
Design and Implementation of a Parallel Heterogeneous Algorithm for
Hyperspectral Image Analysis Using HeteroMPI

David Valencia1, Alexey Lastovetsky2, Antonio Plaza1

1Department of Computer Science
University of Extremadura

E-10071 Caceres, Spain
{davaleco, aplaza}@unex.es

2School of Computer Science & Informatics
University College Dublin,
Belfield, Dublin 4, Ireland
alexey.lastovetsky@ucd.ie

Abstract

The development of efficient techniques for
transforming the massive volume of remotely sensed
hyperspectral data collected on a daily basis into
scientific understanding is critical for space-based
Earth science and planetary exploration. Although
most available parallel processing strategies for
hyperspectral image analysis assume homogeneity in
the computing platform, heterogeneous networks of
computers represent a promising cost-effective solution
expected to play a major role in many on-going and
planned remote sensing missions. To address the need
for cost-effective parallel hyperspectral imaging
algorithms, this paper develops an innovative
heterogeneous parallel algorithm for spatial/spectral
morphological analysis of hyperspectral image data.
The algorithm has been developed using
Heterogeneous MPI (HeteroMPI), an extension of MPI
for programming high-performance computations on
heterogeneous networks of computers. Experimental
results are presented and discussed in the context of a
realistic application, based on hyperspectral data
collected by NASA’s Jet Propulsion Laboratory.

1. Introduction

Hyperspectral imaging identifies materials and
objects in the air, land and water on the basis of the
unique reflectance patterns that result from the
interaction of solar energy with the molecular structure
of the material [1]. Most applications of this
technology require timely responses for swift decisions
which depend upon high computing performance of
algorithm analysis. Examples include target detection
for military and defense/security deployment, urban

planning and management, risk/hazard prevention and
response including wild-land fire tracking, biological
threat detection, monitoring of oil spills and other types
of chemical contamination. The concept of
hyperspectral imaging was introduced when NASA’s
Jet Propulsion Laboratory developed the Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS)
system, which covers the wavelength region from 0.4
to 2.5 µm using 224 spectral channels (see Fig. 1). This
imager is able to continuously produce snapshot image
cubes of tens or even hundreds of kilometers long, each
of them with hundreds of MB in size, and this
explosion in the amount of collected information has
rapidly introduced new processing challenges [2].

Although most dedicated parallel machines for
remote sensing data analysis employed by NASA and
other institutions during the last decade have been
chiefly homogeneous in nature [3], computing on
heterogeneous networks of computers (HNOCs) has
soon become a viable alternative to expensive parallel
computing systems [4]. These networks enable the use
of existing resources and provide incremental
scalability of hardware components with performance
isolation. At the same time, HNOCs can achieve high
communication speed at low cost, using switch-based
networks such as ATMs, as well as distributed service
and support, especially for large file systems.

Despite the growing interest in hyperspectral
imaging research, only a few consolidated parallel
techniques exist in the open literature. However, with
the recent explosion in the amount and dimensionality
of hyperspectral data, parallel processing is expected to
become a requirement in most ongoing and planned
remote sensing missions. As a result, this paper takes a
necessary first step toward the development of parallel
hyperspectral imaging techniques on HNOCs.

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

Fig. 1. The concept of hyperspectral imaging using NASA/Jet Propulsion Laboratory’s AVIRIS system.

Although the standard MPI [5] has been widely used

to implement parallel algorithms for HNOCs in the
past, it does not provide specific means to address
some additional challenges posed by these networks,
including the distribution of computations and
communications unevenly, taking into account the
computing power of the heterogeneous processors and
the bandwidth of the communications links. To achieve
the above goals, HeteroMPI was developed as an
extension of MPI which allows the programmer to
describe the performance model of a parallel algorithm
in generic fashion [6]. This is a highly desirable feature
in hyperspectral imaging applications, in which the
main features of the underlying parallel algorithm have
an essential impact on execution performance.

The paper is structured as follows. Section 2
outlines the main features of HeteroMPI. Section 3
develops a HeteroMPI-based parallel algorithm for
joint spatial/spectral analysis of hyperspectral imagery.
Section 4 assesses the performance of the algorithm by
analyzing its accuracy and parallel properties on a
heterogeneous cluster made up of 15 processors.
Finally, section 5 concludes with some remarks and
hints at plausible future research.

