
Managing Processes with Network Objects and Their Translation

Dmitry Arapoq, Victor Ivannikov, Alexey Kalinov, Alexey Lastovetsky, Ilya Ledovskih
nstitute for System Programming, Russian Academy of Sciences
25, Bolshaya Kommunisticheskaya str., Moscow 109004, Russia

lastov@ispras.ru
t ~

1 Abstract
The mpC language Ind its supportive portable program-

ming environment are1 aimed at eficiently-portable modu-
lar parallel progru ming heterogeneous networks of
computers (HNcs). nlike traditional tools used for por-
table progrumming Cs, mpC provides more advanced
facilities for process anagement to support eficientport-
ability. The paper p esents the abstraction of network
object introduced in i he mpC language to manage pro-

program in order to
of m pC applications on anypar-

is paid to the translation
low-level notions of tar-

ensure eficient

1. Introduction I

- shared-memory multiproces-
multiprocessors

nodes and communicition speeds and bandwidths of links
interconnecting

high-performance computing
are used mostly the same
programming MPPs (and,
[l], MPI [2] and HPF [3] .

To understand hod suitable the tools are for local net-
works, let us estimate how they support efficient, portable,
modular, efficiently- ortable, easy and reliable program-
ming heterogeneous etworks of computers (HNCs).

E$cient programm ng HNCs means developing such an

lel algorithm utilizi the performance potential of the
HNC with sufficient ompleteness.

Portable programm’ng HNCs means developing such an
application that once eveloped and tested for a particular
HNC will run proper1 t on any other HNC without any cor-

application that for a I particular HNC implements a paral-

rections.
Modular programming HNCs means developing such a

parallel program unit that can be separately compiled and
correctly used by other programmers when developing
their parallel applications without knowing its inside.

Eficiently-portable programming HNCs means develop-
ing a portable parallel application able to adapt to pecu-
liarities (in particular, processor performances and
communication speeds) of any particular executing HNC
to exploit its performance potential with sufficient com-
pleteness. (Note, that only efficiently-portable and modu-
lar programming HNCs enables the development of
parallel packages and libraries for HNCs.)

Easy-in-use and reliable programming HNCs means
using such a parallel programming model that does not
make the development of complex applications for HNCs
tedious and error-prone.

PVM, MPI and HPF all support portable programming
HNCs.

Unlike PVM, both MPI and HPF additionally support
modular programming HNCs.

To understand if MPI and HPF support efficient and effi-
ciently-portable programming HNCs, let us consider some
typical parallel algorithms allowing both efficient and effi-
ciently-portable implementation for HNCs and analyze
how they can be expressed in MPI and HPF.

Firstly, let us consider a problem of simulating the evolu-
tion of a system of stars in a galaxy (or set of galaxies)
under the influence of Newtonian gravitational attraction.
Let the system consist of a number of large groups of bod-
ies being far away from each other. It is known, that since
the magnitude of interaction between bodies falls off rap-
idly with distance, the effect of a large group of bodies
may be approximated by a single equivalent body, if the
group of bodies is far enough away from the point at
which the effect is being evaluated. So, we can parallelize
the problem, and the corresponding message-passing algo-
rithm will use a few processes, each of which updates data
characterizing a single group of bodies. Each process
holds attributes of all the bodies constituting the corre-

1037
1089-6503/98 $10.00

sponding group as well as masses and centers of gravity of
other groups. The attributes characterizing a body include
its position, velocity and mass. There is one process, called
host-process, that holds all bodies constituting the galaxy
and outputs successive states of the galaxy. The scheme of
the corresponding message-passing algorithm looks as fol-
lows:

Initialize a host-process
Initialize a galaxy on the host-process
Initialize a balanced set ofprocesses for the groups
of the galaxy (one process for each group of the galaxy)

Scatter the groups over the processes
Compute masses of the groups in parallel
Interchange the masses among processes
while(1) {

Output the current state of the galaxy

Compute centers of gravity of the groups in parallel
Interchange the centers among processes
Update the groups in parallel
Gather the groups on the host-process

on the host-process

3
Here, “a balanced set of processes” means that the pro-

cesses are mapped to the executing HNC in such a way to
provide the best balance between speeds of processes and
speeds of data transfer among the processes minimizing
the total running time.

