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Abstract

mpC is a programming language of medium level for
distributed memory machines (DMM). The language is an
ANSI C superset based on the notion of network compris-
ing virtual processors of different types and performances
connected with links of different bandwidths. It allows the
user to describe a network topology, create and discard
networks, distribute data and computations over the net-
works. In other words, the user can specify (dynamically)
the topology of his application, and the mpC programming
environment will use this (topological) information in run
time to ensure the efficient execution of the application on
any particular DMM. The paper outlines the most princi-
pal features of mpC and its programming environment
making them suitable tools to write efficient and portable
parallel programs for heterogenous DMMs.

1. Introduction

The mpC language and its programming environment
was initially developed to support programming for mas-
sively parallel computers, first of all for high-performance
distributed memory machines (DMMs). In brief, our moti-
vation of mpC was as follows.

Programming for DMMs is based mostly on message-
passing function extensions of C or Fortran, such as PVM
[1] and MPI [2]. But it is tedious and error-prone (o pro-
gram in a message-passing language, because of its low
level. Therefore, high-level languages that facilitate paral-
lel programming have been developed for DMMs. They
can be divided into two classes depending on the parallel
programming paradigm - task parallelism or data parallel-
ism - underlying them. Task parallel [3-4] and data parallel
[5-11] programming languages allow the user to imple-
ment different classes of parallel algorithms. But efficient
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implementation of many problems needs parallel algo-
rithms that can not be implemented in pure data parallel or
task parallel styles. We have developed the mpC language
(as an ANSI C superset) which supports both task and data
parallelism, allows both static and dynamic process and
communication structures, enables optimizations aimed at
both communication and computation, and supports mod-
ular parallel programming and the development of a
library of parallel programs.

The mpC language is based on the notion of network
consisting of virtual processors of different types and per-
formances connected with links of different bandwidths.
The user can describe network topology, create and dis-
card networks, and distribute data and computations over
the networks. That is, the user can specify (dynamically!)
in details virtual parallel machine which performs his
application.

In other words, the user can specify the topology of his
application, and the programming environment will use
this (topological) information in run time to ensure the
efficient execution of the application on any particular
DMM.

Currently, the mpC programming environment includes
a compiler, a run-time support system, a library, and a
command-line user interface.

The compiler translates a source mpC program into
ANSI C code with calls to functions of the run-time sup-
port system.

Run-time support system manages the computing space
which consists of a number of processes running over tar-
get DMM as well as provides communications. It has a
precisely specified interface and encapsulates a particular
communication package (currently, a small subset of
MPYI). It ensures platform-independence of the rest of sys-
tem components.

The library consists of a number of functions which sup-



port debugging mpC programs as well as provide some
low-level efficient facilities.

The command-line user interface consists of a number of
shell commands supporting the creation of a virtual DMM
and the execution of mpC programs on the machine. While
creating the machine, its topology is detected by a topol-
ogy detector running a special benchmark and saved in a
file used by the run-time support system.

When developing the mpC programming environment,
we used a network of workstations running MPI as a target
parallel machine and found, that the principles, on which
mpC is based, make this programming language and its
programming environment be very convenient tools for
development of efficient and portable parallel programs for
heterogenous networks of workstations.

The point is that all programming environments for
DMMs which we know of have one common property.
Namely, when developing a parallel program, either the
user has no facilities to describe the virtual parallel system
executing the program, or such facilities are too poor to
specify an efficient distribution of computations and com-
munications over the target DMM. Even topological facili-
ties of MPI (as well as MPI-2) have turned out insufficient
to solve the problem. So, to ensure the efficient execution
of the program on a particular DMM, the user must use
facilities which are external to the program, such as boot
schemes and application schemes [12]. If the user is famil-
iar with both the topology of target DMM and the topology
of the application, then, by using such configurational files,
he can map the processes which constitute the program
onto processors which make up DMM, to provide the most
efficient execution of the program. But if the application
topology is defined in run time (that is, if it depends on
input data), it won’t be successful.

The mpC language allows the user to specify an applica--

tion topology, and its programming environment uses the
information in run time to map processes onto processors
of target DMM resulting in efficient execution of the appli-
cation.

Section 2 of the paper outlines the mpC language. Sec-
tion 3 sketches the mpC programming environment. Sec-
tion 4 demonstrates how mpC may be used to develop
efficient and portable irregular applications for DMMs.
Section 5 demonstrates how mpC may be used to develop
efficient and portable regular applications for heteroge-
neous DMMs. In addition, sections 4 and S tell more about
the mpC language.

More about the language and its programming environ-
ment may be found in [13-17] as well as at http:/
www.ispras.ru/~mpc. In addition, the corresponding free
software is available at http://www.ispras.ru/~mpc.
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2. Outline of the mpC language

In mpC, the notion of computing space is defined as a set
of typed virtual processors of different performance con-
nected with links of different bandwidth accessible to the
user for management. There are several processor types,
but most common virtual processors are of the scalar
type. A virtual processor has an attribute characterizing its
relative performance. A directed link connecting two vir-
tual processors is a one-way channel for transferring data
from source processor to the processor of destination.

The basic notion of the mpC language is network object
or simply network. Network comprises virtual processors
of different types and performances connected with links
of different bandwidths. Network is a region of the com-
puting space which can be used to compute expressions
and execute statements.

Allocating network objects in the computing space and
discarding them is performed in similar fashion to allocat-
ing data objects in the storage and discarding them. Con-
ceptually, creation of new network is initiated by a virtual
processor of some network already created. This virtual
processor is called a parent of the created network. The
parent belongs to the created network. The only virtual
processor defined from the beginning of program execu-
tion till program termination is the pre-defined virtual host-
processor of the scalar type.

