
The C[] language Page -1

 An ANSI C Superset for Vector and Superscalar
Computers and Its Retargetable Compiler

Sergey Gaissaryan, and Alexey Lastovetsky

Abstract

 This article describes an ANSI C language superset for vector and superscalar computers and its
retargetable compiler prototype. The superset, named C[], allows one to write portable efficient pro-
grams for SIMD (vector and superscalar) computer architectures. The article discusses the motivation
of our approach, the vector superset of the C language, and the retargetable compiler system.

Introduction

 The C language is commonly used by professional programmers because it allows one to develop
highly efficient software portable within the class of UNIX systems. C reflects all main features of
UNIX systems' architecture, which has an impact on the program efficiency.
 As computer architectures have changed, it has become necessary to reflect the changes in compil-
ers' internal languages, by adding the constructs to express new computing facilities, such as vector
calculations. But if we want to use these new facilities explicitly in programs, they should be also
added to the C language.
 We created a C language superset with the same vector capabilities as vector computer assembly
languages, by adding several new notions to ANSI C. The resulting extended C language, named C[],
allows one to write portable efficient programs for SIMD (vector and superscalar) computer architec-
tures.
 This article is composed from three parts, describing the motivation of our approach, the vector
superset of the C language, and the retargetable compiler system.

Motivation

 The C language allows one to develop highly efficient software that is portable within the class of
UNIX systems. This is because C reflects all the main features of the architecture of UNIX systems
which have an effect on the program efficiency, namely: machine-oriented data types (short, char,
unsigned, etc.); indirect addressing and address arithmetic (arrays, pointers and their relationships);
and other machine level notions (++, --, += operators, bit-fields, etc.). UNIX architecture is reflected
in C with such completeness that many individual features of each particular system can be expressed
by compiler parameters [1]. On the other hand, the C language hides from programmers the peculiari-
ties of each particular architecture that have no analogs in other computers of the class (for example,
the peculiarities of register storage, details of stack implementation, and details of instruction sets,
etc.). Finally, the C Standard [2] has been developed, along with high-quality portable C compilers
retargetable to each particular system of the class [1].

Page -2 The C[] language

 Propagation of vector and superscalar architectures has caused the need in similar programming
language for these architectures because the C language does not reflect parallel facilities of these
architectures. As vector and superscalar architectures are an evolution of UNIX systems architecture,
the language which plays the same part as C does for UNIX systems may be developed as a superset of
the C language.
 There have been many efforts to develop such C supersets [3- 5], but the supersets we know have
the following disadvantages:
 - the conceptual models of these supersets are not sufficiently developed (for example, the concept
of vector value is absent);
 - the conceptual models reflect some peculiar features of particular architectures having no analogs
in other vector and superscalar architectures (for example, the notion of descriptor in Vector C lan-
guage [3] is natural for Cyber 205 but not natural for supercomputers of Cray family because all their
vector instructions are of register-to-register type; the notion of parallel objects in the C* language [4]
is natural for the Connection Machine 2 but not natural for Cray, Cyber 205, and other shared memory
supercomputers because it excludes explicit parallel processing of arrays);
 - the supersets do not take into account requirements related to implementation of the compiler
being portable and retargetable to particular architectures of considered class.
 We considered the following requirements while developing the superset of C for vector and super-
scalar computers:
 - the superset must adequately reflect all common features of the relevant architectures;
 - the conceptual model of the superset must provide simple and efficient implementation for all
computers of the class;
 - the superset must be suitable for implementation of portable and retargetable compilers.
 The C language might be extended for vector and superscalar computers by means of corresponding
class libraries of C++ or even by means of a suitable library of C functions. To meet the first of
requirements above these classes or functions must be implemented in assembly language. But if we
do so the two last requirements will not be satisfied because of the necessity of reimplementation of
assembly code. Hence, such a technique of extending C is unsuitable, if the class of target computers is
wide enough.

Description of the C[] language

 The C[] language is a strict superset of ANSI C. The following is a brief description of its main fea-
tures.

