Modular Parallel Programming in mpC for Distributed Memory Machines

Dmitry Arapov, Victor Ivannikov, Alexey Kalinov, Alexey Lastovetsky, Ilya Ledovskih
Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., 109004, Moscow, Russia
lastov@ivann.delta.msk.su

Ted Lewis
Naval Postgraduate School, Code CS, Monterey, CA 93943-5118
lewis@cs.nps.navy.mil

Abstract

The mpC language is an ANSI C superset supporting
modular parallel programming for distributed memory
machines. It allows the user to specify dynamically an
application topology, and the mpC programming environ-
ment uses this information in run time to provide the most
efficient execution of the program on any particular dis-
tributed memory machine. The paper describes the features
of mpC and its programming environment which allow to
use them for developing libraries of parallel programs.

1 Introduction

Programming for distributed memory machines (DMMs)
is based mostly on message-passing function extensions of
C or Fortran, such as PVM [1] and MPI [2]. However, it is
tedious and error-prone to program in a message-passing
language, because of its low level, Therefore, a number of
high-level programming languages have been developed
each of which supports either task or data parallelism. Task
parallel [3-4] and data parallel [5-11] languages allow the
user to implement different classes of parallel algorithins.
We have developed mpC (as an ANSI C superset) support-
ing both task and data parallelism. It is based on the notion
of nerwork comprising processor nodes of different types
and performances connected with links of different band-
widths. The user can describe network topology, create and
discard networks, and distribute data and computations
over the networks. It is important that mpC allows dynamic
creation of networks of dynamic structure.

All programming environments (PEs) for DMMs which
we know of have one common weakness. Namely, when
developing a parallel program, either the user has no facili-

0-8186-7870-4/96 $10.00 © 1997 IEEE

ties to describe the virtual paraliel system executing the
program, or such facilities are too poor to specify an effi-
cient distribution of computations and communications
over the target DMM, Even MPI’s topological facilities
have turned out insufficient to solve the problem. So, to
ensure the efficient execution of the program on a particu-
lar DMM, the user must use facilities which are external to
the program, such as boot schemes and application
schemes [12]. If the user is familiar with both the topology
of target DMM and the topology of the application, then,
by using such configurational files, he can map the pro-
cesses which constitute the program onto processors which
make up DMM, to provide the most efficient execution of
the program. But if the application topology is defined in
run time (that is, if it depends on input data), it won’t be
successful.

mpC allows the user to specify an application topology
(in particular, dynamically), then its programming environ-
ment uses the information in run time to map processes
onto processors of target DMM resulting in the efficient
execution of the application. DMM’s topology is detected
automatically dependent on execution of a special pro-
gram,

When developing the mpC programming environment,
we used a network of workstations running MPI as a target
parallel DMM and found. that the principles, on which
mpC based, make it and its PE convenient tools to develop
efficient and portable parallel programs for networks of
workstations (especially, for heterogenous ones). Modular-
ity of mpC allows to get such programs up in the form of
libraries.

The paper describes the features of mpC and its PE which
allow to use them for developing libraries of parallel pro-
grams. Details of the language and its implementation are
presented elsewhere [13-15].

2 mpC in brief

We will introduce mpC briefly, using a sample program
which multiplies 2 dense square matrices. Qur parallel pro-
gram will use a number of virtual processors, each of which
will compute a number of rows of the resulting matrix. The
dimension of matrices and the number of virtual processors
are defined in run time. Our mpC program is:

[* .. includes and defines....*/

/* 1%/ vold [*Imain()

/Y 2%/ |

/* 3%/ float *[host]x, *[hostly, *[hoat]z;
/* 4*/ int lhost]N;

/* 5%/ wvoid [host]Input{(), [host])Output(),
/% 6*/ [*IMxM () ;

/* 7%/ Input (&x, &y, &N);

/* 8%/ z={lhost]calloc)

/* 9%/ (N*N, f[host] (sizeof (float))):
/*10*/ MxM(x, y. Z, N);

/*11*/ OQutput (z);

