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Abstract 

The paper presents Heterogeneous MPI (HMPI), an 
extension of MPI for programming high-performance 
computations on heterogeneous networks of computers. 
It allows the application programmer to describe the 
performance model of the implemented algorithm. This 
model allows for all the main features of the underlying 
parallel algorithm, which have an impact on its 
execution performance, such as the total number of 
parallel processes, the total volume of computations to 
be performed by each process, the total volume of data 
to be transferred between each pair of the processes, 
and how exactly the processes interact during the 
execution of the algorithm. Given the description of the 
performance model, HMPI creates a group of processes 
executing the algorithm faster than any other group of 
processes. The most principal extensions to MPI are 
presented. Parallel simulation of the interaction of 
electric and magnetic fields and parallel matrix 
multiplication are used to demonstrate the features of 
the library. 
 
 

1 Introduction 
 

The standard MPI [1] is the main programming tool 
used for programming high-performance computations 
on homogeneous distributed-memory computer systems 
such as supercomputers and clusters of workstations. It 
is also normally used to write parallel programs for 
heterogeneous networks of computers (HNOCs). 
However, it does not address some additional challenges 
posed by HNOCs, which are outlined below: 

•  Heterogeneity of processors. A good parallel 
application for HNOCs must distribute 
computations unevenly taking into account the 
speeds of the processors. The efficiency of the 
parallel application also depends on the 
accuracy of estimation of the speeds of the 
processors of the HNOCs, which is difficult 
because the processors may demonstrate 
different speeds for different applications due 
to differences in the set of instructions, the 
number of instruction execution units, the 
number of registers, the structure of memory 
hierarchy and so on. 

•  Ad hoc communication network. The common 
communication network is normally 
heterogeneous. The speed and bandwidth of 
communication links between different pairs of 
processors may differ significantly. This makes 
the problem of optimal distribution of 
computations and communications across the 
HNOC much more difficult than across a 
dedicated cluster of workstations 
interconnected with a homogeneous high-
performance communication network. Other 
issue is that the common communication 
network can use multiple network protocols for 
communication between different pairs of 
processors. A good parallel application should 
be able to use multiple network protocols 
between different pairs of processors within the 
same application for faster execution of 
communication operations. 

•  Multi-user decentralized computer system. 
Unlike dedicated clusters and supercomputers, 
HNOCs are not strongly centralized computer 
systems. A typical HNOC consists of relatively 
autonomous computers, where each one may 
be used and administered independently by its 
users. The first implication with the multi-user 
decentralized nature of HNOCs is the unstable 
performance characteristics of processors 
during the execution of a parallel program as 
the computers may be used for other 
computations and communications. The second 
implication is the much higher probability of 
resource failures in HNOCs compared to 
dedicated cluster of workstations, which makes 
fault tolerance a desired feature for parallel 
applications running on HNOCs. 

Thus, there are three main challenges posed by 
HNOCs, which are not addressed by the standard MPI 
specification. 

Firstly, the standard MPI does not provide means 
for employment of multiple network protocols between 
different pairs of processors for efficient communication 
in the same MPI application. A standard implementation 
of MPI does not address the challenge either. The only 
exception is the use of shared memory and TCP/IP in 
MPICH [2]. At the same time, there have been some 
research efforts to address this challenge implicitly, via 



advanced non-standard implementations of the standard 
MPI specification (Nexus [3], Madeleine [4]). 

Secondly, the standard MPI does not provide means 
for the writing of fault-tolerant parallel applications for 
HNOCs. There are some research efforts made recently 
to address this challenge such as the fault-tolerant MPI 
(FT-MPI) [5]. FT-MPI is a small set of extensions to 
MPI and its research implementation, which are aimed 
at the writing of message-passing programs that can 
survive failures. It offers the application programmer a 
range of recovery options other than just returning to 
some previous checkpoint. 

Thirdly, the standard MPI does not provide 
features, which facilitate the writing of parallel 
programs that distribute computations and 
communications unevenly, taking into account the 
speeds of the processors, and the speeds and bandwidths 
of communication links. To the best of the authors’ 
knowledge, there is no research effort made to address 
this challenge. This paper presents an effort in this 
direction – a small set of extensions to MPI, called 
HMPI (Heterogeneous MPI), aimed at efficient parallel 
computing on HNOCs, and its research implementation. 

We start from presentation of the principal 
extensions to MPI. Then we demonstrate the features of 
the library with two parallel HMPI applications. The 
first application simulates the interaction of electric and 
magnetic fields on a three-dimensional object. The 
second one multiplies two dense square matrices. 
Results of experiments with these applications on a 
HNOC are also presented. We conclude the paper by 
quick analysis of some alternative approaches to 
heterogeneous extension of MPI. 
 

2 Outline of HMPI 

 
The standard MPI specification provides 

communicator and group constructors, which allow the 
application programmers to create a group of processes 
that execute together some parallel computations to 
solve a logical unit of a parallel algorithm. The 
participating processes in the group are explicitly 
chosen from an ordered set of processes. This approach 
to the group creation is quite acceptable if the MPI 
application runs on homogeneous distributed-memory 
computer systems, one process per processor. In this 
case, the explicitly created group will execute the 
parallel algorithm typically with the same execution 
time as any other group with the same number of 
processes, because the processors have the same 
computing power, and the speed and the bandwidth of 
communication links between different pairs of 
processors are the same. However on HNOCs, a group 
of processes optimally selected by taking into account 
the speeds of the processors, and the speeds and the 
bandwidths of the communication links between them, 
will execute the parallel algorithm faster than any other 
group of processes. Selection of processes in such a 

group is usually a very difficult task. It requires the 
programmers to write a lot of complex code to detect 
the actual speeds of the processors and the speeds of the 
communication links between them, and then to use this 
information to select the optimal set of processes 
running on different computers of heterogeneous 
network. 

