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Abstract 

The paper presents a software component that enables 
NetSolve with direct communications between servers in 
a non-intrusive and incremental way. Non-intrusiveness 
means that the software component is supplementary, 
working on top of the original system, which does not 
change at all. Increment means that the software 
component does not have to be installed on all computers 
to enable applications with the new feature. It can be done 
incrementally, step by step, and the new feature will be 
enabled in part, with the completeness dependent on how 
many nodes have been upgraded with the software 
component. The paper describes the design and 
implementation of the software component. The paper 
also reports on experiments with three typical scientific 
NetSolve applications having different communication 
structures: (i) protein tertiary structure prediction, (ii) 
image processing using sequential algorithms, and (iii) the 
matrix chain product. The presented experimental results 
show that the performance of these Grid applications can 
be easily and significantly improved by using the 
proposed supplementary software component. 
 
 
1 Introduction 
 

High performance Grid programming systems have 
reached a certain level of maturity. Scientific researchers 
and programmers can develop reliable Grid applications 
by using systems such as NetSolve/GridSolve [1-3] and 
Ninf [4]. The systems are quite easy to install and use. 
They also demonstrate high level of stability and 
reliability achieved over years of testing and 
maintenance. On the other hand, the constantly growing 
number of users and applications results in the need of 
further development of such systems in terms of 
functionality and quality. 

Traditionally, the addition of a new feature to a Grid 
programming system is achieved by changing the code 

of the system and producing its new version. This new 
version of the system has to replace the previous one in 
order to enable Grid applications with the new feature. 

In [5], we formulated another approach to enabling an 
existing Grid system with a new feature. Its main 
difference from traditional ones is that it is non-intrusive 
and incremental. Non-intrusiveness means that the original 
system does not change and the new feature is provided by 
a supplementary software component working on the top 
of the system.  Increment means that the software 
component does not have to be installed on all computers 
to enable applications with the new feature. It can be done 
incrementally, and the new feature will be enabled in part. 
In [5], we demonstrated how this approach could be 
applied. In particular, we briefly outlined the design and 
principles of implementation of a software component, 
which could enable NetSolve with direct communications 
between remote tasks in a non-intrusive and incremental 
way. Since then, the software component has been fully 
implemented and widely used for experiments with various 
NetSolve applications. In this paper, we present some 
details of the implementation and results of experiments 
with three typical real-world applications having different 
communication structures. 

The rest of the paper is structured as follows. Section 2 
describes the design and implementation of the software 
component enabling direct communications in NetSolve. 
Section 3 presents experiments with the applications. 
Section 4 outlines related work, and Section 5 concludes 
the paper.  

 
2 Enabling NetSolve With Direct 

Communications 
 

NetSolve is positioned as a programming system for 
high performance distributed computing on global 
networks based on GridRPC [6]. In NetSolve, output data 
of remote tasks are typically sent back to the client upon 
completion of each remote task even if the data are only 
needed as input for some other remote tasks, resulting in 
so-called bridge communications when data between 



 

remote tasks are sent through the client machine. More 
generally, bridge communication can be defined as 
follows. Two separate tasks on the remote servers make 
the use of a third party (either the client machine or some 
other machine) to transfer data between the tasks. 
Compared with direct communication between the tasks, 
the bridge communication can seriously increase the cost 
of communication time during the execution of the 
corresponding Grid application and hence its total 
execution time.  
 
2.1 Non-Intrusive and Incremental Approach 
  

Traditionally, addition of a new feature to a Grid 
programming system is achieved by changing the code of 
the system and producing its new version. This new 
version of the system has to replace the previous one in 
order to enable Grid applications with the new feature. 
This approach to the evolution of Grid programming 
systems has two serious disadvantages. First, the change 
of the system’s code may introduce bugs resulting in the 
situation when some applications, which have been 
developed, tested and successfully executed with the 
previous version of the system, will not run properly with 
the new one. Secondly, the new version of the system has 
to replace the old version on all computers of the Grid in 
order to support the development and execution of 
applications enabled with the new feature. Such 
simultaneous and total replacement can have very high 
organizational overhead and sometimes be simply 
unrealistic as different computers on the Grid are 
managed and administered by independent and, very 
often, loosely connected users. 

Our research focuses on developing a non-intrusive 
and incremental approach to enabling new features in an 
existing Grid programming system.  

