TOWARDSA REALISTIC PERFORMANCE MODEL
FORNETWORKSOF HETEROGENEOUSCOMPUTERS

Alexey Lastovetsky
and John Twamley

University College Dublin, Belfield, Dublin 4, Ireland
Alexey.Lastovetsky@ucd.ie, John.Twamley@ucd.ie

Abstract This paper presents experimental work undertaken towards the development of a
realistic performance model for non-dedicated networks of heterogeneous com-
puters. Unlike traditional models, it is aimed at parallel computing on common
networks of computers and distributed computing on global networks. It takes
into account the effect of paging and differences in the level of integration into
the network of computers, with the inevitable fluctuation in the workloads of
computers in such networks. Some preliminary experimental work undertaken
in support of the development of the model is briefly discussed. Based on the
results of these experiments some key parameters of such a model are proposed.

Keywords: performance models, heterogeneous networks, global networks, parallel com-
puting, distributed computing

1. Introduction

Networks of computers (NOCs) are the architecture increasingly used for
high performance computing. Over the last 10 years many applications have
been written to efficiently solve problems on local and global NOCs. Comput-
ers on this type of network are heterogeneous in that they have different archi-
tectures. Programmers seeking to write parallel applications for heterogeneous
networks, where the goal is to optimize the execution time of that application,
must partition and distribute computations and data unevenly to the computers
on which the application will run, in proportion to their relative speeds. The
absolute speed of a computer may be defined as the number of computational
units of a benchmark or test application, executed in a given time.

Relative computer speeds. Some performance model must be employed to
predict and represent the relative speeds of the computers. Performance mod-

2

els employed have normally described relative computer speeds using constant
positive numbers. Each computers speed is represented using the ratio of its
speed against the other computers. Various methods have been employed to
obtain these ratios. Early performance models used the MIPS (millions of in-
structions per second) or MFLOPS (millions of floating point operations per
second) rates as the basis for the prediction of the comparative speed of com-
puters. Another approach is to run the same benchmark application on each
computer and compare their relative speeds. Relative computer speeds were
used in [1]. as an aid to partitioning 2D grids representing science and en-
gineering problems and in [2] in partitioning Matrix Multiplication problems.
The use of real applications to obtain comparative computer speeds was used
in the design of the mpC programming language [3].

Computer performance may be determined before execution, or dynami-
cally, at run time. The best know system for use by dynamic schedulers to pre-
dict the performance of networked computers is the Network Weather Service
[4]. The Network Weather Service monitors the fraction of the CPU utilization
available to a newly started process on networked computers and represents
this using decimal numbers. Available physical memory is also monitored, as
well as network conditions. However, no allowance is made for differences in
applications, or for the fluctuations in workload observed in networked com-
puters as discussed below. Some examples of dynamic global based scheduling
solutions can be found in, [4],[5], [6] and [7].

In existing performance models these relative speeds are usually taken to be
constant across a range of dataset sizes. This assumption is problematic; it has
been shown that relative speeds can change with increased dataset sizes. If the
computers on the network have significant differences in the size of each level
of their memory hierarchies then their relative speeds will change as the size
of the dataset used increases. The result of an experiment conducted by [8]
using a serial application which multiplies two matrices is reproduced below.
Table | shows the specifications of the computers used. Figure 1 illustrates the
non-constant relative speeds exhibited as the application is run with increasing
size datasets.

As the relative performance of the computers is not constant for all datasets,
we cannot run a trial run of a task on each computer in the network with a small
dataset, in order to accurately predict the relative performance of computers
executing the task when run with a larger dataset. A model to accurately predict
relative computer speeds for a particular task must reflect the fact that relative
speeds will change as dataset sizes increase.

Non-dedicated networks and fluctuations in speed. Computers on NOCs
used for high performance computing will experience fluctuations in their work-
load. This is a disadvantage of integration into the network. The higher the
level of integration the greater the level of fluctuations observed. This chang-

Introduction 3

Table 1. Specifications of 4 computers with different memory hierarchies

Machine.

