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Abstract 
 

The paper presents SmartNetSolve, an extension of 
NetSolve, the programming system for high performance 
Grid computing. The extension is aimed at higher 
performance of Grid applications by improving the 
mapping of remote tasks and allowing them to 
communicate directly. To achieve more optimal mapping 
SmartNetSolve allows a group of tasks to be scheduled 
collectively, meanwhile NetSolve only allows for 
individual and independent mapping of remote tasks. 
SmartNetSolve also extends the communication model of 
the application by allowing remote tasks to communicate 
directly. The paper presents the overall design of the 
SmartNetSolve programming system with particular 
focus on its motivation and the underlying execution and 
communication models.   

 
1. Introduction 
 
NetSolve [1] is a programming system for high 

performance distributed computing on global networks 
using a remote procedure call mechanism. It deals with 
the situation when some computation tasks of the 
application can only be performed on remote computers. 
A NetSolve client program includes calls to the NetSolve 
client interface, each specifying the computation task and 
locations of the input and output data of the task on the 
client computer. When the program runs, the NetSolve 
programming system selects the remote computer to 
perform the task, transfers input data from the client 
computer to the server one, and delivers output data from 
the server computer to the client one. 

The mapping of the tasks to remote computers is the 
core operation having a major impact on the performance 
of the application. In NetSolve, each task is mapped 
individually and independently of other tasks of the 
application. Thus, the NetSolve agent responsible for the 

mapping deals with a sequence of independent tasks, 
each of which should be mapped to one of the remote 
computers that are able to perform the task. 

The client-sever NetSolve programming model is 
simple and easy to understand and use. It is also easy to 
implement. It supports fault tolerance in a natural way. 
At the same time, the model imposes a number of 
restrictions, which are able to significantly limit the 
performance of the application. First of all, the model 
does not allow remote severs to communicate directly. 
This enforces bridge communications and significantly 
limits the space of possible “virtual” communication 
links between computers. 

Secondly, the model does not allow a group of related 
tasks, executing a logical unit of the application, to be 
mapped together. The model supports minimization of 
the execution time of each individual task of the 
application rather than minimization of the execution 
time of the whole application. Collective mapping of the 
group, which takes into account relationships between 
the tasks (such as data dependencies and the order of 
execution), could result in more optimal mapping of the 
tasks and hence in faster execution of the application as a 
whole. Unlike the individual mapping, the collective 
mapping can also take advantage of direct 
communications between remote servers by considering a 
number of possible communication schemes 
interconnecting the tasks when mapping. 

Indeed, the communication model of NetSolve results 
in a communication network which has a star topology as 
illustrated in Figure 1. Therefore, in this case, for any 
given mapping of a group of tasks to remote servers there 
will be only one communication path between any pair of 
servers that should be considered when mapping. This 
path consists of two communication links connecting the 
servers with the client machine. Any other path 
connecting the two servers obviously results in a higher 
communication cost.  



 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.   Communication model of NetSolve  
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Communication model of SmartNetSolve    
 
However, if the communication network is fully 

connected, then there will be multiple independent paths 
connecting the servers and each of these paths can be 
considered when mapping.  In other words, for each 
mapping of a group of tasks to remote servers in a star 
communication network there is only one fixed 
communication scheme that can be employed. However, 
when a group of tasks are mapped on a fully connected 
network there are many communication schemes to 
choose from.  Obviously, individual mappings cannot 
take advantage of the communication links of the fully 
connected network as the characteristics of a group of 
tasks such as virtual links between tasks are not taken 
into account when mapping.  

The mapping of a group of tasks on a fully connected 
network not only involves the mapping of tasks to servers 
but also the mapping of the virtual links between tasks 
(i.e. links representing data dependencies) on to the 
communication paths of the network.  This increases the 
mapping solution space and allows for further 
optimization to be achieved by choosing the optimal 
paths for data to traverse between servers.  

In order to support this collective mapping of a group 
of tasks on the fully connected network of servers, we 
extend the NetSolve execution and communication 
model as follows: 

• The execution model of NetSolve is extended so 
that mapping of a task can be separated from its 
execution, thus supporting the mapping of a group 
of tasks.  

