
mpC: a Multi-Paradigm Programming Language
for Massively Parallel Computers

Alexey L. Lastovetsky
Institute for System Programming, Russian Academy of Sciences,
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia

e-mall: lastov@ivann.delta.msk.su

Abstract
Currently, programming systems for distributed memory machines are limited to either task parallelism or data parallelism. The mpC

programming language and its programming system support both task and data parallelism, allows both static and dynamic process
and communication structures, enables optimizations aimed at both communication and computation, and supports modular parallel
programming and the development of a library of parallel programs. The mpC language is an ANSI C superset. It is based on the notion
of network comprising processor nodes of different types connected with links of different lengths. The mpC language has facilities for
description of network topology, for creating and discarding networks, for distribution data and computations over networks, for writ-
ing of functions that can be called on networks of the proper topology and so on. The paper presents basic principles" underlying the
mpC language and outlines its programming system.

Introduction

To reveal the huge potential of performance that is hidden in distributed memory machines, programming systems supporting the
development of efficient parallel programs in machine-independent manner are needed. Currently, basic tools for parallel programming
for such machines are message-passing function extensions of C or Fortran, between which the PVM [1] and MPI [2] function exten-
sions of these languages are the most popular now. In fact, for distributed memory machines a message-passing language is a program-
ruing language of assembler level, therefore it does not limit a style of parallel programming as well as the class of expressible parallel
algorithms.

Although it is possible to write high efficient parallel programs in message-passing languages, most users find such programming to
be incredible tedious. Therefore, a variety of programming systems facilitating the development of parallel programs are developed. But
as the payment for the facilitation, such a programming system limits the class of message-passing programs it can yield.

The maximum facilitation could be provided by a programming system in which user writes a pure serial program, and it is responsi-
bility of the compiler to synthesize automatically the good parallel program as a result of deep analysis of the serial program. Automatic
program synthesis, especially synthesis of parallel programs, is a very difficult problem. Therefore, although very interesting results
were obtained in this direction [3-8], they all are far from a practical use yet.

Currently, any programming system for distributed memory machines, where user specifies parallelism somehow, can be put in one of
two classes depending on the parallel programming paradigm underlying it. Programming systems based on task parallelism and pro-
gramming systems based on data parallelism cover the development of different universes of parallel programs.

There are a few task parallel interactive graphical programming systems such as HENCE [9], CODE [10], or Meander [I 1], that
allow the user to specify synchronization and communication between subroutines in a Fortran or C program. So, in the HENCE
graph, a node represents a process, which is an instantiation of some procedure, and each directed edge represents a communication
or synchronization constraints. The HENCE system then generates a C program with calls to PVM.

Another approach to task parallel programming systems is based on extended programming languages such as Fortran M [12] or
Compositional C++ (CC++) [13].

Fortran M is a small set of extensions to Fortran that supports a modular approach to parallel programming, permits writing of
provably deterministic parallel programs, and allows specification of dynamic process and communication structures. Fortran M
provides constructs for creating tasks and channels, for sending messages on channels, and for mapping tasks to processors.

CC++ is a parallel programming language based on C++. CC++ introduces parallel block and parallel loop constructs for explicitly
expressing structured parallel execution and the ~p awn construct for expressing unstructured parallel execution. CC++ has
synchronization variables and atomic functions for synchronization. CC++ introduces the keyword ~r3.obal to specify processor
objects corresponding to CC++ executables as well as global pointers for references between processor objects.

Data parallel programming systems are based on extended programming languages such as Fortran D [14-17], Vienna Fortran [18],
High Performance Fortran (HPF) [191, CM Fortran [20], C* [211, Dataparallel C [221, Modula-2* [231, and so on,

Fortran D is a typical representative of Fortran based data parallel languages. In fact, Fortran D extends serial Fortran by three new
statements for the specification of data distribution. The DECOMPOSITION statement specifies a virtual processor array. The
ALIGN statement specifies the distribution of data array elements over virtual processors. The DISTRIBUTE statement specifies how
virtual processors should be mapped to the actual processors. Sizes of virtual processor arrays as well as the number of actual
processors are variables of compile time. So, the compiler has full information to generate the Fortran program with calls to message-
passing primitives that is the definition of the process running on every actual processor. In contrast to the task parallel Fortran M,

13 ACM SIGPLANNotices, Volmne 31, No.2 February 1996

Fortran D does not support dynamic process and communication structures as well as modular parallel programming. It supports only
static creating tasks and does not support the separated compilation of modules. It is an obstacle to use Fortran D for writing libraries
of parallel programs. The class of parallel programs which one can develop in the Fortran D programming system consists of
parallelized sequential programs.