Non-intrusiveness means that the original system does 
not change and the new features are provided by a 
supplementary software component working on the top 
of the system. Correspondingly, all applications not 
requiring those new features will only use the basic 
original software and be developed and executed in the 
same way both in the original and modified systems.  

Increment means that the supplementary software 
component does not have to be installed on all computers 
to enable applications with the new features. It can be 
done incrementally, step by step, and the new features 
will be enabled in part, with the completeness dependent 
on how many nodes participating in the execution of the 
application have been upgraded with the supplementary 
software component. 

 
2.2 Design and Implementation of Software 

Component 
 

By using the non-intrusive and incremental approach, 
we have developed such a supplementary software 
component that enables direct communications in NetSolve. 
It consists of three parts: Client API & Argument Parser, 
Server Connector and Job Name Service (JNS).  

Client API provides a uniform interface for the client to 
make remote procedure calls. Despite the modification on 
the remote side, the wrapper API allows the calls to be 
made in the same manner. The only difference is in the 
arguments that can be not only variables storing real data 
but also handlers. Like in NetSolve, we parse the list of 
arguments to construct the handler array. For each 
argument, the relevant communication information is 
generated. For each input argument, which is a variable 
storing real data, the local IP address and the port number 
are used as such communication information. If this input 
argument is a handler, then a request is sent to the JNS to 
get the IP address and the port number of the remote 
resource and this information is used as communication 
information for this handler. For each output argument, 
which is a variable storing real data, the client wrapper 
function will set up a socket to download output data from 
computational servers. If this output argument is a handler, 
the returned result information from computational servers 
is sent to JNS and registered there. 

Server Connector is on the server side, which is a proxy 
program responsible for interacting with clients and other 
Server Connectors to enable direct communications. The 
Server Connector has two main functions. The first one is 
to pass handler information between clients and servers. 
This allows servers to know how to get the data without 
bridge communication. The second function is the 
extraction of the handlers’ information and using it to 
download needed data through direct communication. 
After all the needed data have been acquired; the Server 
Connector calls the procedure to re-submit to the local host 
to perform computations that the user exactly requested for. 
There is no difference in the way the client and 
computational servers download the result of the 
computations. The Server Connector firstly returns the 
result’s communication information to the client. Then it 
sets up a socket waiting for the client or the server to 
connect in to download the result of computations.  

Job Name Service (JNS) is responsible for registration 
of a procedure upon its invocation during RPC call. Other 
procedures may send requests to the JNS to search for the 
registered procedure. JNS is set up on the client side 
automatically. During the execution of the application, it 
contains all information about every handler. Only the 
client has the permission to register or access a handler on 
the JNS. There is no communication and interaction 
between JNS and computational servers. Because JNS is 
designed as a system-independent system on the client side, 
it can be applied to different RPC-based systems and not 
influenced by any fault or crash on the server side. 

 



 

3 Application and Experiments 
 

The software component presented in Section 2 has 
been fully implemented. In order to use it, client 
programmers have to install the wrapper API and Job 
Name Service on the client side and then compile the 
client program with the wrapper library. The wrapper 
API allows the programmers to explicitly specify the 
dataflow between remote tasks. They only need to 
slightly modify their client code. The principle is easy: 
the programmer just replaces the input/output arguments 
with handlers as the input/output data. For example, let 
two tasks, A and B, be performed on remote nodes. Let 
the output of task A be the input of task B. Normally, the 
corresponding NetSolve client code would look as 
follows: 

errno=netsl("A", inputA, outputA); 
errno=netsl("B", outputA, inputB, outputB); 

The extended API allows the programmer to explicitly 
specify the optimal dataflow as follows: 

errno=mynetsl("A", inputA, hdlA); 
errno=mynetsl("B", hdlA, inputB, outputB); 

Here, the output of A is represented by handler hdlA 
specifying that it is stored on the remote server. In 
addition, hdlA replaces outputA as a B’s input argument. 
The use of hdlA tells B where it can get this input. The 
other modification is the use of mynetsl instead of netsl. 
This helps distinguish between our wrapper API and the 
native NetSolve API. 

On the server side, the procedure programmers should 
do nothing to enable direct communications. They 
develop their procedures as usual. The supplementary 
software component has no effect on both existing 
procedures and newly added procedures. To enable direct 
communication control on the server side, the server 
administrator needs to install a Server Connector. No re-
installation and re-compilation of either NetSolve itself 
or registered NetSolve procedures are needed. 