The main idea of HMPI is to automate the process 
of selection of such a group of processes that executes 
the heterogeneous algorithm faster than any other group. 
HMPI allows the application programmers to describe a 
performance model of their implemented heterogeneous 
algorithm. This model allows for all the main features of 
the underlying parallel algorithm that have an essential 
impact on application execution performance on 
HNOCs. These features are: 

•  The total number of processes executing the 
algorithm, 

•  The total volume of computations to be 
performed by each of the processes in the 
group during the execution of the algorithm, 

•  The total volume of data to be transferred 
between each pair of processes in the group 
during the execution of the algorithm, and 

•  The order of execution of the computations and 
communications by the involved parallel 
processes in the group, that is, how exactly the 
processes interact during the execution of the 
algorithm. 

HMPI provides a small and dedicated model 
definition language for specifying this performance 
model. This language uses most of the features in the 
specification of network types of the mpC language 
presented in [7]. A compiler compiles the description of 
this performance model to generate a set of functions. 
The functions make up an algorithm-specific part of the 
HMPI runtime system. 

Having provided such a description of the 
performance model, application programmers can use a 
new operation, whose interface is shown below, to 
create a group that will execute the heterogeneous 
algorithm faster than any other group of processes,  
 
HMPI_Group_create (HMPI_Group* gid,  

const HMPI_Model* perf_model,  
const void * model_parameters, 
int param_count) 

 
where perf_model is a handle that encapsulates all the 
features of the performance model in the form of a set of 
functions generated by the compiler from the 
description of the performance model, 
model_parameters are the parameters of the 
performance model (see example shown below), and 
param_count is the number of parameters of the 
performance model. This function returns an HMPI 
handle to the group of MPI processes in gid. 

In HMPI, groups are not absolutely independent on 
each other. Every newly created group has exactly one 
process shared with already existing groups. That 



process is called a parent of this newly created group, 
and is the connecting link, through which results of 
computations are passed if the group ceases to exist. 
HMPI_Group_create is a collective operation and 
must be called by the parent and all the processes, which 
are not members of any HMPI group. 

During the creation of this group of processes, 
HMPI runtime system solves the problem of selection of 
the optimal set of processes running on different 
computers of the heterogeneous network. The solution 
to the problem is based on the following: 

•  The performance model of the parallel 
algorithm in the form of the set of functions 
generated by the compiler from the description 
of the performance model. 

•  The model of the executing network of 
computers, which reflects the state of this 
network just before the execution of the 
parallel algorithm. 

The algorithms used to solve the problem of 
selection of processes are discussed in [7]. The accuracy 
of the model of the executing network of computers 
depends upon the accuracy of the estimation of the 
actual speeds of processors. HMPI provides an 
operation to dynamically update the estimation of 
processor speeds at runtime. It is especially important if 
computers, executing the target program, are used for 
other computations as well. In that case, the actual 
speeds of processors can dynamically change dependent 
on the external computations. The use of this operation, 
whose interface is shown below, allows the application 
programmers to write parallel programs, sensitive to 
such dynamic variation of the workload of the 
underlying computer system,  

HMPI_Recon (HMPI_Benchmark_function func, 
const void* input_p,  int num_of_parameters, 
void* output_p) 

 
where all the processors execute the benchmark function 
func in parallel, and the time elapsed by each of the 
processors to execute the code is used to refresh the 
estimation of its speed. This is a collective operation 
and must be called by all the processes in the group 
associated with the predefined communication universe 
HMPI_COMM_WORLD of HMPI.  
      Another principal operation provided by HMPI 
allows application programmers to predict the total time 
of execution of the algorithm on the underlying 
hardware without its real execution. Its interface is 
shown below, 

HMPI_Timeof (const HMPI_Model* perf_model, 
const void* model_parameters, int param_count)  

 
This function allows the application programmers to 
write such a parallel application that can follow 

different parallel algorithms to solve the same problem, 
making choice at runtime depending on the particular 
executing network and its actual performance. This is a 
local operation that can be called by any process, which 
is a member of the group associated with the predefined 
communication universe HMPI_COMM_WORLD of 
HMPI. 

A typical HMPI application starts with the 
initialization of the HMPI runtime system using the 
operation  

HMPI_Init (int argc, char** argv) 

where argc and argv are the same arguments, passed 
into the application, as the arguments to main. This 
routine must be called before any other HMPI routine 
and must be called once. This routine must be called by 
all the processes running in the HMPI application. 
       After the initialization, application programmers 
can call any other HMPI routines. In addition, MPI 
users can use normal MPI routines, with the exception 
of MPI initialization and finalization, including the 
standard group management and communicator 
management routines to create and free groups of MPI 
processes. However, they must use the predefined 
communication universe HMPI_COMM_WORLD of 
HMPI instead of MPI_COMM_WORLD of MPI.  

The application programmers are recommended to 
avoid using groups created with the MPI group 
constructor operations, to perform computations and 
communications in parallel with HMPI groups, as it 
may not result in the best execution performance of the 
application. The point is that the HMPI runtime system 
is not aware of any group of MPI processes, which is 
not created under its control. Therefore, the HMPI 
runtime system cannot guarantee that an HMPI group 
will execute its parallel algorithm faster than any other 
group of MPI processes if some groups of MPI 
processes, other than HMPI groups, are active during 
the algorithm execution.  

