficiently multiplied or efficiently 

factorized but to explain in simple terms how the modified functional model can be used to 

optimally schedule tasks on networks of heterogeneous computers taking into account the 

processor and memory heterogeneity. We also view these algorithms as good representatives of a 

large class of data parallel computational problems and a good testing platform before 

experimenting more challenging computational problems. 
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We end the discussion with a survey of related literature. 

 

4.7.2.1 The Extended Performance Model of Networks of Heterogeneous 
Computers 

 
The modified functional model of networks of heterogeneous computers has the following 

parameters: 

•  An upper bound on the size of the task that can be solved by each computer, and  

•  The speed of the processor is represented by a continuous and smooth function of the 

problem size until the upper bound. Beyond the upper bound, the speed of the processor is 

assumed to be zero. 

The model retains the restrictions imposed by the functional model on the shape of the graph 

representing the speed function. The shape of the graph should be such that there is only one 

intersection point of the graph with any straight line passing through the origin. That is the 

speeds of the processors must either be increasing or decreasing functions of problem size for the 

problem sizes for which the solutions are sought. These assumptions on the shapes of the graph 

are representative of the most general shape of graphs observed for applications experimentally 

as shown in Figure 4.42. 

The upper bound could signify one of the following cases:  

•  Allocation of a task whose size is beyond this bound could result in processor failure. 

•  Allocation of the task whose size is beyond this bound could result in unacceptable 

execution time to accomplish the task due to severe paging. 
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4.7.2.2 Algorithm for Partitioning a Set with Processor Memory Bounds 
 
Using the modified functional model, we solve the following problem of partitioning a set, which 

can be formulated as: 

Definition 1. Heterogeneous Memory Partitioning HMP(n, s, b):  

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors 

whose speeds are functions of the size of the problem x, si=fi(x), and (3) There is a upper bound 

on the largest problem size that can be solved on each processor, that is, there is an upper bound 

bi on the number of elements stored by each processor (i=0,…,p-1); 

Partition the set into p disjoint partitions such that: 

•  x0+x1+...+xp-1=n, where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1 

respectively, 

•  xi≤bi for all (i=0,…,p-1), 

•  the maximum )(max
1

0
i

i
p

i s

x−

=
 of the execution times of the processors is minimized. That is 

solve the following min-max problem: 







 −

=
)(maxmin

1

0
i

i
p

i s

x
 

where xi is the number of elements in partition i. We assume that the volume of computations 

involved in the execution of a problem size is proportional to the problem size. 

We provide an optimal solution to this problem of complexity O(p3×log2n).  

When there is an upper bound bi on the number of elements stored by each processor 

(i=0,…,p-1), the algorithm used to solve the partitioning problem is of complexity O(p3). This 

algorithm can be summarized as follows: 
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1. Partition the set such that the number of elements in each partition is proportional to the 

speed of the processor and assuming no upper bound exists on the number of elements that 

can be stored by each processor. If the number of elements assigned to each processor is 

less than or equal to the upper bound on the number of elements that can be stored by each 

processor, we have the optimal distribution. 

2. For each processor i  (i=0,…,p-1), we check if the number of elements assigned to it is 

greater than the upper bound on the number of elements that it can store. For all the 

processors whose upper bounds are exceeded, we assign them the number of elements 

equal to their upper bounds. Now we solve the partitioning problem of a set with 

remaining elements over the remaining processors. We recursively apply this procedure 

until all the elements have been assigned. 

The proof of optimality of the solution provided by this algorithm is given in [WS04]. This is 

indeed a special case of the problem variant we are going to solve in this section. 

When the speed of the processor is represented by a function of the size of the problem, s=f(x), 

and when there is no upper bound on the number of elements stored by each processor, efficient 

algorithms of complexity O(p2×log2n) have been presented in the previous section. 

When the speed of the processor is represented by a function of the size of the problem, s=f(x), 

and when there is an upper bound on the number of elements stored by each processor, the 

problem of partitioning a set is non-trivial. Before presenting the algorithm to solve this problem, 

we formulate the formal mathematical problem of the optimization problem HMP of partitioning 

of the set. Given: (1) A set of n elements, and (2) A well-ordered set of p functions, si=fi(x), and 

(3) There is a upper bound bi on the number of elements that can be stored in each partition 

(i=0,…,p-1), find a partition of the set into p disjoint partitions such that: 
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•  x0+x1+...+xp-1=n where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1 

respectively, 

•  xi≤bi for all (i=0,…,p-1), 

•  the maximum of )(max
1

0
i

i
p

i s

x−

=
 is minimized. That is solve the following min-max problem: 
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where xi is the number of elements in partition i.  

Before we present the algorithm to solve the optimization problem HMP, we apply the 

following assumptions: 

(1) The speed of each processor is represented by a continuous function of the size of the 

problem up till its upper bound on the problem size. The speed of the processor is zero beyond 

the upper bound. 

(2) The shape of the graph representing the speed function should be such that there is only 

one intersection point of the graph with any straight line passing through the origin. That is the 

speeds of the processors must either be increasing or decreasing functions of problem size for the 

problem sizes for which the solutions are sought and,  

(3) For each processor, for all x ≥ y, where x and y are problem sizes, the execution times tx 

and ty to execute problems of sizes x and y respectively are related by tx ≥  ty. 

Algorithm Heterogeneous Memory Partitioning Algorithm HMPA(n, s, b). The algorithm we 

propose to solve this advanced partitioning problem is graphically illustrated in Figure 4.44 and 

has the following main points: 

1. Partition the set such that the number of elements in each partition is proportional to the 

speed of the processor and assuming no upper bound exists on the number of elements that  
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Figure 4.44: The partitioning algorithm for the problem size n. The bold curves represent the experimentally 

obtained speed functions. The dotted curves represent reasonable approximations of the speed functions in a 

continuous manner. For processor represented by speed function s1(x), we assign this processor the number of 

elements equal to its upper bound b1. We then partition the set with remaining n-b1 elements amongst the processors 

represented by speed functions s2(x) and s3(x) respectively. The region between the lines line1 and line2 is bisected 

to narrow down to the optimal solution. 

 

can be stored by the processor (we can use any continuous extension of the speed function 

beyond the maximal problem size, say, a constant equal to the speed for the maximal 

problem size). The partitioning algorithm used to perform this task is discussed in the 

previous section. If the number of elements in each partition assigned to each processor is 

less than the upper bound on the number of elements that can be stored by the processor, 

we have an optimal distribution.  

2. For each processor i (i=0,…,p-1), we check if the number of elements assigned to it is 

greater than the upper bound on the number of elements that it can store. For all the 
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processors whose upper bounds are exceeded, we assign them the number of elements 

equal to their upper bounds. Now we solve the partitioning problem of a set with 

remaining elements over the remaining processors. We recursively apply this procedure 

until all the elements have been assigned. 

Theorem 1. HMPA(n, s, b) gives the optimal solution to the optimization problem HMP(n, s, b). 

Proof. We prove the optimality of the solution using mathematical induction. We use the 

maximum time to solve the task assigned to each processor as the performance metric.  

The cases for p=1 and p=2 are trivial. For p=3, let us assume the upper bounds of the 

processors 1, 2, and 3 on the number of elements that they can store are b1, b2, and b3 

respectively. Suppose the optimal distribution assuming there are no upper bounds on the 

number of elements is (x1, x2, x3) such that x1+x2+x3=n where n is the size of the problem.  

Consider the case where x1 > b1 and x2 > b2. Let us assign the number of elements equal to b1 

for processor 1. The remaining distribution has to satisfy the equality 1
'
3

'
2 bnxx −=+  where 

'
2x and '

3x are to be chosen such that the speed of the processor is proportional to the number of 

elements assigned to it. If the speeds of the processors 2 and 3 are non-increasing functions of 

problem size, it can be proved that 2
'
2 xx > and 3

'
3 xx > . This gives us the inequality 

22
'
2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2. If 

the speeds of the processors 2 and 3 are non-decreasing functions of problem size, there are three 

possibilities, ( 2
'
2 xx > , 3

'
3 xx > ), ( 2

'
2 xx < , 3

'
3 xx > ) and ( 2

'
2 xx > , 3

'
3 xx < ). The first and the third 

possibility give us the inequality 22
'
2 bxx >> . For the second possibility, any allocation ''

2x such 

that ''
2x < b2 would result in an allocation of ''

3x  number of elements to processor 3 such that 

''
3x > '

3x  thus resulting in a larger execution time. Therefore we have to necessarily assign b2 
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number of elements to processor 2. If the speed of the processor 2 is a non-decreasing function of 

problem size and speed of processor 3 is a non-increasing function of problem size, there are two 

possibilities, ( 2
'
2 xx < , 3

'
3 xx > ) and ( 2

'
2 xx > , 3

'
3 xx < ). In the first possibility, any allocation ''

2x  

such that ''
2x < b2 would result in an allocation of ''

3x  number of elements to processor 3 such that 

''
3x > '

3x  thus resulting in a larger execution time. The second possibility gives us the inequality 

22
'
2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2.  

Consider the case of optimal distribution where x1 > b1 is true. For processor 1, we assign the 

number of elements equal to b1. The remaining elements are allocated such that 1
'
3

'
2 bnxx −=+  

where '
2x and '

3x are to be chosen such that the speed of the processor is proportional to the 

number of elements assigned to it. Any other allocation ''
1x such that ''

1x < b1 would result in an 

allocation where one of the inequalities ( ''
2x > '

2x ), ( ''
3x > '

3x ) is satisfied thus resulting in a larger 

execution time. It can be proved similarly for the case when x2 > b2. 

Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1 

processors. For a given problem size n, let us assume the distribution given by our algorithm to 

be kmm xxbbbx ,,,,,,, 1210 LL +  such that nxbx k =+++ L10 , where without loss of generality 

processors 1,…,m are allocated their upper bounds. It can be inferred that the execution times for 

the rest of the processors 0,m+1,…,k satisfy the equality km ttt === + L10 . It can also be 

inferred that ikm tttt ≥+ ),,,( 10 L  for all i=1,…,m. The execution time for the problem size is 

equal to )(max
0

i

k

i
mp tt

=
= =  ),,,( 10 km ttt L+ . Consider an alternative solution with the distribution 

''
1

'
0 ,,, kxxx L where nxxx k =+++ ''

1
'
0 L  and mm bxbx ≤≤ '

1
'
1 ,,L . It can be easily seen that for 

atleast one processor i (i=0,m+1,…,k), ii xx ≥' , thus giving an execution time '
it , which is 
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greater than the execution time given by our algorithm mpt . 

Theorem 2. The complexity of the algorithm HMPA(n, s, b) is O(p3×log2n). 

Proof. There are p major steps in the algorithm. At each such major step i, we solve the problem 

of partitioning of a set amongst p-i processors such that the number of elements in each partition 

is proportional to the speed of the processor and assuming no upper bound exists on the number 

of elements that can be stored by the processor. The complexity of this step is O(p2×log2n) as 

discussed in the previous section. Since there are p such steps, the overall worst-case complexity 

is O(p3×log2n). Mathematically, the worst-case complexity is the summation of p terms: 
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4.7.2.3 Applications of the Model 

 
So far we have formulated a realistic performance model of a network of heterogeneous 

computers and designed efficient algorithms of data partitioning with this model. Now we 

present a list of practical applications of this model: 

•  Data partitioning on networks of heterogeneous computers, which only include computers 

that are configured to avoid paging. Such computers crash when problem sizes are 

allocated that requires paging. The largest problem size on such computers is the problem 

size where paging starts happening. 

•  Data partitioning on networks of heterogeneous computers, which only include computers 

that permit paging. However allocation of large problem sizes can cause severe paging on 

such computers as a result causing severe performance degradation and sometimes stalling 
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of the entire application. The largest problem size on such computers is not the problem 

size where paging starts happening but the problem size which causes severe performance 

degradation of the application. 

•  Data partitioning on networks of heterogeneous computers, which include computers some 

of which permit paging and some of which are configured to avoid paging. 

 
4.7.2.4 Experimental Results 

 
The experimental results are divided into three sections. The first two sections are devoted to 

building the modified functional model. In the first section, we suggest ways to determine the 

upper bound on the size of the problem that each processor can solve. Then we present the 

parallel applications and the network of heterogeneous computers on which the applications are 

tested. For each application, we explain how to estimate the processor speed. This is followed by 

presentation of the procedure to build the speed functions of the processors. Finally we present 

the experimental results obtained by running these applications on the network of heterogeneous 

computers. 

 
4.7.2.4.1 Determination of Largest Problem Size 

 
In this section, we highlight different approaches to determine the largest problem size of an 

application that can be solved efficiently on a given computer. We do not define the notion of 

largest problem size as this depends on the nature of the applications run on the network of 

heterogeneous computers and the level of integration of the computers in this network. 

One of the ways is to determine the user-available memory on the computer and the memory 

requirement of the application. If the memory requirement of the application is less than the user-

available memory then the application will not suffer from memory limitations. We can  
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Figure 4.45: Operating system tools to determine the user-available memory for an application. The user-available 

memory is highlighted in bold. 

 

determine the largest problem size we can run, by calculating when the total memory 

requirement of an application would exceed the user-available memory capacity on a given 

computer. The total user-available memory of a computer can be obtained from the operating 

system utilities like ‘cat /proc/meminfo’ and ‘top’ as shown in Figure 4.45. There are 

also system calls that can be called from the application code to obtain the user-available 

memory of a given computer.  

Cierniak et al. [CLZ97] show that the total memory requirement is generally not a good 

criterion for judging the largest problem size that can be run efficiently. The reason is that the 

total memory requirement is a very conservative measure, and generally overestimates the 

memory requirement of an application. They introduce a new notion, the resident memory size 

(RMS) for a given program segment, defined as the minimum number of pages of physical 

memory required to ensure that all fault misses are cold misses (i.e. due to the first reference) for 

that segment, using a particular page replacement algorithm. If the resident memory size is less 

than the user-available memory then the application will not suffer from the effects of memory 

limitations. If, on the other hand, the program’s RMS is larger than the available memory then 

some of the pages required will not be in memory, and a page fault occurs. As the input data size 

increases, the RMS increases, ultimately exceeding the available memory. A compile-time 

shell$ cat /proc/meminfo 
MemTotal:      1033908 kB 
MemFree:        389568 kB 
… 
shell$ top 
Mem:  1033908k total,  644340k used,   389568k free,   512680k buffers 
Swap: 2040212k total,    7924k used,  2032288k free,    36916k cached 
… 
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algorithm is provided to approximate the RMS. The notion of RMS value should work well in 

practice for regular problems, but it may not be a good approximation for irregular problems. 

As shown in Figure 4.42, the notion of the largest problem size depends on the nature of the 

application and on the level of the integration of the computers used in the experiments. For 

computers that do not permit paging, the largest problem size is the point where paging starts 

happening. This is shown to be the point P for computers Comp1 and Comp2 in Figure 4.42 for 

all the applications. For computers configured to permit paging, the largest problem size is not 

the point where paging starts happening but the point where the absolute speed of the processor 

falls drastically. This is shown to be the point P for computers Comp3 and Comp4 in Figure 4.42 

for all the applications.  

The problem size at point P shown in Figure 4.42 is probably less than the largest problem size 

but it is a good approximation. Speed functions built with large number of points with a wider 

range of problem sizes can give a better approximation of largest problem size that can be solved 

on a processor. However in this case it depends on a number of conditions such as how much 

time the application programmers are willing to spend to build the speed functions of the 

processors and their level of efficiency. This approach of determining the largest problem size 

should work well in practice for regular as well as irregular problems.  

We aim to perform more future work to determine accurately the problem size at which paging 

starts happening for both regular as well as irregular problems. We aim to do this determination 

with minimal experimental time. 
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Machine 
Name 

Architecture cpu 
MHz 

Total 
Main 

Memory 
(kBytes) 

Largest size 
of task 
(MM) 

Largest 
size of task 

(LU) 

Cache 
(kBytes) 

X1 Linux 2.4.20-
20.9bigmem Intel(R) 

Xeon(TM) 

2783 7933500 116640000 262440000 512 

X2 Linux 2.4.18-10smp 
Intel(R) 

XEON(TM) 

1977 1030508 36000000 81000000 512 

X3 Linux 2.4.18-10smp 
Intel(R) 

XEON(TM) 

1977 1030508 36000000 81000000 512 

X4 Linux 2.4.18-10smp 
Intel(R) 

XEON(TM) 

1977 1030508 36000000 81000000 512 

X5 Linux 2.4.18-10smp 
Intel(R) 

XEON(TM) 

1977 1030508 36000000 81000000 512 

X6 SunOS 5.8 sun4u 
sparc SUNW,Ultra-

5_10 

440 524288 31360000 64000000 2048 

X7 SunOS 5.8 sun4u 
sparc SUNW,Ultra-

5_10 

440 524288 30250000 59290000 2048 

X8 SunOS 5.8 sun4u 
sparc SUNW,Ultra-

5_10 

440 524288 30250000 64000000 2048 

X9 SunOS 5.8 sun4u 
sparc SUNW,Ultra-

5_10 

440 524288 30250000 59290000 2048 

X10 Linux 2.4.18-3 i686 
Intel Pentium III 

997 254576 24502500 30250000 256 

X11 SunOS 5.5 Sun4m 
sparc 

SUNW,SPARCstation-
5 

110 65536 6000000 6250000 512 

Table 4.12: Specifications of the eleven heterogeneous processors to demonstrate the efficiency of the modified 

functional model. 

 
 

4.7.2.4.2 Applications 
 
A small heterogeneous local network of 11 different Solaris and Linux workstations shown in 

Table 4.12 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch 

enabling parallel communications between the computers.  
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Figure 4.46: Using piece-wise linear approximation to build speed functions for 3 processors. The circular points 

are experimentally obtained whereas the square points represent the upper bounds. The speed function for processor 

s1(x) is built from 3 experimentally obtained points (application run on this processor uses memory hierarchy 

inefficiently) whereas the speed functions s2(x) and s3(x) (application run on these processors use memory hierarchy 

efficiently) are built from 4 experimentally obtained points. Speeds of the processors are assumed to be zero for 

problem sizes beyond their upper bounds. 

 

The two applications used to demonstrate the efficiency of the modified functional model over 

the functional and the single number models are described in detail in Section 4.7.1.1.1. The 

procedure to build the piece-wise linear function approximation is also described in detail. We 

use piece-wise linear function approximation illustrated in Figure 4.46 to build the speed 

function. Such approximation of the speed function is compliant with the requirements of the 

model, which are the shape requirements of the graph representing the speed function and that 

the speeds be continuous and smooth functions of problem size up till its upper bound on the 

problem size and zero beyond. 
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4.7.2.4.3 Numerical Results 
 
In this section, we present the experimental results demonstrating the efficiency of our modified 

functional model over the functional and the single number models.  

In the figures, the speedup calculated is the ratio of the execution time of the application using 

a single number model over the execution time of the application using a functional model. A set 

of as few as 5 points is used to build the speed functions of the processors for the functional 

models.  

The solid lined and dashed curves with normal thickness represent the speedup obtained using 

the functional model over the single number model [BBP+01]. Both these models do not take 

into account the upper bounds on the problem size that a processor can solve. The solid lined and 

dashed curves with bold thickness represent the speedup obtained using the modified functional 

model over the single number model [WS04]. Both these models take into account the upper 

bounds on the problem size that a processor can solve. 

Figure 4.47(a) shows the speedup of the matrix-matrix multiplication executed on this network 

using the functional models over the matrix-matrix multiplication using the single number 

model. There are two curves, the solid lined curve corresponds to the single number speed of the 

processor obtained based on the multiplication of two dense 500×500 matrices and the dashed 

curve corresponds to the single number speed of the processor obtained based on the 

multiplication of two dense 4000×4000 matrices. It can be seen from the figure that problem 

sizes beyond 24000 cannot be solved by using the functional and the single number models. This 

is because both these models do not take into account the memory limitations of the computers 

involved in the execution of the application. The modified functional model is used to obtain 

solutions for problem sizes beyond 24000. It should also be noted that the modified functional  
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(b) 

Figure 4.47: Results obtained using the network of heterogeneous computers shown in Table 4.12. The speedup 

calculated is the ratio of the execution time of the application using a single number model over the execution time 

of the application using a functional model. (a) Comparison of speedups of matrix-matrix multiplication. For the 

single number models, the speeds are obtained using serial matrix-matrix multiplication of two dense square 

matrices. For the solid lined curves, the matrices used are of size 4000×4000. For the dashed curves, the matrices 

used are of size 500×500. (b) Comparison of speedups of LU factorization. For the single number models, the 

speeds are obtained using serial LU factorization of a dense square matrix. For the solid lined curves, the matrix 

used is of size 5000×5000. For the dashed curves, the matrix used is of size 2000×2000.  
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model and the functional model provide the same solutions for problem sizes less than 24000. 

This is because the data distributions for problem sizes less than 24000 do not exceed the upper 

bound for any processor. Thus it can be seen that larger problem sizes are solved using modified 

functional model and the execution performance obtained is good. 

Figure 4.47(b) shows the speedup of the matrix factorization executed on this network using 

the functional models over the matrix factorization using the single number model. There are two 

curves, the solid lined curve corresponds to the single number speed of the processor obtained 

based on the matrix factorization of a dense 2000×2000 matrix and the dashed curve corresponds 

to the single number speed of the processor obtained based on the matrix factorization of a dense 

5000×5000 matrix. It can be seen from the figure that problem sizes beyond 19000 cannot be 

solved by using the functional model and single number models. This is because both these 

models do not take into account the memory limitations of the computers involved in the 

execution of the application. The modified functional model is used to obtain solutions for 

problem sizes beyond 19000. It should also be noted that the modified functional model and the 

functional model obtain the same solutions for problem sizes less than 19000. This is because the 

data distributions for problem sizes less than 19000 do not exceed the upper bound for any 

processor. Thus it can be seen that larger problem sizes are solved using the modified functional 

model and the execution performance obtained is good. 

As can be seen from the figures, the modified functional model performs better than the 

currently existing models for a network of heterogeneous computers. 

 

4.7.2.5 Related Work 

We survey related work in this section. They fall into two categories: papers dealing with task 
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partition and scheduling with memory constraints on dedicated environments and papers dealing 

with task scheduling with memory constraints on non-dedicated computing environments like 

the Heterogeneous Networks of Computers (HNOCs) and computing grids. 

Li, Bharadwaj, and Ko [LVK00] investigate the problem of scheduling a divisible load onto a 

set of processors with finite-size buffers in heterogeneous single-level tree networks. They 

propose a fast algorithm called Incremental Balancing Strategy (IBS) to achieve the optimal 

processing time. In each increment, distribution of the load is found for processors with available 

memory according to the standard divisible load theory methods [BGM+96] without taking the 

memory constraints into account. Then, the distribution of the load is scaled proportionately such 

that at least one buffer is filled completely. The remaining available buffer capacities are 

memory sizes in the next increment. This process is continued until distributing the entire load. 

Drozdowski and Wolniewicz [DW03a] propose a linear programming method of finding 

solutions with guaranteed optimality for the problem of scheduling divisible loads in networks of 

processors with limited memory and communication startup times. The complexity of the linear 

programming solutions that they use to solve their problem is O(p3.5×L), where p is the number 

of processors involved in the execution of the algorithm and L is the length of the string 

encoding all the parameters of linear program.  

The works discussed take into account the processor heterogeneity in terms of speeds, memory 

heterogeneity in terms of memory limitation at each processor, and network heterogeneity in 

terms of the communication cost between a pair of processors.  However, these works assume 

distributed systems with a flat memory model and are not applicable to systems with memory 

hierarchy. The dependence of the speed of the processor on the size of the problem is assumed to 

be linear as is usually observed on dedicated distributed multiprocessor computer systems. The 
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largest problem size that can be solved at each processor is assumed to be the core memory at 

that processor. This is a safe assumption on dedicated distributed multiprocessor computer 

systems. However on networks of heterogeneous computers, due to the nature of applications run 

and the level of integration of the computers involved in execution of these applications, the core 

memory at each processor is just an upper bound on the largest problem size that can be solved 

but is not a good approximation of the actual largest problem size that can be solved. 

The modified functional model that we propose integrates the essential features underlying 

applications run on a network of heterogeneous computers, mainly, the processor heterogeneity, 

the heterogeneity of memory structure, and the memory limitations at each level of memory 

hierarchy. We also present efficient algorithms of data partitioning with this model with 

relatively low complexity of O(p3×log2n). However we do not consider the cost of 

communications in our modified functional model. 

