
Heterogeneous Distribution of Computat ions
While Solving Linear Algebra Problems on

Networks of Heterogeneous Computers

Alexey Kalinov and Alexey Lastovetsky

Institute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia

{ka, last ov}@ispras, ru

A b s t r a c t . The paper presents a heterogeneous distribution of computa-
tions while solving dense linear algebra problems on heterogeneous net-
works of computers. The distribution is based on heterogeneous block
cyclic distribution which is extension of the traditional homogeneous
block cyclic distribution taking into account differences in the processor
performances. The mpC language, specially designed for parallel pro-
gramming heterogeneous networks is briefly introduced. An mpC apli-
cation carring out Cholesky factorization on a heterogeneous network of
workstations is used to demonstrate that the heterogeneous distribution
have an essential advantage over the traditional homogeneous distribu-
tion.

1 I n t r o d u c t i o n

Progress in network technologies is making local and even global networks of
computers (in particular, networks of PCs and workstations) more and more at-
tractive for high-performance parallel computing. While developing applications
for such networks it is necessary to take into account their heterogeneity being
the main peculiarity of common networks differing them from supercomputers.

The heterogeneity is displayed at least in two forms. Firstly, in the form
of heterogeneity of machine arithmetics of such parallel systems. Related chal-
lenges existing in writing reliable numerical library software for heterogeneous
computing environments have been analyzed in [1].

Secondly, in the form of heterogeneity of both performances of individual
processors and speeds of data transfer between the processors. As a rule, to
solve linear algebra problems on a heterogeneous network of computers one uses
numeric software originally developed for homogeneous distr ibuted-memory ma-
chines and later on ported to the network. As a rule, while computing on such
homogeneous computer systems, a strategy of homogeneous distribution of com-
putations over processors is used. The strategy will be referred as the HoBo
strategy - "Homogeneous distribution of processes over processors - Homoge-
neous distribution of data over the processes", with each physical processor
running one process and data being evenly parti t ioned among the processes.

192

Let us see what happens when an application, that provides a good distribu-
tion of computations and communications (due to the Hollo strategy) while
running in homogeneous environments, runs on the heterogeneous network of
computers. Since volumes of computations executed by different processors are
approximately equal to each other, more powerful processors will wait for the
weakest one at synchronization points. Therefore, the total t ime of computations
will be determined by the time elapsed on the weakest processor. Similarly, the
total t ime of communications will be determined by communications via the
slowest communication link. So, in general, the total running t ime on the het-
erogeneous network will be close to the total running t ime on a homogeneous
network obtained from this heterogeneous one by means of replacement of both
its processors with the weakest processor and its communication links with the
slowest link. In the part concerning the heterogeneity of processor performances,
the statement will be experimentally corroborated in section 4.

A natural solution of this problem is heterogeneous distribution of both pro-
cesses over the processors and data among the processes, taking into account
differences in performances of processors and speeds of communication links. As
it has been demonstrated in [2], such a distribution allows to achieve much bet-
ter distribution of computations over processors of a heterogeneous computing
network and, hence, to utilize its performance potential more efficiently.

Such heterogeneous distribution is a complex problem whose solution needs
adequate tools. Designed specially to write efficient and portable parallel appli-
cation for heterogeneous networks of computers, the mpC language [3] is just
such a tool. This language is an ANSI C superset allowing to write applications
adapting to differences in performances of both processors and communication
links of any particular executing network. The basic idea is that an mpC applica-
tion explicitly builds in run time an abstract heterogeneous computing network
and distributes data, computations and communications over the network. The
mpC programming system uses this information in run t ime to map the abstract
network to any real executing network of computers in such a way that ensures
efficient running of the application on the real network. More about mpC as well
as the mpC free software can be found at ht tp: / /www.ispras.ru/-mpc.

In the paper, we consider only the heterogeneity of processor performances.
We propose a heterogeneous distribution strategy based on homogeneous distri-
bution of involved processes over processors with each process running on a sep-
arate processor and heterogeneous block cyclic distribution of processed matr ix
over the processes. We investigate the strategy, named the HoHe strategy, us-
ing a typical linear algebra problem - the Cholesky factorization of square dense
matrices. The problem was chosen as a well-known example of the practically im-
portant problem, whose parallel solution needs careful balancing computations
and communications. Our implementation of parallel Cholesky factorization is
based on the algorithm implemented in ScaLAPACK [5]. Both distribution of
the involved processes and the parallel Cholesky factorization proper are per-
formed by an mpC program calling BLAS and LAPACK functions for local
computations. Note, that in this case, the parallel algorithm implemented by

193

the mpC program for the HoHe strategy is, in general, the same as implemented
by ScaLAPACK function P D P O T R F for the Hollo strategy.

