Managing the Computing Space in the mpC Compiler

Dmitry Arapov

Alexey Kalinov

Alexey Lastovetsky

Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., 109004, Moscow, Russia
lastov@ivann.delta.msk.su

Abstract

The mpC parallel programming language is an ANSI C
superset based on the notion of network comprising pro-
cessor nodes of different types connected with links of dif-
ferent lengths. It allows the user to describe a network
topology, create and discard networks, distribute data and
computations - over networks. The paper- describes the
implementation of managing networks in the mpC pro-
gramming environment.

1 Introduction

The mpC language and its programming environment
was initially developed to support programming for mas-
sively parallel computers, mainly for high-performance
distributed memory machines (DMMs). In brief, our moti-
vation for the creation of mpC was as follows.

Programming for DMMs is based mostly on message-
passing function extensions of C or Fortran, such as PVM
[1] and MPI {2]. However, it is tedious and error-prone to
program in a message-passing language, because of its
low level. High-level programming languages, that have
been developed for DMMs, can be divided into two
classes depending on the parallel programming paradigm,
task or data parallelism, underlying them. Task parallel [3-
4] and data parallel [5-11] programming languages allow
the user to implement different classes of parallel algo-
rithms. Therefore, we have developed mpC (as an ANSIC
superset) supporting both task and data parallelism. It is
based on the notion of netrwork comprising processor
nodes of different types and performances connected with
links of different bandwidths. It allows the user to describe
network topology, create and discard networks, and dis-
tribute data and computations over the networks.

When developing the mpC programming environment
(PE), we used a network of workstations running MPI as'a
target parallel DMM and found, that the principles, on
which mpC based, make it and its PE convenient tools to

1089-795X/96 $5.00 © 1996 IEEE
Proceedings of PACT *96

150

develop efficient and portable parallel programs for heter-
ogenous networks of workstations.

The point is that all PEs for DMMs which we know of
have one common weakness. Namely, when developing a
parallel program, either the user has no facilities to
describe the virtual parallel system executing the program,
or such facilities are too poor to specify an efficient distri-
bution of computations and communications over the tar-
get heterogenous DMM. Even MPT’s topological facilities
have turned out insufficient to solve the problem. So, to
ensure the efficient execution of the program on a particu-
lar DMM, the user must use facilities which are external to
the program, such as boot schemes and application
schemes [12]. If the user is familiar with both the topology
of target DMM and the topology of the application, then,
by using such configurational files, he can map the pro-
cesses which constitute the program onto processors
which make up DMM, to provide the most efficient execu-
tion of the program. But if the application topology is
defined in run time (that is, if it depends on input data), it
won’t be successful.

mpC allows the user to specify an application topology,
then its programming environment uses the information in
run time to map processes onto processors of target DMM
resulting in the efficient execution of the application.
DMM’s topology is detected automatically dependent on
execution of a special program.

This paper outlines mpC and presents the implementa-
tion of network management. Details of the language are
presented elsewhere [13-14].

2 mpC in brief

We will introduce mpC briefly, using a sample program
which computes the center of gravity for a system of bod-
ies. Let our system consist of large groups of bodies. Each
body is characterized by its position and mass. Our paral-
lel program will use a number of virtual processors, each
of which will compute the center of gravity of a single
group. The number of groups and the number of bodies in

each group are defined in run time. Our mpC program is:

/*¥1 */ .../*Includes and defines*/

/*2 */ typedef double Coords[3];

/*3 */ typedef struct{Coords pos; double m;}
/x4 */ Body;

/*%5 */ int [host]l, [host]ln[MAXL];

/*6 */ Body (*[host]ul[MAXL]) [MAXN];

/*7 */ nettype Star(l, n[l]) {

/*8 */ coord I=1;

/*9 */ node { I>=0: fast*nl[I] scalar;};
/*10%/ link { I>0: [I]<->[0]; };
/*L1*/ parent [0];

/*12*/ };

/*13*/ void [*]main()

/*14*/ { Body [host]lgs[MAXL];

/*15%/ repl dl, dn[MAXL], di;

/*16%/ .../*Initializing 1, n and u */
/*17%/ dl=1;

/*18%/ dn(l=nl];