• The communication model of NetSolve is extended. 
to allow direct data transfers between remote 
servers 

The NetSolve performance models which are used by 
the agent when mapping tasks are also extended to 
support collective mapping of a group of tasks. NetSolve 
currently maps an individual task on to the network based 
on the performance models that specify: 

• The star network, 
• The individual task. 
The performance models of NetSolve are extended to  

specify:  
• The fully connected network, 
• A group of tasks. 
The paper is structured as follows. In section 2, we 

outline the extended performance models described 
above.   In section 3, we outline the extended execution 
model to allow for a group of tasks to be scheduled. In 
section 4, we describe the extensions to the 
communication model that enable direct communications 
between servers. Section 5 gives a brief overview of 
mapping on a fully connected network, and the final 
section outlines the future work of this project. 

 
2. Performance Models 
 
The mapping of the individual tasks of the NetSolve 

application to computers of the network is based on the 
performance model of the heterogeneous network of 
computers and the performance model of the task. The 
heterogeneous network of computers is seen as a set of 
heterogeneous processors connected into a star with the 
client machine being the center of the star. The 
performance of each processor is characterized by the 
execution time of the same serial code multiplying two 
dense square matrices of some fixed size. This 
characteristic of the processor is updated periodically or 
whenever the load on the server changes beyond a certain 
threshold. The characteristics of the communication links 
are obtained using sensors that determine its latency and 
bandwidth. These characteristics are also updated 
periodically.  

The performance model of an individual task is 
provided by the person who installs the task on the 
remote server. A formula is associated with each task that 
can be used to calculate the execution time of the task by 
the solver. The formula uses parameters of the task and 
the execution time of the standard computation unit on 
the computer (which is currently the multiplication of 
two dense square matrices of the fixed size). Apart from 
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the formula, the sizes of input and output data are also 
specified.  

The mapping algorithm of NetSolve tries to minimize 
the total execution time of each individual task, which is 
calculated as the sum of the time of computation on the 
remote computer and the time of communications 
between the user’s computer and the remote one to 
deliver input data and receive output data. To estimate 
the contribution of computation in the total execution 
time for each possible mapping, the agent evaluates the 
formula associated with corresponding remote task. To 
estimate the contribution of communication, the agent 
uses the current characteristics of the communication link 
between the user’s computer and the remote computer, 
and the sizes of input and output data that should be 
transferred between the computers [2].  

Conversely, the mapping algorithm of SmartNetSolve 
tries to minimize the overall execution time of a 
collective group of tasks.  It does this by estimating the 
execution time of various mappings of a group of tasks. 
The estimated execution time of the mapping a group of 
tasks is based on the performance model of the group of 
tasks and the performance model of the fully connected 
heterogeneous network of computers.  

 

2.1. Performance model of a group of tasks 
 

In NetSolve, parameters, which characterize the 
performance model of an individual task, are specified by 
the person that installs the task, in a so called problem 
description file (PDF). The PDF syntax can only specify 
the performance model of an individual task and gives no 
means to specify the performance model of a group of 
tasks.  A new programming interface is added to the 
client interface to allow the application programmer to 
specify the performance model of a group of tasks. This 
specification is written in a small dedicated specification 
language, Algorithm Definition Language (ADL).  

ADL extends PDF, so that the application 
programmer can specify the collective performance 
model of a group of tasks by building on the performance 
model of individual tasks specified by software provider. 
In particular, ADL allows the application programmer to 
specify which tasks are in the group, the data 
dependencies between these tasks and the order of their 
execution. The ADL compiler will translate this 
specification into the code calculating the execution time 
of the group of tasks for each particular mapping of the 
tasks and virtual communication links between them.  
The code is used by the mapping component of 
SmartNetSolve, which is explained in more detail in 
section 3. 

 

2.2. Performance model of a fully connected 
network 
 

In NetSolve, the communication model only specifies 
the links of the star network, illustrated in Figure 1.  
These links are characterised by the latency and 
bandwidth between the server and the client, which are 
detected by NWS sensors. Such a sensor is started on the 
server after it is registered and the performance 
characteristics of the links are periodically updated. To 
employ the performance model of the fully connected 
network (illustrated in Figure 2), the performance model 
of the star network is extended and the characteristics of 
each link connecting all servers to each other are also 
determined. When a server is started the agent sends a 
list of the locations of all servers, the server then sends a 
sensor along these links and sends the results back to the 
agent. Consequently, the agent can assess the 
performance model of the fully connected network when 
mapping 