Section 2 introduces the heterogeneous block cyclic mat r ix distribution and
describes the HoHe strategy. Section 3 shortly introduces the mpC language
and describes the implementat ion of the HoHe strategy in mpC. Section 4 gives
experimental results of Cholesky factorization on a network of heterogeneous
workstations using the distribution strategies.

2 Homogeneous distr ibution of processes w i th
heterogeneous data distr ibut ion

The tradit ional homogeneous block cyclic da ta distribution [4] is determinated
by grid parameters P and Q and block parameters m and n. The distribution
parti t ions the matr ix into generalized blocks of the size (m- P) x (n . Q), each of
which in its turn part i t ioned into (P �9 Q) blocks of the same size, each going to
a separate process.

Figure 1 shows an example of the homogeneous block cyclic distribution of a
12x12 matrix, block-parti t ioned with the block size 2x2 (m--2, n--2), over a 2x3
process grid (P--2, Q=3). In this case, generalized blocks are of size 4x6.

0 1 2 3 4 5 6 7 8 9 1 0 1 1
0 0 1 0 1 1 2 2 0 0 1 l i 2 2 0
1 0 1 0 1 1 2 : 2 0 ! 0 1 1 2 2 1
2 3 ! 3 4 4 5 k 5 3 ' 3 4 4 i 5 5 4
3i3~3 4 4 5 5 3 3 4 4i5 5 5
4 0 0 1 1 2 2 0 0 1 1 1 2 2 8

m

5 0 0 1 1 2 2 0 0 1 1 2 2 9
6 3 3 4 4 5 5 3 3 4 4 5 5 2
7 3 3 4 4 5 5 3 3 4 4 5 5 3
8 0 0 1 1 2 2 0 0 1 1 2 2 6

m

9 0 0 1 1 2 2 0 ! 0 1 1 2 2
1C 3 3 4 4 5 5 3 3 4 4 j 5 5
113!3 4 4 5 5 3~3 4 4~5 5 1!

0 1 6 7 2 3 8 9 4 5 1 0 1 1
0 0 0 0 1 1 1 1 2 2 2 2
0 0 0 i 0 1 1 1 1 2 2 2 2
0 0 0 0 1 1 1 ! 1 2 2 2 2
0 i 0 0 0 1 1 1 1 2 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2
0 0 0 0 1 1 1 1 2 2 2 2
3 3 3 3 4 4 4 4 5 5 : 5 5
3 3 3 3 4 4 4 4 5 5 i 5 5
3 3 3 3 4 4 4 4 5 5 5 5
3 3 3:3 4 4 414 5 5 5 5
3 3 3 3 4 4 4 ! 4 5 5 5 5
3L3 3 3 4 4 414 5 5 5 5

(a) matrix distribution (b) distribution from processor point-of-view

Fig. 1. Example of a homogeneous block cyclic distribution of a 12x12 matrix over 2x3
process grid with the block size 2x2.

Let an executing computer system consists of a set L of processors and
card(L) > P . Q. Let P �9 Q processes be distr ibuted over P �9 Q most powerful
processors in such a way, tha t just one process goes to each of these proces-
sors, and mat r ix M be distributed over the processes in accordance with the
heterogeneous block cyclic distribution presented below.

194

We also suppose that the positive real number tit is associated with each of
the processors and characterizes its relative performance (i C [0, P - 1], j E
[0, Q - 1]). Then, in addition to four numbers P, Q, m and n, parametrizing the
homogeneous block cyclic distribution, the heterogeneous one is parametrized by
the PxQ matrix R = {ro} , elements of which characterize performances of the
corresponding processors. Its main difference from the homogeneous distribution
lies in heterogeneous data distribution inside a generalized block. Like in case of
the homogeneous distribution, a generalized (m- P)x(n �9 Q) block is parti t ioned
into (P �9 Q) blocks. But in case of the heterogeneous distribution, the blocks
are not of the same size, but their sizes mijxnit depend on performances of
processors. In the paper, we consider the simplest choice of mit and nit deduced
from the assumption that part of matr ix M processed by a separate processor
is proportional to its performance. That is,

m . P . n . Q . r i j
m i t �9 ~ i j : P - 1

In this case mxn is the average size of the uneven blocks.
In particular, the above condition can be satisfied by the following choice of

mij and n i t :

