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Abstract—The paper presents a performance model that can be used to optimally distribute 
computations over heterogeneous computers. This model is application-centric representing the 
speed of each computer by a function of the problem size. This way it takes into account the 
processor heterogeneity, the heterogeneity of memory structure, and the memory limitations at 
each level of memory hierarchy. A problem of optimal partitioning of an n-element set over p 
heterogeneous processors using this performance model is formulated, and its efficient solution 
of the complexity O(p3×log2n) is given. 
 
Index Terms—Heterogeneous (hybrid) systems, Scheduling and task partitioning, Load 
balancing and task assignment 
 

1. Introduction 
 

In this paper, we deal with the problem of optimal distribution of computations over 
heterogeneous computers taking into account the processor heterogeneity, the heterogeneity of 
memory structure, and the memory limitations at each level of memory hierarchy of a processor. 
We present a performance model that integrates these essential features having an impact on the 
execution time of parallel and distributed applications running on networks of heterogeneous 
computers.  

In our previous research [1], we addressed the problem of optimal distribution or scheduling of 
computational tasks on networks of heterogeneous computers when one or more tasks do not fit 
into the main memory of the processors. We particularly addressed the problem of optimal data 
partitioning in heterogeneous environments when relative speeds of processors cannot be 
accurately approximated by constant functions of the problem size. We proposed a functional 
model that integrated all architectural differences in computers having an impact on the 
performance of computers depending on the size of the problem. These architectural differences 
are mainly the processor heterogeneity in terms of the speeds of the processors and memory 
heterogeneity in terms of the number of memory levels of the memory hierarchy and the size of 
each level of the memory hierarchy. Under this model, the speed of each processor is represented 
by a continuous and relatively smooth function of the problem size whereas standard models use 
a single number to represent the speed. This model is application-centric in the sense that 
generally speaking different applications will characterize the speed of the processor by different 
functions. 

There are two main motivations behind the representation of the speed of the processor by a 
continuous and relatively smooth function of the problem size. First of all, we want the model to 
adequately reflect the behavior of common, not very carefully designed applications. Consider 
the experiments conducted by Lastovetsky and Twamley [2]  
 

 



  

Table 1 
Specifications of the four heterogeneous computers 

Machine 
Name 

Architecture cpu MHz 
Main 

Memory 
(kBytes) 

Cache 
(kBytes) 

Comp1 
Linux 2.4.20-20.9bigmem 

Intel(R) Xeon(TM) 
2783 7933500 512 

Comp2 
SunOS 5.8 sun4u sparc 

SUNW,Ultra-5_10 
440 524288 2048 

Comp3 Windows XP 3000 1030388 512 

Comp4 Linux 2.4.7-10 i686 730 254524 256 
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(c)                                                                                (d) 

Fig. 1. The effect of caching and paging in reducing the execution speed of each of the four 
applications run on network of heterogeneous computers shown in Table 1. (a) ArrayOpsF, (b) 
TreeTraverse, (c) MatrixMultATLAS, and (d) MatrixMult. P is the point where paging starts 
occurring. 
 
shown in Figure 1 with carefully designed applications ArrayOpsF and MatrixMultAtlas that 
efficiently use memory hierarchy, with applications such as TreeTraverse that reference memory 
randomly, and applications such as MatrixMult that use inefficient memory reference patterns. It 
can be seen that although the  
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Fig. 2.  A small network of three processors whose speeds are shown against the size of the 
problem. The dotted lines passing through the origin represent solutions provided by the 
functional model. The bold curves represent the experimentally obtained speed functions. The 
dotted curves represent reasonable approximations of the speed functions in a continuous 
manner. The dashed curves represent the real behavior of the speed functions. The first dotted 
line giving the data distribution (x11,x12,x13) is a non-optimal solution. The second dotted line giving 
the data distribution (x21,x22,x23) is not a solution at all.  
 
applications ArrayOpsF, TreeTraverse, and MatrixMultAtlas demonstrate a sharp and 
distinctive performance curve of dependence of the absolute speed on the problem size, the 
application MatrixMult, which uses a naïve multiplication of two dense square matrices, 
displays a quite smooth dependence of speed on the problem size. Thus, to model execution of a 
common and not carefully designed application, we should realistically approximate the 
dependence of the speed of the processor by a continuous and relatively smooth function of the 
problem size.  

The other main motivation is that we want to target general-purpose common heterogeneous 
networks. A computer in such a network is an integrated part of the network periodically 
performing some computations and communications just as such an integrated node of the 
network. It will experience fluctuations in the workload due to its integration into the network. 
This changing transient load will cause a fluctuation in the speed of computers on the network, in 
that the speed of the computer will vary when measured at different times while executing the 
same task. As a result, the fluctuations in speed must be modeled as a performance band. These 
performance bands representing the speeds of the processors are more realistically approximated 
by a continuous and relatively smooth function of the problem size even for carefully designed 
applications efficiently using the memory hierarchy. Figure 1 shows experiments on a set of 
computers whose specifications are shown in Table 1. These computers have varying 
specifications and varying levels of network integration and are representative of the range of 
computers typically used in networks of heterogeneous computers. The results reinforce the 



  

representation of the speed of the processor by a continuous and relatively smooth function of the 
problem size. 

In [1], we also formulated a problem of partitioning of an n-element set over p heterogeneous 
processors using the functional model and designed efficient algorithms to solve the problem. 
The optimal solution is the solution where the size of the problem assigned to each processor is 
proportional to the speed of the processor. The algorithms are based on the following 
observation: If a distribution of the elements of the set amongst the processors is obtained such 
that the number of elements is proportional to the speed of the processor, then the points, whose 
coordinates are number of elements and speed, lie on a straight line passing through the origin of 
the coordinate system and intersecting the graphs of the processors with speed versus the size of 
the problem in terms of the number of elements. The algorithms use the observation that the 
optimal solution obtained by these algorithms is a straight line passing through the origin of the 
coordinate system and intersecting the graphs of the processors with speed versus the size of the 
problem in terms of the number of elements. The algorithms take at most p2×log2n steps to find 
the optimal solution.  

However this model fails to provide optimal solutions when the network consists of computers 
that are configured to avoid paging. Consider the experiments shown in Figure 1. The 
experiments show that Comp1 and Comp2 do not permit paging. This is typical of computers 
used as a main server. For applications designed to efficiently use cache memory, such 
computers show a constant speed function, up to a point where the process crashes, probably 
because it tries to invoke a paging procedure, not allowed due to its configuration. So if we have 
such computers, the real speed function of the size of the problem is not continuous any more but 
discontinuous at the point where paging happens, that is, there is a break in the continuity of the 
function at the point where paging happens.  