MPI does not allow to create a group of processes based
on such properties of the created group as related speeds of
processes or speeds of data transfer among processes. The
basic way to create a group of processes is to explicitly
point out all the processes of the entire ordered set of
homogeneous MPI processes running over a HNC, that
should join the created group. The only exception is an
operation for dividing a single group of processes into n
subgroups, each process explicitly specifying which sub-
group it wants to join. But even this mechanism does not
solve the problem of creating a group of processes based
on their relative quantitative characteristics. An MPI pro-
cess is identified only by its serial number and has no addi-
tional properties (attributes) differing it from other MPI
processes. Therefore, the programmer, writing the corre-
sponding MPI application, cannot exert influence on the
level of the balance among processes of the created group.
From MPI’s point of view all process groups are equally
balanced. This point of view is explainable, if to remem-
ber, that MPI was originally developed for portable pro-
gramming MPPs consisting of identical processors
interconnected via very fast network equipment, and any
mappings assigning different processes to different proces-
sors of a MPP are considered equivalent to each other and
optimal. Therefore, there is no problem to start up the MPI
application on the MPP in such a way to enswe its efficient

execution.
The situation changes drastically for HNCs. Let, for

example, a modelled system of bodies consist of 5 groups
gl, 82, 83, 84, and g5, comprising 100,200, 300,400, and
500 bodies correspondingly, and an executing HNC consist
of 5 uniprocessor workstations wl , w2, w3, w4, and w5,
relative performances of which are 1, 2, 3, 4, and 5 corre-
spondingly. Simplifying the situation, suppose the work-
stations to be interconnected with such a network
equipment that provide communications, fast enough to
neglect communication overheads for the given applica-
tion. Obviously, that the mapping, assigning gl to w5, g2
to w4, g3 to w3, g4 to w2, and g5 to wl , will lead to much
slower execution of the application, than the mapping,
assigning gl to wl , g2 to w2, g3 to w3, g4 to w4, and g5 to
w5. Therefore, to start up the application on a HNC in such
a way to ensure its efficient execution, a user should know
well about both characteristics of the executing HNC and
the inside of the application and solve a non-trivial optimi-
zation problem. This problem becomes much more com-
plicated if the executing HNC consists of an rather large
number of uni- and multiprocessor computers intercon-
nected with a mixed network equipment orland if the task
of modelling the evolution of the system of bodies is only a
part of a larger MPI application.

Thus, when programming HNCs, one cannot use effi-
ciently an MPI module without knowledge of its inside,
that is, MPI cannot support both efficient and modular pro-
gramming HNCs simultaneously.

Moreover, if the number of groups of bodies and the
number of bodies in each group are defined only in run
time, the user has no information to start up the application
in an efficient way. Therefore, in the most general case,
MPI does not support efficient programming HNCs and,
hence, efficiently-portable programming HNCs.

Like MPI, HPF does not allow to express the above algo-
rithm. The main obstacle is that a homogeneous multipro-
cessor providing very fast communications among its
processors is the only parallel machine visible when pro-
gramming in HPF. Therefore, a programmer, writing the
correspondmg HPF application, cannot exert influence on
the level of the balance among processes of the target mes-
sage-passing program. In addition, HPF does not support
neither irregular andor uneven data distribution nor
coarse-grained parallelism to express adequately this
(rather coarse-grained task than pure data parallel) algo-
rithm. Thus, HPF also does not support efficient (and,
hence, efficiently-portable) programming HNCs.

The above problem becomes much more complicated in
the case of modelling a system of galaxies each of which in
turn consists of a number of groups of bodies. The corre-
sponding message-passing algorithm should deal with an
hierarchy of interacting processes, implementing the inher-

1038

f this complicated problem, that
ated process management aimed

nning the application on HNCs.

lar parallel programming HNCs,
and new tools ta

system mpC [4-51. It is based on a
ies that allow the user to spec-
different groups of processes
ion of different parts of the
he corresponding abstraction

the mpC language, the user
define network objects (in
ell as distribute data and

network objects. The mpC pro-
uses this information in run time

ts to any underlying HNC
ent running of the applica-
st devoted to implementa-

/ * 2 * / coord
/ * 3 * / node {
/ * 4 * / I ;
/ * 5 * / . . .
/ * 6 * / {
/ * 7 * / repl.
/ * 8 * /