Every network declared in an mpC program has a type.
The type specifies the number and types and performances
of virtual processors, links between these processors and
their lengths characterizing bandwidths, as well as sepa-
rates the parent. For example, the type declaration

/*1*/ nettype Rectangle {
/*2%/ coord I=4;

/*3*/ node {

/*4x/ I<2 : fast scalar;
/*5%/ I>=2: slow scalar;
/*6*/ };

/*7*/ link {

/*8*/ I>0: [Il<->[I-1];
/*9%*/ I==0: [I]<->[3];
/*10%/ Y

/*11*/ parent [0];

/*12%/ };

introduces network type Rectangle that corresponds to
networks consisting of 4 virtual processors of the scalar
type and different performances interconnected with undi-
rected links of the normal length in a rectangular structure.
In this example, line 1 is a header of the network-type
declaration. It introduces the name of the network type.
Line 2 is a coordinate declaration declaring the coordi-
nate system to which virtual processors are related. It intro-
duces integer coordinate variable I ranging from O to 3.
Lines 3-6 are a node declaration. It relates virtual proces-



sors to the coordinate system declared and declares their
types and performances. Line 4 stands for the predicate for
all T<4if I<2 then fast virtual processor of the scalar
type is related to the point with coordinate [I]. Line 5
stands for the predicate for all I<4if I>=2then slow vir-
tual processor of the scalar type is related to the point
with coordinate [I]. Performance specifiers fast and
slow specify relative performances of virtual processors
of the same type. For any network of this type, this infor-
mation allows the compiler to associate a weight with each
virtual processor of the network normalizing it in respect
to the weight of the parent. Note, that the virtual host-pro-
cessor is always of the scalar type and normal perfor-
mance.

Lines 7-10 are a link declaration. It specifies links
between virtual processors. Line 8 stands for the predicate
Jor all T<4if I>0 then there exists undirected link of nor-

mal length connecting virtual processors with coordinates
[I] and [I-1], and line 9 stands for the predicate for all
I<4 if I==0 then there exists undirected link of normal
length connecting virtual processors with coordinates
[I] and [3]. Note, that if a link between two virtual pro-
cessors is not specified explicitly, it is meant not absence
of a link but existence of a very long link.

Line 11 is a parent declaration. It specifies that the par-
ent has coordinate [0].

With the network type declaration, the user can declare a
network identifier of this type. For example, the declara-
tion

net Rectangle rl;
introduces identifier r1 of network.
The notion of distributed data object is introduced in the
spirit of C* [9] and Dataparallel C [10]. Namely, a data
object distributed over a region of the computing space
comprises a set of components of any one type so that
each virtual processor of the region holds one component.
For example, the declarations
net Rectangle r2;
int [*]Derror, [r2]Dal[l0];
float [hostlf, [r2:I<2]Df;
repl [*]Di;

declare:

- integer variable Derror distributed over the entire
computing space;

- integer 10-member array Da distributed over the net-
work r2;

- undistributed floating variable £ belonging to the vir-
tual host-processor;

- floating variable Df distributed over a subnetwork of
network r2;

- integer variable Di replicated over the entire comput-
ing space.

By definition, a distributed object is replicated if all its
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components is equal to each other.
The notion of distributed value is introduced similarly.
In addition to a network type, the user can declare a
parametrized family of network types called fopology or
generic network type. For example, the declaration

/*1*/ nettype Ring(n, pinl) {
/*2%/ coord I=n;

/*3%/ node {

/*4%/ I>=0: fast*p[l] scalar;
/*5%/ Y

/*6*/ link {

/*T*/ I>0: [Il<->[1I-1];
/*8*/ I==0: [I]<->[n-11;
/*9%/ }i

/*10%*/ parent [0];

/*11%*/ Y

introduces topology Ring that corresponds to networks
consisting of n virtual processors of the scalar type
interconnected with undirected links of normal length in a
ring structure.

The header (line 1) introduces parameters of topology
Ring, namely, integer parameter nn and vector parameter
p consisting of n integers.

Correspondingly, coordinate variable I ranges from 0 to
n-1, line 4 stands for the predicate for all T<n if I>=0
then fast virtual processor of the scalar type, whose rel-
ative performance is specified by the value of p[I], is
related to the point with coordinate [I], and so on.

Here, performance specifier fast*p[I] includes so-
called power specifier *p [I]. In general, the value of the
expression in a power specifier shall be positive integer.
Any operand in the expression should consist only of
coordinate variables, constants and generic parameters. If
the value of the expression is equal to 1, the power speci-
fier may be omitted.

It is meant that in the framework of the same network-
type declaration any performance specifier with the fast
keyword specifies more powerful virtual processor than a
performance specifier with the slow keyword. It is meant
also that the greater value of the expression in a power
specifier the more performance is specified.

With the topology declaration, the user can declare a net-
work identifier of a proper type. For example, the frag-
ment

repl m, n{l100];

/* Computing m,

{

net Ring(m,n) rr;

nf(0],...,n[m-1] */

}
introduces identifier rr of the network, the type of which
is defined completely only in run time. Network rr con-
sists of m virtual processors the relative performance of i-
th virtual processor being characterized by the value of



nfi].

A network has a computing space duration that deter-
mines its lifetime. There are 2 computing space durations:
static, and automatic. A network declared with static com-
puting space duration is created only once and exists till
termination of the entire program. A new instance of a net-
work declared with automatic computing space duration is
created on each entry into the block in which it is declared.
The network is discarded when execution of the block
ends.

Now, let us consider a simple mpC program computing
the dot product of two vectors. The program is correct but
not good in the sense of efficiency.