2. Outline of HeteroMPI

The standard MPI specification provides
communication and group constructors which allow the
application programmer to create a group of processes
explicitly chosen from an ordered set [5]. This
approach is feasible when the application is run on a
homogeneous distributed-memory computer system.

However, selection of a group for execution on
HNOCs must take into account the computing power of
the heterogeneous processors and the speed/bandwidth
of communication links between each processor pair
[6]. This feature is of particular importance in
applications dominated by large data volumes such as
hyperspectral image analysis, but is also quite difficult
to accomplish from the viewpoint of the programmer.

The main idea of HeteroMPI is to automate and
optimize the selection of a group of processes that
executes a heterogeneous algorithm faster than any
other possible group. For this purpose, HeteroMPI
provides a small and dedicated definition language for
the specification of such performance model. This
language is a subset of mpC, defined in [7], and allows
the programmer to explicitly define an abstract
network and distribute data, computations and
communications over the network. Then, HeteroMPI
automatically maps (at run time) the abstract network
to a real execution network by dynamically adapting
the performance model to specific network parameters
such as the computing power of processors or the
capacities of communication links in the real
environment. By means of a compiler, the description
of a performance model is translated into a set of
functions that make up an algorithm-specific part of
HeteroMPI runtime system. Below, we provide a brief
outline of the most important HeteroMPI functions
which have been used to implement the proposed
parallel algorithm. Detailed information about these
and other HeteroMPI functions is available in [6].

A typical HeteroMPI application starts with the
initialization of the runtime system using the operation:

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

HeteroMPI_Init(int argc, char **argv)

This routine must be called once by all the processes
running in the application. After the initialization,
application programmers can call any other HeteroMPI
routines. For instance, the following function is used to
create a group that will execute the heterogeneous
algorithm faster than any other group of processes:

HeteroMPI_Group_create(HeteroMPI_Group *gid,
 const HeteroMPI_Model *perf_model,
 const void *model_parameters,
 int param_count)

This function returns a handle gid to the group of MPI
processes. Here, perf_model encapsulates the features
of the performance model; model_parameters are the
actual parameters of the performance model; and
param_count is the total number of parameters. After
the execution of this function, the performances
opt_speeds can be obtained by using the HeteroMPI
group accessor function shown below:

HeteroMPI_Group_performances(&gid, opt_speeds)

It is important to emphasize at this point that the
accuracy of the performance model depends heavily on
the accuracy of the estimation of the actual speeds of
the processors. For that purpose, HeteroMPI provides a
function to dynamically update the estimation of
processor speeds at runtime:

HeteroMPI_Recon(HeteroMPI_Benchmarkfunction b,
 const void *input_p, int num_of_parameters,
 void *output_p)

where all the processors execute the benchmark
function b in parallel. This is a collective operation and
must be called by all the processes in the group
associated with a predefined communication universe
HMPI_COMM_WORLD of HeteroMPI. A similar
comment applies to the group destructor operation
provided by HeteroMPI:

HeteroMPI_Group_free(HeteroMPI_Group *gid)

where gid is the HeteroMPI handle to the group of MPI
processes. Again, this is a collective operation that
must be called by all members of this group. In order to
finalize the runtime system, the following operation is
used:

HeteroMPI_Finalize(int exitcode)

3. Parallel hyperspectral algorithm

This section describes a parallel heterogeneous
algorithm for automated morphological analysis of
hyperspectral image data. Mathematical morphology is
a standard image processing technique that provides a
remarkable framework to achieve the desired

integration of spatial and spectral responses [8]. First,
we describe the standard morphological algorithm.
Then, we outline important aspects about its parallel
implementation such as data partitioning and
communication issues. Finally, we provide a
HeteroMPI-based implementation for HNOCs.
Performance data are given in the following section.

3.1. Morphological algorithm

Morphological analysis has been successfully used
in previous research to analyze hyperspectral data sets
[8]. The morphological algorithm selected in this work
as a representative case study takes into account both
the spatial and spectral information of the data in
simultaneous fashion. Such spatial/spectral, hybrid
techniques represent the most advanced generation of
hyperspectral imaging algorithms currently available.