While resource management and task scheduling are identified challenges of Grid computing, 

current Grid scheduling systems mainly focus on CPU and network availability. Many heuristic 

scheduling algorithms [BWC+03, SW03] have been proposed for traditional high performance 

computing. However these scheduling systems are for dedicated multiprocessor computer 

systems and also ignore the impact of memory resource availability on the scheduling decision-

making.  

Several studies have been reported on task allocation for load balance considering memory 

resource constraints. An opportunity cost approach proposed in [AAB+00] converts the usage of 

resources including CPU and memory to a single homogeneous cost. Based on the cost, task is 

assigned or reassigned to each node for load balance. Load sharing policies with the 

consideration of effective usage of global memory were studied in [XCZ02]. They consider two 
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types of application workload, known memory demands and unknown memory demands. 

However their major concern is how to reduce the average slowdown of all individual jobs in the 

system, instead of how to schedule a parallel application to achieve its best performance. Wu and 

Sun [WS04] consider how to partition a Grid application and schedule it on a cluster of 

distributed heterogeneous resources to obtain a minimum application execution time with the 

consideration of both CPU resource availability and memory resource availability. Three task 

partition policies, namely, CPU-based, memory-based, and CPU-memory combined partition are 

studied. They show that the CPU-memory combined approach shows good performance gains 

over the other approaches. A heuristic CPU-memory algorithm for task scheduling of a meta-task 

is also proposed. The effect of local jobs on a grid application execution in the situation of 

resource sharing is evaluated using distribution functions. Currently our modified functional 

model and the algorithms using this model are not applicable for task scheduling of a meta-task. 

The accurate modeling of the electronic structure of atoms and molecules involves 

computationally intensive tensor contractions involving large multidimensional arrays. The 

efficient computation of complex tensor contractions usually requires the generation of 

temporary intermediate arrays. These intermediates could be extremely large, but they can often 

be generated and used in batches through appropriate loop fusion transformations. To optimize 

the performance of such computations on parallel computers, Cociorva et al. [CBL+02] present a 

framework to address the optimization problem: given a set of computations expressed as a 

sequence of tensor contractions, an empirically derived measure of the communication cost for a 

given target computer, and a specified limit on the amount of available memory on each 

processor, re-structure the computation so as to minimize the total execution time while staying 

within the available memory. The framework considers only the heterogeneity in terms of the 
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memory limitations of each computer and is not applicable for programming applications on 

networks of heterogeneous computers, which exhibits processor heterogeneity in terms of speeds 

and memory heterogeneity in terms of memory hierarchy and memory limitations of each 

computer. 

 

4.8 Summary 
 
We have presented a classification of partitioning problems on networks of heterogeneous 

computers. Our approach to classification of partitioning problems is based on two corner stones: 

•  A realistic performance model of networks of heterogeneous computers, 

•  A natural classification of mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) solving problems on networks 

of heterogeneous computers. 

We have proposed a realistic performance model of a network of heterogeneous computers 

and designed efficient algorithms of data partitioning with this model. This model integrates 

many essential features of a network of heterogeneous computers having a major impact on its 

performance such as the processor heterogeneity, the heterogeneity of memory structure, and the 

effects of paging. Under this model, the speed of each processor is represented by a continuous 

and relatively smooth function of the size of the problem whereas standard models use single 

numbers to represent the speeds of the processors.  

We designed efficient algorithms of data partitioning using this functional model of network 

of heterogeneous computers. We particularly addressed the problem of optimal distribution of 

computational tasks on a network of heterogeneous computers when one or more tasks do not fit 
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into the main memory of the processors and when relative speeds cannot be accurately 

approximated by constant functions of problem size.  

We then proposed a modified functional model of a network of heterogeneous computers that 

takes into account the processor heterogeneity, the heterogeneity of memory structure, and the 

memory limitations at each level of memory hierarchy of a processor. We then designed efficient 

algorithms of data partitioning with this model thus addressing the problem of optimal 

distribution of computations over heterogeneous computers taking into account the processor 

heterogeneity, the heterogeneity of memory structure, and the memory limitations at each level 

of memory hierarchy of a processor. 

The modified functional model proposed can be used to design efficient algorithms of data 

partitioning for mathematical structures other than sets such as matrices, graphs, and trees. This 

model can be used to design efficient algorithms for the most general partitioning problem, 

which can be formulated as: 

•  Given: (1) An application of problem size n to be solved, and (2) A well-ordered set of p 

processors whose speeds are functions of the size of the problem, si=fi(x), and (3) There is 

a limit li on the largest problem size that can be solved on each processor, 

•  Partition the problem into p disjoint sub-problems xi (i=0,…,p-1) such that (1) The size of 

the sub-problem xi is proportional to the speed of the processor i, and (2) The size of the 

sub-problem xi is less than or equal to the limit li on the largest problem size that can be 

solved on each processor (xi ≤ li).  

In the presented research we do not take account of communication cost. Although we well 

understand the importance of its incorporation in our performance model, this is just out of scope 
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of this research. We also understand the importance of the problems of efficient building and 

maintaining of our model. These two problems are subjects of our current research. 

Based on a natural classification of mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) solving problems on networks of 

heterogeneous computers, we suggest an API for partitioning these mathematical objects. These 

interfaces allow the application programmers to specify simple and basic partitioning criteria in 

the form of parameters and functions to partition their mathematical objects. These partitioning 

interfaces are designed to be used along with various programming tools for parallel and 

distributed computing on heterogeneous networks. 

Currently we have implemented only the set and dense matrix partitioning API of HDPI. In 

the next chapter, we present HMPI application programming that demonstrates how to write real-

life HMPI applications using the extensions to MPI and the HDPI API and how to execute these 

applications.  
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CHAPTER 5 
 

HMPI Application Programming 

 

5.1 Example of irregular HMPI application 
 

To explain how an application programmer can use HMPI to write a real-life irregular 

application, consider the EM3D application simulating the interaction of electric and magnetic 

fields on a three-dimensional object [YWC+95, CDG+93]. The system consists of a few large 

subbodies resulting from a decomposition of the three-dimensional object. The subbodies contain 

varying number of E nodes where electric field values are calculated and H nodes where 

magnetic fields are calculated. The changes in the electric field of an E node are calculated as a 

linear function of the magnetic field values of its neighboring H nodes and vice versa. Thus, the 

dependencies between E and H nodes form a bipartite graph. In a bipartite graph, the nodes are 

decomposed into two disjoint sets such that no two nodes within the same set are adjacent. Here 

the two disjoint sets are the set of E nodes and the set of H nodes. The subbodies are so 

decomposed from the three-dimensional object that the nodes in each subbody have few 

dependencies on the nodes residing in other subbodies thereby reducing the communications 

between a pair of subbodies. A sample decomposition of a three dimensional object into three 

subbodies is shown in Figure 5.1(a). A simple example of bipartite graph is shown in Figure 

5.1(b). 

The parallel algorithm of this application consists of a few parallel processes, each of which 

updates data characterizing a single sub-body. The heterogeneous algorithm can be summarized 

as follows: 

•  At each step of the algorithm,  
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Figure 5.1: (a) A sample three dimensional object consists of three subbodies. In each subbody, the electric field 

value is represented as a white dot, an E node, and the magnetic field value represented by a black dot, an H node. 

(b) A bipartite graph showing the dependencies between E and H nodes. 

 
o For each of the E nodes in its sub-body, if any of the neighboring H nodes reside 

remotely, each process receives the values of these nodes from the process 

owning them;  

o Each process in parallel computes the new value of the electric field of each of the 

E nodes in its sub-body; 

o For each of the H nodes in its sub-body, if any of the neighboring E nodes reside 

remotely, each process receives the values of these nodes from the process 

owning them; 

o Each process in parallel computes the new value of the magnetic field of each of 

the H nodes in its sub-body.  
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Figure 5.2: The most relevant fragments of code of the MPI program implementing the EM3D algorithm. 

 

Figure 5.3: Specification of the performance model of the EM3D algorithm in the HMPI’s performance definition 

language. 

    
   int main(int argc, char **argv) { 
      MPI_Comm em3dcomm; 
      int i, me, is_executing_algo = MPI_UNDEFINED, E = 0, H = 1;  
      int p, niter;                /* Inputs to the program */        
      struct EM3D_body_t* bodies;  /* Inputs to the program */ 
      MPI_Init(&argc, &argv); 
      MPI_Comm_rank(MPI_COMM_WORLD, &me); 
      if (me >= 0 && me < p) is_executing_algo = 1; 
      MPI_Comm_split(MPI_COMM_WORLD, is_executing_algo, 1, &em3dcomm); 
      if (is_executing_algo) { 
        Initialize_system(p, bodies); 
        MPI_Comm_rank(&em3dcomm, &me); 
        for (i = 0; i < niter; i++) { 
          Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm); 
          Compute_E_values(me, E, p, bodies); 
          Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm); 
          Compute_H_values(me, H, p, bodies); 
        } 
        MPI_Comm_free(&em3dcomm); 
      } 
      MPI_Finalize();  
   } 

   algorithm Em3d(int p, int k, int d[p], int dep[p][p]) { 
     coord I=p; 
     node {I>=0: bench*(d[I]/k);}; 
     link (L=p) { 
       I>=0 && I!=L && (dep[I][L] > 0) :  
         length*(dep[I][L]*sizeof(double)) [L]->[I]; 
     }; 
     parent[0]; 
     scheme { 
       int current, owner, remote; 
       par (owner = 0; owner < p; owner++) 
           par (remote = 0; remote < p; remote++) 
               if ((owner != remote) && (dep[owner][remote] > 0)) 
                  100%%[remote]->[owner]; 
       par (current = 0; current < p; current++) 100%%[current]; 
     }; 
       } 
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The most interesting fragments of the MPI version of this parallel application are shown in 

Figure 5.2. 

As shown in the MPI program above, the participating parallel processes in the group 

associated with the MPI communicator em3dcomm are explicitly chosen from an ordered set of 

processes specified by the group associated with the MPI communicator MPI_COMM_WORLD. If 

the MPI application runs on a homogeneous distributed-memory computer system, this group 

will execute the parallel algorithm with the same execution time as any other MPI group of 

processes, just because all processors run at the same speed, and all communication links transfer 

data at the same speed. However, if the MPI program runs on a HNOC, this group will execute 

the parallel algorithm sometimes slower and sometimes faster than other groups of processes. 

This is because different processors of the HNOC will execute the same computations at 

different speeds, and different pair of processors will communicate at different speeds. MPI does 

not facilitate creation of a group of processes where the processes are optimally selected taking 

into account the speeds of the processes, and the latencies and the bandwidths of the 

communication links between them. It is only a pure chance if the MPI group of processes 

executes the parallel algorithm faster than any other MPI group of processes on the HNOC. 

If there is more than one process per processor, the first p processes are used to execute the 

MPI application. However, the HMPI application will select an optimal set of processes 

consisting of p processes dropping the rest of the processes from the computation when their 

participation can degrade performance. The MPI communicator em3dcomm represents this 

optimal set of processes in the HMPI application whereas it consists of first p processes from the 

pre-defined MPI communication universe MPI_COMM_WORLD in the corresponding MPI 

application. 
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The HMPI version of this parallel application involves first describing the performance model 

of the parallel algorithm. The definition of Em3d shown in Figure 5.3 describes the performance 

model of the heterogeneous algorithm of this parallel application. 

The model describing the algorithm has 4 parameters: 

•  Parameter p specifies the number of abstract processors executing the algorithm; 

•  Parameter k specifies the number of nodes in a single subbody, whose data is computed 

in the benchmark code that is truly representative of the underlying application; 

•  It is supposed that i-th element of the vector parameter d gives the number of nodes in 

the subbody computed by the i-th abstract processor participating in the execution of the 

algorithm; 

•  Parameter dep specifies the number of nodal values communicated between different 

pairs of subbodies: dep[I][J] gives the number of nodal values in the subbody J that 

subbody I needs to compute its nodal values. 

The coord declaration introduces one coordinate variable I ranging from 0 to p-1. 

The node declaration associates the abstract processors with this coordinate system to form a 

linear processor arrangement. It also describes the absolute volume of computation to be 

performed by each of the processors. As a unit of measurement, the volume of computation 

performed by some benchmark code is used. In this particular case, it is assumed that the 

benchmark code computes the nodal values of k nodes in a single subbody. At each step of the 

algorithm, abstract processor PI  updates d[I] nodes. As computations during the updating of 

one single subbody mainly falls into the calculation of nodal values, the volume of computations 

performed by the abstract processor PI will be approximately d[I]/k times larger than the 

volume of computations performed by the benchmark code. 
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The link declaration specifies the volumes of data to be transferred between the abstract 

processors at each step of the algorithm. Abstract processor PI  owning subbody I receives 

dep[I][L] remote boundary values from the subbody L owned by processor PL. Thus, the 

total volume of data to be transferred from PL to PI will be equal to 

dep[I][L]*sizeof(double). 

 

 

Figure 5.4: The most relevant code fragments of the HMPI program implementing the algorithm of EM3D. 

   int main(int argc, char **argv) { 
      MPI_Comm em3dcomm; 
      int i, me, k, E = 0, H = 1; 
      HMPI_Group gid; 
      void* model_params; 
      int p, niter;                /* Inputs to the program */ 
      struct EM3D_body_t* bodies;  /* Inputs to the program */ 
      HMPI_Init(argc, argv); 
      if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) { 
         int output_p; 
         Body recon_body; 
         // Construct recon parameters that are  
         // representative of the application 
  ...  
         HMPI_Recon(&Serial_em3d, &recon_body, 1, &output_p); 
      } 
      if (HMPI_Is_host()) { 
         HMPI_Pack_model_parameters(p, k, d, dep, model_params); 
         HMPI_Group_create(&gid, &HMPI_Model_Em3d, model_params); 
      } 
      if (HMPI_Is_free()) 
         HMPI_Group_create(&gid, &HMPI_Model_Em3d, NULL); 
      if (HMPI_Is_member(&gid)) { 
                 em3dcomm = *(MPI_Comm*)HMPI_Get_comm(&gid); 
        Initialize_system(p, bodies); 
        MPI_Comm_rank(&em3dcomm, &me); 
        for (i = 0; i < niter; i++) { 
          Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm); 
          Compute_E_values(me, E, p, bodies); 
          Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm); 
          Compute_H_values(me, H, p, bodies); 
        }  
      } 
      if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid); 
      HMPI_Finalize(0);  
   } 
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The scheme declaration describes how the abstract processors interact during the execution 

of an iteration of the algorithm: 

•  Each processor Powner first receives the remote values required for the calculation of the 

nodal values in its subbody. During this communication operation, 100% of data that 

should be sent from each processor Premote to processor Powner at this step will be sent. The 

second nested par statement in the main for loop of the scheme declaration just 

specifies it. The par algorithmic patterns are used to specify that during the execution of 

this communication, data transfer between different pairs of processors is carried out in 

parallel. 

•  Each processor then computes the new values for each of the nodes in its subbody. The 

processor will perform 100% of computations it should perform during this iteration. The 

par algorithmic patterns are used here to specify that all abstract processors perform 

their computations in parallel. 

Note that the above performance model describes only one iteration of the algorithm. This 

approximation is accurate enough because at any iteration each processor performs the same 

volume of computations, and the same volume of data is transferred between each pair of 

processors. 

The most interesting code fragments of the HMPI parallel application are shown in Figure 5.4. 

The HMPI runtime system is initialized using operation HMPI_Init. Then, operation 

HMPI_Recon updates the estimation of performances of processors using the serial EM3D 

program computing nodal values for a single subbody. The computations performed by each 

processor mainly fall into the execution of calls to function Serial_em3d. 
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This is followed by the creation of a group of processes using operation 

HMPI_Group_create. The members of this group then perform the computations and 

communications of the heterogeneous parallel algorithm using standard MPI means.   This is 

followed by freeing the group using operation HMPI_Group_free, and by finalizing the 

HMPI runtime system using operation HMPI_Finalize.  

On HNOCs, the running time of the HMPI program shown above will normally be less than 

the running time of the corresponding MPI program. This is because an HMPI group of 

processes is created to execute the parallel algorithm faster than any other group of processes 

including the groups of processes created using MPI means. The processes participating in the 

HMPI group are chosen to minimize the execution time of the algorithm taking into account all 

its main features, which have an impact on the application execution performance. The 

application programmer describes all the main features of the parallel algorithm using the 

performance model Em3d, which are: 

•  The total number of participating processes p; 

•  The total volume of computations to be performed by each of the processes as specified 

in node declaration. The volume of computations is mainly the computation of field 

values of nodes in a sub-body thus depending on the number of nodes within a sub-body; 

•  The total volume of data to be transferred between each pair of processes as specified by 

the link declaration. The volume of data transferred equals the number of bytes of remote 

boundary values communicated between the sub-bodies; 

•  How exactly the processes interact during the execution of the algorithm as specified by 

the scheme declaration. Informally this looks like the description of the algorithm 

describing the interaction between the processes during the execution of the algorithm. 
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                     (a) Partition between processor columns.                      (b) Partition inside each processor column. 

 
Figure 5.5: Example of two-step distribution of a 66 ×  generalized block over a 33×  processor grid. The relative 

speed of processors is given by matrix 















=

03.017.005.0

08.009.017.0

05.025.011.0

s . (a) At the first step, the 66 ×  square is 

distributed in a one-dimensional block fashion over processor columns of the 33×  processor grid in proportion 

1:3:216.0:51.0:33.0 ≈ . (b) At the second step, each vertical rectangle is distributed independently in a 

one-dimensional block fashion over the processors of its column. The first rectangle is distributed in proportion 

1:3:205.0:17.0:11.0 ≈ . The second one is distributed in proportion 2:1:317.0:09.0:25.0 ≈ . 

The third is distributed in proportion 1:3:203.0:08.0:05.0 ≈ . 

 
During the creation of the group of processes, the HMPI runtime system uses the information 

from the performance model to solve the problem of selection of the optimal set of processes 

running on different computers of a heterogeneous network.  

It can also be seen from the MPI and HMPI programs described in this section that there is 

essentially no change in code of the parallel algorithm executed by the members of the group of  
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A ka•

         

•kb

B

 
 

Figure 5.6: One step of the algorithm of parallel matrix-matrix multiplication based on heterogeneous two-

dimensional block distribution of matrices A, B, and C. First, each r×r block of the pivot column ka•  of matrix A 

(shown shaded dark grey) is broadcast horizontally, and each r×r block of the pivot row •kb  of matrix B (shown 

shaded dark grey) is broadcast vertically. 

 

processes participating in the parallel program. The main difference lies only in the creation of a 

group of processes. 

 

5.2 Examples of regular HMPI application 
 
An irregular problem is characterized by some inherent coarse-grained or large-grained structure 

implying quite deterministic decomposition of the whole program into a set of processes running 

in parallel and interacting via message passing. As a rule, there are essential differences in 

volumes of computations and communications to perform by different processes. The EM3D 

problem is an example of an irregular problem. 
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Unlike an irregular problem, for a regular problem the decomposition of the whole program 

into a large set of small equivalent programs, running in parallel and interacting via message 

passing, is the most natural one. Multiplication of dense matrices is an example of a regular 

problem. The main idea of efficiently solving a regular problem is to reduce it to such an 

irregular problem, the structure of which is determined by the irregularity of underlying 

hardware rather than the irregularity of the problem itself. So, the whole program is decomposed 

into a set of programs, each made from a number of the small equivalent programs stuck together 

and running on a separate processor of the underlying hardware. 

Matrix Multiplication 

Consider the problem of parallel matrix multiplication (MM) on HNOCs. The algorithm for the 

matrix operation C=A×B on a HNOC is obtained by modification of the ScaLAPACK 

[CDD+96] 2D block-cyclic MM algorithm. The modification is that the heterogeneous 2D 

block-cyclic data distribution of [KL01] is used instead of the standard homogeneous data 

distribution. Thus, the heterogeneous algorithm of multiplication of two dense square 

(n×r)×(n×r) matrices A and B on an m×m grid of heterogeneous processors can be summarised 

as follows: 

•  Each element in A, B, and C is a square r×r block and the unit of computation is the 

updating of one block, i.e., a matrix multiplication of size r. Each matrix is partitioned 

into generalized blocks of the same size (l×r)×(l×r), where m≤l≤n. The generalized 

blocks are identically partitioned into p2 rectangles, each being assigned to a different 

processor. The area of each rectangle is proportional to the speed of the processor that 

stores the rectangle. The partitioning of a generalized block is performed as follows: 
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o Each element in the generalized block is a square r×r block of matrix elements. 

The generalized block is an l×l square of r×r blocks.  

o First, the l×l square is partitioned into m vertical slices, so that the area of the j-

th slice is proportional to ∑
=

m

i
ijs

1

(see Figure 5.5(a)). It is supposed that blocks of 

the j-th slice will be assigned to processors of the j-th column in the m×m 

processor grid. Thus, at this step, we balance the load between processor columns 

in the m×m processor grid, so that each processor column will store a vertical slice 

whose area is proportional to the total speed of its processors. 

o Then, each vertical slice is partitioned independently into m horizontal slices, so 

that the area of the i-th horizontal slice in the j-th vertical slice is proportional to 

sij (see Figure 5.5(b)). It is supposed that blocks of the i-th horizontal slice in the 

j-th vertical slice will be assigned to processor Pij. Thus, at this step, we balance 

the load of processors within each processor column independently.  

•  At each step k,  

o Each r×r block aik of the pivot column of matrix A is sent horizontally from the 

processor, which stores this block, to m-1 processors (see Figure 5.6); 

o Each r×r block bkj of the pivot row of matrix B is sent vertically from the 

processor, which stores this block, to m-1 processors (see Figure 5.6); 

•  Each processor updates its rectangle in the C matrix with one block from the pivot row 

and one block from the pivot column. 
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Figure 5.7: Specification of the performance model of the algorithm of parallel matrix multiplication based on 

heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI’s performance definition 

language. 

typedef struct {int I; int J;} Processor; 
algorithm ParallelAxB(int m, int r, int n, int l, int w[m], 
                    int h[m][m][m][m]) 
{ 
  coord I=m, J=m; 
  node {I>=0 && J>=0: bench*(w[J]*(h[I][J][I][J])*(n/l)*(n/l)*n);}; 
  link (K=m, L=m) 
  { 
    I>=0 && J>=0 && I!=K : 
      length*(w[J]*(h[I][J][I][J])*(n/l)*(n/l)*(r*r)*sizeof(double)) 
             [I, J] -> [K, J]; 
    I>=0 && J>=0 && J!=L && ((h[I][J][K][L])>0) : 
      length*(w[J]*(h[I][J][K][L])*(n/l)*(n/l)*(r*r)*sizeof(double)) 
             [I, J] -> [K, L]; 
  }; 
  parent[0,0]; 
  scheme 
  { 
    int k, *w, *h, *trow, *tcol; 
    Get_trow_tcol(m, w, h, trow, tcol); 
    Processor Root, Receiver, Current;  
    for(k = 0; k < n; k++) 
    { 
      int Acolumn = k%l, Arow; 
      int Brow = k%l, Bcolumn; 
      par(Arow = 0; Arow <l; ) 
      { 
        Get_matrix_processor(Arow, Acolumn, p, q, w, h, trow, tcol, &Root); 
        par(Receiver.I = 0; Receiver.I < m; Receiver.I++) 
          par(Receiver.J = 0; Receiver.J < m; Receiver.J++) 
            if((Root.I != Receiver.I || Root.J != Receiver.J) && 
               Root.J != Receiver.J) 
              if((h[Root.I][Root.J][Receiver.I][Receiver.J]) > 0) 
                (100.00/(w[Root.J]*(n/l)))%% 
                      [Root.I, Root.J] -> [Receiver.I, Receiver.J]; 
        Arow += h[Root.I][Root.J][Root.I][ Root.J]; 
      }              
      par(Bcolumn = 0; Bcolumn < l; ) 
      { 
        Get_matrix_processor(Brow, Bcolumn, p, q, w, h, trow, tcol, &Root); 
        par(Receiver.I = 0; Receiver.I < m; Receiver.I++) 
          if(Root.I != Receiver.I) 
            (100.00/((h[Root.I][Root.J][Root.I][Root.J])*(n/l))) %% 
                  [Root.I, Root.J] -> [Receiver.I, Root.J]; 
        Bcolumn += w[Root.J]; 
      } 
      par(Current.I = 0; Current.I < m; Current.I++) 
        par(Current.J = 0; Current.J < m; Current.J++) 
          (100.00/n) %% [Current.I, Current.J]; 
    } 
  };    
}; 
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The definition of ParallelAxB given in Figure 5.7 describes the performance model of this 

heterogeneous algorithm. 