Consider a small network of three processors, whose speeds as functions of problem size are 
shown in Figure 2. The processor represented by the speed function s1(x) is configured to permit 
paging. The processors represented by speed functions s2(x) and s3(x) are configured to avoid 
paging. The bold curves represent the experimentally obtained parts of the speed functions. Now 
assume that we want to obtain optimal distributions for problem sizes whose optimal solution 
lines lie beyond the bold curves. In this case we naturally extrapolate the curves in a continuous 
manner using some reasonable approximations. The extrapolations are shown by dotted curves. 
However it can be seen that sometimes the extrapolations are not accurate representations of the 
real shape of the speed functions as shown for the speed functions s1(x) and s2(x). The real speed 
functions are shown by dashed curves. Consider two data distributions obtained by the functional 
model and which are shown by dotted lines passing through the origin. Although the first data 
distribution (x11,x12,x13) is not the optimal solution just because the extrapolated speed functions 
s1(x) and s2(x) are not accurate representations of the real speed functions, it still give a 
reasonable sub-optimal solution of the problem. At the same time, the second data distribution 
(x21,x22,x23) is not a solution at all. This is because at the points x22 and x23 the paging starts 
occurring for computers with speed functions s2(x) and s3(x) and since these computers are 
configured to avoid paging, they crash. Therefore in order to obtain optimal and working 
solutions for such networks, we need to extend the functional model. 

We naturally extend the functional model by including an additional parameter of maximum 
problem size. The maximum problem size represents the upper bound on the size of the problem 
that each processor can solve. For computers that are configured to avoid paging, it represents the 



  

point where the computer crashes due to the occurrence of paging and where the speed function 
of the size of the problem becomes discontinuous. 

The rest of the paper is organized as follows. In Section 2, we present the modified functional 
model. This is followed by a formulation of a general set-partitioning problem, which is the 
problem of partitioning of an n-element set over p heterogeneous processors using this modified 
functional model. Then we give its efficient solution of the complexity O(p3×log2n). This 
problem is a simple variant of the most advanced problem of partitioning a set with weighted 
elements [3]. We use the simple variant to explain how complex the problem of scheduling tasks 
amongst processors is when: (a) the processors have significantly different memory structure, and 
(b) there are memory limitations on the size of task that can be solved by each processor. We also 
use this variant to explain in simple terms how the modified functional model can be used to 
achieve better data partitioning on networks of heterogeneous computers before moving on to 
solve the most advanced problem. 

To demonstrate the efficiency of the modified functional model, we perform experiments using 
naïve parallel algorithms for linear algebra kernel, namely, matrix multiplication and LU 
factorization using striped partitioning of matrices on a local network of heterogeneous 
computers. Our main aim is not to show how matrices can be efficiently multiplied or efficiently 
factorized but to explain in simple terms how the modified functional model can be used to 
optimally schedule tasks on networks of heterogeneous computers taking into account the 
processor and memory heterogeneity. We also view these algorithms as good representatives of a 
large class of data parallel computational problems and a good testing platform before 
experimenting more challenging computational problems. 
 

2. The Performance Model 
 
The modified functional model of networks of heterogeneous computers has the following 
parameters: 

• An upper bound on the size of the task that can be solved by each computer, and  
• The speed of the processor is represented by a continuous and smooth function of the 

problem size until the upper bound. Beyond the upper bound, the speed of the processor is 
assumed to be zero. 

The model retains the restrictions imposed by the functional model [1] on the shape of the 
graph representing the speed function. The shape of the graph should be such that there is only 
one intersection point of the graph with any straight line passing through the origin. That is the 
speeds of the processors must either be increasing or decreasing functions of problem size for the 
problem sizes for which the solutions are sought. These assumptions on the shapes of the graph 
are representative of the most general shape of graphs observed for applications experimentally 
as shown in Figure 1. 

The upper bound could signify one of the following cases:  
• Allocation of a task whose size is beyond this bound could result in processor failure. 
• Allocation of the task whose size is beyond this bound could result in unacceptable 

execution time to accomplish the task due to severe paging. 
 
 



  

 
 

3. Algorithms for Partitioning Sets 
 
Using the modified functional model, we solve the following problem of partitioning a set, which 
can be formulated as: 
Definition 1. Heterogeneous Memory Partitioning HMP(n, s, b):  

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors 
whose speeds are functions of the size of the problem x, si=fi(x), and (3) There is a upper bound 
on the largest problem size that can be solved on each processor, that is, there is an upper bound 
bi on the number of elements stored by each processor (i=0,…,p-1); 

Partition the set into p disjoint partitions such that: 
• x0+x1+...+xp-1=n, where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1 

respectively, 
• xi≤bi for all (i=0,…,p-1), 
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where xi is the number of elements in partition i. 
We provide an optimal solution to this problem of complexity O(p3×log2n). We assume that 

the volume of computations involved in the execution of a problem size is proportional to the 
problem size. 

When the speed of the processor is represented by a single number, the algorithm used to 
perform the partitioning is quite straightforward, of complexity O(p2) [4].  

When there is an upper bound bi on the number of elements stored by each processor 
(i=0,…,p-1), the algorithm used to solve the partitioning problem is of complexity O(p3). This 
algorithm can be summarized as follows: 

1. Partition the set such that the number of elements in each partition is proportional to the 
speed of the processor and assuming no upper bound exists on the number of elements that 
can be stored by each processor. If the number of elements assigned to each processor is 
less than or equal to the upper bound on the number of elements that can be stored by each 
processor, we have the optimal distribution. 

2. For each processor i  (i=0,…,p-1), we check if the number of elements assigned to it is 
greater than the upper bound on the number of elements that it can store. For all the 
processors whose upper bounds are exceeded, we assign them the number of elements 
equal to their upper bounds. Now we solve the partitioning problem of a set with 
remaining elements over the remaining processors. We recursively apply this procedure 
until all the elements have been assigned. 
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Fig. 3. The partitioning algorithm for the problem size n. The bold curves represent the 
experimentally obtained speed functions. The dotted curves represent reasonable approximations 
of the speed functions in a continuous manner. For processor represented by speed function 
s1(x), we assign this processor the number of elements equal to its upper bound b1. We then 
partition the set with remaining n-b1 elements amongst the processors represented by speed 
functions s2(x) and s3(x) respectively. The region between the lines line1 and line2 is bisected to 
narrow down to the optimal solution. 
 
The proof of optimality of the solution provided by this algorithm is given in [5]. This is indeed a 
special case of the problem variant we are going to solve in this section. 

When the speed of the processor is represented by a function of the size of the problem, s=f(x), 
and when there is no upper bound on the number of elements stored by each processor, efficient 
algorithms used to perform the partitioning have been proposed of  complexity O(p2×log2n) [1]. 

