
1-4244-0910-1/07/$20.00 ©2007 IEEE

Experiments with a Software Component Enabling NetSolve with Direct
Communications in a Non-Intrusive and Incremental Way

Xin Zuo, Alexey Lastovetsky

School of Computer Science and Informatics
University College Dublin

Belfield, Dublin 4, Republic of Ireland
{ Xin.Zuo, Alexey.Lastovetsky }@ucd.ie

Abstract

The paper presents a software component that enables
NetSolve with direct communications between servers in
a non-intrusive and incremental way. Non-intrusiveness
means that the software component is supplementary,
working on top of the original system, which does not
change at all. Increment means that the software
component does not have to be installed on all computers
to enable applications with the new feature. It can be done
incrementally, step by step, and the new feature will be
enabled in part, with the completeness dependent on how
many nodes have been upgraded with the software
component. The paper describes the design and
implementation of the software component. The paper
also reports on experiments with three typical scientific
NetSolve applications having different communication
structures: (i) protein tertiary structure prediction, (ii)
image processing using sequential algorithms, and (iii) the
matrix chain product. The presented experimental results
show that the performance of these Grid applications can
be easily and significantly improved by using the
proposed supplementary software component.

1 Introduction

High performance Grid programming systems have
reached a certain level of maturity. Scientific researchers
and programmers can develop reliable Grid applications
by using systems such as NetSolve/GridSolve [1-3] and
Ninf [4]. The systems are quite easy to install and use.
They also demonstrate high level of stability and
reliability achieved over years of testing and
maintenance. On the other hand, the constantly growing
number of users and applications results in the need of
further development of such systems in terms of
functionality and quality.

Traditionally, the addition of a new feature to a Grid
programming system is achieved by changing the code

of the system and producing its new version. This new
version of the system has to replace the previous one in
order to enable Grid applications with the new feature.

In [5], we formulated another approach to enabling an
existing Grid system with a new feature. Its main
difference from traditional ones is that it is non-intrusive
and incremental. Non-intrusiveness means that the original
system does not change and the new feature is provided by
a supplementary software component working on the top
of the system. Increment means that the software
component does not have to be installed on all computers
to enable applications with the new feature. It can be done
incrementally, and the new feature will be enabled in part.
In [5], we demonstrated how this approach could be
applied. In particular, we briefly outlined the design and
principles of implementation of a software component,
which could enable NetSolve with direct communications
between remote tasks in a non-intrusive and incremental
way. Since then, the software component has been fully
implemented and widely used for experiments with various
NetSolve applications. In this paper, we present some
details of the implementation and results of experiments
with three typical real-world applications having different
communication structures.

The rest of the paper is structured as follows. Section 2
describes the design and implementation of the software
component enabling direct communications in NetSolve.
Section 3 presents experiments with the applications.
Section 4 outlines related work, and Section 5 concludes
the paper.

2 Enabling NetSolve With Direct

Communications

NetSolve is positioned as a programming system for
high performance distributed computing on global
networks based on GridRPC [6]. In NetSolve, output data
of remote tasks are typically sent back to the client upon
completion of each remote task even if the data are only
needed as input for some other remote tasks, resulting in
so-called bridge communications when data between

remote tasks are sent through the client machine. More
generally, bridge communication can be defined as
follows. Two separate tasks on the remote servers make
the use of a third party (either the client machine or some
other machine) to transfer data between the tasks.
Compared with direct communication between the tasks,
the bridge communication can seriously increase the cost
of communication time during the execution of the
corresponding Grid application and hence its total
execution time.

2.1 Non-Intrusive and Incremental Approach

Traditionally, addition of a new feature to a Grid
programming system is achieved by changing the code of
the system and producing its new version. This new
version of the system has to replace the previous one in
order to enable Grid applications with the new feature.
This approach to the evolution of Grid programming
systems has two serious disadvantages. First, the change
of the system’s code may introduce bugs resulting in the
situation when some applications, which have been
developed, tested and successfully executed with the
previous version of the system, will not run properly with
the new one. Secondly, the new version of the system has
to replace the old version on all computers of the Grid in
order to support the development and execution of
applications enabled with the new feature. Such
simultaneous and total replacement can have very high
organizational overhead and sometimes be simply
unrealistic as different computers on the Grid are
managed and administered by independent and, very
often, loosely connected users.