The only group constructor operation provided by 
HMPI is the creation of the group using 
HMPI_Group_create, and the only group destructor 
operation provided by HMPI is 
 

HMPI_Group_free (HMPI_Group* gid) 

 
where gid is the HMPI handle to the group of MPI 
processes. This is a collective operation and must be 
called by all the members of this group. There are no 
analogs of other group constructors of MPI such as the 
set-like operations on groups and the range operations 
on groups in HMPI. This is because: 

•  Firstly, HMPI does not guarantee that groups 
composed using these operations can execute a 
logical unit of parallel algorithm faster than 
any other group of processes, and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Development process of a HMPI application. To build HMPI applications, an application 
programmer describes a performance model using the model definition language, compiles the 
performance model description into a set of functions, writes the application using the HMPI 
interfaces to create groups of processes to execute the parallel algorithm. 

 
•  Secondly, it is relatively straightforward for 

application programmers to perform such 
group operations by obtaining the groups 
associated with the MPI communicator given 
by the HMPI_Get_comm operation (see the 
interface shown below). 

The other additional group management operations 
provided by HMPI apart from the group constructor and 
destructor are the following group accessors: 

•  HMPI_Group_rank to get the rank of the 
process in the HMPI group, and 

•  HMPI_Group_size to get the number of 
processes in this group.  

The initialization of HMPI runtime system is 
typically followed by 

•  Updating of the estimation of the speeds of 
processors with HMPI_Recon, 

•  Finding the optimal values of the parameters of 
the parallel algorithm with HMPI_Timeof, 

•  Creation of a group of processes, which will 
perform the parallel algorithm, by using 
HMPI_Group_create, 

•  Execution of the parallel algorithm by the 
members of the group. At this point, control is 
handed over to MPI. MPI and HMPI are 
interconnected by operation 

const MPI_Comm* HMPI_Get_comm ( 

const HMPI_Group* gid), 

which returns an MPI communicator with 
communication group of MPI processes 
defined by gid. This is a local operation not 
requiring inter-process communication. 
Application programmers can use this 
communicator to call the standard MPI 
communication routines during the execution 
of the parallel algorithm. This communicator 
can safely be used in other MPI routines. 

•  Freeing the HMPI groups with 
HMPI_Group_free.  

•  Finalizing the HMPI runtime system by using  
operation 

      HMPI_Finalize (int exitcode), 

Note, that in general, the architecture of HMPI 
summarised in Figure 1 has similarities to the 
architectural framework of the CORBA specification 
[9]. 
 

3 Example of irregular HMPI application 
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Figure 2. (a) The three dimensional object consists of three subbodies. In each subbody, the electric 
field value is represented as a white dot, an E node, and the magnetic field value represented by a 
black dot, an H node and (b) A bipartite graph showing dependencies between E and H nodes. 

 

To explain how an application programmer can use 
HMPI to write a real-life irregular application, consider 
the EM3D application simulating the interaction of 
electric and magnetic fields on a three-dimensional 
object [11, 12]. The system consists of a few large 
subbodies resulting from a decomposition of the three-
dimensional object. The subbodies contain varying 
number of E nodes where electric field values are 
calculated and H nodes where magnetic fields are 
calculated. The changes in the electric field of an E node 
are calculated as a linear function of the magnetic field 
values of its neighboring H nodes and vice versa. Thus, 
the dependencies between E and H nodes form a 
bipartite graph. In a bipartite graph, the vertices are 
decomposed into two disjoint sets such that no two 
vertices within the same set are adjacent. Here the two 
disjoint sets are the set of E nodes and the set of H 
nodes. The subbodies are so decomposed from the 
three-dimensional object that the nodes in each subbody 
have few dependencies on the nodes residing in other 
subbodies thereby reducing the communications 
between a pair of subbodies. A sample decomposition of 
a three dimensional object into three subbodies is shown 
in Figure 2(a). A simple example of bipartite graph is 
shown in Figure 2(b). 

The parallel algorithm of this application consists 
of a few parallel processes, each of which updates data 
characterizing a single sub body. The heterogeneous 
algorithm can be summarized as follows: 

At each step of the algorithm, 

o For each of the E nodes in its sub body, if 
any of the neighboring H nodes reside 
remotely, each process receives the values 
of these nodes from the process owning 
them;  

o Each process in parallel computes the new 
value of the electric field of each of the E 
nodes in its sub body; 

 

 

o For each of the H nodes in its sub body, if 
any of the neighboring E nodes reside 
remotely, each process receives the values 
of these nodes from the process owning 
them; 

o Each process in parallel computes the new 
value of the magnetic field of each of the 
H nodes in its sub body;  

The most interesting fragments of the MPI version 
of this parallel application are shown in Figure 3. 

We assume the one-process-per-processor 
configuration for this MPI application. 

As shown in the MPI program in Figure 3, the 
participating parallel processes in the group associated 
with the MPI communicator em3dcomm are explicitly 
chosen from an ordered set of processes specified by the 
group associated with the MPI communicator 
MPI_COMM_WORLD. If the MPI application runs 
on a homogeneous distributed-memory computer 
system, this group will execute the parallel algorithm 
with the same execution time as any other MPI group of 
processes, just because all processors run at the same 
speed, and all communication links transfer data at the 
same speed. However, if the MPI program runs on a 
HNOC, this group will execute the parallel algorithm 
sometimes slower and sometimes faster than other 
groups of processes. This is because different processors 
of the HNOC will execute the same computations at 
different speeds, and different pair of processors will 
communicate at different speeds. MPI does not facilitate 
creation of a group of processes where the processes are 
optimally selected taking into account the speeds of the 
processes, and the speeds and the bandwidths of the 
communication links between them. It is only a pure 
chance if the MPI group of processes executes the 
parallel algorithm faster than any other MPI group of 
processes on the HNOC. 