When the speed of the processor is represented by a function of the size of the problem, s=f(x), 
and when there is an upper bound on the number of elements stored by each processor, the 
problem of partitioning a set is non-trivial. Before presenting the algorithm to solve this problem, 
we formulate the formal mathematical problem of the optimization problem HMP of partitioning 
of the set. Given: (1) A set of n elements, and (2) A well-ordered set of p functions, si=fi(x), and 
(3) There is a upper bound bi on the number of elements that can be stored in each partition 
(i=0,…,p-1), find a partition of the the set into p disjoint partitions such that: 

• x0+x1+...+xp-1=n where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1 
respectively, 

• xi≤bi for all (i=0,…,p-1), 

• the maximum of )(max
1

0
i

i
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 is minimized. That is solve the following min-max problem: 
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where xi is the number of elements in partition i.  
Before we present the algorithm to solve the optimization problem HMP, we apply the 

following assumptions: 
 (1) The speed of each processor is represented by a continuous function of the size of the 

problem up till its upper bound on the problem size. The speed of the processor is zero beyond 
the upper bound. 

(2) The shape of the graph representing the speed function should be such that there is only one 
intersection point of the graph with any straight line passing through the origin. That is the 
speeds of the processors must either be increasing or decreasing functions of problem size for the 
problem sizes for which the solutions are sought and,  

(3) For each processor, for all x ≥ y, where x and y are problem sizes, the execution times tx and 
ty to execute problems of sizes x and y respectively are related by tx ≥  ty. 
Algorithm Heterogeneous Memory Partitioning Algorithm HMPA(n, s, b). The algorithm we 
propose to solve this advanced partitioning problem is graphically illustrated in Figure 3 and has 
the following main points: 

1. Partition the set such that the number of elements in each partition is proportional to the 
speed of the processor and assuming no upper bound exists on the number of elements that 
can be stored by the processor (we can use any continuous extension of the speed function 
beyond the maximal problem size, say, a constant equal to the speed for the maximal 
problem size). The partitioning algorithm used to perform this task is discussed in [1]. If 
the number of elements in each partition assigned to each processor is less than the upper 
bound on the number of elements that can be stored by the processor, we have an optimal 
distribution.  

2. For each processor i (i=0,…,p-1), we check if the number of elements assigned to it is 
greater than the upper bound on the number of elements that it can store. For all the 
processors whose upper bounds are exceeded, we assign them the number of elements 
equal to their upper bounds. Now we solve the partitioning problem of a set with 
remaining elements over the remaining processors. We recursively apply this procedure 
until all the elements have been assigned. 

Theorem 1. HMPA(n, s, b) gives the optimal solution to the optimization problem HMP(n, s, b). 
Proof. We prove the optimality of the solution using mathematical induction. We use the 
maximum time to solve the task assigned to each processor as the performance metric.  

The cases for p=1 and p=2 are trivial. For p=3, let us assume the upper bounds of the 
processors 1, 2, and 3 on the number of elements that they can store are b1, b2, and b3 
respectively. Suppose the optimal distribution assuming there are no upper bounds on the number 
of elements is (x1, x2, x3) such that x1+x2+x3=n where n is the size of the problem.  

Consider the case where x1 > b1 and x2 > b2. Let us assign the number of elements equal to b1 

for processor 1. The remaining distribution has to satisfy the equality 1
'
3

'
2 bnxx −=+  where 

'
2x and '

3x are to be chosen such that the speed of the processor is proportional to the number of 

elements assigned to it. If the speeds of the processors 2 and 3 are non-increasing functions of 
problem size, it can be proved that 2

'
2 xx > and 3

'
3 xx > . This gives us the inequality 
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2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2. If 

the speeds of the processors 2 and 3 are non-decreasing functions of problem size, there are three 
possibilities, ( 2

'
2 xx > , 3

'
3 xx > ), ( 2

'
2 xx < , 3

'
3 xx > ) and ( 2

'
2 xx > , 3

'
3 xx < ). The first and the third 

possibility give us the inequality 22
'
2 bxx >> . For the second possibility, any allocation ''

2x such 

that ''
2x < b2 would result in an allocation of ''

3x  number of elements to processor 3 such that 
''

3x > '
3x  thus resulting in a larger execution time. Therefore we have to necessarily assign b2 

number of elements to processor 2. If the speed of the processor 2 is a non-decreasing function of 
problem size and speed of processor 3 is a non-increasing function of problem size, there are two 
possibilities, ( 2

'
2 xx < , 3

'
3 xx > ) and ( 2

'
2 xx > , 3

'
3 xx < ). In the first possibility, any allocation ''

2x  

such that ''
2x < b2 would result in an allocation of ''

3x  number of elements to processor 3 such that 
''

3x > '
3x  thus resulting in a larger execution time. The second possibility gives us the inequality 

22
'
2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2.  
Consider the case of optimal distribution where x1 > b1 is true. For processor 1, we assign the 

number of elements equal to b1. The remaining elements are allocated such that 1
'
3

'
2 bnxx −=+  

where '
2x and '

3x are to be chosen such that the speed of the processor is proportional to the 

number of elements assigned to it. Any other allocation ''
1x such that ''

1x < b1 would result in an 

allocation where one of the inequalities ( ''
2x > '

2x ), ( ''
3x > '

3x ) is satisfied thus resulting in a larger 

execution time. It can be proved similarly for the case when x2 > b2. 
Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1 

processors. For a given problem size n, let us assume the distribution given by our algorithm to 
be kmm xxbbbx ,,,,,,, 1210 LL +  such that nxbx k =+++ L10 , where without loss of generality 

processors 1,…,m are allocated their upper bounds. It can be inferred that the execution times for 
the rest of the processors 0,m+1,…,k satisfy the equality km ttt === + L10 . It can also be 

inferred that ikm tttt ≥+ ),,,( 10 L  for all i=1,…,m. The execution time for the problem size is 

equal to )(max
0

i

k

i
mp tt

=
= =  ),,,( 10 km ttt L+ . Consider an alternative solution with the distribution 

''
1

'
0 ,,, kxxx L where nxxx k =+++ ''

1
'
0 L  and mm bxbx ≤≤ '

1
'
1 ,,L . It can be easily seen that for 

atleast one processor i (i=0,m+1,…,k), ii xx ≥' , thus giving an execution time '
it , which is greater 

than the execution time given by our algorithm mpt . 

Theorem 2. The complexity of the algorithm HMPA(n, s, b) is O(p3×log2n). 
Proof. There are p major steps in the algorithm. At each such major step i, we solve the problem 
of partitioning of a set amongst p-i processors such that the number of elements in each partition 
is proportional to the speed of the processor and assuming no upper bound exists on the number 
of elements that can be stored by the processor. The complexity of this step is O(p2×log2n) [1]. 
Since there are p such steps, the overall worst-case complexity is O(p3×log2n). Mathematically, 
the worst-case complexity is the summation of p terms: 
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4. Applications of the Model 

 
So far we have formulated a realistic performance model of a network of heterogeneous 
computers and designed efficient algorithms of data partitioning with this model. Now we 
present a list of practical applications of this model: 

• Data partitioning on networks of heterogeneous computers, which only include computers 
that are configured to avoid paging. Such computers crash when problem sizes are 
allocated that requires paging. The largest problem size on such computers is the problem 
size where paging starts happening. 