Our research focuses on developing a non-intrusive
and incremental approach to enabling new features in an
existing Grid programming system.

Non-intrusiveness means that the original system does
not change and the new features are provided by a
supplementary software component working on the top
of the system. Correspondingly, all applications not
requiring those new features will only use the basic
original software and be developed and executed in the
same way both in the original and modified systems.

Increment means that the supplementary software
component does not have to be installed on all computers
to enable applications with the new features. It can be
done incrementally, step by step, and the new features
will be enabled in part, with the completeness dependent
on how many nodes participating in the execution of the
application have been upgraded with the supplementary
software component.

2.2 Design and Implementation of Software

Component

By using the non-intrusive and incremental approach,
we have developed such a supplementary software
component that enables direct communications in NetSolve.
It consists of three parts: Client API & Argument Parser,
Server Connector and Job Name Service (JNS).

Client API provides a uniform interface for the client to
make remote procedure calls. Despite the modification on
the remote side, the wrapper API allows the calls to be
made in the same manner. The only difference is in the
arguments that can be not only variables storing real data
but also handlers. Like in NetSolve, we parse the list of
arguments to construct the handler array. For each
argument, the relevant communication information is
generated. For each input argument, which is a variable
storing real data, the local IP address and the port number
are used as such communication information. If this input
argument is a handler, then a request is sent to the JNS to
get the IP address and the port number of the remote
resource and this information is used as communication
information for this handler. For each output argument,
which is a variable storing real data, the client wrapper
function will set up a socket to download output data from
computational servers. If this output argument is a handler,
the returned result information from computational servers
is sent to JNS and registered there.

Server Connector is on the server side, which is a proxy
program responsible for interacting with clients and other
Server Connectors to enable direct communications. The
Server Connector has two main functions. The first one is
to pass handler information between clients and servers.
This allows servers to know how to get the data without
bridge communication. The second function is the
extraction of the handlers’ information and using it to
download needed data through direct communication.
After all the needed data have been acquired; the Server
Connector calls the procedure to re-submit to the local host
to perform computations that the user exactly requested for.
There is no difference in the way the client and
computational servers download the result of the
computations. The Server Connector firstly returns the
result’s communication information to the client. Then it
sets up a socket waiting for the client or the server to
connect in to download the result of computations.

Job Name Service (JNS) is responsible for registration
of a procedure upon its invocation during RPC call. Other
procedures may send requests to the JNS to search for the
registered procedure. JNS is set up on the client side
automatically. During the execution of the application, it
contains all information about every handler. Only the
client has the permission to register or access a handler on
the JNS. There is no communication and interaction
between JNS and computational servers. Because JNS is
designed as a system-independent system on the client side,
it can be applied to different RPC-based systems and not
influenced by any fault or crash on the server side.

3 Application and Experiments

The software component presented in Section 2 has
been fully implemented. In order to use it, client
programmers have to install the wrapper API and Job
Name Service on the client side and then compile the
client program with the wrapper library. The wrapper
API allows the programmers to explicitly specify the
dataflow between remote tasks. They only need to
slightly modify their client code. The principle is easy:
the programmer just replaces the input/output arguments
with handlers as the input/output data. For example, let
two tasks, A and B, be performed on remote nodes. Let
the output of task A be the input of task B. Normally, the
corresponding NetSolve client code would look as
follows:

errno=netsl("A", inputA, outputA);
errno=netsl("B", outputA, inputB, outputB);

The extended API allows the programmer to explicitly
specify the optimal dataflow as follows:

errno=mynetsl("A", inputA, hdlA);
errno=mynetsl("B", hdlA, inputB, outputB);

Here, the output of A is represented by handler hdlA
specifying that it is stored on the remote server. In
addition, hdlA replaces outputA as a B’s input argument.
The use of hdlA tells B where it can get this input. The
other modification is the use of mynetsl instead of netsl.
This helps distinguish between our wrapper API and the
native NetSolve API.