The HMPI version of this parallel application 
involves first describing the performance model of the  
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Figure 3. The most principal code of the MPI program implementing the EM3D algorithm. 

 
parallel algorithm. The definition of Em3d shown in 
Figure 4 describes the performance model of the 
heterogeneous algorithm of this parallel application. 

The model describing the algorithm has 4 
parameters. Parameter p specifies the number ofabstract 
processors executing the algorithm. Parameter k 
specifies the number of nodes in a single subbody, 
whose data is computed in the benchmark code that is 
truly representative of the underlying application. 

It is supposed that i-th element of the vector 
parameter d gives the number of nodes in the subbody 
computed by the i-th abstract processor participating in 
the execution of the algorithm. 

Parameter dep specifies the number of nodal values 
communicated between different pairs of subbodies: 
dep[I][J] gives the number of nodal values in the 
subbody J that subbody I needs to compute its nodal 
values. 

The coord declaration introduces one coordinate 
variable I ranging from 0 to p-1.  

The node declaration associates the abstract 
processors with this coordinate system to form a linear 
processor arrangement. It also describes the absolute 
volume of computation to be performed by each of the 
processors. As a unit of measurement, the volume of 
computation performed by some benchmark code is 
used. In this particular case, it is assumed that the 
benchmark code computes the nodal values of k nodes 
in a single subbody. At each step of the algorithm, 
abstract processor PI updates d[I] nodes. As 

computations during the updating of one single subbody 
mainly falls into the calculation of nodal values, the 
volume of computations performed by the abstract 
processor PI will be approximately d[I]/k times larger 
than the volume of computations performed by the 
benchmark code. 

The link declaration specifies the volumes of data 
to be transferred between the abstract processors at each 
step of the algorithm. Abstract processor PI  owning 
subbody I receives dep[I][L] remote boundary values 
from the subbody L owned by processor PL. Thus,  the 
total volume of data to be transferred from PL to PI will 
be equal to dep[I][L]*sizeof(double). 

The scheme declaration describes how the abstract 
processors interact during the execution of one iteration 
of the algorithm: 

•  Each processor Powner first receives the remote 
values required for the calculation of the nodal 
values in its subbody. During this 
communication    operation, 100% of data that 
should be sent        from each processor Premote 
to processor Powner        at this step will be sent. 
The second nested par statement in the main 
for loop of the scheme declaration just 
specifies it. The par algorithmic patterns are 
used to specify that during the execution of this 
communication, data transfer between different 
pairs of processors is carried out in parallel. 

•  Each processor then computes the new values 
for each of the nodes in its subbody. The 
processor will perform 100% of computations 
it should perform during this iteration. The par  

   int main(int argc, char **argv) { 
      MPI_Comm em3dcomm; 
      int i, me, is_executing_algo = MPI_UNDEFINED, E = 0, H = 1;  
      int p, niter;                /* Inputs to the program */        
      struct EM3D_body_t* bodies;  /* Inputs to the program */ 
      MPI_Init(&argc, &argv); 
      MPI_Comm_rank(MPI_COMM_WORLD, &me); 
      if (me >= 0 && me < p) is_executing_algo = 1; 
      MPI_Comm_split(MPI_COMM_WORLD, is_executing_algo, 1, &em3dcomm); 
      if (is_executing_algo) { 
        Initialize_system(p, bodies); 
        MPI_Comm_rank(&em3dcomm, &me); 
        for (i = 0; i < niter; i++) { 
          Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm); 
          Compute_E_values(me, E, p, bodies); 
          Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm); 
          Compute_H_values(me, H, p, bodies); 
        } 
        MPI_Comm_free(&em3dcomm); 
      } 
      MPI_Finalize();  
   } 

 



 

  
Figure 4. Specification of the performance model of the em3d algorithm in the HMPI’s performance 
definition language. 
 

algorithmic patterns are used here to specify 
that all abstract processors perform their 
computations in parallel. 

Note that the above performance model describes 
only one iteration of the algorithm. This approximation 
is accurate enough because at any iteration each 
processor performs the same volume of computations, 
and the same volume of data is transferred between each 
pair of processors. 

The most interesting fragments of the rest code of 
the HMPI parallel application are shown in Figure 5. 

In the example shown in figure 5, the HMPI 
runtime system is initialized using operation 
HMPI_Init. Then, operation HMPI_Recon updates the 
estimation of performances of processors using the 
serial EM3D program computing nodal values for a 
single subbody. The computations performed by each 
processor mainly fall into the execution of calls to 
function Serial_em3d. 

This is followed by the creation of a group of 
processes using operation HMPI_Group_create. The 
members of this group then perform the computations 
and communications of the heterogeneous parallel 
algorithm using standard MPI means.   This is followed 
by freeing the group using operation 
HMPI_Group_free, and by finalizing the HMPI 
runtime system using operation HMPI_Finalize.  

On HNOCs, the running time of the HMPI program 
shown above will always be less than the running time 
of the corresponding MPI program. This is because an 
HMPI group of processes will always execute the 
parallel algorithm faster than any other group of 
processes including the groups of processes created 
using MPI means. The processes participating in the 
HMPI group are chosen optimally taking into account 
all the main features of the underlying parallel 
algorithm, which have an impact on the application 

execution performance. The application programmer 
describes all the main features of the parallel algorithm 
using the performance model Em3d, which are  

•  The total number of participating processes p,  
•  The total volume of computations to be 

performed by each of the processes as specified 
in node declaration. The volume of 
computations is mainly the computation of 
field values of nodes in a sub-body thus 
depending on the number of nodes within a 
sub-body,  

•  The total volume of data to be transferred 
between each pair of processes as specified by 
the link declaration. The volume of data 
transferred equals the number of bytes of 
remote boundary values communicated 
between the sub-bodies, and  

•  How exactly the processes interact during the 
execution of the algorithm as specified by the 
scheme declaration. Informally this looks like 
the description of the algorithm describing the 
interaction between the processes during the 
execution of the algorithm. 

