

Data Partitioning for Multiprocessors with Memory Heterogeneity and
Memory Constraints

Alexey Lastovetsky, Ravi Reddy

Department of Computer Science University College Dublin, Belfield Dublin 4, Ireland
E-mail: Alexey.Lastovetsky@ucd.ie, Manumachu.Reddy@ucd.ie

Abstract—The paper presents a performance model that can be used to optimally distribute
computations over heterogeneous computers. This model is application-centric representing the
speed of each computer by a function of the problem size. This way it takes into account the
processor heterogeneity, the heterogeneity of memory structure, and the memory limitations at
each level of memory hierarchy. A problem of optimal partitioning of an n-element set over p
heterogeneous processors using this performance model is formulated, and its efficient solution
of the complexity O(p3×log2n) is given.

Index Terms—Heterogeneous (hybrid) systems, Scheduling and task partitioning, Load
balancing and task assignment

1. Introduction

In this paper, we deal with the problem of optimal distribution of computations over
heterogeneous computers taking into account the processor heterogeneity, the heterogeneity of
memory structure, and the memory limitations at each level of memory hierarchy of a processor.
We present a performance model that integrates these essential features having an impact on the
execution time of parallel and distributed applications running on networks of heterogeneous
computers.

In our previous research [1], we addressed the problem of optimal distribution or scheduling of
computational tasks on networks of heterogeneous computers when one or more tasks do not fit
into the main memory of the processors. We particularly addressed the problem of optimal data
partitioning in heterogeneous environments when relative speeds of processors cannot be
accurately approximated by constant functions of the problem size. We proposed a functional
model that integrated all architectural differences in computers having an impact on the
performance of computers depending on the size of the problem. These architectural differences
are mainly the processor heterogeneity in terms of the speeds of the processors and memory
heterogeneity in terms of the number of memory levels of the memory hierarchy and the size of
each level of the memory hierarchy. Under this model, the speed of each processor is represented
by a continuous and relatively smooth function of the problem size whereas standard models use
a single number to represent the speed. This model is application-centric in the sense that
generally speaking different applications will characterize the speed of the processor by different
functions.

There are two main motivations behind the representation of the speed of the processor by a
continuous and relatively smooth function of the problem size. First of all, we want the model to
adequately reflect the behavior of common, not very carefully designed applications. Consider
the experiments conducted by Lastovetsky and Twamley [2]

Table 1
Specifications of the four heterogeneous computers

Machine
Name

Architecture cpu MHz
Main

Memory
(kBytes)

Cache
(kBytes)

Comp1
Linux 2.4.20-20.9bigmem

Intel(R) Xeon(TM)
2783 7933500 512

Comp2
SunOS 5.8 sun4u sparc

SUNW,Ultra-5_10
440 524288 2048

Comp3 Windows XP 3000 1030388 512

Comp4 Linux 2.4.7-10 i686 730 254524 256

ArrayOpsF

Size of the array

A
b

so
lu

te
 s

pe
ed

 (M
Fl

op
s)

Comp3

Comp4

Comp2

Comp1

P

P

P
P

TreeTraverse

Number of nodes

A
b

so
lu

te
 s

pe
ed

 (M
Fl

op
s) Comp3

Comp4

Comp2

Comp1

P

P
P

P

(a) (b)

MatrixMultATLAS

Size of the matrix

A
b

so
lu

te
 s

pe
ed

 (M
Fl

op
s)

Comp4

Comp2

Comp1

P

P

P

MatrixMult

Size of the matrix

A
b

so
lu

te
 s

pe
ed

 (M
Fl

op
s)

Comp3

Comp2

Comp1

Comp4

P

P

P

(c) (d)

Fig. 1. The effect of caching and paging in reducing the execution speed of each of the four
applications run on network of heterogeneous computers shown in Table 1. (a) ArrayOpsF, (b)
TreeTraverse, (c) MatrixMultATLAS, and (d) MatrixMult. P is the point where paging starts
occurring.

shown in Figure 1 with carefully designed applications ArrayOpsF and MatrixMultAtlas that
efficiently use memory hierarchy, with applications such as TreeTraverse that reference memory
randomly, and applications such as MatrixMult that use inefficient memory reference patterns. It
can be seen that although the

Size of the problem

A
b

so
lu

te
 S

p
ee

d

)(1 xs

)(2 xs

)(3 xs

experimentally obtained
extrapolated
real

11x

12x

13x 21x

22x

23x

Fig. 2. A small network of three processors whose speeds are shown against the size of the
problem. The dotted lines passing through the origin represent solutions provided by the
functional model. The bold curves represent the experimentally obtained speed functions. The
dotted curves represent reasonable approximations of the speed functions in a continuous
manner. The dashed curves represent the real behavior of the speed functions. The first dotted
line giving the data distribution (x11,x12,x13) is a non-optimal solution. The second dotted line giving
the data distribution (x21,x22,x23) is not a solution at all.

applications ArrayOpsF, TreeTraverse, and MatrixMultAtlas demonstrate a sharp and
distinctive performance curve of dependence of the absolute speed on the problem size, the
application MatrixMult, which uses a naïve multiplication of two dense square matrices,
displays a quite smooth dependence of speed on the problem size. Thus, to model execution of a
common and not carefully designed application, we should realistically approximate the
dependence of the speed of the processor by a continuous and relatively smooth function of the
problem size.

The other main motivation is that we want to target general-purpose common heterogeneous
networks. A computer in such a network is an integrated part of the network periodically
performing some computations and communications just as such an integrated node of the
network. It will experience fluctuations in the workload due to its integration into the network.
This changing transient load will cause a fluctuation in the speed of computers on the network, in
that the speed of the computer will vary when measured at different times while executing the
same task. As a result, the fluctuations in speed must be modeled as a performance band. These
performance bands representing the speeds of the processors are more realistically approximated
by a continuous and relatively smooth function of the problem size even for carefully designed
applications efficiently using the memory hierarchy. Figure 1 shows experiments on a set of
computers whose specifications are shown in Table 1. These computers have varying
specifications and varying levels of network integration and are representative of the range of
computers typically used in networks of heterogeneous computers. The results reinforce the

representation of the speed of the processor by a continuous and relatively smooth function of the
problem size.

In [1], we also formulated a problem of partitioning of an n-element set over p heterogeneous
processors using the functional model and designed efficient algorithms to solve the problem.
The optimal solution is the solution where the size of the problem assigned to each processor is
proportional to the speed of the processor. The algorithms are based on the following
observation: If a distribution of the elements of the set amongst the processors is obtained such
that the number of elements is proportional to the speed of the processor, then the points, whose
coordinates are number of elements and speed, lie on a straight line passing through the origin of
the coordinate system and intersecting the graphs of the processors with speed versus the size of
the problem in terms of the number of elements. The algorithms use the observation that the
optimal solution obtained by these algorithms is a straight line passing through the origin of the
coordinate system and intersecting the graphs of the processors with speed versus the size of the
problem in terms of the number of elements. The algorithms take at most p2×log2n steps to find
the optimal solution.

However this model fails to provide optimal solutions when the network consists of computers
that are configured to avoid paging. Consider the experiments shown in Figure 1. The
experiments show that Comp1 and Comp2 do not permit paging. This is typical of computers
used as a main server. For applications designed to efficiently use cache memory, such
computers show a constant speed function, up to a point where the process crashes, probably
because it tries to invoke a paging procedure, not allowed due to its configuration. So if we have
such computers, the real speed function of the size of the problem is not continuous any more but
discontinuous at the point where paging happens, that is, there is a break in the continuity of the
function at the point where paging happens.