 
3. Execution Model 
 

Fundamentally, a NetSolve application can be 
thought of as number of ordered calls to execute 
tasks on remote servers.  Two principal NetSolve 
calls are netsl(“taskname”,...) and 
netslnb(“taskname”,...), which are blocking and 
non-blocking calls to perform the specified task 
taskname.  Also included as parameters to these 
calls are pointers to the input and output data for the 
task.  Consider a pseudo NetSolve application in 
Figure 3 consisting of three non-blocking tasks, T1, 
T2 and T3, which are performed in parallel, and one 
blocking task T4.  The first parameter of each of 
these calls refers to the task’s name, the next 
parameter refers to the size of the input/output 
objects, the following are pointers to the inputs 
objects, and the last parameter points to the task’s 
output object. In this case task T4 has a data 
dependency on all three parallel tasks and therefore 
must wait until they have completed. Function 
netslwt is used to block the request of T4 until these 
tasks have completed 
 
 if (x<10){ 

request[0]=netslnb(“T1”, n, A, B); 
  } 

... 
request[1]=netslnb(“T2”, n, C, D); 
request[2]=netslnb(“T3”, n, E, F); 
for(i=0;i<3<i++) 
  info[i] = netslwt(request[i]); 
netsl(“T4”, n, B, D, F, G); 

Figure 3.  Sample NetSolve Application 
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  smartMap(group1, x, n, … );  
  if (x<10){ 

netslnb(“T1”, n, A, B);    
  } 

... 
  netslnb(“T2“, n, C, D);         
  netsl(“T3“, n, E, F);               GROUP1 
 
  for(i=0;i<3<i++) 
       info[i] = netslwt(request[i]); 
  netslnb(“T4“, n, B, D, F, G); 

. 
   Figure 4.  Sample SmartNetSolve Application  
 

Each call to request the execution of a task in 
NetSolve essentially consists of two operations. The first 
is the mapping of that task to a server on the network and 
the second is the execution of the task on the server.  
When a request is issued, the client sends the task name 
to the agent. The agent then determines the servers that 
offer the fastest estimated execution time for the task 
based on the performance model of the task and network.  
A sorted list is then compiled of these “best” servers and 
this is sent to the client.  The servers then receive input 
for the task, the task is executed, and the output data are 
returned to the client.  The execution model of the 
application in Figure 3 is illustrated in Figure 5.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
   
 
 
 

Figure 5.  Execution model of NetSolve  
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
     Figure 6.  Execution model of SmartNetSolve  

 
Consequently this execution model implies the 

mapping and execution of a task in NetSolve are 
completely inseparable, since they are initiated by the 
same request. Due to this constraint, the current 
execution model of the NetSolve system is unable to 
support the mapping of a group of tasks. 

SmartNetSolve extends the NetSolve execution model 
so that the mapping of tasks can be done separately to the 
execution of the tasks, allowing a group of tasks to be 
collectively mapped before their execution is requested. 
In Figure 4, function smartMap maps the group of tasks 
group1 to servers, and the following calls result in 
execution of the tasks of the group on those servers:  

smartMap(nameOfGroup,listOfParameters...); 
The first argument of smartMap specifies the name of 

the group of tasks to be mapped, and the others specify 
the parameters of the performance model of this group. 
When this function is called these parameters will be 
passed to the functions generated by the ADL compiler. 
This list of parameters resolves any ambiguity in the 
performance model of the group of tasks. For example, in 
the given application, it is not possible to determine if T1 
will be called until the value of x is determined.  
Therefore it is unclear whether T4 has a direct 
dependency on T1. Furthermore, it is not possible to 
determine the sizes of the input and output objects of 
each task until the value of n is known.  However, when 
the smartMap function is called the values of x and n 
are passed as parameters to the group’s performance 
model, eliminating any ambiguity in the performance 
model, allowing the agent to estimate the execution time 
of a group of tasks for a given mapping. Figure 6 
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illustrates the execution of this application in 
SmartNetsolve.  When the smartMap function is called 
all four tasks are mapped together.  A mapping table is 
created, which will outline the details of the group’s 
mapping.   Based on this mapping, each task can be 
executed at each subsequent netsl..() call, without the 
need for any further mapping.  

