
 
 
 

Towards Data Partitioning for Parallel Computing on Three Interconnected 
Clusters 

 
 

Brett A. Becker  
School of Computer Science and Informatics 

University College Dublin (UCD) 
Belfield, Dublin 4, Ireland 

brett.becker@ucd.ie 

Alexey Lastovetsky 
School of Computer Science and Informatics 

University College Dublin (UCD) 
Belfield, Dublin 4, Ireland 
 alexey.lastovetsky@ucd.ie 

 
 

Abstract 
 

We present a new data partitioning strategy for 
parallel computing on three interconnected clusters. 
This partitioning has two advantages over existing 
partitionings. First it can reduce communication time 
due to a lower total volume of communication and a 
more efficient communication schedule. When the 
network topology is a linear array this partitioning 
always results in a lower total volume of 
communication compared to existing partitionings, 
provided the most powerful node is at the center of the 
array. When the topology is fully connected this 
partitioning results in a lower total volume of 
communication for all but a few power ratios. Second, 
it allows for the overlapping of communication and 
computation. These two inherent advantages work 
together to reduce overall execution time significantly.   

 
1. Introduction 

 
Our motivation stems from the visible interest in 

parallel computing on clusters of clusters. For an 
example see [8]. When the number of clusters is small, 
general partitionings which work well for several, 
dozens, or even hundreds of nodes may result in non-
optimal partitionings.  Examples of such methods are 
explored in [2],[3],[6],[9].  

This paper presents a new partitioning strategy 
specifically designed to partition data for parallel 
computations on three connected heterogeneous 
clusters. We choose three clusters because it is a 
simple but well represented case of topology. We 
choose matrix multiplication as a kernel on which to 
test this partitioning because as noted in [3], matrix 
multiplication is the prototype for a group of tightly-
coupled kernels that should be efficiently solved on 
high performance computing architectures. 

In this research we model three clusters using three 
processors because a three processor network provides 

a controllable and tunable environment whose structure 
is similar to three clusters. In the case of connected 
clusters, local communications are often an order of 
magnitude faster than the interconnecting link. Due to 
physical distance this link is often serialized or of some 
limited parallelism. Similarly with three processors, 
local communications (within processor-local registers 
and memory) are typically fast compared to the inter-
processor connection speed. Using an Ethernet switch 
with a configurable bandwidth allows us to model 
many different scenarios. Our goal is to determine if 
this new partitioning is viable for deployment on three 
clusters.  

To our knowledge no research has been conducted 
to optimize data partitionings for the specific 
architecture of three connected nodes. The most related 
work is [3], which introduced a partitioning for matrix 
multiplication designed for any number of nodes 
including three. This partitioning exclusively utilizes 
rectangular partitions, organized in columns, with each 
rectangle being proportional in area to the speed of the 
node which is to calculate that partition.  

Our partitioning differs in that the matrix is not 
partitioned into rectangles. We create three partitions, 
the first being a square located in one corner of the 
matrix, the second being a square in the diagonally 
opposite corner, and the third is polygonal – the 
balance of the matrix. On a linear array topology where 
the fastest node is the middle node, this partitioning 
always results in a lower total volume of 
communication. The benefit of a more efficient 
communication schedule further reduces 
communication time, which in turn drives down total 
execution time. On a fully connected topology this 
minimizes the total volume of communication between 
the nodes for a defined range of power ratios. We use 
the term total volume of communication to mean the 
sum of all inter-processor messages in MB, necessary 
for each processor to carry out its local computations. 



  

This partitioning also allows for a sub-partition of 
the matrix product to be calculated without any 
communications needed. When dealing with hardware 
that has a dedicated communication sub-system, this 
can further reduce execution time.  