Consider a small network of three processors, whose speeds as functions of problem size are
shown in Figure 2. The processor represented by the speed function s1(x) is configured to permit
paging. The processors represented by speed functions s2(x) and s3(x) are configured to avoid
paging. The bold curves represent the experimentally obtained parts of the speed functions. Now
assume that we want to obtain optimal distributions for problem sizes whose optimal solution
lines lie beyond the bold curves. In this case we naturally extrapolate the curves in a continuous
manner using some reasonable approximations. The extrapolations are shown by dotted curves.
However it can be seen that sometimes the extrapolations are not accurate representations of the
real shape of the speed functions as shown for the speed functions s1(x) and s2(x). The real speed
functions are shown by dashed curves. Consider two data distributions obtained by the functional
model and which are shown by dotted lines passing through the origin. Although the first data
distribution (x11,x12,x13) is not the optimal solution just because the extrapolated speed functions
s1(x) and s2(x) are not accurate representations of the real speed functions, it still give a
reasonable sub-optimal solution of the problem. At the same time, the second data distribution
(x21,x22,x23) is not a solution at all. This is because at the points x22 and x23 the paging starts
occurring for computers with speed functions s2(x) and s3(x) and since these computers are
configured to avoid paging, they crash. Therefore in order to obtain optimal and working
solutions for such networks, we need to extend the functional model.

We naturally extend the functional model by including an additional parameter of maximum
problem size. The maximum problem size represents the upper bound on the size of the problem
that each processor can solve. For computers that are configured to avoid paging, it represents the

point where the computer crashes due to the occurrence of paging and where the speed function
of the size of the problem becomes discontinuous.

The rest of the paper is organized as follows. In Section 2, we present the modified functional
model. This is followed by a formulation of a general set-partitioning problem, which is the
problem of partitioning of an n-element set over p heterogeneous processors using this modified
functional model. Then we give its efficient solution of the complexity O(p3×log2n). This
problem is a simple variant of the most advanced problem of partitioning a set with weighted
elements [3]. We use the simple variant to explain how complex the problem of scheduling tasks
amongst processors is when: (a) the processors have significantly different memory structure, and
(b) there are memory limitations on the size of task that can be solved by each processor. We also
use this variant to explain in simple terms how the modified functional model can be used to
achieve better data partitioning on networks of heterogeneous computers before moving on to
solve the most advanced problem.

To demonstrate the efficiency of the modified functional model, we perform experiments using
naïve parallel algorithms for linear algebra kernel, namely, matrix multiplication and LU
factorization using striped partitioning of matrices on a local network of heterogeneous
computers. Our main aim is not to show how matrices can be efficiently multiplied or efficiently
factorized but to explain in simple terms how the modified functional model can be used to
optimally schedule tasks on networks of heterogeneous computers taking into account the
processor and memory heterogeneity. We also view these algorithms as good representatives of a
large class of data parallel computational problems and a good testing platform before
experimenting more challenging computational problems.

2. The Performance Model

The modified functional model of networks of heterogeneous computers has the following
parameters:

• An upper bound on the size of the task that can be solved by each computer, and
• The speed of the processor is represented by a continuous and smooth function of the

problem size until the upper bound. Beyond the upper bound, the speed of the processor is
assumed to be zero.

The model retains the restrictions imposed by the functional model [1] on the shape of the
graph representing the speed function. The shape of the graph should be such that there is only
one intersection point of the graph with any straight line passing through the origin. That is the
speeds of the processors must either be increasing or decreasing functions of problem size for the
problem sizes for which the solutions are sought. These assumptions on the shapes of the graph
are representative of the most general shape of graphs observed for applications experimentally
as shown in Figure 1.

The upper bound could signify one of the following cases:
• Allocation of a task whose size is beyond this bound could result in processor failure.
• Allocation of the task whose size is beyond this bound could result in unacceptable

execution time to accomplish the task due to severe paging.

3. Algorithms for Partitioning Sets

Using the modified functional model, we solve the following problem of partitioning a set, which
can be formulated as:
Definition 1. Heterogeneous Memory Partitioning HMP(n, s, b):

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors
whose speeds are functions of the size of the problem x, si=fi(x), and (3) There is a upper bound
on the largest problem size that can be solved on each processor, that is, there is an upper bound
bi on the number of elements stored by each processor (i=0,…,p-1);

Partition the set into p disjoint partitions such that:
• x0+x1+...+xp-1=n, where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1

respectively,
• xi≤bi for all (i=0,…,p-1),

• the maximum)(max
1

0
i

i
p

i s

x−

=
 of the execution times of the processors is minimized. That is

solve the following min-max problem:

⎭
⎬
⎫

⎩
⎨
⎧ −

=
)(maxmin

1

0
i

i
p

i s

x

where xi is the number of elements in partition i.
We provide an optimal solution to this problem of complexity O(p3×log2n). We assume that

the volume of computations involved in the execution of a problem size is proportional to the
problem size.

When the speed of the processor is represented by a single number, the algorithm used to
perform the partitioning is quite straightforward, of complexity O(p2) [4].

When there is an upper bound bi on the number of elements stored by each processor
(i=0,…,p-1), the algorithm used to solve the partitioning problem is of complexity O(p3). This
algorithm can be summarized as follows:

1. Partition the set such that the number of elements in each partition is proportional to the
speed of the processor and assuming no upper bound exists on the number of elements that
can be stored by each processor. If the number of elements assigned to each processor is
less than or equal to the upper bound on the number of elements that can be stored by each
processor, we have the optimal distribution.

2. For each processor i (i=0,…,p-1), we check if the number of elements assigned to it is
greater than the upper bound on the number of elements that it can store. For all the
processors whose upper bounds are exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the partitioning problem of a set with
remaining elements over the remaining processors. We recursively apply this procedure
until all the elements have been assigned.

Size of the problem

A
b

so
lu

te
 S

p
ee

d

)(1 xs

)(2 xs

)(3 xs

line 1

line 2

3x

Optimally sloped line

Bisections to obtain the optimal solution

1b

2b

3b

2x

3

3

2

2
132 x

(x)s

x

(x)s
 , =−=+ bnxx

Fig. 3. The partitioning algorithm for the problem size n. The bold curves represent the
experimentally obtained speed functions. The dotted curves represent reasonable approximations
of the speed functions in a continuous manner. For processor represented by speed function
s1(x), we assign this processor the number of elements equal to its upper bound b1. We then
partition the set with remaining n-b1 elements amongst the processors represented by speed
functions s2(x) and s3(x) respectively. The region between the lines line1 and line2 is bisected to
narrow down to the optimal solution.

The proof of optimality of the solution provided by this algorithm is given in [5]. This is indeed a
special case of the problem variant we are going to solve in this section.

When the speed of the processor is represented by a function of the size of the problem, s=f(x),
and when there is no upper bound on the number of elements stored by each processor, efficient
algorithms used to perform the partitioning have been proposed of complexity O(p2×log2n) [1].

When the speed of the processor is represented by a function of the size of the problem, s=f(x),
and when there is an upper bound on the number of elements stored by each processor, the
problem of partitioning a set is non-trivial. Before presenting the algorithm to solve this problem,
we formulate the formal mathematical problem of the optimization problem HMP of partitioning
of the set. Given: (1) A set of n elements, and (2) A well-ordered set of p functions, si=fi(x), and
(3) There is a upper bound bi on the number of elements that can be stored in each partition
(i=0,…,p-1), find a partition of the the set into p disjoint partitions such that:

• x0+x1+...+xp-1=n where x0,x1,...,xp-1 are the number of elements in partitions 0,1,…,p-1
respectively,

• xi≤bi for all (i=0,…,p-1),

• the maximum of)(max
1

0
i

i
p

i s

x−

=
 is minimized. That is solve the following min-max problem:

⎭
⎬
⎫

⎩
⎨
⎧ −

=
)(maxmin

1

0
i

i
p

i s

x

where xi is the number of elements in partition i.
Before we present the algorithm to solve the optimization problem HMP, we apply the

following assumptions:
 (1) The speed of each processor is represented by a continuous function of the size of the

problem up till its upper bound on the problem size. The speed of the processor is zero beyond
the upper bound.