During the creation of the group of processes, the 
HMPI runtime system uses the information from the 
performance model to solve the problem of selection of 
the optimal set of processes running on different 
computers of heterogeneous network. 

It can also be seen from the MPI and HMPI 
programs described in this section that there is 
essentially no change in code of the parallel algorithm 
executed by the members of the group of processes 
participating in the parallel program. The main 
difference lies only in the creation of a group of 
processes. 

   algorithm Em3d(int p, int k, int d[p], int dep[p][p]) { 
     coord I=p; 
     node {I>=0: bench*(d[I]/k);}; 
     link (L=p) { 
       I>=0 && I!=L && (dep[I][L] > 0) :  
         length*(dep[I][L]*sizeof(double)) [L]->[I]; 
     }; 
     parent[0]; 
     scheme { 
       int current, owner, remote; 
       par (owner = 0; owner < p; owner++) 
           par (remote = 0; remote < p; remote++) 
               if ((owner != remote) && (dep[owner][remote] > 0)) 
                  100%%[remote]->[owner]; 
       par (current = 0; current < p; current++) 100%%[current]; 
     }; 
 



 

Figure 5. The most principal code of the HMPI program implementing the algorithm of EM3D. 
 

4 Example of regular HMPI application 

 
An irregular problem is characterized by some 

inherent coarse-grained or large-grained structure 
implying quite deterministic decomposition of the 
whole program into a set of processes running in 
parallel and interacting via message passing. As rule, 
there are essential differences in volumes of 
computations and communications to perform by 
different processes. The EM3D problem is an example 
of irregular problem.  

Unlike an irregular problem, for a regular problem 
decomposition of the whole program into a large set of 
small equivalent programs, running in parallel and 
interacting via message passing, is the most natural one. 

Multiplication of dense matrices is an example of a 
regular problem. The main idea of efficient solving a 
regular problem is to reduce it to such an irregular 
problem, the structure of which is determined by the 
irregularity of underlying hardware rather than the 
irregularity of the problem itself. 

Consider the problem of parallel matrix 
multiplication (MM) on HNOCs. The algorithm of 
execution of the matrix operation C=A×B on a HNOC is 
obtained by modification of the ScaLAPACK [8] 2D 
block-cyclic MM algorithm. The modification is that the 
heterogeneous 2D block-cyclic data distribution of [6] is 
used instead of the standard homogeneous data 
distribution. Thus, the heterogeneous algorithm of 
multiplication of two dense square (n×r)×(n×r) 
matrices A and B on an m×m grid of heterogeneous 
processors can be summarised as follows:

   int main(int argc, char **argv) { 
      MPI_Comm em3dcomm; 
      int i, me, k, E = 0, H = 1; 
      HMPI_Group gid; 
      void* model_params; 
      int param_count;  
      int p, niter;                /* Inputs to the program */ 
      struct EM3D_body_t* bodies;  /* Inputs to the program */ 
      HMPI_Init(argc, argv); 
      if (HMPI_Is_member(HMPI_COMM_WORLD_GROUP)) { 
         int output_p; 
         Body recon_body; 
         // Construct recon parameters that are  
         // representative of the application 
  ...  
         HMPI_Recon(&Serial_em3d, &recon_body, 1, &output_p); 
      } 
      if (HMPI_Is_host()) 
         HMPI_Pack_model_parameters(p, k, d, dep, 
                                    model_params, &param_count); 
      if (HMPI_Is_host() || HMPI_Is_free()) 
         HMPI_Group_create(&gid, &HMPI_Model_Em3d, 
                           model_params, param_count); 
      if (HMPI_Is_member(&gid)) { 
                 em3dcomm = *(MPI_Comm*)HMPI_Get_comm(&gid); 
        Initialize_system(p, bodies); 
        MPI_Comm_rank(&em3dcomm, &me); 
        for (i = 0; i < niter; i++) { 
          Gather_remote_H_boundary_values(me, H, p, bodies, &em3dcomm); 
          Compute_E_values(me, E, p, bodies); 
          Gather_remote_E_boundary_values(me, E, p, bodies, &em3dcomm); 
          Compute_H_values(me, H, p, bodies); 
        }  
      } 
      if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid); 
      HMPI_Finalize(0);  
   } 



 
•  Each element in A, B, and C is a square r×r 

block and the unit of computation is the 
updating of one block, i.e., a matrix 
multiplication of size r. Each matrix is 
partitioned into generalized blocks of the same 
size (l×r)×(l×r), where nlm ≤≤ . The 
generalized blocks are identically partitioned 
into p2 rectangles, each being assigned to a 
different processor. The area of each rectangle 
is proportional to the speed of the processor 
that stores the rectangle. The partitioning of a 
generalized block is performed as follows: 

o Each element in the generalized block 
is a square rr ×  block of matrix 
elements. The generalized block is a 

ll ×  square of rr ×  blocks. 

o First, the ll ×  square is partitioned 
into m vertical slices, so that the area 
of the j-th slice is proportional to 

∑
=

m

i
ijs

1

. It is supposed that blocks of 

the j-th slice will be assigned to 
processors of the j-th column in the 

mm×  processor grid. Thus, at this 
step, we balance the load between 
processor columns in the mm×  
processor grid, so that each processor 
column will store a vertical slice 
whose area is proportional to the total 
speed of its processors. 

o Then, each vertical slice is partitioned 
independently into m horizontal 
slices, so that the area of the i-th 
horizontal slice in the j-th vertical 
slice is proportional to sij. It is 
supposed that blocks of the i-th 
horizontal slice in the j-th vertical 
slice will be assigned to processor Pij. 
Thus, at this step, we balance the load 
of processors within each processor 
column independently.  

