
Received 4 December 2023, accepted 7 February 2024, date of publication 9 February 2024, date of current version 16 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3364672

OpenH: A Novel Programming Model and API for
Developing Portable Parallel Programs on
Heterogeneous Hybrid Servers
SIMON FARRELLY, RAVI REDDY MANUMACHU , (Member, IEEE),
AND ALEXEY LASTOVETSKY , (Member, IEEE)
School of Computer Science, University College Dublin, Belfield, Dublin 4, D04 C1P1 Ireland

Corresponding author: Ravi Reddy Manumachu (ravi.manumachu@ucd.ie)

This work was supported in part by the Science Foundation Ireland (SFI) through the SFI Frontiers for the Future Program under Grant
20/FFP-P/8683, and in part by the Sustainable Energy Authority of Ireland (SEAI) under Grant 21/RDD/664.

ABSTRACT Heterogeneous nodes composed of a multicore CPU and accelerators are today’s norm in
high-performance computing (HPC) platforms due to their superior performance and energy efficiency. Tools
such as OpenCL and hybrid combinations such as OpenMP plus OpenACC are used for developing portable
parallel programs for such nodes. However, these tools have some drawbacks, including a lack of compiler
support for nested parallelism, performance portability, automatic heterogeneousworkload distribution, user-
friendly thread placement, and processor affinity essential to the portable performance of hybrid programs
executing on such nodes. In this paper, we propose OpenH, a novel programming model and library API for
developing portable parallel programs on heterogeneous hybrid servers composed of a multicore CPU and
one or more different types of accelerators. OpenH integrates Pthreads, OpenMP, and OpenACC seamlessly
to facilitate the development of hybrid parallel programs. AnOpenH hybrid parallel program starts as a single
main thread, creating a group of Pthreads called hosting Pthreads. A hosting Pthread then leads the execution
of a software component of the program, either an OpenMP multithreaded component running on the CPU
cores or an OpenACC (or OpenMP) component running on one of the accelerators of the server. The OpenH
library provides API functions that allow programmers to get the configuration of the executing environment
and bind the hosting Pthreads (and hence the execution of components) of the program to the CPU cores of
the hybrid server to get the best performance. We illustrate the OpenH programming model and library API
using two hybrid parallel applications based on matrix multiplication and 2D fast Fourier transform for the
most general case of a hybrid hyperthreaded server comprising p computing devices. Finally, we demonstrate
the practical performance and energy consumption of OpenH for the hybrid parallel matrix multiplication
application on a server comprising an Intel Icelake multicore CPU and two Nvidia A40 GPUs.

INDEX TERMS Parallel computing, parallel programming, heterogeneous platform, hybrid platform,
accelerators, OpenMP, OpenACC, Pthreads.

I. INTRODUCTION
Heterogeneous nodes/servers featuring multicore CPU pro-
cessors hosting multiple accelerators (GPUs and FPGAs)
dominate the computing landscape due to their superior
performance and energy efficiency. Such nodes compose the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

supercomputers topping the TOP500 [1] and Green500 [2]
lists and delivering exascale computing.

The software development tools and programming models
employed to develop parallel programs on heterogeneous
servers can be broadly classified into two categories: low-
level vendor-specific and high-level vendor-agnostic. We use
the terms heterogeneous server and hybrid server inter-
changeably to refer to a server that contains multicore CPU

23666

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897
https://orcid.org/0000-0003-0619-0338

S. Farrelly et al.: OpenH: A Novel Programming Model and API

processors hosting one or more identical or different types
of accelerators. We use the term hybrid parallel program to
signify a program that divides the workload heterogeneously
between the multicore CPU processors and accelerators
of a server to provide maximum resource utilization and
performance on the server.

Vendor-specific programming tools such as CUDA [3] and
ROCm [4] provide low-level APIs to the programmer to
fine-tune their parallel programs for performance for Nvidia
and AMD GPUs, respectively. These tools are typically
combined with OpenMP to develop heterogeneous parallel
programs. However, using these tools introduces vendor lock-
in, hampering the portability of the programs.

Several high-level vendor-agnostic programming tools
are proposed to simplify heterogeneous programming by
providing high-level abstractions that automate handling
low-level details and architecture-specific optimization with-
out significantly sacrificing performance. The most notable
research works in this category employ directive-based, C++-
based, and skeleton-based approaches.

The directive-based approaches (OpenMP [5], Ope-
nACC [6]) provide compiler directives that are applied to
loops, allowing compilers and runtime systems to automate
the tasks of offloading to accelerators and parallelization of
loops.

The C++-based approaches (OpenCL [7], SYCL [8],
Kokkos [9], OCCA [10], RAJA [11]) allow different het-
erogeneous devices to be used in a single application using
standard C++ programming language.

