
SmartNetSolve: High-Level Programming System for High Performance Grid
Computing

Thomas Brady1, Eugene Konstantinov2, Alexey Lastovetsky1

1School of Computer Science and Informatics

University College Dublin,
Belfield, Dublin 4, Ireland

 {thomas.brady, alexey.lastovetsky}@ucd.ie

2IBM Ireland
IDA Business Park, Ballycoolin Industrial Estate,

Blanchardstown, Dublin, Ireland
ekonstan@ie.ibm.com

Abstract

The paper presents SmartNetSolve, an extension of
NetSolve, the programming system for high performance
Grid computing. The extension is aimed at higher
performance of Grid applications by improving the
mapping of remote tasks and allowing them to
communicate directly. To achieve more optimal mapping
SmartNetSolve allows a group of tasks to be scheduled
collectively, meanwhile NetSolve only allows for
individual and independent mapping of remote tasks.
SmartNetSolve also extends the communication model of
the application by allowing remote tasks to communicate
directly. The paper presents the overall design of the
SmartNetSolve programming system with particular
focus on its motivation and the underlying execution and
communication models.

1. Introduction

NetSolve [1] is a programming system for high

performance distributed computing on global networks
using a remote procedure call mechanism. It deals with
the situation when some computation tasks of the
application can only be performed on remote computers.
A NetSolve client program includes calls to the NetSolve
client interface, each specifying the computation task and
locations of the input and output data of the task on the
client computer. When the program runs, the NetSolve
programming system selects the remote computer to
perform the task, transfers input data from the client
computer to the server one, and delivers output data from
the server computer to the client one.

The mapping of the tasks to remote computers is the
core operation having a major impact on the performance
of the application. In NetSolve, each task is mapped
individually and independently of other tasks of the
application. Thus, the NetSolve agent responsible for the

mapping deals with a sequence of independent tasks,
each of which should be mapped to one of the remote
computers that are able to perform the task.

The client-sever NetSolve programming model is
simple and easy to understand and use. It is also easy to
implement. It supports fault tolerance in a natural way.
At the same time, the model imposes a number of
restrictions, which are able to significantly limit the
performance of the application. First of all, the model
does not allow remote severs to communicate directly.
This enforces bridge communications and significantly
limits the space of possible “virtual” communication
links between computers.

Secondly, the model does not allow a group of related
tasks, executing a logical unit of the application, to be
mapped together. The model supports minimization of
the execution time of each individual task of the
application rather than minimization of the execution
time of the whole application. Collective mapping of the
group, which takes into account relationships between
the tasks (such as data dependencies and the order of
execution), could result in more optimal mapping of the
tasks and hence in faster execution of the application as a
whole. Unlike the individual mapping, the collective
mapping can also take advantage of direct
communications between remote servers by considering a
number of possible communication schemes
interconnecting the tasks when mapping.

Indeed, the communication model of NetSolve results
in a communication network which has a star topology as
illustrated in Figure 1. Therefore, in this case, for any
given mapping of a group of tasks to remote servers there
will be only one communication path between any pair of
servers that should be considered when mapping. This
path consists of two communication links connecting the
servers with the client machine. Any other path
connecting the two servers obviously results in a higher
communication cost.

Figure 1. Communication model of NetSolve

Figure 2. Communication model of SmartNetSolve

However, if the communication network is fully

connected, then there will be multiple independent paths
connecting the servers and each of these paths can be
considered when mapping. In other words, for each
mapping of a group of tasks to remote servers in a star
communication network there is only one fixed
communication scheme that can be employed. However,
when a group of tasks are mapped on a fully connected
network there are many communication schemes to
choose from. Obviously, individual mappings cannot
take advantage of the communication links of the fully
connected network as the characteristics of a group of
tasks such as virtual links between tasks are not taken
into account when mapping.

The mapping of a group of tasks on a fully connected
network not only involves the mapping of tasks to servers
but also the mapping of the virtual links between tasks
(i.e. links representing data dependencies) on to the
communication paths of the network. This increases the
mapping solution space and allows for further
optimization to be achieved by choosing the optimal
paths for data to traverse between servers.

