John von Neumann Institute for Computing NICMM

Scheduling for Heterogeneous Networks of
Computers with Persistent Fluctuation of Load

R. Higgins, A. Lastovetsky

published in

Parallel Computing:

Current & Future Issues of High-End Computing,

Proceedings of the International Conference ParCo 2005,

G.R. Joubert, W.E. Nagel, FJ. Peters, O. Plata, P. Tirado, E. Zapata
(Editors),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 33, ISBN 3-00-017352-8, pp. 171-178, 2006.

(© 2006 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

http://www.fz-juelich.de/nic-series/volume33

171

Scheduling for Heter ogeneous Networ ks of Computerswith Per sistent
Fluctuation of L oad

R. Higgins®* A. Lastovetsky?®

aSchool of Computer Science and Informatics, University College Dublin, Dublin 4, Ireland

In this paper we present a model of performance for nodes in a heterogeneous Network of Com-
puters (NOC). Unlike a dedicated cluster a NOC is made up of machines that have varying levels
of integration with the rest of a general purpose network. This integration results in different load
fluctuations on nodes in the NOC. Our model aims to represent how these routine fluctuations ef-
fect performance and we demonstrate the construction of the model and its use in the design and
implementation of aparallel applications.

1. Introduction

Networks of Computers (NOCs) provide high performance parallel computing capabilities with-
out the significant investment of acquiring a dedicated cluster. They are typicaly built from awide
variety of machines existing in a campus, office or some other general purpose network. This het-
erogeneity between the computers exists at a number of levels as a NOC can be built using any
computing resource available.

Performance models for heterogeneous NOCs attempt to represent the differences between the
speeds of machinesin the network and describe topology of the network interconnect. In this paper
we are concentrating on modelling the speed of a non-dedicated machine. Our model describes how
the processing speed may vary during the execution of some problem. We present a method of par-
titioning a data-parallel application which attempts to balance the load on heterogeneous processors
in the presence of load fluctuations.

Traditional heterogeneous parallel programming systems estimate performance of individual nodes
in the computing network using a single benchmark number. This number is calculated by timing
the execution of some critical section of an algorithm[2] or some standard test code[1]. Workload is
distributed proportionally according to the benchmarks of the machinesinvolved in the computation.
The traditional model shows some weakness on machines that have a high level of integration with
the network. A NOC may consist of a number of non-dedicated resources that have some rolein the
wider network: they may be acting as a network file server, a users personal desktop, mailserver, etc.
These machines experience fluctuations in their workload operating in their different roles. The sin-
gle benchmark model of performance must be built in a short period of time. On a machine operating
under a constant fluctuation in load this benchmark may be run during a period of higher or lower
than average load. The conditions that an actual computation executes under are quite different to
those that a benchmark would. An actual computation executes for a much longer period of time.
Thefluctuating load that it must contend with will average out over this period to amore steady level.
We aim to improve performance of jobs run on aNOC by using a more detailed model of processor
performance that represents the varying speed of a machine and by partitioning a computation in a
manner that accounts for possible changes in external loads across the NOC.

*Thisresearchisfunded jointly by the Irish Research Council for Science, Engineering & Technology and IBM’s Center
for Advanced Studiesin Dublin.

172

We are building upon concepts introduced in [4]. Our model represents the effect of fluctuations
in workload on the performance of a machine in a NOC. In place of the single benchmark we use
a more detailed performance function as presented in [3]. The performance function describes the
execution speed of an application on a machine as the size of the data operated on is increased.
We adjust it to create a band of performance that describes a range of possible execution speeds
as the problem size increases. Machines that experience large fluctuations in workload will have
their performance represented by awider band than those that experience a more consistent level of
workload. The bands are used to find a partitioning of a problem that is optimal for the widest range
of load fluctuations across al machinesin the network.

The remainder of this paper is organised as follows. In section 2 we describe the procedure to
build the band model using load history and a performance function. A agorithm to solve the
problem of partitioning with the band model is detailed in section 3. Section 4 presents analysis
on the performance increase attainable using the band model. Conclusions and direction for future
work are offered in Section 5.

2. Building The Model

The construction of the performance band model requires a number of steps. It is built from two
components. aperformance function and apair of load functions. The performance function consists
of a number of experimentally obtained benchmarks (execution times) for problems of increasing
size. The load functions represent the maximum and minimum average load experienced by a ma-
chine over an increasing period of time. For each point in the performance function, using the load
functions, we find the maximum and minimum load it might encounter during the problem’s time
executing. These loads are used to adjust the performance function for worst case performance, con-
tending with ahigh level of load, and best case performance, contending with alow level of load. In
the following subsections we provide more detail on the constituents of the band model, how they
are obtained and how they are combined.