The performance model ParallelAxB describing the algorithm has 6 parameters. Parameter 

m specifies the number of abstract processors along the rows and along the columns of the 

processor grid executing the algorithm. Parameter r specifies the size of a square block of matrix 

elements, the updating of which is the unit of computation of the algorithm. Parameter n is the 

size of square matrices A, B, and C measured in r×r blocks. Parameter l is the size of a 

generalised block also measured in r×r block. 

Vector parameter w specifies the widths of the rectangles of a generalised block assigned to 

different abstract processors of the m×m grid. The width of the rectangle assigned to processor PIJ 

is given by element w[J] of the parameter (see Figure 5.5). All widths are measured in r×r 

blocks. 

Parameter h specifies the heights of rectangle areas of a generalised block of matrix A, which 

are horizontally communicated between different pairs of abstract processors. Let RIJ and RKL 

be the rectangles of a generalised block of matrix A assigned to processors PIJ and PKL 

respectively. Then, h[I][J][K][L] gives the height of the rectangle area of RIJ, which is 

required by processor PKL to perform its computations. All heights are measured in r×r blocks. 

Figure 4.18 illustrates possible combinations of rectangles RIJ and RKL in a generalised block. 

Let us call an r×r block of RIJ a horizontal neighbour of RKL if the row of r×r blocks that 

contains this r×r block will also contain an r×r block of RKL. Then, the rectangle area of RIJ, 

which is required by processor PKL to perform its computations, comprises of all horizontal 

neighbours of RKL.  
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Figure 4.18(a) shows the situation when rectangles RIJ and RKL have no horizontal neighbours. 

Correspondingly, h[I][J][K][L] will be zero. 

Figure 4.18(b) shows the situation when all r×r blocks of RIJ are horizontal neighbours of 

RKL. In that case, both h[I][J][K][L] will be equal to the height of RIJ. 

Figures 4.18(c) and 4.18(d) show the situation when only some of the r×r blocks of RIJ are 

horizontal neighbours of RKL. In this case, h[I][J][K][L] will be equal to the height of the 

rectangle subarea of RIJ comprising the horizontal neighbours of RKL. 

Note that h[I][J][I][J] specifies the height of RIJ, and h[I][J][K][L] will always 

be equal to h[K][L][I][J]. 

The coord declaration introduces 2 coordinate variables, I and J, both ranging from 0 to m-

1. 

The node declaration associates the abstract processors with this coordinate system to form 

an m×m grid. It also describes the absolute volume of computation to be performed by each of the 

processors. As a unit of measure, the volume of computation performed by the code multiplying 

two r×r matrices is used. At each step of the algorithm, abstract processor PIJ updates 

gIJIJ nhw ×× )(  r×r blocks, where IJIJ hw ,  are the width and height of the rectangle of a 

generalised block assigned to processor PIJ, and gn  is the total number of generalised blocks. As 

computations during the updating of one r×r block mainly fall into the multiplication of two 

r×r blocks, the volume of computations performed by the processor PIJ at each step of the 

algorithm will be approximately gIJIJ nhw ×× )(  times larger than the volume of computations 

performed to multiply two r×r matrices. IJw  is given by w[J], IJh  is given by 

h[I][J][I][J], gn  is given by (n/l)*(n/l), and the total number of steps of the 



HMPI Application Programming 

330 

algorithm is given by n. Therefore the total volume of computation performed by abstract 

processor PIJ will be w[J]*h[I][J][I][J]*(n/l)*(n/l)*n times bigger than the 

volume of computation performed by the code multiplying two r×r matrices.  

The link declaration specifies the volumes of data to be transferred between the abstract 

processors during the execution of the algorithm. The first statement in this declaration describes 

communications related to matrix A. Obviously, abstract processors from the same column of the 

processor grid do not send each other elements of matrix A. Abstract processor PIJ will send 

elements of matrix A to processor PKL only if its rectangle RIJ in a generalised block has 

horizontal neighbours of the rectangle RKL assigned to processor PKL. In that case, processor PIJ 

will send all such neighbours to processor PKL. Thus, in total processor PIJ will send gIJKL nN ×  

r×r blocks of matrix A to processor PKL, where IJKLN  is the number of horizontal neighbours of 

rectangle RKL in rectangle RIJ, and gn  is the total number generalised blocks. IJKLN  is given by 

w[J]* h[I][J][K][L], gn  is given by (n/l)*(n/l), and the volume of data in one r×r 

block is given by (r*r)*sizeof(double). Therefore the total volume of data transferred 

from processor PIJ to processor PKL will be given by 

w[J]*h[I][J][K][L]*(n/l)*(n/l)*(r*r)*sizeof(double). 

The second statement in the link declaration describes communications related to matrix B. 

Obviously, only abstract processors from the same column of the processor grid send each other 

elements of matrix B. In particular, processor PIJ will send all its r×r blocks of matrix B to all 

other processors from column J of the processor grid. The total number of r×r blocks of matrix 

B assigned to processor PIJ is given by w[J]*h[I][J][I][J]*(n/l)*(n/l). 

The scheme declaration describes n successive steps of the algorithm. At each step k, 
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•  A row of r×r blocks of matrix B is communicated vertically. For each pair of abstract 

processors PIJ and PKJ involved in this communication, PIJ sends a part of this row to PKJ. 

The number of r×r blocks transferred from PIJ to PKJ will be gIJ nw × , where gn  is 

the number of generalised blocks along the row of r×r blocks. The total number of r×r 

blocks of matrix B, which processor PIJ sends to processor PKJ, is gIJIJ nhw ×× )( . 

Therefore, 100
1

100
)(

×
×

=×
××

×

gIJgIJIJ

gIJ

nhnhw

nw
percent of all data that should be in 

total sent from processor PIJ to processor PKJ will be sent at the step. The first nested par 

statement in the main for loop of the scheme declaration just specifies this fact. The 

par algorithmic patterns are used to specify that during the execution of this 

communication, data transfer between different pairs of processors is carried out in 

parallel. 

•  A column of r×r blocks of matrix A is communicated horizontally. If processors PIJ and 

PKL are involved in this communication so that PIJ sends a part of this column to PKL, 

then the number of r×r blocks transferred from PIJ to PKL will be gIJKL nH × , where 

IJKLH  is the height of the rectangle area in a generalised block, which is communicated 

from PIJ to PKL, and gn  is the number of generalised blocks along the column of r×r 

blocks. The total number of r×r blocks of matrix A, which processor PIJ sends to 

processor PKL, is gIJKL nN × . Therefore, 
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that should be in total sent from processor PIJ to processor PKL will be sent at the step. 
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The second nested par statement in the main for loop of the scheme declaration 

specifies this fact. Again, we use the par algorithmic patterns in this specification to 

stress that during the execution of this communication, data transfer between different 

pairs of processors is carried out in parallel. 

•  Each abstract processor updates each of its r×r block of matrix C with one block from 

the pivot column and one block from the pivot row, so that each block ijc  ( , {1, , }i j n∈ K ) 

of matrix C will be updated to have the values kjikijij bacc ×+= . The processor performs 

the same volume of computation at each step of the algorithm. Therefore, at each of n 

steps of the algorithm the processor will perform 
100

n
 percent of the volume of 

computations it performs during the execution of the algorithm. The third nested par 

statement in the main for loop of the scheme declaration just specifies this fact. The 

par algorithmic patterns are used here to specify that all abstract processors perform 

their computations in parallel. 

The function Get_matrix_processor used in the scheme declaration is a matrix 

partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI) 

discussed in Chapter 4. It is used to iterate over abstract processors that store the pivot row and 

the pivot column of r×r blocks. It returns in its last parameter the grid coordinates of the 

abstract processor storing the r×r block, whose coordinates in a generalised block of a matrix 

are specified by its first two parameters. 

The performance model ParallelAxB shown in the Figure 5.7 is applicable to the 

heterogeneous algorithm with COLUMN_BASED data distribution. However this model can be  
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Figure 5.8: The core of the HMPI program implementing the algorithm of parallel matrix multiplication based on 

heterogeneous two-dimensional block-cyclic distribution of matrices. 

int m, l, r, n; 
int main(int argc, char** argv) { 

int optimal_generalised_block_size; 
int *w, *h; //Matrix partitioning parameters 
typedef struct {double *a; double *b; double *c; int r;} 
        Recon_params; 

   HMPI_Group gid; 
   void *model_params; 
   double *a, *b, *c; 
 
   HMPI_Init(argc, argv); 

if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) { 
   int output_p; 
   Recon_params recon_params;  
   Initialize(a, b, c, r, &recon_params); 
   HMPI_Recon(&rMxM, &recon_params,  1, &output_p); 
} 
if (HMPI_Is_host()) { 
   int bsize;  
   double time, min_time=DBL_MAX;   
   for (bsize = m; bsize < n; bsize++) { 
       Partition_matrix_2d( 
          p, q, 1, speeds, NULL, NULL, bsize, bsize, COLUMN_BASED,  
          w, h, NULL, NULL, NULL, NULL); 
       HMPI_Pack_model_parameters(p, q, n, bsize, r, w, h, model_params); 
       time = HMPI_Timeof(&HMPI_Model_ParallelAxB, model_params);  
       if (time < min_time) { 
          optimal_generalised_block_size = bsize; 
          min_time = time; 
       } 

      } 
   } 
   … 
   l = optimal_generalised_block_size; 
   if (HMPI_Is_host()) { 
      HMPI_Pack_model_parameters(p, q, n, l, r, w, h, model_params); 
      HMPI_Group_create(&gid, &HMPI_Model_ParallelAxB, model_params); 
   } 
   if (HMPI_Is_free()) 
      HMPI_Group_create(&gid, &HMPI_Model_ParallelAxB, NULL); 
   if (HMPI_Is_member(&gid)) { 
      …        
      MPI_Comm* grid_comm = (MPI_Comm*)HMPI_Get_comm(&gid);  
      … 
      // computations and communications are performed here  
      // using standard MPI routines. 
      // 
      … 
   } 
   if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid); 
   HMPI_Finalize(0); 
} 
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Figure 5.9: Specification of the performance model of the algorithm of parallel Cholesky factorization based on 

heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI’s performance definition 

language. 

typedef struct {int I; int J;} Processor; 
algorithm ParallelCholesky(int m, int r, int n, int l, int w[m], 
                           int h[m][m][m][m]) { 
  coord I=m, J=m; 
  node {I>=0 && J>=0: bench*(Get_my_elements(I, J, m, m, w, h,  
                                             NULL, NULL, COLUMN_BASED, ‘L’)*n);}; 
  link (K=m, L=m) { 
    I>=0 && J>=0 && I!=K && J==L: 
      length*(Get_diagonal(I, J, m, m, w, h, NULL, NULL, COLUMN_BASED) 
            *(n/l-1)*r*r*sizeof(double))  [I, J] -> [K, L]; 
    I>=0 && J>=0 && I<K && J==L: 
      length*(Get_diagonal(I, J, m, m, w, h,  
              NULL, NULL, COLUMN_BASED)*r*r*sizeof(double)) [I, J] -> [K, L]; 
    I>=0 && J>=0 && J!=L: 
      length*(Get_my_elements(I, J, m, m, w, h,  
              NULL, NULL, COLUMN_BASED, ‘L’)*r*r*sizeof(double)) [I, J] -> [K, L]; 
  }; 
  parent[0,0]; 
  scheme { 
    int i, k, *w, *h, *trow, *tcol; Processor Root, Roots, Receiver, Current;  
    Get_trow_tcol(m, w, h, trow, tcol); 
    for(k = 0; k < n; k++) { 

   Get_matrix_processor(k%l, k%l, m, m, w, h, trow, tcol, &Root); 
   (100.00/(Get_my_elements(Root.I, Root.J, m, m, w, h,  
            NULL, NULL, COLUMN_BASED, ‘L’)*n)) %% [Root.I, Root.J]; 
   if ((k+1) == n) break; 
   par(Receiver.I = 0; Receiver.I < m; Receiver.I++) 
     par(Receiver.J = 0; Receiver.J < m; Receiver.J++) 
       if (Root.J == Receiver.J) 
         if (((k < (n-l)) && (Root.I != Receiver.I)) 
             || ((k >= (n-l)) && (Root.I < Receiver.I))) 
            (100.00/(Get_diagonal(Root.I, Root.J, m, m, w, h, NULL, NULL,COLUMN_BASED) 
            *(n/l))) %% [(Root.I), (Root.J)] -> [(Receiver.I), (Receiver.J)]; 
   par (Current.I = 0; Current.I < m; Current.I++) 
      par (Current.J = 0; Current.J < m; Current.J++) 
         if (Current.J == Root.J) { 
           int e = Get_my_elements(Current.I, Current.J, m, m, w, h, NULL, NULL,  
                   COLUMN_BASED, ‘L’)*n*r; 
           if ((k < (n-l)) || (Current.I > Root.I)) 
              (100.00*(1 + log(r))/e) %% [Current.I, Current.J]; 
         } 
   par (j = k+1; j < n; j++) {  
     Get_matrix_processor(j%l, k%l, m, m, w, h, trow, tcol, &Roots);  
     (100.00*(r*r + r*r)/(Get_my_elements(Roots.I, Roots.J, m, m, w, h, NULL, NULL,  
                          COLUMN_BASED, ‘L’)*n*r*r*r)) %% [(Roots.I), (Roots.J)]; 

      } 
   par (j = k+1; j < n; j++) { 
      Get_matrix_processor(k%l, k%l, m, m, w, h, trow, tcol, &Roots);       
      par (Receiver.I = 0; Receiver.I < m; Receiver.I++) 
        par (Receiver.J = 0; Receiver.J < m; Receiver.J++) 
           if (Roots.J != Receiver.J) 
                (100.00/(Get_my_elements(Roots.I, Roots.J, m, m, w, h, NULL, NULL,  

                    COLUMN_BASED, ‘L’)) %% [Roots.I, Roots.J] -> [Receiver.I, Receiver.J]; 
      } 

   par (Current.I = 0; Current.I < m; Current.I++) 
     par (Current.J = 0; Current.J < m; Current.J++) 
      ((100.00*Get_my_kk_elements(k, Current.I, Current.J, m, m, w, h, NULL, NULL, 
         COLUMN_BASED, ‘L’))  
      /  
      (Get_my_elements(Current.I, Current.J, m, m, w, h,  
                       NULL, NULL, COLUMN_BASED, ‘L’)*n)) %% [Current.I, Current.J]; 

   } 
  };    
}; 
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made generic and applicable for any type of data distribution by adding an extra parameter to its 

parameter list (the type of distribution) and using data partitioning API of HDPI in the body of 

the performance model. This extra parameter is the type of data distribution such as 

COLUMN_BASED or ROW_BASED or CARTESIAN or RECURSIVE. 

algorithm ParallelAxB(int m, int r, int n, int l,  

         int type_of_distribution, int speeds[m*m]) 

 

The most interesting fragments of the rest code of the HMPI parallel application are shown in 

Figure 5.8. The HMPI runtime system is initialised using operation HMPI_Init. Then, 

operation HMPI_Recon updates the estimation of performances of processors using the serial 

multiplication of test matrices of size r×r. The computations performed by each processor 

mainly fall into the execution of calls to function rMxM.  

The next block of code, executed by the host-processor, uses operation HMPI_Timeof to 

predict the total time of execution of the parallel algorithm. This operation is used to calculate 

the optimal generalized block size, one of the parameters of the heterogeneous parallel 

algorithm. 

This is followed by the creation of a group of processes using operation 

HMPI_Group_create. The members of this group then perform the computations and 

communications of the heterogeneous parallel algorithm using standard MPI means. This is 

followed by freeing the group using operation HMPI_Group_free and the finalization of 

HMPI runtime system using operation HMPI_Finalize. 

Cholesky Factorization 

Consider the problem of parallel Cholesky factorization on HNOCs.  
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Cholesky Factorization factors a symmetric, positive definite matrix A into a product of a 

lower triangular matrix L and its tranpose; i.e., A = L · Lt. One can partition the matrices A, L, and 

Lt and write the system as 
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If L11, the lower triangle Cholesky factor of A11 is known, then the block equations can be 

arranged as 

                                           ( ) 1

112121     
−← tLAL , 

tt LLLLAA 222221212222     =−← . 

The factorization can be done recursively applying the steps outlined above to the updated 

matrix A22. 

The algorithm of execution of the factorization on a HNOC is obtained by modification of the 

ScaLAPACK [CDD+96] 2D block-cyclic Cholesky algorithm. The modification is that the 

heterogeneous 2D block-cyclic data distribution of [KL01] is used instead of the standard 

homogeneous data distribution. The heterogeneous algorithm of factorisation of a (n×r)×(n×r) 

matrix A on an m×m grid of heterogeneous processors can be summarised as follows: 

1. Each element in A is a square r×r block. Each matrix is partitioned into generalized 

blocks of the same size (l×r)×(l×r), where m≤l≤n. The generalized blocks are 

identically partitioned into p2 rectangles, each being assigned to a different processor. 

The partitioning of a generalized block is shown in Figure 5.5(a) and 5.5(b); 

2. The largest A11 belonging to one process is selected and this process computes L11; 

3. L11 is broadcast to other processes of the grid column and the grid column processes 

compute L21; 
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4. L21 is broadcast to processes of the other grid columns; 

5. L21 is transposed using the broadcast values of the L21 on the grid columns; 

6. All processes update A22. 

The definition of ParallelCholesky given in Figure 5.9 describes the performance model 

of this heterogeneous algorithm. 

The performance model ParallelCholesky describing the algorithm has 6 parameters. 

These parameters hold the same meaning as those used in the performance model for matrix-

matrix multiplication presented previously. 

The coord declaration introduces 2 coordinate variables, I and J, both ranging from 0 to m-

1. 

The node declaration associates the abstract processors with this coordinate system to form a 

m×m grid. It also describes the absolute volume of computation to be performed by each of the 

processors. As a unit of measure, the volume of computation performed by the code factorizing 

an r×r matrix is used. Each abstract processor performs totally 

Get_my_elements(…)*n*r*r*r number of computations where the function 

Get_my_elements (part of the matrix partitioning API of HDPI) returns the number of 

elements owned by the processor in the lower triangular half of the factorized matrix including 

the diagonal elements. The purpose of this function is illustrated in Figure 5.10(b). Since the 

benchmark code factorizing an r×r matrix performs r×r×r computations, the total volume of 

computation performed by abstract processor PIJ will be 

nelementsmyGet
rrr

rrrnelementsmyGet ×=
××

××××
(...)__

(...)__
 times bigger than the volume 

of computation performed by the code factorizing an r×r matrix. 
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Figure 5.10. The matrix A consists of 4 generalized blocks of size 16×16. (a) The total number of r×r blocks along 

the diagonal owned by processors R11, R22, and R33 given by function Get_diagonal() are 7, 5, and 4 respectively. 

(b) The total number of r×r blocks given by the function Get_my_elements() belonging to processor owning the 

rectangle R11 are 42×3=126. The total number of r×r blocks belonging to processor owning the rectangle R12 are 

30+2×15=60. (c) At step k, the total number of A22 r×r blocks given by the function Get_my_kk_elements() 

belonging to processor owning the rectangle R11 are 42+2×18=78. The total number of r×r blocks belonging to 

processor owning the rectangle R12 are 30+2×15=60. 
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The link declaration specifies the volumes of data to be transferred between the abstract 

processors during the execution of the algorithm. The first statement in this declaration describes 

communications related to broadcast of L11. At each step k of the algorithm where )( lnk −< , 

the abstract processor PIJ owning L11 broadcasts it to abstract processors PKJ from the same 

column of the processor grid, i.e., abstract processors PKJ where { }KImKI ≠= ,1, L . The 

number of elements broadcast by each abstract processor PIJ is equal to the number of elements 

owned by it on the diagonal of the matrix A. The number of r×r blocks owned by abstract 

processor PIJ on the diagonal in a generalized block is given by function Get_diagonal (part 

of the matrix partitioning API of HDPI), which is illustrated in Figure 5.10(a). Since there are 

(n/l-1) generalized blocks (excluding the last generalized block), the total number of r×r 

blocks broadcast by abstract processor PIJ is Get_diagonal(…)*(n/l-1). The volume of 

data in one r×r block is given by (r*r)*sizeof(double), so the total volume of data 

transferred from processor PIJ to processor PKJ will be given by Get_diagonal(…)*(n/l-

1)*(r*r)*sizeof(double). 

The second statement in the link declaration describes communications of L11 where 

)( lnk −≥ , i.e., communications in the last generalized block. At each step k of the algorithm 

where )( lnk −≥ , the abstract processor PIJ owning L11 broadcasts it to abstract processors PKJ 

from the same column of the processor grid with coordinate K greater than the coordinate I of 

abstract processor PIJ, i.e., abstract processors PKJ where { }KImKI <= ,1, L . The number of 

elements broadcast by each abstract processor PKJ is equal to the number of elements owned by 

it on the diagonal of the factorized matrix. Since there is one generalized block, the total number 

of r×r blocks broadcast by abstract processor PIJ is Get_diagonal(…) and since the volume 

of data in one r×r block is given by (r*r)*sizeof(double), the total volume of data 
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transferred from processor PIJ to processor PKJ will be given by 

Get_diagonal(…)*(r*r)*sizeof(double). 

The third statement in the link declaration describes broadcast of L21. At each step k of the 

algorithm, the abstract processor PIJ owning the elements of panel L21 broadcasts its elements to 

abstract processors PKL from the other columns of the processor grid, i.e., abstract processors PKL 

where { }LJmLKJI ≠= ,1,,, L . The number of elements broadcast by each abstract processor 

PKJ is equal to the number of elements owned by it in the lower triangular half of the matrix A. 

The number of r×r blocks owned by abstract processor PIJ in the lower triangular half of the 

factorized matrix is given by function Get_my_elements, which is illustrated in Figure 

5.10(b). Since the volume of data in one r×r block is given by (r*r)*sizeof(double), 

the total volume of data transferred from processor PIJ to processor PKL will be given by 

Get_my_elements(…)*(r*r)*sizeof(double). 

The scheme declaration describes n successive steps of the algorithm. At each step k, 

•  The lower triangle Cholesky factor L11 of A11 is computed by the processor Root owning 

the r×r block A11. The total number of computations performed by each processor 

during the execution of the algorithm is equal to Get_my_elements(…)*n*r*r*r, 

so at each such step, the processor will perform 

nelementsmyGetrrrnelementsmyGet

rrr

×
=

××××
×××

(...)__

100

(...)__

100
 percent of the volume 

of computations it performs during the execution of the algorithm. 

•  The lower triangle Cholesky factor L11 of A11 is broadcast by processor PIJ to processors 

PKJ belonging to the same column of the processor grid where { }KImKI ≠= ,1, L . At 

this step, processor PIJ sends a volume of data equivalent to 
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(r*r)*sizeof(double) to PKJ. Therefore 

)((...)_

100

)()((...)_

)(100

l

n
diagonalGetdoublesizeofrr

l

n
diagonalGet

doublesizeofrr

×
=

××××

×××
 percent of all 

data that should be sent from PIJ to PKJ is sent at this step. We use the par algorithmic 

patterns in this specification to stress that during the execution of this communication, 

data transfer between different pairs of processors is carried out in parallel. 

•  Each abstract processor then computes the inverse of the L11 that it received in the 

previous step followed by the transpose of the result. The transpose of an r×r block 

takes r×r number of computations and the inverse of an r×r block takes r×r×log(r) 

number of computations. Since the total number of computations performed by each 

processor during the execution of the algorithm is equal to 

Get_my_elements(…)*n*r*r*r, at each such step, the processor will perform 

( ) ( )
rnelementsmyGet

r

rrrnelementsmyGet

rrrrr

××
+×=

××××
××+××

(...)__

log1100

(...)__

log100
 percent of the 

volume of computations it performs during the execution of the algorithm. 

