
Design and Implementation of a Parallel Heterogeneous Algorithm for 
Hyperspectral Image Analysis Using HeteroMPI 

 
 

David Valencia1, Alexey Lastovetsky2, Antonio Plaza1 
 

1Department of Computer Science 
University of Extremadura 

E-10071 Caceres, Spain 
{davaleco, aplaza}@unex.es 

2School of Computer Science & Informatics 
University College Dublin, 
Belfield, Dublin 4, Ireland 
alexey.lastovetsky@ucd.ie 

 
 

Abstract 
 

The development of efficient techniques for 
transforming the massive volume of remotely sensed 
hyperspectral data collected on a daily basis into 
scientific understanding is critical for space-based 
Earth science and planetary exploration. Although 
most available parallel processing strategies for 
hyperspectral image analysis assume homogeneity in 
the computing platform, heterogeneous networks of 
computers represent a promising cost-effective solution 
expected to play a major role in many on-going and 
planned remote sensing missions. To address the need 
for cost-effective parallel hyperspectral imaging 
algorithms, this paper develops an innovative 
heterogeneous parallel algorithm for spatial/spectral 
morphological analysis of hyperspectral image data. 
The algorithm has been developed using 
Heterogeneous MPI (HeteroMPI), an extension of MPI 
for programming high-performance computations on 
heterogeneous networks of computers. Experimental 
results are presented and discussed in the context of a 
realistic application, based on hyperspectral data 
collected by NASA’s Jet Propulsion Laboratory. 
 
1. Introduction 
 

Hyperspectral imaging identifies materials and 
objects in the air, land and water on the basis of the 
unique reflectance patterns that result from the 
interaction of solar energy with the molecular structure 
of the material [1]. Most applications of this 
technology require timely responses for swift decisions 
which depend upon high computing performance of 
algorithm analysis. Examples include target detection 
for military and defense/security deployment, urban 

planning and management, risk/hazard prevention and 
response including wild-land fire tracking, biological 
threat detection, monitoring of oil spills and other types 
of chemical contamination. The concept of 
hyperspectral imaging was introduced when NASA’s 
Jet Propulsion Laboratory developed the Airborne 
Visible-Infrared Imaging Spectrometer (AVIRIS) 
system, which covers the wavelength region from 0.4 
to 2.5 µm using 224 spectral channels (see Fig. 1). This 
imager is able to continuously produce snapshot image 
cubes of tens or even hundreds of kilometers long, each 
of them with hundreds of MB in size, and this 
explosion in the amount of collected information has 
rapidly introduced new processing challenges [2].  

Although most dedicated parallel machines for 
remote sensing data analysis employed by NASA and 
other institutions during the last decade have been 
chiefly homogeneous in nature [3], computing on 
heterogeneous networks of computers (HNOCs) has 
soon become a viable alternative to expensive parallel 
computing systems [4]. These networks enable the use 
of existing resources and provide incremental 
scalability of hardware components with performance 
isolation. At the same time, HNOCs can achieve high 
communication speed at low cost, using switch-based 
networks such as ATMs, as well as distributed service 
and support, especially for large file systems.  

Despite the growing interest in hyperspectral 
imaging research, only a few consolidated parallel 
techniques exist in the open literature. However, with 
the recent explosion in the amount and dimensionality 
of hyperspectral data, parallel processing is expected to 
become a requirement in most ongoing and planned 
remote sensing missions. As a result, this paper takes a 
necessary first step toward the development of parallel 
hyperspectral imaging techniques on HNOCs.  
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Fig. 1. The concept of hyperspectral imaging using NASA/Jet Propulsion Laboratory’s AVIRIS system. 

 
Although the standard MPI [5] has been widely used 

to implement parallel algorithms for HNOCs in the 
past, it does not provide specific means to address 
some additional challenges posed by these networks, 
including the distribution of computations and 
communications unevenly, taking into account the 
computing power of the heterogeneous processors and 
the bandwidth of the communications links. To achieve 
the above goals, HeteroMPI was developed as an 
extension of MPI which allows the programmer to 
describe the performance model of a parallel algorithm 
in generic fashion [6]. This is a highly desirable feature 
in hyperspectral imaging applications, in which the 
main features of the underlying parallel algorithm have 
an essential impact on execution performance. 