Dataparallel C is a C based counterpart of Fortran D. It does the same things but in the spirit of C. It introduces the d o m a i n
statement which:

- specifies a virtual processor array;
- declares data objects distributed over the virtual processor array;
- specifies how the virtual processors should be mapped to actual processors.

Following the spirit of C, Dataparallel C does not introduce a global pointer. So, a distributed array is not a set of elements that may
be located on different virtual processors, but the distributed object each component of which is an array.

Thus, currently there exist two classes of programming systems for distributed memory machines, each of which allows to
implement its class of parallel algorithms. On the other hand, efficient implementation of many problems needs parallel algorithms
that can not be implemented in pure data parallel or task parallel styles. Few examples of such algorithms can be found in [24].
Therefore, to use distributed memory machines efficiently, programming systems supporting both task parallelism and data
parallelism are needed. Various approaches to this problem are possible. For example, Fortran M team declared that their goal is to
integrate HPF and Fortran M in a single programming system. Another approach proposed in [24] consists in step-by-step adding data
parallel constructs, such as the FORALL statement, to task parallel languages and task parallel facilities, such as nodal functions, to
data parallel languages. But it seems that more drastic innovations are needed to decide this problem totally and to integrate
adventages of task parallel and data parallel languages in a single parallel programming language.

The mpC programming language [25] was developed to support both task and data parallelism, to allow both static and dynamic pro-
cess and communication structures, to enable optimizations aimed at both communication and computation, and to support modular
parallel programming and the development of a library of parallel programs. The mpC language is an ANSI C superset. It is based on
the notion of network comprising processor nodes connected with links. It has facilities for description of network topology, for creat-
ing and discarding networks, for distribution data and computations over networks, for writing of functions that can be called on a net-
work of the proper topology and so on. This paper presents basic principles underlying the mpC language and outlines its programming
system.

Computing space and network objects

When programming in C, user may imagine that there is the storage accessible to him, and he can manage this storage allocating data
objects there. When programming in mpC, user may also imagine that there is some accessible set of virtual processors connected with
links, and he can manage this resource allocating network objects there.

In mpC, the notion of computing space is defined as a set of typed virtual processors connected with links of different length accessi-
ble to user for management. There'are three processor types: memory, s c a l a r , and v e c t o r . A processor of the memory type can
rather store data than operate on it. A processor of the v e c t o r type can perform vector operations efficiently. Finally, most common
process ors are o f the s c a 1 a r type. Besides, a processor o f the s c a i a r type has additional attribute characterizing its relative perfor-
mance. A directed link connecting two virtual processors is a one-way channel for transferring data from source processor to processor
of destination. There exists not more than one directed link from source to destination. A link has an attribute named length which char-
acterizes its relative speed of data transfer. A pair of opposite directed links between two processors may be considered a single undi-
rected link.

The basic notion of the mpC language is network object or simply network. Network comprises processor nodes of different types
connected with links of different lengths. Network is a region of the computing space which can be used to compute expressions and to
execute statements.

Allocating network objects in the computing space and discarding them is performed in similar fashion as allocating data objects in
the storage and discarding them. Conceptually, new network is created by a processor of an existing network when the corresponding
network definition is interpreted. This processor is called a parent of the created network. The parent belongs to the created network.
The only processor that exists from the beginning of program execution till program termination is a pre-defined host-processor of the

scalar type.
Every network object declared in mpC program has a type. The type specifies the number and types of processors, links between the

processors and their lengths, as well as separates the parent. For example, the type declaration
/* Line 1 */ net Rectangle {
/* Line 2 */ coord I=4;

/* Line 3 */ node {
/* Line 4 */ I>=O: scalar;

/* Line 5 */ }
/* Line 6 */ link {
/* Line 7 */ I>O: [I] <-> [I-1] ;
/* Line 8 */ I==O: [I] <->[3] ;

14

,/~ Line 9 */ }

/* Line I0 */ parent [0] ;
/* Line ii */ }

introduces the network type named Re c t a n g 1 e that corresponds to networks consisting of four processors of the s c a 1 a r type inter-
connected with undirected links of normal length in rectangular structure.