/*12*/)

/*13*%/ voild [*IMxM(float *[host]x,

/*14*/ float *{hostl]y,
/*LR*/ float *f{hogt]z
/*16*/ int [host]n)
(*L7x/

/*18%/ repl double *powers;

/*19*/ repl nprocs, nrows [MAXNPROCS], dn;

/*20*/ void Partition();

/*21*/ MPC_Processors_static_info (&nprocs,
[*22*/ &powers) ;
/*23%/ dn=n;

/*24*/ Partition(nprocs,powers,nrowg,dn) ;

/*25%/ |

/*26%) nettype Star(m, nlm}) {

/*27%/ coord I=m;

/*28%/ node {I»=0: fast*n([I] scalar;};
[*29%/ link {I>0: [I]-=(01, [0]-=[11;:};
/*30%/ parent [0];

/*31*/ b

/*32%/ net Star(nprocs, nrows) w;
/*33%/ float *{wldx, *[w]dy, *[wldz;
/*34%/ int (wimyn, [w]sof;

/*35%/ repl [wln;

/*36%/ void [net SimpleNet (p)] ParMult (

/*37*/ float*, float*, float*, repl*,
/*38*/ repl);
/*39%/

/*40%/ myn={[{wlnrows) [I coordof dx];
/*41%/ sof={w] (gizeocf(flocat));
/*42%/ n=[(wldn;

/*43%/ dx={([wlcalloc) (n*myn, «of);
/*44*/ (Thost]free) ({host]dx);

/*45% /) fhost]dx=({void *}x;

249

/*46%/
/*47*/
/*48%/
f*49x/
/*50%/
/*51*/
JER2*/
/*53%/
/*54~%/
/*55*/

/*56*/
/*8T7*/
/*58%/
/*Ra%y
[*60*/
/*61*/
/*x62*/
S*63%/
/*64*/
/*65%/
/*66*/
/*67%*/
/*68%/
/*69%/
/*T0%/
/*¥T1*/
J*¥72*/
/*T3%/
/*T4*/
/*TR*/
/*T76%/
TANNAY]
/*T8*/
/*T79%/

/*80%/

/*81*/
/*X82%/
/*83%/
/*84*/
/*8R*/
/*86*/
/*87*/
/*88*/
/*89%*/
/*90%*/
/*91*/
/*92%/
[*93%/

/%94%/
/*95%/
S*96%/
/*97*/
/*x9g%/
/*9G %/
/*'ll"j\l"‘k/i

dy={{w]calloc) (n*n, sof);

(fhost)free) { [host]dy};

{hostldy={void *)y;

=([w]lcalloc) (n*myn. sof);

([host]free) ({host]dz);

[host]dz=(void *)z;

({{{wlnprocg)w])ParMult (dx, dy,dz,
{fwinrows.,nj ;

void {net SimpleNet (p)v] ParMult({
float *dx, float *dy, float *dz,
repl *r, repl n)

repl a=0;

int myn, 1i;

int *d, *1, c;

void SeqMult (float*, floatw,
float*, int, int);

myn=r{I coordof rj;
([{(pP)V]IMPC_Becast(&s, dy, 1,
n*n, dy, 1j;
d=calloc(p, =zizeof(int));
l=calloc(p. sizeof{int));
for(i=0, d{0}=0; i<p; i++) {
1{il=rli)*n;
if(i+lep) dii+1)=1{1)+d{i};

——

= [I FOOdef ci;
[(p)VvI)MPC_Scatter(&s, dx ,d,
1, c, dx):
SeqgMult (dx, dy, dz, myn, n);
([(p)V])IMPC_Gather{(&s,dz,d,1,c,dz);

c
(

voild SegMult(float *a, float *b,
float *c, int m, int n)

{
int i, j, k, ixn;
double g;
for(i=0; i-<m; i++)
for(j=0, ixn=i*n; j<n; j++) {
for(k=0, 8=0.0; k<n; Kk++)
s+=a{ixn+k]* (double) (bik*n+j});
clixn+jl=
}
}
vold Partition(int p, double *v,

int *r, int n)
{
int sr, i;
double gv;

fori{i=0, sv=0.0; i<p; i++)

y*102%/ av+=v[1];