The rest of this paper is organized as follows. 
Section 2 introduces related research involving data 
partitioning and matrix multiplication on small 
numbers of nodes. Section 3 introduces our ‘square-
corner’ partitioning. We theoretically compare the 
optimal square-corner partitioning with the optimal 
rectangular partitioning. We then compare the square-
corner partitioning with the theoretical lower bound on 
the total volume of communication and show that the 
optimal square-corner partitioning approaches that 
lower bound unlike the optimal rectangular partitioning. 
Section 4 presents results of MPI experiments 
involving the optimal square-corner and rectangular 
partitionings on three processors of varying power 
ratios for both linear array and fully connected 
topologies. Our results demonstrate a lower total 
execution time than the optimal rectangular 
partitioning for the following topologies: 

•Linear Array (middle node is fastest node): In all 
cases. 

•Fully Connected: For all but a few power ratios. 
Section 5 gives our concluding remarks and an 
indication of future work.  

 

2. Related Work 
 
To date, little research has been concentrated on 

performing parallel computations on a small number of 
nodes. In [4] we present a partitioning strategy for 
matrix multiplication on two interconnected clusters 
which results in a lower total volume of 
communication than existing partitionings whenever 
the power ratio between the two nodes is greater than 
3:1. The other advantage of this partitioning is that a 
large sub-partition can be immediately calculated 
allowing for the overlapping of some communications 
and computations. This ‘square-corner’ partitioning 
and the necessary data movements are shown in Figure 
1. The immediately calculable sub-partition is the 
upper left sub-partition of node 1’s C matrix, labeled I. 

The total volume of communication of the square-
corner partitioning approaches the theoretical lower 
bound as the power ratio between the nodes grows, 
unlike existing partitionings which have a total volume 
of communication equal to N2 regardless of the power 
ratio.  

MPI experiments were carried out for ratios ranging 
from 1:1 to 1:25 and for a number of bandwidth values 
between 100Mb/s and 1Gb/s. The total volume of 
communication and the communication times for this 

partitioning were up to 45% less than a simple 
rectangular partitioning.  

 

 
Figure 1. The square-corner partitioning presented in [4] 

 
 In [3] a proof is given which shows that finding an 

optimal partitioning consisting of rectangles 
proportional to the speeds of the nodes which 
minimizes the total volume of communication on 
heterogeneous platforms is NP-complete. The authors 
also present an algorithm to find an optimal rectangular 
partitioning with the restriction that the rectangles are 
arranged in columns. 

The total volume of communication for a 
rectangular partitioning is proportional to the sum of 
the half-perimeters s of all rectangles, given by (2.1), 
where p is the number of nodes, and hi and wi are the 
height and width of the rectangle assigned to node i, 
respectively. 

 

1
( )p

i ii
s h w

=
= +∑                          (2.1) 

 
Since the perimeter of any rectangle enclosing a given 
area is minimized when that rectangle is a square, there 
is a natural lower bound l for (2.1), given by (2.2), 
where ai is the area of the partition belonging to node i.  

 

1
2 p

ii
l a

=
= ×∑                            (2.2)     

         
The authors then carry out a simulation which takes 

a large number of randomly generated rectangular 
partition areas and compare their partitioning’s sum of 
half-perimeters with the lower bound. This is done for 
a number of nodes (and therefore rectangles) ranging 
from one to 40. Their partitioning performs well, with 
the worst average sum of half-perimeter to lower 
bound ratio being about 1.11, for the case of two nodes.  

The authors state that the lower bound can not 
always be met and use the case of two nodes as an 
example. They ask the reader to consider the case of 
two nodes with relative speeds such that node 1 
receives a rectangle of area ε−= 11a , and node 2 

receives a rectangle of area ε=2a , where 0>ε is an 
arbitrarily small number. In order to partition the unit 



  

matrix into two rectangles, a line of length 1 must 
divide the matrix. In this case, (2.1) yields a sum of 
half-perimeters equal to 3, but (2.2) shows that the 
lower bound can get arbitrarily close to 2. Substituting 
N2 for 1 (generalizing on the unit square), we see that 
in the case of two nodes, as 0ε → the lower bound 
gets arbitrarily close to 2×N which is the half-perimeter 
of the matrix itself, and obviously theoretically optimal.   