In this example, line 1 is a header of the network type declaration. [t introduces the name of the network type.
Line 2 is a coordinate declaration deciaring the coordinate system to which processors are related. It introduces the integer coordinate

variable I ranging from 0 to 3.

Lines 3-5 are a node declaration. It relates processors to the coordinate system and declares their types. The line 4 stands for the pred-
icate]br all I< 4 i f I> = o then processor of the scalar type is related to the point with the coordinate [I].

Lines 6-9 are a link declaration. It specifies links between processors. Line 7 stands for the predicate for all I< 4 if I> o then there
exists undirected link of normal length connecting processors" with coordinates [I] and [I - 1], and line 8 stands for the predicate for
all I< 4 if I= =0 then there exists undirected link of normal length connecting processors with coordinates [I] and [3].

Line 10 is a parent declaration. It specifies that parent processor has the coordinate [0].
With the network type declaration, one can declare a network object identifier of this type. For example, the declaration

net Rectangle rl, r2;

introduces two identifiers r l , r 2 of network objects• Here, n e t R e c t a n g l e is a full name of the corresponding type.
Besides the network type, one can declare a parametrized family of network types called topology or generic network type. For exam-

ple, thedeclaration
/* Line i */ net Ring(n) {

/* Line 2 */ coord I=n;
/* Line 3 */ node {

/* Line 4 */ I>=0:

/* Line 5 */ }
/* Line 6 */ link {

/* Line 7 */ I>0:
/* Line 8 */ I==0:

/* Line 9 */ }

/* Line 10 */ parent [0] ;

/* Line ii */ }

scalar;

[I] <-> [I-I] ;

[I] <-> [n-l] ;

introduces a topology named R i n g that corresponds to networks consisting of n processors of the s e a l a r type interconnected with
undirected links of normal length in a ring structure• The header (line l) introduces the integer parameter n of the topology R i n g . Cor-
respondingly, the coordinate variable I ranges from o to n - i , line 4 stands for the predicate for all I < n i f I> = 0 then processor of the
s c a l a r type is related to the point with the coordinate [z] , and so on.

With the topology declaration, one can declare a network object identifier of the proper type. For example, the declaration
net Ring(4) r;

introduces the network type R i n g (4) as an instance of tile topology R i n g as well as the identifier r of the network object of this type.
Note, that the network types R e c t a n g l e and R i n g (4) are essentially equivalent.

An instance of topology can be obtained not only statically but dynamically also. For example, the fragment

int i ;
i=f() ;
{

net Ring(i+l) rr;
• . . }

introduces the identifier r r of the network object the type of which is defined completely only during run-time.
A network object has a computing space duration that determines its lifetime. There are two computing space durations: static, and

automatic. A network object declared with static computing space duration is created only once, conceptually just before its first usage.
It exists till termination of the entire program. A new instance of a network object declared with automatic computing space duration is
created on each entry into the block in which it is declared. The network object is discarded when execution of the block ends.

A declaration of a network object identifier specifies the scope and the linkage of the identifier and the computing space duration of
the network object almost under the same rules that are used for specification of storage duration of data objects and scopes and link-
ages of their identifiers• For example, the following fragment of mpC file

net Ring(4) r4;

static net Ring(5) rS;
extern net Ring(6) r6;

int f (int k)
{

net Ring(k) rk;
static net Ring(k+l) rkl;

15

}
specifies that the identifier r 4 of the network object with static computing space duration has file scope and external linkage, the iden-
tifier r 5 of the network object with static computing space duration has file scope and internal linkage, the identifier r 6 of the static
network object has file scope and external linkage, the identifier r k of the automatic network object has block scope, and the identifier
r k l of the static network object has block scope.

Network object declaration that also causes computing space to be reserved for the network object named by an identifier is a network
object definition. In the above fragment, except the declaration of r t , all the rest declarations are network object definitions. The parent
of all these network object is the host-processor. The following example shows how you can specify another parent:

n e t R i n g (1 0) r l 0 ;
net Ring (ii) [rl0:I==3] rll;

Here, the network r l 0 has the host-processor as its parent, meantime the network r l 1 has the processor of the network r l 0 with the
coordinate [3] as its parent.