2. Outline of the impC language

l=n;
P = O : p [I l ; I :

i n t m , q [N] ;
/*Cqmpute m , q [O l ,...,q [m-11 * /

1039

ration declaring the coordinate system to which virtual
processors are related. It introduces coordinate variable I
ranging from 0 to n - 1. Line 3 is a node declaration. It
relates virtual processors to the coordinate system and
declares their types and performances. It stands for the
predicate for all ICn i f I>=O then a virtual processol:
whose relative performance is specijied by the value of
p [I], is related to the point with the coordinate [I] .

Line 7 defines variable m and array q both replicated
over the entire computing space (any network object is
considered a region of the entire computing space). By
definition, data object distributed over a region of the
computing space comprises a set of components of any
one type so that each virtual processor of the region holds
one component. By definition, a distributed data object is
replicated if all its components is equal to each other.

Conceptually, creation of a new network object is initi-
ated by a virtual processor of a network object already cre-
ated. This virtual processor is called a parent of the
created network object. The parent belongs to the created
network object. In our case, the parent of network object r
is the so-called virtual host-processor - the only virtual
processor defined from the beginning of program execu-
tion till program termination.

Suppose we to model the evolution of m groups of bodies
under the influence of Newtonian gravitational attraction,
and our parallel application uses a virtual processor to
update a single group. Suppose also q [i] to be equal to
the square of the number of bodies in the i-th group.
Then, line 10 defines network object r, executing most of
computations and communications, in such a way, that it
consists of m virtual processors, and the relative perfor-
mance of each processor is characterized by the volume of
computations to update the group which it computes. So,
the more powerful is the virtual processor, the larger group
of bodies it computes. The mpC programming environ-
ment bases on this information as well as on the informa-
tion about the topology of an underlying HNC to map the
virtual processors into the processes, running on this HNC
and representing the entire computing space, in the most
appropriate way. Since it does it in run time, the user does
not need to recompile the mpC code to port it to other
HNCS.

So, unlike MPI and HPF, supporting efficiently-portable
modular programming MPPs, mpC also supports effi-
ciently-portable modular programming HNCs, including
MPPs as particular cases.

3. Translation of network definitions

The mpC compiler translates a source mpC file into a
target ANSI C file with calls to functions of the run-time

support system. It uses the SPMD model of target code,
when all processes constituting the target mpC program
run identical code.

All processes constituting the target program are divided
into 2 groups - a special process, called dispatcher; playing
the role of the manager of the computing space, and com-
mon processes, called nodes, playing the role of virtual
processors of the computing space. The dispatcher works
as a server. It receives requests from nodes and sends them
commands.

In the target program, every network of the source mpC
program is represented by a set of nodes called region. At
any time of the target program running, any node is either
free or hired in one or several regions. Hiring nodes in cre-
ated regions and dismissing them are responsibility of the
dispatcher. The only exception is the pre-hired host-node
representing the mpC pre-defined virtual host-processor.
Thus, just after initialization, the computing space is repre-
sented by the host and a set of temporarily free (unem-
ployed) nodes.

The main problem in managing processes is hiring them
to network regions and dismissing them. A solution of this
problem establishes the whole structure of the target code
and forms requirements for functions of the run-time sup-
port system.

To create a network region, its parent node computes, if
necessary, parameters of the corresponding network topol-
ogy and sends a creation request to the dispatcher. The
request contains full topological information about the cre-
ated region including the number of nodes and their rela-
tive performances. On the other hand, the dispatcher keeps
information about the topology of the target network of
computers including the number of actual processors, their
relative performances and the mapping of nodes onto the
actual processors. Based on the topological information,
the dispatcher selects the set of free nodes, which is most
appropriative to be hired in the created network region.
(More detailed description how dispatcher does it, may be
found in [SI.) After that, it sends to every free node a mes-
sage saying whether the node is hired in the created region
or not.

To deallocate a network region, its parent node sends a
message to the dispatcher. Note, that the parent node
leaves hired in the parent-network region of the deallo-
cated region. The rest of members of the deallocated net-
work region become free and begin waiting for commands
from the dispatcher.