;*102*/ for(i=0, ar=0; 1i-<p; 1++) |
7*103%/ riil=(int) (viil/sv*nj;
/*104%) ar+=r[il;

/*105%/ 1

/*106*/ if{sri=n) r[0]+=n-gsr;
/*107*/)}

In mpC, the notion of computing space is defined as a set
of typed virtual processors connected by links. Most com-
mon virtual processors are of the scalar type. In addi-
tion, a virtnal processor is characterized by its relative
performance. A directed link connecting two virtual pro-
cessors is a one-way channel for transferring data from
source processor to the processor of destination.

The basic notion of mpC is network object or simply net-
work. Network consists of processors connected by links.
Network is a region of the computing space which can be
used to compute expressions and execute statements. Allo-
cating network objects in the computing space and discard-
ing them is performed in similar fashion as allocating data
objects in storage and discarding them. Conceptually, the
creation of new network is initiated by a processor of an
existing network. This processor is called a parent of the
created network. The parent belongs to the created net-
work. The only processor explicitly defined from the
beginning of program execution till program termination is
the pre-defined host-processor of the scalar type.

Execution of the program begins from a call to function
main on the entire computing space. Lines 3-4 define vari-
ables x, v, z, and N all belonging to the host-processor.
Variable N will hold the dimension of matrices. Variables
x, y will point to arrays holding input matrices, and z will
point to an array holding the output matrix.

Lines 5-6 declare functions Input, Output and MxM.
In addition, the library function calloc is used in the
main function. In general, there are 3 kinds of functions in
mpC: basic, nodal, and network ones. In lines 1, 6, the con-
struct [*], placed just before the function identifier, speci-
fies that main and MxM are identifiers of basic functions.
A declaration of nodal function does not need any addi-
tional specifiers, so calloc is an identifier of nodal func-
tion. In line 5, the construct [host], placed just before
the function identifier, specifies that Input and Output
are identifiers of nerwork functions associated with the
host-processor.

In line 7, the call to function Input is executed on the
host-processor and initiates arrays x, y and variable N.

A nodal function may be executed completely by any one
processor of the computing space. In lines 8-9, the function
calloc is called on the host-processor to allocate storage
for array z. Note, that the operator sizeof is not an oper-
ator of mpC compile time.

In line 10, the call to the basic function MxM is executed

250

on the entire computing space. Its arguments belong to the
host-processor. It multiplies dense NxN matrices x and y
and puts the result in z.

In line 11, the network function Output is called (on the
host-processor) to output z.

Lines 13-55 contain the definition of the function MxM.

Line 18 declares variable power distributed over the
entire computing space. By definition, a data object distrib-
uted over a region of the computing space comprises a set
of components of the same type so that every processor of
the region holds just one component.

Line 19 declares variables nprocs and dn and array
nrows, all replicated over the entire computing space. By
definition, a distributed data object is replicated if all its
components are equal to each other. Note, that line 18
specifies the data object *power to be replicated.

Lines 24-25 call to the standard nodal function
MPC_Processors_static_info on every virtual
processor of the entire computing space returning the num-
ber of actual processors and their relative performances.
The point is that the entire computing space is reputed to
be constituted by a number of processes (playing the role
of virtual processors) running on a number of actual pro-
cessors. So, after this call the variable nprocs will hold
the number of actual processors, and the array powers
will hold their relative performances.

Line 23 broadcasts the value of n to all components of
distributed variable dn.

Lines 24-25 call to the nodal function Partition on
every virtual processor of the entire computing space.
Based on relative performances of actual processors, this
function computes how many rows of the resulting matrix
will be computed by every actual processor. So, after this
call nrows [i] will hold the number of rows computed by
i-th actual processor.