• Data partitioning on networks of heterogeneous computers, which only include computers 
that permit paging. However allocation of large problem sizes can cause severe paging on 
such computers as a result causing severe performance degradation and sometimes stalling 
of the entire application. The largest problem size on such computers is not the problem 
size where paging starts happening but the problem size which causes severe performance 
degradation of the application. 

• Data partitioning on networks of heterogeneous computers, which include computers some 
of which permit paging and some of which are configured to avoid paging. 

 
5. Experimental Results 

 
The experimental results are divided into three sections. The first two sections are devoted to 
building the modified functional model. In the first section, we suggest ways to determine the 
upper bound on the size of the problem that each processor can solve. Then we present the 
parallel applications and the network of heterogeneous computers on which the applications are 
tested. For each application, we explain how to estimate the processor speed. This is followed by 
presentation of the procedure to build the speed functions of the processors. Finally we present 
the experimental results obtained by running these applications on the network of heterogeneous 
computers. 
 

5.1 Determination of Largest Problem Size 
 
In this section, we highlight different approaches to determine the largest problem size of an 
application that can be solved efficiently on a given computer. We do not define the  



  

 
Fig. 4. Operating system tools to determine the user-available memory for an application. The 
user-available memory is highlighted in bold. 
 
notion of largest problem size as this depends on the nature of the applications run on the 
network of heterogeneous computers and the level of integration of the computers in this 
network. 

One of the ways is to determine the user-available memory on the computer and the memory 
requirement of the application. If the memory requirement of the application is less than the user-
available memory then the application will not suffer from memory limitations. We can 
determine the largest problem size we can run, by calculating when the total memory requirement 
of an application would exceed the user-available memory capacity on a given computer. The 
total user-available memory of a computer can be obtained from the operating system utilities 
like ‘cat /proc/meminfo’ and ‘top’ as shown in Figure 4. There are also system calls that 
can be called from the application code to obtain the user-available memory of a given computer.  

Cierniak, Zaki, and Li [6] show that the total memory requirement is generally not a good 
criterion for judging the largest problem size that can be run efficiently. The reason is that the 
total memory requirement is a very conservative measure, and generally overestimates the 
memory requirement of an application. They introduce a new notion, the resident memory size 
(RMS) for a given program segment, defined as the minimum number of pages of physical 
memory required to ensure that all fault misses are cold misses (i.e. due to the first reference) for 
that segment, using a particular page replacement algorithm. If the resident memory size is less 
than the user-available memory then the application will not suffer from the effects of memory 
limitations. If, on the other hand, the program’s RMS is larger than the available memory then 
some of the pages required will not be in memory, and a page fault occurs. As the input data size 
increases, the RMS increases, ultimately exceeding the available memory. A compile-time 
algorithm is provided to approximate the RMS. The notion of RMS value should work well in 
practice for regular problems, but it may not be a good approximation for irregular problems. 

As shown in Figure 1, the notion of the largest problem size depends on the nature of the 
application and on the level of the integration of the computers used in the experiments. For 
computers that do not permit paging, the largest problem size is the point where paging starts 
happening. This is shown to be the point P for computers Comp1 and Comp2 in Figure 1 for all 
the applications. For computers configured to permit paging, the largest problem size is not the 
point where paging starts happening but the point where the absolute speed of the processor falls 
drastically. This is shown to be the point P for computers Comp3 and Comp4 in Figure 1 for all 
the applications.  
 
 

 

shell$ cat /proc/meminfo 
MemTotal:      1033908 kB 
MemFree:        389568 kB 
… 
shell$ top 
Mem:  1033908k total,  644340k used,   389568k free,   512680k buffers 
Swap: 2040212k total,    7924k used,  2032288k free,    36916k cached 
… 



  

Table 2 
Specifications of the Eleven Heterogeneous Computers 

Machine 
Name 

Architecture cpu 
MHz 

Main 
Memory 
(kBytes) 

Largest size of 
task  

(Matrix-Matrix 
Multiplication) 

Largest size 
of task (LU 

factorization) 

Cache 
(kBytes) 

X1 Linux 2.4.20-
20.9bigmem 

Intel(R) Xeon(TM) 

2783 7933500 116640000 262440000 512 

X2 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 36000000 81000000 512 

X3 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 36000000 81000000 512 

X4 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 36000000 81000000 512 

X5 Linux 2.4.18-10smp  
Intel(R) XEON(TM) 

1977 1030508 36000000 81000000 512 

X6 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 31360000 64000000 2048 

X7 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 59290000 2048 

X8 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 64000000 2048 

X9 SunOS 5.8 sun4u sparc 
SUNW,Ultra-5_10 

440 524288 30250000 59290000 2048 

X10 Linux 2.4.18-3 i686 
Intel Pentium III 

997 254576 24502500 30250000 256 

X11 SunOS 5.5 Sun4m 
sparc 

SUNW,SPARCstation-
5 

110 65536 6000000 6250000 512 

 
The problem size at point P shown in Figure 1 is probably less than the largest problem size 

but it is a good approximation. Speed functions built with large number of points with a wider 
range of problem sizes can give a better approximation of largest problem size that can be solved 
on a processor. However in this case it depends on a number of conditions such as how much 
time the application programmers are willing to spend to build the speed functions of the 
processors and their level of efficiency. This approach of determining the largest problem size 
should work well in practice for regular as well as irregular problems. 
 

5.2 Applications 
 
A small heterogeneous local network of 11 different Solaris and Linux workstations shown in 
Table 2 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch 
enabling parallel communications between the computers.  

There are two applications used to demonstrate the efficiency of the modified functional model 
over the functional and the single number models.  
Matrix-matrix multiplication 
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Fig. 5. (a) Matrix operation C=A×BT with matrices A, B, and C. Matrices A, B, and C are horizontally 
sliced.  The number of elements in each slice is proportional to the speed of the processor. (b) 
Serial matrix multiplication A1×B1 (B1=BT) of two dense non-square matrices of sizes n1×n2 and 
n2×n1 respectively to estimate the absolute speed of processor 1. The parameter n2 is fixed during 
the application of the set partitioning algorithm and is equal to n. 
 
The first application shown in Figure 5(a) multiplies matrix A and matrix B, i.e., implementing 
matrix operation C=A×BT, where A, B, and C are dense square n×n matrices. The application 
uses a parallel algorithm of matrix-matrix multiplication of two dense matrices using horizontal 
striped partitioning [7, p.199], which is based on a heterogeneous 1D clone of the parallel 
algorithm used in ScaLAPACK [8] for matrix multiplication. The matrices A, B, and C are 
partitioned into horizontal slices such that the total number of elements in the slice is 
proportional to the speed of the processor.  

