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A b s t r a c t .  The paper presents a heterogeneous distribution of computa- 
tions while solving dense linear algebra problems on heterogeneous net- 
works of computers. The distribution is based on heterogeneous block 
cyclic distribution which is extension of the traditional homogeneous 
block cyclic distribution taking into account differences in the processor 
performances. The mpC language, specially designed for parallel pro- 
gramming heterogeneous networks is briefly introduced. An mpC apli- 
cation carring out Cholesky factorization on a heterogeneous network of 
workstations is used to demonstrate that the heterogeneous distribution 
have an essential advantage over the traditional homogeneous distribu- 
tion. 

1 I n t r o d u c t i o n  

Progress in network technologies is making local and even global networks of 
computers (in particular, networks of PCs and workstations) more and more at- 
tractive for high-performance parallel computing. While developing applications 
for such networks it is necessary to take into account their heterogeneity being 
the main peculiarity of common networks differing them from supercomputers. 

The heterogeneity is displayed at least in two forms. Firstly, in the form 
of heterogeneity of machine arithmetics of such parallel systems. Related chal- 
lenges existing in writing reliable numerical library software for heterogeneous 
computing environments have been analyzed in [1]. 

Secondly, in the form of heterogeneity of both performances of individual 
processors and speeds of data transfer between the processors. As a rule, to 
solve linear algebra problems on a heterogeneous network of computers one uses 
numeric software originally developed for homogeneous distr ibuted-memory ma- 
chines and later on ported to the network. As a rule, while computing on such 
homogeneous computer systems, a strategy of homogeneous distribution of com- 
putations over processors is used. The strategy will be referred as the HoBo 
strategy - "Homogeneous distribution of processes over processors - Homoge- 
neous distribution of data  over the processes", with each physical processor 
running one process and data being evenly parti t ioned among the processes. 
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Let us see what happens when an application, that  provides a good distribu- 
tion of computations and communications (due to the Hollo strategy) while 
running in homogeneous environments, runs on the heterogeneous network of 
computers. Since volumes of computations executed by different processors are 
approximately equal to each other, more powerful processors will wait for the 
weakest one at synchronization points. Therefore, the total  t ime of computations 
will be determined by the time elapsed on the weakest processor. Similarly, the 
total t ime of communications will be determined by communications via the 
slowest communication link. So, in general, the total running t ime on the het- 
erogeneous network will be close to the total running t ime on a homogeneous 
network obtained from this heterogeneous one by means of replacement of both 
its processors with the weakest processor and its communication links with the 
slowest link. In the part  concerning the heterogeneity of processor performances, 
the statement will be experimentally corroborated in section 4. 

A natural  solution of this problem is heterogeneous distribution of both pro- 
cesses over the processors and data  among the processes, taking into account 
differences in performances of processors and speeds of communication links. As 
it has been demonstrated in [2], such a distribution allows to achieve much bet- 
ter distribution of computations over processors of a heterogeneous computing 
network and, hence, to utilize its performance potential more efficiently. 

Such heterogeneous distribution is a complex problem whose solution needs 
adequate tools. Designed specially to write efficient and portable parallel appli- 
cation for heterogeneous networks of computers, the mpC language [3] is just 
such a tool. This language is an ANSI C superset allowing to write applications 
adapting to differences in performances of both processors and communication 
links of any particular executing network. The basic idea is that  an mpC applica- 
tion explicitly builds in run time an abstract heterogeneous computing network 
and distributes data, computations and communications over the network. The 
mpC programming system uses this information in run t ime to map the abstract 
network to any real executing network of computers in such a way that  ensures 
efficient running of the application on the real network. More about mpC as well 
as the mpC free software can be found at ht tp: / /www.ispras.ru/-mpc.  

In the paper, we consider only the heterogeneity of processor performances. 
We propose a heterogeneous distribution strategy based on homogeneous distri- 
bution of involved processes over processors with each process running on a sep- 
arate processor and heterogeneous block cyclic distribution of processed matr ix 
over the processes. We investigate the strategy, named the HoHe strategy, us- 
ing a typical linear algebra problem - the Cholesky factorization of square dense 
matrices. The problem was chosen as a well-known example of the practically im- 
portant  problem, whose parallel solution needs careful balancing computations 
and communications. Our implementation of parallel Cholesky factorization is 
based on the algorithm implemented in ScaLAPACK [5]. Both distribution of 
the involved processes and the parallel Cholesky factorization proper are per- 
formed by an mpC program calling BLAS and LAPACK functions for local 
computations. Note, that  in this case, the parallel algorithm implemented by 
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the mpC program for the HoHe strategy is, in general, the same as implemented 
by ScaLAPACK function P D P O T R F  for the Hollo strategy. 