Any node can detect its hiredlfree status. It is hired if a
call to function MPC-Is-busy returns 1. If such a call
returns 0, the node is free.

Any node can detect if it is hired in some particular
region or not. A region is accessed via its descriptor. If the
descriptor rd corresponds to the region, then a node

belongs to the region if and only if the function call
MPC-Is-member (&rd) returns 1. In this case, descrip-
tor rd allows the node to obtain comprehensive informa-
tion about the region as well as identify itself in the region.
The region descriptor has type MPC-Net and holds the
following data:

- topological data associated with the region, such as the
number of coordinates, an integer array containing actual
topological arguments (if any) and the number of elements
in this array, pointers to the corresponding topological
functions;

- the number of nodes in the region;
- the linear number of the node in the region;
- an integer array containing coordinates of the given

node in the corresponding network;
- some additional and lor redundant information aimed

at optimization of computations and communications.
When a free node is hired in a network region, the dis-

patcher must let the node know, in which region it is hired,
that is, must specify the descriptor of that region. The sim-
plest way - to pass the pointer to the region descriptor from
the parent node through the dispatcher to the free node, is
senseless for distributed memory systems not having com-
mon address space. Therefore, in addition to the region
descriptor, something else is needed to identify the created
region in a unique fashion. The additional identifier must
have the same value on both the parent and the free node
and be passable from the parent node through the dis-
patcher to the free node.

In a source mpC program, a network is denoted by its
name, being an ordinary identifier and not having to have
file scope. Therefore, a network name can not serve as a
unique network identifier even within a file. One could
enumerate all networks declared in the file and use the
number of a network as an identifier unique within the file.
However, such an identifier being unique within a file can
not be used as a unique identifier within the whole program
that may consist of several files. Nevertheless, one can use
it without collisions when creating network regions, if dur-
ing network-region creation all participating nodes execute
the target code located in the same file. Our compiler just
enumerates networks defined in a file and uses their num-
bers as network identifiers in target code when creating the
corresponding network regions. It does ensure that during
the creation of a network region all involved nodes exe-
cute the target code located in the same file.

Creating a network region involves its parent node, all
free nodes and the dispatcher. The parent node calls to
function
int MPC-Net-create(MPC-Name name,

where name contains the unique number of the created
network in the file, and net points to the corresponding

MPC-Net* net) ;

1040

region descriptor. function computes all topological
creation request to the dispatcher.

are waiting for commands from
waitingpoint calling the h c -

information and

the network numbers and
in the following way. If a

k the number of which is equal to
de is hired in the network region

hich are expected at the
contains the number of

cher a message saying

by nets-voted [il.
g function MPC-Of f er
network region or after
nodes the command to

tion

that it is hired in

computations distrib
and/or in creationid
defined in nested
ment in the block
a waiting-point break

Then, in the most
target code of the
I

declarations
{
if (!MPC-IsbusyO)

target code
t o create
defined i n

1
i f (MPC-Is-busy

target code
nodes t o
networks

ted over the entire computing space)
allocation of regions for networks

blccks. Let us call the first mpC state-
inbolving all free nodes in its execution

statement.
general case, the compiler generates

following structure:

I
executed by f r e e nodes

regions f o r networks
source mpC block

()) {
executed by hired

create regions f o r
defined i n source mpC-block

and
target code f o r mpC statements
before waiting-point break statement

I
epilogue of waiting point

1
target code f o r mpC statements, s tart ing
from waiting-point break statement
I

target code executed by hired nodes
t o deallocate regions f o r networks
defined i n source mpC block

label of deallocating waiting poin t :
if (!MPC-Is-busy()) {

target code executed by f r e e nodes
t o deallocate regions f o r networks
defined i n source mpC block

1
epilogue o f waiting point

1
I

If the source mpC block does not contain a waiting-point
break statement (that is, overall statements and nested
blocks with network definitions or overall statements),
then creating and deallocating waiting points can be
merged. Let us call such a waiting point shared waiting
point. Target code for the mpC block with a shared waiting
point looks as follows:
I

declarations
{

label o f shared waiting poin t :
if (!MPC-Is-busy ()) {

target code executed by f r e e nodes
t o create and deallocate regions f o r
networks defined i n source mpC block

1
if (MPC-Is-busy ()) {

target code executed by hired nodes
t o create and deallocate regions f o r
networks defined i n source mpC block
and
target code f o r statements
of source mpC block

1
epilogue of waiting point

I
1

To ensure that during the creation of a network region all
involved nodes execute target code located in the same
file, the compiler put a global barrier into the epilogue of
waiting point.