Every network object declared in an mpC program has a
type. The type specifies the number, types and relative per-
formances of virtual processors, links and their lengths, as
well as separates the parent,

Lines 26-31 declares the parametrized family of network
types, named Star, which has 2 formal ropological
parameters: scalar parameter m and vector parameter n, the
latter consisting of m elements. Line 27 declares the coordi-
nate system to which (virtual) processors are related. It
introduces coordinate variable I ranging from O to m~1.

Line 28 declares processor nodes saying that for all T<m
if I>=0 then fast scalar processor with relative perfor-
mance n[I] is related to coordinate [I]. The value of
n{I] shall be positive integer. It is meant that in the
framework of this network-type declaration the greater
value of n [I] the more performance it specifies.

Line 29 declares links saying that for all T<m if I>0
then there exists an undirected link of the normal length

between processors with coordinates [I] and [0]. In gen-
eral, the shorter the link, the wider bandwidth it specifies. If
no link is specified from one processor to another, they are
reputed to be connected with a very long link.

Line 30 says that the parent processor has coordinate [0].

Line 32 defines automatic network w. Its type is defined
completely only in run time. The network w, which executes
the rest of computations and communications, is defined in
such a way, that the more powerful the virtual processor, the
greater number of rows it computes. The mpC program-
ming environment will ensure the optimal mapping of the
virtual processors of w into a set of processes constituting
the entire computing space. So, just one process from pro-
cesses running on each of actual processors will be involved
in multiplying the matrices, and the more powerful the
actual processor, the greater number of rows its process will
compute.

Lines 33-34 define variables dx, dy, dz, myn and sof all
distributed over w. Line 35 defines variable n replicated
over w.

The statement in line 40 is executed on network w. It is an
example of a so-called asynchronous statement, that is, a
distributed statement, the execution of which is divided into
a set of independent undistributed statements each of which
is executed on the corresponding processor using the corre-
sponding data components. Most operators of mpC are
asynchronous in the sense that either both operands and the
result belong to the same processor, or they both are distrib-
uted over the same region of the computing space, and the
distributed operator is divided into a set of independent
undistributed operators each of which is performed on cor-
responding components of the operands. The result of
binary operator coordof is an integer value distributed
over w each component of which is equal to the value of
coordinate I of the processor to which the component
belongs (operand dx is used only to specify the network
over which the result will be distributed). The unary opera-
tor [w] cuts from pointer nrows, distributed over the
entire computing space, a pointer distributed over w. So,
after execution of this statement, each component of myn
will hold the number of rows of the resulting matrix that the
corresponding processor will compute.

Statements in lines 41-43 are also asynchronous and dis-
tributed over w. After execution statements in lines 43-45,
each component of dx will point to an array which will
hold the corresponding portion of the matrix x. Lines 46-51
do the same for matrices v and z. Note, that the compo-
nents of dx, dy and dz belonging to the host-processor
will point to arrays %, y and z correspondingly.

Lines 52-53 call to the network function ParMult
declared in lines 36-38 and defined in lines 56-80. Unlike
the network functions Input and Output, this network
function is not hardly associated with some particular net-

251

work. The header of this function definition declares the
identifier v of a network being a special network formal
parameter of the function. The function can be called on
any network of an appropriate type.

Unlike basic functions, no network other than the network
formal parameter can be created or used in the body of the
network function. Only data objects belonging to the net-
work formal parameter can be defined in the body. In addi-
tion, the corresponding components of an externally-
defined distributed data object may be used.

Sinice the network formal parameter v has a parametrized
type, the corresponding topological parameter p is also
declared in the header of the function definition being also
a special formal parameter. In the function body, this
parameter is treated as an unmodifiable variable of the type
int replicated over the network formal parameter v. The
rest of formal parameters (regular formal parameters) of the
function are also distributed over v.

When calling to this function, the topological argument
[w]nprocs specifies a network type as an instance of the
parametrized network type SimpleNet, and the network
argument w specifies a region of the computing space
treated by the function as a network of this type.