•  Each abstract processor multiplies its r×r blocks of A21 by ( ) 1

11

−tL that it computed in the 

previous step to get L21. This step consists of n-(k+1) sub-steps. At each such sub-step, 

the resulting r×r blocks of L21 from the multiplication of A21 by ( ) 1

11

−tL are transposed. At 

each such sub-step, the total number of computations involved in the multiplication is 

r×r and the total number of computations involved in a transpose is r×r. Since the total 

number of computations performed by each processor is equal to 

Get_my_elements(…)*n*r*r*r, at each such sub-step, the processor will perform 
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( )
rnelementsmyGetrrrnelementsmyGet

rrrr

××
×=

××××
×+××

(...)__

2100

(...)__

100
 percent of the 

volume of computations it performs during the execution of the algorithm. 

•  Each abstract processor PIJ then broadcasts its r×r blocks in panel L21 to abstract 

processors PKL from the other columns of the processor grid, i.e., abstract processors PKL 

where { }LJmLKJI ≠= ,1,,, L . This step consists of n-(k+1) sub-steps. At each such 

sub-step, the abstract processor PIJ broadcasts a volume of data equivalent to 

(r*r)*sizeof(double) to PKL. Since the total volume of data transferred from 

processor PIJ to processor PKL is 

Get_my_elements(…)*(r*r)*sizeof(double),  therefore 

(...)__

100

)((...)__

)(100

elementsmyGetdoublesizeofrrelementsmyGet

doublesizeofrr =
×××

×××
 percent of all  

data that should be sent from PIJ to PKL is sent at this step. 

•  Each abstract processor updates each its r×r block of matrix A22. At each such step, the 

number of r×r blocks updated by each abstract processor in A22 is given by the function 

Get_my_kk_elements, which is illustrated in Figure 5.10(c). Therefore, each 

abstract processor will perform 

nelementsmyGet

elementskkmyGet

rrrnelementsmyGet

rrrelementskkmyGet

×
×=

××××
××××

(...)__

(...)___100

(...)__

(...)___100
 percent of 

the volume of computations it performs during the execution of the algorithm. The par 

algorithmic patterns are used here to specify that all abstract processors perform their 

computations in parallel. 
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The performance model ParallelCholesky shown in the Figure 5.9 is applicable to the 

heterogeneous algorithm with COLUMN_BASED data distribution. However this model can be 

made generic and applicable to any type of data distribution by adding an extra parameter to its 

parameter list (the type of distribution) and using data partitioning API of HDPI in the body of 

the performance model. This extra parameter is the type of data distribution such as 

COLUMN_BASED or ROW_BASED or CARTESIAN. 

algorithm ParallelCholesky(int m, int r, int n, int l,  

         int w[m], int h[m][m][m][m], int type_of_distribution)) 

 

The most interesting fragments of the rest code of the HMPI parallel application are similar 

to those shown for HMPI application performing matrix-matrix multiplication in Figure 5.8. 

5.3 Experiments with HMPI 
 
This section presents some results of experiments with the HMPI applications presented in 

Chapters 5.1 and 5.2. Before we present the results, we describe the steps to build and run an 

HMPI application using Virtual Parallel Machine commands. 

5.3.1 Building and Running an HMPI Application 
 
Outlined below are steps to build and run an HMPI application. More details can be obtained 

from the HMPI Programmer’s guide and installation guide presented in Appendix B. 

1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the 

machines being used in your HMPI application. VPM is opened after successful execution of the 

command mpccreate. Consider for example the VPM file describing the heterogeneous 

network shown in Table 5.1: 

# Machines and the number of processes to run on each machine 
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# Number in square brackets indicate the number of processors 
pg1cluster01 2 [2] 
pg1cluster02 2 [2] 
pg1cluster03 2 [2] 
pg1cluster04 2 [2] 
zaphod 1 [1] 
csparlx02 1 [1] 
csserver 1 [1] 
csultra01 1 [1] 
csultra02 1 [1] 
csultra03 1 [1] 
csultra04 1 [1] 
cssparc01 1 [1] 
 
2). Compile the performance model files. 
 
shell$ hmpicc ParallelAxB.mpc 
 
This file is translated into a C file “ParallelAxB.c”. 
 
3). Broadcast the source files to all the machines in the virtual parallel machine. 
 
shell$ hmpibcast mxm.c ParallelAxB.c 
 
4). Create the target program. 
 
shell$ hmpiload –o mxm mxm.c ParallelAxB.c 
 
5). Run the target program. 
 
shell$ hmpirun mxm 
Problem size(n)=1000, time(sec)=13 
 

5.3.2 Numerical Results 
 
Note that the figures showing the performances of the computers in the tables in this section give 

the average speeds measured at runtime during the experiments. The computers used in the 

experiments are connected to a communication network, which is based on 100 Mbit Ethernet 

with  
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Machine 
Name 

(Number of 
Processors) 

Architecture 
cpu 

MHz 

Total 
Main 

Memory 
(mBytes) 

Cache 
(kBytes) 

Relative 
speed 
(mxm) 

Relative 
speed 

(cholesky) 

pg1cluster01 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 269 341 

pg1cluster02 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 269 341 

pg1cluster03 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 269 341 

pg1cluster04 (2) 
Linux 2.4.18-10smp 
Intel(R) XEON(TM) 

1977 1024 512 269 341 

zaphod (1) Linux 2.4.18-14 497 128 512 170 215 

csparlx02 (1) Linux 2.4.18-14 497 256 256 121 170 

csserver (1) Linux 2.4.18-10smp 498 1024 512 105 175 

csultra01 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 46 100 

csultra02 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 46 100 

csultra03 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 46 100 

csultra04 (1) 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 512 2048 46 100 

cssparc01 (1) 

SunOS 5.5 Sun4m 
sparc 

SUNW,SPARCstation-
5 

110 64 512 7 16 

Table 5.1: Specifications of the sixteen heterogeneous processors to demonstrate the efficiency of HMPI over MPI. 

 

a switch enabling parallel communications between the computers. The experimental results are 

obtained by averaging the execution times over a number of experiments. 

A heterogeneous local network of 16 different Solaris, and Linux workstations shown in Table 

5.1 is used in the experiments presented in Figures 5.11, 5.12, and 5.13. The initial static 

structure of the executing model of this network of computers is automatically obtained by the 

HMPI environment and saved in the form of an ASCII file as shown below: 

parallel(0.49, 0.97) c62377 c967039 c801049 

#pg1cluster01 

s2 p6667 n2 serial c2285064 c107326590 c99523787 
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#pg1cluster02 

s2 p5556 n2 serial c1312665 c80473880 c98430419 

#pg1cluster03 

s2 p5556 n2 serial c1956722 c78885862 c99667528 

#pg1cluster04 

s2 p6905 n2 serial c2540606 c104561354 c100463519 

#zaphod 

s1 p2632 n1 serial c37569267 c145325990 c292140157 

#csparlx02 

s1 p2440 n1 serial c17844657 c192059962 c245767189 

#csserver 

s1 p2223 n1 serial c15790320 c142923824 c213840112 

#csultra01 

s1 p736 n1 serial c55266123 c197956951 c349384270 

#csultra02 

s1 p715 n1 serial c44081312 c201423430 c186310535 

#csultra03 

s1 p720 n1 serial c67108864 c201423430 c295753493 

#csultra04 

s1 p720 n1 serial c44081312 c201831658 c185115801 

#cssparc01 

s1 p136 n1 serial c6871230 c39752890 c18018695 
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(a)                                                                                (b) 
Figure 5.11: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) Comparison of 

execution times of the EM3D algorithm between HMPI and MPI. (b) The speedup of EM3D algorithm obtained 

using HMPI over MPI. 

 

Here, each computer is characterized by 7 parameters. The first parameter, s, determines the 

number of processors. As can be seen, the computers pg1cluster01, pg1cluster02, 

pg1cluster03, and pg1cluster04 are dual processor computers and the rest are 

uniprocessor computers. The second parameter, p, is the performance of the computer as 

determined by the execution of serial test code. In this case the cluster of computers 

pg1cluster01, pg1cluster02, pg1cluster03, and pg1cluster04 are the most 

powerful and the computer cssparc01 is the least powerful.  

Note that at runtime HMPI_Recon updates this performance value of the parameter for each 

participating computer. We measure the relative speeds with the core computation of the 

algorithm (updating of a matrix). Note that the relative speed does not depend on the size of 

problem for the wide range of matrix sizes used in our experiments. The relative speeds 

measured for this network are shown in Table 5.1. In the case of matrix-matrix multiplication, 
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the fastest computer pg1cluster01 is almost 40 times faster than the slowest computer 

cssparc01. In the case of Cholesky factorization, the fastest computer pg1cluster01 is 20 

times faster than the slowest computer cssparc01. 

The third parameter, n, determines the total number of parallel processes to run on the 

computer. In this case one process is run per processor. 

The fourth parameter determines the scalability of the communication layer provided by the 

computer. In this case, all computers provide serial communication layers. 

Finally, the last three parameters determine the speed of point-to-point data transfer between 

processes running on the same computer as a function of size of the transferred data block size. 

The first of them specifies the speed of transfer of a data block of 64 bytes (measured in bytes 

per second), and the second and third are for blocks of 642 and 643 bytes respectively. 

The homogeneous communication space of higher level is also characterized by those three 

parameters. Besides, the layer is detected as a parallel communication layer with factors 0.49 and 

0.97 characterizing the level of parallelism of broadcast and gather correspondingly. 

Figure 5.11(a) shows a comparison of the execution times of the HMPI application and the 

standard MPI application executing the EM3D algorithm. Figure 5.11(b) demonstrates the 

speedup of the HMPI program over the MPI one. The HMPI application is almost 2 times faster 

than the standard MPI one. 

Figure 5.12(a) shows a comparison of the execution times of the MM algorithm between the 

HMPI application and the standard MPI application using homogeneous 2D block-cyclic data 

distribution. Figure 5.12(b) demonstrates the speedup of the HMPI program over the MPI one. 

The results are obtained for the value of r equal to 8 and the optimal value of the size of 

generalized block l, which is shown to be 96 in Figure 5.12(c). It is observed that the execution  
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Figure 5.12: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) A comparison 

of the execution times for MM algorithms using HMPI and MPI. (b) The speedup of the MM algorithm obtained 

using HMPI over MPI. (c) Execution times of the MM algorithm obtained using HMPI for increasing values of 

generalized block size l. The optimal generalized block size is 96. 
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(a)                                                                                        (b) 

 
Figure 5.13: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) A comparison 

of execution times for the Factorization algorithm using HMPI and MPI. (b) The speedup of the Factorization 

algorithm obtained using HMPI over MPI. 

 

times of the standard MPI application using homogeneous 2D block-cyclic application are the 

same no matter what size of generalized block is used, that is, the results are independent of the 

size of generalized block. Under these circumstances the HMPI application is 18 times faster 

than the standard MPI one. 

Figure 5.13(a) shows a comparison of the execution times of the factorization algorithm 

between the HMPI application and the standard MPI application using homogeneous 2D block-

cyclic data distribution. Figure 5.13(b) demonstrates the speedup of the HMPI program over the 

MPI one. The results are obtained for the value of r equal to 8 and the optimal value of the size 

of generalized block l equal to 72. The HMPI application is more than 2 times faster than the 

standard MPI one. 
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The next set of experimental results presented in Figures 5.14, 5.15, and 5.16 uses a small 

heterogeneous local network of 9 different FreeBSD, Solaris, and Linux workstations shown in 

Table 5.2. 

The initial static structure of the executing model of this network of computers is 

automatically obtained by the HMPI environment and saved in the form of ASCII file as shown 

below: 

parallel(0.49, 0.97) c209824 c3133982 c10859499 

#afflatus 

s1 p32001 n1 serial c32311675 c946416696 c299734975 

#aries2 

s1 p32001 n1 serial c29252581 c423396943 c200739505 

#pg1cluster01 

s2 p22501 n2 serial c1063941 c58484865 c99137032 

#pg1cluster02 

s2 p20001 n2 serial c1046987 c59559488 c99244562 

#pg1cluster03 

s1 p16667 n1 serial c31480669 c613075737 c406484386 

#linserver 

s1 p16667 n1 serial c19707121 c557314526 c346182102 

#csultra01 

s1 p4348 n1 serial c54681296 c456174810 c426112471 

Note that at runtime HMPI_Recon updates the value of the parameter for each participating 

computer. We measure the relative speeds with the core computation of the algorithm (updating 

of a matrix). Note that the relative speed does not depend on the size of problem for the wide  
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Machine 
Name 

(Number of 
processors) 

Architecture 
cpu 

MHz 

Total 
Main 

Memory 
(mBytes) 

Cache 
(kBytes) 

Relative 
speed 
(mxm) 

Relative 
speed 

(cholesky) 

afflatus(1) 

FreeBSD 5.2.1-

RELEASE i386 
Intel® Pentium® 4 
Processor supporting 
HT† technology 

2867 2048 1024 499 527 

aries2(1) 

FreeBSD 5.2.1-

RELEASE i386 
Intel® Pentium® 4 
Processor 

2457 512 1024 384 446 

pg1cluster01(2) 
Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1024 512 269 239 

pg1cluster02(2) 
Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1024 512 269 239 

pg1cluster03(1) 
Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1024 512 269 239 

linserver(1) 
Linux 2.4.20-
20.9bigmem 
Intel(R) Xeon(TM) 

2783 7748 512 172 351 

csultra01(1) 
SunOS 5.8 sun4u 
sparc SUNW,Ultra-
5_10 

440 512 2048 46 100 

Table 5.2: Specifications of the nine heterogeneous processors to demonstrate the efficiency of HMPI over MPI. 

 

range of matrix sizes used in our experiments. The relative speeds measured for this network are 

shown in Table 5.2. One can see that in the case of matrix-matrix multiplication, the fastest 

computer afflatus is almost 10 times faster than the slowest computer csultra01. In the 

case of Cholesky factorization, the fastest computer afflatus is 5 times faster than the slowest 

computer csultra01. So this network is moderately heterogeneous compared to the highly 

heterogeneous network used in the previous set of experiments. Therefore it is natural to expect 

the speedup of the heterogeneous HMPI application over the homogeneous MPI application will 

not be that high. 

Figure 5.14(a) shows the comparison of the execution times of the HMPI application and the 

standard MPI application executing the EM3D algorithm. Figure 5.14(b) demonstrates the 
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speedup of the HMPI program over the MPI one. In this case the HMPI application is almost 1.7 

times faster than the standard MPI one. 

Figure 5.15(a) shows the comparison of the execution times of the MM algorithm between the 

HMPI application and the standard MPI application using a homogeneous 2D block-cyclic data 

distribution. Figure 5.15(b) demonstrates the speedup of the HMPI program over MPI. The 

results are obtained for the value of r equal to 16 and the optimal value of the size of generalized 

block l, which is equal to 96. Using HMPI the application is almost 8 times faster than using 

standard MPI.  
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(a)                                                                                (b) 
 
Figure 5.14: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison 

of execution times of the EM3D algorithm between HMPI and MPI. (b) The speedup of EM3D algorithm obtained 

using HMPI over MPI. 
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Figure 5.15: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison 

of execution times of the MM algorithm using HMPI and MPI. (b) The speedup of the MM algorithm obtained 

using HMPI over MPI. 
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Figure 5.16: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison 

of the execution times of the Factorization algorithm using HMPI and MPI. (b) The speedup of the Factorization 

algorithm obtained using HMPI over MPI. 

 



HMPI Application Programming 

355 

Matrix-matrix multiplication

0

500

1000

1500

2000

2500

3000

3500

4000

1500 3500 5500 7500 9500 11500

Size of the matrix

E
xe

cu
ti

o
n

 t
im

e(
se

c)

HMPI
MPI

 
Figure 5.17: Execution times of the HMPI application on the heterogeneous network and the MPI application on the 

homogeneous network. The two networks have approximately the same aggregate power of processors and share the 

same (homogeneous) communication network. 

 
Figure 5.16(a) shows a comparison of the execution times of the factorization algorithm 

between the HMPI application and the standard MPI application using a homogeneous 2D block-

cyclic data distribution. Figure 5.16(b) demonstrates the speedup of the HMPI program over the 

MPI one. The HMPI application is almost 1.5 times faster than the standard MPI one.  

Experiments shown in Figure 5.17 compare the efficiency of the HMPI application executing 

the MM algorithm on a network of nine heterogeneous workstations to the efficiency of the MPI 

application using homogeneous 2D block-cyclic data distribution executed on a network of 9 

identical workstations. The relative speeds of the workstations in the heterogeneous network are 

26, 20, 14, 14, 14, 14, 14, 9, and 1. The workstations in the homogeneous network have a same 

relative speed of 14. The two sets share 5 workstations (of the speed 14) and belong to the same 

homogeneous communication segment of the local network. The sets were selected so that the 

aggregate performance of the processors of the heterogeneous network is practically the same as 
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that of the homogeneous one. Thus we compare the efficiency demonstrated by the 

heterogeneous algorithm on the heterogeneous network with the efficiency demonstrated by its 

homogeneous prototype on the homogeneous network having the same aggregate performance as 

the heterogeneous one. From the figure, it can be seen that the applications demonstrate 

practically the same speed, but each on its network. As the two networks are practically of the 

same power, we can conclude that the HMPI application cannot perform better and its efficiency 

is close to optimal on such a heterogeneous network of computers. This approach to analysis of 

the performance of heterogeneous algorithms is presented in more detail in [AR03, AR04]. 

 

5.4 Summary 
 
The experimental results demonstrate that carefully designed HMPI applications can show very 

good improvements in execution performance on HNOCs. As can be seen, the applications are 

not fine-tuned for any specific environment. Instead, the performance gains are a result of careful 

design of applications, which includes: 

•  Designing an accurate performance model. The performance model definition language 

of HMPI allows the programmer to describe quite sophisticated heterogeneous parallel 

algorithms accurately by means of wide use of parameters, locally declared variables, 

functions, expressions and statements. 

•  Accurate estimation of performances of the processors using HMPI_Recon. The 

accuracy of HMPI_Recon depends upon how accurately the benchmark code provided 

by the application programmers reflects the core computations of each phase of their 

parallel applications. If the benchmark code provided is an accurate measurement of the 

core computations in each phase, HMPI_Recon gives an accurate measure of the speeds. 
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•  The accuracy of HMPI_Timeof in finding the optimal values of the parameters of the 

parallel algorithm. This in turn depends on the accuracy of the performance model 

designed, the quality of the heuristics designed for the set of parameters provided to the 

performance model, and the accuracy of the model of the executing network of 

computers. 

From the performance models presented in this chapter, it can be seen that a performance 

model can be written that is generic enough to be used for any type of data distribution. The 

generality of the performance model is achieved through using generic parameters in its 

parameter list and using data partitioning API of HDPI in the body of the performance model. 

Such performance models are only written once and used for different types of data distribution. 

HMPI applications once developed and that follow each of the steps outlined below will run 

efficiently on any HNOCs without any changes to its source code (we call the property efficient 

portability): 

•  Initialization of the HMPI runtime system with HMPI_Init; 

•  Estimation of the speeds of processors with HMPI_Recon; 

•  Finding the optimal values of the parameters of the parallel algorithm with 

HMPI_Timeof; 

•  Creation of a group of processes, which will perform the parallel algorithm, by using 

HMPI_Group_create or using HMPI_Group_auto_create. 

•  Execution of the computations and communications of the heterogeneous parallel 

algorithm by the members of the group using standard MPI means. At this step, 

application programmers use the MPI communicator with communication group of MPI 
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processes given by the handle to HMPI group of processes to call the standard MPI 

communication routines.  

•  Freeing the HMPI groups with HMPI_Finalize; 

•  Finalization of the HMPI runtime system with HMPI_Init; 

On the whole, the experiments demonstrate that the HMPI provides all the features to guide 

the user to write portable and efficient applications on HNOCs. 
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CHAPTER 6 
 

Conclusions 
 
HMPI offers a unifying framework designed specially for programming high-performance 

computations on HNOCs. HMPI provides all the features to the user to write portable and 

efficient parallel applications on HNOCs. These features automate all the essential steps 

involved in application development on HNOCs: 

1). Determination of the characterization parameters relevant to the computational 

requirements of the applications and the machine capabilities of the heterogeneous system. These 

parameters are determined before the application execution and form the model of executing 

network of computers. The representation of the model of the executing network of computers is 

implementation-dependent. In our research implementation of HMPI, during the creation of a 

virtual parallel machine, a static structure that represents the model is generated and saved in the 

form of an ASCII file. HMPI provides interfaces to update the parameters of the model at 

runtime taking into account the fluctuations of the network load. 

2). Decomposition of the whole problem into a set of sub-problems that can be solved in 

parallel by interacting processes. This step of heterogeneous decomposition is parameterized by 

the characterization parameters determined in the first step, mainly, the speeds of processors and 

the latencies and bandwidths of the communication links between them, and the user-available 

memory capacity of the machine. The Heterogeneous Data Partitioning Interface (HDPI) is 

developed to automate this step of heterogeneous decomposition. HDPI provides API that allows 

the application programmers to specify simple and basic partitioning criteria in the form of 

parameters and functions to partition the mathematical objects used in their parallel applications. 
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3). Selection of the optimal set of processes running on different computers of the 

heterogeneous network by taking into account the speeds of the processors, and the latencies and 

the bandwidths of the communications links between them. HMPI provides a small set of 

extensions to MPI, which automate the process of selection of such a group of processes that 

executes the heterogeneous algorithm faster than any other group. During the creation of this set 

of optimal processes, HMPI runtime system solves the problem of selection of the optimal set of 

processes running on different computers of the heterogeneous network using an advanced 

mapping algorithm. The mapping algorithm is based on the performance model of the parallel 

algorithm in the form of the set of functions generated by the compiler from the description of 

the performance model, and the performance model of the executing network of computers, 

which reflects the state of this network just before the execution of the parallel algorithm. 

4). Application program execution on the HNOCs. The command line user interface of 

HMPI developed consists of a number of shell commands supporting the creation of a virtual 

parallel machine and the execution of the HMPI application programs on the virtual parallel 

machine. The notion of virtual parallel machine enables a collection of heterogeneous computers 

to be used as single large parallel computer. 

The merits of HMPI were demonstrated through the design, analysis, and implementation of 

three applications on HNOCs. They are Matrix-matrix multiplication, Cholesky Factorization, 

and EM3D. These applications are representative of many scientific applications. Experimental 

results show that carefully designed HMPI applications can show very good improvements in 

execution performance on HNOCs. 
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Once developed, an HMPI application will run efficiently on any HNOCs without any 

changes to its source code (we call the property efficient portability). It can be seen that the 

improved performance of the HMPI applications is not due to the fine-tuning of these 

applications to a specific environment. By hiding the non-uniformity of the underlying 

heterogeneous system from the application programmer, the HMPI offers an environment that 

encourages the design of heterogeneous parallel software in an architecture-independent manner. 

 

6.1  Contributions 

Below, we present more precisely the contributions of this work. 

a) The design of HMPI API, which are extensions to MPI, to automate the process of 

selection of such a group of processes that executes the heterogeneous algorithm faster 

than any other group. The main goal of the design of the API in HMPI is to smoothly and 

naturally extend the MPI model for heterogeneous networks of computers. This involves 

the design of a layer above MPI that does not involve any changes to the existing MPI 

API. The HMPI API must be easy-to-use and suitable for most scientific applications. 

The HMPI API must also facilitate transformation of MPI applications to HMPI 

applications that run efficiently on HNOCs. 

b) The first research implementation of HMPI. 

c) The design and application of HMPI+ScaLAPACK tool to speed up ScaLAPACK 

applications on HNOCs. 
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d) Design and implementation of Heterogeneous Data Partitioning Interface (HPDI) to 

automate the step of heterogeneous decomposition in the solution of parallel problems on 

HNOCs. 

e) The design of efficient set partitioning algorithms using a realistic performance model of 

networks of heterogeneous computers. These algorithms solve the problem of optimal 

distribution of computational tasks on a network of heterogeneous computers when one 

or more tasks do not fit into the main memory of the processors and when relative speeds 

cannot be accurately approximated by constant functions of problem size. 

f) HMPI application programming illustrating the usage of performance models, API of 

HMPI, and the API of HPDI, and experimental results demonstrating efficient, scalable, 

and predictable HMPI applications. 