/*19%/ { net Star(dl, dn) w;

/*20%*/ int [wlmyN;

/*21%/ Body [w]lg[MAXN], [w]ga;
/*22%/ repl [w]li, [wlj;

/*23%/ myN = dn[I coordof jl:

/*24%/ for(i=0; i<dl; i++)

/*25*/ [w:I==i]g[] = (*ul[il)[1;
/*26%/ for(j=0; Jj<myN; j++)

/*27%/ gA.m+=g[j].m;

/*18%/ (gA.pos) [1=0.0;

/*29%/ for(j=0; Jj<myN; J++)

/*30%/ (gA.pos) [1+=

/*31*/ (g[jl.m/gA.m)*(g[j].pos)[]:
/*32%/ for(i=0; i<dl; i++)

/*33%/ gs[il=[w:I==1i]1gA;

/*34%/ }

/*35%/ .../*output of results*/

/*36%/ }

In mpC, the notion of computing space is defined as a set
of typed virtual processors connected by links. Most com-
mon processors are of the scalar type. In addition, a
processor is characterized by its relative performance. A
directed link connecting two virtual processors is a one-
way channel for transferring data from source processor to
the processor of destination.

The basic notion of mpC is network object or simply net-
work. Network consists of processors connected by links.
Network is a region of the computing space which can be
used to compute expressions and execute statements. Allo-
cating network objects in the computing space and discard-
ing them is performed in similar fashion as allocating data
objects in storage and discarding them. Conceptually, the
creation of new network is initiated by a processor of an
existing network. This processor is called a parent of the
created network. The parent belongs to the created net-
work. The only processor defined from the beginning of
program execution till program termination is the pre-

151

defined host-processor of the scalar type.

Lines 5-6 define variable 1 and arrays n and u all
belonging to the host-processor. Variable 1 will hold the
number of groups, n[1] will hold the number of bodies in
the i-th group, and u[i] will point to an array holding
positions and masses of bodies in the i-th group. Line 14
defines array gs belonging to the host-processor, where
gs[il will hold the center of gravity and the total mass
of the i-th group.

Every network object declared in an mpC program has a
type. The type specifies the number, types and relative per-
formances of processors, links and their lengths, as well as
separates the parent.

Lines 7-12 declares the parametrized family of network
types named Star having scalar formal parameter 1 and
vector formal parameter n, the latter consisting of 1 ele-
ments. Line § declares the coordinate system to which pro-
cessors are related. It introduces coordinate variable I
ranging from O to 1-1.

Line 9 declares processor nodes saying that for all T<1 if
I>=0then fast scalar processor with relative performance
n[I] is related to coordinate [I]. The value of n[I]
shall be positive integer. It is meant that in the framework
of this network-type declaration the greater value of n[I]
the more performance it specifies.

Line 10 declares links saying that for all I<1if I>0
then there exists an undirected link of the normal length
between processors with coordinates [I] and [0]. In
general, the shorter the link, the wider bandwidth it speci-
fies. If no link is specified from one processor to another,
they are reputed to be connected with a very long link.

Line 11 says that the parent processor has coordinate [0].

Execution of the program begins from a call to function
main on the entire computing space. Line 15 declares
variables d1 and di and array dn, all distributed over the
entire computing space. By definition, a data object dis-
tributed over a region of the computing space comprises a
set of components of the same type so that every processor
of the region holds just one component. In addition, line 15
declares d1, di and dn to be replicated data objects. By
definition, a distributed object is replicated if all its com-
ponents are equal to each other.

Line 17 broadcasts the value of 1 to all components of
distributed variable dl. Line 18 contains unusual unary
postfix operator {]. The point is that mpC is a superset of
a vector extension of ANSI C named the C[] language
[15], where the notion of vector is defined as an ordered
sequence of values of any one type. Unlike an array, a vec-
tor is not a data object but just a new kind of value. In par-
ticular, the value of an array is a vector. Operator []
supports access to arrays as a whole. It has operand of the
type “array of type” and blocks (forbids) its conversion to
pointer. So, expression n [] designates array n as a whole,

and expression dn[]=n[] broadcasts the value of array
n to all components of distributed array dn.