(2) The shape of the graph representing the speed function should be such that there is only one
intersection point of the graph with any straight line passing through the origin. That is the
speeds of the processors must either be increasing or decreasing functions of problem size for the
problem sizes for which the solutions are sought and,

(3) For each processor, for all x ≥ y, where x and y are problem sizes, the execution times tx and
ty to execute problems of sizes x and y respectively are related by tx ≥ ty.
Algorithm Heterogeneous Memory Partitioning Algorithm HMPA(n, s, b). The algorithm we
propose to solve this advanced partitioning problem is graphically illustrated in Figure 3 and has
the following main points:

1. Partition the set such that the number of elements in each partition is proportional to the
speed of the processor and assuming no upper bound exists on the number of elements that
can be stored by the processor (we can use any continuous extension of the speed function
beyond the maximal problem size, say, a constant equal to the speed for the maximal
problem size). The partitioning algorithm used to perform this task is discussed in [1]. If
the number of elements in each partition assigned to each processor is less than the upper
bound on the number of elements that can be stored by the processor, we have an optimal
distribution.

2. For each processor i (i=0,…,p-1), we check if the number of elements assigned to it is
greater than the upper bound on the number of elements that it can store. For all the
processors whose upper bounds are exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the partitioning problem of a set with
remaining elements over the remaining processors. We recursively apply this procedure
until all the elements have been assigned.

Theorem 1. HMPA(n, s, b) gives the optimal solution to the optimization problem HMP(n, s, b).
Proof. We prove the optimality of the solution using mathematical induction. We use the
maximum time to solve the task assigned to each processor as the performance metric.

The cases for p=1 and p=2 are trivial. For p=3, let us assume the upper bounds of the
processors 1, 2, and 3 on the number of elements that they can store are b1, b2, and b3
respectively. Suppose the optimal distribution assuming there are no upper bounds on the number
of elements is (x1, x2, x3) such that x1+x2+x3=n where n is the size of the problem.

Consider the case where x1 > b1 and x2 > b2. Let us assign the number of elements equal to b1

for processor 1. The remaining distribution has to satisfy the equality 1
'
3

'
2 bnxx −=+ where

'
2x and '

3x are to be chosen such that the speed of the processor is proportional to the number of

elements assigned to it. If the speeds of the processors 2 and 3 are non-increasing functions of
problem size, it can be proved that 2

'
2 xx > and 3

'
3 xx > . This gives us the inequality

22
'
2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2. If

the speeds of the processors 2 and 3 are non-decreasing functions of problem size, there are three
possibilities, (2

'
2 xx > , 3

'
3 xx >), (2

'
2 xx < , 3

'
3 xx >) and (2

'
2 xx > , 3

'
3 xx <). The first and the third

possibility give us the inequality 22
'
2 bxx >> . For the second possibility, any allocation ''

2x such

that ''
2x < b2 would result in an allocation of ''

3x number of elements to processor 3 such that
''

3x > '
3x thus resulting in a larger execution time. Therefore we have to necessarily assign b2

number of elements to processor 2. If the speed of the processor 2 is a non-decreasing function of
problem size and speed of processor 3 is a non-increasing function of problem size, there are two
possibilities, (2

'
2 xx < , 3

'
3 xx >) and (2

'
2 xx > , 3

'
3 xx <). In the first possibility, any allocation ''

2x

such that ''
2x < b2 would result in an allocation of ''

3x number of elements to processor 3 such that
''

3x > '
3x thus resulting in a larger execution time. The second possibility gives us the inequality

22
'
2 bxx >> . Therefore we have to necessarily assign b2 number of elements to processor 2.
Consider the case of optimal distribution where x1 > b1 is true. For processor 1, we assign the

number of elements equal to b1. The remaining elements are allocated such that 1
'
3

'
2 bnxx −=+

where '
2x and '

3x are to be chosen such that the speed of the processor is proportional to the

number of elements assigned to it. Any other allocation ''
1x such that ''

1x < b1 would result in an

allocation where one of the inequalities (''
2x > '

2x), (''
3x > '

3x) is satisfied thus resulting in a larger

execution time. It can be proved similarly for the case when x2 > b2.
Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1

processors. For a given problem size n, let us assume the distribution given by our algorithm to
be kmm xxbbbx ,,,,,,, 1210 LL + such that nxbx k =+++ L10 , where without loss of generality

processors 1,…,m are allocated their upper bounds. It can be inferred that the execution times for
the rest of the processors 0,m+1,…,k satisfy the equality km ttt === + L10 . It can also be

inferred that ikm tttt ≥+),,,(10 L for all i=1,…,m. The execution time for the problem size is

equal to)(max
0

i

k

i
mp tt

=
= =),,,(10 km ttt L+ . Consider an alternative solution with the distribution

''
1

'
0 ,,, kxxx L where nxxx k =+++ ''

1
'
0 L and mm bxbx ≤≤ '

1
'
1 ,,L . It can be easily seen that for

atleast one processor i (i=0,m+1,…,k), ii xx ≥' , thus giving an execution time '
it , which is greater

than the execution time given by our algorithm mpt .

Theorem 2. The complexity of the algorithm HMPA(n, s, b) is O(p3×log2n).
Proof. There are p major steps in the algorithm. At each such major step i, we solve the problem
of partitioning of a set amongst p-i processors such that the number of elements in each partition
is proportional to the speed of the processor and assuming no upper bound exists on the number
of elements that can be stored by the processor. The complexity of this step is O(p2×log2n) [1].
Since there are p such steps, the overall worst-case complexity is O(p3×log2n). Mathematically,
the worst-case complexity is the summation of p terms:

()
()

np

np

bbnbnnp

bbnbnnp

bbnpbnpnpC

p

2
3

2
2

1002
2

102022
2

102
2

02
2

2
2

log

)(log

))()((log

)(log)(loglog

1)(log)2()(log)1(log

×≅

×≅

×−−×−××≅

+−−+−+×≅

++−−×−+−×−+×=

L

L

L

4. Applications of the Model

So far we have formulated a realistic performance model of a network of heterogeneous
computers and designed efficient algorithms of data partitioning with this model. Now we
present a list of practical applications of this model:

• Data partitioning on networks of heterogeneous computers, which only include computers
that are configured to avoid paging. Such computers crash when problem sizes are
allocated that requires paging. The largest problem size on such computers is the problem
size where paging starts happening.

• Data partitioning on networks of heterogeneous computers, which only include computers
that permit paging. However allocation of large problem sizes can cause severe paging on
such computers as a result causing severe performance degradation and sometimes stalling
of the entire application. The largest problem size on such computers is not the problem
size where paging starts happening but the problem size which causes severe performance
degradation of the application.

• Data partitioning on networks of heterogeneous computers, which include computers some
of which permit paging and some of which are configured to avoid paging.

5. Experimental Results

The experimental results are divided into three sections. The first two sections are devoted to
building the modified functional model. In the first section, we suggest ways to determine the
upper bound on the size of the problem that each processor can solve. Then we present the
parallel applications and the network of heterogeneous computers on which the applications are
tested. For each application, we explain how to estimate the processor speed. This is followed by
presentation of the procedure to build the speed functions of the processors. Finally we present
the experimental results obtained by running these applications on the network of heterogeneous
computers.

5.1 Determination of Largest Problem Size

In this section, we highlight different approaches to determine the largest problem size of an
application that can be solved efficiently on a given computer. We do not define the

Fig. 4. Operating system tools to determine the user-available memory for an application. The
user-available memory is highlighted in bold.

notion of largest problem size as this depends on the nature of the applications run on the
network of heterogeneous computers and the level of integration of the computers in this
network.