Section 2 introduces the heterogeneous block cyclic mat r ix  distribution and 
describes the HoHe strategy. Section 3 shortly introduces the mpC language 
and describes the implementat ion of the HoHe strategy in mpC.  Section 4 gives 
experimental  results of Cholesky factorization on a network of heterogeneous 
workstations using the distribution strategies. 

2 Homogeneous  distr ibution of  processes  w i th  
heterogeneous  data distr ibut ion 

The tradit ional  homogeneous block cyclic da ta  distribution [4] is determinated 
by grid parameters  P and Q and block parameters  m and n. The distribution 
parti t ions the matr ix  into generalized blocks of the size (m-  P ) x ( n .  Q), each of 
which in its turn part i t ioned into (P  �9 Q) blocks of the same size, each going to 
a separate  process. 

Figure 1 shows an example of the homogeneous block cyclic distribution of a 
12x12 matrix,  block-parti t ioned with the block size 2x2 (m--2, n--2), over a 2x3 
process grid (P--2, Q=3).  In this case, generalized blocks are of size 4x6. 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  
0 0 1 0 1 1 2 2 0 0 1  l i 2 2  0 
1 0 1 0 1 1 2 : 2 0 ! 0 1 1 2 2  1 
2 3 ! 3 4 4 5 k 5 3 ' 3 4 4 i 5 5  4 
3i3~3 4 4 5 5 3 3 4 4i5 5 5 
4 0 0 1 1 2 2 0 0 1 1 1 2 2  8 

m 

5 0 0 1 1 2 2 0 0 1 1 2 2  9 
6 3 3 4 4 5 5 3 3 4 4 5 5  2 
7 3 3 4 4 5 5 3 3 4 4 5 5  3 
8 0 0 1 1 2 2 0 0 1 1 2 2  6 

m 

9 0 0 1 1 2 2 0 ! 0 1 1 2 2  
1C 3 3 4 4 5 5 3 3 4 4 j 5 5  
113!3  4 4 5 5 3~3 4 4~5 5 1! 

0 1 6 7 2 3 8 9 4 5 1 0 1 1  
0 0 0 0 1 1 1 1 2 2 2 2  
0 0 0 i 0 1 1 1 1 2 2 2 2  
0 0 0 0 1 1 1 ! 1 2 2 2 2  
0 i 0 0 0 1 1 1 1 2 2 2 2  
0 0 0 0 1 1 1 1 2 2 2 2  
0 0 0 0 1 1 1 1 2 2 2 2  
3 3 3 3 4 4 4 4 5 5 : 5 5  
3 3 3 3 4 4 4 4 5 5 i 5 5  
3 3 3 3 4 4 4 4 5 5 5 5  
3 3 3:3 4 4 414 5 5 5 5 
3 3 3 3 4 4 4 ! 4 5 5 5 5  
3L3 3 3 4 4 414 5 5 5 5 

(a) matrix distribution (b) distribution from processor point-of-view 

Fig. 1. Example of a homogeneous block cyclic distribution of a 12x12 matrix over 2x3 
process grid with the block size 2x2. 

Let an executing computer  system consists of a set L of processors and 
card(L) > P .  Q. Let P �9 Q processes be distr ibuted over P �9 Q most  powerful 
processors in such a way, tha t  just one process goes to each of these proces- 
sors, and mat r ix  M be distributed over the processes in accordance with the 
heterogeneous block cyclic distribution presented below. 
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We also suppose that  the positive real number tit is associated with each of 
the processors and characterizes its relative performance ( i  C [0, P - 1], j E 
[ 0, Q - 1 ] ). Then, in addition to four numbers P,  Q, m and n, parametrizing the 
homogeneous block cyclic distribution, the heterogeneous one is parametrized by 
the PxQ matrix R = {ro} , elements of which characterize performances of the 
corresponding processors. Its main difference from the homogeneous distribution 
lies in heterogeneous data  distribution inside a generalized block. Like in case of 
the homogeneous distribution, a generalized (m- P)x(n  �9 Q) block is parti t ioned 
into (P  �9 Q) blocks. But in case of the heterogeneous distribution, the blocks 
are not of the same size, but  their sizes mijxnit depend on performances of 
processors. In the paper, we consider the simplest choice of mit and nit deduced 
from the assumption that  part  of matr ix M processed by a separate processor 
is proportional to its performance. That  is, 

m .  P . n . Q . r i j  
m i t  �9 ~ i j  : P - 1  

In this case mxn is the average size of the uneven blocks. 
In particular, the above condition can be satisfied by the following choice of 

mij and n i t :  

E 41 r , t  " n " Q 
n i t  = n t  = ~ P o  1 ~ ? - - o  1 r i j  ' m i j  - 

r i j  �9 m . P 

z P - 1  r . .  " 
i = o  z3 

Figure 2 shows an example of the heterogeneous block cyclic distribution of 
a 12x12 matr ix over a 2x3 processor grid (P--2, Q=3) with the average block 
size 2x2 (m=2, n---2), the generalized-block size 4x6 and the following matr ix of 
processor performances 

3 " 

With that  choice of the mij, a row of the distributed matr ix  does not have 
to belong to the same row of the process grid, that  can lead to additional com- 
munication overheads. 