S u b n e t w o r k s

A new network object can be allocated not only in an unused computing space but also in the region of the computing space that
already holds another network object. It can be done by explicit or implicit definition of a subnetwork of existing network object.

In contrast to an implicitly defined subnetwork, an explicitly defined subnetwork has a name introduced by the subnetwork declara-
tion. A subnetwork declaration that causes computing space to be reserved for the subnetwork named by an identifier is just an explicit
subnetwork definition. Computing space duration of explicitly defined subnetwork as well as scope and linkage of its identifier are
specified in the same way as those for network objects, but the lifetime of the subnetwork should not exceed the lifetime of its supernet-
work. The lifetime of an implicidy defined subnetwork is defined by compiler.

For example, the mpC file fragment
net Web (m, n) {

coord R=m, Fi=n;
node {

R==0&&Fi>0:

R==0&&Fi==0:
default:

}
link {

R==0:
R>0:
Fi>0&&R>0:
Fi==0&&R>0:

}
p a r e n t [0 , 0] ;

/*Line 1 */
/*Line 2 */
/*Line 3 */
/*Line 4 */
/*Line 5 */
/*Line 6 */
/*Line 7 */
/*Line 8 */
/*Line 9 */
/*Line i0"/
/*Line II*/
/*Line 12"/

/*Line 13"/

/*Line 14"/
/*Line 15"/
/*Line 16"/

/*Line 17"/
/*Line 18"/
/*Line 19"/
/*Line 20*/
/*Line 21"/
/*Line 22*/
/*Line 23*/

void;

fast scalar;
scalar;

[0,0] <->[l,Fi] ;
[R, Fi] <-> [R-I,Fi] ;
long [R, Fi] <->[R, Fi-i] ;

long [R,0]<->[R,n-I] ;

;

net Web(10,20) webl0x20;
subnet [webl0x20: Fi%2==0]

int f (void)
{

subnet [webl0x20: R<5]

seastarl0xl0;

subweb5x20 ;

static subnet [webl0x20: R>=5] grid5x20;

}
introduces the topology Web and defines the network object w e b l 0 x 2 0 of the Web (1 0 , 2 0) type as well as its subnetworks

s e a s t a r l 0 x l 0 , s u b w e b 5 x 2 0 and g r i d S x 2 0 .
Here, in line 4, the keyword v o i d in the position of the processor type indicates that no processors are related to the points with cor-

responding coordinates. The equivalent interpretation is that a processor of the v o i d type has no memory and can execute no opera-
tions. The topology Web corresponds to web structure networks with n radial threads, each of them stringed with ra- lnor lnal speed
scalar processors . In the center of the web a fast scalar processor is placed. It means that computational loading of this processor will be
more intensive than those of the rest processors. Radial links between processors are of normal length, but circular links are longer. It
means that data exchange through radial links will be more intensive than through the circular ones.

Line 17 is an explicit definition of the static subnetwork of the network object w e b l 0x20 named by the identifier s e a s t a r l 0 x l 0
having file scope and external linkage. The construct [w e b l 0x20 : F i % 2 = = 0] specifies the processors of w e b l 0 x 2 0 that constitute
the subnetwork. Namely, a processor of w e b l 0 x 2 0 with coordinates JR, F i] belongs to the subnetwork s e a s t a r l 0 x l 0 if and

only if F i % 2 = = 0 .
Similarly, line 20 is an explicit definition of the automatic subnetwork of the network object w e b l 0x20 named by the identifier

s u b w e b 5 x 2 0 with block scope, and line 21 is an explicit definition of the static subnetwork of the same network object named by the

16

identifier g r i d S x 2 0 with block scope.

A subnetwork always inherits its supernetwork coordinate system. So, in the subnetwork any processor has the same coordinates as in
its supernetwork. In addition, for any network or subnetwork so-called natural numeration of processors from 0 to n - l , where n is the
number of processors, can be defined. The numeration is determined by lexicographic ordering on the set of coordinates of (non-void)
processors. Evidently, a processor may have different natural numbers in the network and its subnetwork. The notion of natural number
is used to set up a correspondence between processors of different subnetworks in distributed operations.