On the server side, the procedure programmers should
do nothing to enable direct communications. They
develop their procedures as usual. The supplementary
software component has no effect on both existing
procedures and newly added procedures. To enable direct
communication control on the server side, the server
administrator needs to install a Server Connector. No re-
installation and re-compilation of either NetSolve itself
or registered NetSolve procedures are needed.

Next, we present three typical applications with
different communication structures and demonstrate the
performance improvement achieved due to the use the
software component for elimination of bridge

communications. Experiments are conducted using six
servers, interconnected via a 100 Mbit Ethernet network
with a switch enabling parallel communications. The
specifications of the servers are shown in Table 1.

3.1 Genetic Crossover in Protein Tertiary

Structure Prediction System

For progress of the bioinformatics, the protein tertiary
structure prediction systems are proposed, which is mainly
performed by the protein energy minimization. However, a
large-scale computing environment would be valuable for
this system. In the system, Parallel Simulated Annealing
using Genetic Crossover (PSA/GAc) [7] is a minimization
engine. To use the Grid resource, NetSolve is a basic tool
and implementations are already prepared [8] to improve
the computing performance. Their approach reduces critical
overhead due to large communication delay over the
Internet by using an asynchronous Crossover model.
However, bridge communications still exist, and these
unnecessary communications can be eliminated by using
our software component. Figure 1(a) shows both
synchronous and asynchronous Master-slave models for
Genetic crossover in the protein tertiary structure prediction
system.

By enabling direct communication using our software,
Genetic Crossovers are executed between servers directly.
The original approach depends on the client side to do
Genetic Crossovers. Direct communication is enabled
between Server 1 and Server 2, and between Server 3 and
Server 4. Simulated Annealing is executed on each server
separately. So the exchanging data is not returned back to
the client while direct communications are enabled. This
reduces communication links between the client and servers.
Figure 1(b) depicts how bridge communications between
the client and NetSolve servers are replaced by direct
communications between NetSolve servers while
performing Genetic crossovers. Eight communication
bridges have been eliminated and 4 direct communications
have been established. Thus, the total number of
communication links is reduced from eight to four by using
our software component.

Table 1. Specifications of the six servers

Architecture CPU MHz Main Memory (KB) Cache (KB)
Linux 2.6.9-1.667smp 3200 1038412 1024

Linux 2.4.21-27.0.2.Elsmp 1099 513960 1024
Linux 2.6.11-1.1369_FC4 800 524288 1024
Linux 2.6.11-1.1369_FC4 800 524288 1024
Linux 2.6.11-1.1369_FC4 800 524288 1024
Linux 2.6.11-1.1369_FC4 800 524288 1024

(a) (b)

Figure 1. (a) Asynchronous and synchronous models for PSA/GAc. (b) Enabling direct communications
between NetSolve servers while performing Genetic crossovers.

Table 2. B – Bridge communication time (in seconds); D – Direct communication time (in seconds).

Trail 1 Trail 2 Trail 3 Average Protein
Size (kb) B D B D B D B D Speedup

1000 50 30 51 30 53 31 52 30 45%
2000 106 62 108 63 108 62 107 62 42%
3000 175 98 170 100 178 105 174 101 42%

Table 2 shows experimental results of three trails with

different sizes of protein. It gives communications times
of the original NetSolve application using bridge
communications and the modified application emplyong
direct communications. The average communication
speedup due to elimination of bridge communications is
around 43%.

3.2 Image processing using sequential

algorithms

So far, image and video processing software has been
predominantly written for conventional (sequential)
desktop computers and embedded digital signal
processors (DSPs), which implement a wide range of
operations [9] such as smoothing, sharpening, noise
reduction, etc. These applications usually have a
tremendous potential for parallelism but unfortunately,
existing techniques are not adequate for compiling
sequential multimedia programs to such parallel
architectures. Therefore, some researchers focus on
extracting the essential computations and data
dependency to ensure that each computation has the data
it requires [10, 11]. Our research aims to optimize
communications of data transaction for sequential
multimedia operations. The method is to enable direct
communications for sequential image processing by
using our supplementary software component. For
experiments, we chose an example, which is Simple
Linear Combination Filtering [12]. Linear combination

filtering functions are taken from Image Processing Library
98 [13].