E 41 r , t " n " Q
n i t = n t = ~ P o 1 ~ ? - - o 1 r i j ' m i j -

r i j �9 m . P

z P - 1 r . . "
i = o z3

Figure 2 shows an example of the heterogeneous block cyclic distribution of
a 12x12 matr ix over a 2x3 processor grid (P--2, Q=3) with the average block
size 2x2 (m=2, n---2), the generalized-block size 4x6 and the following matr ix of
processor performances

3 "

With that choice of the mij, a row of the distributed matr ix does not have
to belong to the same row of the process grid, that can lead to additional com-
munication overheads.

3 Implementation of heterogeneous distribution of
computations in mpC

mpC [3] is a parallel language aimed at efficiently-portable modular program-
ming heterogeneous networks of computers. It provides facilities for specification
of requirements on resources, necessary for efficient execution of the parallel ap-
plication, and the mpC programming system tries to satisfy the requirements
taking into account peculiarities of any particular heterogeneous network of com-
puters.

195

0 1 2 3
o o l o o l
1 0 0 0 1
2 3 3 3 4

3 3 3 i 4
4 0 0 1
5 0 0 1
6 3 3 3 4
7 3 3 3 4
8 o o ol1
90001
1 0 3 3 3 4
1 1 3 3 3 4

4 5 6 7 8 91011 0 1 2 6 7 8 3 4 910
1 2 0 0 0 1 1 2 O0 010 01010 0 1 1 1 l l
1 2 0 010 1 1 2 1,0 0 0 01010 1 1 1 l l l
4 2 3 3 3 4 4 2 410 0 00 lOlO 4 1 1 1 1
4 5 3 3 3 4 4 5 5 0 0 00lOlO 5 1 1 1 1
1 2 0 0 0 1 1 2 8 0 0 00lOlO 8 1 1 1 1
1 2 0 0 0 1 1 2 9,0 0 0 01010 9 1 1 1 1
4 2 3 3 3 4 4 2 213 3 3 31313 2 4 4 4 4
4 5 3 3 3 4 4 5 313 3 3 31313 3 4 4 4 4
1 2 0 0 011 1 2 6 3 3 3 31313 5 4 4 4 4
1 210 0 0 i 1 2 713 3 3 3 | 3 | 3 7 4 414~,4
4 21313:3 4 4 2 ll:13 3 3 31313 .04 41414
4 5131313 4 4 5 11~3 3 3 31313 .14 41414

511
0 2 2
1 2 2
2 2 2
4 2 2
5 2
6 2 I
8 2
9 2
3o221

5~5

!155
~ 5 5

(a) matrix distribution (b) distribution from processor point-of-view

Fig. 2. Example of a heterogeneous block cyclic distribution of a 12x12 matrix over
2x3 processor grid with the average block size 2x2.

The main idea underlying mpC is that an mpC application explicitly defines
a dynamic abstract heterogeneous computing network and distributes data, com-
putations and communications over the network. The mpC programming system
uses this information in run time to map the abstract computing network to any
real executing network of computers in such a way that ensures efficient running
of the application on this real network.

The mpC language is an ANSI C superset that introduces a new kind of
managed resource, computing space, defined as a set of virtual processors of
difference performances connected with links of different communication speeds.
In run time, the virtual processors are represented by actual processes of the
particular running parallel application. The programmer manages the computing
space by means of creating and discarding regions of the computing space, named
network objects, just like he manages storage creating and discarding data objects
(regions of storage). At any moment of program execution, just a set of defined
network objects represents the abstract computing network.

mpC application used in experiments, implements the HoHe strategy in three
steps:

1. The information about performances of processors of the executing real net-
work is updated in run time by means of execution of corresponding com-
putations as a benchmark (namely, Cholesky factorization of a small matrix
by means of the LAPACK routine dpotf2) .

2. A network object, executing the corresponding computations, is defined in
such a way that each of the P . Q most powerful processors of the executing
network will execute only one process involved in the computations, and all
the involved processes form a PxQ process grid.

196

3. A driver of the Cholesky factorization reads from a file problem parame-
ters (matr ix and block sizes), forms a distributed test mat r ix and performs
its Cholesky factorization on the PxQ process grid. Each virtual processor
of the network object computes a portion of the matr ix , proport ional to
its performance in accordance with the heterogeneous block cyclic matr ix
distribution described in section 2.