Name Architecture CpuMHz MainMemory Cache(KB)
Compl Linux 2.4.18-3 686 499 513960 512
Comp2 SunOS 5.8 Ultra 5.10 440 409600 2048
Comp3 Linux 2.4.18-3 i686 996 254576 256
Comp4 Linux 2.4.18-3i686 499 126176 312

Relative Speed
~

Problem Size

—+—Comp4/Comp2 —=— Comp3/Comp1 Comp4/Comp1

Figure 1. Non-constant relative speeds for computers with different memory hierarchies

1

7 =

K4

§ 7 -

2 60 oy

g % ANY

S AN

T 5 AN

g 1 R\ L W

» p s
S & & & S
DI SR g g e

Matrix Size
—#-Mach1 time a -+~ Mach1 time b

Figure 2. Differences in speed on a computer with a high level of network integration

ing transient load will cause a fluctuation in the speed of computers on the
network, in that the speed of a computer will vary when measured at different
times while executing the same task.

Performance models have up to this point concentrated on partitioning data
and computations on dedicated computer systems; they have not considered
the issue of load fluctuation as a factor in the prediction of the computational

4

speed of a networked machine. This fluctuation in workload on a computer is
unpredictable; therefore it is impossible to make an accurate prediction of the
speed of the computer for a particular application. A model for a non-dedicated
heterogeneous network must take account of this. A realistic approach is to
determine that the speed of a computer for an application will be between an
upper and lower level. In general the less integrated a computer is in a net-
work the more accurate a speed prediction is likely to be. Figure 2 illustrates
fluctuations in the speed of a server computer with a high level of network in-
tegration, running a serial matrix multiplication application. Two performance
curves are shown, time a and time b, generated at different times. As can be
seen there is a considerable difference in the speed of the computer, which can
be explained by fluctuations in workload.

In addition to normal routine user or network loads as described above,
there is also the possibility that a networked computer may be performing
some heavy computational task previously assigned by a parallel application
or scheduled by a grid system. A model should distinguish between the two
types of workload, reflecting any decrease in computer speed resulting from
heavy computational workloads.

Paging and performance degradation. Paging occurs when the dataset
size of a task exceeds the size of available physical memory. A high level of
paging will lead to a significant decline in a computers speed. In the past, the
partitioning of parallel applications for dedicated systems was normally done
to avoid paging. As a result, performance models have mostly assumed a linear
relationship between problem size and execution time. However it is necessary
to understand the effect of paging on the speed of a computer executing a
task. The overhead of paging may be less than the communication overhead
involved in dividing a task. In addition it may be necessary to remotely solve
a task which cannot fit into the physical memory of any computers registered
to solve the problem.

While it is desirable to fit all of the data into main memory, there was a
need to conduct some research into the development of a model which does
attempt to address performance decline due to paging [9]. However, this model
assumes carefully written applications, on dedicated computer systems only. A
realistic performance model for a NOC, to be useful in partitioning applications
when subtasks may exceed the physical memory of available computers, must
seek to model performance decline due to paging.

A new performance model for non-dedicated heterogeneous networks.
Previous performance models provided good results for tasks which did not ex-
ceed physical memory on dedicated computer systems. However they are not
likely to provide optimum results for scheduling subtasks which may exceed
the memory of available computers on NOCs, where computers have different
sizes at each level of their memory hierarchy. A realistic performance model

The model and motivations 5

for NOCs must take into account that relative computer speeds will not be con-
stant, it may not be possible to accurately predict the speed of a computer for
a particular application due to fluctuations in its workload and the application
may not be suitable for partitioning to prevent paging. In addition, constraints
on available computers or non-optimization in the design of the application
may also lead to a situation where the avoidance of heavy paging is impossi-
ble.

The eventual goal of this research is develop a performance model, capable
of predicting the speed of a computer on a NOC, for a particular task. The
model should take into account non-constant computer speeds, fluctuations in
workload and paging, with an acceptable level of efficiency and accuracy. It
should provide for improved execution times over existing models for parallel
applications on NOCs, when used as a basis for determining computer speeds
when allocating subtasks to available computers.

To the best of our knowledge there has been no experimental study con-
ducted providing detailed data on how the speed of computers for a range of
tasks on a non-dedicated heterogeneous network changes for increased datasets.
In addition no measurements have been taken as to the effect of fluctuations in
workload on the speed of computers in this type of network. Based on some
basic preliminary experiments we have some ideas of the characteristics of the
performance model. To prove that the model is applicable to a wide range of
applications it is necessary to carry out extensive experiments using a wide
range of applications, run on different computers.