Before describing our proposed approach, let us
denote by f a hyperspectral data set defined on an N-
dimensional (N-D) space, where N is the number of
channels or spectral bands. The main idea of the
algorithm is to impose an ordering relation in terms of
spectral purity in the set of pixel vectors lying within a
spatial search window or structuring element (SE)
around each image pixel vector [8]. To do so, we first
define a cumulative distance between one particular
pixel ()yx,f , where ()yx,f denotes an N-D vector at
discrete spatial coordinates () 2, Zyx ∈ , and all the pixel
vectors in the spatial neighborhood given by a SE
denoted by B (B -neighborhood) as follows:

[] []∑ ∑= i jB jiyxyxD),(),,(SAM),(fff ,

where),(ji are the spatial coordinates in the B -
neighborhood and SAM is the spectral angle mapper:

() ()),(),(),(),(cos),(),,(SAM 1 jiyxjiyxjiyx ffffff ⋅= −
Based on the distance above, we calculate the

extended morphological erosion of f by B [8] for
each pixel in the input data scene as follows:

() () ()[]{ }jyixDyxB Bji ++=Θ ,minarg),(, f f

where the argmin operator selects the pixel vector is
most highly similar, spectrally, to all the other pixels in
the B -neighborhood.

On the other hand, the extended morphological
dilation of f by B [8] is calculated as follows:

() () ()[]{ }jyixDyxB Bji ++=⊕ ,maxarg),(, f f

With the above definitions in mind, we provide below
an unsupervised classification algorithm for
hyperspectral imagery based on extended
morphological operations:

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

Automated Morphological Classification (AMC)
Inputs: Data cube: f ; morphological SE: B ; Number
of classes: c; Number of iterations: maxI .
Output: 2-D matrix which contains a classification
label for each pixel vector ()yx,f in the input image.
1. Set 1=i and initialize a morphological eccentricity

index score () 0,MEI =yx for each pixel.
2. Move B through all the pixels of f , defining a

local spatial search area around each ()yx,f , and
calculate the maximum and the minimum pixels at
each B -neighborhood using dilation and erosion,
respectively. Update the MEI at each pixel using
the SAM between the maximum and the minimum.

3. Set 1+= ii . If maxIi = then go to step 4.
Otherwise, replace f by its dilation using B , and
go to step 2.

4. Select the set of c pixel vectors in f with higher
associated score in the resulting MEI image and
estimate the sub-pixel abundance ()yxi ,α of those
pixels at ()yx,f using the standard linear mixture
model described in [1].

5. Obtain a classification label for each pixel ()yx,f
by assigning it to the class with the highest sub-
pixel fractional abundance score in that pixel. This
is done by comparing all estimated abundance
fractions () () (){ }yxyxyx c , ..., ,, ,, 21 ααα and finding
the one with the maximum value, say ()yxi ,*α ,

with (){ }






=

≤≤
yxi i

ci
,maxarg*

1
α .

As shown in previous work [2], computational
complexity is ()NIppO B ××× maxf , where fp is the
number of pixels in f and Bp is the number of pixels
in B . However, an adequate parallelization strategy
can greatly enhance the computational performance of
the proposed algorithm, as will be outlined in the
following subsection.

3.2. Data partitioning

Two types of parallelism can be exploited in
hyperspectral image analysis algorithms: spatial-
domain parallelism and spectral-domain parallelism.
Spatial-domain parallelism subdivides the image into
multiple blocks made up of entire pixel vectors, and
assigns one or more blocks to each processor. Spectral-
domain parallelism subdivides the hyperspectral data
into blocks made up of contiguous spectral bands (sub-
volumes), and assigns one or more sub-volumes to each
processor. The latter approach breaks the spectral
identity of the data because each pixel vector is split

amongst several processing units, and operations such
as morphological erosion and dilation would need to
originate from several processors, thus requiring
intensive inter-processor communication. In this work,
we use spatial-domain parallelism in order to preserve
the entire spectral information of each image pixel.
This is a natural approach for low-level image
processing, as many operations require the same
function to be applied to a small set of elements around
each data element present in the image data structure.