Distribution of data and computations

The notion of distributed data object is introduced in the spirit of C* and Dataparallel C. Namely, data object distributed through a
region of the computing space comprises a set of components of any one type of undistributed data object allocated to processors so that
every processor holds one component. So, a distributed data object is characterized by the type and attributes of the region through
which it is distributed as well as the type and attributes of components. The lifetime of the distributed data object is limited by the life-
time of the region of the computing space.

A special type of a distributed data object is a data object distributed through the entire computing space. It means that creation of any
network object includes creation of corresponding component of the data object on every processor of the network object.

Except some special cases, to declare an identifier designating a distributed object, it is necessary to place a specifier of the corre-
sponding region of the computing space in the corresponding declaration just before the identifier. For example, the declarations

net Ring(ll) Netl;

int [*]Derror, [Netl]Da[10] , * [Netl:I<7]Dpi[5] ;

declare D e r r o r as an integer data object distributed through the entire computing space, declare Da as an array of l0 i n t s distributed
through the network object N e t 1, declare implicitly a subnetwork of the network object N e t l , and declare Dp i as an array of 5 point-
ers to i n t distributed through this subnetwork.

In general, in mpC one can declare both distributed and undistributed data objects specifying precisely their locations - network
object, subnetwork, or a single processor (for undistributed ones). For example, the declaration

int [webl0x20:R==2&&Fi==3] x;
declares the undistributed data object x located on the processor of the network object web 10x2 0 with the coordinates [2 , 3].

The notion of distributed value is introduced similarly. A value distributed through a region of the computing space comprises a set of
components of any one type of undistributed value belonging to processors so that every processor holds one component.

An expression can be evaluated by the host-processor, by a single processor of a network, by a network or a subnetwork, or by the
entire computing space. In the latter two cases, the expression is called a distributed expression. The value of a distributed expression
may be also distributed. If so, the latter should be distributed through a subregion of the region of the computing space evaluating the
expression. If an expression is evaluated by the entire computing space, it is called an overall expression. No other computations can be
performed in parallel with evaluation of the overall expression.

A special type of a distributed expression called an asynchronous expression is introduced. Substantially, evaluation of an asynchro-
nous expression needs neither data exchange between processors of the evaluating region of the computing space nor synchronization
of the processors during its evaluation. The property of asynchronity of an expression is determined by the property of asynchronity of
operators forming the expression. Most of operators of the mpC language are asynchronous in the sense that either both operands and
the result belong to the same processor, or they both are distributed through the same region of the computing space, and the distributed
operator is divided into a set of independent undistributed operators each of which is performed on corresponding components of the
operands, if an expression is built only from such operators, and all they are distributed through the same region of the computing

space, then the entire expression will be asynchronous.
A statement of the mpC language can be executed by the host-processor, by a single processor of a network, by a network or subnet-

work, by a set of networks, or by the entire computing space. In the latter three cases, the statement is called a distributed statement. A
set of distributed statements includes the sequential C statements extended with distributed data as well as the special parallel state-
ments f a n , p a r and p i p e borrowed from [26]. If a statement is executed by the entire computing space, it is called an overall state-
ment. No other computations can be performed in parallel with execution of the overall statement.

The notion of asynchronous statement is introduced. Execution of an asynchronous statement needs neither a data exchange between
processors of the executing region of the computing space nor synchronization of the processors during its execution. In particular, if all
expressions and substatements of a sequential statement are asynchronous and distributed through the same region of the computing
space, then the statement is asynchronous. In this case, the distributed statement is divided into a set of independent undistributed state-
ments each of which is executed by the corresponding processor using the corresponding data components.

Execution of an mpC program begins from a call of the function named m a i n on the entire computing space.
The following very simple mpC program implements a parallel sum of two vectors:

/*Line 1 */ net Star(n) {
/*Line 2 */ coord I=n;

/*Line 3 */ node {
/*Line 4 */ default: scalar;

/*Line 5 */ }

17

/*Line
/*Line
/*Line
/*Line
/*Line
/*Line

/*Line
/*Line
/*Line

/*Line
/*Line
/*Line
/*Line
/*Line
/*Line
/*Line
/*Line
*Line

/*Line
/*Line

6 */ link {
7 */ I>0 :
s * / }
9 */ parent [0] ;
l o . 1 };
ii*/ #define N i00

12"/ main()
1 3 . / {
14"/ int x[N] , y[N],

15"/ Input (x, y) ;
1 6 . / {
17"/ net Star(N)