Part 2 of this paper describes the initial requirements of a model. Part 3
describes the experimental study. It details the types of applications chosen
as providing a good basis for inclusion in a representative set of tasks and the
computers chosen to demonstrate different levels of network integration and
specifications. Part 4 presents some preliminary results of experiments on our
set of tasks, examining the shape of the curves generated and the effect that a
varying load on non-dedicated computers has on the level of accuracy of any
performance prediction. Performance bands are illustrated to represent this
fluctuation. In part 5 we look at some conclusions detailing the potential of
our model to fulfill some of the requirements outlined in part 2 and mention
further work to be carried out in the area.

2. The model and motivations
Based on preliminary experiments our assumptions of the main features of

the model can be summarized as follows.

= |norder to take account of paging the model proposes to use a function to
represent the performance of each individual computer, absolute speed
against the size of the problem.

3.

The efficiency of the model is crucial. Computational and communica-
tion overheads for the building and maintenance of this model should
not lead to unacceptable degradation in the overall performance. This
can be achieved by the specification of particular cases, which may be
applied where there is no loss of accuracy.

The speeds of integrated computers on NOCs should be characterized by
bands of curves and not by single curves. This reflects the reality that we
cannot determine speed with absolute certainty, due to the unpredictable
nature of workload fluctuations, but may be able to predict likely upper
and lower speeds, giving a more realistic level of accuracy.

The efficiency of the model might be increased by classifying computers
by their level of network integration. Different computers may be treated
differently to provide accuracy with good efficiency.

The model must be effective for computers which are already executing a
significant heavy computational workload. Computers in a network may
be required to carry out more than one parallel or distributed computing
task simultaneously.

The model should be generic, applicable to both distributed computing
scheduling and parallel computing partitioning tasks.

Experimental Study

In view of the initial requirements of the model as stated above, the follow-

ing experimental strategy was followed.

= Experiments were conducted with tasks ranging from those with effi-

cient memory reference patterns, to those with very inefficient reference
patterns, in order to include tasks with wide differences in the rate of
decline of the performance curves generated with increasing datasets.

On examination of the generated performance curves, a number of tasks
were selected as a representative set. This set provided a basis for the
possible classification of tasks as approximations of one of this set, based
on the rate of decline of its performance curve.

By repeatedly running the set of tasks on computers at different times
it was possible to determine the effect of a computers level of network
integration on the speed of the computer. The fluctuations in speed were
modelled as a performance band.

The performance bands for our applications were examined to determine
how a consideration of the level of network integration of the computer
might lead to their more efficient generation.

Experimental Study 7

Table 2. Computers and Specifications

Machine.
Name Architecture CpuMHz Memory Cache(KB)
Machl Linux 2.4.20-20.9bigmem i686 2783 7933500 512
Mach2 SunOS 5.8 Ultra 5.10 440 4096000 2048
Mach3 Windows XP 3000 1030388 512
Mach4 Linux 2.4.7-10i686 730 254524 256

= Some experiments were conducted with applications run on computers
already executing a significant computational load in order to examine
the effect on the characteristics of the performance band.

The applications chosen included those which displayed both the most grad-
ual and the most severe decline in the performance curve generated with in-
creasing datasets. The applications chosen were.

= ArrayOpsF. Arithmetic operations on 3 arrays of data, accessing mem-
ory in a contiguous manner, with an efficient memory referencing pattern
and use of cache.

m TreeTraverse. Recursively traverses up a binary tree in a post-order man-
ner. The contents of an array of integers are placed into a binary tree,
resulting in non-contiguous storage of an equivalent number of nodes,
each containing storage for an integer and a pointer to a child node.
Memory is accessed in a random manner, with no benefits derived from
caching.

» MatrixMultATLAS. An efficient implementation of matrix multiplica-
tion utilizing the chlas_dgemm BLAS routine, optimized using ATLAS.