One of the ways is to determine the user-available memory on the computer and the memory
requirement of the application. If the memory requirement of the application is less than the user-
available memory then the application will not suffer from memory limitations. We can
determine the largest problem size we can run, by calculating when the total memory requirement
of an application would exceed the user-available memory capacity on a given computer. The
total user-available memory of a computer can be obtained from the operating system utilities
like ‘cat /proc/meminfo’ and ‘top’ as shown in Figure 4. There are also system calls that
can be called from the application code to obtain the user-available memory of a given computer.

Cierniak, Zaki, and Li [6] show that the total memory requirement is generally not a good
criterion for judging the largest problem size that can be run efficiently. The reason is that the
total memory requirement is a very conservative measure, and generally overestimates the
memory requirement of an application. They introduce a new notion, the resident memory size
(RMS) for a given program segment, defined as the minimum number of pages of physical
memory required to ensure that all fault misses are cold misses (i.e. due to the first reference) for
that segment, using a particular page replacement algorithm. If the resident memory size is less
than the user-available memory then the application will not suffer from the effects of memory
limitations. If, on the other hand, the program’s RMS is larger than the available memory then
some of the pages required will not be in memory, and a page fault occurs. As the input data size
increases, the RMS increases, ultimately exceeding the available memory. A compile-time
algorithm is provided to approximate the RMS. The notion of RMS value should work well in
practice for regular problems, but it may not be a good approximation for irregular problems.

As shown in Figure 1, the notion of the largest problem size depends on the nature of the
application and on the level of the integration of the computers used in the experiments. For
computers that do not permit paging, the largest problem size is the point where paging starts
happening. This is shown to be the point P for computers Comp1 and Comp2 in Figure 1 for all
the applications. For computers configured to permit paging, the largest problem size is not the
point where paging starts happening but the point where the absolute speed of the processor falls
drastically. This is shown to be the point P for computers Comp3 and Comp4 in Figure 1 for all
the applications.

shell$ cat /proc/meminfo
MemTotal: 1033908 kB
MemFree: 389568 kB
…
shell$ top
Mem: 1033908k total, 644340k used, 389568k free, 512680k buffers
Swap: 2040212k total, 7924k used, 2032288k free, 36916k cached
…

Table 2
Specifications of the Eleven Heterogeneous Computers

Machine
Name

Architecture cpu
MHz

Main
Memory
(kBytes)

Largest size of
task

(Matrix-Matrix
Multiplication)

Largest size
of task (LU

factorization)

Cache
(kBytes)

X1 Linux 2.4.20-
20.9bigmem

Intel(R) Xeon(TM)

2783 7933500 116640000 262440000 512

X2 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 36000000 81000000 512

X3 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 36000000 81000000 512

X4 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 36000000 81000000 512

X5 Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1030508 36000000 81000000 512

X6 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 31360000 64000000 2048

X7 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 59290000 2048

X8 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 64000000 2048

X9 SunOS 5.8 sun4u sparc
SUNW,Ultra-5_10

440 524288 30250000 59290000 2048

X10 Linux 2.4.18-3 i686
Intel Pentium III

997 254576 24502500 30250000 256

X11 SunOS 5.5 Sun4m
sparc

SUNW,SPARCstation-
5

110 65536 6000000 6250000 512

The problem size at point P shown in Figure 1 is probably less than the largest problem size

but it is a good approximation. Speed functions built with large number of points with a wider
range of problem sizes can give a better approximation of largest problem size that can be solved
on a processor. However in this case it depends on a number of conditions such as how much
time the application programmers are willing to spend to build the speed functions of the
processors and their level of efficiency. This approach of determining the largest problem size
should work well in practice for regular as well as irregular problems.

5.2 Applications

A small heterogeneous local network of 11 different Solaris and Linux workstations shown in
Table 2 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch
enabling parallel communications between the computers.

There are two applications used to demonstrate the efficiency of the modified functional model
over the functional and the single number models.
Matrix-matrix multiplication

,

C=AxBT

A B

(a)

(b)
Fig. 5. (a) Matrix operation C=A×BT with matrices A, B, and C. Matrices A, B, and C are horizontally
sliced. The number of elements in each slice is proportional to the speed of the processor. (b)
Serial matrix multiplication A1×B1 (B1=BT) of two dense non-square matrices of sizes n1×n2 and
n2×n1 respectively to estimate the absolute speed of processor 1. The parameter n2 is fixed during
the application of the set partitioning algorithm and is equal to n.

The first application shown in Figure 5(a) multiplies matrix A and matrix B, i.e., implementing
matrix operation C=A×BT, where A, B, and C are dense square n×n matrices. The application
uses a parallel algorithm of matrix-matrix multiplication of two dense matrices using horizontal
striped partitioning [7, p.199], which is based on a heterogeneous 1D clone of the parallel
algorithm used in ScaLAPACK [8] for matrix multiplication. The matrices A, B, and C are
partitioned into horizontal slices such that the total number of elements in the slice is
proportional to the speed of the processor.

For the application implementing matrix operation C=A×BT, the absolute speed of a processor
must be obtained based on multiplication of two dense non-square matrices of sizes n1×n2 and
n2×n1 respectively as illustrated in Figure 5(b). Even though there are two parameters n1 and n2

representing the size of the problem, the parameter n2 is fixed and is equal to n during the
application of the set partitioning algorithm. To apply the set partitioning algorithm HMPA(n, s,
b) to determine the optimal data distribution for such an application, we need to extend it for
problem size represented by two parameters (n1 and n), HMPA(n1, n, s, b). The speed function
of a processor is geometrically a surface when represented by a function of two parameters
s=f(n1,n2). However since the parameter n2 is fixed and is equal to n, the surface is reduced to a
line s=f(n1,n2)= s=f(n1,n). Thus the set partitioning problem for this application reduces to the
algorithm that we presented in this paper. However additional computations are involved in
obtaining experimentally the geometric surfaces representing the speed functions of the
processors and then reducing them to lines.

Our algorithm of partitioning of a set can be extended easily to obtain optimal solutions for
problem spaces with two or more parameters representing the problem size. Each such problem
space is reduced to a problem formulated using a geometric approach and tackled by extensions
of our geometric set-partitioning algorithm. Consider for example the case of two parameters
representing the problem size where neither of them is fixed. In this case, the speed functions of
the processors are represented by surfaces. The optimal solution provided by a geometric
algorithm would divide these

n2

n1

A

n2

n1
B

A1

B1

Table 3
Results of serial matrix-matrix multiplication

Size of
matrix

Absolute
speed

(MFlops)

Size of
matrix

Absolute
speed

(MFlops)

Size of
matrix

Absolute
speed

(MFlops)

Size of
matrix

Absolute
speed

(MFlops)
256×256 67 1024×1024 67 2304×2304 67 4096×4096 59

128×512 68 512×2048 66 1152×4608 67 2048×8192 60
64×1024 67 256×4096 67 576×9216 69 1024×16384 59
32×2048 67 128×8192 67 288×18432 70 512×32768 60

Table 4
Results of serial LU factorization

Size of
matrix

Absolute
speed

(MFlops)

Size of
matrix

Absolute
speed

(MFlops)

Size of
matrix

Absolute
speed

(MFlops)

Size
of matrix

Absolute
speed(M

Flops)
1024×1024 115 2304×2304 129 4096×4096 131 6400×6400 132
512×2048 115 1152×4608 130 2048×8192 132 3200×12800 131
256×4096 116 576×9216 129 1024×16384 132 1600×25600 132
128×8192 117 288×18432 129 512×32768 131 800×51200 131

surfaces to produce a set of rectangular partitions equal in number to the number of processors
such that the number of elements in each partition (the area of the partition) is proportional to the
speed of the processor. We do not present the extensions of our algorithm here for such multi-
dimensional representations of the size of the problem. We think it would complicate the
presentation.