3 Implementation of heterogeneous distribution of 
computations in mpC 

mpC [3] is a parallel language aimed at efficiently-portable modular program- 
ming heterogeneous networks of computers. It provides facilities for specification 
of requirements on resources, necessary for efficient execution of the parallel ap- 
plication, and the mpC programming system tries to satisfy the requirements 
taking into account peculiarities of any particular heterogeneous network of com- 
puters. 
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(a) matrix distribution (b) distribution from processor point-of-view 

Fig. 2. Example of a heterogeneous block cyclic distribution of a 12x12 matrix over 
2x3 processor grid with the average block size 2x2. 

The main idea underlying mpC is that  an mpC application explicitly defines 
a dynamic abstract heterogeneous computing network and distributes data, com- 
putations and communications over the network. The mpC programming system 
uses this information in run time to map the abstract computing network to any 
real executing network of computers in such a way that  ensures efficient running 
of the application on this real network. 

The mpC language is an ANSI C superset that  introduces a new kind of 
managed resource, computing space, defined as a set of virtual processors of 
difference performances connected with links of different communication speeds. 
In run time, the virtual processors are represented by actual processes of the 
particular running parallel application. The programmer manages the computing 
space by means of creating and discarding regions of the computing space, named 
network objects, just like he manages storage creating and discarding data  objects 
(regions of storage). At any moment of program execution, just a set of defined 
network objects represents the abstract computing network. 

mpC application used in experiments, implements the HoHe strategy in three 
steps: 

1. The information about performances of processors of the executing real net- 
work is updated in run time by means of execution of corresponding com- 
putations as a benchmark (namely, Cholesky factorization of a small matrix 
by means of the LAPACK routine dpotf2) .  

2. A network object, executing the corresponding computations, is defined in 
such a way that each of the P .  Q most powerful processors of the executing 
network will execute only one process involved in the computations, and all 
the involved processes form a PxQ process grid. 
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3. A driver of the Cholesky factorization reads from a file problem parame-  
ters (matr ix and block sizes), forms a distributed test  mat r ix  and performs 
its Cholesky factorization on the PxQ process grid. Each virtual  processor 
of the network object computes a portion of the matr ix ,  proport ional  to 
its performance in accordance with the heterogeneous block cyclic matr ix  
distribution described in section 2. 

The above 2-dimensional s t rategy is a generalization of the 1-dimensional 
s t rategy based on heterogeneous da ta  distribution and presented in [6]. The 
lat ter  describes in details an mpC application carring out Cholesky factorization 
for tha t  strategy. 

4 E x p e r i m e n t a l  r e s u l t s  

We compared two distribution strategies: 

- The Hollo s trategy - "Homogeneous distribution of processes over processors 
- Homogeneous distribution of da ta  over the processes" - the tradit ional  
distribution strategy implemented in ScaLAPACK. 

- The HoHe strategy - "Homogeneous distribution of processes over processors 
- Heterogeneous distribution of data  over the processes" implemented in 
mpC.  

The comparison was performed for the Cholesky factorization on a network 
of workstations. For our experiments,  we used a part  of a local network consist- 
ing of 6 uniprocessor Sun workstations of different performances interconnected 
via 10 Mbits Ethernet.  MPICH 1.0.13 was used as a part icular  communicat ion 
platform. All workstations executed the same copy of code. Performances of the 
workstations, obtained by means of execution of the LAPACK routine d p o t f 2  
performing serial Cholesky factorization, is shown in table 1. 

11001: 01 0 
Table  1. Performances of processors demonstrated on serial Cholesky factorization 

In all our experiments we used parallelization efficiency as a factor char- 
acterizing how fully the parallel application utilizes the performance potential  
of the executing network of computers.  Parallelization efficiency was defined as 
Sreal/Sideal, where S~e~t was the real speedup achieved by the parallel appli- 
cation on the parallel system, and Side~t was the ideal speedup tha t  could be 
achieved while parallelizing the problem. The lat ter  was calculated as the sum of 
performances of processors, constituting the executing parallel system, divided 
by the performance of a base processor. All real speedups were calculated relative 
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to the sequential LAPACK routine dpotf2 performing Cholesky factorization on 
the base processor. 