The above 2-dimensional s t rategy is a generalization of the 1-dimensional
s t rategy based on heterogeneous da ta distribution and presented in [6]. The
lat ter describes in details an mpC application carring out Cholesky factorization
for tha t strategy.

4 E x p e r i m e n t a l r e s u l t s

We compared two distribution strategies:

- The Hollo s trategy - "Homogeneous distribution of processes over processors
- Homogeneous distribution of da ta over the processes" - the tradit ional
distribution strategy implemented in ScaLAPACK.

- The HoHe strategy - "Homogeneous distribution of processes over processors
- Heterogeneous distribution of data over the processes" implemented in
mpC.

The comparison was performed for the Cholesky factorization on a network
of workstations. For our experiments, we used a part of a local network consist-
ing of 6 uniprocessor Sun workstations of different performances interconnected
via 10 Mbits Ethernet. MPICH 1.0.13 was used as a part icular communicat ion
platform. All workstations executed the same copy of code. Performances of the
workstations, obtained by means of execution of the LAPACK routine d p o t f 2
performing serial Cholesky factorization, is shown in table 1.

11001: 01 0
Table 1. Performances of processors demonstrated on serial Cholesky factorization

In all our experiments we used parallelization efficiency as a factor char-
acterizing how fully the parallel application utilizes the performance potential
of the executing network of computers. Parallelization efficiency was defined as
Sreal/Sideal, where S~e~t was the real speedup achieved by the parallel appli-
cation on the parallel system, and Side~t was the ideal speedup tha t could be
achieved while parallelizing the problem. The lat ter was calculated as the sum of
performances of processors, constituting the executing parallel system, divided
by the performance of a base processor. All real speedups were calculated relative

197

to the sequential LAPACK routine dpotf2 performing Cholesky factorization on
the base processor.

Figure 3 presents the parallelization efficiency achieved by the compared
distribution strategies while running on the homogeneous network 1-2-3-4 con-
sisting of 4 workstations 1, 2, 3, and 4 with the optimal process grid (2x2) and
block sizes. One can see that for large matrices the parallelization efficiency of
the Hollo strategy is 8% higher than that of the HoHe strategy. Note, that the
result is not due to the non-Cartesianity of the heterogeneous block cyclic ma-
trix distribution (as shown in figure 2), since the same result was also obtained
for a mpC application implementing the homogeneous block cyclic matrix dis-
tribution. So, it can be explained by more efficient implementation of Cholesky
factorization in ScaLAPACK.

Parallelization efficiency

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

I I I I I I I

HoHo
HoHe

) I I I I I)

400 600 800 1000 1200 1400 1600 1800
Matrix dimension

Fig. 3. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe
(mpC) distribution strategies on the homogeneous network consisting of workstations
1, 2, 3, and 4.

Now, let us consider the heterogeneous network 1-2-5-6, consisting of work-
stations 1, 2, 5 and 6 and having the same total power of processors as the
homogeneous network 1-2-3-4. Parallelization efficiencies achieved by the dif-
ferent distribution strategies for this heterogeneous network are shown in figure
4 (as before, optimal sizes of process grid and block were used).

198

Parallelization efficiency

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

I] I I I I I

HoHo - -
- HoHe

-- ~

I I I I P I I

400 600 800 1000 1200 1400 1600 1800
Matr ix dimension

Fig. 4. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe
(mpC) distribution strategies on the heterogeneous network consisting of workstations
1, 2, 5, and 6.

One can see, that in this case the HoHe strategy is much more efficient then
the Hollo strategy. One can also see that its efficiency lowered insignificantly
while transferring from the homogeneous network to the heterogeneous one.

The Hollo s trategy demonstrates much worse parMlelization efficiency on the
heterogeneous network 1 - 2 - 5 - 6 than on the homogeneous network 1 -2 -3 -4 , in
spite of the two networks being characterized by the same tota l processor perfor-
mance - 760 (the sum of performances of part icipating processors). I t conforms
to the s ta tement formulated in Introduction tha t the to ta l running t ime (and,
hence, the parallelization efficiency) provided by the Hol lo s t rategy on a het-
erogeneous network is approximately the same as on a homogeneous network
obtained from this heterogeneous one by means of replacement of both its pro-
cessors with the weakest processor and its communicat ion links with the slowest
link. Indeed, the parallelization efficiency of the corresponding application on the
network 1 - 2 - 3 - 4 is 1.7 times higher than on the network 1 -2 -5 -6 . At the same
time, according to the above statement, this factor should be close to the ratio of
performances of the weakest processors in networks 1 - 2 - 3 - 4 and 1 -2 -5 -6 , that
is, be close to 1.9. Note, that the faster are communication links and the less
powerful are processors, the higher parallelization efficiency is achieved. There-
fore, the factor should be a little bit less than 1.9, since the network 1 - 2 - 5 - 6
has bet ter ratio of the communication speed and the weakest processor per-

199

formance than the network 1-2-3-4 . Thus, we can conclude that the obtained
experimental results are in good conformance with the above statement.