The paper is structured as follows. Section 2 
outlines the main features of HeteroMPI. Section 3 
develops a HeteroMPI-based parallel algorithm for 
joint spatial/spectral analysis of hyperspectral imagery. 
Section 4 assesses the performance of the algorithm by 
analyzing its accuracy and parallel properties on a 
heterogeneous cluster made up of 15 processors. 
Finally, section 5 concludes with some remarks and 
hints at plausible future research. 
 
2. Outline of HeteroMPI 
 

The standard MPI specification provides 
communication and group constructors which allow the 
application programmer to create a group of processes 
explicitly chosen from an ordered set [5]. This 
approach is feasible when the application is run on a 
homogeneous distributed-memory computer system. 

However, selection of a group for execution on 
HNOCs must take into account the computing power of 
the heterogeneous processors and the speed/bandwidth 
of communication links between each processor pair 
[6]. This feature is of particular importance in 
applications dominated by large data volumes such as 
hyperspectral image analysis, but is also quite difficult 
to accomplish from the viewpoint of the programmer.  

The main idea of HeteroMPI is to automate and 
optimize the selection of a group of processes that 
executes a heterogeneous algorithm faster than any 
other possible group. For this purpose, HeteroMPI 
provides a small and dedicated definition language for 
the specification of such performance model. This 
language is a subset of mpC, defined in [7], and allows 
the programmer to explicitly define an abstract 
network and distribute data, computations and 
communications over the network. Then, HeteroMPI 
automatically maps (at run time) the abstract network 
to a real execution network by dynamically adapting 
the performance model to specific network parameters 
such as the computing power of processors or the 
capacities of communication links in the real 
environment. By means of a compiler, the description 
of a performance model is translated into a set of 
functions that make up an algorithm-specific part of 
HeteroMPI runtime system. Below, we provide a brief 
outline of the most important HeteroMPI functions 
which have been used to implement the proposed 
parallel algorithm. Detailed information about these 
and other HeteroMPI functions is available in [6].  

A typical HeteroMPI application starts with the 
initialization of the runtime system using the operation: 
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HeteroMPI_Init(int argc, char **argv) 
 

This routine must be called once by all the processes 
running in the application. After the initialization, 
application programmers can call any other HeteroMPI 
routines. For instance, the following function is used to 
create a group that will execute the heterogeneous 
algorithm faster than any other group of processes: 
 

HeteroMPI_Group_create(HeteroMPI_Group *gid, 
 const HeteroMPI_Model *perf_model, 
 const void *model_parameters, 
 int param_count) 
 

This function returns a handle gid to the group of MPI 
processes. Here, perf_model encapsulates the features 
of the performance model; model_parameters are the 
actual parameters of the performance model; and 
param_count is the total number of parameters. After 
the execution of this function, the performances 
opt_speeds can be obtained by using the HeteroMPI 
group accessor function shown below: 
 

HeteroMPI_Group_performances(&gid, opt_speeds) 
 

It is important to emphasize at this point that the 
accuracy of the performance model depends heavily on 
the accuracy of the estimation of the actual speeds of 
the processors. For that purpose, HeteroMPI provides a 
function to dynamically update the estimation of 
processor speeds at runtime: 
 

HeteroMPI_Recon(HeteroMPI_Benchmarkfunction b, 
 const void *input_p, int num_of_parameters, 
 void *output_p) 
 

where all the processors execute the benchmark 
function b in parallel. This is a collective operation and 
must be called by all the processes in the group 
associated with a predefined communication universe 
HMPI_COMM_WORLD of HeteroMPI. A similar 
comment applies to the group destructor operation 
provided by HeteroMPI: 
 

HeteroMPI_Group_free(HeteroMPI_Group *gid)  
 

where gid is the HeteroMPI handle to the group of MPI 
processes. Again, this is a collective operation that 
must be called by all members of this group. In order to 
finalize the runtime system, the following operation is 
used: 
 

HeteroMPI_Finalize(int exitcode) 
 
3. Parallel hyperspectral algorithm 
 

This section describes a parallel heterogeneous 
algorithm for automated morphological analysis of 
hyperspectral image data. Mathematical morphology is 
a standard image processing technique that provides a 
remarkable framework to achieve the desired 

integration of spatial and spectral responses [8]. First, 
we describe the standard morphological algorithm. 
Then, we outline important aspects about its parallel 
implementation such as data partitioning and 
communication issues. Finally, we provide a 
HeteroMPI-based implementation for HNOCs. 
Performance data are given in the following section. 
 