In order to support this collective mapping of a group
of tasks on the fully connected network of servers, we
extend the NetSolve execution and communication
model as follows:

• The execution model of NetSolve is extended so
that mapping of a task can be separated from its
execution, thus supporting the mapping of a group
of tasks.

• The communication model of NetSolve is extended.
to allow direct data transfers between remote
servers

The NetSolve performance models which are used by
the agent when mapping tasks are also extended to
support collective mapping of a group of tasks. NetSolve
currently maps an individual task on to the network based
on the performance models that specify:

• The star network,
• The individual task.
The performance models of NetSolve are extended to

specify:
• The fully connected network,
• A group of tasks.
The paper is structured as follows. In section 2, we

outline the extended performance models described
above. In section 3, we outline the extended execution
model to allow for a group of tasks to be scheduled. In
section 4, we describe the extensions to the
communication model that enable direct communications
between servers. Section 5 gives a brief overview of
mapping on a fully connected network, and the final
section outlines the future work of this project.

2. Performance Models

The mapping of the individual tasks of the NetSolve

application to computers of the network is based on the
performance model of the heterogeneous network of
computers and the performance model of the task. The
heterogeneous network of computers is seen as a set of
heterogeneous processors connected into a star with the
client machine being the center of the star. The
performance of each processor is characterized by the
execution time of the same serial code multiplying two
dense square matrices of some fixed size. This
characteristic of the processor is updated periodically or
whenever the load on the server changes beyond a certain
threshold. The characteristics of the communication links
are obtained using sensors that determine its latency and
bandwidth. These characteristics are also updated
periodically.

The performance model of an individual task is
provided by the person who installs the task on the
remote server. A formula is associated with each task that
can be used to calculate the execution time of the task by
the solver. The formula uses parameters of the task and
the execution time of the standard computation unit on
the computer (which is currently the multiplication of
two dense square matrices of the fixed size). Apart from

Server

Server

Server

Server

Server

Server

Server

Server

Client

Server

Server

Server

Server

Server

Server

Server

Server

Client

the formula, the sizes of input and output data are also
specified.

The mapping algorithm of NetSolve tries to minimize
the total execution time of each individual task, which is
calculated as the sum of the time of computation on the
remote computer and the time of communications
between the user’s computer and the remote one to
deliver input data and receive output data. To estimate
the contribution of computation in the total execution
time for each possible mapping, the agent evaluates the
formula associated with corresponding remote task. To
estimate the contribution of communication, the agent
uses the current characteristics of the communication link
between the user’s computer and the remote computer,
and the sizes of input and output data that should be
transferred between the computers [2].

Conversely, the mapping algorithm of SmartNetSolve
tries to minimize the overall execution time of a
collective group of tasks. It does this by estimating the
execution time of various mappings of a group of tasks.
The estimated execution time of the mapping a group of
tasks is based on the performance model of the group of
tasks and the performance model of the fully connected
heterogeneous network of computers.

2.1. Performance model of a group of tasks

In NetSolve, parameters, which characterize the
performance model of an individual task, are specified by
the person that installs the task, in a so called problem
description file (PDF). The PDF syntax can only specify
the performance model of an individual task and gives no
means to specify the performance model of a group of
tasks. A new programming interface is added to the
client interface to allow the application programmer to
specify the performance model of a group of tasks. This
specification is written in a small dedicated specification
language, Algorithm Definition Language (ADL).

ADL extends PDF, so that the application
programmer can specify the collective performance
model of a group of tasks by building on the performance
model of individual tasks specified by software provider.
In particular, ADL allows the application programmer to
specify which tasks are in the group, the data
dependencies between these tasks and the order of their
execution. The ADL compiler will translate this
specification into the code calculating the execution time
of the group of tasks for each particular mapping of the
tasks and virtual communication links between them.
The code is used by the mapping component of
SmartNetSolve, which is explained in more detail in
section 3.