/*1*/ nettype Star(n) {

/*2%/ coord I=n;

/*3*/ node { default: scalar;};
/*4*/ link { I>0: {0]l<->[1];};
/*5%/ parent [0];

/*6*%/ };

/*7*/ #define N 100

/*¥8*%/ void [*]main{()

/*9%/ {

/*10%*/ double [host]x[N];
/*11*/ double f[host]yiN];
/*12%/ double [hostlz;

/*13*/ double sqgrt();

/*14%/ .../*Input of x and y */
/*15%*/ {

/*16*/ net Star(N) s;

/*17*/ double [s]dx, [s]ldy, [sldz;
/*18%*/ dx=x[1;

/*19%/ dy=y[];:

/*20%*/ dz=dx*dy;

/*21%/ z=[host]dz[+1];

/*22%/ z=([host]sqgrt) (z);
/*23%*/ }

/*24%/ .../* Ooutput of z */
/*25*/ '}

The program includes 2 functions - main defined here
and library function sqrt. Lines 8-25 contain a definition
of main. Lines 10-12 contain definitions of arrays x, vy
and variable z all belonging to the virtual host-processor.
Line 13 contains a declaration of function identifier sgrt.

In general, mpC allows 3 kinds of functions. Here, func-
tions of two kinds are used: main is a basic function, and
sqrt is a nodal function.

A call to basic function is executed on the entire comput-
ing space. Its arguments should either belong to the virtual
host-processor or be distributed over the entire computing
space, and its value should be distributed over the entire
computing space. In contrast to other kinds of function, a
basic function can define networks. In line 8, construct
[*]1, placed just before the function identifier, specifies
that main is an identifier of basic function.

Nodal function can be executed completely by any one
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virtual processor. Only local data objects of the executing
virtual processor may be defined in such a function. In
addition, the corresponding component of an externally-
defined distributed data object can be used in the function.
A declaration of nodal function (e.g., in line 13) does not
need any additional specifiers.

Line 16 defines the automatic network s with the virtual
host-processor as a parent.

Line 17 defines 3 automatic variables dx, dy, and dz all
distributed over s.

Line 18 contains unusual unary postfix operator {]. In
general, its operand should either designate an array or be a
pointer. In this case, expression x [ ] designates array x as
a whole, and the statement in line 18 scatters elements of
array x to components of distributed variable dx.

Similarly, the statement in line 19 scatters elements of
array y to components of distributed variable dy.

The statement in line 20 is also executed on network s.
But unlike 2 previous statements, its execution does not
need any communications between virtual processors con-
stituting network s. In fact, this statement is divided into a
set of independent undistributed statements each of which
is executed by the corresponding virtual processor using
the corresponding data components. Such statement are
called asynchronous statements. In particular, this state-
ment multiplies (in parallel) components of dx and dy and
assigns the result to components of dz.

In line 21, the result of postfix unary operator [+] is dis-
tributed over s. All its components are equal to the sum of
all components of operand dz. Here, the result of prefix
unary operator [host] is the component of its operand
belonging to the virtual host-processor. So, the statement
in line 21 assigns the sum of all components of dz to z.

Finally, line 22 calls to nodal function sgrt on the vir-
tual host-processor and assigns the value returned to z.

To support modular parallel programming as well as the
writing of libraries of parallel programs, so-called network
functions are introduced in addition to basic and nodal
functions.

3. The mpC programming environment

Currently, the mpC programming environment includes a
compiler, a run-time support system (RTSS), a library, and
a command-line user interface.

The compiler translates a source mpC program into the
ANSI C program with calls to functions of RTSS.

RTSS manages the computing space which consists of a
number of processes running over target DMM as well as
provides communications. It has a precisely specified
interface and encapsulates a particular communication
package (currently, a small subset of MPI). It ensures plat-



form-independence of the rest of system components.

The library consists of a number of functions that sup-
port debugging mpC programs as well as provide some
low-level efficient facilities.

The command-line user interface consists of a number of
shell commands supporting the creation of a virtual paral-
lel machine and the execution of mpC programs on the
machine. While creating the machine, its topology is
detected by a topology detector running a special bench-
mark and saved in a file used by RTSS.

Our compiler uses optionally either the SPMD model of
target code, when all processes constituting a target mes-
sage-passing program run identical code, or a quasi-
SPMD model, when it translates a source mpC file into 2
separate target files - the first for the virtual host-processor
and the second for the rest of virtual processors.

All processes constituting the target program are divided
into 2 groups - the special process called dispatcher play-
ing the role of the computing space manager, and general
processes called nodes playing the role of virtual proces-
sors of the computing space. The special node called host
is separated. The dispatcher works as a server accepting
requests from nodes. The dispatcher does not belong to the
computing space.

In the target program, every network or subnetwork of
the source mpC program is represented by a set of nodes
called region. At any time of the target program running,
any node is either free or hired in one or several regions.
Hiring nodes in created regions and dismissing them are
responsibility of the dispatcher. The only exception is the
pre-hired host-node representing the mpC pre-defined vir-
tual host-processor. Thus, just after initialization, the com-
puting space is represented by the host and a set of
temporarily free (unemployed) nodes.

Creation of the network region involves the parent node,
the dispatcher and all free nodes. The parent node sends a
creation request containing the necessary information
about the network topology to the dispatcher. Based on
this information and the information about the topology of
the virtual parallel machine, the dispatcher selects the
most appropriate set of free nodes. After that, it sends to
every free node a message saying whether the node is
hired in the created region or not. Deallocation of network
region involves all its members as well as the dispatcher.

The dispatcher keeps a queue of creation requests that
cannot be satisfied immediately but can be served in the
future. It implements some strategy of serving the requests
aimed at minimization of the probability of occurring a
deadlock. The dispatcher detects such a situation when the
sum of the number of free nodes and the number of such
hired nodes that could be released is less than the mini-
mum number of free nodes required by a request in the
queue. In this case, it terminates the program abnormally
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specifying a deadlock.
4. Irregular applications

4.1 Programming in mpC

Let us consider an irregular application simulating the
evolution of a system of stars in a galaxy (or set of galax-
ies) under the influence of Newtonian gravitational attrac-
tion.