 

3. The Square-Corner Partitioning 
 
In this section we introduce the square-corner 

partitioning and present its communication features 
along with that of the rectangular partitioning. We then 
compare these characteristics for linear array and fully 
connected topologies. We also compare the square-
corner partitioning’s total volume of communication 
with the theoretical lower bound. Finally we discuss 
the overlapping of communications and computations. 

The simplest partitioning of a square matrix for three 
nodes is a one-dimensional rectangular partitioning 
where each rectangle is proportional in area to a given 
node’s speed. It is easy to show that a two-dimensional 
rectangular partitioning such as that in Figure 2 has a 
lower total volume of communication than the 
equivalent one-dimensional partitioning. In this two-
dimensional case, each node also owns a partition of C 
proportional in area to its speed.  

 
Figure 2.  A two-dimensional rectangular partitioning for three 

heterogeneous nodes which results in both a perfect load 
balance and a lower total volume of communication 

compared to a one-dimensional partitioning. 
 

Although the general rectangular partitioning 
problem is NP-complete it is easy to show that for the 
simple case of three partitions the optimal rectangular 
partitioning is of the form shown in Figure 2 (where X 
and Y are the smaller partitions), as this arrangement 
minimizes q in (3.1) - the only variable quantity in the 
total volume of communication.  

On a fully connected network, in order to calculate 
its partition of C, node 1 needs to receive the respective 
partitions of A from node 2 and 3, node 2 needs to 
receive node 3’s partition of B, and part of node 1’s 
partition of A, and node 3 needs to receive node 2’s 
partition of B and the remaining part of node 1’s 
partition of A. This is a total volume of communication 
equal to 

 

    2N N q+ × .                             (3.1) 
 

If we define the area of node 2’s partition to be X and 
node 3’s partition to be Y, (3.1) is equal to 

  
2N X Y+ + .                            (3.2) 

 
When dealing with a linear array topology where 

node 1 (the fastest node) is the middle node, the 
communications between nodes 2 and 3 must go 
through node 1. This has the effect of doubling the 
total volume of communication between nodes 2 and 3, 
as all communications between this pair must first be 
sent to and received by node 1 before the data can be 
sent on to the recipient node. This raises the total 
volume of communication to 

  
2 2 ( )N X Y+ × + .                        (3.3) 

 
The square-corner partitioning differs from the 

rectangular partitioning described above by relaxing 
the restriction that all partitions must be rectangular. 
Instead we extend the two node partitioning presented 
in [4] by creating two square partitions in diagonally 
opposite corners of the matrix. Since the total volume 
of communication is proportional to the sum of half 
perimeters of the partitions, it is easy to show that the 
sum of half perimeters is at a minimum when the two 
slower nodes are assigned the square partitions. 
Therefore, the optimal square corner partitioning 
assigns the balance of the matrix to the fastest node. 
Since a square has the smallest perimeter of any 
rectangle of a given area we do not consider non-
square rectangular corner partitions. Figure 3 shows 
the partitioning scheme used by the square-corner 
partitioning and the necessary data movements.  

The total volume of communication of the square-
corner partitioning is given by (3.4), where X and Y are 
the areas assigned to nodes 2 and 3 (the two slower 
nodes).  

 

2 ( )N X Y× × +                       (3.4) 
 
As Figure 3 shows, nodes 2 and 3 do not communicate 
at all, thus the total volume of communication is equal 
to (3.4) for both the fully connected and linear array 
topology where node 1 is the middle node.   



  

 

 
Figure 3.  The partitions and data movements of the three 

node square-corner partitioning. 

 
Other similar (but non square-corner) partitioning 

methods were also investigated. In the square-corner 
partitioning, diagonally opposite corners are chosen to 
minimize the number of communication steps 
necessary. As shown in Figure 3 this number is eight. 
Placing the squares in corners that are not diagonally 
opposite requires ten communication steps provided    
X ≠ Y. If  X = Y the number of steps remains at eight. 
The total volume of communication is still equal to 
(3.4) regardless. All other partitioning methods 
investigated resulted in an increased total volume of 
communication. 