Vectors

 The basic new notion of the C[] language is a notion of vector value (or simply vector). A vector is
defined as an ordered sequence of values of any type (the elements of the vector); the types of all the
elements of a vector must be the same. It is important to emphasize that in contrast to array, a vector is
not an object, it is a new sort of value. Unlike in C, in the C[] language the notion of the value of an
array object is defined, and this value is a vector.
 Example. The value of the array defined by the declaration

The C[] language Page -3

 int a[3][2];
is the vector consisting of three vectors, each of which consists of two integers. So, the execution of
the iteration statement
 for(i=0; i<3; i++)
 for(j=0; j<2; j++)
 a[i][j]=i+j;
causes the value of the array a to be equal to the vector { {0,1}, {1,2}, {2,3} }. The type
of this vector is named by int[3][2].

Arrays

 In the C language an array comprises "a contiguously allocated set of elements of any one type of
object".
 In the C[] language an array comprises a sequentially allocated elements (with a constant positive,
negative or zero 'step') of any one type of object. A negative step specifies the allocation of elements of
the array in reverse order (from right to left). A zero step specifies the allocation of all elements of the
array in the same element of storage.
 Thus in the C[] language an array has at least three attributes, namely: the type of its elements, the
number of elements and the allocation step.
 In the C[] language, the array declarator syntax differs from the standard in following way. The rule

direct-declarator:
direct-declarator [constant-expression(opt)]

is replaced with the rules
direct-declarator:

direct-declarator [constant-expression(opt)
step(opt)]

step: ’:’ constant-expression
If step is not specified then it is equal to 1.

 Examples:
 1. The declarations
 int a[3:1];
and
 int a[3];
both define an array of the form

a[0] a[1] a[2]

The size of the slot between elements of the array is equal to zero.
 2. The declaration
 int a[3:3];
defines an array of the form

a[0] a[1] a[2]

Page -4 The C[] language

The size of the slot between array elements is equal to '2*sizeof(int) bytes.
 3. The declaration
 int a[3:-1];
defines an array of the form

a[2] a[1] a[0]

Pointers

 In the C language a pointer has only one attribute, namely the type of object it points to. This
attribute is necessary for the correct interpretation of values of objects it points to as well as the
address operators + and -. These operators are correct only if the pointer's operands and the pointer's
results point to elements of the same array object.
 The same rule is valid for the C[] language. Therefore, to support the correct interpretation of the
address operators, we introduce one additional attribute of the pointer; this attribute is step.
 In the C language Standard, "when an expression that has integral type is added to or subtracted
from a pointer, the integral value is first multiplied by the size of the object pointed to". In the C[] lan-
guage, the multiplier is equal to the product of the pointer step and the size of the object pointed to. In
the C language, "when two pointers to elements of the same array object are subtracted, the difference
is divided by the size of a element". In the C[] language, the divisor is equal to the product of the
pointer step and the size of an element.
 In the C[] language the pointer declarator is defined in following way:

pointer:
 * step(opt) type-specifier-list(opt)
 * step(opt) type-specifier-list(opt) pointer
If step is not specified then it is equal to 1.
 Example: The declaration
 int a[]={0,1,2,3,4};
defines an array of the form

a[0] a[1] a[2] a[3] a[4]

The pointer declarations
 int *:2 p1=(void*)a, *:-1 p2=(void*)&a[4];
form the following structure of storage

a[0] a[1] a[2] a[3] a[4]

p1 p2

The C[] language Page -5

The address expressions (p1+1) and (p2+2) point to the same element of the array, namely, a[2].
Indeed, the offset from p1 defined by the expression (p1+1) is equal to
 (2*sizeof(int))*1
bytes, and the offset from p2 defined by the expression (p2+2) is equal to
 ((-1)*sizeof(int))*2
bytes.

Access to the Elements of an Array

 In the C[] language, access to e2-th element of an array object e1 is obtained with using one of the
expressions e1[e2] or (e2)[e1]. Both are identical to (*(e1+(e2))). Here, e2 is an integral
expression, e1 is an lvalue that has the type "array of type". This lvalue is converted to an expression
that has the type "pointer to type" and that points to the initial element of the array object (the attribute
step of this pointer is identical to the attribute step of the array object).