= MatrixMult. A naive serial implementation of the multiplication of 2
N*N dense matrices with the result placed in a third matrix. Memory
will be accessed in a non efficient manner with an increasing number of
page faults over larger problem sizes resulting in heavy IO.

Table Il provides the specifications of the computers used in our experi-
ments. They were chosen to provide varying specifications and levels of net-
work integration. They are representative of the range of computers typically
found on a NOC.

Mach1 has a very high level of network integration. It is a computer science
departmental server running NFS and NIS, as well as web and database servers,
with a very high level of use and multiple users. Mach2 has a medium level of

8

network integration, running database server and a web server. Mach3 runs p2p
file sharing software and is connected up to the college LAN using Novelle,
which provides a low level of integration. Mach4 is a networked machine, but
provides no network services. It was anticipated that a high level of network
integration would lead to a wide fluctuation in the speed of a computer over
time.

4, Preliminary Experimental Results
4.1 Characteristics of performance curves

For each of the 4 applications, memory was obtained using malloc and gcc
optimization -03 was used to compile the applications. It was considered that
efficient memory referencing patterns would lead to a less steep decline in the
speed of the application as problem sizes increased.

Figure 3 shows ArrayOpsF run on 4 computers. The performance curve
generated by Mach1 is close to constant up to the maximum problem size ca-
pable of being solved. There is no sudden performance decline due to paging.
Mach2, although its speed is significantly slower, exhibits the same constant
characteristic. Mach3 displays the best performance until there is a sharp de-
cline in speed, when paging causes the speed to dramatically decrease. A
similar pattern is observed on Mach4, although the initial speed is slower than
on Mach3, and the decline due to paging happens at a much smaller problem
size. With the efficient memory access patterns and use of cache, the shape of
the performance curve on all computers, except where paging causes a sudden
decline in performance is close to constant. Figure 4 illustrates the execution
speeds for 4 computers running TreeTraverse. Mach3 and Mach4 page heav-
ily when their physical memory is exhausted. Machl levels off and becomes
close to constant at problem sizes above 30 million nodes. Mach2 displays a
slowly declining linear function. Figure 5 shows the generated curve for Ma-
trixXMultATLAS on our 3 UNIX clones. Machl and Mach2 are again close
to constant for any significant problem size, Mach4 displays the same charac-
teristic, but there is a decline in performance as paging occurs. Figure 6, be-
cause of the naive implementation of the application, was expected to show the
most dramatic decrease in execution speed as problem sizes increased. Machl
and Mach2 displayed a steady decline in speed with increasing problem sizes.
Mach3 provided the fastest rate of execution over the whole of its problem
range. Mach 4 also displayed a steady, reasonably linear decline. The experi-
ments revealed that Mach1 and Mach2 are configured to avoid paging. This is
typical of computers used as a main server. For applications designed to effi-
ciently use cache memory, such computers may be characterized by a constant
stepwise function, up to the point where the process crashes, probably because
it tries to invoke a paging procedure, not allowed due to its configuration. This

Preliminary Experimental Results 9

150000000

100000000 ik
50000000 -
[
0

Speed [ops/sec]

IS

S S S8
& & &
6- N IL. fb.

@Qe"«,
QY QY O
R

Array Size
—&—Mach1 —#—Mach2 —&—Mach3 Mach4

Figure 3. ArrayOpsF on 4 computers

is illustrated by examining the performance of Mach1 and Mach2, running Ma-
trixMultAtlas, figure 5, with its efficient use of cache. Apart from small prob-
lem sizes, the speeds of both computers are constant. In contrast, both com-
puters running MatrixMult, figure 6, show a decreasing speed with increasing
problem sizes, levelling out only with large dataset sizes. This slowdown can-
not be explained by paging, but is due to an increasing number of cache misses
as the problem size increases. Non-paging computers, running tasks which
reference memory in a random manner, not benefiting from caching, may also
be characterized by a constant stepwise function. This is illustrated by figure
4, where we observe a close to constant speed for Machl and Mach 2, for all
significant problem sizes, running TreeTraverse.

The efficiency of the overall performance model may be improved by dif-
ferentiating between paging and non-paging computers, running applications
designed to efficiently use cache, or applications which reference memory in a
random manner. Although these 2 applications display contrasting levels of ef-
ficiency of cache use, they are similar in that the contribution of caching to per-
formance is consistent for all problem sizes. Where computers are configured
to prevent paging, the use of a constant stepwise function offers considerable
efficiency gains.