•  At each step k,  
o Each r×r block aik of the pivot column 

of matrix A is sent horizontally from 
the processor, which stores this block, 
to m-1 processors (see Figure 6); 

o Each r×r block bkj of the pivot row of 
matrix B is sent vertically from the 
processor, which stores this block, to 
m-1 processors (see Figure 6); 

•  Each processor updates its rectangle in the C 
matrix with one block from the pivot row and 
one block from the pivot column.  

 
The definition of ParallelAxB given in Figure 7 

describes the performance model of this heterogeneous 
algorithm. 

The network type ParallelAxB describing the 
algorithm has 6 parameters. Parameter m specifies the 
number of abstract processors along the row and along 
the column of the processor grid executing the 
algorithm. Parameter r specifies the size of a square 
block of matrix elements, the updating of which is the 
unit of computation of the algorithm. Parameter n is the 
size of square matrices A, B, and C measured in rr ×  
blocks. Parameter l is the size of a generalised block 
also measured in rr ×  block. 

Vector parameter w specifies the widths of the 
rectangles of a generalised block assigned to different 
abstract processors of the mm×  grid. The width of the 
rectangle assigned to processor PIJ is given by element 
w[J] of the parameter. All widths are measured in 

rr ×  blocks. 
Parameter h specifies the heights of rectangle areas 

of a generalised block of matrix A, which are 
horizontally communicated between different pairs of 
abstract processors. Let RIJ and RKL be the rectangles of 
a generalised block of matrix A assigned to processors 
PIJ and PKL respectively. Then, h[I][J][K][L] gives the 
height of the rectangle area of RIJ, which is required by 
processor PKL to perform its computations. All heights 
are measured in rr ×  blocks.  

Note that h[I][J][I][J] specifies the height of RIJ, 
and h[I][J][K][L] will be always equal to 
h[K][L][I][J]. 

The coord declaration introduces 2 coordinate 
variables, I and J, both ranging from 0 to m-1. 

The node declaration associates the abstract 
processors with this coordinate system to form a 

mm×  grid. It also describes the absolute volume of 
computation to be performed by each of the processors. 
As a unit of measure, the volume of computation 
performed by the code multiplying two rr ×  matrices 
is used. At each step of the algorithm, abstract processor 

PIJ  updates gIJIJ nhw ×× )(  rr ×  blocks, where 

IJIJ hw ,  are the width and height of the rectangle of a 

generalised block assigned to processor PIJ , and gn  is 

the total number of generalised blocks. As computations 
during the updating of one rr ×  block mainly fall into 
the multiplication of two rr ×  blocks, the volume of 
computations performed by the processor PIJ at each 
step of the algorithm will be approximately will be 

approximately gIJIJ nhw ×× )(  times larger than the 

volume of computations performed to multiply two 

rr ×  matrices. As IJw  is given by w[J], IJh  is given 

by h[I][J][I][J], gn  is given by (n/l)*(n/l), and the total 

number of steps of the algorithm is given by n, the total 
volume of computation performed by abstract processor 
PIJ will be w[J]*h[I][J][I][J]*(n/l)*(n/l)*n times bigger 
than the volume of computation performed by the code 
multiplying two rr ×  matrices.  

     The link declaration specifies the volumes of 
data to be transferred between the abstract processors  
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Figure 6. One step of the algorithm of parallel matrix-matrix multiplication based on heterogeneous 
two-dimensional block distribution of matrices A, B, and C. First, each rr ×  block of the pivot 
column ka•  of matrix A (shown shaded dark grey) is broadcast horizontally, and each rr ×  block of 

the pivot row •kb  of matrix B (shown shaded dark grey) is broadcast vertically. 

 
during the execution of the algorithm. The first 
statement in this declaration describes communications 
related to matrix A. Obviously, abstract processors from 
the same column of the processor grid do not send each 
other elements of matrix A. Abstract processor PIJ will 
send elements of matrix A to processor PKL only if its 
rectangle RIJ in a generalised block has horizontal 
neighbours of the rectangle RKL assigned to processor 
PKL. In that case, processor PIJ will send all such 
neighbours to processor PKL. Thus, in total processor PIJ 

will send gIJKL nN ×  rr × blocks of matrix A to 

processor PKL, where IJKLN  is the number of horizontal 

neighbours of rectangle RKL in rectangle RIJ, and gn  is 

the total number generalised blocks. As IJKLN  is given 

by w[J]* h[I][J][K][L], gn  is given by (n/l)*(n/l), and 

the volume of data in one rr × block is given by 
(r*r)*sizeof(double), the total volume of data 
transferred from processor PIJ to processor PKL will be 
given by 
w[J]*h[I][J][K][L]*(n/l)*(n/l)*(r*r)*sizeof(double). 

The second statement in the link declaration 
describes communications related to matrix B. 
Obviously, only abstract processors from the same 
column of the processor grid send each other elements 
of matrix B. In particular, processor PIJ will send all its 

rr × blocks of matrix B to all other processors from 
column J of the processor grid. The total number of 

rr × blocks of matrix B assigned to processor PIJ is 
given by w[J]*h[I][J][I][J]*(n/l)*(n/l). 