Access to the Value of an Array

 In the C[] language, the value of an array object is a vector. The i-th element of a vector is the value
of the i-th element of the corresponding array object.
 To support access to arrays as the whole, we introduced the postfix [] operator. The operand of this
operator has the type "array of type". The [] operator blocks (forbids) the conversion of the operand
to a pointer. Any lvalues that designate an array as the whole are called blocked lvalues. The rules for
treatment of blocked lvalues are entirely similar to the rules for treatment of lvalues that have a scalar
type.
 A modifiable blocked lvalue is a blocked lvalue that does not have a type declared with the const
type specifier.
 Example: If the arrays a, b and c are declared as
 int a[8], b[8:2], c[8:-1];
then the expression a[]=b[]+c[] assigns the sum of vectors that are the values of the arrays b and
c to the array a. Here the expression a[]+b[] has type "vector of 8 ints".

Access to Subarrays

 An object belongs to an array if it is an element of the array or it belongs to an element of the array.
Any set of objects belonging to some array is called a subarray iff this set can be described as an array
(using bounds and step attributes as defined above). In addition, any subarray can be referred to as an
object belonging to its array.
 In principle, the facilities introduced are sufficient to access subarrays. For example, if the array
object 'a' is defined by the declaration
 int a[5][5];
then the blocked lvalue
 (*(int(*)[5:6])a)[] (1)
designates an array of five ints (with step 6) that contains the main diagonal of the matrix a, and the
blocked lvalues

Page -6 The C[] language

 (*(int(*)[4:6])(a[0]+1))[] (2)
and
 (*(int(*)[4:6])(&a[0][1]))[] (3)
designate an array of four ints (with step 6) that contains the diagonal of the matrix a which is placed
above the main diagonal.
 The more compact notation results if variables of type "pointer to array" are used. So, if the pointer
objects p1 and p2 are defined by the declaration
 int (*p1)[5:6]=(void*)a,
 (*p2)[4:6]=(void*)(a[0]+1);
then the expression (*p1)[] can be used instead of (1) and the expression (*p2)[] can be used
instead of (2) and (3).
 In the C language the array subscripting operator is redundant. This operator provides a comfortable
abbreviation e1[e2] (or (e2)[e1]) for the expression (*(e1+(e2))) where the expression e1
has type "pointer to type" and the expression e2 has integral type. Similarly, we added the ternary [:]
operator in the C[] language. This operator provides an abbreviation for the blocked lvalues shown in
expressions (1)-(3) above. The expression e1[e2:e3], where e1 is a lvalue of type T and e2 and
e3 are integral expressions, is equal to the expression
 (*(T(*)[e2:e3])(&(e1)))[]
 The step is equal to e3*sizeof(T). The expression e3 is optional (the expression e1[e2:] is
equal to the expression e1[e2:1]).
 In above example, the expression (1) can be written as a[0][0][5:6] and the expressions (2)
and (3) as a[0][1][4:6].
 Example: If the array b is declared as
 int b[4][4];
then the blocked lvalue designating the subarray represented in Fig.1 can be expressed as
b[2][0][2:][2:2].

b

Figure 1: 2x2 subarray of array b

The C[] language Page -7

Segments of Arrays

 Not every regular set of objects belonging to an array is a subarray. For example, the rectangular
segment of the array a represented in Fig.2 is not a subarray. Therefore, an lvalue of type array does
not exist for this segment. However, while using an array of pointers we can access its value.