Finally, the skeleton-based (SkelCL [12], SkePU [13])
approaches are based on the concept of skeletons, which
are higher-order functions such as map, reduce, scan, farm,
and pipeline that implement a typical pattern of computation
and data dependence. The SkelCL and SkePU backends
translate the codes using the skeletons into OpenCL kernels
and C++ library calls that execute on multicore CPUs
and GPUs.

However, while the C++-based tools (OpenCL, SYCL,
Kokkos, OCCA and RAJA) provide code portability by
adhering to modern C++ standard and providing support for
various devices (CPU, GPU, and FPGA), they do not have a
dominant mainstream support since they compete with the
most popular mainstream solutions for these devices - for
example, OpenMP for multicore CPUs and CUDA for Nvidia
GPUs.

While directive-based approaches such as OpenMP plus
OpenACC are ideally suited for portable hybrid parallel
programming, they suffer from limitations such as a lack
of compiler support for nested parallelism, heterogeneous
workload distribution, and user-friendly thread placement
and processor affinity of CPU and accelerator computations.
We elaborate on these limitations in Section III.
Research works (Xu et al. [14], Komoda et al. [15],

Yan et al. [16], [17], Cho et al. [18], Torres et al. [19],
Kale et al. [20]) propose extensions to OpenMP and
OpenACC to automate the complex process of distributing

the computations and data of parallel loops between CPUs
and accelerators. However, these works focus on the homo-
geneous distribution of loop iterations across multiple GPUs
to achieve load balance. In the research works (Xu et al. [14],
Komoda et al. [15], Cho et al. [18], Torres et al. [19],
Kale et al. [20])), the host CPU is only used for synchronizing
the results from the accelerators. Furthermore, the research
works above do not consider the binding of the loop iterations
to the underlying CPU cores, which is essential to obtaining
the best performance.

To summarize, developing portable parallel programs
on heterogeneous hybrid servers remains challenging. The
existing tools suffer from many limitations, which include a
lack of compiler support for nested parallelism, performance
portability, automatic heterogeneous workload distribution,
user-friendly thread placement and processor affinity that are
essential to the portable performance of hybrid programs.

In this paper, we propose OpenH, a novel programming
model and library API for developing portable parallel
programs on heterogeneous hybrid servers composed of a
multicore CPU and one or more different types of acceler-
ators. OpenH integrates Pthreads, OpenMP, and OpenACC
seamlessly to develop hybrid parallel programs.

An OpenH hybrid parallel program starts as a single
main thread, which then creates a group of Pthreads called
hosting Pthreads. A hosting Pthread then leads the execution
of a software component of the program, which is either
an OpenMP multithreaded component running on the CPU
cores or an OpenACC (or OpenMP) component running on
one of the accelerators of the server. The OpenH library
provides API functions that allow programmers to get the
configuration of the executing environment and bind the
hosting Pthreads (and hence the execution of components) of
the program to the CPU cores of the hybrid server to get the
best performance.

The important feature of OpenH is that it does not
compete with mainstream solutions widely supported by the
community and vendors. Instead, it relies on these solutions
and integrates them. OpenH differs from traditional APIs
designed for hybrid parallel programming, such as OpenCL.
Unlike OpenH, OpenCL provides a unique self-contained
API for programming both CPU and accelerator program
components and their integration into a single hybrid applica-
tion. Thus, OpenCL competes with OpenMP in programming
CPU components of the hybrid program and with OpenACC
and vendor-specific APIs in programming the accelerator
components. In contrast, OpenH uses OpenMP to program
CPU components, OpenACC and vendor APIs to program
accelerator components, and Pthreads and OpenH-specific
API to integrate the CPU and accelerator components into
a single hybrid program. This approach allows OpenH to
achieve better performance portability as it relies on state-
of-the-art mainstream solutions in programming individual
devices of the hybrid server.

We illustrate the OpenH programming model and library
API using two hybrid parallel applications based on matrix

VOLUME 12, 2024 23667

S. Farrelly et al.: OpenH: A Novel Programming Model and API

multiplication and 2D fast Fourier transform for the most
general case of a hybrid hyperthreaded server comprising p
computing devices.

We demonstrate the practical performance and energy
consumption of OpenH for the hybrid parallel matrix
multiplication application on a server comprising an Intel
Icelake multicore CPU and two Nvidia A40 GPUs. Specif-
ically, we compare the performance and dynamic energy
consumption of OpenH matrix multiplication application
against matrix multiplication application based on OpenMP,
employing only the multicore CPU and matrix multiplication
application based on OpenACC and employing only the
two Nvidia A40 GPUs. The OpenH matrix multiplication
application outperforms the other applications in terms of
performance. Furthermore, the OpenH application, when
optimized for dynamic energy, performs the best and
consumes the least dynamic energy by employing the most
energy-efficient processor (multicore CPU in this case).