Let our system consist of a number of large groups of
bodies. It is known, that since the magnitude of interaction
between bodies falls off rapidly with distance, the effect of
a large group of bodies may be approximated by a single
equivalent body, if the group of bodies is far enough away
from the point at which the effect is being evaluated. Let it
be true in our case. So, we can parallelize the problem, and
our application will use a few virtual processors, each of
which updates data characterizing a single group of bod-
ies. Each virtual processor holds attributes of all the bodies
constituting the corresponding group as well as masses
and centers of gravity of other groups. The attributes char-
acterizing a body include its position, velocity and mass.

Finally, let our application allow both the number of
groups and the number of bodies in each group to be
defined in run time.

The application implements the following scheme:

Initializing the galaxy
on the virtual host-processor
Creation of the network
Scattering groups over
virtual processors
Parallel computing masses of groups
Interchanging the masses among
virtual processors
while(1l) {
Visualization of the galaxy
on the virtual host-~processor
Parallel computation of centers of
gravity of groups
Interchanging the centers among
virtual processors
Parallel updating groups
Gathering groups
on the virtual host-processor

}

The corresponding mpC program looks as follows:

#define DELTA 3600.0
#define INTERVAL 3

/*The maximum number of groups*/
#define MaxGs 30



/*The maximum number of bodies in a group*/
#define MaxBs 600

typedef double Triplet[3}];

typedef
struct {Triplet pos; Triplet v; double m;}
Body;

/*The number of groups*/
int [host]M;

/*The numbers of bodies in groups*/
int [host]N[MaxGs];

repl dM, dN[MaxGs];

/*The galaxy timer*/
double [host]lt;

/*Bodies of a galaxy*/
Body (*[host]Galaxy[MaxGs]) [MaxBs];

nettype GalaxyNet{(m, n[m]) {
coord I=m;
node { I>=0: fast*n{[I]) scalar;};
link (J=m) {
J>0: length*(-1) [J)->[0]:
J>0: length*1 [I]->[J];

Y
};

void [host]Input(), UpdateGroup():;
void [host]VisualizeGalaxy();

void [*]Nbody(char *[host]linfile)
{
/*Initializing Galaxy, M and N*/
Input(infile);

/*Broadcasting the number of groups*/
dM=M;

/*Broadcasting the numbers of bodies*/
/*in groups*/
dN[]=N[1;
{
net GalaxyNet (dM,dN) g;
int [glmyN, [glmycoord;
Body {[g]Group[MaxBs];
Triplet [g]Centers[MaxGs];
double [g]Masses[MaxGs];

repl [gli;

void [net GalaxyNet(m, n[m]) ]Mintegrity
(double (*)[MaxGs]);

void [net GalaxyNet(m, n[m])]Cintegrity
(Triplet (*)[MaxGs)); ’

mycoord = I coordof body_count;
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myN = dN[mycoord];
/*Scattering groups*/
for(i=0; i<[gldM; i++)

[g:I==i]lGroupl[] = (*Galaxy([i])[]:
for(i=0; i<myN; i++)

Masses [mycoord] +=Group[i] .m;
([([g]laM, [gldAN)g] )Mintegrity (Masses);
while(l) {

if ({(int) (t/DELTA) ) $INTERVAL==0)

VisualizeGalaxy () ;
Centers[mycoord] [1=0.0;
for(i=0; i<myN; i++)
Centers[mycoord] [] +=
(Group[i] .m/Masses [mycoord]) *
(Group[i] .pos) [1;
([([glaM, [gldN)g])Cintegrity(Centers);
([g]UpdateGroup) (Centers, Masses,
Group, [gldM);
t+=DELTA;
if (((int) (t/DELTA) ) %$INTERVAL==0)
/*Gathering groups*/
for (i=0; i<[gldM; i++)
(*Galaxy[i])) [1=[g:I==i]Group(];

}
}

void [net GalaxyNet(m,n[m]) p] Mintegrity

(double (*Masses) [MaxGsl)
{

double MassOfMyGroup;

repl i, j;

MassOfMyGroup={*Masses) [I coordof i];
for (i=0; i<m; i++)
for(j=0; j<m; j++)
[p:I==i] (*Masses) []] =
[p:I==j]MassOfMyGroup;
}

void [net GalaxyNet(m,n[m]) p] Cintegrity
(Triplet (*Centers) [MaxGs])
{
Triplet MyCenter;
repl i, 3j;
MyCenter[] =
for (i=0; i<m; i++)
for(j=0; j<m; j++)
[p:I==1i] (*Centers) [j1I[] =
[p:I==j]MyCenter[];

{(*Centers) [I coordof i]I[];

This mpC source file contains the following external def-
initions:

- definitions of variables M, t and arrays N, Galaxy all
belonging to the virtual host-processor;



- a definition of variable dM and array dN both replicated
over the entire computing space;

- a definition of network type GalaxyNet;

- a definition of basic function Nbody with one formal
parameter infile belonging to the virtual host-proces-
sor;

- definitions of network functions Mintegrity and
Cintegrity.

In general, a network function is called and executed on
some network or subnetwork, and its value is also distrib-
uted over this region of the computing space. The header
of the definition of the network function either specifies an
identifier of a global static network or subnetwork, or
declares an identifier of the network being a special formal
parameter of the function. In the first case, the function
can be called only on the specified region of the comput-
ing space. In the second case, it can be called on any net-
work or subnetwork of a suitable type. In any case, only
the network specified in the header of the function defini-
tion may be used in the function body. No network can be
declared in the body. Only data objects belonging to the
network specified in the header may be defined in the
body. In addition, corresponding components of an exter-
nally-defined distributed data object may be used. Unlike
basic functions, network functions (as well as nodal func-
tions) can be called in parallel.

Network functions Input and VisualizeGalaxy,
both associated with the virtual host-processor, as well as
the nodal function UpdateGroup are declared and called
here.