In the square-corner partitioning, the squares cannot 
overlap. This imposes the following restriction on the 
relative speeds of the nodes 

 

4
1

1

3

1

2 ≤×
S
S

S
S ,                           (3.5) 

 
where S1+S2+S3=1 and S1 is the relative speed of the 
node owing the balance of the matrix (the fastest node). 
 

3.1 Comparison of Communications on a 
Linear Array Topology 

 
Since in the square-corner partitioning nodes 2 and 3 

do not have to communicate at all, the total volume of 
communication on a linear array where node 1 is the 
middle node remains equal to (3.4). The rectangular 
partitioning has a total volume of communication equal 
to (3.3). In terms of processor speeds, the square-
corner partitioning has a lower total volume of 
communication when  

2 3 1( ) 1.5S S S+ < −  is satisfied, 

where S1:S2:S3 is the ratio representing the node speeds, 
normalized so that S1+S2+S3=1, and subject to the 
restriction of (3.5).  

In order to see when the square-corner partitioning 
has a lower total volume of communication than the 
rectangular partitioning, we plotted the surface 

3 2 1( ) 1.5z S S S= + − + which represents the 
rectangular partitioning’s total volume of 
communication subtracted from that of the square-
corner partitioning. Since for all positive values of S1, 
S2, and S3, z < 0, the square-corner partitioning always 
results in a lower total volume of communication. 

Additionally, the fact that node 1 must now relay 
data from node 2 to node 3 and vice-versa introduces a 
section of the communication schedule that is 
necessarily serialized. The square-corner partitioning 
has no such section and can therefore exploit in full 
any existing network parallelism.  

 
3.2 Comparison of Communications of a Fully 
Connected Topology 

 
On a fully connected topology the square-corner 

partitioning has a total volume of communication equal 
to (3.4) and the rectangular partitioning has a total 
volume of communication equal to (3.2). In terms of 
processor speeds the square-corner partitioning results 
in a lower total volume of communication when 

1
2 3( ) 1

2
SS S+ < −  is satisfied, where again S1:S2:S3 

is the ratio representing the node speeds, normalized so 
that S1+S2+S3=1, and subject to the restriction of (3.5).  

This inequality shows that the total volume of 
communication is dependent on the values of S2 and S3 
(S1 can be expressed as 1-S2-S3). To investigate what 
values of S2 and S3 result in a lower total volume of 
communication compared to the rectangular 
partitioning, we plotted the surface 

 

1
2 3( ) 1

2
Sz S S= + − +                   (3.9) 

 
which is negative when the square-corner partitionng’s 
total volume of communication is less than that of the 
rectangular partitioning. Figure 4 shows a contour plot 
of this surface at z = 0.  The hatched region represents 
values of S2 and S3 which violate (3.5). The striped 
region has values of z < 0, and therefore in this region 
the total volume of communication for the square-
corner partitioning is less than that of the rectangular 
partitioning. The white region has values of z > 0 
indicating that the square-corner partitioning has a total 
volume of communication greater than that of the 
rectangular partitioning.   

 



  

 
Figure 4.  A contour plot of the surface represented by (3.9) 

at z = 0. 
 
3.3 Comparison with state-of-the-art and the 
Lower Bound 
 

In section 2 we summarized the work in [3]. The 
authors present an algorithm to find an optimal 
rectangular partitioning with the restriction that the 
rectangles are arranged in columns. For three nodes, 
this algorithm results in a partitioning similar to Figure 
5, with three rectangles proportional in area to the 
relative powers of the nodes. The sum of half-
perimeters s which is proportional to the total volume 
of communication was given by (2.1), and in the case 
of three nodes, is equal to 

1
( ) 3p

i ii
h w N q

=
+ = × +∑ , 

where 0 < q < N.  
The lower bound of the sum of half perimeters l is 

given by (2.2), and for the case of three nodes 

1 2 31
2 2 ( )p

ii
l a a a a

=
= × = × + +∑  where ai is the 

area of the partition belonging to node i. 
 In the case of three nodes, the square-corner 

partitioning has a sum of half perimeters 
2 ( )s N X Y= × + + . This equation shows that for 

the square-corner partitioning, as , 0, 2X Y s N→ → , 
which is equal to the lower bound that cannot be met 
by the rectangular partitioning.   