Next, we present three typical applications with 
different communication structures and demonstrate the 
performance improvement achieved due to the use the 
software component for elimination of bridge 

communications. Experiments are conducted using six 
servers, interconnected via a 100 Mbit Ethernet network 
with a switch enabling parallel communications. The 
specifications of the servers are shown in Table 1. 
 
3.1 Genetic Crossover in Protein Tertiary 

Structure Prediction System 
 

For progress of the bioinformatics, the protein tertiary 
structure prediction systems are proposed, which is mainly 
performed by the protein energy minimization. However, a 
large-scale computing environment would be valuable for 
this system. In the system, Parallel Simulated Annealing 
using Genetic Crossover (PSA/GAc) [7] is a minimization 
engine. To use the Grid resource, NetSolve is a basic tool 
and implementations are already prepared [8] to improve 
the computing performance. Their approach reduces critical 
overhead due to large communication delay over the 
Internet by using an asynchronous Crossover model. 
However, bridge communications still exist, and these 
unnecessary communications can be eliminated by using 
our software component. Figure 1(a) shows both 
synchronous and asynchronous Master-slave models for 
Genetic crossover in the protein tertiary structure prediction 
system.  

By enabling direct communication using our software, 
Genetic Crossovers are executed between servers directly. 
The original approach depends on the client side to do 
Genetic Crossovers. Direct communication is enabled 
between Server 1 and Server 2, and between Server 3 and 
Server 4. Simulated Annealing is executed on each server 
separately. So the exchanging data is not returned back to 
the client while direct communications are enabled. This 
reduces communication links between the client and servers. 
Figure 1(b) depicts how bridge communications between 
the client and NetSolve servers are replaced by direct 
communications between NetSolve servers while 
performing Genetic crossovers. Eight communication 
bridges have been eliminated and 4 direct communications 
have been established. Thus, the total number of 
communication links is reduced from eight to four by using 
our software component. 

Table 1. Specifications of the six servers 

Architecture CPU MHz Main Memory (KB) Cache (KB) 
Linux 2.6.9-1.667smp 3200 1038412 1024 

Linux 2.4.21-27.0.2.Elsmp 1099 513960 1024 
Linux 2.6.11-1.1369_FC4 800 524288 1024 
Linux 2.6.11-1.1369_FC4 800 524288 1024 
Linux 2.6.11-1.1369_FC4 800 524288 1024 
Linux 2.6.11-1.1369_FC4 800 524288 1024 



 

                        
(a)                                                                                      (b)                

Figure 1. (a) Asynchronous and synchronous models for PSA/GAc. (b) Enabling direct communications 
between NetSolve servers while performing Genetic crossovers. 

Table 2. B – Bridge communication time (in seconds); D – Direct communication time (in seconds). 

Trail 1 Trail 2 Trail 3 Average Protein 
Size (kb) B D B D B D B D Speedup 

1000 50 30 51 30 53 31 52 30 45% 
2000 106 62 108 63 108 62 107 62 42% 
3000 175 98 170 100 178 105 174 101 42% 

 
Table 2 shows experimental results of three trails with 

different sizes of protein. It gives communications times 
of the original NetSolve application using bridge 
communications and the modified application emplyong 
direct communications. The average communication 
speedup due to elimination of bridge communications is 
around 43%. 

 
3.2 Image processing using sequential 

algorithms 
 

So far, image and video processing software has been 
predominantly written for conventional (sequential) 
desktop computers and embedded digital signal 
processors (DSPs), which implement a wide range of 
operations [9] such as smoothing, sharpening, noise 
reduction, etc.  These applications usually have a 
tremendous potential for parallelism but unfortunately, 
existing techniques are not adequate for compiling 
sequential multimedia programs to such parallel 
architectures. Therefore, some researchers focus on 
extracting the essential computations and data 
dependency to ensure that each computation has the data 
it requires [10, 11]. Our research aims to optimize 
communications of data transaction for sequential 
multimedia operations. The method is to enable direct 
communications for sequential image processing by 
using our supplementary software component. For 
experiments, we chose an example, which is Simple 
Linear Combination Filtering [12]. Linear combination 

filtering functions are taken from Image Processing Library 
98 [13]. 