a

Figure 2: Rectangular 3x3 segment of array a

The value of this segment is the vector consisting of three vectors, each from which consists of three
ints. If the array p is declared as
 int (*p[3])[3]={a[1]+1, a[2]+1, a[3]+1};
then the expression *p[] provides the value of the required segment (here the * operator is applied to
all elements of the vector p[]).
 To ease access to similar sets of objects belonging to an array, we introduced new derived types seg-
ments of arrays and we extended the [:] operator.
 A segment of an array may comprise sequential elements of the array allocated with a constant step
(a unit of step size is an element of the array). Besides, if elements of an array are also arrays then a
segment of the array may comprise a sequential segments (of the same type) of the array elements allo-
cated with a constant step. In this last case, a unit of step size may be not only a segment of an element
of the array but an element of a segment of an element of the array if an element of a segment of an
element of the array is also an array and so on.
 In one common case, in the expression e1[e2:e3] the third operand, which specifies the step, is
described as follows:

segment-step:
integral-expression(opt)

 ’:’ segment-step(opt)
The expression e1 is an lvalue whose type is not an array, or a blocked lvalue of type array, or an
lvalue of type "segment of array". If e3 is an integral expression, then the unit of step is equal to the
size of the object designated by e1. If e3 is :e4 where e4 is an integral expression then the unit of
step is an element of the object designated by e1. If e3 is ::e4 then a unit of step is an element of an
element of the object designated by e1. (Naturally, in this case e1 should be an lvalue of the corre-
sponding type).
 If e3 is :e4 then the expression e1[e2:e3] is an lvalue of type "segment of array" and desig-
nates the corresponding segment. If e1 is an lvalue of type "segment of array" then the expression

Page -8 The C[] language

e1[e2:e3] is also an lvalue of type "segment of array" and designates the corresponding segment.
In all remaining cases the expression e1[e2:e3] is a blocked lvalue of type array.
 An lvalue of type "segment of array" is never converted to a pointer that points to the initial element
of the segment - it always designates the segment as the whole. For example, the lvalue of type "seg-
ment of array" that designates the segment represented in Fig.2 is a[1][1][3:][3::2].
 There are some constraints in the usage of lvalues that have type "segment of array". In particular,
the & unary operator is not applicable to such lvalues. If e1 is an lvalue of type "segment of array" and
e2 is an integral expression then the expression e1[e2] designates the e2-th element of the segment
e1 (counting from zero). In contrast to the array subscripting operator, the segment subscripting oper-
ator is not expressed by the * and + address operators; that is, in this case the expression e1[e2] is
not equivalent to the expression (*(e1+(e2))).

Lvector

 In addition to notions of lvalue, blocked lvalue, and segment of array which are used for designation
of objects and are allowed as left operand of assignment operators, we also introduced the notion of
lvector.
 Just as lvalue is an expression designating some object, an lvector is a vector expression designating
a set of objects.
 Example: If the objects x, y and pa are described as
 int x, y, *pa[10];
then the vector expressions {y, x, *pa[3]} and *pa[] are lvectors, but the vector expression
{x+y, y, x} is not.
 Blocked lvalues of type array and segments of array can be considered as special cases of lvectors
which designate the sets of objects allocated in the regular way.
 An lvector is modifiable if every element of the set of objects it designates is modifiable.

Vector Conversions

 The conversion of a vector of one type to a vector of another type is the composition of two conver-
sions, the first of which converts the vector length, the types of elements remaining unchanged, and the
second of which converts the type of vector elements, the vector length being unchanged.
 We define a vector's length as the number of elements it contains. For example, the vectors {1,2}
and {{3,4,5},{6,7,8}} both have the length 2.
 There is no defined conversion of vector to non-vector (in particular, to scalar).
 The conversion of a non-vector (in particular, of a scalar) to a vector of specified length and type of
the elements is the composition of two conversions, the first of which converts the non-vector to a vec-
tor of specified length all elements of which have the same type and value as the initial non-vector, and
the second of which converts the type of vector elements to the specified type.
 Shortening a vector is performed by dropping its trailing elements. Lengthening a vector is per-
formed by adding of elements having indefinite values to its tail.