 
4. Communication Model 
 
In SmartNetSolve, the communication model of 

NetSolve is extended to achieve the fully connected 
virtual network described in the introduction section of 
this paper. To establish this network, the SmartNetSolve 
system allows for direct communication between remote 
servers. A further extension to the communication model 
allows for broadcast communication to happen between 
remote servers and also between client and remote 
servers. The client-server communication model of 
NetSolve is realized by using a separate process called 
proxy.  In NetSolve, the proxy process resides on the 
client computer and acts on behalf of the NetSolve client 
to handle all interactions with other NetSolve 
components [3]. With this implementation in NetSolve, 
the interactions are limited to only one proxy in any one 
session and also all interactions must involve the client. 
Figure 7 illustrates how the communication scheme 
would follow for the NetSolve application in Figure 3, 
given the value of x is less than 10. We assume T1 is 
mapped to server S1, T2 to server S2, T3 to server S3, 
and T4 to server S4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

 
 
 

 
Figure 7.  Communication of NetSolve  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Communication of SmartNetSolve 
 
Initially a proxy is started on the client machine and 

the client sends the name of the task to the agent. The 
agent then constructs a problem description object based 
on the problem description file of that task. Based on this 
problem description object, which represents the 
performance model of the task and the performance 
model of the network, the agent can determine a list of 
the most suitable servers for this task.      

    In addition to outlining the performance model of a 
task, the problem description object also outlines how the 
task should be executed, detailing such task 
characteristics as the path name of the task and the path 
of any libraries used. Therefore when this problem 
description object is sent to the server, the server has all 
the attributes necessary to execute the task. When the 
server finishes executing the task, it sends the result back 
to the client.  

In the SmartNetSolve system, the server is extended to 
provide the following new capabilities that extend the 
core services of NetSolve server: 

• The client may start a proxy on a remote server, 
• The remote proxy may store data until it is needed, 
• The remote proxy may send data to another remote 

proxy 
• The server may start a proxy on another remote 

server.  
The problem description object is extended to 

embody attributes, which aid the server-server 



communication of NetSolve Objects.  In addition the 
problem description of each task will now store the 
location of where the outputs of the task should be sent. 

Figure 8 illustrates the functionality of this extended 
communication model for the sample SmartNetSolve 
application in Figure 4, given the value of x is less than 
10.  Again, we assume the agent maps T1 to S1, T2 to S2, 
T3 to S3, T4 to S4 and maps each virtual link between 
tasks T1, T2, T3 and task T4 on to the path that directly 
connects their respective servers.  This diagram does not 
feature any mapping since this is done prior to the 
request of any task.  The mapping table, which is used by 
the client when executing tasks, is produced when the 
smartMap function is called.   

In Figure 8 it is evident that when each of the non-
blocking tasks is requested, the client will initially set up 
a proxy on each of the servers which is executing the 
parallel tasks.  This is because the client is aware from 
the mapping table that the result of each of these tasks 
must be sent to another server and not back to the client.  
This proxy is set up for the purpose of storing the result 
of these tasks and to give the server the capability of 
handling the interaction with the other dependent server.  
Once this proxy is set up the client sends the input and 
problem description object to each of the servers.  Upon 
analysis of the problem description object, each server 
will determine that its result is required by S4. When 
each of the tasks is finished their corresponding server 
will determine if there is a proxy started on S4. If not it 
will start one before sending its output.  Once the outputs 
have been sent, each server will close their own local 
proxy. 

When each of the three parallel tasks is completed, T4 
is requested. The client does not send the server any 
input as it is already residing on the server’s proxy. It 
merely sends the problem description object for the task.  
Upon analysis of the problem description object, the 
remote server will determine that its result must be sent 
to the client.  S4 can now complete its task and return the 
result to the client. 

 
5. Mapping 
 
The objective of the NetSolve mapping algorithm is to 

find the mapping for each individual task that minimizes 
the execution time for that task.  This mapping involves 
the assignment of the individual task to a server on the 
network. The goal of the mapping algorithm of 
SmartNetSolve is to find the mapping for a collective 
group of tasks that minimizes the execution time for that 
group. Mapping in SmartNetSolve not only involves the 
mapping of each task in the group to a server on the 
network but also the mapping of virtual links between 
tasks to communication paths of the network.   This 

mapping allows further optimization by minimizing the 
total communication time of the group. For each given 
task-to-server mapping, the mapping algorithm can 
minimize the overall communication time by mapping 
the virtual links between dependent tasks to the shortest 
communication path between the remote tasks on 
network. The worst case complexity of finding these 
shortest paths is O(n2) [7].  The mapping algorithm finds 
the optimal mapping by comparing the summation of the 
total estimated computation and communication time of 
each given group mapping. 