For image enhancement, linear combination filtering can
blur smooth parts of an image while sharpening areas that
contain detail. The reason for this combination is that
blurring reduces noise, but degrades edges and image detail
while sharpening enhances edges and detail but makes
noise more visible. Figure 2 displays the example pictures
of simple linear combination filtering. Figure 3 depicts how
bridge communications between the client and NetSolve
servers are replaced by direct communications between
NetSolve servers while performing linear combination
filtering functions in this case.

To eliminate un-necessary communications between the
client and the servers while performing linear combination
filtering, we select two servers to perform linear
combination filtering functions in parallel:

Server 1:
- Laplacian of image (a);
- Spatially invariant high-pass filtering, sum of image (a)
and image (b);

Server 2:
 - Mask image, Sobel gradient of image (a) smoothed by a
5x5 box filter;
- Product of image (b) and image (d);
- Space-variant enhancement, sum of image (a) and image
(e);

Direct communications are enabled between the servers
by transferring image (b) from Server 1 to Server 2 directly.

Fig. 2 Fig.3

Figure 2. (a) Input image; (b) Laplacian of (a); (c) Spatially invariant high-pass filtering [sum of (a) and
(b)]; (d) Mask image [Sobel gradient of (a) smoothed by a 5x5 box filter]; (e) Product of (b) and (d); (f)
Space-variant enhancement [sum of (a) and (e)].
Figure 3. Enabling direct communications between NetSolve servers while performing linear
combination filtering.

Table 3. B – Bridge communication time (in seconds); D – Direct communication time (in seconds)

Trail 1 Trail 2 Trail 3 Average Picture
Size (kb) B D B D B D B D Speedup

1000 60 29 60 29 61 29 60 29 51%
2000 125 61 122 62 125 63 124 62 50%
3000 195 97 209 98 203 98 200 98 51%

Those images, which will be used as input for other
image processing functions, will NOT be returned to
client. This reduces bridge communications between
client and servers. We can see that in Figure 3
communication links are reduced from ten to five by
using our software component. Only necessary images
(a), (c) and (f) will be on the client side.

We experimented with the linear combination filtering

application for different size pictures. Table 3 shows
experimental results of three trails with different sizes of
picture. The results show that the average communication
speedup is around 50%. This is due to the fact that six
communication bridges were eliminated and one direct
communication was established between two servers.

3.3 Matrix chain product problem in general

scientific computations

Given N matrices A1, A2, …, An of size N × N, the
matrix chain product problem is to compute A1 ×
A2× …× An. The matrix chain product is an important
computational kernel that is used in computing the
characteristic polynomial, determinant, rank, and inverse

of a matrix, in solving graph theory problems, and in
general scientific computations [14, 15].

Figure 4 shows how the product of A1, A2, …, A8 can
be obtained by using the standard binary tree method. The
leaves are input matrices A1, A2, …, A8, and the root task
of the tree computes the final result A12345678. Figure 5
depicts how bridge communications between the client and
NetSolve servers are replaced by direct communications
between NetSolve servers for matrix chain product
computation, where six communication bridges were
eliminated among the total fourteen.

In the experiments, we selected four servers to perform
matrix chain product computation in parallel:

Server 1: - to perform A1 × A2;
Server 2: - to perform A3 × A4, A12 × A34;
Server 3: - to perform A5 × A6;
Server 4: - to perform A7 × A8, A56 × A78, A1234 ×
A5678;

Direct communications are enabled between these four
servers by directly transferring output A12 from Server 1 to
Server 2, output A56 from Server 3 to Server 4, output
A1234 from Server 2 to Server 4. These output matrices will
NOT be returned to the client. This reduces bridge

Figure 4. Standard binary tree method used for matrix chain product problem.

(a) (b)

Figure 5. Enabling direct communications between NetSolve servers for matrix chain product
computation. (a) bridge communication (b) direct communication.