2.2. Performance model of a fully connected
network

In NetSolve, the communication model only specifies
the links of the star network, illustrated in Figure 1.
These links are characterised by the latency and
bandwidth between the server and the client, which are
detected by NWS sensors. Such a sensor is started on the
server after it is registered and the performance
characteristics of the links are periodically updated. To
employ the performance model of the fully connected
network (illustrated in Figure 2), the performance model
of the star network is extended and the characteristics of
each link connecting all servers to each other are also
determined. When a server is started the agent sends a
list of the locations of all servers, the server then sends a
sensor along these links and sends the results back to the
agent. Consequently, the agent can assess the
performance model of the fully connected network when
mapping

3. Execution Model

Fundamentally, a NetSolve application can be
thought of as number of ordered calls to execute
tasks on remote servers. Two principal NetSolve
calls are netsl(“taskname”,...) and
netslnb(“taskname”,...), which are blocking and
non-blocking calls to perform the specified task
taskname. Also included as parameters to these
calls are pointers to the input and output data for the
task. Consider a pseudo NetSolve application in
Figure 3 consisting of three non-blocking tasks, T1,
T2 and T3, which are performed in parallel, and one
blocking task T4. The first parameter of each of
these calls refers to the task’s name, the next
parameter refers to the size of the input/output
objects, the following are pointers to the inputs
objects, and the last parameter points to the task’s
output object. In this case task T4 has a data
dependency on all three parallel tasks and therefore
must wait until they have completed. Function
netslwt is used to block the request of T4 until these
tasks have completed

 if (x<10){

request[0]=netslnb(“T1”, n, A, B);
 }

...
request[1]=netslnb(“T2”, n, C, D);
request[2]=netslnb(“T3”, n, E, F);
for(i=0;i<3<i++)
 info[i] = netslwt(request[i]);
netsl(“T4”, n, B, D, F, G);

Figure 3. Sample NetSolve Application

netslwt(request[i],..)

Barrier

2.

4.

 netslnb(T1)

Map
T1

Execute

T1

1.

A

B

 netslnb(T2)

Map
T2

Execute

T2

C

D

3.
 netslnb(T3)

Map
T3

Execute

T3

E

F

5.

 netslnb(T4)

Map
T4

Execute

T2

B,D,F

G

i

i

 smartMap(group1, x, n,)

T1
Map

T2 T4T3

netslwt(request[i],..)
Barrier5.

1.

3.
 netslnb(T2)

Execute

T2

C

D

 netslnb(T1)
Execute

T1

2.

A

B

4.
 netslnb(T1)

Execute

T3

E

F

6.
 netslnb(T4)

Execute

T2

B,D,F

G

 smartMap(group1, x, n, …);
 if (x<10){

netslnb(“T1”, n, A, B);
 }

...
 netslnb(“T2“, n, C, D);
 netsl(“T3“, n, E, F); GROUP1

 for(i=0;i<3<i++)
 info[i] = netslwt(request[i]);
 netslnb(“T4“, n, B, D, F, G);

.
 Figure 4. Sample SmartNetSolve Application

Each call to request the execution of a task in
NetSolve essentially consists of two operations. The first
is the mapping of that task to a server on the network and
the second is the execution of the task on the server.
When a request is issued, the client sends the task name
to the agent. The agent then determines the servers that
offer the fastest estimated execution time for the task
based on the performance model of the task and network.
A sorted list is then compiled of these “best” servers and
this is sent to the client. The servers then receive input
for the task, the task is executed, and the output data are
returned to the client. The execution model of the
application in Figure 3 is illustrated in Figure 5.

Figure 5. Execution model of NetSolve

 Figure 6. Execution model of SmartNetSolve

Consequently this execution model implies the

mapping and execution of a task in NetSolve are
completely inseparable, since they are initiated by the
same request. Due to this constraint, the current
execution model of the NetSolve system is unable to
support the mapping of a group of tasks.