For image enhancement, linear combination filtering can 
blur smooth parts of an image while sharpening areas that 
contain detail. The reason for this combination is that 
blurring reduces noise, but degrades edges and image detail 
while sharpening enhances edges and detail but makes 
noise more visible. Figure 2 displays the example pictures 
of simple linear combination filtering. Figure 3 depicts how 
bridge communications between the client and NetSolve 
servers are replaced by direct communications between 
NetSolve servers while performing linear combination 
filtering functions in this case. 

To eliminate un-necessary communications between the 
client and the servers while performing linear combination 
filtering, we select two servers to perform linear 
combination filtering functions in parallel: 

Server 1: 
- Laplacian of image (a); 
- Spatially invariant high-pass filtering, sum of image (a) 
and image (b); 

Server 2: 
 - Mask image, Sobel gradient of image (a) smoothed by a 
5x5 box filter; 
- Product of image (b) and image (d); 
- Space-variant enhancement, sum of image (a) and image 
(e); 

Direct communications are enabled between the servers 
by transferring image (b) from Server 1 to Server 2 directly.  

 



 

            
Fig. 2                                                                                            Fig.3  

Figure 2. (a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and 
(b)]; (d) Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e) Product of (b) and (d); (f) 
Space-variant enhancement [sum of (a) and (e)]. 
Figure 3. Enabling direct communications between NetSolve servers while performing linear 
combination filtering. 

Table 3.   B – Bridge communication time (in seconds);   D – Direct communication time (in seconds) 

Trail 1 Trail 2 Trail 3 Average Picture 
Size (kb) B D B D B D B D Speedup 

1000      60 29 60 29 61 29 60 29 51% 
2000 125 61 122 62 125 63 124 62 50% 
3000 195 97 209 98 203 98 200 98 51% 

 
Those images, which will be used as input for other 
image processing functions, will NOT be returned to 
client. This reduces bridge communications between 
client and servers. We can see that in Figure 3 
communication links are reduced from ten to five by 
using our software component. Only necessary images 
(a), (c) and (f) will be on the client side.  

 
We experimented with the linear combination filtering 

application for different size pictures. Table 3 shows 
experimental results of three trails with different sizes of 
picture. The results show that the average communication 
speedup is around 50%. This is due to the fact that six 
communication bridges were eliminated and one direct 
communication was established between two servers. 

 
3.3 Matrix chain product problem in general 

scientific computations 
 

Given N matrices A1, A2, …, An of size N ×  N, the 
matrix chain product problem is to compute A1 ×  
A2×  …×  An. The matrix chain product is an important 
computational kernel that is used in computing the 
characteristic polynomial, determinant, rank, and inverse 

of a matrix, in solving graph theory problems, and in 
general scientific computations [14, 15].  

Figure 4 shows how the product of A1, A2, …, A8 can 
be obtained by using the standard binary tree method. The 
leaves are input matrices A1, A2, …, A8, and the root task 
of the tree computes the final result A12345678. Figure 5 
depicts how bridge communications between the client and 
NetSolve servers are replaced by direct communications 
between NetSolve servers for matrix chain product 
computation, where six communication bridges were 
eliminated among the total fourteen. 

In the experiments, we selected four servers to perform 
matrix chain product computation in parallel: 

Server 1:     - to perform A1 ×  A2; 
Server 2:     - to perform A3 ×  A4, A12 ×  A34; 
Server 3:     - to perform A5 ×  A6; 
Server 4:  - to perform A7 ×  A8, A56 ×  A78, A1234 ×  
A5678; 

Direct communications are enabled between these four 
servers by directly transferring output A12 from Server 1 to 
Server 2, output A56 from Server 3 to Server 4, output 
A1234 from Server 2 to Server 4. These output matrices will 
NOT   be returned    to    the   client.    This   reduces bridge  



 

 

Figure 4. Standard binary tree method used for matrix chain product problem. 

              
(a)                                                                                     (b) 

Figure 5. Enabling direct communications between NetSolve servers for matrix chain product 
computation. (a) bridge communication (b) direct communication. 
 