A declaration of the parametrized network type Sim-
pleNet is contained in a standard mpC header and is:
nettype SimpleNet (n) {
coord I=n;
1

It specifies networks consisting of n processors of sca-
lar type such that each pair of processors is connected
with a link of normal length, the parent having the 0-th
coordinate.

So, the network function ParMult is called and executed
on the network w, and its arguments is also distributed over
this region of the computing space.

Lines 56-58 contains the header of the ParMult defini-
tion. The special formal parameter p holds the number of
virtual processors in the network v. The regular formal
parameter n holds the dimension of matrices, r points to p-
element array i-th element of which holds the number of
rows of the resulting matrix that i-th virtual processor of
the network v computes. Each component of dy points to
an array to contain nxn matrix y. Each component of dz
points to an array to contain the rows of z computed on the
corresponding virtual processor of v. Each component of
dx points to an array to contain the rows of x used in com-
putations on the corresponding virtual processor. Note, that
on the parent dx, dy, dz are reputed to point to matrices X, y
and z correspondingly.

Line 60 defines the integer variable s replicated over v.
Lines 61-62 define variables myn, i, d, 1 and c all distrib-
uted over v.

After execution of the asynchronous statement in line 66,

each component of myn will contain the number of Tows of
the resulting matrix that computes the corresponding vir-
tual processor.

Lines 67-68 call 1o the embedded network function
MPC_Bcast which is declared in a standard mpC header
as follows:

int [net SimpleNet (n)] MPC_Bcast(

repl const *coordinates_of_source,

vold *source_buffer,

conat source_step,

repl const count,

void *destination_buffer,

const destination_step);
This call broadcasts the matrix y from the parent of v to all
virtual processors of v. As a result, each component of the
distributed array dy will contain the matrix y.

Statements in lines 69-74 are asynchronous. They initiate
2 distributed p-element arrays d and 1. After their execu-
tion, 1 [i] will hold the number of elements in the portion
of the resulting matrix which is computed by the i-th vir-
tual processor of v, and d[i] will hold the displacement
which corresponds to this portion in the resulting matrix.
Equivalently, 1 [i] will hold the number of elements in
the portion of the matrix x which is used by the i-th virtual
processor of v, and [1} will hold the displacement which
corresponds to this portion in matrix x.

The statement in line 75 is also asynchronous. After its
execution, each component of ¢ will hold the number of
elements in the portion of the resulting matrix which is
computed by the corresponding virtual processor (equiva-
lently, the number of elements in the portion of the matrix
x which is used by this virtual processor).

Lines 76-77 call to the embedded network function
MPC_Scatter which is declared in a standard mpC
header as follows:

int [net SimpleNet(n) w] MPC_Scatter({

repl const *coordinates_of_source,

void *source_buffer,

congt *displacements,

const *gendcounts,

congt receivecount,

void *destination_buffer);
This call scatters the matrix x from the parent of v to all
virtual processors of v. As a result, each component of dx
will point to the array containing the corresponding portion
of the matrix x.

The statement in line 78 is executed asynchronously on v.
It calls to the nodal function SegMult on all virtual pro-
cessors of v, which computes the corresponding portion of
the resulting matrix on each of the virtual processors in
parallel. Lines 81-93 contains the definition of the function
SegMult which implements traditional sequential algo-
rithm of matrix multiplication.

Finally, line 79 calls to the embedded network function

252

MPC_Gather which is declared in a standard mpC header
as follows:
int [net SimpleNet(n) w] MPC_Gather(

repl const *coordinates_of_destination,

void *destination_huffer,

congt *displacements,

const *receivecounts,

const sendcount,

void *source_buffer):
This call gathers the resulting matrix z each virtual proces-
sor of v sending its portion of the result to the parent of v.

3 The mpC programming environment

Currently, the programming environment includes a com-
piler, a run-time support system (RTSS), a small library, a
detector of DMM’s topology, and a non-graphical user
interface.

The main function of the compiler is to translate an mpC
program into a set of programs, each of which runs on its
own (virtual) processor, and which in total implement the
computations and communications specified by the initial
mpC program interacting by means of message passing.
The target language is currently C with calls to functions of
RTSS. The compilation unit is an mpC file.