Figure 5 shows the parallelization efficiency achieved by the two distribution
strategies on the heterogeneous network 1 - 2 - 3 - 4 - 5 - 6 consisting of all 6 work-
stations. As before, optimal sizes of process grid and block were used for each
of the strategies (3x2 process grid turned out optimal for the both strategies).
In this case, as before, the HoHe strategy is much more efficient then the Hollo

Parallelization efficiency

I I

strategy.

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

I I I I I

HoHo
HoHe

. . ~ 1 7 6 1 7 6

I

I I I I I I I

400 600 800 1000 1200 1400 1600 1800
Matrix dimension

Fig. 5. Parallelization efficiencies achieved by the Hollo (ScaLAPACK) and HoHe
(mpC) distribution strategies on the heterogeneous network consisting of workstations
1, 2, 3, 4, 5, and 6.

5 C o n c l u s i o n

Numeric software developed for computations in homogeneous environments
does not allow to utilize all performance potential of heterogeneous networks.
It has been demonstrated that in this case a heterogeneous network is equal to
some homogeneous network obtained from the heterogeneous one by means of
replacement its processors with the weakest processor.

A natural way to answer this challenge is to develop dedicated numeric soft-
ware aimed at heterogeneous environments. Such software should take into ac-
count the heterogeneity of processor performances and speeds of communication

200

links and support heterogeneous distribution of processes, involved in computa-
tions, over processors and/or data over the processes. The distribution strategy
presented in the paper is based on heterogeneous block cyclic distribution of
data. It has been shown that for heterogeneous parallel environments the het-
erogeneous strategy is much more efficient than the traditional homogeneous
strategy.

Implementation of heterogeneous parallel algorithms needs appropriate por-
gramming languages and tools supporting and facilitating programming hetero-
geneous computations. In our research, we use the mpC parallel language and its
free supportive programming environment developed in the Institute for System
Programming of the Russian Academy of Sciences and just aimed at portable
and efficient programming for heterogeneous environments.

The paper has investigated the heterogeneous distribution strategy taking
into account only the heterogeneity of processor performances. Obviously, that
the heterogeneity of link performances has no less an impact on parallelization
efficiency. The mpC language has some means for taking into account that het-
erogeneity too, but this more complex problem still is waiting its solution.

6 Acknowledgments

We would like to thank Jack Dongarra and Antoine Petitet for their useful
comments on preliminary versions of the paper.

References

1. L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, A.
Petitet, H. Ren, K. Stanley, and R. C. Whaley Practical Experience in the Dangers
of Heterogeneous Computing UT, CS-96-330, July 1996.

2. D.Arapov, A.Kalinov, A.Lastovetsky, I.Ledovskih, and T.Lewis "A Programming
Environment for Heterogeneous Distributed Memory Machines", Proceedings of the
Sixth Heterogeneous Computing Workshop (HCW'97) , IEEE Computer Society
Press, Geneva, Switzerland, April 1, 1997.

3. A.Lastovetsky, The mpC Programming Language Specification. Technical Report,
ISPRAS, Moscow, December 1994.

4. B.Hendrickson and D.Womble,"The Torus-wrap Mapping for Dense Matrix Cal-
culations on Massively Parallel Computers", SIAMSSC, 15(5), 1994.

5. J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Wha-
ley "The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky
Factorization Routines" UT, CS-94-246, September, 1994.

6. D.Arapov, A.Kalinov, A.Lastovetsky and I.Ledovskih "Experiments with mpC:
Efficient Solving Regular Problems on Heterogeneous Networks of Computers via
Irregularization", Proceedings of the Fifth International Symposium on Solving Ir-
regularly Structured Problems in Parallel (IRREGULAR'98) , Lecture Notes in
Computer Science 1457, Berkley, CA, USA, August 9-11, 1998.