With the above ideas in mind, the main goal of our
parallelization framework for the AMC algorithm is to
use a low-level image processing-oriented approach, in
which each heterogeneous processor will be able to
process a spatial/spectral data partition locally. In
previous work, we have defined the concept of
parallelizable spatial/spectral partition (PSSP) as a
hyperspectral data partition that can be processed
independently without communication [2]. Here, we
use the concept of PSSP above to define a virtual
processor grid organization in which processors apply
the AMC algorithm locally to each partition, thus
producing a set of local classification outputs which are
then combined to form a global classification output.

Fig. 2. Overlapping scatter to avoid inter-processor
communication in the processing of two data partitions.

In order to adequately exploit the concept of PSSP,
a function to update overlapping parts of partial data
structures has been implemented in order to alleviate
inter-processor communication when the SE
computation is split amongst several different
processors. In order to eliminate such overhead, a
scratch border is placed around each PSSP in the
virtual grid to reduce inter-processor communication
(see Fig. 2, which gives a simplified view using two
adjacent, homogeneous partitions). To avoid
introducing a significant amount of redundant
information resulting from scratch borders, we limit the
B -neighborhood function to a 3x3-pixel structuring
element, and increase the number of algorithm
iterations (maxI) to obtain a better spatial/spectral

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

description of features in the hyperspectral data [8].
The main challenge of this approach is to find an
optimal mapping of PSSPs on the virtual grid of
processors, i.e., the size of the resulting partitions
(including scratch borders) must be in accordance with
the computing power of heterogeneous processors.
This is accomplished through the definition of a
performance model, as explained below.

3.3. HeteroMPI-based parallel implementation

In order to implement the parallel morphological
algorithm outlined above using HeteroMPI, the first
step is to define a performance model able to capture
the data partitioning and communication framework
described in the previous subsection. Fig. 3 shows the
most important fragments of the mpC-based code that
describes the adopted performance model, which has 6
input parameters. Parameter m specifies the number
samples of the data cube, while parameter n specifies
the number of lines. Parameters se_size and iter
respectively denote the size of the SE and the number
of iterations executed by the algorithm. Finally,
parameters p and q indicate the dimensions of the
computational grid (in columns and rows,
respectively), which are used to map the spatial
coordinates of the individual processors within the
processor grid layout. Finally, partition_size is an
array that indicates the size of the local PSSPs
(calculated automatically using the computing power of
the heterogeneous processors). Fig. 3 shows different
communication links, defined based on the spatial
localization of each processor within the grid. It should
be noted that some of the definitions have been
removed from Fig. 3 for simplicity. However, some of
the most representative sections are included. Keyword
algorithmalgorithmalgorithmalgorithm begins the specification of the performance
model of an algorithm followed by its name and a list
of formal parameters. The coordcoordcoordcoord section defines the
mapping of individual abstract processors performing
the algorithm onto the grid layout using variables I I I I and
JJJJ. The nodenodenodenode primitive defines the amount of
computations that will be made by every processor,
which depends on its spatial coordinates in the grid as
indicated by IIII and JJJJ and the computing power of the
individual processors as indicated by partition_sizepartition_sizepartition_sizepartition_size.
Finally, the parentparentparentparent directive indicates the spatial
localization of the master processor in the grid. An
additional linklinklinklink section is used to define the individual
communications that every processor carries out based
on its position in the grid. Further information on
performance model definition is available in [7].

Once a performance model for the parallel
algorithm has been defined, implementation using the

standard HeteroMPI in Section 2 is quite
straightforward [6]. Fig. 4 shows the most interesting
fragments of the HeteroMPI-based code of our parallel
implementation. The HeteroMPI runtime system is
initialized using operation HeteroMPI_Init. Then,
operation HeteroMPI_Recon updates the estimation
of performances of processors. This is followed by the
creation of a group of processes using operation
HeteroMPI_Group_create. The members of this
group then perform the computations of the
heterogeneous parallel algorithm using standard MPI
mechanisms. This is followed by freeing the group
using operation HeteroMPI_Group_free, and the
finalization of the HeteroMPI runtime system using
operation HeteroMPI_Finalize. In this code, the
benchmark function used to measure the processing
power of the processors in HeteroMPI_Recon is
essential, mainly because a poor estimation of the
power and memory capacity of processors may result in
load balancing problems. This issue will be addressed
via experiments in the following section.