For the application implementing matrix operation C=A×BT, the absolute speed of a processor 
must be obtained based on multiplication of two dense non-square matrices of sizes n1×n2 and 
n2×n1 respectively as illustrated in Figure 5(b). Even though there are two parameters n1 and n2 

representing the size of the problem, the parameter n2 is fixed and is equal to n during the 
application of the set partitioning algorithm. To apply the set partitioning algorithm HMPA(n, s, 
b) to determine the optimal data distribution for such an application, we need to extend it for 
problem size represented by two parameters (n1 and n), HMPA(n1, n, s, b). The speed function 
of a processor is geometrically a surface when represented by a function of two parameters 
s=f(n1,n2). However since the parameter n2 is fixed and is equal to n, the surface is reduced to a 
line s=f(n1,n2)= s=f(n1,n). Thus the set partitioning problem for this application reduces to the 
algorithm that we presented in this paper. However additional computations are involved in 
obtaining experimentally the geometric surfaces representing the speed functions of the 
processors and then reducing them to lines. 

Our algorithm of partitioning of a set can be extended easily to obtain optimal solutions for 
problem spaces with two or more parameters representing the problem size. Each such problem 
space is reduced to a problem formulated using a geometric approach and tackled by extensions 
of our geometric set-partitioning algorithm. Consider for example the case of two parameters 
representing the problem size where neither of them is fixed. In this case, the speed functions of 
the processors are represented by surfaces. The optimal solution provided by a geometric 
algorithm would divide these  
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Table 3 
Results of serial matrix-matrix multiplication  

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 
256×256 67 1024×1024 67 2304×2304 67 4096×4096 59 

128×512 68 512×2048 66 1152×4608 67 2048×8192 60 
64×1024 67 256×4096 67 576×9216 69 1024×16384 59 
32×2048 67 128×8192 67 288×18432 70 512×32768 60 

Table 4 
Results of serial LU factorization 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size of 
matrix 

Absolute 
speed 

(MFlops) 

Size  
of matrix 

Absolute 
speed(M

Flops) 
1024×1024 115 2304×2304 129 4096×4096 131 6400×6400 132 
512×2048 115 1152×4608 130 2048×8192 132 3200×12800 131 
256×4096 116 576×9216 129 1024×16384 132 1600×25600 132 
128×8192 117 288×18432 129 512×32768 131 800×51200 131 

 
surfaces to produce a set of rectangular partitions equal in number to the number of processors 
such that the number of elements in each partition (the area of the partition) is proportional to the 
speed of the processor. We do not present the extensions of our algorithm here for such multi-
dimensional representations of the size of the problem. We think it would complicate the 
presentation. 

To calculate the absolute speed of the processor, we use a serial version of the parallel 
algorithm of matrix-matrix multiplication. The serial version performs matrix-matrix 
multiplication of two dense square matrices. Though the absolute speed must be obtained by 
multiplication of two dense non-square matrices, we observed that our serial version gives almost 
the same speeds for multiplication of two dense square matrices if the number of elements in a 
dense non-square matrix is the same as the number of elements in a dense square matrix. This is 
illustrated in Table 3 for one Linux computers X2-X5 whose specification is shown in Table 2. 
The behavior exhibited is the same for other computers. Thus speed functions of the processors 
built using dense square matrices will be the same as those built using dense non-square 
matrices. 
LU Factorization 
The second application is based on the parallel algorithm of LU factorization of a dense square 
n×n matrix A, one step of which is shown in Figure 6(a). On a homogeneous p-processor linear 
array, a CYCLIC(b) distribution of columns is used to distribute the matrix A where b is the 
block size [4, 9]. A cyclic distribution would assign block numbers 0,1,2,…,n-1 to processor 
0,1,2,…,p-1,0,1,2…,p-1,0,…, respectively, for a p-processor linear array (n»p), until all n blocks 
are assigned. At each step of the algorithm, the processor that owns the pivot block factors it and 
broadcasts it to all the processors, which update their remaining blocks. At the next step, the next 
block of b columns becomes the pivot panel, and the computation progresses. Figure 6(a) shows 
how the column panel, L11 and L21, and the row panel, U11 and U12, are computed and how the 
trailing submatrix A22 is updated. Because the largest fraction of the work takes place in the 
update of A22,  
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(c) 
Fig. 6. (a) One step of the LU factorization algorithm of a dense square matrix A of size n×n. (b) The 
matrix A is partitioned using Variable Group Block distribution. This figure illustrates the distribution 
for n=576,b=32,p=3. The distribution inside groups G1, G2, and G3 are {2,1,1,0,0,0}, {2,1,0,0,0}, and 
{2,2,1,1,0,0,0}. (b) Serial LU factorization of a dense non-square matrix is used to estimate the absolute 
speed of a processor. Since the Variable Group Block distribution uses the functional model where 
absolute speed of the processor is represented by a function of a size of the problem, the distribution 
uses absolute speeds at each step of the LU decomposition that are based on the size of the problem 
solved at that step. As seen in this figure, at each of the steps for processor 0, the functional 
dependence of the absolute speed on the problem size gives the speeds based on solving the problem 
size at that step, which is equal to the number of elements in matrices An,n1

, An,n2
, and An,n3

 respectively. 
That is at each of the steps for processor 0, the absolute speeds are based on serial LU decomposition 
of matrices An,n1

, An,n2
, and An,n3

. 
 
therefore, to obtain maximum parallelism all processors should participate in the updating. Since 
A22 reduces in size as the computation progresses, a cyclic distribution is used to ensure that at 
any stage A22 is evenly distributed over all processors, thus obtaining a balanced load.  

Two load balancing algorithms, namely, Group Block algorithm [10, 11] and Dynamic 
Programming algorithm [4] have been proposed to obtain optimal static distribution over p 
heterogeneous processors arranged in a linear array. The Group Block distribution partitions the 
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matrix into groups, all of which have the same number of blocks. The number of blocks per 
group (size of the group) and the distribution of the blocks in the group amongst the processors 
are fixed and are determined based on speeds of the processors, which are represented by a single 
constant number. Same is the case with Dynamic Programming distribution except that the 
distribution of the blocks in the group amongst the processors is determined based on dynamic 
programming algorithm.  

We propose a Variable Group Block distribution, which is a modification of the Group Block 
algorithm. It uses the functional model where absolute speed of the processor is represented by a 
function of a size of the problem. Since the Variable Group Block distribution uses the functional 
model where absolute speed of the processor is represented by a function of a size of the 
problem, the distribution uses absolute speeds at each step of the LU decomposition that are 
based on the size of the problem solved at that step. That is at each step, the number of blocks per 
group and the distribution of the blocks in the group amongst the processors are determined 
based on absolute speeds of the processors given by the functional model, which are based on 
solving the problem size at that step. Thus it also takes into account the effects of paging. 