2.1. Performance Functions

The first step in the creation of the performance band for amachine is to build a piecewise linear
function of optimal execution speed with respect to problem size. The optimal execution speed s, ()
istherate at which aproblem of size x issolved on anidle processor. The function requiresanumber
of experiments to measure the optimal running time ¢,(x) of the application as x increases. t,(z)
can be measured in any UNIX or UNIX-like environment using the time utility or the getr usage()
system call. These functions return statistics maintained by the operating system kernel on the
resources used by an application including the time a process spent actively executing on the CPU.
Thisis equivalent to its optimal running time, ¢,(z). s,(x) isequa to the volume of computations
for aproblem size = divided by ¢,(x). We will not consider the construction of s,(x) any further in
this paper, taking it as already provided. Choosing an optimal set of problem sizes with which to
measure the execution speed is the subject of a paper pending publication. figureda.eps

The performance band is built from s,(x) by adjusting each experimentally obtained point for
two scenarios. worst and best predicted performance. Our prediction of performance is based on a
history of observed load averages. Using the observations we build two load functions: [,,,..(¢) and
Lmin (t). These functions represent the maximum and minimum average load over a period of ¢ time
units. We use these functionsto find the average | oads that would have occurred during the execution
of a problem of size z. The maximum and minimum averages are used as factors to adjust s,(x),
resulting in two functions that define the limits of the performance band: s ;4. () and s, ().

173

load history generated load averages Imax & Imin

05
045
04
035
03
025
02
015
01
005
0

37 43 49 55 61 67 73 79 85 91 97 103 109 115 0 10 20 30 40 50 60 13757 9 111315171921 23252729 31 3335 37 39 41 43 45 47 49 51 53 55 57 59

load

load
<11
load

0,05 L4

time (minutes) average period (minutes) average perlod (minutes)

Figure 1. Stepsin creation of load functions: first collect a history of load observations, then calculate all
load averages of increasing periods, finally extract maximum and minimum piece-wise linear functions: {,,;,
and {0z -

2.2. Load Functions

The load average on a UNIX or UNIX-like machine is described as: 'the number of processes
in the system run queue averaged over various periods of time'.> The kernel of the operating
system maintains averages with time periods of one, five and fifteen minutes. The averages are
exponentially-damped, sampling the run queue length at an OS dependent frequency. They are
available through system utilities such as uptime and library calls such as getloadavg(). A history
of load fluctuations is kept by sampling the one minute load average every ¢ time units. A load
average of a time period ¢ can be calculated from the observations by averaging a sequence of %
observations.

lmae (t) @Nd L, (t) represent load averages of increasing period ¢ up to some limit w. This limit
may be defined as the running time of the largest problem permitted to run on the machine that the
functions represent. The size of the history of load averages observations used is defined by h. A
sliding window of length w is passed over the h observations and at each position of the window a
set of load averages, with periodsfrom § increasing to w are calculated. A one minute average would
be given by the first load observation in the window, the two minute average would be calculated
from the average of the first and second observation, and so on. As the window moves over h
observations it creates load averages with periods of 4,2 x ¢, ..., w until it begins to slide over the
edge of the recorded history, at which point the range of load averages calculated decreases. From
these calculated averages a maximum and minimum average for each time period 4,2 x 4, ..., w are
extracted and these values are used to build the piecewise linear functions /.. (t) and 1, ().

More formally, if we have a sequence of observed loads !y, [, ..., [, then amatrix A of calculated
load averages is defined as follows:

a1 - . Airp Z+j 1

><5 “forali=1. hijg=l.wandi+j < h+1

A= ' C where Q5 =

aw,l

limaz (t) @nd 1, (t) are then defined by the maximum and minimum calculated loads from arow ¢ in
the matrix A. Points are connected in sequence to give a continuous piecewise linear function. The
tth period load averages are given by:

lmaa: (t) — mé}ilx(Ai,t)

h

2From the’ getloadavg’ man page entry, section 3 (library calls), Linux Programmers Manual.

174

The load statistic is maintained by the operating system continuously, there is no additional com-
putation involved our measurement of the load at each § interval. In comparison to the cost of the
initial generation of the performance function, computing the load functions and the resulting per-
formance band is trivial. The benefit of the performance band can be had for almost not cost at
all.