Table 4. B – Bridge communication time (in seconds); D – Direct communication time (in seconds)

Trail 1 Trail 2 Trail 3 Average Matrix
Size B D B D B D B D Speedup

1000 102 66 101 67 103 67 102 67 38%
2000 210 132 220 136 212 138 214 135 36%
3000 335 220 315 226 310 216 320 221 31%

communications between the client and the servers.
Communication links are reduced from fourteen to eight.
Only the result matrix A12345678 is returned to the
client.

We experimented with different matrix sizes. Table 4
shows the experimental results. The average
communication speedup is around 35%.

3.4 Other Experiments

One feature of our approach is increment. It means
that the supplementary software component does not
have to be installed on all computers to enable
applications with direct communications. In this case,
direct communications can only happen between those

computing nodes, where our supplementary software
component is installed. Non-enabled computing nodes can
only communicate with the client. The speedup of a
NetSolve application due to the use of our software
component depends on how large is the fraction of
computing nodes with enabled direct communications in
the overall set of computing nodes used by the application.

In our next experiment, we use six computing servers
for computation. We manually changed the number of
computing nodes enabled with direct communications.
Figure 6(a) shows that the average communication speedup
for our three applications is growing linearly while the
number of computing servers with direct communication
enabled increases from 0 to 6.

(a) (b)

Fig. 6. (a) Speedup for the three applications increases linearly with the increase of the number of
computing servers with direct communication enabled from 0 to six (‘o’ – the matrix chain product; ‘.’ –
Genetic crossover; ‘*’ – Image processing using sequential algorithms). (b) Speedups for the matrix
chain product. (‘*’ – homogeneous network; ‘o’ – heterogeneous network).

If communication links connecting remote computers

are much faster than communication links connecting the
remote computers and the client computer, the speedup
due to elimination of bridge communications will be
much higher. In our next experiment, we manually made
all bridge communications to be performed at the speed
of 10 Mbit per second. For direct communications
between remote servers, we still used 100 Mbit Ethernet
interconnecting network. Figure 6(b) presents the
average communication speedup of performing matrix
chain computations with direct communications on both
homogeneous and heterogeneous networks. The
experimental speedup for the heterogeneous network is
around 54% when the ratio of eliminated bridge
communications is 2/9. Thus, much higher speedup can
be achieved in heterogeneous communication networks,
which are typical for real-life Grid environments, than in
artificially designed homogeneous ones.

4 Related Works

To enable direct communications, NetSolve
introduces an original mechanism called Request
Sequencing [16]. The mechanism imposes a number of
restrictions on the sequence of remotely called tasks, the
most restrictive of which is that all the tasks have to be
performed on the same computing node. Another effort
to reduce the overhead of bridge communications in
NetSolve is the Logistical Computing and
Internetworking (LoCI) [17]. LoCI provides facility to
schedule the data storage at a place ‘close’ to the receiver.
The mechanism is mainly aimed at replicating data in
order to keep them even in the case of crash of some of
the computers. Although it is sufficient for enabling

direct communications, the goal of building a complete
network storage system makes LoCI over-heavy for
enabling just this particular feature.

The REDGRID project [18] is closest to our approach
sharing the similar idea behind its design. The main
difference is that REDGRID is built into NetSolve and
difficult to be migrated to other GridRPC-based systems.
The REDGRID project uses an intrusive and non-
incremental approach and requires re-compilation and re-
installation of the modified NetSolve on all involved
computing nodes to enable direct communication. A certain
amount of work is needed to port REDGRID to other
GridRPC-based systems. Another related project is
SmartNetSolve [19], an extension of NetSolve aimed at
higher performance of Grid applications, which also
enables direct communications but in an intrusive way.

5 Conclusion

In this paper, we have presented the implementation of a
software component enabling direct communications in
NetSolve in a non-intrusive and incremental way. We have
also presented the results of experiments with three typical
real-world applications having different communication
structures. The experimental results have shown that the
performance of NetSolve applications can be significantly
and easily improved by using our software component. The
software component, the user’s guide and the sample
applications are freely available at http://hcl.ucd.ie. Future
work has been planned to test this software in a larger Grid
environment such as Grid Ireland [20].
6 Acknowledgements

This work was supported by the Science Foundation
Ireland.