4. Experiments

This section evaluates the proposed parallel
algorithm. First, a parallel heterogeneous cluster is
described. Then, we briefly describe a real
hyperspectral data set collected by the AVIRIS system
that will be used in experiments. The section ends with
a detailed evaluation of the accuracy and parallel
performance of the proposed parallel algorithm.

4.1. Parallel heterogeneous cluster

A heterogeneous network of 11 Linux/SunOS
workstations and a total of 15 processors at University
College Dublin (UCD) was used in experiments. Table
1 shows the specifications of the heterogeneous
processors, including their relative speeds. The
processors in Table 1 are interconnected via 100 Mbit
Ethernet communication network with a switch
enabling parallel communications among the
processors. Although this is a simple configuration, it is
also a quite typical and realistic one as well. We
measure the relative speeds in Table 1 with the core
computation of the algorithm (processing a 3x3-pixel
neighborhood using morphological operations).

4.2. Hyperspectral image data

Fig. 5 (left) shows the Indian Pines AVIRIS
hyperspectral data set considered in experiments. It
consists of 614 samples, 512 lines and 224 spectral
bands (more than 140 MB).

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

algorithm hpamc_rend(int m, int n, int se_size, int iter, int p, int q, int partition_size[p*q]) {
coord I = p, J = q;
node { I>=0 && J>=0: benchmark*((partition_size[I*q+J]*iter); };
parent[0,0];
}

Fig. 3. The core of the performance model for the parallel hyperspectral imaging algorithm defined in mpC.

main(int int int int argc, char *char *char *char *argv[]){
HeteroMPI_InitHeteroMPI_InitHeteroMPI_InitHeteroMPI_Init(&argc,&argv);
if if if if (HeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_member(HMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUPHMPI_COMM_WORLD_GROUP)){

 HeteroMPI_ReconHeteroMPI_ReconHeteroMPI_ReconHeteroMPI_Recon(benchmark_function, dims, 15, &output_p);
}
HeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_create(&gid, &MPC_NetType_hpamc_rend, modelp, num_param);
if (HeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_free()){

 HeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_createHeteroMPI_Group_create(&gid, &MPC_NetType_hpamc_rend, NULL, 0);
}
if (HeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_freeHeteroMPI_Is_free()){

 HeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_Finalize(0);
}
if (HeteroMPI_Is_membeHeteroMPI_Is_membeHeteroMPI_Is_membeHeteroMPI_Is_memberrrr(&gid)){

 HeteroMPI_Group_performancesHeteroMPI_Group_performancesHeteroMPI_Group_performancesHeteroMPI_Group_performances(&gid, speeds);
Read_image(name,image,lin,col,bands,data_type,init);
for for for for (i=imax; i>1; i=i--){

AMC_algorithm(image,lin,col,bands,sizeofB,res);
 }

if (HeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_memberHeteroMPI_Is_member(&gid)){
free(image);

}
 HeteroMPI_GHeteroMPI_GHeteroMPI_GHeteroMPI_Group_freeroup_freeroup_freeroup_free(&gid);
 HeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_FinalizeHeteroMPI_Finalize(0);

 }
}

Fig. 4. The core of the HeteroMPI program implementing the parallel hyperspectral analysis algorithm.

Table 1. Specifications of heterogeneous processors.

Name
(Processors)

Architecture CPU
(MHz)

Mem.
(MB)

Cache
(KB)

Relative
speed

0,1
2,3
4,5
6,7

Pg1cluster01(2)
Pg1cluster02(2)
Pg1cluster03(2)
Pg1cluster04(2)

Linux 2.4.18-
10smp
Intel(R)

XEON(TM)

1977

1024

512

70

8
9

10
11
12
13
14

csultra01(1)
csultra02(1)
csultra03(1)
csultra05(1)
csultra06(1)
csultra07(1)
csultra08(1)

SunOS 5.8
sun4u sparc

SUNW,
Ultra-5_10

440

512

2048

30

As shown by Fig. 5 (left), the scene represents a

very challenging classification problem. Extensive
ground-truth information is available for the scene, as
shown by Fig. 5 (right). This map is composed of 30
land cover classes that will be used to validate the

classification accuracy of our parallel morphological
classification algorithm. This scene is regarded as a
universal benchmark to validate hyperspectral image
analysis algorithms.