To calculate the absolute speed of the processor, we use a serial version of the parallel
algorithm of matrix-matrix multiplication. The serial version performs matrix-matrix
multiplication of two dense square matrices. Though the absolute speed must be obtained by
multiplication of two dense non-square matrices, we observed that our serial version gives almost
the same speeds for multiplication of two dense square matrices if the number of elements in a
dense non-square matrix is the same as the number of elements in a dense square matrix. This is
illustrated in Table 3 for one Linux computers X2-X5 whose specification is shown in Table 2.
The behavior exhibited is the same for other computers. Thus speed functions of the processors
built using dense square matrices will be the same as those built using dense non-square
matrices.
LU Factorization
The second application is based on the parallel algorithm of LU factorization of a dense square
n×n matrix A, one step of which is shown in Figure 6(a). On a homogeneous p-processor linear
array, a CYCLIC(b) distribution of columns is used to distribute the matrix A where b is the
block size [4, 9]. A cyclic distribution would assign block numbers 0,1,2,…,n-1 to processor
0,1,2,…,p-1,0,1,2…,p-1,0,…, respectively, for a p-processor linear array (n»p), until all n blocks
are assigned. At each step of the algorithm, the processor that owns the pivot block factors it and
broadcasts it to all the processors, which update their remaining blocks. At the next step, the next
block of b columns becomes the pivot panel, and the computation progresses. Figure 6(a) shows
how the column panel, L11 and L21, and the row panel, U11 and U12, are computed and how the
trailing submatrix A22 is updated. Because the largest fraction of the work takes place in the
update of A22,

(a)

(b)

(c)
Fig. 6. (a) One step of the LU factorization algorithm of a dense square matrix A of size n×n. (b) The
matrix A is partitioned using Variable Group Block distribution. This figure illustrates the distribution
for n=576,b=32,p=3. The distribution inside groups G1, G2, and G3 are {2,1,1,0,0,0}, {2,1,0,0,0}, and
{2,2,1,1,0,0,0}. (b) Serial LU factorization of a dense non-square matrix is used to estimate the absolute
speed of a processor. Since the Variable Group Block distribution uses the functional model where
absolute speed of the processor is represented by a function of a size of the problem, the distribution
uses absolute speeds at each step of the LU decomposition that are based on the size of the problem
solved at that step. As seen in this figure, at each of the steps for processor 0, the functional
dependence of the absolute speed on the problem size gives the speeds based on solving the problem
size at that step, which is equal to the number of elements in matrices An,n1

, An,n2
, and An,n3

 respectively.
That is at each of the steps for processor 0, the absolute speeds are based on serial LU decomposition
of matrices An,n1

, An,n2
, and An,n3

.

therefore, to obtain maximum parallelism all processors should participate in the updating. Since
A22 reduces in size as the computation progresses, a cyclic distribution is used to ensure that at
any stage A22 is evenly distributed over all processors, thus obtaining a balanced load.

Two load balancing algorithms, namely, Group Block algorithm [10, 11] and Dynamic
Programming algorithm [4] have been proposed to obtain optimal static distribution over p
heterogeneous processors arranged in a linear array. The Group Block distribution partitions the

U

L

A A

U

L

U11

L11

A21

L21 A22

A

g1 n - g1

n - g1An-g1,n-g1

n

A

g1 g2 n - (g1+g2)

n - (g1+g2)

A

g1 g2 g3

A n1

nn

g1 g2 g3

A

n

n2

g1 n - g1

A

n

n3

An,n3

g1 g2 n - (g1+g2)

An,n1
An,n2

matrix into groups, all of which have the same number of blocks. The number of blocks per
group (size of the group) and the distribution of the blocks in the group amongst the processors
are fixed and are determined based on speeds of the processors, which are represented by a single
constant number. Same is the case with Dynamic Programming distribution except that the
distribution of the blocks in the group amongst the processors is determined based on dynamic
programming algorithm.

We propose a Variable Group Block distribution, which is a modification of the Group Block
algorithm. It uses the functional model where absolute speed of the processor is represented by a
function of a size of the problem. Since the Variable Group Block distribution uses the functional
model where absolute speed of the processor is represented by a function of a size of the
problem, the distribution uses absolute speeds at each step of the LU decomposition that are
based on the size of the problem solved at that step. That is at each step, the number of blocks per
group and the distribution of the blocks in the group amongst the processors are determined
based on absolute speeds of the processors given by the functional model, which are based on
solving the problem size at that step. Thus it also takes into account the effects of paging.

Figures 6(b) and 6(c) illustrate the Variable Group Block algorithm of a dense square n×n
matrix A over p heterogeneous processors. Given a dense n×n square matrix A and a block size
of b, the Variable Group Block distribution is a static data distribution that vertically partitions
the matrix into m groups of blocks whose column sizes are g1,g2,…,gm as shown in Figure 6(b).
The groups are non-square matrices of sizes n×(g1×b),n×(g2×b),…,n×(gm×b) respectively. The
steps involved in the distribution are:

1). To calculate the size g1 of the first group G1 of blocks, we adopt the following procedure:
• Using the data partitioning algorithm, we obtain an optimal distribution of matrix A

such that the number of elements assigned to each processor is proportional to the
speed of the processor. The optimal distribution derived is given by (xi, si) (0≤i≤p-1),

where xi is the size of the subproblem such that 21

0
n=∑ −

=

p

i ix and si is the absolute

speed of the processor used to compute the subproblem xi for processor i. Calculate the

load index li =
∑ −

=

1

0

is
p

k ks
 (0≤i≤p-1).

• The size of the group g1 is equal to ⎣ ⎦)min(/1 il (0≤i≤p-1). If g1/p<2,

then ⎣ ⎦)min(/2g1 il= . This condition is imposed to ensure there is sufficient number of

blocks in the group.
• This group G1 is now partitioned such that the number of blocks g1,i is proportional to

the speeds of the processors si where 1

1-p

0i 1,i gg =∑ =
 (0≤i≤p-1).

2). To calculate the size g2 of the second group, we repeat step 1 for the number of elements
equal to (n-g1)

2 in matrix A. This is represented by the sub-matrix An-g1,n-g1 shown in Figure 6(b).
We recursively apply this procedure until we have fully vertically partitioned the matrix A.

3). For algorithms such as LU Factorization, only blocks below the pivot are updated. The
global load balancing is guaranteed by the distribution in groups; however, for the group that
holds the pivot it is not possible to balance the workload due to the lack of data. Therefore it is
possible to reduce the processing time if the last blocks in each group are assigned to fastest
processors, that is when there is not enough data to balance the workload then it should be the
fastest processors doing the work. That

Matrix-Matrix Multiplication

80
85
90
95

100
105
110
115
120
125
130

0 2000 4000 6000 8000 10000 12000

Size of the matrix

A
b

so
lu

te
 s

p
ee

d
 (
M

F
lo

p
s)

points=8
points=7
points=6

points = Number of experimentally
obtained points

Width of the band of
accuracy is 5%

LU factorization

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

Size of the matrix

A
b

so
lu

te
 s

p
ee

d
 (

M
F

lo
p

s)

points=8
points=7
points=5

points = Number of experimentally obtained
points

Width of the band of accuracy is 5%

Fig. 7. Determination of a set with relatively few points used to build the speed functions of the
processors X2-X5 whose specifications are shown in Table 2. As few as 6 points and 5 points are
used to build an efficient speed function for matrix multiplication and LU factorization respectively
with deviation approximately 5% from other speed functions built with more number of points.

is in each group, processors are reordered to start from the slowest processors to the fastest
processors for load balance purposes.