3.1. Morphological algorithm 
 

Morphological analysis has been successfully used 
in previous research to analyze hyperspectral data sets 
[8]. The morphological algorithm selected in this work 
as a representative case study takes into account both 
the spatial and spectral information of the data in 
simultaneous fashion. Such spatial/spectral, hybrid 
techniques represent the most advanced generation of 
hyperspectral imaging algorithms currently available.  

Before describing our proposed approach, let us 
denote by f  a hyperspectral data set defined on an N-
dimensional (N-D) space, where N is the number of 
channels or spectral bands. The main idea of the 
algorithm is to impose an ordering relation in terms of 
spectral purity in the set of pixel vectors lying within a 
spatial search window or structuring element (SE) 
around each image pixel vector [8]. To do so, we first 
define a cumulative distance between one particular 
pixel ( )yx,f , where ( )yx,f  denotes an N-D vector at 
discrete spatial coordinates ( ) 2, Zyx ∈ , and all the pixel 
vectors in the spatial neighborhood given by a SE 
denoted by B  ( B -neighborhood) as follows: 

 

[ ] [ ]∑ ∑= i jB jiyxyxD ),( ),,(SAM),( fff , 

where ),( ji  are the spatial coordinates in the B -
neighborhood and SAM is the spectral angle mapper: 

 

( ) ( )),(),(),(),(cos),( ),,(SAM 1 jiyxjiyxjiyx ffffff ⋅= −  
Based on the distance above, we calculate the 

extended morphological erosion of f  by B  [8] for 
each pixel in the input data scene as follows: 

 

( ) ( ) ( )[ ]{ }jyixDyxB Bji ++=Θ ,minarg),( , f f

 
 

where the argmin operator selects the pixel vector is 
most highly similar, spectrally, to all the other pixels in 
the B -neighborhood.  

On the other hand, the extended morphological 
dilation of f  by B  [8] is calculated as follows: 

 

( ) ( ) ( )[ ]{ }jyixDyxB Bji ++=⊕ ,maxarg),( , f f

 
 

With the above definitions in mind, we provide below 
an unsupervised classification algorithm for 
hyperspectral imagery based on extended 
morphological operations: 
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Automated Morphological Classification (AMC) 
Inputs: Data cube: f ; morphological SE: B ; Number 
of classes: c; Number of iterations: maxI .  
Output: 2-D matrix which contains a classification 
label for each pixel vector ( )yx,f  in the input image. 
1. Set 1=i  and initialize a morphological eccentricity 

index score ( ) 0,MEI =yx  for each pixel. 
2. Move B  through all the pixels of f , defining a 

local spatial search area around each ( )yx,f , and 
calculate the maximum and the minimum pixels at 
each B -neighborhood using dilation and erosion, 
respectively. Update the MEI at each pixel using 
the SAM between the maximum and the minimum. 

3. Set 1+= ii . If maxIi =  then go to step 4. 
Otherwise, replace f  by its dilation using B , and 
go to step 2. 

4. Select the set of c pixel vectors in f  with higher 
associated score in the resulting MEI image and 
estimate the sub-pixel abundance ( )yxi ,α  of those 
pixels at ( )yx,f  using the standard linear mixture 
model described in [1]. 

5. Obtain a classification label for each pixel ( )yx,f  
by assigning it to the class with the highest sub-
pixel fractional abundance score in that pixel. This 
is done by comparing all estimated abundance 
fractions ( ) ( ) ( ){ }yxyxyx c , ..., ,, ,, 21 ααα  and finding 
the one with the maximum value, say ( )yxi ,*α , 

with ( ){ }






=

≤≤
yxi i

ci
,maxarg*

1
α . 

As shown in previous work [2], computational 
complexity is ( )NIppO B ××× maxf , where fp  is the 
number of pixels in f  and Bp  is the number of pixels 
in B . However, an adequate parallelization strategy 
can greatly enhance the computational performance of 
the proposed algorithm, as will be outlined in the 
following subsection. 
 