The main original contributions of this work are:

• A comprehensive survey of foundational tools for
developing portable parallel programs on modern het-
erogeneous hybrid HPC nodes/servers.

• A comprehensive overview of issues and challenges in
developing portable parallel programs on modern het-
erogeneous hybrid HPC nodes/servers using OpenMP
and OpenACC.

• A novel programming model for developing portable
parallel programs on heterogeneous hybrid servers.

• A library API for programmers to get the configuration
of the executing environment and bind the hosting
Pthreads (and hence the execution of components) of the
program to the CPU cores of the hybrid platform to get
the best performance.

• Experiments comparing the practical performance and
energy consumption of an OpenH hybrid matrix mul-
tiplication application with an OpenMP and OpenACC
matrix multiplication application, respectively, employ-
ing CPU only and two Nvidia A40 GPUs only.

The rest of the paper is organized as follows. Section II
presents foundational tools for portable parallel programming
on modern HPC servers. Section III describes the design
issues in employing OpenMP and OpenACC in synergy
to develop a programming model for portable parallel
programs on heterogeneous hybrid servers. Then, Section IV
illustrates the OpenH programming model and library API
for developing portable parallel programs on heterogeneous
hybrid servers. The following Section V describes two
hybrid parallel applications, matrix multiplication and 2D
fast Fourier transform, developed using OpenH and exe-
cuting on a hybrid server comprising p computing devices.
Section VI contains the experimental results for the hybrid
parallel matrix multiplication application on a hybrid server
comprising a multicore CPU and two Nvidia A40 GPUs.
Section VII presents the related work. Finally, we conclude
the paper in Section VIII.

II. FOUNDATIONAL TOOLS FOR PORTABLE PARALLEL
PROGRAMMING
This section describes the foundational tools for developing
portable parallel programs on modern heterogeneous hybrid
HPC nodes/servers. We will evaluate how mature these
tools are to develop portable parallel programs on platforms
comprising multicore CPUs and one or more accelerators
belonging to different vendors.

A. PTHREADS
Pthreads, or Portable Operating System Interface (POSIX)
threads, have been a popular choice for implementing multi-
threading in C and C++ programs since their introduction in
1995. Pthreads provide a standard Unix interface for creating
and manipulating threads, making it easier for developers
to write portable multithreaded programs across different
Unix-like operating systems.

One of the primary advantages of using Pthreads is
the level of control they offer to the developer. Pthreads
allow developers to specify the number of threads, the
scheduling policy, and the synchronization mechanisms used
to coordinate access to shared resources. This level of control
can lead to more efficient use of system resources and better
performance.

However, this level of control also comes with a cost.
Pthreads are relatively complex, requiring developers to
manage issues such as race conditions, deadlocks, and thread
synchronization. This complexity can make writing correct
and reliable multithreaded programs more complicated.

Another potential disadvantage of Pthreads is their porta-
bility. While Pthreads provide a standardized interface,
there are still differences between implementations on
different operating systems. Therefore, it can lead to subtle
bugs and performance differences that may take time to
be apparent. Additionally, Pthreads are only available on
Unix-like operating systems, limiting their portability to other
platforms.

Given the complexity mentioned above of Pthreads,
it would be advantageous to leverage higher-level abstrac-
tions where feasible. Such abstractions can offer a more
intuitive programming model and automated handling of
low-level details, reducing the likelihood of errors and
simplifying development. Furthermore, Pthreads do not have
any API to allow them to run on accelerators, restricting any
programming model relying solely on them to utilize CPUs
only.

B. OPENMP
OpenMP is a popular high-level threading API for C, C++,
and Fortran that aims to simplify the implementation of
parallelism in code. Like Pthreads, OpenMP can parallelize
compute-intensive applications by distributing the work
across multiple threads. However, there are some notable
differences between the two approaches.

23668 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

One of the primary benefits of OpenMP is its ease of
use. OpenMP uses a simple pragma-based syntax that allows
developers to specify parallel regions, loop parallelization,
and task-based parallelism with minimal modifications
to existing code. This simplicity can make writing and
maintaining parallel code easier, especially for those less
familiar with low-level threading constructs.

Another advantage of OpenMP is its portability. OpenMP
is available on various platforms and operating systems,
including Windows and Linux, making it a versatile option
for parallelization. Furthermore, newer versions of OpenMP,
such as OpenMP 4.5 and 5.0, allow code offloading to
accelerators like GPUs, providing additional performance
and flexibility to developers.