To compare the square-corner sum of half-
perimeters with that of the rectangular partitioning and 
the lower bound, we adopted the same approach as in 
[3]. We generated 2,000,000 random values for the 
partition areas a1 = N2-X-Y, a2 = X, and a3 = Y, and 
calculated values for the sum of half-perimeters s and 
the lower bound l. Since we already know that the total 
volume of communication for the square-corner 
partitioning (on a fully connected network) is greater 
for the cases where (3.9) is positive, we restrict the 
random areas a1, a2, and a3 accordingly. 

 

 
Figure 5.  A rectangular partitioning for three nodes. 

 
The average sum of half-perimeter to lower bound 

ratio for the rectangular partitioning is 1.128, while 
that of the square-corner partitioning is 1.079. 
Considering that 1.0 is the optimum value, this is an 
improvement of 38%. The minimum value for the sum 
of half-perimeter to lower bound ratio for the 
rectangular partitioning is 1.0595, while that of the 
square-corner partitioning is 1.0001, an improvement 
of well over 99%. This also shows that the square-
corner partitioning does approach the lower bound 
which cannot be met by the rectangular partitioning.  

In generating 2,000,000 random areas, there are 
bound to be many that are have very large ratios, 
making them computationally unrealistic. Surely 
nobody would use two nodes in parallel if one of them 
is slower than the other by an order of hundreds or 
thousands or greater. We therefore imposed the tighter 
but more realistic restriction of max min/ 100a a ≤ . Even 

with these much tighter restrictions, the average sum of 
half-perimeter to lower bound ratio for the rectangular 
partitioning is 1.104 while that of square-corner 
partitioning is 1.062, an improvement of 40%. The 
minimum is improved from 1.059 to 1.008, an 
improvement of 86%. 

 

3.4 Overlapping Computations and 
Communications 

 
The other primary benefit of the square-corner 

partitioning is overlapping communications and 
computations. As seen in Figure 3, and in more detail 
Figure 6, there is a sub-partition C1 of node 1’s C 
partition which is immediately calculable – no 
communications are necessary to compute the product 
of this sub-partition. On an architecture which has a 
dedicated communications sub-system this quality can 
be exploited to overlap some communications and 
computations. 



  

 
Figure 6.  The shaded areas represent node 1’s partition.  
The sub-partition C1=A1xB1 is immediately calculable – no 
communications are necessary to compute its product. 
 
Figure 7 shows a schematic of the overlapping of 

communication and computation from an execution 
time point of view. As the areas C2, X, and Y (in Figure 
6) are calculated to be proportional to the speed of the 
nodes owning them, it is expected that steps III, IV, 
and V will finish their computations at the same time. 
The same is not true for steps I and II, as they represent 
unrelated tasks.  

 

 
Figure 7.  Overlapping Communication and Computation 

from an execution-time point of view. 

 
A solution exists which would minimize the overall 

execution time but this would alter the approach of the 
square-corner partitioning. Thus we formulate the total 
execution time as max(I,II) max(III,IV,V)exet = + . 
 
4.  Experimental Results 
 
To experimentally verify this new partitioning, we 
implemented matrix multiplications utilizing the 
optimal square-corner partitioning and the optimal 
rectangular partitioning in Open-MPI [7]. Local matrix 
multiplications utilize ATLAS [10]. Experiments were 
carried out on three identical machines to eliminate 
contributions of architectural differences. The 
machines were connected with a full duplex Ethernet 
switch that allows the bandwidth between the nodes to 
be finely controlled. 

The ratio of speeds between the three nodes were 
varied by slowing down CPUs when required using a 
CPU limiting program as proposed in [5]. This 
program supervises a specified processes and using the 
/proc pseudo-filesystem, forces the process to sleep 
when it has used more than a specified fraction of CPU 
time. The process is then woken when enough idle 
CPU time has elapsed for the process to resume. 
Sampled frequently enough, this provides a fine level 
of control over the CPU speed. Comparison of the run-
times of each node confirmed that this method results 
in the desired ratios to within 2%.  