HMPI is a small set of extensions to MPI, which facilitate the writing of parallel programs 

that distribute computations and communications unevenly, taking into account the speeds of the 

processors, and the latencies and bandwidths of communication links. The main goal of the 

design of API in HMPI is to smoothly and naturally extend MPI model for heterogeneous 

networks of computers. This involves the design of a layer above MPI that does not involve any 

changes to the existing MPI API. The HMPI API must be easy-to-use and suitable for most 

scientific applications.  

The main idea of HMPI is to automate the process of selection of such a group of processes 

that executes the heterogeneous algorithm faster than any other group. HMPI allows the 

application programmers to describe a performance model of their implemented heterogeneous 
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algorithm. This model allows for all the main features of the underlying parallel algorithm that 

have an essential impact on application execution performance on HNOCs.  

HMPI provides a small and dedicated model definition language for specifying this 

performance model. A compiler compiles the description of this performance model to generate 

a set of functions. The functions make up an algorithm-specific part of the HMPI runtime 

system. 

Having provided such a description of the performance model, application programmers can 

use the HMPI group constructor functions, which try to create a group that would execute the 

heterogeneous algorithm faster than any other group of processes. During the creation of this 

group of processes, HMPI runtime system solves the problem of selection of the optimal set of 

processes running on different computers of the heterogeneous network using an advanced 

mapping algorithm. The mapping algorithm is based on the performance model of the parallel 

algorithm in the form of the set of functions generated by the compiler from the description of 

the performance model, and the performance model of the executing network of computers, 

which reflects the state of this network just before the execution of the parallel algorithm. 

HMPI also provides interfaces that allow application programmers to write applications 

adapting not only to nominal performances of processors but also to redistribute computations 

and communications dependent on dynamic changes of workload of separate computers of the 

executing network. 

The implementation of Heterogeneous Data Partitioning Interface (HPDI) is a C library of 

routines that allow the application programmers to specify simple and basic partitioning criteria 

in the form of parameters and functions to partition the mathematical objects used in their 
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parallel applications. The design of HPDI is based on a classification of partitioning problems on 

networks of heterogeneous computers. Our approach to classification of partitioning problems is 

based on two corner stones: 

•  A realistic performance model of networks of heterogeneous computers, 

•  A natural classification of mathematical objects most commonly used in scientific, 

engineering and business domains for parallel (and distributed) solving problems on networks 

of heterogeneous computers. 

HPDI is designed to be used along with various programming tools for parallel and distributed 

computing on heterogeneous networks.  

To demonstrate the efficiency of HPDI, we perform experiments using naïve parallel 

algorithms for linear algebra kernel, namely, matrix multiplication and Cholesky factorization 

using striped partitioning of matrices on a local network of heterogeneous computers. Our main 

aim is not to show how matrices can be efficiently multiplied or efficiently factorized but to 

explain in simple terms the usage of this API. We also view these algorithms as good 

representatives of a large class of data parallel computational problems and a good testing 

platform before experimenting more challenging computational problems. The results show good 

improvement in performance on networks of heterogeneous computers. 

To investigate the merits of HMPI, we designed, analyzed, and implemented three 

applications on HNOCs, namely, Matrix-matrix multiplication, Cholesky Factorization, and 

EM3D. These applications are representative of many scientific applications. Experimental 

results show that carefully designed HMPI applications can show very good improvements in 

execution performance on HNOCs. These applications follow each of the steps outlined below: 
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•  Initialization of the HMPI runtime system with HMPI_Init; 

•  Estimation of the speeds of processors with HMPI_Recon; 

•  Finding the optimal values of the parameters of the parallel algorithm with 

HMPI_Timeof; 

•  Creation of a group of processes, which will perform the parallel algorithm, by using 

HMPI_Group_create or using HMPI_Group_auto_create. 

•  Execution of the computations and communications of the heterogeneous parallel 

algorithm by the members of the group using standard MPI means. At this step, 

application programmers use the MPI communicator with communication group of MPI 

processes given by the handle to HMPI group of processes to call the standard MPI 

communication routines.  

•  Freeing the HMPI groups with HMPI_Finalize; 

•  Finalization of the HMPI runtime system with HMPI_Init; 

It can be seen that these applications can run efficiently on any HNOCs without any changes 

to its source code. That is, these applications are not fine-tuned for any specific environment. 

Instead, the performance gains are a result of careful design, which includes: 

•  Designing an accurate performance model.  

•  Accurate estimation of performances of the processors using HMPI_Recon.  

•  Finding the optimal values of the parameters of the parallel algorithm using 

HMPI_Timeof. The high accuracy of the estimation by HMPI_Timeof is ensured 
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because for each of these applications, an accurate performance model was designed, 

high quality heuristics were designed for the set of parameters provided to the 

performance model, and the model of the executing network of computers used was 

accurate enough. 

From the performance models presented, it can be seen that a performance model can be 

written that is generic enough to be used for any type of data distribution. The generality of the 

performance model is achieved through using generic parameters in its parameter list and using 

data partitioning API of the HDPI in the body of the performance model. Such performance 

models are only written once and used for different types of data distribution. 
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CHAPTER 7 
 

Future Work 
 
Based on the lessons learned from the development, implementation, and evaluation of HMPI, 

the following research extensions are presented as future efforts: 

•  Develop a fault-tolerant HMPI implementation. Currently, HMPI does not provide any 

means for the writing of fault-tolerant parallel applications for HNOCs. The 

implementation of FT-HMPI could be based on the following approaches to writing fault-

tolerant programs.  

o Checkpointing. Checkpointing is a common technique that periodically saves the state 

of a computation, allowing the computation to be restarted from that point in the 

event of failure. Checkpointing is easy to implement but is often considered 

expensive. For small probability of failure and relatively small costs of creating and 

restoring a checkpoint, the added cost of using checkpoints is quite small. Since 

checkpoints must be saved to persistent storage that is not affected by a failure of one 

of the computing elements, the checkpoint data are typically saved to a (parallel) file 

system. Thus, the practicality of checkpointing is related to the performance of 

parallel I/O. MPI provides excellent facilities for performing I/O.  

 There are two types of checkpointing: user-directed and system-directed. In user-

directed checkpointing, the application programmer forms the checkpoint, writing out 

any data that will be needed to restart the application. This task is often relatively 

easy, particularly with well-structured applications. Unfortunately, system-directed 

checkpointing is much harder to implement because so much of the process’s state is 
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scattered throughout a parallel computer. This state can include messages that are in 

flight between processes and data in kernel memory buffers. 

 For user-directed checkpointing, source code transformation tools based on 

compiler technology can be used to identify both what data to checkpoint and what 

data need not be saved in a particular checkpoint. 

o Using intercommunicators. In MPI, communicators are distributed objects that are 

used for collective and point-to-point operations. Because of collective operations, the 

failure of any one process in a communicator affects all processes in the 

communicator, even those that are not in direct communication with the failed 

process. In contrast, in non-MPI client-server programs, the failure of the client has 

no effect on the server. This structure is robust because all communication takes place 

in a two-party context, in which one party can recognise that other party has failed 

and cease communicating with it. MPI programs can be structured to have this same 

type of survivability by using “intercommunicators”, which consists of two groups of 

processes, and all communication occurs between processes in one group and 

processes in the other group. 

o Modifying MPI semantics. This approach to fault tolerance modifies the semantics of 

certain MPI objects and functions. FT-MPI [FBD01] is a research implementation of 

MPI that allows the semantics and associated modes of failures to be explicitly 

controlled by an application via a modified MPI API. FT-MPI provides application 

programmers with different methods of dealing with failures within MPI application 

than just checkpoint and restart. It allows the application to continue using a 
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communicator with a failed rank while explicitly excluding communication with the 

failed rank, or to shrink the communicator by excluding the failed rank, or to spawn a 

new process to take the place of a failed process. 

o Extending MPI. Rather than modifying existing MPI semantics, extensions to MPI 

can be defined that have semantics that support the writing of fault-tolerant programs 

but are all consistent with all existing MPI semantics. The key idea here is to 

encapsulate the capabilities using intercommunicators, where instead of using 

MPI_COMM_WORLD, communication is based on a local array of two-party 

connections. To add new capabilities for expressing fault-tolerant constructs in an 

MPI context, new MPI objects and methods need be designed. 

•  Develop HMPI for High Performance Grid Computing. HMPI must be extended to 

provide means to facilitate writing of high performance grid computing applications. The 

main tasks involve:  

o Development of an advanced performance model of the Grid as a heterogeneous 

environment of distributed computational resources;  

o Design and implementation of a system component that will discover and 

maintain the parameters of the performance Grid model;  

o Design and implementation of algorithms of the optimal mapping of the Grid 

application to available computational resources;  

o Design and implementation of the compiler translating the specification of the 

Grid application into a program component that dynamically maps the application 

to the available global computing resources;  
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Currently HMPI provides utilities automating all the above steps but these are geared 

towards HNOCs. They must be extended to work for computing grids. 

•  Design of a Heterogeneous Linear Algebra Package (HLAPACK). The HLAPACK 

library will include a subset of LAPACK routines redesigned for HNOCs. Like 

LAPACK, the HLAPACK routines will be based on block-partitioned algorithms in order 

to minimize the frequency of data movement between different levels of memory 

hierarchy. The fundamental building blocks of the HetLAPACK library will be 

distributed-memory versions of the Level 1, Level 2, and Level 3 BLAS, called the 

Parallel BLAS or PBLAS, and a set of Basic Linear Algebra Communication 

Subprograms (BLACS) for communication tasks that arise frequently in parallel linear 

algebra computations. The design of HLAPACK will include:  

o Design of performance models for each of the level-1, level-2, and level-3 BLAS 

routines.  

o Design of API for level-1, level-2, and level-3 BLAS routines. The interface will look 

similar to LAPACK. Each of these routines will create a group of processes with an 

optimal number of processes. This is followed by the execution of the heterogeneous 

algorithm associated with these routines by the members of the group. 

•  Improvements to the Heterogeneous Data Partitioning Interface (HPDI). We presented 

the Heterogeneous Data Partitioning Interface (HPDI), which provides API for 

partitioning mathematical objects commonly used in scientific and engineering domains 

for solving problems on networks of heterogeneous computers. However, more work 

needs to be done to further improve this library, which includes: 
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o Mathematical analysis of functions representing the absolute speed of a processor 

followed by the classification of the shapes of the speed function. This is followed by 

development of procedures for building speed functions, algorithms of calculation of 

shape of speed functions, and software for calculation of shapes of speed functions. 

o Classification of data partitioning problems for dense matrices involved in O(n2) 

algorithms, O(n3) algorithms, and O(nr) algorithms where r>3. This is followed by 

design and collection of data partitioning algorithms for dense matrices involved in 

O(n2) algorithms, O(n3) algorithms, and O(nr) algorithms where r>3. Then API would 

have to be designed for the algorithms for dense matrices involved in O(n2) 

algorithms, O(n3) algorithms, and O(nr) algorithms where r>3. 

o Classification of data partitioning problems for multidimensional arrangements. This 

is followed by design and collection of data partitioning algorithms for 

multidimensional arrangements and design of API to the algorithms for 

multidimensional arrangements. 

o Classification of data partitioning problems for graphs and trees. This is followed by 

design and collection of data partitioning algorithms and design of API to the 

algorithms for graphs and trees. 

•  Extension of set partitioning algorithms. Representation of the dependence of the speed 

on the problem size by a single curve is reasonable for computers with moderate 

fluctuations in workload because in this case the width of the performance band is quite 

narrow. On networks with significant workload fluctuations, the speed function of the 

problem size should be characterized by a band of curves rather than by a single curve. 
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We aim to design efficient algorithms of data partitioning on heterogeneous networks of 

computers where the speed of a processor is represented by a speed band, the width of the 

band characterizing fluctuations in speed due to changes in load over time. 

The set partitioning algorithms presented in this work assume that the volume of 

computations involved in the execution of the problem size assigned to a processor is 

proportional to the problem size. That is the volume of computations is proportional to 

the number of elements in the partition assigned to the processor. We aim to extend the 

set partitioning algorithms for applications where the volume of computations involved in 

the execution of a problem size is not proportional to the problem size. In some such 

cases, the functional performance model where the speed of the processor is represented 

by a smooth continuous function of problem size can be creatively modified and our set 

partitioning algorithms can be applied.  

•  Incorporation of communication cost into the functional performance model of HNOCs. 

We have proposed an functional model of a network of heterogeneous computers and 

designed efficient algorithms of data partitioning with this model. Under this model, the 

speed of each processor is represented by a continuous and relatively smooth function of 

the problem size. This model integrates the effects of paging. However, the other 

essential features underlying applications run on networks of heterogeneous computers 

such as the latency and the bandwidth of the communication links between the processors 

are not considered. These parameters should be incorporated into the model to make it 

more comprehensive and efficient data partitioning algorithms need to be developed 

using this model.   
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•  Improvements to the communication model of executing network of computers. In HMPI, 

the model of executing networks of computers treats any set of parallel communications 

as if they all take place at the same communication layer in the hierarchy, namely, at the 

lowest communication layer covering all involved processors. In reality, some of the 

communications may use different communication layers. Incorporation of multi-layer 

parallel communications in this algorithm without significant loss of its efficiency is a 

very difficult problem, which needs to be addressed.  

The model of executing network of computers in HMPI uses three parameters that 

determine the speed of point-to-point data transfer between processes running on the 

same computer as function of size of the transferred data block. The speed of the transfer 

of a data block of an arbitrary size is calculated by interpolation of the measured speeds. 

This model is efficient but not very accurate. The model needs to be improved with 

inclusion of parameters, which model point-to-point and collective communications 

accurately and efficiently: 

o The time taken for a point-to-point communication involving processes running on 

the same computer can be represented by linear dependence on the message size. 

Parameters must be designed to represent the fixed and the variable components. 

o The cost of a point-to-point message transfer involving processes running on different 

computers usually consists of three components, namely, the send overhead, 

transmission cost, and the receive overhead. Suitable parameters must be designed to 

accurately estimate these fixed and variable components. 
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o Collective communications such as broadcast, gather, and scatter can involve 

processes running on the same or different computers. In case of collective 

communications involving processes running on the same computer, it is observed 

that the time taken for the collective communication can be approximated by a 

constant linear function of the number of nodes involved in the collective 

communications. Thus the parameter that needs to be included for these types of 

communications represents the constant in the linear function. For collective 

communications involving processes running on different computers, the cost model 

used to estimate the time taken for the collective communication must take into 

account the collective communication algorithm used. On HNOCs, collective 

communication operations can be implemented by using different algorithms, which 

use different types of trees. The collective communication algorithm must take into 

account the communication capabilities of the participating nodes. This algorithm 

must ensure that slow computers are involved in less number of communications than 

the fast computers. This can be ensured by making the slow computers occupy the 

leaf nodes of the tree and faster computers occupy the intermediate nodes to 

broadcast the message faster. Thus parameters must be determined to incorporate the  

different types of schemes used by application programmers for their collective 

communication algorithms. 

The issue of determination of the parameters to accurately and efficiently model these 

different types of communications is difficult, which needs to be addressed. The model of 

executing network of computers must also take into account the contention that may be  
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Figure 7.1: Three different trees for implementing broadcast in a Heterogeneous network of computers with eight 

nodes (F=fast, S=slow). 

 

caused in the network. Already models such as LoGPC [MF98, FB96] exist that account 

for the impact of network contention effects on the performance of message-passing 

programs. 

•  Improvements to the communication pattern specification in the scheme declaration of 

the performance model definition language. The rule for estimation of the execution time 

of the parallel algorithmic pattern in the performance model definition language is the 

core of the entire mapping algorithm determining its accuracy and efficiency. Most 

disadvantages of the rule are just the backside of its simplicity and the necessity to keep it 

effective. Except some common collective communication operations, it is not sensitive 

to different collective communication patterns such as ring data shifting, tree reduction, 

etc., treating all of them as a set of independent point-to-point communications. The main 

problem is that recognition of such patterns is very expensive. A possible solution is 

introduction in the performance model definition language some explicit constructs for 

communication pattern specification as a part of the scheme description. 
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•  Design of collective communication routines for HNOCs. On HNOCs, collective 

communication routines can be implemented by using different algorithms, which use 

different types of trees as shown in Figure 7.1. The most commonly used collective 

communication routines are broadcast, gather, scatter, and barrier synchronization. It is 

observed that on HNOCs, the collective communication algorithm used must take into 

account the communication capabilities of the participating nodes. This algorithm must 

ensure that slow computers are involved in less number of communications than the fast 

computers. This can be ensured by making the slow computers occupy the leaf nodes of 

the tree and faster computers occupy the intermediate nodes to broadcast the message 

faster. Therefore, collective communication routines must be provided to the application 

programmers that efficiently perform the collective communications. Each of the routines 

must use the communication cost model to compare the performance of different schemes 

in order to find the best scheme for a given collective operation. 

•  Design of interfaces that update the communication parameters at runtime to be used by 

the performance measurement models of HMPI runtime system. The main idea of HMPI 

is to automate the process of selection of a group of processes, which would execute the 

heterogeneous algorithm faster than any other group. One of the features that affect the 

efficiency of the process of selection is the accuracy of the model of the executing 

network of computers. This depends on the accuracy of the measurements of the 

processor speeds given by HMPI_Recon and the communication model of the executing 

network of computers. Currently the communication model used in HMPI runtime 
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system is static. The issue of efficiently updating the parameters of communication model 

at runtime needs to be addressed. 

•  Tool for converting MPI programs to HMPI programs. A tool needs to be developed that 

would automatically make some straightforward transformations to convert an MPI 

program to a HMPI program. The tool could be as simple as a script or a preprocessor 

that generates a basic working version of an HMPI program from an input MPI program. 

All that the application programmer will have to do is to design a performance model and 

input this performance model and MPI programs to the compiler or preprocessor. Hooks 

can be provided that allow the application programmers to specify the different stages of 

an MPI program that would aid the transformation process. These are the following: 

o MPI initialization, 

o Data distribution, 

o Execution of the algorithm by the processes of MPI_COMM_WORLD, and 

o MPI finalization. 

Based on this information, a basic working version of a HMPI program can be generated 

from the performance model provided by the application programmer and the static 

program analysis of the MPI program. The basic working version would contain the 

following:   

o HMPI initialization replacing the MPI initialization, 

o Data distribution using the speeds of the processors. This step uses the API of the 

Heterogeneous Data Partitioning Interface (HDPI). The application programmer must 
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dynamically update the processor speeds at runtime using HMPI_Recon before 

distributing the data. 

o Creation of a HMPI group of processes using HMPI group constructor functions 

(HMPI_Group_create or HMPI_Group_auto_create). The handle to the 

performance model in the group creation function is generated by compiling the 

performance model provided as input by the application programmer. The application 

programmer will have to fill in the model parameters using the function 

HMPI_Pack_model_parameters. 

o Execution of the algorithm by the processes of MPI communicator associated with 

the HMPI group of processes. This piece of code is similar to the MPI code except 

that the MPI communicator MPI_COMM_WORLD is replaced by the MPI 

communicator associated with the HMPI group of processes. 

o Destruction of the HMPI group of processes. The call to the group destruction 

function HMPI_Group_free is inserted, and  

o HMPI finalization replacing the MPI finalization. 

•  Design additional HMPI applications. HMPI needs to be experimented on a wide variety 

of real-life scientific applications and on wide variety of HNOCs to improve the 

specification of the performance model definition language and the model of executing 

network of computers. Such experiments will also help investigate and strengthen the 

property of efficient portability of HMPI applications. That is, once developed, an HMPI 

application will run efficiently on any HNOCs without any changes to its source code. 
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•  Bindings of HMPI to C++, FORTRAN, and Java. HMPI API has currently bindings to 

ANSI C. Convenient bindings to C++, FORTRAN, and Java must be developed to attract 

programmers who use one or more of these languages to write message-passing programs 

on HNOCs. 
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/* This file was generated by mpC compiler 
   From file "Nbody.mpc"*/ 
 
static char* MPC_file_name="Nbody.mpc"; 
 
#include <mpC.h> 
#include <topo.h> 
#include <mpc_macro.h> 
static MPC_Basic MPC_int={{kMPC_Basic,"const int ",3,sizeof(const int 
),1,MPC_DTN},7}; 
 
/*"Nbody.mpc"*/ 
typedef double Triplet [3]; 
typedef struct { 
  Triplet p; 
  Triplet v; 
  double m; 
} Body ; 
 
/* Net type Nbody declaration */ 
int MPC_NetType_Nbody_node(int pnum,const int *ppar, 
       int ppower,int **pnodes,int **plinks); 
 
int MPC_NetType_Nbody_link(int pnum1,int pnum2, 
       const int *ppar,int ppower,int **pnodes, 
       int **plinks); 
 
int MPC_NetType_Nbody_parent(const int *ppar, 
       int ppower,int **pnodes,int **plinks); 
 
int MPC_NetType_Nbody_power(const int *ppar,int ppower, 
       int **pnodes,int **plinks); 
 
void MPC_NetType_Nbody_number2coord(int pnum, 
       const int *ppar,int *pcoord,int ppower, 
       int **pnodes,int **plinks); 
 
int MPC_NetType_Nbody_coord2number(const int *pcoord, 
       const int *ppar,int ppower,int **pnodes, 
       int **plinks); 
 
double MPC_NetType_Nbody_mapping( 
       MPC_Topo_graph **root,const int *ppar,int ppower, 
       int **pnodes,int **plinks); 
 
int MPC_NetType_Nbody_node(int pnum,const int *ppar, 
       int ppower,int **pnodes,int **plinks) { 
  static MPC_Pointer MPC_pointer_7={{kMPC_Pointer, 
            "void *",7,sizeof(void* ),1,MPC_DTN},1,NoMPC_Type}; 
  int coordinate[1]; 
  MPC_NetType_Nbody_number2coord(pnum,ppar,coordinate, 
             ppower,pnodes,plinks); 
  if ( * coordinate >= 0) 
  { 
     return (int )(MPC_FIXPOINT_SCALE * (( * ((ppar + 2) +  * 
coordinate) /  * (ppar + 1)) * ( * ((ppar + 2) +  * coordinate) /  * 
(ppar + 1)))); 
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  } 
  return 0; 
} 
 
int MPC_NetType_Nbody_link(int pnum1,int pnum2,const int *ppar, 
       int ppower,int **pnodes,int **plinks) { 
  int coordinate[1]; 
  int c1[1],n1; 
  int c2[1],n2; 
  void *calloc(); 
  if (ppower == MPC_INIT_POWER) 
  { 
     ppower = MPC_NetType_Nbody_power(ppar,ppower,pnodes,plinks); 
  } 
 
  if ( ! ( * plinks)) 
  { 
     * plinks = (int *)calloc(ppower * ppower,sizeof(int )); 
     for (coordinate[0] = 0; coordinate[0] < *ppar; coordinate[0] ++) { 
        if ( * coordinate > 0) { 
            c1[0] =  * coordinate; 
            c2[0] = 0; 
            n1 = MPC_NetType_Nbody_coord2number(c1,ppar,ppower, 
                    pnodes,plinks); 
            n2 = MPC_NetType_Nbody_coord2number(c2,ppar,ppower, 
                    pnodes,plinks); 
            ( * plinks)[n1 * ppower + n2] = ( * ((ppar + 2) +   
                                      * coordinate) * sizeof(Body )); 
        } 
      } 
    } 
  } 
  return ( * plinks)[pnum1 * ppower + pnum2]; 
} 
 
int MPC_NetType_Nbody_parent(const int *ppar,int ppower, 
       int **pnodes,int **plinks) { 
  int coordinate[1]; 
  coordinate[0] = 0; 
  return MPC_NetType_Nbody_coord2number(coordinate,ppar, 
            ppower,pnodes,plinks); 
} 
 
int MPC_NetType_Nbody_power(const int *ppar,int ppower, 
       int **pnodes,int **plinks) { 
  return  * ppar; 
} 
 
void MPC_NetType_Nbody_number2coord(int pnum,const int *ppar, 
       int *pcoord,int ppower,int **pnodes,int **plinks) { 
  * pcoord = pnum; 
} 
 
int MPC_NetType_Nbody_coord2number(const int *pcoord, 
       const int *ppar,int ppower,int **pnodes,int **plinks) { 
  return  * pcoord; 
} 
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double MPC_NetType_Nbody_mapping(MPC_Topo_graph **root, 
       const int *ppar,int ppower,int **pnodes,int **plinks) { 
  const int p= * ppar,k= * (ppar + 1),*n=(ppar + 2); 
  double MPC_estimation1=0.0; 
  { 
    int i; 
    { 
      double *MPC_estimation2,MPC_Max_estimation2=0.0; 
      int MPC_actions2=0,*MPC_sorted_actions; 
      char **MPC_involved_VPs2; 
      MPC_estimation2=(double *)calloc 
                      (ppower*(ppower+1),sizeof(double)); 
      MPC_involved_VPs2=(char **)calloc(ppower*(ppower+1), 
                       sizeof(char *)); 
      for (i = 0;i < p;i ++ ) { 
          MPC_involved_VPs2[MPC_actions2]=(char *) 
             calloc(ppower,sizeof(char)); 
          { 
             int MPC_coord[1],MPC_rank; 
             MPC_coord[0] = i; 
             MPC_rank=MPC_NetType_Nbody_coord2number(MPC_coord,ppar, 
                         ppower,pnodes,plinks); 
             MPC_estimation2[MPC_actions2]+=MPC_Part_comp_est 
                         ((double)(100),root[MPC_rank]); 
             MPC_involved_VPs2[MPC_actions2][MPC_rank]=1; 
          } 
          MPC_actions2++; 
      } 
      MPC_estimation1+=MPC_Par_estimation(ppower,MPC_actions2, 
                       MPC_estimation2,MPC_involved_VPs2,NULL); 
    } 
    { 
      double *MPC_estimation2,MPC_Max_estimation2=0.0; 
      int MPC_actions2=0,*MPC_sorted_actions; 
      char **MPC_involved_VPs2; 
      MPC_estimation2=(double *)calloc 
               (ppower*(ppower+1),sizeof(double)); 
      MPC_involved_VPs2=(char **)calloc(ppower*(ppower+1), 
               sizeof(char *)); 
      for (i = 0;i < p;i ++ ) { 
         MPC_involved_VPs2[MPC_actions2]=(char *)calloc 
            (ppower,sizeof(char)); 
         { 
            int MPC_coord[1],MPC_rank_from,MPC_rank_to; 
            MPC_coord[0] = i; 
            MPC_rank_from=MPC_NetType_Nbody_coord2number(MPC_coord, 
                    ppar,ppower,pnodes,plinks); 
            MPC_coord[0] = 0; 
            MPC_rank_to=MPC_NetType_Nbody_coord2number(MPC_coord, 
                    ppar,ppower,pnodes,plinks); 
          MPC_estimation2[MPC_actions2]+=MPC_Part_comm_est( 
                (double)(100),root[MPC_rank_from],root[MPC_rank_to]); 
         } 
         MPC_actions2++; 
      } 
      MPC_estimation1+=MPC_Par_estimation(ppower, 
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         MPC_actions2,MPC_estimation2,MPC_involved_VPs2,NULL); 
    } 
  } 
  return MPC_estimation1; 
} 
 