In LU Factorization, the size of the matrix shrinks as the computation goes on. This means
that the size of the problem to be solved shrinks with each step. Consider the first step. After the
factorization of the first block of b columns, there remain n-b columns to be updated. At the
second step, the number of columns to update is only n-2×b. Thus the speeds of the processors to
be used at each step should be based on the size of the problem solved at each step, which means
that for the first step, the absolute speed of the processors calculated should be based on the
update of n-b columns and for the second step, the absolute speed of the processors calculated
should be based on the update of n-2×b columns. Since the Variable Group Block distribution

uses the functional model where absolute speed of the processor is represented by a function of a
size of the problem, the distribution uses absolute speeds at each step that are calculated based on
the size of the problem solved at that step.

For the application implementing LU factorization, the absolute speed of a processor must be
obtained based on LU factorization of a dense non-square matrix of size m1×m2 as shown in
Figure 6(c). Even though there are two parameters m1 and m2 representing the size of the
problem, the parameter m1 is fixed and is equal to n during the application of the set partitioning
algorithm. To apply the set partitioning algorithm to determine the optimal data distribution for
such an application, we need to extend it for problem size represented by two parameters, n and
m2. The speed function of a processor is geometrically a surface when represented by a function
of two parameters s=f(m1,m2). However since the parameter m1 is fixed and is equal to n, the
surface is reduced to a line s=f(m1,m2)= s=f(n,m2). Thus the set partitioning problem for this
application reduces to the algorithm that we have presented in this paper. However additional
computations are involved in obtaining experimentally the geometric surfaces representing the
speed functions of the processors and then reducing them to lines.

The set partitioning algorithm can also be extended here easily as explained for matrix
multiplication. To calculate the absolute speed of the processor, we use a serial version of the
parallel algorithm of LU factorization. The serial version performs LU factorization of a dense
square matrix. Though the absolute speed must be obtained by using LU factorization of a dense
non-square matrix, we observed that our serial version gives almost the same speeds for LU
factorization of a dense square matrix if the number of elements in a dense non-square matrix is
the same as the number of elements in a dense square matrix. This is illustrated in Table 4 for
computers X2-X5 whose specification is shown in Table 2. The behavior exhibited is the same
for other computers.

The absolute speed of the processor in number of floating point operations per second is
calculated using the formula

executionoftime

nnnMF

executionoftime

nscomputatioofvolume
speedAbsolute

×××==

where n is the size of the matrix. MF is 2 for Matrix Multiplication and 2/3 for LU factorization.
In the case of matrix-matrix multiplication, the size of the task is the number of elements in
resultant matrix C=A×BT. In the case of LU factorization, the size of the task is the number of
elements in the factorized matrix.

For these two applications, the network of heterogeneous computers shown in Table 2 contains
some computers that permit paging and some computers that do not permit paging. For example,
the computer X1 is a computer science departmental server running NFS and NIS, as well as web
and database servers. It is configured to not permit paging. The largest problem size that can be
solved on this computer is 116640000 and 262440000 for matrix-matrix multiplication and LU
factorization respectively. Allocation of a task larger than this size will result in crash of this
processor. The computers X2, X3, X4, and X5 permit paging. However allocation of a task to
these computers, the size of which is greater than 36000000 and 81000000 for matrix-matrix
multiplication and LU factorization respectively, will result in severe performance degradation of
the parallel application. For each of these two applications, the largest problem size that can be
solved on the network of heterogeneous networks shown in Table 2 is just the sum of the largest
sizes of the tasks that can be solved on each computer.

There are three important issues in selecting a set of points to build a speed function of a
processor:

1. The range of the set of points, that is, the minimal problem size and the maximal problem
size experimentally used. The minimum problem size could be as low as a size of memory
that fits into the top level of memory hierarchy of the computer and the maximum problem
size is the upper bound on the largest problem size that the processor can solve,

2. The number of points in the set, and
3. The intervals between the points.
The speed function for a processor is built using a set of few experimentally obtained points.

The more the number of points used in building the speed functions, the more accurate the speed
functions are. However it is prohibitively expensive to use large number of points to build the
speed functions of the processors. Hence for each processor, an optimal set of few points needs
to be chosen to build an efficient speed function. Such a speed function built gives the speed of
the processor for any problem size with certain deviation from the ideal speed function and speed
functions built with sets with more number of points. This deviation must be within acceptable
limits, ideally not exceeding the inherent deviation of the performance of computers typically
observed in the network. In our experiments, we set the acceptable deviation to be %5± . This
implies that the speed function should give the speed of the processor for a problem size within

%5± accuracy from the speed given by an ideal speed function or the speed functions built with
sets with more number of points. Figure 7 show speed functions for matrix multiplication
obtained using three sets of 6, 7, and 8 points and speed functions for LU factorization obtained
using three sets of 5, 7, and 8 points for the computers X2-X5 whose specifications are shown in
Table 2. It can be seen that 6 points and 5 points are enough to build an efficient speed function
that fall within acceptable limits of deviation for matrix multiplication and LU factorization
respectively.

A naïve approach to select a set of i points is: If (xmin, smin) is the point with minimal problem
size experimentally obtained and (xmax, smax) is the point with maximal problem size
experimentally obtained, the remaining i-2 points experimentally tested have problem sizes
(xmin+(xmax-xmin)/(i-1)),…,(xmin+(i-2)*(xmax-xmin)/(i-1))) respectively.

In some cases, clever experimental methods can be adopted to determine the range that is used
to choose a set of points to build the speed functions of the processors. Two examples are
illustrated in Figure 8. Suppose the problem size is n and the number of processors involved in
the execution of the problem size is p. For the first case shown in Figure 8(a), obtain the speeds
of the processors with each processor executing a problem size of (n/p). We assume that the
upper bounds of all the processors exceed (n/p). For the processor exhibiting the lowest speed (in
this case the processor with speed function s1(x)), the set of points can be chosen from xmin to
(n/p). For the processor that shows the maximum speed (in this case the processor with speed
function s2(x)), the set of points can be chosen from (n/p) to xmax, where xmax represents the
upper bound on the largest problem size that can be solved on each processor. For all the other
processors, the set of points are chosen from xmin to xmax.

For the second case shown in Figure 8(b), the upper bound of at processor with speed function
s4(x) is less than (n/p). For this processor, the set of points can be chosen from xmin to b4. Obtain
the speeds of the processors with each processor executing a problem size of b4. For the
processor with speed function s1(x) exhibiting the lowest speed, the set of points can be chosen
from xmin to b4. For the processor with speed function s2(x) showing the maximum speed, the set

of points can be chosen from b4 to b2. For all the other processors, the set of points are chosen
from xmin to xmax.

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

Size of the problem = n

line 1 line 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p

n
x

1b

2b

3b

(a)

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

Size of the problem = n⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p

n
x

1b

2b

3b

)(4 xs

4b

4bx =

line1

line2

(b)

Fig. 8. Some advanced methods to determine the range that is used to choose a set of points to
build the speed functions of the processors. In both the cases, the optimal solution line lies
between line1 and line2.

We use piece-wise linear function approximation illustrated in Figure 9 to build the speed
function. Such approximation of the speed function is compliant with the requirements of the
model, which are the shape requirements of the graph representing the speed function and that
the speeds be continuous and smooth functions of problem size up till its upper bound on the
problem size and zero beyond.

For the applications that we have chosen, the contribution of communication operations in the
total execution time is negligibly small compared to that of computations. The inclusion of the
cost of communications into the modified functional model is a subject of our current research.

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(1 xs

)(2 xs

)(3 xs

1b

2b

3b

Fig. 9. Using piece-wise linear approximation to build speed functions for 3 processors. The speed
functions are built from 3 experimentally obtained points. Speeds of the processors are assumed
to be zero for problem sizes beyond their upper bounds.