Automatic network g, executing most of computations
and communications, is defined in such a way, that it con-
sists of M virtual processors, and the relative performance
of each processor is characterized by the number of bodies
in the group which it computes.

So, the more powerful is the virtual processor, the larger
group of bodies it computes, and the more intensive is the
data transfer between two virtual processors, the shorter
link connects them (length specifier length* (-1) speci-
fies a shorter link than 1ength*1 does).

The mpC programming environment bases on this infor-
mation to map the virtual processors constituting network
g into the processes constituting the entire computing
space in the most appropriate way. Since it does it in run
time, the user does not need to recompile this mpC pro-
gram, to port it to another DMM.

The result of the binary operator coordof (in the first
statement of the inner block of function Nbody) is an inte-
ger value distributed over g, each component of which is
equal to the value of coordinate I of the virtual processor
to which the component belongs. The right operand of
operator coordof is not evaluated and used only to spec-
ify a region of the computing space. Note, that coordinate
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variable I is treated as an integer variable distributed over
the region.

Call expression ([g]UpdateGroup) (....) causes
parallel execution of nodal function UpdateGroup on
each of virtual processors of network g. It is meant, that
function name UpdateGroup is converted to a pointer-
to-function distributed over the entire computing space,
and operator [g] cuts from this pointer a pointer distrib-
uted over g. So, the value of expression [g]Update-
Group is a pointer-to-function distributed over g.
Therefore,  expression ([g]UpdateGroup) (....)
denotes a distributed call to a set of undistributed func-
tions.

Network functions Mintegrity and Cintegrity
have 3 spectal formal parameters. Network parameter p
denotes the network executing the function. Parameter m is
treated as a replicated over p integer variable, and param-
eter n is treated as a pointer to the initial member of an
integer unmodifiable m-member array replicated over p.
The syntactic construct ([ (dM, dN)g] ), placed on the
left of the name of the function called in the call expres-
sions in function Nbody, just specifies the actual argu-
ments corresponding to the special formal parameters.

4.2 Experimental results

We compared the running time of our mpC program to
its carefully written MPI counterpart. We use 3 worksta-
tions - SPARCstation 5 (hostname gamma), SPARCclassic
(omega), and SPARCstation 20 (alpha), connected via
10Mbits Ethernet. There were 23 other computers in the
same segment of the local network. We used LAM MPI
version 5.2 [12] as a particular communication platform.

The computing space of the mpC programming environ-
ment consists of 15 processes, 5 processes running on each
workstation. The dispatcher runs on gamma and uses the
following relative performances of the workstations
obtained automatically upon the creation of the virtual
parallel machine: 1150 (gamma), 331 (omega), 1662
(alpha).

The MPI program is written in such a way to minimize
communication overheads. All our experiments deal with
9 groups of bodies. We map 3 MPI processes to gamma, 1
process to omega, and 5 processes to alpha, providing
the optimal mapping if the numbers of bodies in these
groups are equal to each other.

The first experiment compares the mpC and MPI pro-
grams for homogeneous input data when all groups consist
of the same number of bodies. Figurel shows the running
time of both programs simulating 15 hours of the galaxy
evolution depending on the number of bodies in groups.
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Figure 1. Running time of the MPI and mpC
programs for homogenous input data.
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In fact, it shows how much we pay for the usage of mpC
instead of pure MPI. One can see that the running time of
the MPI program consists about 95-97% of the running
time of the mpC program. That is, in this case we loose 3-
5% of performance.

The second experiment compares these programs for het-
erogeneous input data. Let our groups consist of 10, 10, 10,
100, 100, 100, 600, 600, and 600 bodies correspondingly.

The running time of the mpC program does not depend
on the order of the numbers. In any case, the dispatcher
selects:

- 4 processes on gamma for virtual processors of network
g computing two 10-body groups, one 100-body group,
and one 600-body group;

- 3 processes on omega for virtual processors computing
one 10-body group and two 100-body groups;

- 2 processes on alpha for virtual processors computing
two 600-body groups.

The mpC program takes 94 seconds to simulate 15 hours
of the galaxy evolution.

The running time of the MPI program essentially
depends on the order of these numbers. It takes from 88 to
391 seconds to simulate 15 hours of the galaxy evolution
depending on the particular order. Figure 2 shows the rela-
tive running time of the MPI and mpC programs for differ-
ent permutations of these numbers. All possible
permutations can be broken down into 24 disjoint subsets
of the same power in such a way that if two permutations
belong to the same subset, the corresponding running time
is equal to each other. Let these subsets be numerated so
that the greater number the subset has, the longer time the
MPI program takes. In figure 2, each such a subset is repre-
sented by a bar, the height of which is equal to the corre-
sponding value of typy/tipc.
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Figure 2. The relative running time for different
permutations of the numbers of bodies in groups.

One can see that almost for all input data the running
time of the MPI program exceeds (and often, essentially)
the running time of the mpC program.

5. Regular applications

5.1 Programming in mpC

Let us consider a regular application multiplying 2 dense
square nxn matrices X and Y.