18"/ int [s]dx,
1 9 . / dx=x [] ;

20*/ dy=y [] ;
21"/ dz=dx+dy;
22*/ z [] =dz;

2 3 * / }
24*/ Output (z) ;
2 s * / }

[0] <->[i] ;

z [N] ;

s ;

Is] dy, [s] dz;

Here, the undistributed arrays x, ¥, and z are allocated in the host-processor storage. Line 17 defines the automatic network s with the
host-processor as a parent. Line 18 defines three automatic variables dx, dy, and dz all distributed through the network s. All the state-
ments in lines 19-22 are distributed through the network s, but only the statement in line 21 is asynchronous.

Line 19 contains the unusual unary postfix operator []. The point is that mpC is a superset of the vector extension of ANSI C named
the C[] language [27], where the notion of vector defined as an ordered sequence of values of any one type is introduced. In contrast to
an array, a vector is not a data object but just a new kind of value. In particular, the value of an array is a vector. The operator [] was
introduced to support access to arrays as a whole. It has operand of the type "array of type" and blocks (forbids) conversion of the oper-
and to pointer. So, the expression x [] designates the array x as a whole, and the expression dx=x [] scatters the elements of the array
x to the distributed variable dx components.

Similarly, the statement in line 20 scatters the elements of the array y to the distributed variable dy components.
The statement in line 21 performs asynchronously addition of the distributed variables dx an dy and assigns the result to the distrib-

uted variable dz. Finally, the statement in line 22 gathers the distributed variable dz components to the array z,

Outl ine of the rest m p C facilities

When programming in mpC, networks are used first of all for adequate decomposition of user's problem. In fact, every virtual proces-
sor corresponds to a task that may run in parallel. Static and automatic networks allow to specify static and dynamic structures of inter-
acting tasks. Networks also allow a user to specify the tasks in arbitrary manner mixing data and task parallelism in a most appropriate
to his problem way. Besides, automatic networks allow to specify tasks living in disjoint intervals of time that allows compiler to place
different tasks on the same actual processor without loss of efficiency. Finally, detailed network topology declarations are the very
machine-independent specifications that allow compiler to map virtual processors optimally to actual processors.

Now, let us outline the mpC facilities that have remained out of scope of this paper. Structural task parallelism is supported by the p a r
and p i p e statements. The former specifies pure parallel execution of statements, and the latter is a kind of loop different iterations of
which may be overlapped, being executed in parallel. These two together with the data parallel f a n statement support structural paral-
lel programming.

The notion of distributed network object was introduced to support nested parallelism. A definition of a distributed network object
specifies the type of the network object and its parent network. Such definition may be considered as distributed through the parent net-
work definition of a single network of the specified type. This notion implies the notions of partially asynchronous expression and
statement. So, if an expression is evaluated by a distributed network, then although there is no data exchange and mutual synchroniza-
tion between networks belonging to the set of networks specified by the distributed network, such exchanges and synchronizations may
occur inside each of the networks. In this case, the expression is called a partially asynchronous expression in relation to the parent net-
work of the distributed network, Similarly, if a distributed statement is executed by a set of pairwise disjoint networks, and execution of
the statement needs nor a data exchange between these networks nor their mutual synchronization, and execution of the statement is
both initiated and terminated by the network consisting of parent processors of these pairwise disjoint networks, then the entire state-
ment is partially asynchronous (in relation to the network initiating and terminating its execution). For example, in the fragment
/* Line 1 */ net Ring(5) rL;
/* Line 2 */ main()
/* Line 3 */ {
/* Line 4 */ net Ring(3) [rL] r3;

18

/* Line S */ int x[S] ,

/* Line 6 */ Input(x);

/* Line 7 */ dx=x[] ;

/* Line 8 */ ddx=dx;

/* Line 9 */ . . .

/* Line i0 */ }

Its] dx, [m3] ddx;

line 4 defines the network r3 distributed through the network r5. [n fact, r3 is a set of 5 networks each of which contains 3 processors
connected in ring,. Five parent processors of these 5 networks are also connected in a ring constituting the network rS. Line 5 defines
the undistributed array x, the distributed through r5 variable dx, and the distributed through r3 variable ddx. The statement in line 7 scat-
ters the elements of x to the components of dx. The statement in line 8 is partially asynchronous in relation to the network r5 and for
each of 5 single networks constituting r3 broadcasts the corresponding component of dx to all components of ddx of the correspond-
ing singte network in parallel.