The coordinated arrival of nodes to the epilogue of
waiting point is ensured by the following scenario:

- the host makes sure that all other hired nodes, which

1041

might send a creationideallocation request expected in the
waiting point, have already reached the epilogue;

- after that, the host sends a message, saying that any
creationideallocation request expected in the waiting point
will not appear yet, to the dispatcher;

- after receiving the message the dispatcher sends all
free nodes a command ordering to leave the waiting point;

- after receiving the command each free node leaves the
waiting function and reach the epilogue.

5. Process management in details

To introduce the process management in more details, let
us consider the following mpC file:
/*l */nettype T(m) { coord I=m; 1;
/*2 */void [*If (int [host] hn) {
/*3 * / net T(2) n;
/*4 * / rep1 in:
/*5 * / in=hn;
/ * 6 * / {
/*7 * / net T(in) [n] nn;
/*8 * / . . . / * declarations*/
/*9 * / . . . / * statements without a waiting-
/*lo*/ point break statement*/
/*11*/ 1
/*12*/1

Line 1 introduces topology T with parameter m. It
describes networks consisting of m virtual processors with
the integer coordinate variable I ranging from 0 to m - 1.

Line 3 defines network n consisting of two virtual pro-
cessors.

Line 4 defines integer variable i n replicated over the
entire computing space.

Line 5 broadcasts the value of variable hn from the vir-
tual host-processor over the entire computing space. The
statement is executed by the entire computing space.
Therefore, it is a waiting-point break statement for the
function body.

Line 7 defines network nn. The network nn is a distrib-
uted network. In general, mpC allows to define not only a
single network but also a set of single networks by means
of defining so-called distributed network. A definition of a
distributed network specifies the type of the network and
its parent network. Such a definition may be considered as
a distributed over the parent network definition of a single
network of the specified type. The parent network of a dis-
tributed network can also be distributed. But in any case, a
distributed network is a set of single networks of the same
type. The number of single networks in this set is equal to
the number of virtual processors in the parent network
each of the virtual processors of the parent network being a
parent of a single network of the set.

There are not facilities to specify a single network

belonging to a distributed network in mpC. Therefore,
whenever one specifies a subnetwork of a distributed net-
work, he means a set of subnetworks of the single net-
works constituting the distributed network. Similarly, if
one specifies a single processor of a distributed network,
he means a set of single processors of the single networks
constituting the distributed network. Any computation on a
distributed network is divided into independent computa-
tions on the single networks constituting the distributed
network.

So, network nn, distributed over its parent network n,
divides into a set of two single networks the type of which
is defined completely only in run time.

There will be all three kinds of waiting points in target
code for function f , The function body, where network n is
defined, contains a waiting-point break statement. There-
fore, target code for the function body will contain both
creating and deallocating waiting points. The nested block
(lines 6- 1 l), where network nn is defined, does not contain
a waiting-point break statement. Therefore, target code for
the nested block will contain a shared waiting point.

/*1 */void f 0 I
/*2 * / int MPC-Net-n-6-coord [11 ;
/*3 * / MPC-Parameters
/*4 * / MPC-Net-n-Ggarams [11=12} ;
/*5 * / MPC-Net MPC-Net-n-6={ . . .
/ * 6 * / / * initialization list * / } ;
/ * 7 * / int in:
/*8 * / {
/*9 * / if (!MPC-Is-busyO) I
/*lo*/
/*11*/ MPC-Net* MPC-nets [I] ;
/*12*/ MPC-nets CO1 =&MPC-Netn-6;
/*13*/ MPC-Offer(MPC-names,MPC-nets, 1) :
/*Id*/ 3
/*15*/ if (MPC-Isbusyo)
/*16*/ if (MPC-Is-member (&MPC-Net-host))
/*17*/ MPC-Net-create(6,&MPC-Net-n-6) ;