Line 19 defines automatic network w. Its type is defined
completely only in run time, Lines 20-21 defines variables
myN and gA as well as array g, all distributed over w. Line
22 defines variables i and j, both replicated over w.

The statement in line 23 is executed on network w. It is
an example of a so-called asynchronous statement, that is,
a distributed statement, the execution of which is divided
into a set of independent undistributed statements each of
which is executed on the corresponding processor using
the corresponding data components. Most operators of
mpC are asynchronous in the sense that either both oper-
ands and the result belong to the same. processor, or they
both are distributed over the same region of the computing
space, and the distributed operator is divided into a set of
independent undistributed operators each of which is per-
formed on corresponding components of the operands.
The result of binary operator coordof is an integer value
distributed over w each component of which is equal to the
value of coordinate I of the processor to which the com-
ponent belongs.

The statement in lines 24-25 is executed on w and scat-
ters the arrays which contains information about groups of
bodies from the host-processor to all processors of w. As a
result, each component of the distributed array g will con-
tain the information about the corresponding group.

The statcments in lines 26-31 are asynchronous and runs
on network w. For each group of bodies they compute the
total mass and the center of gravity in parallel.

The statement in line 32-33 gathers this information
from all processors of w to the host-processor.

Please, note, that the network w, which executes the
computations and communications, is defined in such a
way, that the more powerful the virtual processor, the
larger the group of bodies it computes.

3 The mpC compiler architecture

The main function of the compiler is to translate an mpC
program into a set of programs, each of which runs on its

own (virtual) processor, and which in total implement the

computations specified by the initial mpC-program which
interacts by means of message passing. The target lan-
guage is optional: either C[] or C (depending on the com-
piler mode) used with the library of the run-time support
system. The compilation unit is an mpC file.

Currently, the compiler consists of a run-time support
system (RTSS), a front-end, and a back-end.

RTSS provides the operations on networks and subnet-
works as well as message passing between virtual proces-
sors. It 'has a precisely specified interface and covers a

152

particular - communicating package (currently, MPI). It
ensures platform-independence of the rest of the compiler
components.

Front-end translates source code into internal representa-
tion (a kind of attributed tree) and performs static semantic
checking. In addition, for every network-type declaration
it generates an internal representation of the functions,
used for computation of topological information.

Back-end uses the internal representation as input and
builds the relevant C[] or C code with necessary calls to
RTSS functions.

4 Target program model

Our compiler uses the SPMD model of the target code,
in which all the processes which constitute a target
message-passing program, run the identical code.

All the processes which constitute the target program are
divided into 2 groups - the special process, named dis-
patcher, playing the role of the computing space manager,
and general processes, named nodes, playing the role of
processor nodes of the computing space. The special node,
named host, is separated. The dispatcher works as a server
accepting requests from nodes. The dispatcher does not
belong to the computing space.

The running of the target program begins with a call to
the initialization function MPC_Init executed by all
processes constituting the program (including the
dispatcher). The initialization includes:

- initializing the message-passing platform on which
RTSS is based; ‘

- separating the dispatcher and determining the host;

- local initialization of nodes;

- initialization of the dispatcher.

The dispatcher is the only process that does not leave
the MPC_Init function. Tt loops inside this function
accepting requests. A particular example of such request
is a program termination.

In the target program, every network of the source mpC
program is represented by a set of nodes called a region.
So, at any time of the running of the target program, any
node is either free or hired in one or several regions.
Hiring nodes in created regions and dismissing them are
responsibility of the dispatcher, The only exception is the
pre-hired host node representing the mpC pre-defined
host-processor. Thus, just after initialization, the
computing space is represented by the host and a set of
temporarily free (unemployed) nodes.

A region is accessed via its descriptor. If the descriptor
rd corresponds to the region, then a node belongs to the
region iff the function call MPC_Is_member (&rd)
returns 1. In this case, the descriptor rd allows the node to

obtain comprehensive information about the region as well
as identify itself in the region.