5.3 Numerical Results

In this section, we present the experimental results demonstrating the efficiency of our modified
functional model over the functional and the single number models.

In the figures, the speedup calculated is the ratio of the execution time of the application using
the single number model over the execution time of the application using a functional model. A
set of as few as 5 points is used to build the speed functions of the processors for the functional
models.

The solid lined and dashed curves with normal thickness represent the speedup obtained using
the functional model [1] over the single number model [4]. Both these models do not take into
account the upper bounds on the problem size that a processor can solve. The solid lined and
dashed curves with bold thickness represent the speedup obtained using the modified functional
model over the single number model [5]. Both these models take into account the upper bounds
on the problem size that a processor can solve.

Figure 10(a) shows the speedup of the matrix-matrix multiplication executed on this network
using the functional models over the matrix-matrix multiplication using the single number
model. There are two curves, the solid lined curve corresponds to the single number speed of the
processor obtained based on the multiplication of two dense 500×500 matrices and the dashed
curve corresponds to the single number speed of the processor obtained based on the
multiplication of two dense 4000×4000 matrices. It can be seen from the figure that problem
sizes beyond 24000 cannot be solved by using the functional and the single number models. This
is because both these models do not take into account the memory limitations of the computers
involved in the execution of the application. The modified functional model is used to obtain

solutions for problem sizes beyond 24000. It should also be noted that the modified functional
model and the functional model provide the same solutions for problem sizes less than 24000.
This is because the data distributions for problem sizes less than 24000 do not exceed the upper
bound for any processor. Thus it can be seen that larger problem sizes are solved using modified
functional model and the execution performance obtained is good.

Figure 10(b) shows the speedup of the matrix factorization executed on this network using the
functional models over the matrix factorization using the single number model.

Matrix-Matrix Multiplication

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

19000 21000 23000 25000 27000 29000

Size of the matrix (n)

S
p

ee
d

u
p

For n<24000, the modified functional model and the
functional model provide the same solutions.
For n≥24000, functional and single number models fail.
Modified functional model provides working solutions.

24000n =

40004000×
500500×

(a)

LU factorization

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

14000 16000 18000 20000 22000 24000 26000 28000 30000

Size of the matrix (n)

S
p

ee
d

u
p

For n<19000, modified functional model and the functional
model provide the same solutions.
For n≥19000, functional and single number models fail.
Modified functional model provides working solutions.

19000n =

50005000×
20002000×

(b)

Fig. 10. Results obtained using the network of heterogeneous computers shown in Table 2. The
speedup calculated is the ratio of the execution time of the application using a functional model
over the execution time of the application using a single number model. (a) Comparison of
speedups of matrix-matrix multiplication. For the single number models, the speeds are obtained
using serial matrix-matrix multiplication of two dense square matrices. For the solid lined curves,
the matrices used are of size 4000×4000. For the dashed curves, the matrices used are of size
500×500. (b) Comparison of speedups of LU factorization. For the single number models, the

speeds are obtained using serial LU factorization of a dense square matrix. For the solid lined
curves, the matrix used is of size 5000×5000. For the dashed curves, the matrix used is of size
2000×2000.
There are two curves, the solid lined curve corresponds to the single number speed of the
processor obtained based on the matrix factorization of a dense 2000×2000 matrix and the
dashed curve corresponds to the single number speed of the processor obtained based on the
matrix factorization of a dense 5000×5000 matrix. It can be seen from the figure that problem
sizes beyond 19000 cannot be solved by using the functional model and single number models.
This is because both these models do not take into account the memory limitations of the
computers involved in the execution of the application. The modified functional model is used to
obtain solutions for problem sizes beyond 19000. It should also be noted that the modified
functional model and the functional model obtain the same solutions for problem sizes less than
19000. This is because the data distributions for problem sizes less than 19000 do not exceed the
upper bound for any processor. Thus it can be seen that larger problem sizes are solved using the
modified functional model and the execution performance obtained is good.

As can be seen from the figures, the modified functional model performs better than the
currently existing models for a network of heterogeneous computers.

6. Related Work

We survey related papers from the literature in this section. They fall into two categories: papers
dealing with task partition and scheduling with memory constraints on dedicated environments
and papers dealing with task scheduling with memory constraints on non-dedicated computing
environments like the Heterogeneous Networks of Computers (HNOCs) and computing grids.

Li, Veeravalli, and Ko [12] investigate the problem of scheduling a divisible load onto a set of
processors with finite-size buffers in heterogeneous single-level tree networks. They propose a
fast algorithm called Incremental Balancing Strategy (IBS) to achieve the optimal processing
time. In each increment, distribution of the load is found for processors with available memory
according to the standard divisible load theory methods [13] without taking the memory
constraints into account. Then, the distribution of the load is scaled proportionately such that at
least one buffer is filled completely. The remaining available buffer capacities are memory sizes
in the next increment. This process is continued until distributing the entire load. Drozdowski
and Wolniewicz [14] propose a linear programming method of finding solutions with guaranteed
optimality for the problem of scheduling divisible loads in networks of processors with limited
memory and communication startup times. The complexity of the linear programming solutions
that they use to solve their problem is O(p3.5×L), where p is the number of processors involved in
the execution of the algorithm and L is the length of the string encoding all the parameters of
linear program.

The works discussed take into account the processor heterogeneity in terms of speeds, memory
heterogeneity in terms of memory limitation at each processor, and network heterogeneity in
terms of the communication cost between a pair of processors. However, these works assume
distributed systems with a flat memory model and are not applicable to systems with memory
hierarchy. The dependence of the speed of the processor on the size of the problem is assumed to
be linear as is usually observed on dedicated distributed multiprocessor computer systems. The
largest problem size that can be solved at each processor is assumed to be the core memory at

that processor. This is a safe assumption on dedicated distributed multiprocessor computer
systems. However on networks of heterogeneous computers, due to the nature of applications run
and the level of integration of the computers involved in execution of these applications, the core
memory at each processor is just an upper bound on the largest problem size that can be solved
but is not a good approximation of the actual largest problem size that can be solved.

The modified functional model that we propose integrates the essential features underlying
applications run on a network of heterogeneous computers, mainly, the processor heterogeneity,
the heterogeneity of memory structure, and the memory limitations at each level of memory
hierarchy. We also present efficient algorithms of data partitioning with this model with
relatively low complexity of O(p3×log2n). However we do not consider the cost of
communications in our modified functional model.

While resource management and task scheduling are identified challenges of Grid computing,
current Grid scheduling systems mainly focus on CPU and network availability. Many heuristic
scheduling algorithms [15, 16] have been proposed for traditional high performance computing.
However these scheduling systems are for dedicated multiprocessor computer systems and also
ignore the impact of memory resource availability on the scheduling decision-making.

Several studies have been reported on task allocation for load balance considering memory
resource constraints. An opportunity cost approach proposed in [17] converts the usage of
resources including CPU and memory to a single homogeneous cost. Based on the cost, task is
assigned or reassigned to each node for load balance. Load sharing policies with the
consideration of effective usage of global memory were studied in [18]. They consider two types
of application workload, known memory demands and unknown memory demands. However
their major concern is how to reduce the average slowdown of all individual jobs in the system,
instead of how to schedule a parallel application to achieve its best performance. Xu and Sun [5]
consider how to partition a Grid application and schedule it on a cluster of distributed
heterogeneous resources to obtain a minimum application execution time with the consideration
of both CPU resource availability and memory resource availability. Three task partition policies,
namely, CPU-based, memory-based, and CPU-memory combined partition are studied. They
show that the CPU-memory combined approach shows good performance gains over the other
approaches. A heuristic CPU-memory algorithm for task scheduling of a meta-task is also
proposed. The effect of local jobs on a grid application execution in the situation of resource
sharing is evaluated using distribution functions. Currently our modified functional model and
the algorithms using this model are not applicable for task scheduling of a meta-task.