To support modular parallel programming as welt as writing of a library of parallel programs, a few kinds of functions are introduced.
A call of basicfimction is always an overall expression. Its arguments and value (if any) shall belong to the host-processor. In contrast
to another kind of functions, it can define network objects.

Nodal function looks like nodal function in terminology of [24]. It can be executed completely by any one processor. Only local data
objects of the executing processor can be created. In addition, the corresponding component of an externally-defined distributed data
object can be used in the function.

Network function is called and executed on some network or subnetwork, and its value (if it returns a value) is also distributed through
this region of the computing space. The header of the definition of the network function either specifies an identifier of static network or
subnetwork, or declares an identifier of network being a special formal parameter of the function. In the first case, the function can be
called only on the region of the computing space specified. In the second case, it can be called on any network or subnetwork of the
suitable type. In any case, only the network specified in the header of the function definition can be used in the function definition body.
No network can be declared in the body, but subnetworks of the network specified in the header can be declared. Only data objects
belonging to the network specified in the header can be defined in the body. In addition, corresponding components of an externally-
defined distributed data oNect can be used.

Outline of the compiler

The main function of the compiler is to transform an mpC program into a set of programs, each of which runs on its (virtual) proces-
sor, and which implement the computations specified by the initial mpC program interacting by means of message passing. Current
implementation uses SPMD model of target program when programs executed by all processors have the same code. The portion of the
code being executed by a particular processor is determined during run-time. The target language is the C[] language together with the
library of the ran-time support system. The compilation unit is a mpC file.

The compiler consists of a run-time support system (RTSS), a front-end, a transformer, a generator, and a tuner.
RTSS provides the operations on networks and subnetworks as well as message passing between virtual processors. It has a precisely

specified interface and covers a particular communicating package (currently, MPI). It ensures platform-independence of the rest com-

piler components.
Front-end translates source mpC code into internal representation (a kind of attributed tree) and performs static semantic checking.

Besides, for every network type or topology declaration it generates internal representation of functions used for computation of topo-

logical information.
Transformer has the internal representation as input and builds internal representation of the relevant C[] code that includes necessary

calls of RTSS functions.
Generator has the internal representation of the C[] code as input and builds the corresponding C[] file.
Tuner rebuilds internal representation of mpC file to enable more efficient execution of the mpC program on a target parallel machine.

The point is that if the tuner is off, the compiler generates the target program assuming that the number of processes constituting the tar-
get program is equal to the number of the virtual processors specified by the mpC program. This will cause execution of several pro-
cesses by some processors if the target computer lacks them. The goal of the tuner is to reduce the number of processes constituting the
program. It has the internal representation of the mpC file and the specification of merging virtual processors as input data. It transforms
all distributed computations, executed by a set of virtual processors merge d into a single processor, into equivalent undistributed com-

putations (as a rule, into loops).
Currently, the compiler has been developed and is under implementation.

Acknowledgments

I am grateful to Dmitry Arapov (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences), Alexey Kalinov, Ilya
Ledovskih (Institute for System Programming, Russian Academy of Sciences), Ted Lewis (Naval Postgraduate School, USA), Hesham

19

Et-Rewini (Nebraska University at Omaha, USA), and Christian Scheidler (Daimler Benz, Germany) for useful discussions,
The work was supported by Russian Basic Research Foundation and Office of Naval Research (USA).

References.

i. V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice and Experience,
2(4):315-339, 1990.

2. Message Passing Interface Forum. MPI: A Message-passing Interface Standard. International Journal of Supercomputer
Applications, 8(3N.), 1994.

3. F. E. Alien, M.Burke, P. Charles, and R. Cytron. An overview of the PTRAN analysis system for multiprocessing.
Parallel and Distributed Computing, 5:617-640, 1987.

4. F. Allen, M.Burke, R. Cytron, J. Ferrante, V. Sarkar, and W. Hseih. A framework for determing useful parallelism.
Proceedings of the Second International Conference on Supercomputing, St. Malo, France, July 1988.