Figure 7 illustrates the effect of cache use efficiency and paging on our per-
formance curve, for each of our 4 applications, on a machine where heavy
paging is permitted (Mach3 and Mach4). Performance is characterized using
piecewise linear functions. The influence of caching and paging on the shape
of the performance curve is illustrated for each application. The shape of the
curve depends only on tasks and looks similar for both paging computers. For
small dataset sizes, capable of being accommodated in physical memory, the
slope of the curve is determined by the contribution of caching to performance.
Where it is constant, as occurs with optimized tasks and tasks which do not

5000000
4000000 M
000000

2000000 -
1000000

°g

Speed [nodes
traversed/s

0 T

1E+07 6E+07 1E+08
Nodes

—&—Mach1 —#-Mach2 —&—Mach3 Mach4

Figure 4. TreeTraverse on 4 computers

4.5E+09
4.0E+09]._h.‘?.‘:.;'"'.:.‘—_
'g 3.5E+09
o 3.0E+09
g 25E+09
; 2.0E+09
g,- 1.5E+09
» 1.0E+09
5.0E+08 (B L e I |
0.0E+00 +—+—T—TTTTT T T T T
1000 1900 2800 3700 4600 5400
Matrix Size
—i—Mach1 —8—Mach2 Mach4

Figure 5. MatrixMultATLAS on 3 computers

~ 350000000

§ 300000000 1
2250000000
8 200000000 {—— g —
= 150000000 LN
S 100000000
§ 50000000 +——— iz
0 i

S & & & & & O
O & O N O & O
N U G G S
Matrix Size
——Mach1 ——Mach2 —A—Mach3 Mach4

Figure 6. MatrixMult on 4 computers

Preliminary Experimental Results

‘_9_9_9_9_4 P -~ Paging
o L :\ Paging l'; s N
& \ ' Al \
& [: sl ‘
Cache \ Cache \ :
Problem Size Problem Size
(@) (b)
. Paging ! / Cache ,
A H / Pagin;
. M i . ‘\\ / ging
gl \ : g
a2l : : & ¥
Cache | M \ ’
\‘\‘\f’l
Problem Size Problem Size
(c) (d)
Figure 7.

The effect of caching and paging in reducing the execution speed of each of our 4
applications, with performance characterized using piecewise linear functions .

12

benefit to any extent from caching, the slope of the curve will not deviate too
significantly from the horizontal. This is apparent in figure 7 (a) and figure 7
(c), where the applications benefit from caching, and in figure 7 (b), where ran-
dom memory reference patterns do not allow any benefit from caching. Figure
7 (d) illustrates an application where there is an increase in the proportion of
cache misses, with increasing problem sizes. We notice a decline in speed for
problem sizes smaller than those where paging occurs. Three of our applica-
tions, figure 7 (a), (b) and (c) show a sharp performance decline due to paging.
However, the slope of the curve where this decline is occurring is not constant
for all applications. Some tasks do not display this sudden decline, for example
MatrixMult, figure 7 (d), where the slope of the line remains constant for the
whole range of dataset sizes. Where a sudden performance decline occurs, the
speed levels off again at the point where heavy paging is constantly occurring.

Our examination of figure 7 has shown that speed is not always constant
up to the point where paging occurs, or when heavy paging is occurring. In
addition, not all applications show a sudden stepwise reduction in speed when
paging begins. As a result, the use of a stepwise linear function, as advocated
by [9] cannot be used as a universal model for all applications on all computers.
Our performance model will use a more general function, speed against the
problem size, to allow for a more accurate prediction of speed for computers
on NOCs.

In order to determine the effect of referencing different types of memory on
the speed of a computer, ArrayOpsF, TreeTraverse and MatrixMult were run on
the 4 computers with Automatic and static data. In some cases there was a dif-
ference in the execution speed of the applications, when compared to dynamic
data of up to 15%, but this was not predictable. However, the shape of the
curve retained the same basic characteristics as were apparent when dynamic
data was used. All 4 applications were also run with gcc compiler optimization
-01 on the four computers. As expected there was some slowdown, but again
the shape of the curve was broadly similar to that obtained with optimization
level -03.