Integer Vector Packing

The C[] language Page -9

 The C[] language provides bit-fields packing facilities for integer vectors. Namely, an array declar-
ator is allowed in position of optional declarator in the bit-field declarator of the

declarator(opt) : constant-expression
kind. The bit-field declarator A[N:L]:M, where A is an identifier, N, L, and M are constant expres-
sions, specifies N sequentially allocated bit-fields, with the step L, each of width M. The width of the
bit-fields and the step size are measured in bits. The assignment of an integer vector of length N to the
member A of a structure causes the vector elements to be packed into corresponding bit-fields.
Unpacking an integer vector packed in bit-fields is performed during the access to the corresponding
member of the structure by means of the . operator.

 Scalar Operators

 We added two groups of scalar operators to the C[] language.
 The first group consists of two binary ?> and ?< operators that calculate the maximum and mini-
mum, together with their corresponding compound assignments.
 The second group contains three unary bitwise operators, namely: ? (counting one bits), % (count-
ing leading zeroes), @ (word reversing).

Vector Operators

 The operand of unary &, *, +, -, ~, ?, %, @, and ! operators and scalar cast operators
may have a vector type. In this case the result of such an operator is a vector of elements which results
from applying the corresponding operator to the elements of its operand.
 If a vector type name is used in a cast operator the vector length specified by the operator may be
specified by an arbitrary (not only constant) integral expression.
 One or both operands of binary *, /, %, ?<, ?>, +, -, <<, >>, <, >, <=, >=,
==, !=, &, ^, |, &&, and || operators may have vector type.
 If both operands are vectors of the same length then the result is a vector the elements of which are
the results of application of corresponding operator to the elements of the operands. If one of the oper-
ands is scalar then it is converted to a vector of the same length as the vector operand.
 If vector operands of a binary operator have different lengths then the behavior is undefined.
 If the first operand of conditional operator is a scalar and the second or third operand or both are of
vector type then the result of the operator has the same vector type as for binary operators discussed
above. The first operand of a conditional operator may have vector type. In that case the second or the
third operand but not both of them may be omitted. If none of the operands is omitted then unlike the C
language all three operands are evaluated. If all three operands are vectors of the same length then the
result is produced by elementwise application of the operator. If vector operands of a conditional oper-
ator have different lengths then behavior is undefined. If the second or the third operand is non-vector
then the length of that operand is converted to the length of the vector operands. If the first and the sec-
ond (or the third) operands are vectors, the third (the second) operand is omitted, and the elements of
the first operand have scalar type, then the result will be the vector of the same type as the second (the
third) operand; the i-th element of the result is equal to the k(i)-th element of the second (the third)
operand where k(i) is the index of the i-th non-zero (zero) element of the first operand. The other
elements have indefinite values. For example, execution of

Page -10 The C[] language

 int a[5], b[5], c[5];
 a[]={1,2,3,4,5};
 b[]={3,3,3,2,6};
 c[]=a[]<b[]?a[]:; /*the 3rd operand is omitted */
results in the vector c[] equal to {1,2,5,w,w}, where w denotes an undefined value.
 If the first and the second (or the third) operands are vectors, the third (the second) operand is omit-
ted, and the elements of the first operand have vector type, then the result is achieved by elementwise
application of the operator.
 An assignment operator may have as its left operand a modifiable blocked lvalue, a segment of
modifiable array, or any other modifiable lvector. In that case its right operand may have vector type.
In any case the type of its right operand converts to the type of the left operand's value. For example,
the execution of following fragment
 int a[]={0,1,2,3,4};
 int *pa[]={a+1,a+2,a+3,a+4,a};
 *(pa[])=a[];
results the vector {1,2,3,4,0} as value of array a.
 The unary linear [*], [/], [%], [?<], [?>], [+], [-], [&], [^], and [|]
operators correspond to binary *, /, %, ?<, ?>, +, -, &, ^, and | operators. These
operators are applicable only to vector operands. Let v[0], v[1],...,v[N] denote the elements of
vector operand v. Then the expression [op] v[] has the same semantics as the expression of
 (...((v[0] op v[1]) op v[2]) op ... op v[N])
kind. For example, the execution of following fragment
 int a[]={0,1,2,3,4}, sum;
 sum=[+]a[];
produces the value of sum equal to the value of the expression
 a[0]+a[1]+a[2]+a[3]+a[4]
which is equal to 10.
 Example: Here is a program performing some matrix calculations.
double a[10][10], b[10][10],
 axb[10][10], bxa[10][10],
 diag_axb[10];
void main()
{
 int i, j;
 for(i=0; i<10; i++)
 for(j=0; j<10; j++)
 axb[i][j]=[+](a[i][]*(*(float(*)[10:10])&b[0][j])[]);
 for(i=0; i<10; i++)
 for(j=0; j<10; j++)
 bxa[i][j]=[+](b[i][]*(*(float(*)[10:10])&a[0][j])[]);
 diag_axb[]=([&][&](axb[]==bxa[]))?
 (*((float(*)[10:11])axb))[]: /*Storing the diagonal*/
 (*((float(*)[10:-11])&axb[9][9]))[];/*Storing the diagonal
 in reverse order*/
}