For simplicity we present results where the speeds of 
the slower nodes (S2 and S3) equal. We varied this 
relative value from 5 to 25, where S1 = 100 - S2 - S3. 
Network bandwidth is 100Mb/s, and N = 5000.  

Figure 8 shows the communication times for the 
square-corner and rectangular partitionings on the 
linear array topology. The square-corner has a lower 
communication time than the rectangular linear array 
in all cases. On average the square-corner partitioning 
results in a reduction in communication time of 40%. 

 

 
Figure 8.  Communication times for the square-corner and 

rectangular partitionings on the linear array topology. 
Relative speeds S1+S2+S3 = 100. 

A plot of the communication volumes agrees well 
with Figure 8 with one exception. The rectangular and 
square-corner communication volumes converge as 
S2,S3→25. The reason that the communication times 
do not converge is due to the necessarily sequential 
component of the rectangular partitioning’s 
communication schedule. This component can not 
make use of network parallelism such as Ethernet’s full 



  

duplex. Experiments “illegally” altering the rectangular 
partitioning’s communication schedule (by de-
serializing necessarily serial communications) confirm 
this.  

Figure 9 shows a plot of the execution times for the 
square-corner and rectangular partitionings on the 
linear array topology. For the square-corner 
partitioning two values are plotted, the execution time 
obtained with no overlapping of communication and 
computation, and the values obtained with overlapping. 
It is seen that with no overlapping (only taking into 
account the communication differences) the execution 
time for the square-corner partitioning is on average 
14% less than that of the rectangular, and that the 
reduction in communication times seen in Figure 8 
directly influence the execution times.  

 

 
Figure 9.  Execution times for the square-corner and 
rectangular partitionings on the linear array topology. 

Relative speeds S1+S2+S3 = 100. 

The introduction of overlapping communication and 
communications significantly influences the 
performance of the square-corner partitioning. For a 
ratio of 90:5:5 it is 38% faster than the rectangular 
partitioning. As the ratio approaches 50:25:25, the 
amount of overlap possible tends to zero, and the 
execution times of the square-corner partitioning with 
and without overlap converge.     

Figure 10 shows the Communication times for the 
fully connected topology. A notable aspect is that the 
rectangular partitioning’s communication times 
decrease despite the fact that it is dealing with 
increasingly higher communication volumes. The 

reason for this is that the total volume of 
communication for this partitioning increases much 
slower than that of both the rectangular partitioning on 
the linear array and the square-corner partitioning. It 
increases so much slower that the increased benefit of 
more computational parallelism (as S2 and S3 get 
closer to S1) outweighs the higher communication 
burden. Still, for ratios more heterogeneous than about 
80:10:10, the square-corner partitioning has a lower 
total volume of communication, and therefore lower 
communication times. 

 

Figure 10. Communication times for the square-corner and 
rectangular partitionings on a fully connected topology. 

Relative speeds S1+S2+S3 = 100. 

Figure 11 shows the overall execution times for the 
square-corner and rectangular partitionings on a fully 
connected topology. Again the square-corner 
partitioning is shown with and without overlapping. 
Again, without overlapping the execution times are 
directly affected by the communication times. For 
ratios more heterogeneous than about 80:10:10, the 
square-corner partitioning outperforms the rectangular. 
The introduction of overlapping again significantly 
influences the performance of the square-corner 
partitioning. For a ratio of 90:5:5 the square-corner 
partitioning is 30% faster that the rectangular. 
Additionally, the range of ratios where the square- 
corner is faster than the rectangular is broadened from 
about 80:10:10 to about 60:20:20.    

Similar results were seen at other bandwidths, values 
of N, and power ratios, including where S2 ≠ S3. 

 



  

 
Figure 11.  Execution times for the square-corner and 
rectangular partitionings on a fully connected topology. 

Relative speeds S1+S2+S3 = 100. 
 