3.2. Data partitioning 
 

Two types of parallelism can be exploited in 
hyperspectral image analysis algorithms: spatial-
domain parallelism and spectral-domain parallelism. 
Spatial-domain parallelism subdivides the image into 
multiple blocks made up of entire pixel vectors, and 
assigns one or more blocks to each processor. Spectral-
domain parallelism subdivides the hyperspectral data 
into blocks made up of contiguous spectral bands (sub-
volumes), and assigns one or more sub-volumes to each 
processor. The latter approach breaks the spectral 
identity of the data because each pixel vector is split 

amongst several processing units, and operations such 
as morphological erosion and dilation would need to 
originate from several processors, thus requiring 
intensive inter-processor communication. In this work, 
we use spatial-domain parallelism in order to preserve 
the entire spectral information of each image pixel. 
This is a natural approach for low-level image 
processing, as many operations require the same 
function to be applied to a small set of elements around 
each data element present in the image data structure. 

With the above ideas in mind, the main goal of our 
parallelization framework for the AMC algorithm is to 
use a low-level image processing-oriented approach, in 
which each heterogeneous processor will be able to 
process a spatial/spectral data partition locally. In 
previous work, we have defined the concept of 
parallelizable spatial/spectral partition (PSSP) as a 
hyperspectral data partition that can be processed 
independently without communication [2]. Here, we 
use the concept of PSSP above to define a virtual 
processor grid organization in which processors apply 
the AMC algorithm locally to each partition, thus 
producing a set of local classification outputs which are 
then combined to form a global classification output.  

 

 
Fig. 2. Overlapping scatter to avoid inter-processor 
communication in the processing of two data partitions. 
 

In order to adequately exploit the concept of PSSP, 
a function to update overlapping parts of partial data 
structures has been implemented in order to alleviate 
inter-processor communication when the SE 
computation is split amongst several different 
processors. In order to eliminate such overhead, a 
scratch border is placed around each PSSP in the 
virtual grid to reduce inter-processor communication 
(see Fig. 2, which gives a simplified view using two 
adjacent, homogeneous partitions). To avoid 
introducing a significant amount of redundant 
information resulting from scratch borders, we limit the 
B -neighborhood function to a 3x3-pixel structuring 
element, and increase the number of algorithm 
iterations ( maxI ) to obtain a better spatial/spectral 
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description of features in the hyperspectral data [8]. 
The main challenge of this approach is to find an 
optimal mapping of PSSPs on the virtual grid of 
processors, i.e., the size of the resulting partitions 
(including scratch borders) must be in accordance with 
the computing power of heterogeneous processors. 
This is accomplished through the definition of a 
performance model, as explained below. 
 

3.3. HeteroMPI-based parallel implementation 
 

In order to implement the parallel morphological 
algorithm outlined above using HeteroMPI, the first 
step is to define a performance model able to capture 
the data partitioning and communication framework 
described in the previous subsection. Fig. 3 shows the 
most important fragments of the mpC-based code that 
describes the adopted performance model, which has 6 
input parameters. Parameter m specifies the number 
samples of the data cube, while parameter n specifies 
the number of lines. Parameters se_size and iter 
respectively denote the size of the SE and the number 
of iterations executed by the algorithm. Finally, 
parameters p and q indicate the dimensions of the 
computational grid (in columns and rows, 
respectively), which are used to map the spatial 
coordinates of the individual processors within the 
processor grid layout. Finally, partition_size is an 
array that indicates the size of the local PSSPs 
(calculated automatically using the computing power of 
the heterogeneous processors). Fig. 3 shows different 
communication links, defined based on the spatial 
localization of each processor within the grid. It should 
be noted that some of the definitions have been 
removed from Fig. 3 for simplicity. However, some of 
the most representative sections are included. Keyword 
algorithmalgorithmalgorithmalgorithm begins the specification of the performance 
model of an algorithm followed by its name and a list 
of formal parameters. The coordcoordcoordcoord section defines the 
mapping of individual abstract processors performing 
the algorithm onto the grid layout using variables I I I I and 
JJJJ. The nodenodenodenode primitive defines the amount of 
computations that will be made by every processor, 
which depends on its spatial coordinates in the grid as 
indicated by IIII and JJJJ and the computing power of the 
individual processors as indicated by partition_sizepartition_sizepartition_sizepartition_size. 
Finally, the parentparentparentparent directive indicates the spatial 
localization of the master processor in the grid. An 
additional linklinklinklink section is used to define the individual 
communications that every processor carries out based 
on its position in the grid. Further information on 
performance model definition is available in [7]. 