4.2 Network integration and fluctuations in speed

Having considered the performance of the set of 4 applications on a range of
computers typically found on NOCs, it is now necessary to examine the effect
of a computers level of network integration on the accuracy of speed predic-
tion. As stated above, a performance band instead of a curve was thought to
offer an appropriate mechanism to model the realities of workload fluctuation.
The performance band may be defined as the level of fluctuation which may
occur in the performance of a computer executing a particular problem, due to

Preliminary Experimental Results 13

changes in load over time, expressed as a percentage of the maximum speed of
execution for that problem.

The routine load on the computers was monitored and the 4 applications
were run over a range of system loads. Figure 8 illustrates the performance
band of our 4 computers running MatrixMult and TreeTraverse. Figure 8 (a)
illustrates that the performance band for MatrixMult on Mach1 is around 40%
for smaller problem sizes, narrowing to around 6% for larger problems. The
decrease in absolute speed with increased problem sizes is due to the effects of
caching, the computer is configured to avoid paging. For problem sizes with
much longer execution times load fluctuations will be averaged out leading to
a narrowing of the performance band. Figure 8 (b) shows the performance
band for TreeTraverse on the same machine. The execution time is shorter
than MatrixMult, so we don’t see a narrowing of the band. In this case the
performance band is in the order of 35% for it’s whole range of problem sizes.
Figure 8 (c) illustrates the performance band for Mach2 running MatrixMult.
It can be seen that for smaller problem sizes the performance band is in the
order of 15%. As might be expected the load fluctuation on this machine was
less than that present on Machl. Again the decline in absolute speed can be
attributed to caching. The performance band displayed by Mach2 for Tree-
Traverse as shown in figure 8 (d) is quite small, being reasonably constant at
8% for anything other than the smallest problem sizes. The performance band
displayed by Mach3 for MatrixMult and TreeTraverse, shown in figure 8 (e)
and (f), with it’s low level of network integration, was not greater than around
5 to 7% even when there was heavy file sharing activity (it’s effect seemed
minimal). Mach4 displayed very little fluctuation for our 2 applications, with
a performance band of around 3 to 5%, as might be expected from a virtually
stand alone compulter.

The size of the performance bands for Machl and Mach2, the computers
with a high level of network integration, against time, are shown in figure 9.
The influence of workload fluctuations on speed becomes less significant as
the execution time increases. There is a close to linear decrease in the size of
the performance band as the execution time increases.

We have noted that the fluctuation in speed observed for Machl, the com-
puter with the highest level of integration, is in the order of 40% for small
problem sizes, declining to approximately 6% for the maximum problem size
solvable on the computer. This level of fluctuation justifies the use of bands
to model the speed of computers, instead of curves. The accuracy obtained
with bands can still be within acceptable limits to be useful when predicting
performance. The level of accuracy of the approximation is increased as the
execution time increases with larger problem sizes. For computers with a low
level of network integration such as Mach4 performance bands allow for a high
level of accuracy in the prediction of performance.

14

47 5000000 .
9 60000000 £ o
g i ﬁ 2000000
E 20000000 2 E 1000000
£ 20000000 0 —
@ i $ H o & ep% & @
T R R~ T Q“@ égf-' @p@zé? N .\'.‘S’ .\?3"
P FF gptP) E:
NMatrix Size ProblemSize [nodes]
(a) (b)
30000000 - : : e : :
§ 25000000 a1 8% L P % § sooo00 _30% B%
‘g 20000000 EE 500000 :
2. 15000000 - ; 100000 1—
T 1 £ = 200000 I :
£ oome 7 T 11— ——
0 +—————— A A A A A QA
PN S ¢§5 PRI
S & & & ® D I N
& & & F g
Matrix Size Problem Size [nodes]
(c) (d)
100000000 3000000
= 350000000 g g 500000
! = 7%
¢ 250000000 % 2 2000000
& 200000000 = § 1500000
§ ;l;nnumnu E g 100000
= T @ om
@ 50000000 E00000 —)
¥ [} — 1
800 1600 2400 3200 4000 SE+G 2E+07 JE+0T7 GE+0T BE+07
Matrix Size Problem Size [nodes]
(e) ()
_, 140000000 2500000
2 4
ﬁ 120000000] 7 3% § g 2000000 L-._.\ -
7 g .
g‘ g § 1500000 \
E 40000000 — B E 1000000 \
@ s @5 500000
0 L—
& &
S & & &S SE406 2E+07 JE+0T GE+0T
Matrix Size Problem Size [nodes]