2.3. Performance Bands

Given the functions relating to optimum speed of execution: s,(z) and ¢,(x) and the load fluctu-
ation functions ,,,4..(¢) and l,,,;,, (t), we now wish to calcul ate the performance band. An application
will execute for a certain period of time, the minimum being ¢,(x) when there is no externa load
on the executing machine. As load increases the executing time also increases. We need to find the
points at which the executing time under a given load matches the predicted maximum or minimum
load for that time period. The executing time of an application ¢.(z) can be calculated by dividing
t,(z) by ameasure of the CPU availability. We may estimate CPU availability for a single threaded
application based on aload average with the equation (1), where n is the number of processors on
amachine. This estimate is not perfect as it's simplicity does not reflect the complex job a kernel
does in scheduling processes. In most cases however, the conversion from load average to CPU
availability isaccurate enough for the purposes of problem partitioning [7].

a(l):{ln (I>n-1) 1

Using the availability, we may plot a function of execution time: t.(l) = t;((l‘"‘;) for a particular
problem size z. The points where this line intersects the load fluctuation functions /,,,,..(¢) and
lmin (t) correspond to the factors by which we must adjust the optimal speed of execution to create

the performance band (Figure 2).

Prediction of Max. & Min. Load Average for Problem Size x

0.7
0.6
0.5

B
04
£

lmax,prcdiclcd

Tmax(t)

Tmin(t)

lmin.predicled

Lideal
r
1 11 21 31 41 51

time

Figure 2. Finding the average load that effects an application over the duration of it's execution.

Using these points, /a5 predicted 8N Linin predicted, We adjust the optimal speed to give us the upper
and lower limits of the performance band:

Smax(m) — So(x) X a(lmin,predicted) (2)

Smin(m) - So(m) X a(lmaaz,predicted) (3)

175

3. Using The Model

In [3] the partitioning of a problem using afunctional performance model was introduced. It was
demonstrated that the proportional partitioning of a problem occurred when a line through the ori-
gin intersected the performance functions of each machine at points corresponding to their assigned
workload (figure 3). Performance bands may be considered as a sets of performance functions occur-
ring between between the maximum and minimum performance levels 4. (x) and s,,;, (x). Givena
particular distribution of work there may be many combinations performance level s across machines
inthe NOC that result in a perfectly proportional distribution. Figure 4 illustrates two combinations
of performance levelswithin a band, for which some distribution is optimal. The aim in partitioning
a problem with the band model is to find the distribution that maximises the amount of possible
combinations of performance where the distribution will remain optimal. These performance levels
correspond to levels of workload created on the a machine due to it's non-dedicated status. The
distribution allows the maximum amount of fluctuation in load without harming the balance of the
distribution.

Calculating the Distribution Arc As can be seen in figure 4 there is an common arc o between
which the distribution of work remains proportional. In finding the best possible distribution we
wish to maximize the size of thisarc. For the two processor example in figure 5, the angle of the arc
is determined by lines drawn through the origin to points on the bands. These points given by the
work assigned to the respective processors. The arc is always defined by the shallowest line which
intersects a maximum speed function, subtracted from the stegpest line which intersects a minimum
speed function (4).

a = min (arctan (M> ,arctan <8m‘”ﬁ71(wl)>>
Wo w1
— max (arctan <M> ,arctan (M)) @

Wo w1y

Maximising this equation via differential analysis was considered too complex so a heuristic al-
gorithm was used to find the optimal solution. Observation of the problem space has shown no
occurrence of local maxima close to the global maximum. Assuming this to be true, a standard hill
climbing algorithm [5,6] was chosen to search for this maximum. Experiments with the algorithm
have not conflicted with the assumption, though further work would be required to prove it true for
all situations. To speed the search for a maximum « the algorithm is guided by initially distributing
the workload according to the the average speed of each workstation: a midpoint between s,,,4. ()
and s, () at an arbitrary value of . From this point the hill climbing algorithm quickly finds the
optimal distribution.

4. Analysis

In our analysis we compare the theoretical execution time of a job partitioned using a single
benchmark with a job partitioned using our band model. We suppose that the single benchmark is
taken directly before the execution of the parallel job. Such benchmarks are short and subject to load
fluctuations. Given the load fluctuation functions of a machine we calculate a set of benchmarks,
ranging from ones that may be measured during a high load to a low load. Combinations of these
benchmarks are used to partition the job and a running time is calculated. The load combinationsin
the figures presented are shown on the = and y axes. The speed up gained by using the band model
instead of the load-effected benchmarksis shown on the z axis.

176

Problem Partition using a Performance Function
)

(5]
Q
=}
<
£ cpw
=]
=
(5]
o
Cpuo

wo | wi | work load

Problem Partition using a Performance Band

A
Q
Q
f=1
<
E
& |Smax,1
-
Q
o
cpw
Smin,l
— pair of performance levels
Smax,0 where wo & wi are proportional
cpwo I
Smin,O —— o

wol wil work load

Figure 3. Proportional problem partitioning with per- Figure 4. Two pairs of performance levels for which

formance functions.

distribution is proportional.

Calculating the Distribution Arc

-

performance

cpul

Smax,l) —

—

cpuo

(Wl,Smax,l(Wl))

(Wl,Smin,l(Wl))

Wo I

Wi I work size

Figure 5. Calculating the size of the common arc « for a data distribution between two processors.