Once a performance model for the parallel 
algorithm has been defined, implementation using the 

standard HeteroMPI in Section 2 is quite 
straightforward [6]. Fig. 4 shows the most interesting 
fragments of the HeteroMPI-based code of our parallel 
implementation. The HeteroMPI runtime system is 
initialized using operation HeteroMPI_Init. Then, 
operation HeteroMPI_Recon updates the estimation 
of performances of processors. This is followed by the 
creation of a group of processes using operation 
HeteroMPI_Group_create. The members of this 
group then perform the computations of the 
heterogeneous parallel algorithm using standard MPI 
mechanisms. This is followed by freeing the group 
using operation HeteroMPI_Group_free, and the 
finalization of the HeteroMPI runtime system using 
operation HeteroMPI_Finalize. In this code, the 
benchmark function used to measure the processing 
power of the processors in HeteroMPI_Recon is 
essential, mainly because a poor estimation of the 
power and memory capacity of processors may result in 
load balancing problems. This issue will be addressed 
via experiments in the following section. 
 
4. Experiments 
 

This section evaluates the proposed parallel 
algorithm. First, a parallel heterogeneous cluster is 
described. Then, we briefly describe a real 
hyperspectral data set collected by the AVIRIS system 
that will be used in experiments. The section ends with 
a detailed evaluation of the accuracy and parallel 
performance of the proposed parallel algorithm. 
 
4.1. Parallel heterogeneous cluster 
 

A heterogeneous network of 11 Linux/SunOS 
workstations and a total of 15 processors at University 
College Dublin (UCD) was used in experiments. Table 
1 shows the specifications of the heterogeneous 
processors, including their relative speeds. The 
processors in Table 1 are interconnected via 100 Mbit 
Ethernet communication network with a switch 
enabling parallel communications among the 
processors. Although this is a simple configuration, it is 
also a quite typical and realistic one as well. We 
measure the relative speeds in Table 1 with the core 
computation of the algorithm (processing a 3x3-pixel 
neighborhood using morphological operations).  
 
4.2. Hyperspectral image data 
 

Fig. 5 (left) shows the Indian Pines AVIRIS 
hyperspectral data set considered in experiments. It 
consists of 614 samples, 512 lines and 224 spectral 
bands (more than 140 MB). 
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algorithm hpamc_rend(int m, int n, int se_size, int iter, int p, int q, int partition_size[p*q]) { 
coord I = p, J = q; 
node { I>=0 && J>=0: benchmark*((partition_size[I*q+J]*iter); }; 
parent[0,0];  
} 
 

 

Fig. 3. The core of the performance model for the parallel hyperspectral imaging algorithm defined in mpC. 
 

main(int int int int argc, char *char *char *char *argv[]){ 
HeteroMPI_InitHeteroMPI_InitHeteroMPI_InitHeteroMPI_Init(&argc,&argv); 
if if if if (HeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_member(HMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUP)){ 

   HeteroMPI_ReconHeteroMPI_ReconHeteroMPI_ReconHeteroMPI_Recon(benchmark_function, dims, 15, &output_p);  
} 
HeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_create(&gid, &MPC_NetType_hpamc_rend, modelp, num_param); 
if (HeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_free()){ 

  HeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_create(&gid, &MPC_NetType_hpamc_rend, NULL, 0); 
} 
if (HeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_free()){ 

  HeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_Finalize(0); 
} 
if (HeteroMPI_Is_membeHeteroMPI_Is_membeHeteroMPI_Is_membeHeteroMPI_Is_memberrrr(&gid)){ 

     HeteroMPI_Group_performancesHeteroMPI_Group_performancesHeteroMPI_Group_performancesHeteroMPI_Group_performances(&gid, speeds); 
Read_image(name,image,lin,col,bands,data_type,init); 
for for for for (i=imax; i>1; i=i--){ 

AMC_algorithm(image,lin,col,bands,sizeofB,res); 
    } 

if (HeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_member(&gid)){ 
free(image); 

}   
    HeteroMPI_GHeteroMPI_GHeteroMPI_GHeteroMPI_Group_freeroup_freeroup_freeroup_free(&gid); 
    HeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_Finalize(0); 

 } 
} 

 

Fig. 4. The core of the HeteroMPI program implementing the parallel hyperspectral analysis algorithm. 
 