SmartNetSolve extends the NetSolve execution model
so that the mapping of tasks can be done separately to the
execution of the tasks, allowing a group of tasks to be
collectively mapped before their execution is requested.
In Figure 4, function smartMap maps the group of tasks
group1 to servers, and the following calls result in
execution of the tasks of the group on those servers:

smartMap(nameOfGroup,listOfParameters...);
The first argument of smartMap specifies the name of

the group of tasks to be mapped, and the others specify
the parameters of the performance model of this group.
When this function is called these parameters will be
passed to the functions generated by the ADL compiler.
This list of parameters resolves any ambiguity in the
performance model of the group of tasks. For example, in
the given application, it is not possible to determine if T1
will be called until the value of x is determined.
Therefore it is unclear whether T4 has a direct
dependency on T1. Furthermore, it is not possible to
determine the sizes of the input and output objects of
each task until the value of n is known. However, when
the smartMap function is called the values of x and n
are passed as parameters to the group’s performance
model, eliminating any ambiguity in the performance
model, allowing the agent to estimate the execution time
of a group of tasks for a given mapping. Figure 6

CLIENT

PROXY

PD

S1

netslnb("T1", n, A, B)

PROXY

S1

PROXY

CLIENT STARTS PROXY ON S1

CLIENT

CLIENTS2

S2

CLIENT STARTS PROXY ON S2

CLIENT

CLIENT

PROXY
A

PD

S3

E
PROXY

S3

CLIENT STARTS PROXY ON S2

CLIENT

EXECUTE T3 AND STORE 'F'
IN S3 PROXY

EXECUTE T2 AND STORE 'D'
IN S2 PROXY

EXECUTE T1 AND STORE 'B'
IN S1 PROXY

netslnb("T2", n, C, D) netslnb("T3", n, E, F)

CLIENT

CLIENT

SEND PD FROM CLIENT TO S4

EXECUTE T4 AND SEND TO CLIENT

netsl("T4", n, B, D, F, G)

S4

START PROXY ON S4,
SEND B

AND CLOSE S1 PROXY

S4

SEND D

AND CLOSE S2 PROXY

SEND F

CLOSE S3 PROXY

A

T1

B

A
PROXY

PD

C

PROXY
C

PD

C

T2

D

PROXY

PROXY

PROXY
B B

PROXY

D

PROXY
A

PD

S4

B

PROXY

D F

F

PROXY

PROXY
E

PD

E

T3

S4

D FB

PD
T4

D FB

T4
S4

PROXY

G
G

PROXY

PROXY

PROXY

CLIENT

PROXY
A

B

PD

S2

A

B

T3

SEND INPUT

SEND PD
EXECUTE

TASK

SEND OUTPUT

EXECUTE
CLIENT

PROXY
C

D

PD

S2

C

D

T3

SEND INPUT

SEND PD

EXECUTE
TASK

SEND OUTPUT

EXECUTE

AGENT

SEND TASK
NAME
OF T1

SEND SERVER
LIST

FOR T1

MAP
netslnb("T1", n, A, B)

AGENT

SEND TASK
NAME
OF T2

SEND SERVER
LIST

FOR T2

MAP

netslnb("T2", n, C, D)

AGENT

SEND TASK
NAME
OF T3

SEND SERVER
 LIST

FOR T3

CLIENT

PROXY
E

F

PD

S3

E

F

T3

SEND INPUT

SEND PD
EXECUTE

TASK

SEND OUTPUT

MAP

EXECUTE

netslnb("T3", n, E, F)

CLIENT
PROXY

B

B

S4

T4

SEND INPUT

SEND PD
EXECUTE

TASK

SEND OUTPUT

EXECUTE

netsl("T4", n, B, D, F, G)

D

F

PD

.

CLIENT

S_LIST Task Name
PROXY

CLIENT

S_LIST Task Name
PROXY

CLIENT

S_LIST Task Name
PROXY

SEND TASK
NAME
OF T4

SEND SERVER
LIST

FOR T4

MAP CLIENT

S_LIST Task Name
PROXY

AGENT

F

B

B
D
F

illustrates the execution of this application in
SmartNetsolve. When the smartMap function is called
all four tasks are mapped together. A mapping table is
created, which will outline the details of the group’s
mapping. Based on this mapping, each task can be
executed at each subsequent netsl..() call, without the
need for any further mapping.