References

[1] http://icl.cs.utkedu/netsolve/
[2] H.Casanova, J.Dongarra. “NetSolve: A Network Server for

Solving Computational Science Problems”, The
International Journal of Supercomputer Applications and
High Performance Computing, 11(3):212-223, 1997.

[3] D. Arnold, H. Casanova, J. Dongarra. “Innovation of the
NetSolve Grid Computing System”, Concurrency: Practice
and Experience, 14(13-15):1457-1479, 2002.

[4] Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T.,
Matsuoka, S. “Ninf-G: A reference implementation of
RPC-based programming middleware for Grid computing”.
Journal of Grid Computing, 1(1): 41-51, 2003.

[5] A. Lastovetsky, X. Zuo, P. Zhao. “A Non-intrusive and
Incremental Approach to Enabling Direct Communications
in RPC-Based Grid Programming Systems”. Proc, of the
2006 Int’l Conference on Computational Science (ICCS
2006), pp 1008-1011, IEEE Computer Society, 2006.

[6] Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee,
C., Casanova, H. “Overview of GridRPC: A Remote
Procedure Call API for Grid Computing”, Proc. of the
Third Int’l Workshop on Grid Computing, pp.274–278,
2002.

[7] Hiroyasu T., Miki M., Ogura M, "Parallel Simulated
Annealing using Genetic Crossover", Proc. of the IASTED
Int’l Conference on Parallel and Distributed Computing
Systems, pp.145-150, 2000.

[8] Y. Tanimura, K. Aoi, T. Hiroyasu, M. Miki, Y.
Okamamoto and J. Dongarra. “Implementation of Protein
Tertiary Structure Prediction System with NetSolve,” Proc,
of the 7th Int’l Conference on High Performance
Computing and Grid in Asia Pacific Region, pp. 320–327,
2004.

[9] J. Worley, T. Robey, K. Shuldberg. “Image Processing
Operations”, Khoral Research, Inc., April 28, 1998.

[10] L. Baumstark Jr., L. Wills. “Exposing data-level
parallelism in sequential image processing algorithms”,
Proc. Of the 9th Working Conference on Reverse
Engineering, pp. 245- 54, 2002.

[11] L. Cordella, A. d'Acierno, C. De Stefano, M. Vento.
“Mapping schemes for sequential image processing
algorithms”, Proc. of CAMP'95, pp. 184 – 189, 1995.

[12] http://www.adires.com/05/Project/LinCom.shtml
[13] http://www.mip.sdu.dk/ipl98/
[14] K. Li, "Fast and Scalable Parallel Algorithms for Matrix

Chain Product and Matrix Powers on Reconfigurable
Pipelined Optical Buses", Journal of Information Science
and Engineering 18, 713-727, 2002.

[15] K. Li, "Fast and Scalable Parallel Algorithms for Matrix
Chain Product and Matrix Powers on Distributed Memory
Systems," Procs. of the 15th International Parallel and
Distributed Processing Symposium (IPDPS'01), 2001.

[16] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M.
Miller, K. Seymour, K. Sagi, Z. Shi, S. Vadhiyar. “Users’
Guide to NetSolve V1.4.1”. Innovative Computing Dept.
Technical Report ICL-UT-02-05, University of Tennessee,
Knoxville, 2002.

[17] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J.
Dongarra, T. Moore, G. Obertelli, J. Plank, M. Swany, S.
Vadhiyar, and R. Wolski. “Middleware for the use of storage
in communication”, Parallel Computing 28(12), December
2002.

[18] F. Desprez, E. Jeannot. “Improving the gridrpc model with
data persistence and redistribution”, Proc of ISPDC 2004/
HeteroPar’04, pp. 193–200, IEEE Computer Society, 2004.

[19] T. Brady, E. Konstantinov, A. Lastovetsky. “SmartNetSolve:
High Level Programming System for High Performance
Grid Computing”, Proc. of the 20th International Parallel and
Distributed Symposium (IPDPS 2006), IEEE Computer
Society, 2006

[20] http://www.grid.ie/