4.3. Assessment of the parallel algorithm

The parallel algorithm was applied to the AVIRIS
Indian Pines scene using a fixed, 3x3-pixel SE and
seven different values for parameter maxI , which
defines the number of iterations executed by the
algorithm (ranging from 1 to 7 in experiments). Table 2
shows the classification accuracies (percentage of
correctly classified pixels) obtained using the seven
considered numbers of iterations, along with the single-
processor execution times (in minutes) measured in a
Linux workstation with Intel XEON processor at 2
GHz, 1 GB of RAM and 512 KB of cache.

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

Fig. 5. (Left) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features
at Indian Pines, Indiana. (Right) Ground-truth map with 30 mutually exclusive land-cover classes.

Table 2. Classification accuracies and single-processor
times for the morphological algorithm.

maxI

1

2

3

4

5

6

7
Accuracy (%) 75.23 78.43 81.94 83.99 87.95 88.79 90.02
Time (mins) 9.54 19.56 27.82 37.06 46.91 54.68 64.79

As shown by Table 2, the morphological algorithm

was able to achieve very high classification accuracies,
especially for 7=maxI (above 90%), but the measured
processing times were extremely high and generally
unacceptable in remote sensing applications. To
investigate the parallel properties of the considered
HeteroMPI-based algorithm, it was implemented on the
heterogeneous cluster at UCD (see Table 1). Before
reporting the timing results, we emphasize that the
relative speeds of the heterogeneous processors were
first estimated for different problem sizes (i.e., number
of iterations ranging from 1=maxI to 7=maxI) by
incorporating the core computations of the
morphological algorithm (erosion, dilation and MEI
calculations) to a HeteroMPI-defined performance
model. In order for such estimation to be accurate, it
was necessary to include memory management
considerations in the benchmark function to avoid
disregarding important aspects such as virtual memory
paging and cache considerations. In our particular
implementation, we used a rather conservative
approach which assumes that each heterogeneous

processor has memory capacity sufficient to work with
the entire hyperspectral data set locally. Based on
previous work [2], this is a reasonable assumption in
most hyperspectral imaging scenarios. Further, this
provides us with a means to effectively model memory
hierarchy-related parameters by simulating a largely
unfavorable scenario in which each processor is forced
to make use of reallocation/paging mechanisms due to
cache misses. With the above assumptions in mind,
Table 3 shows the execution times (in seconds) of the
HeteroMPI-based parallel morphological algorithm in
each of the processors of the heterogeneous cluster. As
shown by Table 3, the heterogeneous algorithm was
able to adapt efficiently to the heterogeneous
computing environment where it was run. In particular,
one can see that the heterogeneous algorithm executed
on the HNOC was always about eleven times faster
than the equivalent sequential algorithm executed on a
Linux workstation which is almost identical to the
csultra nodes in the considered HNOC (see Table 2).
Most importantly, we experimentally tested that the
mean processing times in the eight Pg1cluster
processors were almost identical to the mean
processing times in the seven csultra nodes (for all
considered problem sizes). This fact reveals that the
slight differences in the execution times reported on
Table 3 are due to the intrinsic characteristics of the
parallel problem, and not to platform heterogeneity
which is accurately modeled by HeteroMPI.

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

Table 3. Execution times (in seconds) of the HeteroMPI-
based algorithm in each of the heterogeneous
processors for different numbers of iterations.

1 2 3 4 5 6 7
0 46.86 91.25 140.69 186.46 226.06 285.51 337.49
1 47.05 90.74 141.49 183.66 228.06 288.77 328.88
2 47.32 92.15 138.23 187.38 227.75 287.96 325.31
3 47.09 92.96 134.46 180.55 226.68 274.10 317.73
4 50.01 95.57 149.55 199.20 237.06 300.94 340.53
5 50.59 94.95 148.70 197.76 235.17 309.22 345.14
6 48.32 99.48 139.15 188.48 246.55 291.75 329.67
7 48.26 91.82 143.86 191.09 246.61 294.96 333.94
8 48.90 101.28 141.44 188.25 250.61 290.83 322.06
9 50.48 98.63 152.04 200.33 238.35 304.19 358.36

10 51.07 98.48 154.39 197.50 238.12 308.83 358.06
11 46.43 92.69 139.80 180.44 227.03 274.77 321.50
12 47.12 93.24 141.40 183.85 229.87 282.43 328.16
13 46.54 92.35 137.60 184.44 231.65 288.52 315.20
14 46.85 94.47 137.70 186.32 235.26 288.67 326.25

Table 4. Load balancing rates for the HeteroMPI-based
algorithm with different numbers of iterations.