4. Communication Model

In SmartNetSolve, the communication model of

NetSolve is extended to achieve the fully connected
virtual network described in the introduction section of
this paper. To establish this network, the SmartNetSolve
system allows for direct communication between remote
servers. A further extension to the communication model
allows for broadcast communication to happen between
remote servers and also between client and remote
servers. The client-server communication model of
NetSolve is realized by using a separate process called
proxy. In NetSolve, the proxy process resides on the
client computer and acts on behalf of the NetSolve client
to handle all interactions with other NetSolve
components [3]. With this implementation in NetSolve,
the interactions are limited to only one proxy in any one
session and also all interactions must involve the client.
Figure 7 illustrates how the communication scheme
would follow for the NetSolve application in Figure 3,
given the value of x is less than 10. We assume T1 is
mapped to server S1, T2 to server S2, T3 to server S3,
and T4 to server S4.

Figure 7. Communication of NetSolve

Figure 8. Communication of SmartNetSolve

Initially a proxy is started on the client machine and

the client sends the name of the task to the agent. The
agent then constructs a problem description object based
on the problem description file of that task. Based on this
problem description object, which represents the
performance model of the task and the performance
model of the network, the agent can determine a list of
the most suitable servers for this task.

 In addition to outlining the performance model of a
task, the problem description object also outlines how the
task should be executed, detailing such task
characteristics as the path name of the task and the path
of any libraries used. Therefore when this problem
description object is sent to the server, the server has all
the attributes necessary to execute the task. When the
server finishes executing the task, it sends the result back
to the client.

In the SmartNetSolve system, the server is extended to
provide the following new capabilities that extend the
core services of NetSolve server:

• The client may start a proxy on a remote server,
• The remote proxy may store data until it is needed,
• The remote proxy may send data to another remote

proxy
• The server may start a proxy on another remote

server.
The problem description object is extended to

embody attributes, which aid the server-server

communication of NetSolve Objects. In addition the
problem description of each task will now store the
location of where the outputs of the task should be sent.

Figure 8 illustrates the functionality of this extended
communication model for the sample SmartNetSolve
application in Figure 4, given the value of x is less than
10. Again, we assume the agent maps T1 to S1, T2 to S2,
T3 to S3, T4 to S4 and maps each virtual link between
tasks T1, T2, T3 and task T4 on to the path that directly
connects their respective servers. This diagram does not
feature any mapping since this is done prior to the
request of any task. The mapping table, which is used by
the client when executing tasks, is produced when the
smartMap function is called.

In Figure 8 it is evident that when each of the non-
blocking tasks is requested, the client will initially set up
a proxy on each of the servers which is executing the
parallel tasks. This is because the client is aware from
the mapping table that the result of each of these tasks
must be sent to another server and not back to the client.
This proxy is set up for the purpose of storing the result
of these tasks and to give the server the capability of
handling the interaction with the other dependent server.
Once this proxy is set up the client sends the input and
problem description object to each of the servers. Upon
analysis of the problem description object, each server
will determine that its result is required by S4. When
each of the tasks is finished their corresponding server
will determine if there is a proxy started on S4. If not it
will start one before sending its output. Once the outputs
have been sent, each server will close their own local
proxy.

When each of the three parallel tasks is completed, T4
is requested. The client does not send the server any
input as it is already residing on the server’s proxy. It
merely sends the problem description object for the task.
Upon analysis of the problem description object, the
remote server will determine that its result must be sent
to the client. S4 can now complete its task and return the
result to the client.

5. Mapping

The objective of the NetSolve mapping algorithm is to

find the mapping for each individual task that minimizes
the execution time for that task. This mapping involves
the assignment of the individual task to a server on the
network. The goal of the mapping algorithm of
SmartNetSolve is to find the mapping for a collective
group of tasks that minimizes the execution time for that
group. Mapping in SmartNetSolve not only involves the
mapping of each task in the group to a server on the
network but also the mapping of virtual links between
tasks to communication paths of the network. This

mapping allows further optimization by minimizing the
total communication time of the group. For each given
task-to-server mapping, the mapping algorithm can
minimize the overall communication time by mapping
the virtual links between dependent tasks to the shortest
communication path between the remote tasks on
network. The worst case complexity of finding these
shortest paths is O(n2) [7]. The mapping algorithm finds
the optimal mapping by comparing the summation of the
total estimated computation and communication time of
each given group mapping.