Calculating the estimated time for every possible 
solution when mapping a group of tasks becomes very 
time consuming when the number of tasks and servers 
increase beyond a few. A number of heuristics finding 
suboptimal mappings will be implemented and tested. 

 

5.1. Comparison of NetSolve and SmartNetSolve 
mappings 
 

For the purpose of demonstration, we compare a 
hypothetical mapping of the NetSolve application in 
Figure 3 and a mapping for the corresponding 
SmartNetSolve application in Figure 4, given that the 
value of x is less than 10.  We will make the following 
assumptions 

•  The relative size of tasks T1, T2 and T3 are as 
follows: T1<T2<<T3 

• There is only one server, S4, that is capable of 
executing T4 and there are three servers, S1, S2, S3, 
that are available in the network capable of 
executing tasks T1, T2, T3. The relative speeds of 
these servers are as follows: S1<S2<<S3.  

Figure 9a shows how NetSolve would map this 
application. When NetSolve maps an application, it only 
optimises the execution time of each individual task, 
based on the performance model of that task and the 
performance model of the network at that point in time.  
In other words, the system is unaware of what tasks are to 
follow when each task is mapped. 

As a result, the first and smallest task T1 would be 
mapped to the fastest server S3 as this would yield the 
lowest execution time. At this point, the system is 
unaware that two larger tasks will be executed in parallel 
with this task.  Following the mapping of T1, the system 
maps T2 and it would be assigned the second fastest 
server S2, as T1 is currently executing on S3.  
Consequently T3, the largest task would then be mapped 
to the slowest server, S1, since S3 and S2 are now both 
busy with the other two tasks.   This mapping has a great 
consequence to the overall computation time of the group 
of tasks.  This is highlighted in Figure 10a.  

Since NetSolve is restricted to the client-server model, 
this mapping would result in a communication pattern 



that would involve the client in all data transfers.  When 
parallel tasks T1, T2, and T3 are finished, their results 
must be sent back to the client.  These results are needed 
by T4, so the client then sends them to S4 when T4 is 
requested.  This unnecessary bridge communication with 
the client increases the overall communication time of the 
group. The bridge communication is highlighted in 
Figure 9a and its overall contribution to the execution 
time of the group is highlighted in Figure 10a. 

Figure 9b shows how SmartNetSolve would map this 
application, given the performance model of the 
collective group of tasks and the fully connected 
network. With these performance models, the 
SmartNetSolve system would be fully aware of each task 
in the group, the virtual links between these tasks and can 
therefore choose a more optimal mapping for the group. 
Given this knowledge, the mapping algorithm will map 
the tasks to servers and virtual links to communication 
paths on the network in such a way as to optimise the 
total computation and communication of the group.   

The shaded boxes in Figure 9b show the mapping 
algorithm optimising the total computation time for the 
group of parallel tasks T1, T2, and T3.  This task-to-
server mapping implements an improved load balancing 
strategy, mapping the largest task to the fastest server and 
vice versa. This reduces the overall computation time for 
this group of parallel tasks. This improvement is 
highlighted in Figure 10b. 

Further optimisation is achieved by mapping each of 
the virtual links T1→T4, T2→T4, and T3→T4 to the 
fastest communication path connecting the corresponding 
servers. In this case, the mapping algorithm maps the 
virtual link to the communication path directly 
connecting the servers, which eliminates any bridge 
communication with the client.  This improvement in 
communication time is also highlighted in Figure 10b.   

In this hypothetical example, the improved and more 
intelligent mapping algorithm of SmartNetSolve has 
given a 3 fold speed up.  

6. Conclusion and future work 
In this paper, we have presented an approach to 

extending the RPC model of NetSolve to allow the 
mapping of a group of tasks on a fully connected virtual 
network. At present, the execution model has been 
extended successfully to achieve the communication 
between remote servers. The execution model has also 
been extended to allow for mapping of a group of tasks.  
We are currently working on employing the two extended 
performance models. The ADL language, which is used 
to specify the performance model of a group of tasks, and 
the NWS sensors, which will be used to employ the 
performance model of the fully connected network, are 
currently under implementation. In the future, a number 

of mapping heuristics will be implemented and tested to 
determine which would produce better suboptimal 
mappings. 
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Figure 10     a) Timing of the mapping of NetSolve  b) Timing of the mapping of SmartNetSolve 

Figure 9.     a) Mapping of an application in NetSolve   b) Mapping of an application in SmartNetSolve  