Figures 6(b) and 6(c) illustrate the Variable Group Block algorithm of a dense square n×n 
matrix A over p heterogeneous processors. Given a dense n×n square matrix A and a block size 
of b, the Variable Group Block distribution is a static data distribution that vertically partitions 
the matrix into m groups of blocks whose column sizes are g1,g2,…,gm as shown in Figure 6(b). 
The groups are non-square matrices of sizes n×(g1×b),n×(g2×b),…,n×(gm×b) respectively. The 
steps involved in the distribution are: 

1). To calculate the size g1 of the first group G1 of blocks, we adopt the following procedure: 
• Using the data partitioning algorithm, we obtain an optimal distribution of matrix A 

such that the number of elements assigned to each processor is proportional to the 
speed of the processor. The optimal distribution derived is given by (xi, si) (0≤i≤p-1), 

where xi is the size of the subproblem such that 21

0
n=∑ −

=

p

i ix  and si is the absolute 

speed of the processor used to compute the subproblem xi for processor i. Calculate the 

load index li = 
∑ −

=

1

0

is
p

k ks
 (0≤i≤p-1). 

• The size of the group g1 is equal to ⎣ ⎦)min(/1 il  (0≤i≤p-1). If g1/p<2, 

then ⎣ ⎦)min(/2g1 il= . This condition is imposed to ensure there is sufficient number of 

blocks in the group. 
• This group G1 is now partitioned such that the number of blocks g1,i is proportional to 

the speeds of the processors si where 1

1-p

0i 1,i gg =∑ =
 (0≤i≤p-1).  

2). To calculate the size g2 of the second group, we repeat step 1 for the number of elements 
equal to (n-g1)

2 in matrix A. This is represented by the sub-matrix An-g1,n-g1 shown in Figure 6(b). 
We recursively apply this procedure until we have fully vertically partitioned the matrix A. 

3). For algorithms such as LU Factorization, only blocks below the pivot are updated. The 
global load balancing is guaranteed by the distribution in groups; however, for the group that 
holds the pivot it is not possible to balance the workload due to the lack of data. Therefore it is 
possible to reduce the processing time if the last blocks in each group are assigned to fastest 
processors, that is when there is not enough data to balance the workload then it should be the 
fastest processors doing the work. That  
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Fig. 7. Determination of a set with relatively few points used to build the speed functions of the 
processors X2-X5 whose specifications are shown in Table 2. As few as 6 points and 5 points are 
used to build an efficient speed function for matrix multiplication and LU factorization respectively 
with deviation approximately 5% from other speed functions built with more number of points. 

 
is in each group, processors are reordered to start from the slowest processors to the fastest 
processors for load balance purposes. 

In LU Factorization, the size of the matrix shrinks as the computation goes on. This means 
that the size of the problem to be solved shrinks with each step. Consider the first step. After the 
factorization of the first block of b columns, there remain n-b columns to be updated. At the 
second step, the number of columns to update is only n-2×b. Thus the speeds of the processors to 
be used at each step should be based on the size of the problem solved at each step, which means 
that for the first step, the absolute speed of the processors calculated should be based on the 
update of n-b columns and for the second step, the absolute speed of the processors calculated 
should be based on the update of n-2×b columns. Since the Variable Group Block distribution 



  

uses the functional model where absolute speed of the processor is represented by a function of a 
size of the problem, the distribution uses absolute speeds at each step that are calculated based on 
the size of the problem solved at that step. 

For the application implementing LU factorization, the absolute speed of a processor must be 
obtained based on LU factorization of a dense non-square matrix of size m1×m2 as shown in 
Figure 6(c). Even though there are two parameters m1 and m2 representing the size of the 
problem, the parameter m1 is fixed and is equal to n during the application of the set partitioning 
algorithm. To apply the set partitioning algorithm to determine the optimal data distribution for 
such an application, we need to extend it for problem size represented by two parameters, n and 
m2. The speed function of a processor is geometrically a surface when represented by a function 
of two parameters s=f(m1,m2). However since the parameter m1 is fixed and is equal to n, the 
surface is reduced to a line s=f(m1,m2)= s=f(n,m2). Thus the set partitioning problem for this 
application reduces to the algorithm that we have presented in this paper. However additional 
computations are involved in obtaining experimentally the geometric surfaces representing the 
speed functions of the processors and then reducing them to lines. 

The set partitioning algorithm can also be extended here easily as explained for matrix 
multiplication. To calculate the absolute speed of the processor, we use a serial version of the 
parallel algorithm of LU factorization. The serial version performs LU factorization of a dense 
square matrix. Though the absolute speed must be obtained by using LU factorization of a dense 
non-square matrix, we observed that our serial version gives almost the same speeds for LU 
factorization of a dense square matrix if the number of elements in a dense non-square matrix is 
the same as the number of elements in a dense square matrix. This is illustrated in Table 4 for 
computers X2-X5 whose specification is shown in Table 2. The behavior exhibited is the same 
for other computers. 

The absolute speed of the processor in number of floating point operations per second is 
calculated using the formula 

executionoftime

nnnMF

executionoftime

nscomputatioofvolume
speedAbsolute

  
 

  
  

 
×××==  

where n is the size of the matrix. MF is 2 for Matrix Multiplication and 2/3 for LU factorization. 
In the case of matrix-matrix multiplication, the size of the task is the number of elements in 
resultant matrix C=A×BT. In the case of LU factorization, the size of the task is the number of 
elements in the factorized matrix. 

For these two applications, the network of heterogeneous computers shown in Table 2 contains 
some computers that permit paging and some computers that do not permit paging. For example, 
the computer X1 is a computer science departmental server running NFS and NIS, as well as web 
and database servers. It is configured to not permit paging. The largest problem size that can be 
solved on this computer is 116640000 and 262440000 for matrix-matrix multiplication and LU 
factorization respectively. Allocation of a task larger than this size will result in crash of this 
processor. The computers X2, X3, X4, and X5 permit paging. However allocation of a task to 
these computers, the size of which is greater than 36000000 and 81000000 for matrix-matrix 
multiplication and LU factorization respectively, will result in severe performance degradation of 
the parallel application. For each of these two applications, the largest problem size that can be 
solved on the network of heterogeneous networks shown in Table 2 is just the sum of the largest 
sizes of the tasks that can be solved on each computer.  



  

There are three important issues in selecting a set of points to build a speed function of a 
processor: 

1. The range of the set of points, that is, the minimal problem size and the maximal problem 
size experimentally used. The minimum problem size could be as low as a size of memory 
that fits into the top level of memory hierarchy of the computer and the maximum problem 
size is the upper bound on the largest problem size that the processor can solve,  

2. The number of points in the set, and  
3. The intervals between the points. 
The speed function for a processor is built using a set of few experimentally obtained points. 