(@)

(h)

Figure 8. (a) Performance band for MatrixMult on Mach1, (b) Performance band for Tree-
Traverse on Machl, (c) Performance band for MatrixMult on Mach2 , (d) Performance band for
TreeTraverse on Mach2, (e) Performance band for MatrixMult on Mach3, (f) Performance band
for TreeTraverse on Mach3, (g) Performance band for MatrixMult on Mach4, (h) Performance
band for TreeTraverse on Mach4.

Conclusions and further research 15

10 : —

L] e

performance band
[percent]
L]
[—]

© p & @ P

Time [minutes]

—i— Mach1 Mach2

Figure 9. Performance band as a function of time on Machl and Mach2.

We have established that a different level for the accuracy of prediction is
achievable for computers with high and low levels of integration. The effi-
ciency of the model can be increased by taking this into account and treating
computers differently. The number of measurements of speed against problem
size required to achieve a realistic level of accuracy is inversely proportionate
to the level of integration. A computer with a high level of integration will
require very few measurements. A less integrated computer will require more
measurements to reflect the higher level of accuracy achievable. The increased
computational overhead required by computers with a low level of integration
is offset by the likelihood of many of these computers being present on a typical
network, with the prospect of utilizing a significant computational resource.

It is possible that computers displaying good performance, may be assigned,
in addition to their routine workload, more than 1 heavy computational task.
The performance band of Machl, a computer with 4 processers, running Tree-
Traverse, while already processing 4 substantial computational loads was con-
structed, simulating a situation where additional heavy loads are being exe-
cuted on a computer. The effect of the heavy computational load on the per-
formance band of the computer was determined. Figure 10 (a). shows the
performance band while the workload was restricted to normal fluctuating rou-
tine computations. Figure 10 (b) shows the performance band generated while
the additional 4 heavy computational loads were being run on the computer.
Both the upper and lower level of speed is reduced but the overall width of
the band remains relatively constant. It is thought likely that this lowering of
the performance band occurs on all computers, executing all tasks, where the
number of prior computational loads is greater than or equal to the number of
processors present on the computer. More experimental work is required to in-
vestigate the effects of heavy existing workloads on performance predictions,
particularly for single processor computers.

16

£ oo ——— 7 |
T £ & 4000000

3 £ 2000000 T % 2000000

& & 1000000 2 2 1000000

] - 0 T T T] = 0 T T T T T

xq;\ xé\ 6\ xé\ x@! x@ ::q;hI x
& & @G‘ & & P & o o
W o aF A BB B By RS R

Prohlem Size [nodes]

Problem Size [nodes]

(a) (b)

Figure 10. (a) Performance band for TreeTraverse on Machl with normal fluctuating work-
load. (b) Performance band for TreeTraverse on Mach1 with 4 prior major computational loads.

High
5% Servers

10 % Servers

(85% Workstations] Low

Medium

Figure 11. Typical avaliability of machines on a network classified by network integration
and function

Conclusions and further research 17

5.

Conclusions and further research

Based on the experimental results we can summarize the primary features
necessary for inclusion in the model

To address paging in parallel and high performance grid computing we
use a function, the size of the problem against the absolute speed of the
computer, rather than a constant or stepwise function. We have observed
that the slope of the performance curve generated by different tasks may
vary considerably. Also, for some tasks there is no sudden decline in
speed when paging occurs.

The model should be composed of sub-models, thereby increasing the
efficiency of the overall model. The sub-model best suited to model
the speed of a computer executing a particular application should be
dependent on the computers level of network integration. Our approach
is to seek to maximize efficiency where possible, without decreasing the
accuracy of prediction. For example, a computer with a high level of
integration will require less measurements to construct its performance
band to an acceptable level of accuracy.