Our mpC program will use a number of virtual proces-
sors, each of which computes a number of rows of the
resulting matrix Z. Both dimension n of matrices and the
number of virtual processors involved in computations are
defined in run time. So, our application implements the fol-
lowing scheme:

Initializing X and Y

on the virtual host-processor
Creating a network
Scattering rows of X over

virtual processors of the network
Broadcasting Y over

virtual processors of the network
Parallel computing submatrices of 2
Gathering the resulting matrix Z

on the virtual host-processor

The corresponding mpC program looks as follows:

/*1%/ nettype SimpleNet(n) {

/*2%/ coord I=n;

/*3*/ }:

/*4*/ nettype Star(m, nim}) {

/*5%/ coord I=m;

/*6*/ node {I>=0: fast*n([I] scalar;};



/*T7*/ link {I>0: [I]->[0], [0}1->[I];};
/*8*/ parent [0];

/*9%/ 1

/*10*/ wvoid [*]MxM(float *x, float *vy,
/*11*/ float *z, repl n) {
/*12*/ repl double *powers;

/*13%/ repl nprocs, nrows[MAXNPROCS], n;
/*14*/

/*15*%/ MPC_Processors_static_info

/*16%*/ (&nprocs, &powers) ;
/*17*/ Partition(nprocs,powers,nrows,n);
/*18*/ {

/*19%/ net Star(nprocs, nrows) w;
/*20%/ ([ ([wlnprocs)w])ParMult (

/*21%/ [wix, [wly, [wlz, [winrows, [win);
/*22%/ }

/*23*/ '}

/*24*/ wvoid [net SimpleNet(p)v] ParMult(
/*25%/ float *dx, float *dy, float *dz,
/*26%*/ repl *r, repl n)

/*27*/  (

/*28%/ repl s=0;

/*29%*/ int myn, i;

/*30%*/ int *d, *1, c;

/*31*/

/*32%/ myn=r[I coordof rl;

/*33%/ ([(p)Vv])MPC_Bcast(&s, dy, 1,
/*34%/ n*n, dy, 1);
/*35%/ d=calloc(p, sizeof(int));

/*36%/ l=calloc(p, sizeof(int));

/*37*%/ for(i=0, d[0]1=0; i<p; i++) {
/*38*/ 1{il=rl[i]l*n;

/*39%/ if(i+l<p) A[i+11=1[i1+A[i];
/*40*/ }

/*41%*/ c=1[I cooxdof c];

/*42*/ ([(p)V])MPC_Scatter(&s, dx ,d,
/*43%/ 1, ¢, dx):
/*44%*/ SeqMult(dx, dy, dz, myn, n);
/*45*/ ([ (p)Vv])MPC_Gather (&s,dz,d,1,c,dz);
/*46*/ }

/*47*/ void SegMult(float *a, float *b,
/*48%/ float *c¢, int m, int n)
/*49*/ {

/*50*/ int i, j, k, ixn;

/*51*/ double s;

/*52%/

/*83*/ for(i=0; i<m; i++)

/*54%/ for(j=0, ixn=i*n; j<n; j++) {
/*55*/ for(k=0, s=0.0; k<n; k++)

/*56%*/ s+=a[ixn+k] * (double) (b[k*n+j});
/*57*%/ clixn+jl=s;

/*58%*/ }

/*59*/ }
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/*60*/ wvoid Partition(int p, double *v,
/*61%/ int *r, int n)
/*62*/ |

/*63%*/ int sr, 1i;

/*64%/ double sv;

/*65%/

/*66*/ for(i=0, sv=0.0; i<p; i++)
/*67*/ sv+=v[i];

/*68%/ for(i=0, sr=0; i<p; i++) {
/*69*%/ rl{il=(int) (v{i]/sv*n);
/*70%/ sr+=r[i];

/*T1*/ }

/*¥72%/ if(sr!=n) r[0]+=n-sr;
/*73*/ %

Formal parameters x, y, and z of basic function MxM are
distributed over the entire computing space, and parameter
n is replicated over the entire computing space. It is meant
that n holds the dimension of matrices. It is also meant
that x points to nxn-member array, and the component of
this distributed array belonging to the virtual host-proces-
sor holds matrix X. Similarly, {host ]y points to an array
holding matrix Y, and [host] z points to an array holding
resulting matrix Z.

Lines 15-16 calls to library nodal function
MPC_Processors_static_info on the entire com-
puting space returning the number of actual processors
and their relative performances. So, after this call repli-
cated variable nprocs will hold the number of actual
processors, and replicated array powers will hold their
relative performances.

Line 17 calls to nodal function Partition on the
entire computing space. Based on relative performances of
actual processors, this function computes how many rows
of the resulting matrix will be computed by every actual
processor. So, after this call nrows[1i] will hold the
number of rows computed by i-th actual processor.

Line 19 defines automatic network w. Its type is defined
completely only in run time. Network w, which executes
the rest of computations and communications, is defined in
such a way, that the more powerful the virtual processor,
the greater number of rows it computes. The mpC environ-
ment will ensure the optimal mapping of the virtual pro-
cessors constituting w into a set of processes constituting
the entire computing space. So, just one process from pro-
cesses running on each of actual processors will be
involved in multiplication of matrices, and the more pow-
erful the actual processor, the greater number of rows its
process will compute. '

Lines 20-21 call to network function ParMult on net-
work w. In this call, topological argument [w]lnprocs
specifies a network type as an instance of parametrized
network type SimpleNet, and network argument w
specifies a region of the computing space treated by func-



tion ParMult as a network of this type.

In lines 24-26, the header of the definition of function
ParMult declares identifier v of a network being a spe-
cial network formal parameter of the function. Since net-
work v has a parametrized type, topological parameter p is
also declared in this header. In the function body, special
formal parameter p is treated as an unmodifiable variable
of type int replicated over network formal parameter v.
The rest of formal parameters (regular formal parameters)
of the function are also distributed over v.

Actually, p holds the number of virtual processors in net-
work v, n holds the dimension of matrices, r points to p-
member array, i-th element of which holds the number of
rows of the resulting matrix that i-th virtual processor of
network v computes. Each component of dy points to an
array to contain nxn matrix Y. Each component of dz
points to an array to contain the rows of Z computed on the
corresponding virtual processor of v. Each component of
dx points to an array to contain the rows of X used in com-
putations on the corresponding virtual processor. In addi-
tion, throughout the function execution the components of
dx, dy, dz belonging to the parent of network v are
reputed to point to arrays holding matrices X, Y and Z cor-
respondingly.

Line 28 defines variable s replicated over v. Lines 29-30
define variables myn, i, d, 1 and c¢ all distributed over v.