Creation of the region involves its parent node, the dis-
patcher and all free nodes. The parent node calls the func-
tion MPC_Net_create to send the creation request
containing the necessary information about the network
topology to the dispatcher. Also, the dispatcher holds a
map of the computing space which reflects its topological
properties. The initial state of the map is formed during the
dispatcher initialization. Based on this information, the
dispatcher selects the most appropriate set of free nodes.
After that, it sends to every free node a message saying
whether the node is hired in the created region or not. In
addition, for the nodes which are hired in the region, this
message contains the information necessary to complete
initialization of the region descriptor. Meanwhile, all free
nodes call to the function MPC_Of fer which wait for the
message from the dispatcher. After returning from these
functions, nodes constituting the region, have the corre-
sponding region descriptor initialized completely. Deallo-
cation of the region involves all its members, calling to the
function MPC_Net_free, as well as the dispatcher.

The dispatcher keeps a queue of creation requests that
cannot be satisfied immediately, but can be served in the
future. It implements a strategy for serving the requests
aimed at minimizing the probability of a deadlock. The
dispatcher detects such a situation when the sum of the
number of free nodes and the number of such hired nodes
that could be released is less than the minimum number of
free nodes required by a request in the queue. In this case,
it calls to the function MPC_Abort that terminates the
program.

5 Translation of network declarations

When compiling a source mpC file, for every mpC
function definition the compiler generates a target
function definition. If the source function contains or may
" contain network declarations, the target function body
will contain an additional code for every external network
declaration for which the function is in scope. This code
performs the creation of the corresponding region if it has
not been created yet.

Free nodes should not only wait for a message from the
dispatcher but also participate in overall computations
(that is, computations involving the entire computing
space, the statements in lines 17-18 in our sample
program have just specified overall computations).
Therefore, in general the code performed by a free node
may contain several points (called waiting points) where
the node waits for a message from the dispatcher. Also,
portions of code producing creation requests can be

153

performed by network parents in parallel. Finally,
sometimes one cannot predict even in run-time how many
times a portion of code producing creation requests will
be performed by the network parent. The latter situation
occurs, for example, when translating the network
declaration in a loop body or in a selection statement. All
these require very accurate synchronization between
portions of code that are performed by hired nodes and
produce creation requests, and portions of code
performed by free nodes waiting for a message from the
dispatcher.

To describe this synchronization, all mpC statements are
divided into 2 groups: overall statements and parallel state-
ments. An overall statement is performed. on the entire
computing space. Execution. of a parallel statement
involves only a part of the computing space.

All network declarations in the source function and all
external network declarations for which the function is in
scope are divided into disjoint sets (called waiting sets)
each corresponding to its own waiting point. In addition,
for every waiting point a set of parallel statements, exe-
cuted in parallel with code associated with the waiting
point, is created. The set of parallel statements is called
parallel section associated with the corresponding waiting
point.

For each waiting point, a target code of the form

MPC_waiting_point:
1f(MPC_Is_free())
walting statement
i£(IMPC_Is_free())
creating statement

MPC_Global_barrier();
is generated. Here, the waiting statement is just the code
performed by free nodes at the waiting point, and the creat-
ing statement consists of a code producing requests for net-
work creation and deatlocation and the code implementing
the - parallel section.. The call to the - function
MPC_Global_barrier is a barrier synchronization
across all nodes of the entire computing space.

Parallel execution of the waiting and creating statements
are synchronized to enable the following scenario. All free
nodes call to the function MPC_Of fer. The call returns at
any free node in two ways. Firstly, after some hired node,
executing the creating statement, calls to the function
MPC_Net_create which sends the creation request. In
this case, if a free node is hired in the created region, it
leaves the waiting statement and enters the creating state-
ment. If the free node is not hired, it calls to MPC_Offer
again. Secondly, the call to MPC_Offer returns at any
free node after it becomes known that further execution of
the creating statement will not produce new creation
requests. In this case, all free nodes leave the waiting state-
ment and enter the call to MPC_.Global_barrier.

Besides, some hired nodes executing the creating state-
ment and constituting a region may call to the function
MPC_Net_free to discard the network. In this case,
every node, that becomes free, jumps to the label
MPC_wailting_point.

Note that a single network declaration may declare sev-
eral network identifiers. Moreover, more than one creation
request, associated with a network identifier, may be pro-
duced. Such a situation occurs, for example, if a declara-
tion of automatic network appears in a loop body.