MPC_NetType MPC_NetType_Nbody={1, 
                              MPC_NetType_Nbody_node, 
                              MPC_NetType_Nbody_link, 
                              MPC_NetType_Nbody_parent, 
                              MPC_NetType_Nbody_power, 
                              MPC_NetType_Nbody_number2coord, 
                              MPC_NetType_Nbody_coord2number, 
                              MPC_NetType_Nbody_mapping};                             
 
#define HMPI_Model_Nbody MPC_NetType_Nbody 
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1 Introduction 
 
The tools designed for programming high-performance computations on HNOCs must provide 
mechanisms to automate the tedious and error-prone tasks: 

•  Parameter determination characterizing the computational requirements of the parallel 
application and the capabilities of the machines, 

•  Data partitioning, 
•  Matching and Scheduling, and  
•  Task execution. 
Ideally a tool must supply mechanisms to the programmer so that he or she can provide 

information to it that can assist in finding the most efficient implementation on HNOCs. 
Combining the system’s detailed analysis with the programmer’s high-level knowledge of the 
application is essential in finding more efficient mappings than either one alone is capable of 
achieving. The performance models used by the tools must take into account all the essential 
features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects 
of paging and the speed and the bandwidth of the communication links between the processors. 
The model of the executing network of computers must take into consideration the essential set 
of machine characteristics such as computing bandwidth, communication latency, 
communication overhead, communication bandwidth, network contention effects and the 
memory hierarchy. Such a model must have enough parameters for it to be effective and 
accurate. 

HMPI is such a tool, which is an extension of MPI for programming high-performance 
computations on heterogeneous networks of computers. The main idea of HMPI is to automate 
the process of selection of a group of processes, which would execute the heterogeneous 
algorithm faster than any other group. HMPI provides features that allow the user to carefully 
design their parallel applications that can run efficiently on HNOCs.  

The rest of the manual is organized as follows. Section 2 describes HMPI. Section 3 presents 
the HMPI API, which are extensions to MPI. Section 4 presents the library of data partitioning 
functions. Section 5 provides the HMPI command-line user’s interface. This is followed by 
installation instructions for HMPI for UNIX in section 6. 
 
2 What is HMPI 
 

Heterogeneous MPI (HMPI) is an extension of MPI for programming high-performance 
computations on heterogeneous networks of computers. It allows the application programmer to 
describe the performance model of the implemented algorithm in a generic form. This model 
allows for all the main features of the underlying parallel algorithm, which have an impact on its 
execution performance, such as the total number of parallel processes, the total volume of 
computations to be performed by each process, the total volume of data to be transferred between 
each pair of the processes, and how exactly the processes interact during the execution of the 
algorithm. Given the description of the performance model, HMPI tries to create a group of 
processes that executes the algorithm faster than any other group of processes. 

HMPI provides all the features to the user to write portable and efficient parallel applications 
on HNOCs. These features automate all the essential steps involved in application development 
on HNOCs: 
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1). Determination of the characterization parameters relevant to the computational 
requirements of the applications and the machine capabilities of the heterogeneous system. The 
machine capabilities are determined before the application execution and supplied to the model 
of executing network of computers. The model of the executing network of computers is 
implementation-dependent. We use a static structure automatically obtained by HMPI 
environment and saved in the form of an ASCII file. However, the parameters of the model can 
be updated at runtime taking into account the changing network loads. 

2). Decomposition of the whole problem into a set of sub-problems that can be solved in 
parallel by interacting processes. This step of heterogeneous decomposition is parameterized by 
the number and speeds of processors and the speeds and bandwidths of the communication links 
between them. The Heterogeneous Data Partitioning Interface (HDPI) is developed to automate 
this step of heterogeneous decomposition. HDPI provides API that allows the application 
programmers to specify simple and basic partitioning criteria in the form of parameters and 
functions to partition the mathematical objects used in their parallel applications. 

3). Selection of the optimal set of processes running on different computers of the 
heterogeneous network by taking into account the speeds of the processors, and the speeds and 
the bandwidths of the communications links between them. During the creation of this set of 
optimal processes, HMPI runtime system solves the problem of selection of the optimal set of 
processes running on different computers of the heterogeneous network using an advanced 
mapping algorithm. The mapping algorithm is based on the performance model of the parallel 
algorithm in the form of the set of functions generated by the compiler from the description of 
the performance model, and the performance model of the executing network of computers, 
which reflects the state of this network just before the execution of the parallel algorithm. 

4). Application program execution on the HNOCs. The command line user interface of 
HMPI developed consists of a number of shell commands supporting the creation of a virtual 
parallel machine and the execution of the HMPI application programs on the virtual parallel 
machine. The notion of virtual parallel machine enables a collection of heterogeneous computers 
to be used as single large parallel computer. 
 
3 HMPI’s Library Interface 
 
In this section, we describe the interfaces to the routines provided by HMPI as extensions to MPI 
and the interfaces to the routines in the heterogeneous data partitioning interface (HPDI). 
 
3.1   HMPI runtime initialization and finalization 
 
HMPI_Init 

Initializes HMPI runtime system 
 
Synopsis: 

 

   int 
   HMPI_Init 
   ( 
       int argc, 
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       char** argv 
   ) 
 
Parameters:  
      argc  --- Number of arguments supplied to main 
      argv  --- Values of arguments supplied to main 
 
Description: All processes must call this routine to initialize HMPI runtime system. This routine 
must be called before any other HMPI routine. It must be called at most once; subsequent calls 
are erroneous. 
 
Usage: 
 
     int main(int argc, char** argv) 
     { 
        int rc =  HMPI_Init( 
                      argc, 
                      argv 
        );  
 
        if (rc != HMPI_SUCCESS) 
        { 
           //Error has occurred 
        } 
     }  
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Finalize 

Finalizes HMPI runtime system 
 
Synopsis: 
 
   int 
   HMPI_Finalize 
   ( 
       int exitcode 
   ) 
 
Parameters: 
 
        exitcode --- code to be returned to the command shell 
 
Description: This routine cleans up all HMPI state. All processes must call this routine at the 
end of processing tasks. Once this routine is called, no HMPI routine (even HMPI_Init) may 
be called.  
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Usage: 
 
    int main(int argc, char** argv) 
    { 
        int rc =  HMPI_Init( 
                      argc, 
                      argv 
        );  
 
        if (rc != HMPI_SUCCESS) 
        { 
           //Error has occurred 
        } 
 
        rc =  HMPI_Finalize(0);  
 
        if (rc != HMPI_SUCCESS) 
        { 
           //Error has occurred    
        } 
    }  
 
Return values:  HMPI_SUCCESS on success and an error in case of failure. 
 
3.2   HMPI Group Management Functions 
 
HMPI_Group_rank 

Returns rank of the calling process 
 
Synopsis: 

 

   int 
   HMPI_Group_rank 
   ( 
       const HMPI_Group* gid 
   ) 
 
Parameters: 
 
        gid --- handle to the HMPI group of processes 
 
Description: This routine returns the rank of the process calling it. Only processes that are 
members of the group represented by the handle gid can call this routine. 
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Usage: 

 

    // HMPI_HOST_GROUP is a predefined group handle 
    // containing the host process. 
    HMPI_Group* gid = HMPI_HOST_GROUP; 
 
    if (HMPI_Is_member(gid)) 
    {         
       int rank =  HMPI_Group_rank( 
                       gid 
       );  
    } 

 

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Rank 

Returns rank of the process with the coordinates specified 
 
Synopsis: 
 
   int 
   HMPI_Rank 
   ( 
       const HMPI_Group* gid, 
       const int* coordinates 
   ) 
 
Parameters: 
 
        gid                    --- handle to the HMPI group of processes 
        coordinates --- coordinates representing a process in the group represented by  
                                         the handle gid 
 
Description: This routine returns the rank of the process in the group represented by the handle 
gid and the coordinates of the process being coordinates. Only processes that are members 
of the group represented by the handle gid can call this routine. 
 
Usage: 
 
    // HMPI target program 
    HMPI_Group gid; 
    int coordinates = 3; 
    if (HMPI_Is_member(&gid)) 
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    {         
       int rank = HMPI_Rank( 
                   &gid, 
                   &coordinates 
       );  
    } 

 

Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Group_coordof 

Returns the coordinates of the process 
 
Synopsis: 
 
   int 
   HMPI_Group_coordof 
   ( 
       const HMPI_Group* gid, 
       int* numc, 
       int** coordinates 
   ) 
 
Parameters: 
 
        gid   ---  Handle to the HMPI group of processes. This is an input parameter. 
        numc ---  Output parameter giving the number of coordinates representing the  
                         calling process in the group represented by the handle gid. 
        coordinates  ---  The values of the coordinates of the calling process in the  
                                          group represented by the handle gid. 
 
Description: If the process calling this routine is a member of the group given by the handle 
gid, then its coordinates are returned in coordinates, the initial element of which points to 
an integer array containing the coordinates with size *numc. Only processes that are members of 
the group represented by the handle gid can call this routine. 
 
Usage: 

 

    HMPI_Group gid; 
 
    if (HMPI_Is_member(&gid)) 
    {         
       int numc; 
       int** coordinates = (int**)malloc( 
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                               sizeof(int*) 
       ); 
 
       int rc =  HMPI_Group_coordof( 
                     &gid, 
                     &numc, 
                     coordinates 
       );  
 
       if (rc != HMPI_SUCCESS) 
       { 
          //Failure       
       } 
 
       free(coordinates[0]); 
       free(coordinates); 
    } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. HMPI_SUCCESS is returned on success. 
 
HMPI_Coordof 
Returns the coordinates of the process with a specified rank. 
 
Synopsis: 
 
   int 
   HMPI_Coordof 
   ( 
       const HMPI_Group* gid, 
       int rank,   
       int* numc, 
       int** coordinates 
   ) 
 
Parameters: 
 
        gid --- Handle to the HMPI group of processes. This is an input parameter. 
        rank --- The rank of the process whose coordinates are returned.  
                        This is an input parameter. 
        numc ---  Output parameter giving the number of coordinates of the process  
                         whose rank is rank in the group represented by the handle gid. 
        coordinates  ---  The values of the coordinates of the process whose rank is   

       rank in the group represented by the handle gid. 
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Description: The coordinates of the process whose rank is rank in the group represented by the 
handle gid are returned in coordinates, the initial element of which points to an integer 
array containing the coordinates with size *numc. Only processes that are members of the group 
represented by the handle gid can call this routine. 
 
Usage: 
 
    HMPI_Group gid; 
 
    if (HMPI_Is_member(gid)) 
    {         
       int rank = 0;  
       int numc; 
       int** coordinates = (int**)malloc( 
                               sizeof(int*) 
       ); 
 
       int rc = HMPI_Coordof( 
                    &gid, 
                    rank,     
                    &numc, 
                    coordinates 
       );  
 
       if (rc != HMPI_SUCCESS) 
       { 
          //Failure  
       } 
 
       free(coordinates[0]); 
       free(coordinates); 
    } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. HMPI_SUCCESS is returned on success. 
 
HMPI_Group_topo_size 

Returns the number of coordinates that can specify a process in a group 
 
Synopsis: 
 
    int 
    HMPI_Group_topo_size 
    ( 
        const HMPI_Group* gid 
    ) 
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Parameters: 
 
        gid --- handle to the HMPI group of processes 
 
Description: This routine returns the number of coordinates used to specify a process, which is a 
member of the group represented by the handle gid. Only processes that are members of the 
group represented by the handle gid can call this routine. 
 
Usage: 

 

   HMPI_Group gid; 
 
   if (HMPI_Is_member(gid)) 
   {         
      int numc =  HMPI_Group_topo_size( 
                      &gid 
      ); 
   } 
  
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Group_topology 

Returns the number of processes in the group in each dimension of the topology of the group. 
 
Synopsis: 

 

   int 
   HMPI_Group_topology 
   ( 
       const HMPI_Group* gid, 
       int* numc, 
       int** coordinates 
   ) 
 
Parameters: 
 
        gid --- handle to the HMPI group of processes. 
        numc ---  Output parameter giving the number of dimensions of the topology  

specifying the arrangement of the processes, which are members of the  
group represented by the handle gid. 

        coordinates  ---  Output parameter giving the number of processes in each  
                                           dimension of the topology specifying the arrangement of  
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                                           the processes, which are members of the group represented by  
                                           the handle gid. 
 
Description: This routine returns the number of dimensions of the topology and the number of 
processes in each dimension of the topology representing the arrangement of the processes, 
which are members of the group represented by the handle gid. The number of processes in 
each dimension are returned in coordinates, the initial element of which points to an integer 
array with number *numc of elements containing the number of dimensions. Only processes that 
are members of the group represented by the handle gid can call this routine. 
 
Usage: 

 

    HMPI_Group gid; 
 
    if (HMPI_Is_member(&gid)) 
    {         
       int numc;    
       int** coordinates = (int**)malloc( 
                              sizeof(int*) 
       ); 
       int rc =  HMPI_Group_topology( 
                     &gid, 
                     &numc, 
                     coordinates 
       ); 
  
       if (rc != HMPI_SUCCESS) 
       { 
          //Failure 
       } 
 
       free(coordinates[0]); 
       free(coordinates); 
    } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. HMPI_SUCCESS is returned on success. 
 
HMPI_Group_parent 

Returns the rank of the parent of a group 
 
Synopsis: 

 

   int 
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   HMPI_Group_parent 
   ( 
       const HMPI_Group* gid 
   ) 
 
Parameters: 

 

        gid --- handle to the HMPI group of processes. 
 
Description: This routine returns the rank of the parent of the group represented by the handle 
gid. Only processes that are members of the group represented by the handle gid can call this 
routine. 
 
Usage: 

 

    HMPI_Group* gid; 
    int rank;  
    if (HMPI_Is_member(gid)) 
    { 
       rank =  HMPI_Group_parent(gid); 
    } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Group_size 

Returns the number of processes in the group 
 
Synopsis: 
 
   int 
   HMPI_Group_size 
   ( 
       const HMPI_Group* gid 
   ) 
 
Parameters: 

 

       gid --- handle to the HMPI group of processes 
 
Description: This routine returns the number of processes in the group represented by the handle 
gid. Only processes that are members of the group represented by the handle gid can call this 
routine. 
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Usage: 
 
    HMPI_Group* gid; 
    int size; 
 
    if (HMPI_Is_member(gid)) 
    { 
       size = HMPI_Group_size(gid);  
    } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Is_host 

Is the calling process the host? 
 
Synopsis: 
 
   unsigned char 
   HMPI_Is_host() 
 
Description: This routine returns true if the process calling this function is the host process 
otherwise false. Any process can call this function. 
 
Usage: 

 

        if (HMPI_Is_host()) 
   { 
      printf(“I’m the host\n”); 
   } 
   else 
   { 
      printf(“I’m not the host\n”); 
   } 
 
Return values: Value of 1 is returned if the process is the member of the group. 0 otherwise. 
 
HMPI_Is_parent 

Is the calling process the parent process of the group? 
 
Synopsis: 
 
   unsigned char 
   HMPI_Is_parent 
   ( 
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       const HMPI_Group* gid 
   ) 
 
Parameters: 
 
       gid --- handle to the HMPI group of processes. 
 
Description: This routine returns true if the process calling this routine is the parent of the 
group represented by the handle gid otherwise false. Only processes that are members of the 
group represented by the handle gid can call this routine. 
 
Usage: 

 

   HMPI_Group* gid; 
 
   if (HMPI_Is_parent(gid)) 
   { 
      printf(“I’m the parent of the group gid\n”); 
   } 
   else 
   { 
      printf(“I’m not the parent of the group gid\n”); 
   } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Is_member 

Am I a member of the group? 
 
Synopsis: 
 
   unsigned char 
   HMPI_Is_member 
   ( 
       const HMPI_Group* gid 
   ) 
 
Parameters: 
 
       gid --- handle to the HMPI group of processes. 
 
Description: This function returns true if the process calling this routine is the member of the 
group represented by the handle gid otherwise false. Only processes that are members of the 
group represented by the handle gid can call this routine. 
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Usage: 
 
   HMPI_Group* gid; 
 
   if (HMPI_Is_member(gid)) 
   { 
      printf(“I’m a member of the group gid\n”); 
   } 
   else 
   { 
      printf(“I’m not a member of the group gid\n”); 
   } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group represented by the handle gid. 
 
HMPI_Is_free 

Am I a member of the predefined group HMPI_FREE_GROUP? 
 
Synopsis: 
 
   unsigned char 
   HMPI_Is_free() 
 
Description: This routine returns true if the process is free and is member of the predefined 
group HMPI_FREE_GROUP and false otherwise. Any process can call this function. 
 
Usage: 
 
   if (HMPI_Is_free()) 
   { 
      printf(“I’m a free process and member of”  
             “ HMPI_FREE_GROUP \n”); 
   } 
   else 
   { 
      printf(“I’m not a free process and not a member of”  
             “ HMPI_FREE_GROUP \n”); 
   } 
 
Return values: Value of 1 is returned if the process is not the member of any other group other 
than HMPI_FREE_GROUP. 0 otherwise. 
 
HMPI_Get_comm 

Returns an MPI communicator with communication group of MPI processes 
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Synopsis: 

 

   const MPI_Comm* 
   HMPI_Get_comm 
   ( 
       const HMPI_Group* gid 
   ) 
 
Parameters: 

 

       gid --- handle to the HMPI group of processes. 
 
Description: This routine returns an MPI communicator with communication group of MPI 
processes defined by gid. This is a local operation not requiring inter-process communication. 
Application programmers can use this communicator to call the standard MPI communication 
routines during the execution of the parallel algorithm. This communicator can safely be used in 
other MPI routines. 
 
Usage: 
 
   HMPI_Group* gid; 
   MPI_Comm* comm; 
 
   if (HMPI_Is_member(gid)) 
   { 
      comm = HMPI_Get_comm(gid); 
      if (comm == NULL) 
      { 
         //error 
      } 
   } 
 
Return values: This call returns NULL if the process is not a member of the group represented 
by the handle gid. 
 
HMPI_Group_create 

Create an HMPI group of processes 
 
Synopsis: 
 
   int 
   HMPI_Group_create 
   ( 
       HMPI_Group* gid, 
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       const HMPI_Model* model, 
       void* model_parameters, 
       int paramc 
   ) 
 
Parameters: 
 
         gid --- handle to the HMPI group of processes. This is an output parameter. 
         model --- handle that encapsulates all the features of the performance model in the  
                           form of a set of functions generated by the compiler from the description  
                          of the performance model (input parameter) 
         model_parameters --- parameters of the performance model (input parameter) 
         paramc --- number of parameters of the performance model (input parameter) 
 
Description: This routine tries to create a group that would execute the heterogeneous algorithm 
faster than any other group of processes. In HMPI, groups are not absolutely independent on 
each other. Every newly created group has exactly one process shared with already existing 
groups. That process is called a parent of this newly created group, and is the connecting link, 
through which results of computations are passed if the group ceases to exist. 
HMPI_Group_create is a collective operation and must be called by the parent and all the 
processes, which are not members of any HMPI group. 
 
Usage: 
 
    HMPI_Group gid1, gid2, gid3; 
 
    int modelp[1] = {5}; 
    unsigned char is_parent_of_nid2 = 0; 
    unsigned char is_parent_of_nid3 = 0; 
 
    // The parent used in the creation of abstract network  
    // gid1 is the host 
    if (HMPI_Is_member(HMPI_HOST_GROUP)) 
    { 
       HMPI_Group_create( 
           &gid1, 
           &HMPI_Model_simple, 
           modelp, 
           1 
       ); 
    } 
 
    if (HMPI_Is_free()) 
    { 
       HMPI_Group_create( 
           &gid1, 
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           &HMPI_Model_simple, 
           NULL, 
           0 
       ); 
    } 
 
    // The parent used in the creation of group gid2 is the  
    // member of group gid1 whose coordinates are given 
    // {2} 
    if (HMPI_Is_member(&gid1)) 
    { 
       int numc; 
       int** coordinates = (int**)malloc( 
                                  sizeof(int*) 
       ); 
       int rc = HMPI_Group_coordof( 
                    &gid1, 
                    &numc, 
                    coordinates, 
       ); 
       if ((*coordinates)[0] == 2) 
       { 
          is_parent_of_nid2 = 1; 
       } 
 
       free(coordinates[0]);   
       free(coordinates);   
    } 
 
    if (is_parent_of_nid2 
        || HMPI_Is_free() 
    ) 
    { 
       HMPI_Group_create( 
           &nid2, 
           &HMPI_Model_simple, 
           modelp, 
           1 
       ); 
    } 
 
    // The parent used in the creation of the group gid3 is  
    // the member of abstract network nid2 whose  
    // coordinates are given by {3} 
    if (HMPI_Is_member(&nid2)) 
    { 
       int numc; 
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       int** coordinates = (int**)malloc( 
                                  sizeof(int*) 
       ); 
 
       int result =  HMPI_Group_coordof( 
                         &gid2, 
                         &numc, 
                         coordinates, 
       ); 
 
       if ((*coordinates)[0] == 3) 
       { 
          is_parent_of_gid3 = 1; 
       } 
 
       free(coordinates[0]);   
       free(coordinates);   
    } 
 
    if (is_parent_of_nid3 
        || HMPI_Is_free() 
    ) 
    { 
       HMPI_Group_create( 
           &gid3, 
           &HMPI_Model_simple, 
           modelp, 
           1 
       ); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Group_auto_create 

Create an HMPI group of processes with optimal number of processes 
 
Synopsis: 
 
   int 
   HMPI_Group_auto_create 
   ( 
       HMPI_Group* gid, 
       const HMPI_Model* model, 
       void** model_parameters, 
       int paramc 
   ) 
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Parameters: 
 
         gid --- handle to the HMPI group of processes. This is an output parameter. 
         model --- handle that encapsulates all the features of the performance model in the  
                         form of a set of functions generated by the compiler from the description  
                        of the performance model (input parameter) 
         model_parameters --- parameters of the performance model (input parameter) 
         paramc --- number of parameters of the performance model (input parameter) 
 
Description: This routine allows application programmers not to bother about finding the 
optimal number of processes that can execute the parallel application. They can specify only the 
rest of the parameters thus leaving the detection of the optimal number of processes to the HMPI 
runtime system. HMPI_Group_auto_create is a collective operation and must be called by 
the parent and all the processes, which are not members of any HMPI group. 
 