 1 2 3 4 5 6 7

maxR

46.43

90.74

134.46

180.44

226.06

309.22

358.36

minR

51.07

101.28

154.39

200.33

250.61

274.10

315.20
D 1.09 1.11 1.14 1.11 1.10 1.12 1.13

0

200

400

600

800

1 2 3 4 5 6 7
Number of algorithm iterations (Imax)

Ti
m

ee

Rmin
Rmax

D=2.26 D=2.31 D=2.21 D=2.29
D=2.27

D=2.22

D=2.33

Fig. 6. Load-balancing without memory considerations.

In order to measure load balance, Table 4 shows the
imbalance scores achieved by the parallel
heterogeneous algorithm on the considered HNOC.
The imbalance is defined as minmax RRD /= , where

maxR and minR are the maxima and minima processor
run times, respectively. Therefore, perfect balance is
achieved when 1=D . The load balancing rates on
Table 4 are superior to those reported in [2] for
standard, spectral-based hyperspectral analysis
algorithms executed in homogeneous computing
platforms. Before concluding this section, we would
like to emphasize the importance of incorporating
considerations about memory capacity of the different
nodes in the benchmark function used in the
performance model. For illustrative purposes, Fig. 6
shows the values of maxR , minR and D obtained on
the considered HNOC for a parallel version of the

proposed algorithm in which the benchmark function
only modeled the processing power of heterogeneous
processors and did not take into account memory-
related parameters. The imbalance scores are also
reported for completeness. Overall, Fig. 6 shows that
disregarding memory considerations in the HeteroMPI
performance model results in higher imbalance scores.

5. Conclusions and future lines

This paper describes our first experiences towards

the utilization of HeteroMPI to implement efficient
hyperspectral analysis algorithms on HNOCs. A
spatial/spectral, morphological analysis algorithm is
selected as a case study. Despite the fact that
conventional hyperspectral imaging algorithms do not
take into account the spatial information explicitly into
the computations (which has traditionally been
perceived as an advantage for the development of
parallel implementations), experimental results suggest
that the proposed HeteroMPI-based parallel algorithm
is effective in terms of workload distribution. Although
further work is required to improve load balance, the
reported accuracies, load-balancing rates and execution
times are superior to those reported in previous studies.

References

[1] C.-I Chang, Hyperspectral imaging: Techniques for

spectral detection and classification. Kluwer: NY, 2003.
[2] A. Plaza, D. Valencia, J. Plaza, P. Martinez, “Commodity

cluster-based parallel processing of hyperspectral
imagery,” Journal of Parallel and Distributed
Computing, vol. 66, pp. 345-358, 2006.

[3] J. Dorband, J. Palencia, U. Ranawake, “Commodity
computing clusters at Goddard Space Flight Center,”
Journal of Space Communication, vol. 1, no. 3, 2003.

[4] A. Lastovetsky, Parallel computing on heterogeneous
networks, Wiley-Interscience: Hoboken, NJ, 2003.

[5] J. Dongarra, S. Huss-Lederman, S. Otto, M. Snir, D.
Walker, MPI: The complete reference, The MIT Press:
Cambridge, MA, 1996.

[6] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a
message-passing library for heterogeneous networks of
computers,” Journal of Parallel and Distributed
Computing, vol. 66, pp. 197-220, 2006.

[7] A. Lastovetsky, “Adaptive parallel computing on
heterogeneous networks with mpC,” Parallel
Computing, vol. 28, pp. 1369-1407, 2002.

[8] A. Plaza, P. Martinez, J. Plaza, R. Perez, “Dimensionality
reduction and classification of hyperspectral image data
using sequences of extended morphological
transformations,” IEEE Trans. Geoscience and Remote
Sensing, vol. 43, no. 3, pp. 466-479, March 2005.

Proceedings of The Fifth International Symposium
on Parallel and Distributed Computing (ISPDC'06)
0-7695-2638-1/06 $20.00 © 2006