In the most general case, the compiler generates the fol-
lowing waiting statement:

{

MPC_Net *MPC_nets[N]=
{list_of _region_descriptor._pointers};
MPC_Name MPC_names [N]=
{list_of_network_numbers};
while (1) {
MPC_Offer (&MPC_command, MPC_names,
MPC_nets, N);
if (MPC_command == MPC_HIRED ||
MPC_command == MPC_OUT)
break;
}

} :
Here, N is the number of network identifiers whose decla-
rations are associated with the waiting point. An element
of the array MPC_names is initialized to contain a unique
number of the corresponding network identifier in the
source mpC file. The corresponding element of the array
MPC_nets is initialized to point to the region descriptor
associated with the network identifier. After the call to
MPC_Offer returns at a free node, variable
MPC_ command will contain either value MPC_HIRED if
the node is hired in a region (in this case, the correspond-
ing region descriptor gets fully initialized), or value
MPC_ SKIP if the node is not hired in the region, or value
MPC_oUT if the node should leave the waiting point.

The corresponding creating statement is of the following
structure:

{

code implementing the parallel section and

producing creation/deallocation regquests

code initiating synchronous exit from the
waliting point
3
The piece of code, producing a request for creation of an
instance of the automatic network, looks as follows:
if(I_am parent_of the_network)
MPC_Net_create (NET_ID, &net);
Here, NET_ID is a unique number of the network in the
source mpC file, net is a region descriptor associated
with the network. Since a static network is created only
once, the piece of code producing the corresponding cre-

154

ation request tests if the network has already been created:
if(I_am parent_of_the network)
if (IMPC_Is_created(&net))
MPC_Net_create(NET_ID, &net) ;

For lack of space, we omit the complicated algorlthm
generating the code initiating synchronous exit from a
waiting point.

A piece of code producing a network deallocation
request is generated according to the following algorithm:
ISSUE_THE_CODE
if (MPC_Is_member (&net)) {
int MPC_free;
MPC_free=!MPC_Is_parent (&net);
¥ (the deallocated network has a node being a parent
of some network associated with the waiting point)
ISSUE_THE_CODE
MPC_Barrier (&net);
ENDIF
ISSUE_THE_CODE
MPC_Net_free (&net) ;
if(MPC_free) goto MPC_waiting_point;}
Although the target code described above will work cor-
rectly for any waiting point, there are a few particular
cases in which the compiler generates a more efficient
code, avoiding the expensive synchronization when leav-
ing a waiting point. For example, if when entering a wait-
ing point, a free node can compute the number of creation
requests that will be produced, and creation and dealloca-
tion requests are not interleaved, then for the waiting point
the following target code will be generated:
MPC_waiting_point:
if (MPC_Is_free()) {
MPC_Net *MPC_nets[N]=
{list_of_region_descriptor_pointers};
MPC_Name MPC_names|[N]=
{list_of_network_numbers};
code computing
the_number_of_ creation_requests

for (1i=0;
i<the number of_ creation requests;
i++) {
MPC_Offer (&MPC_command, MPC_names,
MPC_nets, N);
if (MPC_command == MPC_HIRED) break; -
}
}
1if(IMPC_Is_free()) {

code implementcing the parallel section
and producing creation and deallocation
requests
}
MPC_Global_barrier()
Here, the piece of code producing a deallocation request is
reduced to
1f (MPC_Is_member (&net))
MPC_Net_free(&net);

6 Experimental results

We compared the running time of our mpC program to its
manually written MPI counterpart. To get concise result,
we make the programs repeat computations corresponding
to lines 26-31 in the mpC program 20 times. We use 3
workstations - SPARCstation 5 (hostname gamma),
SPARCclassic (omega), and SPARCstation 20 (alpha),
running MPI (LAM implementation [12]).

We use the cyclic mapping of MPI processes on actual
processors gamma, omega, and alpha constituting our
DMM.

The computing space of the mpC programming environ-
ment consists of 9 processes, 3 processes running on each
processor. The dispatcher runs on gamma and uses the fol-
lowing relative performances of the processors obtained
automatically upon the creation of the virtual parailel
machine: 1224 (gamma), 326 (omega), 1677 (alpha).