The parameters model_parameters and param_count are input as well as return 
parameters. User fills only the input-specific part of the parameter model_parameters and 
ignores the return parameters specifying the number of processes to be involved in executing the 
algorithm and their performances. The parameter param_count passed to the call of the 
function HMPI_Group_auto_create represents the number of parameters in the input-
specific part of the parameter model_parameters and on return, it contains the number of 
parameters in the input-specific part of the parameter model_parameters plus the number of 
parameters containing the number of processes to be involved in executing the algorithm and 
their performances. 
 
Return values: HMPI_SUCCESS on success and an error in case of failure.  
 
HMPI_Group_heuristic_auto_create 

Uses user-supplied heuristics to create an HMPI group of processes with optimal number of 
processes 
 
Synopsis: 
 

 typedef int (*HMPI_Heuristic_function)( 
           int np, int *dp, void *modelp, int paramc); 
   int 
   HMPI_Group_heuristic_auto_create 
   ( 
       HMPI_Group* gid, 
       const HMPI_Model* model, 
       HMPI_Heuristic_function hfunc, 
       void** model_parameters, 
       int paramc 
   ) 
 
Parameters: 
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         gid --- handle to the HMPI group of processes. This is an output parameter. 
         model --- handle that encapsulates all the features of the performance model in the  
                         form of a set of functions generated by the compiler from the description  
                        of the performance model (input parameter) 
         hfunc --- User-supplied heuristic function (input parameter) 
         model_parameters --- parameters of the performance model (input parameter) 
         paramc --- number of parameters of the performance model (input parameter) 
 
Description: This routine has the same functionality as HMPI_Group_auto_create except 
that it allows application programmers to supply heuristics that minimize the number of process 
arrangements evaluated.  
 
Application programmers provide the heuristic function hfunc. The input parameter np is the 
number of dimensions in the process arrangement. The input parameter dp is an integer array of 
size np containing the number of processes in each dimension of the process arrangement. The 
input parameters modelp and paramc are the parameters supplied to the performance model. 
The function HMPI_Group_heuristic_auto_create evaluates a process arrangement 
only if the heuristic function hfunc returns true. 
 
A simple heuristic function is shown below, which returns a value true only if the process 
arrangement is a square grid. 
 

   int Square_grid_only( 
         int np, int *dp, void *modelp, int paramc){ 
         if ((np == 2) && (dp[0] == dp[1])) 
            return true; 
         return false; 
     } 
 
The function evaluates process arrangements that are square grids only if this heuristic function 
is provided as an input. 
 
Return values: HMPI_SUCCESS on success and an error in case of failure.  
 
HMPI_Group_free 

Free an HMPI group of processes 
  
Synopsis: 

 

   int 
   HMPI_Group_free 
   ( 
       const HMPI_Group* gid 
   ) 
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Parameters: 

 

        gid --- handle to the HMPI group of processes 
 
Description: This routine deallocates the resources associated with a group object gid. 
HMPI_Group_free is a collective operation and must be called by all the processes, which are 
members of the HMPI group gid. 
 
Usage: 
 
    HMPI_Group gid; 
    if (HMPI_Is_member(&gid)) 
    { 
       HMPI_Group_free(&gid); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure.  
 
3.3   HMPI Runtime updation Functions 
 
HMPI_Recon 

Updates the estimation of processor performances dynamically 
  
Synopsis: 

 

   typedef void (*HMPI_Benchmark_function)( 
           const void*, int, void*); 
 
   int 
   HMPI_Recon 
   ( 
       HMPI_Benchmark_function func, 
       const void* input_p, 
       int num_of_parameters, 
       void* output_p 
   ) 
 
Parameters: 

 

         func --- Benchmark user function executed by all the physical processors. 
         input_p --- Input parameters to the user function. 
         num_of_parameters --- Number of input parameters to the user function. 
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         output_p --- Return parameter on the execution of the user function. 
 
Description: All the processors execute the benchmark function func in parallel, and the time 
elapsed by each of the processors to execute the code is used to refresh the estimation of its 
speed. This is a collective operation and must be called by all the processors in the group 
associated with the predefined communication universe HMPI_PROC_WORLD of HMPI. 
 

This routine allows updating the estimation of processor performances dynamically, at 
runtime, just before using the estimation by the programming system. It is especially important if 
computers, executing the HMPI program, are used for other computations as well. In that case, 
the real performance of processors can dynamically change dependent on the external 
computations. The use of this routine allows writing parallel programs sensitive to such dynamic 
variation of the workload of the underlying computer system.  
 
Usage: 
 
    double Perf_func ( 
           double l, double w, double h, double delta) 
    { 
       double m,x,y,z; 
       for (m = 0.0, x = 0.0; x < l; x += delta) 
           for (y = 0.; y < w; y += delta)  
               for (z = 0.; z < h; z += delta)  
                   m += XYZ_func(x,y,z); 
       return m * delta * delta * delta; 
    } 
 
    void Benchmark_function  
    ( 
       const void* input_p, 
       int num_of_p, 
       void* output_p 
    ) 
    { 
       double* params = (double*)input_p; 
       double result =   Perf_func( 
                             params[0],  
                             params[1],  
                             params[2],  
                             params[3] 
       ); 
       *(double*)(output_p) = result;  
       return; 
    } 
 
    // All members of group HMPI_PROC_WORLD_GROUP must call  
    // this function 
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    if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP)) 
    { 
       double output_p; 
       int rc = HMPI_Recon( 
                    Benchmark_function, 
                    input_p, 
                    4, 
                    &output_p 
       ); 
  
       if (rc != HMPI_SUCCESS) 
       { 
          //An error has occurred 
       }  
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
3.4  HMPI Estimation Functions 
 
HMPI_Timeof 

Predict the total time of execution of the algorithm on the underlying hardware without its real 
execution 
 
Synopsis: 
 
   double 
   HMPI_Timeof 
   ( 
       const HMPI_Model* model, 
       void* model_parameters, 
       int paramc 
   ) 
 
Parameters: 
 
         model--- handle that encapsulates all the features of the performance model in  
                           the form of a set of functions generated by the compiler from the  
                          description of the performance model (input parameter) 
         model_parameters --- parameters of the performance model (input parameter) 
         paramc --- number of parameters of the performance model (input parameter) 
 
Description: This routine allows application programmers to predict the total time of execution 
of the algorithm on the underlying hardware without its real execution. This function allows the 
application programmers to write such a parallel application that can follow different parallel 
algorithms to solve the same problem, making choice at runtime depending on the particular 
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executing network and its actual performance. This is a local operation that can be called by any 
process, which is a member of the group associated with the predefined communication universe 
HMPI_COMM_WORLD of HMPI. 
HMPI_Timeof can thus be used to estimate the execution time on HNOCs for each possible 

set of model parameters model_parameters. Application programmers can use this function 
creatively to design best possible heuristics for the set of parameters. Depending on the time 
estimated for each set, the optimal values of the parameters are determined. These values are 
then passed to the performance model during the actual creation of the group of processes using 
the function HMPI_Group_create. 
 
Usage: 
 
   algorithm bcast(int p, int n, int ITER, int rooot) { 
      coord I=p; 
      node { 
         I>=0: bench*1; 
      }; 
      link { 
         I>=0&&I!=rooot: length*(n*n*ITER*sizeof(double))  
                         [rooot]->[I]; 
      }; 
      parent[0]; 
      scheme { 
         int i, k; 
         for (k = 0; k < ITER; k++) 
             for (i = 0; i < p; i++) 
                if (i != rooot) 
                   (100/ITER)%%[rooot]->[i]; 
      }; 
   }; 
 
   int main() { 
       int p; 
       HMPI_Group gid; 
       …  
       p = HMPI_Group_size(HMPI_COMM_WORLD_GROUP);          
       if (HMPI_Is_host()) { 
          int param_count = 4; 
          int model_params[4] = { 
              p, 
              N, 
              ITER, 
              root 
          }; 
          double time; 
          time = HMPI_Timeof( 
                     &HMPI_Model_bcast, 
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                     &model_params, 
                     param_count 
          ); 
          time = (double)time/(double)ITER; 
          printf("Number of bytes broadcast = %d,  
                  time=%0.9f\n", N*N*8, time); 
       } 
   } 
 

3.5   HMPI Processor Information Functions 
 
HMPI_Get_number_of_processors 

Returns the number of physical processors of the underlying distributed memory machine 
 
Synopsis: 
 
   int  
   HMPI_Get_number_of_processors() 
 
Description: This routine returns the number of physical processors of the underlying distributed 
memory machine. This is a collective operation and must be called by all the processes in the 
group associated with the predefined communication universe HMPI_COMM_WORLD of 
HMPI. 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success. 
 
HMPI_Get_processors_info 

Returns the relative performances of the physical processors of the underlying distributed 
memory machine 
 
Synopsis: 
 
   int 
   HMPI_Get_processors_info 
   ( 
       double* relative_performances 
   ) 
 
Parameters: 
 
        Relative_performances --- Output parameter containing the relative 
                                                                  performances of the physical processors of the  
                                                                  underlying distributed memory machine 
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Description: This routine returns the relative performances of the physical processors of the 
underlying distributed memory machine. This is a collective operation and must be called by all 
the processes in the group associated with the predefined communication universe 
HMPI_COMM_WORLD of HMPI. 
 
Usage: 
 
   int p = HMPI_Get_number_of_processors(); 
   double speeds = (double*)malloc( 
                            sizeof(double) 
                            * 
                            p 
   );               
 
   int rc = HMPI_Get_processors_info( 
                speeds   
   ); 
 
   if (rc != HMPI_SUCCESS) 
   { 
      //An error has occurred 
   } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success. 
 
HMPI_Get_processes_info 

Returns the relative performances of the processes running on the physical processors of the 
underlying distributed memory machine 
 
Synopsis: 
 
   int 
   HMPI_Get_processes_info 
   ( 
       double* relative_performances 
   ) 
 
Parameters: 
 
        Relative_performances --- Output parameter containing the relative 
                                                                  performances of the processes running on the  
                                                                  physical processors of the underlying distributed  
                                                                 memory machine 
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Description: This routine returns the relative performances of the processes running on the 
physical processors of the underlying distributed memory machine. This is a collective operation 
and must be called by all the processes in the group associated with the predefined 
communication universe HMPI_COMM_WORLD of HMPI. 
 
Usage: 
 
   int p = HMPI_Group_size(HMPI_COMM_WORLD_GROUP); 
   double speeds = (double*)malloc( 
                            sizeof(double) 
                            * 
                            p 
   );               
 
   int rc = HMPI_Get_processes_info( 
                speeds   
   ); 
 
   if (rc != HMPI_SUCCESS) 
   { 
      //An error has occurred 
   } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group HMPI_COMM_WORLD_GROUP. HMPI_SUCCESS is returned on success. 
 
HMPI_Group_performances 

Returns the relative performances of the processes in a group 
 
Synopsis: 
 
   int 
   HMPI_Group_performances 
   ( 
       const HMPI_Group* gid,  
       double* relative_performances 
   ) 
 
Parameters: 
 
        gid --- handle to the HMPI group of processes 
        Relative_performances --- Output parameter containing the relative 
                                                                  performances of the processes in the group  
                                                                  represented by the handle gid 
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Description: This routine returns the relative performances of the processes in the group 
represented by the handle gid. This is a collective operation and must be called by all the 
processes in the group given by the handle gid. 
 
Usage: 
 
   HMPI_Group gid; 
 
   if (HMPI_Is_member(gid)) 
   {         
      int p = HMPI_Group_size(&gid); 
      double speeds = (double*)malloc( 
                            sizeof(double) 
                            * 
                            p 
      );               
 
      int rc = HMPI_Group_performances( 
                   gid,  
                   speeds   
      ); 
 
      if (rc != HMPI_SUCCESS) 
      { 
         //An error has occurred 
      } 
   } 
 
Return values: Error code HMPI_UNDEFINED is returned if the process is not the member of 
the group given by the handle gid. HMPI_SUCCESS is returned on success. 
 
3.6   HMPI Synchronization Functions 
 
HMPI_Barrier 

Barrier for the members of the group 
 
Synopsis: 
 
int HMPI_Barrier 
( 
    const HMPI_Group* gid 
) 
 
Parameters: 
 
         gid --- handle to the HMPI group of processes  



HMPI Programmers’ Reference and Installation Manual                     

433 

 
Description: Has same functionality as MPI_Barrier. This is a collective operation and must 
be called by all the processes in the group given by the handle gid. 
 
Usage: 
 
    HMPI_Group gid; 
 
    if (HMPI_Is_member(&gid)) 
    { 
       HMPI_Barrier(&gid); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Notify_free_processes 

Notify free processes to leave the waiting point 
 
Synopsis: 
 
int HMPI_Notify_free_processes() 
 
Description: This must be called by only the host-process. It sends a command to the dispatcher 
to signal the free processes to leave the waiting point. 
 
Usage: 
 
    HMPI_Group gid; 
 
    if (HMPI_Is_host()) 
    { 
       HMPI_Notify_free_processes(); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Wait_free_processes 

Waiting point for free processes waiting for commands for group destruction 
 
Synopsis: 
 
int HMPI_Wait_free_processes() 
 
Description: This must be called by all the free processes. All the free processes wait in this call 
for commands from dispatcher on group destruction. 
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Usage: 
 
    if (HMPI_Is_free()) 
    { 
       HMPI_Wait_free_processes(); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Host_rendezvous 

Allows rendezvous with the host-process 
 
Synopsis: 
 
int HMPI_Host_rendezvous(int count) 
 
Description: This function allows rendezvous with the host-process. Any process, which is the 
member of the group HMPI_COMM_WORLD_GROUP, and the host-process must call this 
function.  
 
Parameters: 
 
         count --- Number of processes rendezvous with the host-process  
 
Usage: 
 
    HMPI_Group gid;  
    // A parent of a group can rendezvous with the host 
    if (HMPI_Is_parent(&gid) || HMPI_Is_host()) 
    { 
       HMPI_Host_rendezvous(1); 
    } 
 
    // A whole group can rendezvous with the host 
    if (HMPI_Is_member(&gid) || HMPI_Is_host()) 
    { 
       HMPI_Host_rendezvous(HMPI_Group_size(&gid)); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
3.7  HMPI Debugging and Version Functions 
 
HMPI_Printf 

Print formatted strings to the host processor. 
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Synopsis: 
 
int HMPI_Printf 
( 
    const char* format,  
    ...  
) 
 
Parameters: 
 
         format --- Format string in printf-fashion.  
 
Description: Prints formatted strings to standard output on the virtual host processor from any 
virtual processor of the computing space. Any process can call this function. 
 
Usage: 
 
    HMPI_Group gid; 
 
    if (HMPI_Is_member(&gid)) 
    { 
       HMPI_Printf( 
          "Hello, My node rank is %d, My Globalrank “ 
          “is %d\n ", 
          HMPI_Group_rank(&nid), 
          HMPI_Group_rank(HMPI_COMM_WORLD_GROUP) 
       ); 
    } 
 
Return values: HMPI_SUCCESS on success and an error in case of failure. 
 
HMPI_Strerror 

Return a string associated with error code. 
 
Synopsis: 
 
int  
HMPI_Strerror 
( 
    int errnum, 
    char* message 
) 
 
Parameters: 
 
         errnum --- Error code from any HMPI routine call.  
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         message ---  Output parameter. Error message associated with the error code. 
                                 The message must represent storage that is at least  
                                 HMPI_MAX_ERROR_STRING characters long. 
 
Description: An error message string corresponding to the error number errnum is returned in 
message. Any process can call this function. 
  
Usage: 
 
    char message[HMPI_MAX_ERROR_STRING]; 
 
    int rc = HMPI_Init( 
                 argc, 
                 argv 
    ); 
 
    if (rc != HMPI_SUCCESS) 
    { 
       HMPI_Strerror( 
           rc, 
           message   
       ); 
  
       HMPI_Printf( 
        "Error during HMPI initialization. Reason is %s\n", 
        message 
       ); 
    } 
 
Return values: HMPI_SUCCESS on success and error on failure. 
 
HMPI_Debug 

Turn the diagnostics on/off. 
 
Synopsis: 
 
int  
HMPI_Debug 
( 
    int yesno 
) 
 
Parameters: 
 
         yesno --- yes (1) or no (0)  
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Description: Produces detailed diagnostics. Any process can call this function. This is the only 
function apart from HMPI_Get_version that can be called before HMPI_Init or after 
HMPI_Finalize. 
  
HMPI_Get_version 

Returns the version of the HMPI in the format x.y 
 
Synopsis: 
 
int  
HMPI_Get_version 
( 
    int *version, 
    int *sub_version 
) 
 
Parameters: 
 
         version --- Major version  
         sub_version --- Minor version  
 
Description: Returns the version of HMPI. Any process can call this function. This is one of the 
few functions that can be called before HMPI_Init or after HMPI_Finalize. 
  
Usage: 
 
    int version, sub_version;  
    HMPI_Get_version(&version, &sub_version);  
 

4 Heterogeneous Data Partitioning Interface (HDPI) 
 
The core of scientific, engineering or business applications is the processing of some 
mathematical objects that are used in modeling corresponding real-life problems. In particular, 
partitioning of such mathematical objects is a core of any data parallel algorithm. Our analysis of 
various scientific, engineering and business domains resulted in the following short list of 
mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and 
non-ordered), dense matrices (and multidimensional arrangements), graphs, and trees.  
 
Based on this classification, we suggest an API for partitioning mathematical objects commonly 
used in scientific and engineering domains for solving problems on networks of heterogeneous 
computers. These interfaces allow the application programmers to specify simple and basic 
partitioning criteria in the form of parameters and functions to partition their mathematical 
objects. These partitioning interfaces are designed to be used along with various programming 
tools for parallel and distributed computing on heterogeneous networks. 
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4.1   Sets 
 
Partition_unordered_set 

Partition a non-ordered set 
 
Synopsis: 
 
typedef double (*User_defined_metric)(  

        int p, const double *speeds, const int *actual,  
        const int *ideal) 
 
int Partition_unordered_set ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, int n,   
    const int *w, int type_of_metric,  
    User_defined_metric umf, double *metric, int *np) 

 

Description: This routine partitions a set into p disjoint partitions. 
 

Return values: 0 on success and -1 in case of failure. 
 
 
Partition_ordered_set 

Partition a well-ordered set 
 

Synopsis: 
 
int Partition_ordered_set ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, int n,   
    const int *w, int processor_reordering,  
    int type_of_metric, User_defined_metric umf,  
    double *metric, int *np) 

 
Description: This routine partitions a well-ordered set into p disjoint contiguous partitions. 
 
Parameters: 
 
Parameter p is the number of partitions of the set.  Parameters speeds and psizes specify 
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size 
p×pn logically representing 2D arrays of shape [p][pn]. The speed of the i-th processor for 
j-th problem size is given by the [i][j]-th element of speeds with the problem size itself 
given by the [i][j]-th element of psizes. Parameter mlimits gives the maximum number 
of elements that each processor can hold. 
 
Parameter n is the number of elements in the set, and parameter w is the weights of its elements.  
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Parameter type_of_metric specifies which metric should be used to determine the quality 
of the partitioning. If type_of_metric is USER_SPECIFIED, then the user provides a 
metric function umf, which is used to calculate the quality of the partitioning. If 
type_of_metric is SYSTEM_DEFINED, the system-defined metric is used. 
 
The output parameter metric gives the quality of the partitioning, which is the deviation of the 
partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the output 
parameter metric is set to NULL, then the calculation of metric is ignored. 
 
If w is not NULL and the set is well ordered, then the user needs to specify if the implementations 
of this operation may reorder the processors before partitioning (Boolean parameter 
processor_reordering is used to do it). One typical reordering is to order the processors 
in the decreasing order of their speeds.  
 
Return values: 0 on success and -1 in case of failure. 
 
Get_set_processor 

For an ordered set, returns the processor owning the set element at index i 
 
Synopsis: 
 
int Get_set_processor ( 
    int i, int n, int p, int processor_reordering,  
    const int *np) 

 

Return values: -1 in case of failure. 
 
Get_my_partition 

For a set, returns the number of elements allocated to processor i 
 
Synopsis: 
 
int Get_my_partition ( 
    int i, int p, const double *speeds, int n) 

 

Return values: -1 in case of failure. 
 
4.2   Dense Matrices 
 
Partition_matrix_2d 

Partition a matrix amongst processors arranged in a 2D grid 
 
Synopsis: 
 

int Partition_matrix_2d ( 
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   int p, int q,  
     int pn, const double *speeds, const int *psizes,  
     const int *mlimits, int m, int n,  
   int type_of_distribution, int *w, int *h, int *trow,  
   int *tcol, int *ci, int *cj ) 

 

Parameters: 
 
The parameter p is the number of processors along the row of the processor grid. The parameter 
q is the number of processors along the column of the processor grid.    
 
Parameters speeds and psizes specify speeds of processors for pn different problem sizes. 
These parameters are 1D arrays of size p×q×pn logically representing arrays of shape 
[p][q][pn]. The speed of the (i, j)-th processor for k-th problem size is given by the 
[i][j][k]-th element of speeds with the problem size itself given by the [i][j][k]-th 
element of psizes. Parameter mlimits gives the maximum number of elements that each 
processor can hold. 
 
The parameters m and n are the sizes of the generalized block along the row and the column. 
 
The input parameter type_of_distribution specifies if the distribution is CARTESIAN, 
ROW-BASED, and COLUMN-BASED. 
 
Output parameter w gives the widths of the rectangles of the generalized block assigned to 
different processors. This parameter is an array of size p×q. 
 
Output parameter h gives the heights of rectangles of the generalized block assigned to different 
processors. This parameter is an array of size p×q×p×q logically representing array of shape 
[p][q][p][q]. 
 
Output parameter trow gives the top leftmost point of the rectangles of the generalized block 
assigned to different processors from the first row of the generalized block. This parameter is an 
array of size p×q. 
 
Output parameter tcol gives the top leftmost point of the rectangles of the generalized block 
assigned to different processors from the first column of the generalized block. This parameter is 
an array of size p×q. 
 
Output parameters ci, and cj are each an array of size m×n. The coordinates of the processor 
in its processor grid to which the matrix element at row i and column j of the generalized block 
is assigned is given by ci[i×n+j], and cj[i×n+j] respectively. If the application 
programmer sets these parameters to NULL, then these parameters are ignored. 
 
Description: This routine partitions a matrix into p disjoint partitions amongst processors 
arranged in a 2D grid. 
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Return values: 0 on success and -1 in case of failure. 
 
Partition_matrix_1d_dp 

Partition a matrix amongst processors arranged in a linear array 
 
Synopsis: 
 
int Partition_matrix_1d_dp( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, DP_function dpf,  
  int type_of_distribution,  
  int *w, int *h, int *trow, int *tcol, int *c) 

 
Parameters: 
 
The parameter p is the number of number of disjoint rectangles the matrix is partitioned into. 
Parameters speeds and psizes specify speeds of processors for pn different problem sizes. 
These parameters are 1D arrays of size p×pn logically representing 2D arrays of shape 
[p][pn]. The speed of the i-th processor for j-th problem size is given by the [i][j]-th 
element of speeds with the problem size itself given by the [i][j]-th element of psizes. 
Parameter mlimits gives the maximum number of elements that each processor can hold. 
 
The parameters m and n are the sizes of the generalized block along the row and the column. 
 
The input parameter type_of_distribution specifies if the distribution is ROW-BASED 
or COLUMN-BASED. 
 