Table 4.   B – Bridge communication time (in seconds);   D – Direct communication time (in seconds) 

Trail 1 Trail 2 Trail 3 Average Matrix 
Size B D B D B D B D Speedup 

1000 102 66 101 67 103 67 102 67 38% 
2000 210 132 220 136 212 138 214 135 36% 
3000 335 220 315 226 310 216 320 221 31% 

 
communications between the client and the servers. 
Communication links are reduced from fourteen to eight. 
Only the result matrix A12345678 is returned to the 
client.  

We experimented with different matrix sizes. Table 4 
shows the experimental results. The average 
communication speedup is around 35%. 
 
3.4 Other Experiments 
 

One feature of our approach is increment. It means 
that the supplementary software component does not 
have to be installed on all computers to enable 
applications with direct communications. In this case, 
direct communications can only happen between those 

computing nodes, where our supplementary software 
component is installed. Non-enabled computing nodes can 
only communicate with the client. The speedup of a 
NetSolve application due to the use of our software 
component depends on how large is the fraction of 
computing nodes with enabled direct communications in 
the overall set of computing nodes used by the application. 

In our next experiment, we use six computing servers 
for computation. We manually changed the number of 
computing nodes enabled with direct communications.  
Figure 6(a) shows that the average communication speedup 
for our three applications is growing linearly while the 
number of computing servers with direct communication 
enabled increases from 0 to 6. 



 

 

        
(a)                                                                                        (b) 

Fig. 6. (a) Speedup for the three applications increases linearly with the increase of the number of 
computing servers with direct communication enabled from 0 to six (‘o’ – the matrix chain product;  ‘.’ – 
Genetic crossover;  ‘*’ – Image processing using sequential algorithms). (b) Speedups for the matrix 
chain product. (‘*’ – homogeneous network; ‘o’ – heterogeneous network ). 

 
If communication links connecting remote computers 

are much faster than communication links connecting the 
remote computers and the client computer, the speedup 
due to elimination of bridge communications will be 
much higher. In our next experiment, we manually made 
all bridge communications to be performed at the speed 
of 10 Mbit per second. For direct communications 
between remote servers, we still used 100 Mbit Ethernet 
interconnecting network.  Figure 6(b) presents the 
average communication speedup of performing matrix 
chain computations with direct communications on both 
homogeneous and heterogeneous networks. The 
experimental speedup for the heterogeneous network is 
around 54% when the ratio of eliminated bridge 
communications is 2/9. Thus, much higher speedup can 
be achieved in heterogeneous communication networks, 
which are typical for real-life Grid environments, than in 
artificially designed homogeneous ones. 

 
4 Related Works 
 

To enable direct communications, NetSolve 
introduces an original mechanism called Request 
Sequencing [16]. The mechanism imposes a number of 
restrictions on the sequence of remotely called tasks, the 
most restrictive of which is that all the tasks have to be 
performed on the same computing node. Another effort 
to reduce the overhead of bridge communications in 
NetSolve is the Logistical Computing and 
Internetworking (LoCI) [17]. LoCI provides facility to 
schedule the data storage at a place ‘close’ to the receiver. 
The mechanism is mainly aimed at replicating data in 
order to keep them even in the case of crash of some of 
the computers. Although it is sufficient for enabling 

direct communications, the goal of building a complete 
network storage system makes LoCI over-heavy for 
enabling just this particular feature. 

The REDGRID project [18] is closest to our approach 
sharing the similar idea behind its design. The main 
difference is that REDGRID is built into NetSolve and 
difficult to be migrated to other GridRPC-based systems. 
The REDGRID project uses an intrusive and non-
incremental approach and requires re-compilation and re-
installation of the modified NetSolve on all involved 
computing nodes to enable direct communication. A certain 
amount of work is needed to port REDGRID to other 
GridRPC-based systems. Another related project is 
SmartNetSolve [19], an extension of NetSolve aimed at 
higher performance of Grid applications, which also 
enables direct communications but in an intrusive way. 

 
5 Conclusion 
 

In this paper, we have presented the implementation of a 
software component enabling direct communications in 
NetSolve in a non-intrusive and incremental way. We have 
also presented the results of experiments with three typical 
real-world applications having different communication 
structures. The experimental results have shown that the 
performance of NetSolve applications can be significantly 
and easily improved by using our software component. The 
software component, the user’s guide and the sample 
applications are freely available at http://hcl.ucd.ie. Future 
work has been planned to test this software in a larger Grid 
environment such as Grid Ireland [20]. 
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