Calculating the estimated time for every possible
solution when mapping a group of tasks becomes very
time consuming when the number of tasks and servers
increase beyond a few. A number of heuristics finding
suboptimal mappings will be implemented and tested.

5.1. Comparison of NetSolve and SmartNetSolve
mappings

For the purpose of demonstration, we compare a
hypothetical mapping of the NetSolve application in
Figure 3 and a mapping for the corresponding
SmartNetSolve application in Figure 4, given that the
value of x is less than 10. We will make the following
assumptions

• The relative size of tasks T1, T2 and T3 are as
follows: T1<T2<<T3

• There is only one server, S4, that is capable of
executing T4 and there are three servers, S1, S2, S3,
that are available in the network capable of
executing tasks T1, T2, T3. The relative speeds of
these servers are as follows: S1<S2<<S3.

Figure 9a shows how NetSolve would map this
application. When NetSolve maps an application, it only
optimises the execution time of each individual task,
based on the performance model of that task and the
performance model of the network at that point in time.
In other words, the system is unaware of what tasks are to
follow when each task is mapped.

As a result, the first and smallest task T1 would be
mapped to the fastest server S3 as this would yield the
lowest execution time. At this point, the system is
unaware that two larger tasks will be executed in parallel
with this task. Following the mapping of T1, the system
maps T2 and it would be assigned the second fastest
server S2, as T1 is currently executing on S3.
Consequently T3, the largest task would then be mapped
to the slowest server, S1, since S3 and S2 are now both
busy with the other two tasks. This mapping has a great
consequence to the overall computation time of the group
of tasks. This is highlighted in Figure 10a.

Since NetSolve is restricted to the client-server model,
this mapping would result in a communication pattern

that would involve the client in all data transfers. When
parallel tasks T1, T2, and T3 are finished, their results
must be sent back to the client. These results are needed
by T4, so the client then sends them to S4 when T4 is
requested. This unnecessary bridge communication with
the client increases the overall communication time of the
group. The bridge communication is highlighted in
Figure 9a and its overall contribution to the execution
time of the group is highlighted in Figure 10a.

Figure 9b shows how SmartNetSolve would map this
application, given the performance model of the
collective group of tasks and the fully connected
network. With these performance models, the
SmartNetSolve system would be fully aware of each task
in the group, the virtual links between these tasks and can
therefore choose a more optimal mapping for the group.
Given this knowledge, the mapping algorithm will map
the tasks to servers and virtual links to communication
paths on the network in such a way as to optimise the
total computation and communication of the group.

The shaded boxes in Figure 9b show the mapping
algorithm optimising the total computation time for the
group of parallel tasks T1, T2, and T3. This task-to-
server mapping implements an improved load balancing
strategy, mapping the largest task to the fastest server and
vice versa. This reduces the overall computation time for
this group of parallel tasks. This improvement is
highlighted in Figure 10b.

Further optimisation is achieved by mapping each of
the virtual links T1→T4, T2→T4, and T3→T4 to the
fastest communication path connecting the corresponding
servers. In this case, the mapping algorithm maps the
virtual link to the communication path directly
connecting the servers, which eliminates any bridge
communication with the client. This improvement in
communication time is also highlighted in Figure 10b.

In this hypothetical example, the improved and more
intelligent mapping algorithm of SmartNetSolve has
given a 3 fold speed up.

6. Conclusion and future work
In this paper, we have presented an approach to

extending the RPC model of NetSolve to allow the
mapping of a group of tasks on a fully connected virtual
network. At present, the execution model has been
extended successfully to achieve the communication
between remote servers. The execution model has also
been extended to allow for mapping of a group of tasks.
We are currently working on employing the two extended
performance models. The ADL language, which is used
to specify the performance model of a group of tasks, and
the NWS sensors, which will be used to employ the
performance model of the fully connected network, are
currently under implementation. In the future, a number

of mapping heuristics will be implemented and tested to
determine which would produce better suboptimal
mappings.