Output parameter w gives the widths of the rectangles of the generalized block assigned to 
different processors. This parameter is an array of size p. Output parameter h gives the heights 
of rectangles of the generalized block assigned to different processors. This parameter is an array 
of size p×p. Output parameter trow gives the top leftmost point of the rectangles of the 
generalized block assigned to different processors from the first row of the generalized block. 
This parameter is an array of size p. Output parameter tcol gives the top leftmost point of the 
rectangles of the generalized block assigned to different processors from the first column of the 
generalized block. This parameter is an array of size p. 
 
Output parameter c is an array of size m×n. The coordinates of the processor in its processor 
array to which the matrix element at row i and column j of the generalized block is assigned is 
given by c[i×n+j]. If the user sets these parameters to NULL, then these parameters are 
ignored. 
 
Description: This routine partitions a matrix into p disjoint partitions amongst processors 
arranged in a linear array. 
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Return values: 0 on success and -1 in case of failure. 
 
Partition_matrix_1d_iterative 

Partition a matrix amongst processors arranged in a linear array 
 
Synopsis: 
 
int Partition_matrix_1d_iterative( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, Iterative_function cf,  
  int *w, int *h, int *trow, int *tcol, int *c) 

 
Parameters: 
 
Application programmers provide a cost function cf that tests the optimality of a partition from 
a finite set of partitions. The initial partition in this finite set of partitions is obtained using a 
problem-specific strategy. The cost function cf is called iteratively for each of the partitions in 
the subset of partitions. The return value of this function gives an optimality value. At each step 
of the iteration, the optimality value is compared to the lower bound of the optimal solution to 
the optimization problem. Application programmers specify a function lb, which is used to 
calculate the lower bound of their optimization problem. The iteration stops when the function 
returns an optimality value less than or equal to the lower bound or a negative return value 
indicating that the partitioning cannot be improved and that the current partition is optimal. 
 
Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear 
array. 
 

Return values: 0 on success and -1 in case of failure. 
 
Partition_matrix_1d_refining 

Partition a matrix amongst processors arranged in a linear array 
 
Synopsis: 
 
int Partition_matrix_1d_refining( 
  int p, int pn, const double *speeds,  
  const int *psizes, const int *mlimits, int m, int n,  
  Get_lower_bound lb, Refining_function cf,  
  int *w, int *h, int *trow, int *tcol, int *c) 

 
Parameters: 
 
Application programmers provide a refinement function rf that refines an old partition giving a 
new better partition. A negative return value of this function suggests that the old partition 
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cannot be refined further. This function is iteratively called. The partition for the first call of this 
refining function is obtained using a problem-specific strategy. Application programmers specify 
a function lb, which is used to calculate the lower bound of their optimization problem. The 
iteration stops when the refinement function rf returns an optimality value less than or equal to 
the lower bound indicating that the current partition is optimal. 
 
Description: Partitions a matrix into p disjoint partitions amongst processors arranged in a linear 
array. 
 

Return values: 0 on success and -1 in case of failure. 
 
Get_matrix_processor 

Returns the coordinates (i,j) of the processor owning the matrix element at row r and column c 
 
Synopsis: 
 
typedef struct {int i; int j;} Processor; 
int Get_matrix_processor( 
  int r, int c, int p, int q, int *w, int *h, int *trow,  
  int *tcol, int type_of_distribution, Processor *root) 

 
Return values: 0 on success and -1 in case of failure. 
 
Get_my_width 

Returns the width of the rectangle owned by the processor with coordinates (i,j)  
 
Synopsis: 
 
int Get_my_width( 
  int i, int j, int p, int q, const double *speeds,  
  int type_of_distribution, int m, int n) 

 
Description: Currently only applicable to two-dimensional processor arrangements. 
 
Return values: -1 in case of failure. 
 
Get_my_height 

Returns the height of the rectangle owned by the processor with coordinates (i,j) 
 
Synopsis: 
 
int Get_my_height( 
  int i, int j, int p, int q, const double *speeds,  
  int type_of_distribution, int m, int n) 

 
Description: Currently only applicable to two-dimensional processor arrangements. 
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Return values: -1 in case of failure. 
 
Get_diagonal 

Obtain the number of elements owned by the processor with coordinates (i,j) on the diagonal of 
the matrix 
 
Synopsis: 
 
int Get_diagonal( 
  int i, int j, int p, int q, int *w, int *h, int *trow,  
  int *tcol) 

 
Description: Currently only applicable to dense square matrices and two-dimensional processor 
arrangements. 
 
Return values: -1 in case of failure. 
 
Get_my_elements 

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or 
lower half of the matrix including the diagonal elements  
 
Synopsis: 
 
int Get_my_elements( 
  int n, int g, int i, int j, int p, int q, int *w, int *h,  
  int *trow, int *tcol, int type_of_distribution,  
  char upper_or_lower) 

 
Description: Currently only applicable to dense square matrices and two-dimensional processor 
arrangements. 
 
Return values: -1 in case of failure. 
 
Get_my_kk_elements 

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or 
lower half of the matrix starting from (k,k) including the diagonal elements 
 
Synopsis: 
 
int Get_my_kk_elements( 
  int n, int g, int k, int i, int j, int p, int q, int *w,  
  int *h, int *trow, int *tcol, int type_of_distribution, 
  char upper_or_lower) 
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Description: Currently only applicable to dense square matrices and two-dimensional processor 
arrangements. 
 
Return values: -1 in case of failure. 
 
4.3   Graphs 
 
Partition_graph 

Partition a graph 
 
Synopsis: 
 

int Partition_graph ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, int n, int m, 
    const int *vwgt, const int *xadj,  
    const int *adjacency, const int *adjwgt,  
    int nopts, const int *options, int *vp, int *edgecut) 
 
Parameters: 
 
Parameter p is the number of partitions of the graph.  Parameters speeds and psizes specify 
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size 
p×pn logically representing 2D arrays of shape [p][pn]. The speed of the i-th processor for 
j-th problem size is given by the [i][j]-th element of speeds with the problem size itself 
given by the [i][j]-th element of psizes. Parameter mlimits gives the maximum number 
of elements that each processor can hold. 
 
The parameters n and m are the number of vertices and edges in the graph. The parameters vwgt 
and adjwgt are the weights of vertices and edges of the graph. In the case in which the graph is 
unweighted (i.e., all vertices and/or edges have the same weight), then either or both of the arrays 
vwgt and adjwgt can be set to NULL. The parameters vwgt is of size n. The parameter 
adjwgt is of size 2m because every edge is listed twice (i.e., as (v, u) and (u, v)). 
 
The parameters xadj and adjacency specify the adjacency structure of the graph 
represented by the compressed storage format (CSR). The adjacency structure of the graph is 
stored as follows. The adjacency list of vertex i is stored in adjacency starting at index 
xadj[i] and ending at but not including xadj[i+1]. The adjacency lists for each vertex are 
stored consecutively in the array adjacency. 
 
The parameter options is an array of size nopts containing the options for the various phases 
of the partitioning algorithms employed in partitioning the graph. These options allow 
integration of third party implementations, which provide their own partitioning schemes. 
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The parameter vp is an array of size n containing the partitions to which the vertices are 
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The 
parameter edgecut contains the number of edges that are cut by the partitioning. 
 
Description: This routine partitions a graph into p disjoint partitions. 
 

Return values: 0 on success and -1 in case of failure. 
 
Partition_bipartite_graph 

Partition a bipartite graph 
 
Synopsis: 
 
int Partition_bipartite_graph ( 

     int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits,  
    int n, int m, const int *vtype, const int *vwgt, 
    const int *xadj, const int *adjacency,  
    const int *adjwgt, int type_of_partitioning,  
    int nopts, const int *options, int *vp, int *edgecut) 

 
Parameters: 
 
The meaning of the parameters p, pn, speeds, psizes, mlimits, n, m, vwgt, adjwgt, 
xadj, adjacency is identical to meaning of the corresponding parameters of 
Partition_graph. 
 
The parameter vtype specifies the type of vertex. The only values allowed are 0 and 1 
representing the two disjoint subsets the bipartite graph is composed of.  
 
The parameter type_of_partitioning specifies whether the partitioning of subsets is done 
separately or not. It can take only one of the values PARTITION_SUBSET and 
PARTITION_OTHER.  
 
The parameter options is an array of size nopts containing the options for the various phases 
of the partitioning algorithms employed in partitioning the graph. These options allow 
integration of third party implementations, which provide their own partitioning schemes. 
 
The parameter vp is an array of size of size n containing the partitions to which the vertices are 
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The 
parameter edgecut contains the number of edges that are cut by the partitioning. 
 
Description: This routine partitions a bipartite graph into p disjoint partitions. 
 

Return values: 0 on success and -1 in case of failure. 
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Partition_hypergraph 

Partition a hypergraph 
 
Synopsis: 
 
int Partition_hypergraph ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits,  
    int nv, int nedges, const int *vwgt, const int *hptr,  
    const int *hind, const int *hwgt, int *vp,  
    int nopts, const int *options, int *edgecut) 

 
Parameters: 
 
The meaning of the parameters p, pn, speeds, psizes, and mlimits is identical to meaning 
of the corresponding parameters of Partition_graph. 
 
The parameters nv and nedges are the number of vertices and number of hyperedges in 

the hypergraph. 
 
The parameters vwgt is an array of size nv that stores the weights of the vertices and 
hwgt is an array of size nedges that stores the weights of hyperedges of the graph. If 
the vertices in the hypergraph are unweighted, then vwgt can be NULL. If the 
hyperedges in the hypergraph are unweighted, then hwgt can be NULL. 

 
The parameter hptr is an array of size nedges+1 and is an index into hind that stores the 
actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in 
consecutive locations in hind. Specifically, i-th hyperedge is stored starting at location 
hind[hptr[i]] up to but not including hind[hptr[i+1]].  
 
The parameter options is an array of size nopts containing the options for the various phases 
of the partitioning algorithms employed in partitioning the graph. These options allow 
integration of third party implementations, which provide their own partitioning schemes. 
 
The parameter vp is an array of size of size n containing the partitions to which the vertices are 
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The 
parameter edgecut contains the number of hyperedges that are cut by the partitioning. 
 
Description: This routine partitions a hypergraph into p disjoint partitions. 
 

Return values: 0 on success and -1 in case of failure. 
 
4.4   Trees 
 



HMPI Programmers’ Reference and Installation Manual                     

448 

Partition_tree 

Partition a tree 
 
Synopsis: 
 
int Partition_tree ( 
    int p, int pn, const double *speeds,  
    const int *psizes, const int *mlimits, 
    int n, int nedges, const int *nwgt, const int *xadj,  
    const int *adjacency, const int *adjwgt,  
    int *vp, int *edgecut) 

 
Parameters: 
 
The meaning of the parameters p, pn, speeds, psizes, and mlimits is identical to meaning 
of the corresponding parameters of Partition_graph. 
 
The parameters n and nedges are the number of vertices and edges in the tree. The 

parameters nwgt is an array of size n that stores the weights of the vertices and adjwgt 
is an array of size nedges that stores the weights of edges of the tree. If the vertices in 
the tree are unweighted, then nwgt can be NULL. If the edges in the tree are unweighted, 
then adjwgt can be NULL. 

 
The parameters xadj and adjacency specify the adjacency structure of the tree. 
 
The parameter vp is an array of size of size n containing the partitions to which the vertices are 
assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The 
parameter edgecut contains the number of edges that are cut by the partitioning. 
 
Description: This routine partitions a tree into p disjoint subtrees. 
 

Return values: 0 on success and -1 in case of failure. 
 
5 HMPI Command-line User’s Interface 
 
5.1   HMPI Environment 
 
Currently, the HMPI programming environment includes a compiler, run-time support system 
(RTS), a library, and a command-line user interface. 
 
The compiler compiles the description of this performance model to generate a set of functions. 
The functions make up an algorithm-specific part of the HMPI runtime system. 
 
The library consists of extensions to MPI and Heterogeneous Data Partitioning Interface (HDPI). 
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HMPI command-line user’s interface consists of a number of utilities supporting parallel 
machines manipulation actions and building of HMPI applications. 
 
5.2   Virtual Parallel Machine 
 
Please refer to the mpC command-line user’s interface guide on how to write a VPM description 
file and the VPM manipulation utilities: 

•  “mpccreate” to create a VPM; 
•  “mpcopen” to create a VPM; 
•  “mpcclose” to close a VPM; 
•  “mpcdel” to remove a VPM; 

 

 
Figure A.1: Specification of a simple performance model in the HMPI’s performance definition language. The 
performance model definition is in the file “grid.mpc”. 

 
5.3   Building and Running HMPI Application 
 
Please refer to the mpC command-line user’s interface guide on utilities that are used to run an 
mpC/HMPI application on a VPM: 

•  “hmpicc” to compile a performance model definition file; 
•  “hmpibcast” to make available all the source files to build a executable; 
•  “hmpiload” to create a executable; 
•  “hmpirun” to execute the target application; 

 
A sample performance model and the HMPI application using the performance model are shown 
in Figures A.1 and A.2: 
 
Outlined below are steps to build and run a HMPI application. 
 
1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the 
machines being used in your HMPI application. Describe your VPM in a file in the 
$MPCLOCAL/topo directory. VPM is opened after successful execution of the command 
mpccreate. Consider for example: 
 
shell$ cat $MPCLOCAL/topo/vpm_Solmach123_Linuxmach456.vpm 
 
# 
# Machines and the number of processes to run on each  
# machine 
# Number in square brackets indicate the number of  
# processors 

   nettype grid(int p, int q) { 
      coord I=p, J=q; 
   }; 



HMPI Programmers’ Reference and Installation Manual                     

450 

 
Figure A.2: A sample HMPI program. The HMPI program is written in the file “Test_group_create.c”. 

 
solmach1 2 [2] 
solmach2 2 [2] 
solmach3 2 [2] 
linuxmach4 4 [4] 

   #include <math.h> 
   #include <stdio.h> 
   #include <sys/time.h> 
   #include “grid.c” 
 
   int main() { 
       int param_count, model_params[2]; 
       struct timeval start, end; 
       gettimeofday(&start, NULL); 
 
       HMPI_Group gid; 
       HMPI_Init(argc, argv); 
       if (HMPI_Is_host()) { 
          int gsize, p, q; 
          param_count = 2; 
          gsize = HMPI_Group_size(HMPI_COMM_WORLD_GROUP); 
          p = q = sqrt(gsize); 
          if ((p == 0) && (q == 0)) 
             p = q = 1; 
          model_params[0] = p; 
          model_params[1] = q; 
 
          printf("Total number of processes available for computation  
                 is %d\n", gsize); 
          printf("Creating a grid (%d, %d) of processes\n", p, q); 
       } 
       if (HMPI_Is_host()) 
          HMPI_Group_create (&gid, &MPC_NetType_grid,  
                             model_params, param_count)                   
       if (HMPI_Is_free()) 
          HMPI_Group_create (&gid, &MPC_NetType_grid,  
                             NULL, 0)                   
       // Distribute computations using the optimal speeds of processes  
       if (HMPI_Is_member(&gid)){ 
         // computations and communications are performed here 
       } 
       if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid); 
       gettimeofday(&end, NULL); 
       if (HMPI_Is_host()) { 
          double tstart = start.tv_sec + (start.tv_usec/pow(10, 6)); 
          double tend = end.tv_sec + (end.tv_usec/pow(10, 6)); 
          printf(“Time taken for group creation(sec)=%f\n”,  
                 tend-tstart);   
       } 
       HMPI_Finalize(0); 
   } 
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linuxmach5 2 [2] 
linuxmach6 1 [1] 
 
shell$ mpccreate vpm_Solmach123_Linuxmach456 
 
2). Compile the performance model file. 
 
shell$ hmpicc grid.mpc 
 
This file is translated into a C file “grid.c”. 
 
3). Broadcast the files to all the machines in the virtual parallel machine. 
 
shell$ hmpibcast Test_group_create.c grid.c 
 
4). Create the executable. 
 
shell$ hmpiload –o Test_group_create Test_group_create.c  
 
5). Run the target program. 
 
shell$ hmpirun Test_group_create 
Total number of processes available for computation is 9 
Creating a grid (3, 3) of processes 
Time taken for group creation(sec)=0.262353 
 
6 HMPI Installation Guide for UNIX 
 
This section provides information for programmers and/or system administrators who want to 
install HMPI for UNIX. 
 
6.1   System Requirements 
 
The following table describes system requirements for HMPI for UNIX. 
 

Component Requirement 
Operating System Linux, Solaris, FreeBSD 

 
HMPI is successfully tested on the 
following operating systems: 
 
Linux 2.6.5-1.358smp (gcc version 3.3.3 
20040412 (Red Hat Linux 3.3.3-7)) 
 
Linux 2.6.8-1.521smp (gcc version 3.3.3 
20040412 (Red Hat Linux 3.3.3-7)) 
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Linux 2.6.5-1.358 (gcc version 3.3.3 
20040412 (Red Hat Linux 3.3.3-7)) 
 
Linux 2.4.18-3 ((gcc version 2.96 
20000731 (Red Hat Linux 7.3 2.96-110)) 
 
Sun Solaris 5.9 (gcc version 3.4.1) 
 
FreeBSD 5.2.1-RELEASE (gcc version 
3.3.3 [FreeBSD] 20031106) 

C compiler Any ANSI C compiler 
MPI LAM MPI 6.3.2 or higher 

MPICH MPI 1.2.0 or higher with chp4 
device 

mpC Version 3.0.0 or higher 
 
LAM MPI can be obtained from http://www.lam-mpi.org/ 
MPICH MPI can be obtained from http://www-unix.mcs.anl.gov/mpi/mpich/ 
mpC package can be obtained from http://www.ispras.ru/~mpc/ 
 
6.2   Contents of HMPI for UNIX Distribution 
 
HMPI for Unix distribution contains the following: 
 

Directory Contents 
README Copyright information, Contact 

information 
INSTALL Installation instructions 
Makefile Installation and test of the compiler and the 

environment 
docs HMPI manual for programmers 
man Manual pages for HMPI API 
src Source code for HMPI 
include Header files 
tests Tests for testing HMPI library 
Third_Party_Software Third party software for graphs 
tools HMPI tools to build executables, clean up 

HMPI repositories 
 
6.3   Before Installation 
 
6.3.1 Installing MPI 
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You should have MPI installed on your system. Please make sure that mpicc and mpirun 
scripts are in your PATH environment variable. 
 
… 
shell$ export MPIDIR=<...MPI install directory...> 
shell$ export PATH=$MPIDIR/bin:$PATH 
… 
 
 
6.3.2 Installing mpC 
 
You should have mpC installed on your system. Please refer to the mpC installation guide on the 
variables to export in the shell startup files. 
 
… 
shell$ export MPCHOME=<...mpC install directory...> 
shell$ export PATH=$MPCHOME/bin:$PATH 
… 
 
6.3.3 Making rsh/ssh working 
 
If you using rsh, please make sure that you reach every machine from every other machine with 
rsh command by executing rsh –n true hostname. This command should not hang up. 
 
If you are using ssh, please follow the instructions below: 
 
Normally, when you use ssh to connect to a remote host, it will prompt you for your password. 
However, in order for MPI commands to work properly, you need to be able to execute jobs on 
remote nodes without typing in a password. In order to do this, you will need to set up RSA (ssh 
1.x and 2.x) or DSA (ssh 2.x) authentication.  
 
This text will briefly show you the steps involved in doing this, but the ssh documentation is 
authoritative on these matters should be consulted for more information. The first thing that you 
need to do is generate an DSA key pair to use with ssh-keygen:  
 
shell$ ssh-keygen -t dsa 
 
Accept the default value for the file in which to store the key ($HOME/.ssh/id_dsa) and 
enter a passphrase for your keypair. You may choose to not enter a passphrase and therefore 
obviate the need for using the ssh-agent. However, this weakens the authentication that is 
possible, because your secret key is [potentially] vulnerable to compromise because it is 
unencrypted. See the ssh documentation.  
 
Next, copy the $HOME/.ssh/id_dsa.pub file generated by ssh-keygen to 
$HOME/.ssh/authorized_keys:  
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shell$ cd $HOME/.ssh 
shell$ cp id_dsa.pub authorized_keys 
 
In order for DSA authentication to work, you need to have the $HOME/.ssh directory in your 
home directory on all the machines you are running MPI on. If your home directory is on a 
common filesystem, this is already taken care of. If not, you will need to copy the $HOME/.ssh 
directory to your home directory on all MPI nodes (be sure to do this in a secure manner -- 
perhaps using the scp command), particularly if your secret key is not encrypted).  
 
ssh is very particular about file permissions. Ensure that your home directory on all your 
machines is set to mode 755, your $HOME/.ssh directory is also set to mode 755, and that the 
following files inside $HOME/.ssh have the following permissions:  
 
-rw-r--r--  authorized_keys 
-rw-------  id_dsa 
-rw-r--r--  id_dsa.pub 
-rw-r--r--  known_hosts 
 
You are now set up to use DSA authentication. However, when you ssh to a remote host, you 
will still be asked for your DSA passphrase (as opposed to your normal password). This is 
where the ssh-agent program comes in. It allows you to type in your DSA passphrase once, 
and then have all successive invocations of ssh automatically authenticate you against the 
remote host. To start up the ssh-agent, type:  
 
shell$ eval `ssh-agent` 
 
You will probably want to start the ssh-agent before you start X windows, so that all your 
windows will inherit the environment variables set by this command. Note that some sites invoke 
ssh-agent for each user upon login automatically; be sure to check and see if there is an 
ssh-agent running for you already. Once the ssh-agent is running, you can tell it your 
passphrase by running the ssh-add command:  
 
shell$ ssh-add $HOME/.ssh/id_dsa 
 
At this point, if you ssh to a remote host that has the same $HOME/.ssh directory as your 
local one, you should not be prompted for a password. If you are, a common problem is that the 
permissions in your $HOME/.ssh directory are not as they should be.  
 
Note that this text has covered the ssh commands in very little detail. Please consult the ssh 
documentation for more information. 
 
6.4   Beginning Installation 
 
Unpack the HMPI distribution, which comes as a tar in the form hmpi-x.y.tar.gz. 
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To uncompress the file tree use: 
 
shell$ gzip -d hmpi-x.y.z.tar.gz 
shell$ tar -xvf hmpi-x.y.z.tar 
 
where x.y.z stands for the installed version of the HMPI library (say 1.2.1, 2.0.0, or 3.1.1). 
 
The directory 'hmpi-x.y.z' will be created; execute 
    
shell$ cd hmpi-x.y.z 
 
The Makefile at the global level (hmpi-x.y.z/Makefile) controls the compilation and installation 
of the HMPI software. It activates subdirectory specific Makefiles. 
 
Export the variable HMPI_HOME to point to the installation directory (directory where binaries 
of HMPI will be installed) 
 
shell$ export HMPI_HOME=<...install directory...> 
 
To compile all the programs execute: 
 
shell$ ./install_hmpi 
 
To clean up: 
 
shell$ make clean 
 
to remove object files and executables from source directories. 
 
6.5   Finishing Installation 
 
On successful installation of HMPI, the following message is displayed: 
 
########################################################### 
   Installation of HMPI SUCCESSFUL 
   export the variable 
export HMPI_HOME=/home/cs/manredd/mpC3.x.x/mpcc-
3.x.x/apps/HMPI/dev/HMPI_Linux_2.6.8-1.521smp 
   Set the value below in PATH environment variable 
/home/cs/manredd/mpC3.x.x/mpcc-
3.x.x/apps/HMPI/dev/HMPI_Linux_2.6.8-1.521smp/bin 
########################################################### 
 
You should update your shell startup files with the following variables: 
 
… 
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shell$ export HMPI_HOME=<...install directory...> 
shell$ export PATH=$HMPI_HOME/bin:$PATH 
… 
 
6.6     Contents of HMPI Installation 
 
HMPI installation contains the following: 
 

Directory Contents 
bin Binaries hmpicc, hmpibcast, hmpiload, 

hmpirun,… 
docs This manual 
include Header files 
man Manual pages for HMPI API 
lib Archived HMPI library libhmpi.a 
tests Tests for testing HMPI library 
 
 
6.7   Testing your Installation 
 
After you have successfully installed HMPI, to test the installation, you can test each individual 
test in the directory “$HMPI_HOME/tests”. Diagnostics are produced showing success or 
failure of each individual test. Before you test, a virtual parallel machine must be opened. 