RTSS manages the computing space which consists of a
number of processes running over target DMM (currently,
a network of workstations) as well as provides communica-
tions. It has a precisely specified interface and encapsulates
a particular communicating package (currently, a small
subset of MPI). It ensures platform-independence of the
rest of the compiler components.

The library consists of a small number of functions which
support debugging mpC programs as well as provide some
low-level efficient facilities.

The topology detector executes a special test program to
detect performances of workstations constituting the target
DMM, the number of processors in each of these worksta-
tions, as well as bandwidths of links connecting the work-
stations (optionally).

The user interface consists of a number of programs sup-
porting the creation of a virtual parallel machine and the
execution of mpC programs on the machine. While creat-
ing the machine with the command mpccreate, its topol-
ogy is detected by the topology detector and saved in the
file used by RTSS. Currently, it works on networks of
UNIX workstations running MPI.

Currently, our compiler uses optionally either the SPMD
model of target code, where all processes constituting a tar-
get message-passing program run the identical code, or a
quasi-SPMD model, where it translates the source mpC file
into 2 separate target files - the first for the host-processor
and the second for the rest of virtual processors.

All processes constituting the target program are divided
into 2 groups - the special process named dispatcher play-
ing the role of the computing space manager, and general
processes named nodes playing the role of virtual proces-
sors of the computing space. The special node named host
is separated. The dispatcher works as a server accepting
requests from nodes. The dispatcher does not belong to the
computing space.

In the target program, every network of the source mpC
program is represented by a set of nodes named region, So,
at any time of the target program running, any node is either
free or hired in one or several regions, Hiring nodes in cre-
ated regions and dismissing them are responsibility of the
dispatcher. The only exception is the pre-hired host-node
representing the mpC pre-defined host-processor. Thus, just
after initialization, the computing space is represented by
the host and a set of temporarily free (unemployed) nodes.

Creation of the region representing a network involves the
parent node, the dispatcher and all free nodes. The parent
node sends a creation request containing the necessary
information about the network topology to the dispatcher.
Based on this information and the information about the
topology of the virtual parallel machine, the dispatcher
selects the most appropriate set of free nodes. After that, it
sends to every free node a message saying whether the node
is hired in the created region or not. Deallocation of net-
work region involves all its members as well as the dis-
patcher.

The dispatcher keeps a queue of creation requests that
cannot be satisfied immediately but can be served in the
future. It implements some strategy of serving the requests
aimed at minimization of the probability of occurring a
deadlock. The dispatcher detects such a situation when the
sum of the number of free nodes and the number of such
hired nodes that could be released is less than the minimum
number of free nodes required by a request in the queue. In
this case, it calls to the function MPC_Abort that termi-
nates the program. Note, that although currently the dis-
patcher is implemented as a single process, the RTSS
interface allows one to implement it as a distributed compo-
nent also.

4 Experimental results

We measured the running time of our mpC program mul-
tiplying two dense square matrices. We used three Sun
SPARCstations 5 (hostnames gamma, beta, and
delta), and Sun SPARCstation 20 (hostname alpha)
connected via 10Mbits Ethernet. There were more than 20
other computers in the same segment of the local network.
We used LAM MPI Version 5.2 as a particular communica-
tion platform.

253

Three virtual parallel machines were created:

gabd consisting of gamma (its relative performance

detected during the creation of this virtual parallel

machine was equal to 1055), alpha (1641), beta

(1161), and delta (1171));

gad consisting of gamma (1151), alpha (1640), and

delta (1141));

ga consisting of gamma (1137), and alpha (1887)).
The computing space of gabd was constituted by 20 pro-
cesses (5 processes running on each of workstations). Com-
puting spaces of gad and ga were constituted by 15 and 10
processes correspondingly. As a base of the comparison we
used the running time of the sequential C program imple-
menting the traditional algorithm of matrix multiplication
(we used gamma to execute this program). Table 1 shows
the experimental results for matrices of different dimen-
sions.