 

Table 1. Specifications of heterogeneous processors. 
 

 

# Name 
(Processors) 

 

Architecture CPU 
(MHz) 

Mem. 
(MB) 

Cache
(KB) 

Relative 
speed 

0,1 
2,3 
4,5 
6,7 

Pg1cluster01(2) 
Pg1cluster02(2) 
Pg1cluster03(2) 
Pg1cluster04(2) 

Linux 2.4.18- 
10smp 
Intel(R) 

XEON(TM) 

 
 

1977 

 
 

1024 

 
 

512 

 
 

70 

8 
9 

10 
11 
12 
13 
14 

csultra01(1) 
csultra02(1) 
csultra03(1) 
csultra05(1) 
csultra06(1) 
csultra07(1) 
csultra08(1) 

 
 

SunOS 5.8 
sun4u sparc 

SUNW, 
Ultra-5_10 

 
 
 

440 

 
 
 

512 

 
 
 

2048 

 
 
 

30 

 
As shown by Fig. 5 (left), the scene represents a 

very challenging classification problem. Extensive 
ground-truth information is available for the scene, as 
shown by Fig. 5 (right). This map is composed of 30 
land cover classes that will be used to validate the 

classification accuracy of our parallel morphological 
classification algorithm. This scene is regarded as a 
universal benchmark to validate hyperspectral image 
analysis algorithms. 
 
4.3. Assessment of the parallel algorithm 
 

The parallel algorithm was applied to the AVIRIS 
Indian Pines scene using a fixed, 3x3-pixel SE and 
seven different values for parameter maxI , which 
defines the number of iterations executed by the 
algorithm (ranging from 1 to 7 in experiments). Table 2 
shows the classification accuracies (percentage of 
correctly classified pixels) obtained using the seven 
considered numbers of iterations, along with the single-
processor execution times (in minutes) measured in a 
Linux workstation with Intel XEON processor at 2 
GHz, 1 GB of RAM and 512 KB of cache.  
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Fig. 5. (Left) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features 
at Indian Pines, Indiana. (Right) Ground-truth map with 30 mutually exclusive land-cover classes. 
 

 
Table 2. Classification accuracies and single-processor 
times for the morphological algorithm. 
 

maxI  
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
Accuracy (%) 75.23 78.43 81.94 83.99 87.95 88.79 90.02
Time (mins) 9.54 19.56 27.82 37.06 46.91 54.68 64.79

 
As shown by Table 2, the morphological algorithm 

was able to achieve very high classification accuracies, 
especially for 7=maxI  (above 90%), but the measured 
processing times were extremely high and generally 
unacceptable in remote sensing applications. To 
investigate the parallel properties of the considered 
HeteroMPI-based algorithm, it was implemented on the 
heterogeneous cluster at UCD (see Table 1). Before 
reporting the timing results, we emphasize that the 
relative speeds of the heterogeneous processors were 
first estimated for different problem sizes (i.e., number 
of iterations ranging from 1=maxI  to 7=maxI ) by 
incorporating the core computations of the 
morphological algorithm (erosion, dilation and MEI 
calculations) to a HeteroMPI-defined performance 
model. In order for such estimation to be accurate, it 
was necessary to include memory management 
considerations in the benchmark function to avoid 
disregarding important aspects such as virtual memory 
paging and cache considerations. In our particular 
implementation, we used a rather conservative 
approach which assumes that each heterogeneous 