The more the number of points used in building the speed functions, the more accurate the speed 
functions are. However it is prohibitively expensive to use large number of points to build the 
speed functions of the processors. Hence for each processor, an optimal set of few points needs 
to be chosen to build an efficient speed function. Such a speed function built gives the speed of 
the processor for any problem size with certain deviation from the ideal speed function and speed 
functions built with sets with more number of points. This deviation must be within acceptable 
limits, ideally not exceeding the inherent deviation of the performance of computers typically 
observed in the network. In our experiments, we set the acceptable deviation to be %5± . This 
implies that the speed function should give the speed of the processor for a problem size within 

%5± accuracy from the speed given by an ideal speed function or the speed functions built with 
sets with more number of points. Figure 7 show speed functions for matrix multiplication 
obtained using three sets of 6, 7, and 8 points and speed functions for LU factorization obtained 
using three sets of 5, 7, and 8 points for the computers X2-X5 whose specifications are shown in 
Table 2. It can be seen that 6 points and 5 points are enough to build an efficient speed function 
that fall within acceptable limits of deviation for matrix multiplication and LU factorization 
respectively. 

A naïve approach to select a set of i points is: If (xmin, smin) is the point with minimal problem 
size experimentally obtained and (xmax, smax) is the point with maximal problem size 
experimentally obtained, the remaining i-2 points experimentally tested have problem sizes 
(xmin+(xmax-xmin)/(i-1)),…,(xmin+(i-2)*(xmax-xmin)/(i-1))) respectively.  

In some cases, clever experimental methods can be adopted to determine the range that is used 
to choose a set of points to build the speed functions of the processors. Two examples are 
illustrated in Figure 8. Suppose the problem size is n and the number of processors involved in 
the execution of the problem size is p. For the first case shown in Figure 8(a), obtain the speeds 
of the processors with each processor executing a problem size of (n/p). We assume that the 
upper bounds of all the processors exceed (n/p). For the processor exhibiting the lowest speed (in 
this case the processor with speed function s1(x)), the set of points can be chosen from xmin to 
(n/p). For the processor that shows the maximum speed (in this case the processor with speed 
function s2(x)), the set of points can be chosen from (n/p) to xmax, where xmax represents the 
upper bound on the largest problem size that can be solved on each processor. For all the other 
processors, the set of points are chosen from xmin to xmax.  

For the second case shown in Figure 8(b), the upper bound of at processor with speed function 
s4(x) is less than (n/p). For this processor, the set of points can be chosen from xmin to b4. Obtain 
the speeds of the processors with each processor executing a problem size of b4. For the 
processor with speed function s1(x) exhibiting the lowest speed, the set of points can be chosen 
from xmin to b4. For the processor with speed function s2(x) showing the maximum speed, the set 



  

of points can be chosen from b4 to b2. For all the other processors, the set of points are chosen 
from xmin to xmax.  

 

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

Size of the problem = n

line 1 line 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p

n
x

1b

2b

3b

 
(a) 

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

Size of the problem = n⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p

n
x

1b

2b

3b

)(4 xs

4b

4bx =

line1

line2

 
(b) 

Fig. 8. Some advanced methods to determine the range that is used to choose a set of points to 
build the speed functions of the processors. In both the cases, the optimal solution line lies 
between line1 and line2.  
 

We use piece-wise linear function approximation illustrated in Figure 9 to build the speed 
function. Such approximation of the speed function is compliant with the requirements of the 
model, which are the shape requirements of the graph representing the speed function and that 
the speeds be continuous and smooth functions of problem size up till its upper bound on the 
problem size and zero beyond. 

For the applications that we have chosen, the contribution of communication operations in the 
total execution time is negligibly small compared to that of computations. The inclusion of the 
cost of communications into the modified functional model is a subject of our current research. 
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Fig. 9. Using piece-wise linear approximation to build speed functions for 3 processors. The speed 
functions are built from 3 experimentally obtained points. Speeds of the processors are assumed 
to be zero for problem sizes beyond their upper bounds. 

 
5.3 Numerical Results 

 
In this section, we present the experimental results demonstrating the efficiency of our modified 
functional model over the functional and the single number models.  

In the figures, the speedup calculated is the ratio of the execution time of the application using 
the single number model over the execution time of the application using a functional model. A 
set of as few as 5 points is used to build the speed functions of the processors for the functional 
models.  

The solid lined and dashed curves with normal thickness represent the speedup obtained using 
the functional model [1] over the single number model [4]. Both these models do not take into 
account the upper bounds on the problem size that a processor can solve. The solid lined and 
dashed curves with bold thickness represent the speedup obtained using the modified functional 
model over the single number model [5]. Both these models take into account the upper bounds 
on the problem size that a processor can solve. 

Figure 10(a) shows the speedup of the matrix-matrix multiplication executed on this network 
using the functional models over the matrix-matrix multiplication using the single number 
model. There are two curves, the solid lined curve corresponds to the single number speed of the 
processor obtained based on the multiplication of two dense 500×500 matrices and the dashed 
curve corresponds to the single number speed of the processor obtained based on the 
multiplication of two dense 4000×4000 matrices. It can be seen from the figure that problem 
sizes beyond 24000 cannot be solved by using the functional and the single number models. This 
is because both these models do not take into account the memory limitations of the computers 
involved in the execution of the application. The modified functional model is used to obtain 



  

solutions for problem sizes beyond 24000. It should also be noted that the modified functional 
model and the functional model provide the same solutions for problem sizes less than 24000. 
This is because the data distributions for problem sizes less than 24000 do not exceed the upper 
bound for any processor. Thus it can be seen that larger problem sizes are solved using modified 
functional model and the execution performance obtained is good. 

Figure 10(b) shows the speedup of the matrix factorization executed on this network using the 
functional models over the matrix factorization using the single number model.  
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Fig. 10. Results obtained using the network of heterogeneous computers shown in Table 2. The 
speedup calculated is the ratio of the execution time of the application using a functional model 
over the execution time of the application using a single number model. (a) Comparison of 
speedups of matrix-matrix multiplication. For the single number models, the speeds are obtained 
using serial matrix-matrix multiplication of two dense square matrices. For the solid lined curves, 
the matrices used are of size 4000×4000. For the dashed curves, the matrices used are of size 
500×500. (b) Comparison of speedups of LU factorization. For the single number models, the 



  

speeds are obtained using serial LU factorization of a dense square matrix. For the solid lined 
curves, the matrix used is of size 5000×5000. For the dashed curves, the matrix used is of size 
2000×2000.  
There are two curves, the solid lined curve corresponds to the single number speed of the 
processor obtained based on the matrix factorization of a dense 2000×2000 matrix and the 
dashed curve corresponds to the single number speed of the processor obtained based on the 
matrix factorization of a dense 5000×5000 matrix. It can be seen from the figure that problem 
sizes beyond 19000 cannot be solved by using the functional model and single number models. 
This is because both these models do not take into account the memory limitations of the 
computers involved in the execution of the application. The modified functional model is used to 
obtain solutions for problem sizes beyond 19000. It should also be noted that the modified 
functional model and the functional model obtain the same solutions for problem sizes less than 
19000. This is because the data distributions for problem sizes less than 19000 do not exceed the 
upper bound for any processor. Thus it can be seen that larger problem sizes are solved using the 
modified functional model and the execution performance obtained is good. 