The use of bands of curves, instead of a single curve, is the best method
to model performance on NOCs. The width of the performance bands
observed on computers with a high level of network integration is still
sufficiently narrow to allow for an acceptable estimation of performance.

Computers should be classified according to their level of network inte-
gration. Computers with a high level of network integration show large
performance bands for small problem sizes, narrowing as the execution
time increases. Initial observations indicate that the performance band
may be approximated to a linear decrease over time, but more experi-
mental work is needed to investigate this observation.

The model should classify all computers on a network. Figure 11 shows
the breakdown of computers on a typical NOC. The computational re-
source available when we combine our loosely integrated computers is
significant and will usually exceed that of our highly integrated com-
puters, therefore we must understand their performance characteristics
if we are to efficiently exploit available resources.

In our model we differentiate between computers that allow paging and
computers that do not. Non-paging computers are typically servers with
a heavy workload, offering a good relative performance. For carefully
designed applications, efficiently utilizing cache, and for applications
where memory is referenced randomly, the performance band of this

18

type of computer is linear, up to the maximum size of the problem solv-
able on the computer.

Some preliminary experimental work suggests its possible to reflect the fact
that a computer is already engaged in a heavy computational task when seeking
to predict its speed for a particular task. Initial work has suggested that while
the upper and lower levels of speed are reduced, the width of the performance
band remains close to constant. However, it may be possible to distinguish 2
types of prior computational load, each of which will have a different effect
on the characteristics of the performance band. A heavy computational load
with a small dataset may narrow the performance band, but not influence the
dataset size at which heavy paging begins. In contrast, a task which utilizes a
significant percentage of physical memory will cause paging to occur for even
a small dataset. It is likely for some tasks, that paging may occur for even
the smallest datasets. It may be possible, based on a measurement of CPU
utilization and the degree of paging observed to predict the likely effect on
the performance band. This would increase the efficiency of the model where
heavy computational work is being executed on a computer. However, further
work is required to investigate the feasibility of this approach.

More experimental study will be carried out to confirm the preliminary ex-
perimental results presented in this paper. The goal is to provide a practical
performance model for NOCs enabling a realistic prediction of the speed of a
computer for a particular task.

References

[1] Crandall, P. and M. Quinn. Problem Decomposition for Non-Uniformity and Processor
Heterogenity. Journal of the Brazillian Computer Society, 2(1):13—-23, 1995.

[2] Beaumount, O., Boudet, V., Rastello, F. and Y. Robert. Matrix Multiplication on Hetero-
geneous Platforms. IEEE Transactions on Parallel and Distributed Systems, 12(10):1033—
1051, 2001.

[3] Arapov, D., Kalinov, A., Lastovetsky, A. and I. Ledovskih. A Language Approach to High
Performance Computing on Heterogeneous Networks.Parallel and Distributed Computing
Practices, 2(3):323-332, 1999.

[4] Wolski, R. Dynamic Forecasting Network Performance Using the Network Weather Ser-
vice. Cluster Computing, vol 1:119-132, January 1998.

[5] Zaki, M.J., Lei, W. and Parthasarathy, S. Customized Dynamic Load Balancing for a Net-
work of Workstations. Journal of Parallel and Distributed Computing, 43, 156-162, 1997.

[6] Berman, F. High Performance schedulers. The Grid: Blueprint for a New Computing
Infrastructure. Morgan-Kaufmann, 1988.

[7] Vadhiyar, S., Dongarra, J. and A. Yarkhan. GrADSolve - RPC for High Performance Com-
puting on the Grid. Euro-Par 2003, 9th International Euro-Par Conference, Proceedings,
Springer, LCNS 2790, 394-403, August 26-29, 2003

[8] Lastovetsky, A. and R. Reddy. Data Partitioning with a Realistic Model of Networks of
Heterogeneous Computers. Proceedings of the 18th international parallel and distributed

Conclusions and further research 19

processing symposium (IPDPS 2004), 26-30 April 2004, Santa Fe, New Mexico, USA.
Computer Society Press.

[9] Drozowski. M. Out-of-Core Divisible Load Processing. IEE Transactions on Parallel and
Disbributed Computing, 14(10):1048-1056, 2001.