processor has memory capacity sufficient to work with 
the entire hyperspectral data set locally. Based on 
previous work [2], this is a reasonable assumption in 
most hyperspectral imaging scenarios. Further, this 
provides us with a means to effectively model memory 
hierarchy-related parameters by simulating a largely 
unfavorable scenario in which each processor is forced 
to make use of reallocation/paging mechanisms due to 
cache misses. With the above assumptions in mind, 
Table 3 shows the execution times (in seconds) of the 
HeteroMPI-based parallel morphological algorithm in 
each of the processors of the heterogeneous cluster. As 
shown by Table 3, the heterogeneous algorithm was 
able to adapt efficiently to the heterogeneous 
computing environment where it was run. In particular, 
one can see that the heterogeneous algorithm executed 
on the HNOC was always about eleven times faster 
than the equivalent sequential algorithm executed on a 
Linux workstation which is almost identical to the 
csultra nodes in the considered HNOC (see Table 2). 
Most importantly, we experimentally tested that the 
mean processing times in the eight Pg1cluster 
processors were almost identical to the mean 
processing times in the seven csultra nodes (for all 
considered problem sizes). This fact reveals that the 
slight differences in the execution times reported on 
Table 3 are due to the intrinsic characteristics of the 
parallel problem, and not to platform heterogeneity 
which is accurately modeled by HeteroMPI.  
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Table 3. Execution times (in seconds) of the HeteroMPI-
based algorithm in each of the heterogeneous 
processors for different numbers of iterations. 
 

# 1 2 3 4 5 6 7 
0 46.86 91.25 140.69 186.46 226.06 285.51 337.49
1 47.05 90.74 141.49 183.66 228.06 288.77 328.88
2 47.32 92.15 138.23 187.38 227.75 287.96 325.31
3 47.09 92.96 134.46 180.55 226.68 274.10 317.73
4 50.01 95.57 149.55 199.20 237.06 300.94 340.53
5 50.59 94.95 148.70 197.76 235.17 309.22 345.14
6 48.32 99.48 139.15 188.48 246.55 291.75 329.67
7 48.26 91.82 143.86 191.09 246.61 294.96 333.94
8 48.90 101.28 141.44 188.25 250.61 290.83 322.06
9 50.48 98.63 152.04 200.33 238.35 304.19 358.36

10 51.07 98.48 154.39 197.50 238.12 308.83 358.06
11 46.43 92.69 139.80 180.44 227.03 274.77 321.50
12 47.12 93.24 141.40 183.85 229.87 282.43 328.16
13 46.54 92.35 137.60 184.44 231.65 288.52 315.20
14 46.85 94.47 137.70 186.32 235.26 288.67 326.25

 
Table 4. Load balancing rates for the HeteroMPI-based 
algorithm with different numbers of iterations. 
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Fig. 6. Load-balancing without memory considerations. 
 

In order to measure load balance, Table 4 shows the 
imbalance scores achieved by the parallel 
heterogeneous algorithm on the considered HNOC. 
The imbalance is defined as minmax RRD /= , where 

maxR  and minR  are the maxima and minima processor 
run times, respectively. Therefore, perfect balance is 
achieved when 1=D . The load balancing rates on 
Table 4 are superior to those reported in [2] for 
standard, spectral-based hyperspectral analysis 
algorithms executed in homogeneous computing 
platforms. Before concluding this section, we would 
like to emphasize the importance of incorporating 
considerations about memory capacity of the different 
nodes in the benchmark function used in the 
performance model. For illustrative purposes, Fig. 6 
shows the values of maxR , minR  and D  obtained on 
the considered HNOC for a parallel version of the 

proposed algorithm in which the benchmark function 
only modeled the processing power of heterogeneous 
processors and did not take into account memory-
related parameters. The imbalance scores are also 
reported for completeness. Overall, Fig. 6 shows that 
disregarding memory considerations in the HeteroMPI 
performance model results in higher imbalance scores. 
 

5. Conclusions and future lines 
 
This paper describes our first experiences towards 

the utilization of HeteroMPI to implement efficient 
hyperspectral analysis algorithms on HNOCs. A 
spatial/spectral, morphological analysis algorithm is 
selected as a case study. Despite the fact that 
conventional hyperspectral imaging algorithms do not 
take into account the spatial information explicitly into 
the computations (which has traditionally been 
perceived as an advantage for the development of 
parallel implementations), experimental results suggest 
that the proposed HeteroMPI-based parallel algorithm 
is effective in terms of workload distribution. Although 
further work is required to improve load balance, the 
reported accuracies, load-balancing rates and execution 
times are superior to those reported in previous studies. 
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