The scheme declaration describes n successive 
steps of the algorithm. At each step k,  

•  a row of rr ×  blocks of matrix B is 
communicated vertically. For each pair of 
abstract processors PIJ and PKJ involved in this 
communication, PIJ sends a part of this row to 
PKJ. The number of rr × blocks transferred 

from PIJ to PKJ will be gIJ nw × , where 

gn  is the number of generalised blocks 

along the row of rr ×  blocks. The total 
number of rr × blocks of matrix B, which 
processor PIJ sends to processor PKJ, is 

gIJIJ nhw ×× )( . Therefore, 

100
1

100
)(

×
×

=×
××

×

gIJgIJIJ

gIJ

nhnhw

nw

percent of data that should be in total sent from 
processor PIJ to processor PKJ will be sent at 
the step. The first nested par statement in the 
main for loop of the scheme declaration just 
specifies it. The par algorithmic patterns are 
used to specify that during the execution of this 
communication, data transfer between different 
pairs of processors is carried out in parallel. 

•  A column of rr ×  blocks of matrix A is 
communicated horizontally. If processors PIJ 
and PKL are involved in this communication so 
that PIJ sends a part of this column to PKL, then 
the number of rr × blocks transferred from 

PIJ to PKL will be gIJKL nH × , where IJKLH  

is the height of the rectangle area in a 
generalised block, which is communicated 



 
Figure 7. Specification of the performance model of the algorithm of parallel matrix multiplication 
based on heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI’s 
performance definition language. 
 

typedef struct {int I; int J;} Processor; 
algorithm ParallelAxB(int m, int r, int n, int l, int w[m], 
                    int h[m][m][m][m]) 
{ 
  coord I=m, J=m; 
  node {I>=0 && J>=0: bench*(w[J]*(h[I][J][I][J])*(n/l)*(n/l)*n);}; 
  link (K=m, L=m) 
  { 
    I>=0 && J>=0 && I!=K : 
      length*(w[I]*(h[I][J][I][J])*(n/l)*(n/l)*(r*r)*sizeof(double)) 
             [I, J] -> [K, J]; 
    I>=0 && J>=0 && J!=L && ((h[I][J][K][L])>0) : 
      length*(w[J]*(h[I][J][K][L])*(n/l)*(n/l)*(r*r)*sizeof(double)) 
             [I, J] -> [K, L]; 
  }; 
  parent[0,0]; 
  scheme 
  { 
    int k; 
    Processor Root, Receiver, Current;  
    for(k = 0; k < n; k++) 
    { 
      int Acolumn = k%l, Arow; 
      int Brow = k%l, Bcolumn; 
      par(Arow = 0; Arow <l; ) 
      { 
        GetProcessor(Arow, Acolumn, m, h, w, &Root); 
        par(Receiver.I = 0; Receiver.I < m; Receiver.I++) 
          par(Receiver.J = 0; Receiver.J < m; Receiver.J++) 
            if((Root.I != Receiver.I || Root.J != Receiver.J) && 
               Root.J != Receiver.J) 
              if((h[Root.I][Root.J][Receiver.I][Receiver.J]) > 0) 
                (100/(w[Root.J]*(n/l)))%% 
                      [Root.I, Root.J] -> [Receiver.I, Receiver.J]; 
        Arow += h[Root.I][Root.J][Root.I][ Root.J]; 
      }              
      par(Bcolumn = 0; Bcolumn < l; ) 
      { 
        GetProcessor(Brow, Bcolumn, m, h, w, &Root); 
        par(Receiver.I = 0; Receiver.I < m; Receiver.I++) 
          if(Root.I != Receiver.I) 
            (100/((h[Root.I][Root.J][Root.I][Root.J])*(n/l))) %% 
                  [Root.I, Root.J] -> [Receiver.I, Root.J]; 
        Bcolumn += w[Root.J]; 
      } 
      par(Current.I = 0; Current.I < m; Current.I++) 
        par(Current.J = 0; Current.J < m; Current.J++) 
          (100/n) %% [Current.I, Current.J]; 
    } 
  };    
}; 



 

Figure 8. The most principal code of the HMPI program implementing the algorithm of parallel 
matrix multiplication based on heterogeneous two-dimensional block-cyclic distribution of 
matrices.

 

int m, l; 
int main(int argc, char** argv) { 

int optimal_generalised_block_size; 
typedef struct {double *a; double *b; double *c; int r;} 
        Recon_params; 

   HMPI_Group gid; 
   void *model_params; 
   int param_count = 4+m+(m*m*m*m); 
   double *a, *b, *c; 
 
   HMPI_Init(argc, argv); 

if (HMPI_Is_member(HMPI_COMM_WORLD_GROUP)) { 
   int output_p; 
   Recon_params recon_params;  
   Initialize(a, b, c, r, &recon_params); 
   HMPI_Recon(&rMxM, &recon_params,  1, &output_p); 
} 
if (HMPI_Is_host()) { 
   int bsize;  
   double time, min_time=DBL_MAX;   
   for (bsize = m; bsize < n; bsize++) { 
       time = HMPI_Timeof(&HMPI_Model_ParallelAxB,  
                          model_params, param_count);  
       if (time < min_time) { 
          optimal_generalised_block_size = bsize; 
          min_time = time; 
       } 
   } 