Acknowledgements

The authors would like to thank Jack Dongarra for

valuable discussions and support in this project. The
work was supported by the Science Foundation Ireland
and also in part by the IBM Dublin Center for Advanced
Studies.

References

[1] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra.

NetSolve: Grid Enabling Scientific Computing
Environments. Computer Science Department, University
of Tennessee, Knoxville, TN 37919, USA, 2005.

[2] J. Dongarra, A. Lastovetsky. An Overview of
Heterogeneous High Performance and Grid Computing.
In Engineering the Grid: Status and Perspectives, Eds. B.
Di Martino, J. Dongarra, A. Hoisie, L. Yang, and H. Zima,
American Scientific Publishers, January 2006.

[3] D. Arnold, H. Casanova, J. Dongarra. Innovations of the
NetSolve Grid Computing System. Concurrency and
Computation: Practice and Experience, 14(13-15):1457-
1479, Wiley, 2002.

[4] A. Lastovetsky. Parallel Computing on Heterogeneous
Networks, 423 pp., Wiley, June 2003.

[5] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Future Generation Computer
Systems, 15(5-6):757-768, Elsevier, 1999.

[6] K. Taura, A. Chien. A Heuristic Algorithm for Mapping
Communicating Tasks on Heterogeneous Resource.
Proceedings of the 9th Heterogeneous Computing
Workshop (HCW 2000), pp.102-115, IEEE Computer
Society Press, 2000.

[7] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

S 4

S 3

S 2

S 1

 C

A

A
C

E

C

T 1 B

B

T 2

E T 3 F

D

D F

B
D

F

B
D

F
T 4 G

G

E

E
C

A

C

T 3 F

F

T 2

A T1 B

D

D
B

S 4

S 3

S 2

S 1

 C

T 4 G

G

b) S m a r tN e tS o lv e

T IM E (m in u te s)

T IM E (m in u te s)

 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 2 7 0 3 0 0 3 3 0 3 6 0

Ta s k to s e r v e r m a p p in g
o f S m a r tN e tS o lv e im p r o v e s lo a d b a la n c e o f c o m p u ta t io n

a) N e tS o lv e

V ir tu a l lin k to c o m m u n ic a t io n p a th m a p p in g o f S m a r tN e tS o lv e
a llo w s f o r f u r th e r o p t im is a t io n .

L a r g e s t ta s k m a p p e d to s lo w e s t s e r v e r
L a r g e c o n tr ib u t io n to o v e r a ll e x e c u t io n t im e

Fo r c e d b r id g e c o m m u n ic a t io n
a d d s to c o m m u n ic a t io n c o s t

S 3
T 1

BA

C L IE N T S 2
T 2

C D

S 1
T 3

F

B

D

F

C L IE N T

S 3
T 3

S 2
T 2

S 1
T 1

S 4
T 4 C L IE N T

T O T A L = {M A X (c o m m) + M A X (c o m p (T 1 , T 2 , T 3)) } + c o m m + c o m p (T 4) }

T O T A L = M A X (c o m m) + M A X (c o m p (T 1 , T 2 , T 3)) + M A X (c o m m) + c o m p (T 4) + c o m m

A

C

E

E

B

D

F

G

C L IE N T S 4
T 4

G

M o r e o p tim a l ta s k to s e rve r m a p p in g
L a r g e s t ta s k m a p p e d to fa s te s t s e r ve r a n d vi c e ve rs a

M o r e o p tim a l m a p p i n g o f v i r tu a l l i n k to c o m m u n i c a ti o n p a th
D i r e c t c o m m u n i c a i to n - N o b r i d g e c o m m u n ic a tio n w i th c l ie n t

a) N e tS o lv e

 F o rc e d B r i d g e C o m m u n ic a ti o n

P o o r l o a d b a la n c i n g o f p a ra l l e l c o m p u ta ti o n
S m a l l e s t ta s k m a p p e d to fa s te s t s e rve r a n d vi c e ve rs a

C L IE N T

.

b) S m a r t N e tS o lv e

Figure 10 a) Timing of the mapping of NetSolve b) Timing of the mapping of SmartNetSolve

Figure 9. a) Mapping of an application in NetSolve b) Mapping of an application in SmartNetSolve