/*18*/ 1
/*19*/ if (MPC-Is-host 0) {
/*20*/ MPC-Host-out 0 ;

The following target code

MPC-Name MPC-names [ll =I63 :

/*21*/ 3
/*22*/ 1
/ * 2 3 * /
/*24*/ 1
/*25*/ / * implementation of in=ih. * /
/*26*/ I
/*27*/ int MPC-Net-nn-7-coord[ll;
/*28*/ MPC-Parameters
/*29*/ MPC-Net-nn-7qarams [I] :
/*30*/ MPC-Net MPC-Net-nn-7={ . . .
/*31*/ /*initialization list*/};
/*32*/ /*target code for declarations of
/ * 3 3 * / the source nested block*/

MPC-Wai tingsoint-end () ;

/*34*/ I

1042

/*41*/ 1
/ * 4 2 * / if (MPC-
/*43*/ if (MPC ember (&MPC_Net-n-6)) I

PC-Net-nn-7-params;

/*58*/ 3

/*64*/ 3

/*67*/ 3
/ * 6 8 * / if(MP ember (&MPC-Net-n-6)) I
/*69*/ MPC ee (&MPC-Ne t-I--6) :

/*72*/ 3

/*79*/ 3

es the one-element array

MPC-Net-n-G-coord to hold the coordinates of nodes
of the region. Lines 3-4 define and initialize the one-ele-
ment array MPC-Net_n-G_params in such a way that
its only element holds integer value 2 as an argument of
topology T establishing the type of network n (namely, the
network type T (2)). Lines 5-6 define the region descrip-
tor MPC-Net-n-6 and initialize all such its members,
values of which can be computed in compile time.

The target code in lines 10-13 is executed by all free
nodes to create the region represented the network n. Line
10 defines and initializes the one-element array
MPC-names containing the number of the network the
creation of which is expected at the first waiting point.
Line 11 defines the one-element array MPC-ne t s to hold
a pointer to the region descriptor the creation of which is
expected at the first waiting point, and line 12 assigns the
proper value to its only element. Line 13 calls to the wait-
ing function MPC-Of f er. A free node leaves the fbnction
either after it becomes hired in region MPC-Ne t-n-6, or
after the dispatcher sends to all free nodes the command to
leave this waiting point.

The target code in lines 16-24 is executed by all hired
nodes to create the region for network n and to reach coor-
dinately the epilogue of the creating waiting point.

Lines 16-18 call to the function MPC-Net-create on
the host to form the corresponding creation request and to
send it to the dispatcher. The host is accessible via descrip-
tor MPC-Net-hos t. Any node is detect itself as the host
if the function call
MPC-I s-member (&MPC-Ne t-hos t) or the function
call MPC-I s-hos t () return 1 on the node.

Lines 19-21 call to the function MPC-Hos t-out on the
host to send the dispatcher a message saying that all free
nodes must leave the waiting point. Since in our example
the host is the only node, that can send a creation request
expected in the waiting point, it knows that all creation
requests expected in the waiting point have already been
sent, and it may send the message to the dispatcher.

The statement in line 23 calls to the function
MPC-Waitingaoint-end. It is an epilogue of the
first waiting point. The call provides a global barrier syn-
chronization and does not let any node to continue until all
nodes constituting the entire computing space reach it.

The target code for the nested block (lines 26-67) is
related to the shared waiting point. The network nn has
obtained number 7 as an unique identifier in the file, and
the corresponding network region is accessible via
descriptor MPC-Net-nn-7 (line 30).

Line 27 defines the one-element array
MPC-Ne t-nn-7-coord to hold the coordinates of
nodes of the region. Lines 28-29 define the one-element
array MPC_Net_nn_7_params to hold an argument of
topology T establishing the type of network nn. Lines 30-

1043

3 1 define the region descriptor MPC-Ne t-nn-7 and ini-
tialize all such its members, values of which can be com-
puted in compile time.

The target code in lines 37-40 is similar to the target code
in lines 10-13 and executed by all free nodes to create the
region represented the network nn.

The target code in lines 43-65 is executed by all hired
nodes to create and deallocate the region for network nn,
to execute statements of the source mpC nested block, and
to reach coordinately the epilogue of the shared waiting
point.