The accurate modeling of the electronic structure of atoms and molecules involves
computationally intensive tensor contractions involving large multidimensional arrays. The
efficient computation of complex tensor contractions usually requires the generation of
temporary intermediate arrays. These intermediates could be extremely large, but they can often
be generated and used in batches through appropriate loop fusion transformations. To optimize
the performance of such computations on parallel computers, Cociorva et al. [19] present a
framework to address the optimization problem: given a set of computations expressed as a
sequence of tensor contractions, an empirically derived measure of the communication cost for a
given target computer, and a specified limit on the amount of available memory on each
processor, re-structure the computation so as to minimize the total execution time while staying
within the available memory. The framework considers only the heterogeneity in terms of the
memory limitations of each computer and is not applicable for programming applications on

networks of heterogeneous computers, which exhibits processor heterogeneity in terms of speeds
and memory heterogeneity in terms of memory hierarchy and memory limitations of each
computer.

7. Conclusion

In this paper, we address the problem of optimal distribution of computations over heterogeneous
computers taking into account the processor heterogeneity, the heterogeneity of memory
structure, and the memory limitations at each level of memory hierarchy of a processor. We have
proposed a modified functional model of a network of heterogeneous computers and designed
efficient algorithms of data partitioning with this model.

The modified functional model proposed can be used to design efficient algorithms of data
partitioning for mathematical structures other than sets such as matrices, graphs, and trees. This
model can be used to design efficient algorithms for the most general partitioning problem,
which can be formulated as:

• Given: (1) An application of problem size n to be solved, and (2) A well-ordered set of p
processors whose speeds are functions of the size of the problem, si=fi(x), and (3) There is
a limit li on the largest problem size that can be solved on each processor,

• Partition the problem into p disjoint sub-problems xi (i=0,…,p-1) such that (1) There is a
one-to-one mapping between the sub-problems and the processors, (2) The size of the sub-
problem xi is proportional to the speed of the processor i owning the sub-problem xi, and
(3) The size of the sub-problem xi is less than or equal to the limit li on the largest problem
size that can be solved on each processor (xi ≤ li).

In the presented research we do not take account of communication cost. Although we well
understand the importance of its incorporation in our model, this is just out of scope of this work.
We also understand the importance of the problems of efficient building and maintaining of our
model. These two problems are also out of scope of the paper and are subjects of our current
research.

REFERENCES

[1] A. Lastovetsky and R. Reddy, “Data Partitioning with a Realistic Performance Model of
Networks of Heterogeneous Computers,” In Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2004), 26-30 April 2004, New Mexico, France, CD-
ROM/Abstracts Proceedings, IEEE Computer Society 2004.
[2] A. Lastovetsky and J. Twamley, “Towards a Realistic Performance Model for Networks of
Heterogeneous Computers,” In International Symposium on High Performance Computational
Science and Engineering HPSCE’04, Toulouse, France, August 22-27, 2004.
[3] A. Lastovetsky and R. Reddy, “Classification of Partitioning Problems for Networks of
Heterogeneous Computers,” In Proceedings of the 5th International Conference on Parallel
Processing and Applied Mathematics (PPAM 2003), Czestochowa, Poland, Lecture Notes in
Computer Science, 3019, pp.921-929, September 2003.
[4] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A Proposal for a
Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers),” In IEEE Transactions on
Computers, Volume 50, No. 10, pp.1052-1070, October 2001.

[5] M. Wu, and X.-H. Sun, “Memory Conscious Task Partition and Scheduling in Grid
Environments,” In 5th IEEE/ACM International Workshop on Grid Computing (in conjunction
with SuperComputing 2004), Pittsburgh, pp.138-145, November 2004.
[6] M. Cierniak, W. Li, and M. J. Zaki, “Compile-time scheduling algorithms for heterogeneous
network of workstations,” In Computer Journal, special issue on Automatic Loop Parallelization,
Volume 40, No. 6, December 1997.
[7] A. Lastovetsky. Parallel Computing on Heterogeneous Networks. John Wiley & Sons, 423
pages, 2003.
[8] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,
and R.C. Whaley, “ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory
Computers - Design Issues and Performance,” In Computer Physics Communication, Volume 97,
pp.1-15, 1996.
[9] J. Choi, J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley, “The
Design and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,”
In Scientific Programming, Volume 5, No. 3, pp.173–184, Fall 1996, ISSN 1058-9244.
[10] J. Barbosa, J. Tavares, and A. J. Padilha, “Linear Algebra Algorithms in a Heterogeneous
Cluster of Personal Computers,” In Proceedings of the 9th Heterogeneous Computing Workshop
(HCW 2000), Cancun, Mexico, IEEE Computer Society Press, May 2000, pp.147-159.
[11] J. Barbosa, C. N. Morais, and A. J. Padilha, “Simulation of Data Distribution Strategies for
LU Factorization on Heterogeneous Machines,” In Proceedings of the 17th International Parallel
and Distributed Processing Symposium (IPDPS 2004), 26-30 April 2004, New Mexico, France,
CD-ROM/Abstracts Proceedings, IEEE Computer Society 2004.
[12] X. Li, B. Veeravalli, and C.C. Ko, “Divisible Load Scheduling on Single-level Tree
Networks with Finite-size Buffers,” In IEEE Transactions on Aerospace and Electronic Systems,
Volume 36, No. 4, pp.1298-1308, October 2000.
[13] B. Veeravalli, D. Ghose, V. Mani, and T. G. Robertazzi, “Scheduling Divisible Loads in
Parallel and Distributed Systems,” In IEEE Computer Society Press and John Wiley & Sons, 312
pages, August 1996, ISBN: 0-8186-7521-7.
[14] M.Drozdowski, and P.Wolniewicz, “Divisible load scheduling in systems with limited
memory,” In special issue of Cluster Computing on Divisible Load Scheduling, Kluwer
Academic Publishers, Volume 6, No. 1, pp.19-29, January 2003.
[15] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and D. Zagorodnov, “Adaptive
computing on the Grid using AppLeS,” In IEEE Transactions on Parallel and Distributed
Systems (TPDS), Volume 14, No. 4, pp.369-382, April 2003.
[16] X.-H. Sun, and M. Wu, “Grid Harvest Service: A System for Long-Term, Application-Level
Task Scheduling,” In Proceedings of the 16th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2003), Nice, France, April, 2003.
[17] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An opportunity cost
approach for job assignment in a scalable computing cluster,” In IEEE Transactions on Parallel
and Distributed Systems, Volume 11, No. 7, pp.760-768, July 2000.
[18] L. Xiao, S. Chen, and X. Zhang, “Dynamic Cluster Resource Allocations for Jobs with
Known and Unknown Memory Demands,” In IEEE Transactions on Parallel and Distributed
Systems, Volume 13, No. 3, pp.223-240, March 2002.

[19] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, and J. Ramanujam, “Memory-
Constrained Communication Minimization for a Class of Array Computations,” In Proceedings
of the 15th International Workshop on Languages and Compilers for Parallel Computing (LCPC
'02), College Park, Maryland, July 2002.

Alexey Lastovetsky received the PhD degree from the Moscow Aviation Institute in 1986, and
the Doctor of Science degree from the Russian Academy of Sciences in 1997. He is currently a
lecturer in the Computer Science Department at University College Dublin, National University
of Ireland. His main research interests are parallel and distributed programming languages and
systems for heterogeneous environments.

Ravi Reddy is currently a PhD student in the Computer Science Department at University
College Dublin, National University of Ireland. His main research interests are design of
algorithms and tools for parallel and distributed computing systems.