Table 1:Time of multiplying nxn matrices(sec)

n gabd gad ga C
200 15 7 9 11
300 40 25 31 41
400 66 56 80 105
500 141 125 146 221
600 192 229 265 381
700 353 340 430 613
800 456 494 628 931

Note, that the running time of mpC program substantially
depends on the network load. We monitored the network
activity during our experiments. We have observed up to 32
collisions per second. The collisions occurred more often
during broadcasting large data portions. The collisions
resulted in visible degradation of the network bandwidth.
One of our computers (alpha) also operates as a file
server, and its workload was unstable during tests. Some-
times it spent some more time to complete its part of com-
putations than it was predicted by mpccreate utility.

Table 2 compares the contribution of communications and
computations in the total running time of the mpC program
(the results for gabd are presented). The first row shows
matrix dimensions, second and third rows show percentage
of communications and computations in the total running
time, the fourth row shows communications in ratio of com-
putations. The fifth row shows communications in ratio of
computations, not measured but calculated in assumption

that computation time t.ey,,~n’ and communication time
tcomm~n2 (n is matrix dimension). Let tcomp=an3,

toomm=bN"s then toomm/leomp=b/(an). Since teomp=toomm for
=600, then b/a=600 and tomm /teomp =600/n.

Table 2:Contribution of communications and
computations in the total running time

n 600 700 800
communications(%) 50 46 42
computations(%) 50 54 58

comm./comput. 1 0.85 0.72

assumed comm./comput,| 1 0.86 0.75

Communications in our mpC program consist of three
parts: scattering the first matrix, broadcasting the second
matrix, and gathering the resulting matrix. Table 3 com-
pares the contribution of each of these parts in the total
communication time (for gabd virtual parallel machine).

Table 3:Contribution of broadcast, scatter, and gather
in the total communication tiine

n bcast | scatter | gather
600 0.56 0.32 0.14
700 0.65 0.26 0.09
800 0.74 0.2 0.1

While analyzing the presented results, it is necessary to
take into account some peculiarities of both the implemen-
tation of MPI which we used and our local network.

Our local network does not support fast communications.
It is based on 10Mbits Ethernet and uses old-fashioned net-
work equipment. In addition, there are 26 computers in our
segment of the network connected via cascade of 4 hubs.
To characterize our network, it is enough to say that ftp
transfers data from gamma to alpha at the rate of 300-
400Kbytes/s. It means that real bandwidth of our network
is not less than 25-30% of its maximum bandwidth.

On the other hand, LAM MPI Version 5.2 ensures broad-
casting large floating arrays at the rate of S0-60K bytes/s. In
addition, it doesn’t use multicasting facilities of our net-
work.

Nevertheless, even under these conditions, our mpC pro-
gram has demonstrated good speedup comparing with the
sequential C program. If an implementation of MPI
ensures the communication rate comparable with the real
bandwidth of the local network and uses its multicasting
facilities, the contribution of communications in the total
running time of our mpC program will not exceed 10-15%
(we are going to experiment with LAM MPI Version 6.0
and MPICH and hope to present the timing in the nearest
future). If, in addition, we use 100Mbits Ethernet and up-
to-date network technologies (for example, replacing hubs
with switching devices), the contribution of communica-
tions in the total running time of the mpC program will not
exceed 1-2%. That is, the mpC programming environment
can ensure practically ideal speedup of the presented mpC
program for up-to-date networks of workstations.

254

5 Discussion

The presented mpC program demonstrates how mpC and
its programming environment can be used to write libraries
of parallel programs for DMMs,

Basic library functions, similar to the function MxlM,
allow the user to write implicit parallel programs in a
sequential style using calls to basic library functions. Once
compiled, such functions will run efficiently on any partic-
ular DMM, because the mpC programming environment
ensures optimal distribution of computations and commu-
nications over DMM in run time. Note, that although we
didn’t do it, we could call to some standard nodal library
function to obtain information about real bandwidths of the
current network in relation to send/receive, broadcast, scat-
ter, and gather, measured in flops of the host-processor, and
use this information to optimize more carefully the running
time of our program. For example, in case of our slow net-
work for some matrix dimensions it makes sense not to use
more computers, because communication overheads start
exceeding gains from parallelizing computations.