177

The comparison of the single benchmark and band model is done for three scenarios. A job
is partitioned between two machines where: both machines are experiencing: a low level of load
fluctuation (figure 6), a high level of load fluctuation (figure 7) and a combination of low and high
level of load fluctuation (figure 8). The machines themselves are identical. This homogeneity exists
so that we may focus on the effects of heterogeneity in the workloads on the machines. From these
plots we can see the conditions under which the band model out performs the benchmark, namely
when higher levels of load fluctuation exist on the NOC. We found that for scenarios where both
machines have similar levels of load fluctuation, the band model is does not offer very much benefit
over asingle benchmark. An average 1% speedup was calculated. Asthe variance between the load
fluctuations increases the speed up increases. With two busy machines an average 7% speedup was
calculated and 9%, ranging as high as 35%, when an idle machine was paired with a busy machine.

5. Conclusions

In these paper we have presented a method of representing load fluctuation using a performance
band. We have demonstrated the construction of the performance band and using load observations
and suggested a measure for the optimality of a distribution using this performance band: that of the
widest angle a..

Our analysis has shown that a scheduling created by maximizing «: outperforms one created using
single benchmarks under circumstances where load fluctuations on some of the machinesinaNOC
are high. When the loads on al machines participating in the computation are relatively steady the
performance gains are unclear. In such situations, using the band model only adds complexity to the
scheduling. A hybrid model of performance could identify situations where the band is unnecessary
and use simpler methods in those circumstances.

From this point there are anumber of directions our research may take. The measure of optimality
a currently only considers the common arc between all processors. This may be adjusted to aso
maximise arcs that overlap between a subset of the total number of processors. Doing so would
add value to distributions that allow fluctuation in parts of the NOC, but not al. As the number of
processors in the NOC is increased, finding a distribution that alows alarge load fluctuation on all
processors is unrealistic, so this kind of measure may be required.

The load functions ,,..(t) and [,,;,(t) are built from the extremes of observed loads, however
between these extremes there exists a probability curve where load is more likely to occur. Currently
the optimality measure gives equal importanceto all parts of the band. It is probably more beneficial
to impart greater value on distributionsthat allow fluctuation regions of the band where load is more
likely to occur than whereit islesslikely, at the extremes.

Finally, for more complex measures of goodness the problem space may not suit the simple hill
climbing method of optimising the distribution. More elaborate Evolutionary Algorithms should
examined and implemented to efficiently maximise goodness factor.

References

[1] H. Casanovaand J. Dongarra. NetSolve: A network server for solving computational science problems.
Technical Report CS-96-328, Knoxville, TN 37996, USA, 1996.

[2] A. Lastovetsky. Adaptive parallel computing on heterogeneous networks with mpc. Parallel Comput.,
28(10):1369-1407, 2002.

[3] A. Lastovetsky and R. Reddy. Data partitioning with a realistic performance model of networks of

178

[4]

[5]
[6]
[7]

heterogeneous computers. In Proceedings. 18th International Parallel and Distributed Processing Sym-
posium, page 104, 2004.

A. Lastovetsky and J. Twamley. Towards arealistic performance model for netowrks of heterogeneous
computers. In International Symposium on High Performance Computational Science and Engineering,
2004.

N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New Yourk, 1971.

E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, New Yourk, second edition, 1991.

R. Wolski, N. T. Spring, and J. Hayes. Predicting the CPU availability of time-shared unix systems on
the computational grid. Cluster Computing, 3(4):293-301, 2000.

Appendix
speedup using band with two idle machines speedup using band with two busy machines
speedup + speedup +
1045 N 125 *
+
104 F + +
10357+1 . * 21+, Lt
. + t oy oy + F
108 +1 + oy 115 F o+, A %+
1025 - i et T, e %
102 | +$1+ o, Ty 11+ +++++++ %%
ity + oy + oy + oy + %%
1.015 R + + 105 - oy +
101 il ey tee I++Ii%§$$
3 r + + + o+ +
+ b M 1 i
1005 | ¢$¢*1++ + t
1 Fiiey 095 |
+

@
@

performance fluctuation (machine a) performance fluctuation (machine a)

performance fluctuation (machine b) performance fluctuation (machine b)

Figure 6. Speed up using two idle processors Figure 7. Speed up using two busy processors

(1% average). (7% average)
speedup using band with one idle & one busy machine
speedup +
135 +
n
13 | +
+ oy N
125 + o4
+ n tot
12 I ‘o, g,
s bt Py
11 i Ry
=T b % A
105 - f A
1 kb %% +o+ o+ttt
FEE R

095

|

performance fluctuation (machine b) performance fluctuation (machine a)

Figure 8. Speed up using one busy and one idle processor (8% average)