   } 
   … 
   l = optimal_generalised_block_size; 
   if (HMPI_Is_host() || HMPI_Is_free()) 
      HMPI_Group_create(&gid, &HMPI_Model_ParallelAxB, 
                        model_params, param_count); 
   if (HMPI_Is_member(&gid)) { 
      …        
      MPI_Comm* grid_comm = (MPI_Comm*)HMPI_Get_comm(&gid);  
      … 
      // computations and communications are performed here  
      // using standard MPI routines. 
      // 
      … 
   } 
   if (HMPI_Is_member(&gid)) HMPI_Group_free(&gid); 
   HMPI_Finalize(0); 
} 
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Figure 9. (a) Comparison of execution times of EM3D algorithm between HMPI and MPI. (b) The 
speedup of EM3D algorithm obtained using HMPI over MPI. 
 

from PIJ to PKL, and gn  is the number of 

generalised blocks along the column of rr ×  
blocks. The total number of rr × blocks of 
matrix A, which processor PIJ sends to processor 

PKL, is gIJKL nN × . Therefore, 
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percent of data that should be in total sent from 
processor PIJ to processor PKL will be sent at the 
step. The second nested par statement in the main 
for loop of the scheme declaration specifies this 
fact. Again, we use the par algorithmic patterns 
in this specification to stress that during the 
execution of this communication, data transfer 
between different pairs of processors is carried 
out in parallel. 

Each abstract processor updates each its rr ×  block 
of matrix C with one block from the pivot column and one 

block from the pivot row, so that each block ijc  

( , {1, , }i j n∈ K ) of matrix C will be updated, 

kjikijij bacc ×+= . The processor performs the same 

volume of computation at each step of the algorithm. 
Therefore, at each of n steps of the algorithm the 

processor will perform 
100

n
 percent of the volume of 

computations it performs during the execution of the 
algorithm. The third nested par statement in the main for 
loop of the scheme declaration just says it. The par 
algorithmic patterns are used here to specify that all 
abstract processors perform their computations in parallel. 

Function GetProcessor is used in the scheme 
declaration to iterate over abstract processors that store the 
pivot row and the pivot column of rr ×  blocks. It returns 
in its last parameter the grid coordinates of the abstract 
processor storing the rr ×  block, whose coordinates in a 
generalised block of a matrix are specified by its first two 
parameters. 

The most interesting fragments of the rest code of the 
HMPI parallel application are shown in Figure 8. 

In the example shown above, HMPI runtime system 
is initialised using operation HMPI_Init. Then, operation 
HMPI_Recon updates the estimation of performances of 
processors using the serial multiplication of test matrices 
of size r×r. The computations performed by each 
processor mainly fall into the execution of calls to 
function rMxM.  

The next block of code, executed by the host-
processor, uses operation HMPI_Timeof predicting the 
total time of execution of the parallel algorithm. This 
operation is used to calculate the optimal generalized 
block size, one of the parameters of the heterogeneous 
parallel algorithm. 

This is followed by the creation of a group of 
processes using operation HMPI_Group_create. The 
members of this group then perform the computations and 
communications of the heterogeneous parallel algorithm 
using standard MPI means. This is followed by freeing the 
group using operation HMPI_Group_free and the 
finalization of HMPI runtime system using operation 
HMPI_Finalize. 
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Figure 10. Comparison of execution times of MM algorithm between HMPI and MPI for different values 
of generalised block size.
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Figure 11. (a) Comparison of execution times of MM algorithm between HMPI and MPI. (b) The speedup 
of MM algorithm obtained using HMPI over MPI. 

5 Experiments with HMPI 

 
This section presents some results of experiments 

with the HMPI applications presented in Sections 3 and 4. 
A small heterogeneous local network of 9 different 

Solaris and Linux workstations is used in the experiments  
 
 

 
for the EM3D algorithm. The speeds of the workstations 
demonstrated on the core computation of this algorithm, 
are 46, 46, 46, 46, 46, 46, 176, 106, and 9. Note that the 
figures give the average speeds measured at runtime 
during the experiments. The network is based on 100 Mbit 
Ethernet with a switch enabling parallel communications 
between the computers. 

Figure 9(a) shows the comparison of the execution 
times of the HMPI application and the standard MPI 



application executing EM3D algorithm. The experimental 
results are obtained by averaging the execution times over 
a number of experiments. One can see that the HMPI 
application is almost 1.5 times faster than the standard 
MPI one. Figure 9(b) demonstrates the speedup of the 
HMPI program over the MPI one.  

All  results are obtained for r = l = 9, which have 
appeared optimal. Figure 10 shows results for different 
values of generalised block sizes for the value of r = 8. 

A small heterogeneous local network of 9 different 
Solaris and Linux workstations is used in the experiments 
for the MM algorithm. The speeds of the workstations 
demonstrated on the core computation of this algorithm, 
are 46, 46, 46, 46, 46, 46, 46, 106, and 9. Note that the 
figures give the average speeds measured at runtime 
during the experiments. The network is based on 100 Mbit 
Ethernet with a switch enabling parallel communications 
between the computers. 

Figure 11(a) shows the comparison of the execution 
times of the HMPI application and the standard MPI 
application using homogeneous 2D block-cyclic data 
distribution. The experimental results are obtained by 
averaging the execution times over a number of 
experiments. One can see that the HMPI application is 
almost 3 times faster than the standard MPI one. Figure 
11(b) demonstrates the speedup of the HMPI program 
over the MPI one. 
 

6 Conclusion 

 
We consider the HMPI as a step towards a future 

standard message-passing library for heterogeneous 
networks of computers. This library is viewed as such an 
extension of the standard MPI that combines the features 
of multi-protocol communication, fault tolerance, and the 
advanced support for efficient heterogeneous parallel 
computing, separately provided by the Nexus MPI, the 
FT-MPI, and the HMPI. 
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