The mpC program runs no slower than the MPI program
for all input data. Likewise, for most input data the mpC
program runs much faster the its MPI counterpart.

For example, if we use 8 groups, each of which of 500
bodies, the mpC program takes 27 seconds, meanwhile the
MPI program takes 53 seconds. In this instance, the dis-
patcher has selected 3 processes on gamma, 3 processes on
alpha and 2 processes on omega.

If we use 8 groups consisting of 500, 9000, 500, 1000,
9000, 1000, 1000, and 9000 bodies respectively, the mpC
program takes 27 seconds, meanwhile the MPI program
takes 156 seconds. In this instance, the dispatcher has
selected three processes on gamma for the virtual proces-
sors of network w with coordinates 0, 4, and 5, two pro-
cesses on omega for virtual processors with coordinates 6
and 2, and three processes on alpha for virtual processors
with coordinates 1, 7 and 3. Remember, that according to
the mpC program, i-th virtual processor computes out i-th
group of bodies.

7 Summary

The key peculiarity of the mpC language is its advanced
facilities for managing such resources of DMMs as proces-
sors and links between them. The user can manage these
resources in the manner similar to managing the storage in
C. These facilities permit the development of parallel pro-
grams for DMMs, that once compiled, will run efficiently
on any particular DMM, because the mpC programming
environment ensures optimal distribution of computations
and communications over DMM in run time. It makes
mpC and its programming environment suitable tools for
development of a library of parallel programs, especially
for heterogenous DMMs.

155

This paper has presented some details of the implementa-
tion of these facilities in the framework of the mpC pro-
gramming environment developed in the Institute for
System Programming, Russian Academy of Sciences.

Acknowledgments

The work was supported by ONR and partially by Rus-
sian Basic Research Foundation.

References

[1] V. Sunderam. PVM: A framework for parallel distributed
computing. Concurrency: Practice and Experience, 2(4):315-
339, 1990.

[2] Message Passing Interface Forum. MPI: A Message-passing
Interface Standard. International Journal of Supercomputer
Applications, 8(3/4), 1994.

[311. Foster, and K. M. Chandy. Fortran M: a language for modu-
lar parallel programming. Preprint MCS-P327-0992, Argonne
National Lab, 1992.

[4] K. M. Chandy, and C. Kesselman. CC++: A Declarative Con-
current Object Oriented Programming Language. Technical
Report CS-TR-92-01, California Institute of Technology, Pasa-
dena, California, 1992.

[5] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
C.-W. Tseng, and M.-Y. Wu. Fortran D Language Specification.
Center for Research on Parallel Computation, Rice University,
Houston, TX, October 1993.

[6] B. Chapman, P. Mehrotra, and H. Zima. Programming in
Vienna Fortran. Scientific Programming, 1(1):31-50, 1992.

[7] High Performance Fortran Forum. High Performance Fortran
language specification, version 1.0. Rice University, Houston,
TX, May 1993.

[8] The CM Fortran Programming Language. CM-5 Technical
Summary, pp. 61-67, Thinking Machines Corp., Nov. 1992.

[9] The C* Programming Language. CM-5 Technical Summary,
pp. 69-75, Thinking Machines Corporation, November 1992,
[10] P. J. Hatcher, and M. J. Quinn. Data-Parallel Programming
on MIMD Computers. The MIT Press, Cambridge, MA, 1991.
[11] M. Philippsen, and W. Tichy. Modula-2* and its compilation.
First International Conference of the Austrian Center for Paral-
lel Computation, Salzburg, Austria, 1991.

[12] Trollius LAM Implementation of MPI. Version 5.2. Ohio
State University, 1994.

[13] A. Lastovetsky. mpC - a Multi-Paradigm Programming Lan-
guage for Massively Parallel Computers. ACM SIGPLAN
Notices, 31(2):13-20, February 1996.

[14] A. Lastovetsky. The mpC Programming Language Specifi-
cation. Technical Report, Institute for System Programming, Rus-
sian Academy of Sciences, Moscow, 1994.

[15] S. Gaissaryan, and A. Lastovetsky. ANSI C Superset for
Vector and Superscalar Computers and Its Retargetable Compiler.
Journal of C Language Translation, 5(3):183-198, 1994,