Lines 44-50 are executed by two nodes constituting
region MPC-Ne t-nn-6 in parallel to create two regions
representing the distributed network nn. Lines 44-49 com-
pute some attributes of these regions, allowing to establish
the type of network nn, and store them in the correspond-
ing members of the region descriptor MPC-Ne t-nn-7.
Line 50 calls to the function MPC-Net-create to form
two corresponding creation requests and to send them to
the dispatcher.

Lines 55-57 are executed on the regions representing net-
work nn to deallocate them. Line 55 calls to the function
MPC-Net-f ree. The function provides a local barrier
synchronization over the deallocated regions. After all
nodes constituting these regions reach the local barrier,
each of two nodes constituting their parent region (that is,
region MPC-Net-nn-6) send a message to the dis-
patcher. These two nodes remain to be hired in region
MPC-Ne t-nn-6. Meantime, other members of the dis-
tributed network region become free and jump to the label
MPC-wai tingsoint-2 of the shared waiting point
(line 57). They begin executing the free-node code (lines
37-40) and, eventually, join other free nodes calling the
waiting function in line 40.

Lines 59-64 ensure that all nodes reach the epilogue of
the shared waiting point coordinately. Since the host is not
the only node that can send a request expected in the wait-
ing point, it can not pass over the local barrier in line 60
and call to function MPC-Host-out in line 63 to send
the dispatcher a message saying that all free nodes must
leave the waiting point, until all other nodes able to send a
creatioddeallocation request reach the local barrier.

As a result, all nodes call to the epilogue function
MPC-Wai tingsoint-end (line 66) coordinately.

The rest of the target code generated for the function
body (lines 68-82) is related to the deallocating waiting
point.

Lines 68-75 are executed by hired nodes to deallocate the
region representing the network n and to ensure that all
nodes reach the epilogue of the deallocating waiting point
coordinately. The node, that becomes free after the call to
function MPC-Net-f ree in line 69, jumps to the label
MPC-reconf ig-point-1 of the deallocation waiting

point (line 71) and calls to the waiting function (line 78).
Since the host is the only node that can send a deallocation
request expected in the waiting point, it does not need to
synchronize its work with some other hired nodes and can
call to the function MPC-Host-out to send the dis-
patcher a message saying that free nodes must leave the
deallocation waiting point.

Lines 77-79 ensure that all free nodes will receive in time
the command from the dispatcher to leave the waiting
point and will reach the epilogue function (line 80) coordi-
nately with the hired nodes.

6. Conclusion

The paper has presented the abstraction of network
object introduced in the mpC language to manage pro-
cesses constituting a message-passing program in order to
ensure an efficient execution of mpC applications on any
particular HNC. The main attention has been paid to the
translation of this high-level mechanism into low-level
notions of the target message-passing program. The pre-
sented algorithm has overcome 2-year intensive testing
and been incorporated into the mpC programming environ-
ment, widely used for efficiently-portable modular parallel
programming local networks of diverse workstations, serv-
ers and PCs.

References

[I] A.Geist, A.Beguelin, J.Dongarra, W.Jlang, R.Manchek,
VSunderam, PVM: Parallel Krtual Machine, Users ’ Guide and
Tutorial f o r Networked Parallel Computing, MIT Press, Cam-
bridge, MA, 1994.
[2] Message Passing Interface Forum, MPI: A Message-passing
Interface Standard, version I . I , June 1995.
[3] High Performance Fortran Forum, High Pevformance Fortran
Language Specijkation, version 2.0. Rice University, Houston
TX, 1997.
[4] A. Lastovetsky, “mpC - a Multi-Paradigm Programming Lan-
guage for Massively Parallel Computers”, ACM SIGPLAN
Notices, 31(2), February 1996, pp.13-20.
[5] D.Arapov, A.Kalinov, A.Lastovetsky, LLedovskih, and
T.Lewis, “A Programming Environment for Heterogeneous Dis-
tributed Memory Machines”, Proceedings of the Sixth Heteroge-
neous Computing Workshop (HCW’97), IEEE CS Press, Geneva,
Switzerland, April I , 1997, pp.32-45.

1044