5. Conclusion 
 

We presented a new ‘square-corner’ data partitioning 
strategy for parallel computing on three interconnected 
clusters. This partitioning has two advantages over 
existing partitionings. First it reduces communication 
time due to a lower total volume of communication and 
a more efficient communication schedule. The total 
volume of communication is shown to approach the 
known lower bound unlike existing partitionings. 
Second it allows for the overlapping of communication 
and computation.  

To determine the viability of this partitioning we 
modeled the three cluster topology with three 
processors performing matrix multiplications. 
Compared to more general partitionings which result in 
simple ‘rectangular’ partitions the square-corner 
partitioning is shown to reduce the total volume of 
communication in all cases for the linear array 
topology and in most cases for a fully connected 
topology. We experimentally show that this directly 
translates to lower communication times. In the case of 
the linear array topology, we show average reductions 
in communication time of about 40%. 

Further experimentation shows that this reduction in 
communication time directly translates to a reduction 
in the overall execution time, aided by a more efficient 
communication schedule. Overlapping communication 
and computation brings further benefit, in both 
reducing the execution times significantly, and 
broadening the ratio range where the square-corner 
partitioning outperforms the rectangular partitioning on 
a fully connected topology. MPI experiments 
demonstrate reductions in execution times of up to 
38%. 

We determine that this partitioning is viable and 
future work will include employing it as the top-level 
partitioning of a hierarchal algorithm that will perform 
parallel computations across three interconnected 
clusters. 

 
This work was supported by Science Foundation 
Ireland. 

 

References 
 

[1] Jorge G. Barbosa, João Tavares and Armando J. Padilha, 
“Linear Algebra Algorithms in a Heterogeneous Cluster of 
Personal Computers”, Proceedings of the 9th Heterogeneous 
Computing Workshop (HCW 2000), 2000 
 
[2] Olivier Beaumont, Vincent Boudet, Fabrice Rastello and 
Yves Robert, “Partitioning a Square into Rectangles: NP-
Completeness and Approximation Algorithms”, Algorithmica, 
2002, Vol.34, No.3, pp.217-239 
 
[3] Olivier Beaumont, Vincent Boudet, Fabrice Rastello and 
Yves Robert, “Matrix-Matrix Multiplication on 
Heterogeneous Platforms”, IEEE Transactions on Parallel 
and Distributed Systems, 2001, Vol.12, No.10, pp.1033-1051 
 
[4] Brett A. Becker and Alexey Lastovetsky, “Matrix 
Multiplication on Two Interconnected Processors”, 
Proceedings of the 8th IEEE International Conference on 
Cluster Computing (Cluster 2006), 2006. 
 
[5] Louis-Claude Canon and Emmanuel Jeannot, “Wrekavoc: 
a Tool for Emulating Heterogeneity”, Proceedings of the 
International Parallel and Distributed Processing 
Symposium (IPDPS 2006), 2006. 
 
[6] Egor Dovolnov, Alexey Kalinov and Sergey Klimov, 
“Natural Block Data Decomposition for Heterogeneous 
Clusters”, Proceedings of the 17th International Parallel and 
Distributed Processing Symposium (IPDPS 2003), 2003 
 
[7] Edgar Gabriel et. al., “Open MPI: Goals, Concept, and 
Design of a Next Generation MPI Implementation”, 
Proceedings of the 11th European PVM/MPI Users' Group 
Meeting,(Euro PVM/MPI 2004) 2004 
 
[8] The Jabberwocky Project,                          
http://jabberwocky.anu.edu.au/ 
 
[9] Alexey Kalinov and Alexey Lastovetsky, "Heterogeneous 
Distribution of Computations While Solving Linear Algebra 
Problems on Networks of Heterogeneous Computers", 
Proceedings of the 7th International Conference on High 
Performance Computing and Networking Europe (HPCN`99), 
1999. 
 
[10] R. Clint Whaley and Jack Dongarra,    “Automatically 
Tuned Linear Algebra Software”, Ninth SIAM Conference on  
Parallel Processing for Scientific  Computing, 1999. 