5. M. Gircar, and C. Polychronopoulos. Automatic extraction of functional parallelism from ordinary programs.
IEEE Trans. on Parallel and Distributed Systems, 3(2): 166-178, March 1992.

6. C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee, B. Leung, and D. Schouten. The structure of Parafrase-2: an advanced
parallelizing compiler for C and Fortran. In D. Gelernter, A. Nicolau and D. Padua, editors, Languages and Compilers for Parallel
Computing, pp. 114-125, MIT Press, Cambridge Mass., 1990.

7. P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S. Ramaswamy, and E. Su. The PARADIGM Compiler
for Distributed-Memory Message Passing Multicomputers. In Proceedings of the First International Workshop on Parallel
Processing, pp. 322-330, Bagalore, India, December 1994.

8. D. J. Palermo, and E Banerjee. Automatic Selection of Dynamic Data Partitioning Schemes for Distributed-Memory
Multicomputers. Technical Report CRHC-95-09, University of Illinois, April 1995.

9. A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sunderam. Graphical development tools for network-based concurrent
supercomputing. Proceedings of Supercomputing 91, pp. 435-444, Albuquerque, New Mexico, November 1991.

10. J. C. Browne. Software engineering of parallel programs in a computationally oriented display environment. In D. Gelernter,
A. Nicolau and D. Padua, editors, Languages and Compilers tar Parallel Computing, pp. 75-94, MIT Press, Cambridge Mass., 1990.

11. G. Wirtz. The Meander Language and Programming Environment. Proceedings of Second International Conference on Software
for Multiprocessors and Supercomputers: Theory, Practice, Experience, pp. 57-66, Moscow, Russia, September 1994.

12. I. Foster, and K. M. Chandy. Fortran M: a language for modular parallel programming. Preprint MCS-P327-0992, Argonne
National Lab, 1992.

13. K. M. Chandy, and C. Kesselman. CC++: A Declarative Concurrent Object Oriented Programming Language. Technical
Report CS-TR-92-01, California Institute of Technology, Pasadena, California, 1992.

14. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M.-Y. Wu. Fortran D Language Specification.
Center for Research on Parallel Computation, Rice University, Houston, TX, October 1993.

15. S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluation of compiler optimizations for Fortran D on MIMD distributed-memory
machines. Proceedings of the A CM 1992 International Conference on Supercomputing, pp. 1-14, Washington, DC, July 1992.

16. S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-memory machines.
Communications of the ACM, 30(8):66-80, August 1992.

17. S. Hiranandani, K. Kennedy, and C.-W. Tseng. Preliminary Experiences with the Fortran D Compiler.
Proceedings of Supercomputing'93, pp. 338-350, Portland, Oregon, November 1993.

18. B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming, 1(1):31-50, 1992.
19. High Performance Fortran Forum. High Performance Fortran language specification, version 1.0. Rice University, Houston, TX,

May 1993.
20. The CM Fortran Programming Language. CM-5 Technical Summary, pp. 61-67, Thinking Machines Corporation, Nov. 1992.
21. The C* Programming Language. CM-5 Technical Summary, pp. 69-75, Thinking Machines Corporation, November 1992.
22. P. J. Hatcher, and M. J. Quinn. Data-Parallel Programming on MIMD Computers. The MIT Press, Cambridge, MA, 1991.
23. M. Philippsen, and W. Tichy. Modula-2* and its compilation. First International Conference of the Austrian Center for Parallel

Computation, Salzburg, Austria, 1991.
24. R J. Hatcher, and M. J. Quinn. Supporting Data-Level and Processor-Level Parallelism in Data-Parallel Programming Languages.

Proceedings of the 26th Annual Hawaii International Conference on System Sciences, Volume II, Software Technology, pp. 14-22,
IEEE Computer Society Press, Los Alamitos, CA, 1993.

25. A. L. Lastovetsky. The mpC Programming Language Specification. Technical Report, Institute for System Programming, Russian
Academy of Sciences, Moscow, Russia, 1994.

26. T. G. Lewis. Foundations of Parallel Programming: A Machine-Independent Approach. IEEE Computer Society Press, 1994
27. S. Galssaryan, and A. Lastovetsky. ANSI C Superset for Vector and Superscalar Computers and Its Retargetable Compiler. Journal

of C Language Translation, 5(3): 183-198, 1994.

20