Figure 3 presents the parallelization efficiency achieved by the compared 
distribution strategies while running on the homogeneous network 1-2-3-4 con- 
sisting of 4 workstations 1, 2, 3, and 4 with the optimal process grid (2x2) and 
block sizes. One can see that for large matrices the parallelization efficiency of 
the Hollo strategy is 8% higher than that of the HoHe strategy. Note, that the 
result is not due to the non-Cartesianity of the heterogeneous block cyclic ma- 
trix distribution (as shown in figure 2), since the same result was also obtained 
for a mpC application implementing the homogeneous block cyclic matrix dis- 
tribution. So, it can be explained by more efficient implementation of Cholesky 
factorization in ScaLAPACK. 

Parallelization efficiency 
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Fig. 3. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe 
(mpC) distribution strategies on the homogeneous network consisting of workstations 
1, 2, 3, and 4. 

Now, let us consider the heterogeneous network 1-2-5-6, consisting of work- 
stations 1, 2, 5 and 6 and having the same total power of processors as the 
homogeneous network 1-2-3-4. Parallelization efficiencies achieved by the dif- 
ferent distribution strategies for this heterogeneous network are shown in figure 
4 (as before, optimal sizes of process grid and block were used). 
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Fig. 4. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe 
(mpC) distribution strategies on the heterogeneous network consisting of workstations 
1, 2, 5, and 6. 

One can see, that  in this case the HoHe strategy is much more efficient then 
the Hollo strategy. One can also see that  its efficiency lowered insignificantly 
while transferring from the homogeneous network to the heterogeneous one. 

The Hollo s trategy demonstrates  much worse parMlelization efficiency on the 
heterogeneous network 1 - 2 - 5 - 6  than  on the homogeneous network 1 -2 -3 -4 ,  in 
spite of the two networks being characterized by the same tota l  processor perfor- 
mance - 760 (the sum of performances of part icipating processors). I t  conforms 
to the s ta tement  formulated in Introduction tha t  the to ta l  running t ime (and, 
hence, the parallelization efficiency) provided by the Hol lo  s t rategy on a het- 
erogeneous network is approximately the same as on a homogeneous network 
obtained from this heterogeneous one by means of replacement of both  its pro- 
cessors with the weakest processor and its communicat ion links with the slowest 
link. Indeed, the parallelization efficiency of the corresponding application on the 
network 1 - 2 - 3 - 4  is 1.7 times higher than on the network 1 -2 -5 -6 .  At the same 
time, according to the above statement,  this factor should be close to the ratio of 
performances of the weakest processors in networks 1 - 2 - 3 - 4  and 1 -2 -5 -6 ,  that  
is, be close to 1.9. Note, that  the faster are communication links and the less 
powerful are processors, the higher parallelization efficiency is achieved. There- 
fore, the factor should be a little bit less than  1.9, since the network 1 - 2 - 5 - 6  
has bet ter  ratio of the communication speed and the weakest processor per- 
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formance than the network 1-2-3-4 .  Thus, we can conclude that  the obtained 
experimental results are in good conformance with the above statement. 

Figure 5 shows the parallelization efficiency achieved by the two distribution 
strategies on the heterogeneous network 1 - 2 - 3 - 4 - 5 - 6  consisting of all 6 work- 
stations. As before, optimal sizes of process grid and block were used for each 
of the strategies (3x2 process grid turned out optimal for the both strategies). 
In this case, as before, the HoHe strategy is much more efficient then the Hollo 
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Fig. 5. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe 
(mpC) distribution strategies on the heterogeneous network consisting of workstations 
1, 2, 3, 4, 5, and 6. 

5 C o n c l u s i o n  

Numeric software developed for computations in homogeneous environments 
does not allow to utilize all performance potential of heterogeneous networks. 
It has been demonstrated that  in this case a heterogeneous network is equal to 
some homogeneous network obtained from the heterogeneous one by means of 
replacement its processors with the weakest processor. 

A natural  way to answer this challenge is to develop dedicated numeric soft- 
ware aimed at heterogeneous environments. Such software should take into ac- 
count the heterogeneity of processor performances and speeds of communication 
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links and support heterogeneous distribution of processes, involved in computa- 
tions, over processors and/or data over the processes. The distribution strategy 
presented in the paper is based on heterogeneous block cyclic distribution of 
data. It has been shown that for heterogeneous parallel environments the het- 
erogeneous strategy is much more efficient than the traditional homogeneous 
strategy. 

Implementation of heterogeneous parallel algorithms needs appropriate por- 
gramming languages and tools supporting and facilitating programming hetero- 
geneous computations. In our research, we use the mpC parallel language and its 
free supportive programming environment developed in the Institute for System 
Programming of the Russian Academy of Sciences and just aimed at portable 
and efficient programming for heterogeneous environments. 

The paper has investigated the heterogeneous distribution strategy taking 
into account only the heterogeneity of processor performances. Obviously, that 
the heterogeneity of link performances has no less an impact on parallelization 
efficiency. The mpC language has some means for taking into account that het- 
erogeneity too, but this more complex problem still is waiting its solution. 
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