The C[] language Page -11

 In the C[] language, unlike in the C language, a formal parameter of a function may have an array
type. The declaration of such a formal parameter must explicitly specify all array attributes including
the step specification. For example, int a[10:1] in the list of formal parameters specifies the array
a of 10 ints with step 1. (Note, that int a[10] specifies the usual pointer to int). The corre-
sponding argument is an expression of the same vector type that is defined by the formal parameter.
The function value also may have vector type.

Arrays and Structures of register Storage Class

 An array whose elements are of scalar type and whose step is equal to 1 may be declared with the
storage-class specifier register. This causes the corresponding array priority allocation in a vector
register if one is free. If no vector register is free or if an array of the declared type should not be allo-
cated in a register, the storage-class specifier is ignored.
 There are some constraints in usage of register variables of array type. In particular, the address &
operator and the [:] operator should not be applied to it. The array subscripting operator may not
expressed by the * and + address operators for a register array.
 A structure with members of scalar types may be declared with storage-class specifier register.
This causes the corresponding structure allocation in available scalar registers which allows collective
exchange with main storage.

The Compiler

 In April 1993 we started the development of portable and retargetable compiler system for the C[]
language. To implement our compiler we use the Karlsruhe toolbox for compiler construction pre-
sented by GMD (Germany). Currently, we have implemented the version 1.0 of the compiler.
 The compiler consists of four stages (components). The first stage analyses the source program file
and builds its internal representation including the table of types, table of names, and attributed tree of
the source program file.
 The second stage translates the internal representation into an intermediate language. This language
is an extension of the RTL language used in GCC. Extended RTL is a low-level intermediate language
for vector and superscalar computers.
 In the third stage, the intermediate program is tuned to the target computer. For example, when tun-
ing intermediate code to Cray Systems, instructions that includes vector expressions with a length
more than 64 are transformed to equivalent sequence of instructions where vector lengths do not
exceed 64.
 The fourth stage is a retargetable code generator. Currently, it generates code for Russian Cray-like
supercomputer Elektronika SSBIS as well as ANSI C code.
 Our current activities concern setting up the compiler on other vector and superscalar computers, as
well as the development of some optimizing stages of the compiler.

Acknowledgments

 We are grateful to Victor P. Ivannikov for his support of our work and especially to Bob Jervice for
his helpful comments.

Page -12 The C[] language

 The work is supported by Russian Basic Research Foundation.

References

 1. Stallman R. Using and Porting GNU CC. Free Software Foundation, 1988.
 2. First working draft on programming language C (draft proposed by ANSI). Ottawa, ISO/TC97/
SC22/WG14, 1986.
 3. Kuo-Cheng Li, Schwetman H. Vector C: A Vector Processing Language. Journal of Parallel and
Vector Computing, 1985, 2, No 2, pp. 132-169.
 4. Connection Machine Model CM-2 Technical Summary (Version 6.0). Thinking Machines Corpo-
ration, Cambridge, Massachusetts, Nov. 1990.
 5. Gisselquist R. An Experimental C Compiler for the Cray-2 Computer. ACM SIGPLAN Notices,
v 21, No 9, 1986, pp 32-49.