After execution of the asynchronous statement in line 32,
each component of myn will contain the number of rows of
the resulting matrix that computes the corresponding vir-
tual processor.

Lines 33-34 call to so-called embedded network function
MPC_Bcast which is declared in a standard mpC header
as follows:

int [net SimpleNet(n)] MPC_Bcast(

repl const *coordinates_of_source,

void *source_buffer,

const source_step,

repl const count,

void *destination_buffer,

const destination_step);
This call broadcasts matrix Y from the parent of v to all
virtual processors of v. As a result, each component of the
distributed array pointed by dy will contain this matrix.

An embedded network function looks like a library net-
work function, but a compiler knows its semantics. In par-
ticular, it will generate different code for different types of
arguments corresponding to source and destination buffers.

Statements in lines 35-40 are asynchronous. They form
two p-member arrays d and 1 distributed over v. After
their execution, 1 [i] will hold the number of elements in
the portion of the resulting matrix which is computed by
the i-th virtual processor of v, and d[i] will hold the dis-
placement which corresponds to this portion in the result-
ing matrix. Equivalently, 1 [1] will hold the number of
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elements in the portion of matrix X which is used by i-th
virtual processor of v, and d[i] will hold the displace-
ment which corresponds to this portion in matrix X.

The statement in line 41 is also asynchronous. After its
execution, each component of ¢ will hold the number of
elements in the portion of the resulting matrix which is
computed by the corresponding virtual processor (equiva-
lently, the number of elements in the portion of matrix X
which is used by this virtual processor).

Lines 42-43 call to embedded network function
MPC_Scatter which is declared as follows:
int [net SimpleNet(n) w] MPC_Scatter(
repl const *coordinates_of_source,
void *source_buffer,
const *displacements,
const *sendcounts,
const receivecount,
void *destination_buffer);
This call scatters matrix X from the parent of v to all vir-
tual processors of v. As a result, each component of dx will
point to an array containing the corresponding portion of
matrix X.

Line 44 calls to nodal function SegMult on v, comput-
ing the corresponding portions of the resulting matrix on
each of its virtual processors in parallel (SeqMult imple-
ments traditional sequential algorithm of matrix multipli-
cation).

Finally, line 45 calls to embedded network function
MPC_Gather which is declared as follows:
int [net SimpleNet(n) w] MPC_Gather(
repl const *coordinates_of_destination,
void *destination_buffer,
const *displacements,
const *receivecounts,
const sendcount,
void *source_buffer);
This call gathers resulting matrix Z each virtual processor
of v sending its portion of the result to the parent of v.

5.2 Experimental results

We measured the running time of our mpC program mul-
tiplying two dense square matrices. We used three Sun
SPARCstations 5 (hostnames gamma, beta, and
delta), SPARCclassic (omega), and HP 9000-712
(zeta) connected via 10Mbits Ethernet. There were more
than 20 other computers in the same segment of the local
network.

We used LAM MPI Version 6.0 as a particular communi-
cation platform as well as a new improved benchmark for
detecting relative performances of workstations. In addi-
tion, all executables, which took part in the experiment,
were generated by GNU C compiler with optimization
option -02.



Eight virtual parallel machines were created:

* g consisting of gamma (its relative performance
detected during the creation of this virtual parallel
machine was equal to 324);

* gd consisting of gamma (323), and delta (330);

*  gbd consisting of gamma (324), beta (331), and
delta (331);

*  gbdz consisting of gamma (324), beta (327),
delta (330), and zeta (510);

* zg consisting of zeta (510), and gamma (323);

* zgb consisting of zeta (509), gamma (321), and
beta (325);

* zgbdconsisting of zeta (466), gamma (328), beta
(327), and delta (329);

*  zo consisting of zeta (506), and omega (147).

The computing space of each of these virtual parallel
machines was constituted by 5 processes running on each
of workstations (that is, for example, the computing space
of gbdz was constituted by 20 processes). As a base of
the comparison we used the running time of a sequential C
program implementing the same algorithm which was
used in function SeqMult.

Table 1 gives the time of running the mpC program on
four virtual parallel machines (g, gd, gbd, and gbdz)
dependent on the dimension of multiplied matrices, and
compares it to the time of running the sequential C pro-
gram on workstation gamma. Machines g, gd, and gbd
are homogeneous ones, meantime machine gbdz is heter-
ogeneous.

Figure 3 illustrates how the mpC program allows to
speed up the multiplication of two dense square matrices,
if the user starts from single workstation gamma and
enhances his computing facilities step by step by means of
adding workstations delta, beta and zeta.

Table 1: Time to multiply two nxn matrices (sec)

n g g | gd | gbd |gbdz
C |mpC|mpC |mpC|mpC
100 ] 0.32 { 0.40 | 0.53 | 0.61 | 0.70
200 ] 2551261 ]200] 191 | 2.05
300 [ 933 1 9.66 | 6.11 | 525 | 4.96
400 | 31.2 13221179 | 139 | 11.6
500 [ 54.7 [ 55.6 | 31.0 | 23.4 | 19.0
600 | 125. | 125. | 68.0 | 49.0 | 37.0
700 1 196. | 196. | 106. | 75.0 | 58.0
800 | 320. | 323. | 172, {123.0] 88.

Note, that the running time of the mpC program substan-
tially depends on the network load. We monitored the net-
work activity during our experiments. We have observed
up to 32 collisions per second. The collisions occurred
more often during broadcasting large data portions. The

collisions resulted in visible degradation of the network
bandwidth.
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Figure 3. Speedups computed relative to sequen-
tial code running on workstation gamma.

Table 2 compares contribution of communications and
computations in the total running time of the mpC pro-
gram (results for gbdz are presented). The first column
shows matrix dimensions, an the second one shows per-
centage of communications in the total running time.