Network library functions, similar to the function Pax-
Mult, support explicit parallel programming. They are
more difficult in usage, but allow avoid overheads from
redundant creation of networks. In addition, unlike basic
functions, network functions can be executed in parallel
providing more efficient code.

Finally, mpC allows to utilize all C library functions
treating them as mpC nodal library functions.

6 Summary

The key peculiarity of the mpC language is its advanced
facilities for managing such resources of DMMs as proces-
sors and links between them. The user can manage these
resources in the manner similar to managing the storage in
C. These facilities permit the development of parallel pro-
grams for DMMs, that once compiled, will run efficiently
on any particular DMM, because the mpC programming
environment ensures optimal distribution of computations
and communications over DMM in run time. [t makes mpC
and its programming environment suitable tools for devel-
opment of a library of parallel programs, especially for het-
erogenous DMMs.

The paper has described the features of mpC and its pro-
gramming environment, developed in the Institute for Sys-
tem Programming, Russian Academy of Sciences, which
allow to use them for developing libraries of parallel pro-
grams.

Acknowledgments

The work was supported by ONR and partially by Russian
Basic Research Foundation and INTAS. '

References

[1] V. Sunderam. PVM: A framework for parallel distributed com-
puting. Concurrency: Practice and Experience, 2(4):315-339,
1990.

[2] Message Passing Interface Forum. MPI: A Message-passing
Interface Standard. International Journal of Supercomputer
Applications, 8(3/4), 1994.

[3] L. Foster, and K. M. Chandy. Fortran M: a language for modu-
lar parallel programming. Preprint MCS-P327-0992, Argonne
Natijonal Lab, 1992.

(4] K. M. Chandy, and C. Kesselman. CC++: A Declarative Con-
current Object Oriented Programming Language. Technical
Report CS-TR-92-01, California Institute of Technology, Pasa-
dena, California, 1992.

[5] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer,
C.-W. Tseng, and M.-Y. Wu. Fortran D Language Specification.
Center for Research on Parallel Computation, Rice University,
Houston, TX, October 1993.

[6] B. Chapman, P. Mehrotra, and H. Zima. Programming in
Vienna Fortran. Scientific Programming, 1(1):31-50, 1992.

[7] High Performance Fortran Forum. High Performance Fortran
language specification, version 1.0. Rice University, Houston, TX,
May 1993.

[8] The CM Fortran Programming Language. CM-5 Technical
Summary, pp. 61-67, Thinking Machines Corp., Nov. 1992,

[9] The C* Programming Language. CM-5 Technical Summary,
pp. 69-75, Thinking Machines Corporation, November 1992.

[10] P. J. Hatcher, and M. J. Quinn. Data-Parallel Programming
on MIMD Computers. The MIT Press, Cambridge, MA, 1991.
[11] S.U. Hanssgen, E.A. Heinz, P. Lukowicz, M. Philippsen, and
W.F. Tichy. The Modula-2* environment for parallel program-
ming. Proceedings of the Working Conference on Programming
Models for Massively Parallel Computers, Berlin, Germany, Sep-
tember 1993.

[12] Trollius LAM Implementation of MPI. Version 5.2. Ohio
State University, 1994,

[13]} A. Lastovetsky. The mpC Programming Language Specifica-
tion. Technical Report, Institute for System Programming, Rus-
sian Academy of Sciences, Moscow, October 1994.

[14] A. Lastovetsky. mpC - a Multi-Paradigm Programming Lan-
guage for Masstvely Parallel Computers. ACM SIGPLAN Notices,
31(2):13-20, February 1996.

[15] D. Arapov, A. Kalinov, and A. Lastovetsky. Managing the
Computing Space in the mpC Compiler. Proceedings of the 1996
Parallel Architectures and Compilation Techniques (PACT 96)
conference, Boston, October 1996.

255