As can be seen from the figures, the modified functional model performs better than the 
currently existing models for a network of heterogeneous computers. 
 

6. Related Work 
 
We survey related papers from the literature in this section. They fall into two categories: papers 
dealing with task partition and scheduling with memory constraints on dedicated environments 
and papers dealing with task scheduling with memory constraints on non-dedicated computing 
environments like the Heterogeneous Networks of Computers (HNOCs) and computing grids. 

Li, Veeravalli, and Ko [12] investigate the problem of scheduling a divisible load onto a set of 
processors with finite-size buffers in heterogeneous single-level tree networks. They propose a 
fast algorithm called Incremental Balancing Strategy (IBS) to achieve the optimal processing 
time. In each increment, distribution of the load is found for processors with available memory 
according to the standard divisible load theory methods [13] without taking the memory 
constraints into account. Then, the distribution of the load is scaled proportionately such that at 
least one buffer is filled completely. The remaining available buffer capacities are memory sizes 
in the next increment. This process is continued until distributing the entire load. Drozdowski 
and Wolniewicz [14] propose a linear programming method of finding solutions with guaranteed 
optimality for the problem of scheduling divisible loads in networks of processors with limited 
memory and communication startup times. The complexity of the linear programming solutions 
that they use to solve their problem is O(p3.5×L), where p is the number of processors involved in 
the execution of the algorithm and L is the length of the string encoding all the parameters of 
linear program.  

The works discussed take into account the processor heterogeneity in terms of speeds, memory 
heterogeneity in terms of memory limitation at each processor, and network heterogeneity in 
terms of the communication cost between a pair of processors.  However, these works assume 
distributed systems with a flat memory model and are not applicable to systems with memory 
hierarchy. The dependence of the speed of the processor on the size of the problem is assumed to 
be linear as is usually observed on dedicated distributed multiprocessor computer systems. The 
largest problem size that can be solved at each processor is assumed to be the core memory at 



  

that processor. This is a safe assumption on dedicated distributed multiprocessor computer 
systems. However on networks of heterogeneous computers, due to the nature of applications run 
and the level of integration of the computers involved in execution of these applications, the core 
memory at each processor is just an upper bound on the largest problem size that can be solved 
but is not a good approximation of the actual largest problem size that can be solved. 

The modified functional model that we propose integrates the essential features underlying 
applications run on a network of heterogeneous computers, mainly, the processor heterogeneity, 
the heterogeneity of memory structure, and the memory limitations at each level of memory 
hierarchy. We also present efficient algorithms of data partitioning with this model with 
relatively low complexity of O(p3×log2n). However we do not consider the cost of 
communications in our modified functional model. 

While resource management and task scheduling are identified challenges of Grid computing, 
current Grid scheduling systems mainly focus on CPU and network availability. Many heuristic 
scheduling algorithms [15, 16] have been proposed for traditional high performance computing. 
However these scheduling systems are for dedicated multiprocessor computer systems and also 
ignore the impact of memory resource availability on the scheduling decision-making.  

Several studies have been reported on task allocation for load balance considering memory 
resource constraints. An opportunity cost approach proposed in [17] converts the usage of 
resources including CPU and memory to a single homogeneous cost. Based on the cost, task is 
assigned or reassigned to each node for load balance. Load sharing policies with the 
consideration of effective usage of global memory were studied in [18]. They consider two types 
of application workload, known memory demands and unknown memory demands. However 
their major concern is how to reduce the average slowdown of all individual jobs in the system, 
instead of how to schedule a parallel application to achieve its best performance. Xu and Sun [5] 
consider how to partition a Grid application and schedule it on a cluster of distributed 
heterogeneous resources to obtain a minimum application execution time with the consideration 
of both CPU resource availability and memory resource availability. Three task partition policies, 
namely, CPU-based, memory-based, and CPU-memory combined partition are studied. They 
show that the CPU-memory combined approach shows good performance gains over the other 
approaches. A heuristic CPU-memory algorithm for task scheduling of a meta-task is also 
proposed. The effect of local jobs on a grid application execution in the situation of resource 
sharing is evaluated using distribution functions. Currently our modified functional model and 
the algorithms using this model are not applicable for task scheduling of a meta-task. 

The accurate modeling of the electronic structure of atoms and molecules involves 
computationally intensive tensor contractions involving large multidimensional arrays. The 
efficient computation of complex tensor contractions usually requires the generation of 
temporary intermediate arrays. These intermediates could be extremely large, but they can often 
be generated and used in batches through appropriate loop fusion transformations. To optimize 
the performance of such computations on parallel computers, Cociorva et al. [19] present a 
framework to address the optimization problem: given a set of computations expressed as a 
sequence of tensor contractions, an empirically derived measure of the communication cost for a 
given target computer, and a specified limit on the amount of available memory on each 
processor, re-structure the computation so as to minimize the total execution time while staying 
within the available memory. The framework considers only the heterogeneity in terms of the 
memory limitations of each computer and is not applicable for programming applications on 



  

networks of heterogeneous computers, which exhibits processor heterogeneity in terms of speeds 
and memory heterogeneity in terms of memory hierarchy and memory limitations of each 
computer. 
 

7. Conclusion 
 
In this paper, we address the problem of optimal distribution of computations over heterogeneous 
computers taking into account the processor heterogeneity, the heterogeneity of memory 
structure, and the memory limitations at each level of memory hierarchy of a processor. We have 
proposed a modified functional model of a network of heterogeneous computers and designed 
efficient algorithms of data partitioning with this model.  

The modified functional model proposed can be used to design efficient algorithms of data 
partitioning for mathematical structures other than sets such as matrices, graphs, and trees. This 
model can be used to design efficient algorithms for the most general partitioning problem, 
which can be formulated as: 

• Given: (1) An application of problem size n to be solved, and (2) A well-ordered set of p 
processors whose speeds are functions of the size of the problem, si=fi(x), and (3) There is 
a limit li on the largest problem size that can be solved on each processor, 

• Partition the problem into p disjoint sub-problems xi (i=0,…,p-1) such that (1) There is a 
one-to-one mapping between the sub-problems and the processors, (2) The size of the sub-
problem xi is proportional to the speed of the processor i owning the sub-problem xi, and 
(3) The size of the sub-problem xi is less than or equal to the limit li on the largest problem 
size that can be solved on each processor (xi ≤ li).  

In the presented research we do not take account of communication cost. Although we well 
understand the importance of its incorporation in our model, this is just out of scope of this work. 
We also understand the importance of the problems of efficient building and maintaining of our 
model. These two problems are also out of scope of the paper and are subjects of our current 
research. 
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