Table 2:Contribution of communications in the total
running time (gbdz)

n Communications (%)
100 40
200 55
300 48
400 38
500 35
600 26
700 24
800 21

Communications in our mpC program consist of three
parts: scattering matrix X, broadcasting matrix v, and gath-
ering the resulting matrix. Table 3 compares contribution
of each of these parts in the total communication time (for
the gbdz virtual parallel machine).

While analyzing the presented results, it is necessary to
take into account some peculiarities of both the implemen-
tation of MPI, which we used, and our local network.

Our local network does not support fast communica-
tions. It is based on 10Mbits Ethernet and uses old-fash-
ioned network equipment. In addition, there are 26
computers in our segment of the network connected via
cascade of 4 hubs. To characterize our network, it is
enough to say that £tp transfers data from gamma to



alpha at the rate of 300-400Kbytes/s. It means that real
bandwidth of our network is about 25-30% of its maxi-
mum bandwidth.

Table 3:Contribution of broadcast, scatter, and gather
in the total communication time (gbdz)

n bcast | scatter | gather
100 70% 18% 12%
200 78% 11% 1%
300 78% 10% 12%
400 79% 10% 11%
500 79% 10% 11%
600 79% 10% 11%
700 79% 10% 11%
800 76% 13% 11%

On the other hand, LAM MPI Version 6.0 ensures send-
ing large floating arrays at the rate of 50-60Kbytes/s. In
addition, it doesn’t use multicasting facilities of our net-
work when broadcasting.

Nevertheless, even under these conditions, our mpC pro-
gram has demonstrated good speedup comparing with the
sequential C program.

If the implementation of MPI ensured the communica-
tion rate comparable with the real bandwidth of the local
network and used its multicasting facilities, contribution of
communications in the total running time of our mpC pro-
gram would not exceed 5-7%. If, in addition, we used
100Mbits Ethernet and up-to-date network technologies
(for example, replaced hubs with switching devices), con-
tribution of communications in the total running time of
the mpC program would not exceed 1-2%. That is, the
mpC programming environment can ensure practically
ideal speedup of the presented mpC program for up-to-date
heterogeneous networks of workstations.

Table 4 gives the time of running the mpC program on
four heterogeneous virtual parallel machines (zg, zgb,
zgbd, and zo) dependent on the dimension of multiplied
matrices, and compares it to the time of running the
sequential C program on workstation zeta.

Table 4: Time to multiply two nxn matrices (sec)

n z | zg | zgb |zgbd| zo | zo

C |mpC|mpC|{mpC|mpC|MPI
100 | 0.18 | 0.43 | 0.52 | 0.57 | 0.67 | 0.91
200 | 1.52 1167 | 1.70 | 1.79 | 2.36 | 4.29
300 | 6.80 | 5.66 | 5.08 | 490 | 7.09 | 14.2
400 | 173 | 142 | 11.7 | 11.1 | 16.4 | 33.0
500 | 36.2 | 26.0 | 21.0 [ 19.0 | 32.8 | 68.0
600 | 66.8 | 33.0 | 41.0 | 37.0 | 38.5 | 120.
700 | 113. | 83.0 | 64.0 | 56.0 | 97.0 | 200.
800 | 180. | 134. | 102. | 88.0 | 152. | 306.
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In addition, the table compares the mpC program and its
manually written MPI counterpart on machine zo.
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Figure 4. Speedups computed relative to sequen-

tial code running on workstation zeta.

Figure 4 illustrates how the mpC program allows to
speed up the multiplication of two dense square matrices,
if the user starts from single powerful workstation zeta
and enhances his computing facilities step by step by
means of adding less powerful workstations gamma,
beta, and delta. One can see that the mpC program-
ming environment ensures good speedup in this case also.

Another interesting result can be extracted from tables 1
and 4. One can see that the slow network consisting of
workstations gamma and delta (virtual parallel machine
gd), the performance each of which is about 60% of the
performance of workstation zeta, demonstrates a little bit
higher performance (when multiplying two dense square
matrices) than single workstation zeta.

Finally, figure 5 shows clearly, that even for very hetero-
geneous distributed memory machine consisting of high-
performance HP workstation zeta and low-performance
Sun workstation omega, the mpC program allows to uti-
lize its parallel potential, speeding up the multiplication of
two dense square matrices (comparing to the sequential C
program running on zeta). At the same time, the use of
its. MPI counterpart, which distributes the workload
equally, does not allow to do it slowing down the matrix
multiplication essentially.
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Figure 5. Speedups for MPI and mpC programs
both running on machine zo.

6. Summary

The key peculiarity of mpC is its advanced facilities for
managing such resources of DMMs as processors and
links between them. They allow to develop parallel pro-
grams for DMM:s that once compiled will run efficiently
on any particular DMM, because the mpC programming
environment ensures optimal distribution of computations
and communications over DMM in run time.

The mpC language is a medium-level one. It demands
from the user more than high-level parallel languages (say,
Fortran D), but much less than MPI or PVM.

Like MPI and PVM, mpC supports efficient program-
ming a particular DMM. Like MPI, the user does not need
to rewrite (and, moreover, to recompile) an mpC program
to port it to other DMMs.

At the same time, MPI (as well as MPI-2) does not
ensure efficient porting to other DMMs, that is, it does not
ensure, that a program, running efficiently on a particular
DMM, will run efficiently after porting to other DMM.
The mpC language and its programming environment do
it.

Advantages of mpC are especially clear when program-
ming heterogeneous (irregular) applications or/and pro-
gramming for heterogencous DMM.

It makes mpC and its programming environment suitable
tools for development of libraries of parallel programs,
especially for heterogeneous DMMs.

The paradigm of parallel programming, supported by
mpC, foresees explicit specification of a virtual parallel
machine executing computations and communications. At
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the same time, mpC also supports implicit parallel pro-
gramming, when parallelism is reduced to calls to library
basic functions (like function Nbody from section 4.1)
that just encapsulate parallelism.
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