However, as with Pthreads, OpenMP has some potential
drawbacks. One issue is that the ease of use provided by
OpenMP comes at the cost of some degree of control over
the parallelism. Unlike Pthreads, OpenMP provides limited
control over scheduling and synchronization, which can
limit the fine-tuning of parallel code. Additionally, while
OpenMP is portable across different platforms, performance
can vary between implementations, and developers may need
to consider implementation-specific optimizations.

Nonetheless, given the simplicity and portability offered
by OpenMP, it may be an excellent option for handling
parallel processing tasks executed on the CPU. Moreover,
with its recent support for offloading code to accelerators,
OpenMP presents a promising tool for handling parallel code
on various computing architectures.

While OpenMP offers the advantage of portability and
simplicity, it still needs to address the challenge of developing
hybrid portable code. Although OpenMP allows for the
offloading of code to accelerators like GPUs, its inherent
initial focus on running parallel code on CPUs and the
loss mentioned above of control present obstacles for
effective hybrid programming. Specifically, ensuring parallel
execution of CPU kernels and the hosting threads of the
GPU kernels on disjoint groups of CPU cores becomes a
critical concern in leveraging OpenMP as the sole solution
for hybrid programming. It will become more apparent once
we discuss OpenMP’s approach to affinity, ‘‘places’’ and their
shortcomings in this area, likely stemming from their design
when the model focused solely on CPU parallelism.

C. OPENACC
OpenACC is a popular parallel programmingmodel for accel-
erating compute-intensive tasks on accelerator architectures,
such as GPUs. It is designed to simplify the implementation
of parallelism in code written in C, C++, and Fortran, and it
offers an alternative to tools such as CUDA. In the OpenACC
programming model, a hosting thread running on a CPU core
manages and coordinates the execution of a kernel on an
accelerator. This approach allows for a division of labour
between the CPU and the accelerator, where the CPU handles
the control flow and manages data transfers. In contrast,

the accelerator focuses on computationally intensive kernel
execution.

One of the primary benefits of OpenACC is its ease of
use. OpenACC employs a set of directives embedded in the
code to specify parallelism. These directives are similar to
OpenMP pragmas and can be easily added to existing code
with minimal modification. Therefore, it makes it easier for
developers to write and maintain parallel code, especially
those less familiar with low-level parallelization constructs.

Another advantage of OpenACC is its portability. Ope-
nACC is designed to be platform-independent, meaning that
code written using OpenACC can run on various computing
architectures, including CPUs, GPUs, and other accelerators.
This versatility is advantageous for developers who require
flexibility in deployment and want to avoid vendor lock-in
that can sometimes be associated with proprietary tools like
CUDA.

While OpenACC shares many similarities with CUDA,
there are some notable differences between the two
approaches. One of the primary differences is that Ope-
nACC is a high-level programming model that provides
more abstraction and easier-to-use directives than CUDA.
Hence, it can be advantageous for developers who require
a more straightforward and flexible approach to parallel
programming. Still, it may come at the cost of some degree
of control over the parallelism. Additionally, OpenACC may
be less performant than CUDA in certain use cases, such as
those requiring fine-tuned control over the parallelism.

Considering the benefits above, OpenACC is a promising
component within a comprehensive toolkit for developing
portable and user-friendly heterogeneous code. Nevertheless,
it is essential to note that OpenACC does not inherently
utilize idle CPU cores for computational tasks beyond
running hosting threads. Consequently, to achieve a hybrid
programming model that effectively employs both CPU and
accelerator resources, OpenACC needs to be supplemented
by complementary tools such as Pthreads or OpenMP.

D. CUDA
CUDA is a parallel programming model designed to accel-
erate compute-intensive tasks on Nvidia GPUs. The core
of CUDA is based on three abstractions exposed to the
programmer: a hierarchy of thread groups, shared memories
and barrier synchronization. They allow the programmer to
partition the problem into coarse sub-problems solved by
thread groups in parallel, and each sub-problem is further
partitioned into chunks that are solved by threads within a
thread group.

One of the primary benefits of CUDA is its level of
control. With CUDA, developers have direct access to the
GPU hardware, allowing them to fine-tune the parallelism
and optimize performance for their specific application.
CUDA also provides a comprehensive set of libraries for
common mathematical operations, making it easier to write
high-performance code without sacrificing control. Because
it provides low-level control over the hardware, CUDA

VOLUME 12, 2024 23669

S. Farrelly et al.: OpenH: A Novel Programming Model and API

can achieve very high levels of parallelism and throughput,
which can be beneficial in applications that require intensive
calculations.

However, one of the main drawbacks of CUDA is its lack
of portability. CUDA is tightly coupled with NVIDIA GPUs
and is not compatible with other types of hardware. It can
limit the flexibility of developers who require heterogeneous
computing solutions or want to avoid vendor lock-in.

Another notable disadvantage of CUDA is its complexity.
CUDA requires developers to have a deep understanding
of parallel programming concepts, GPU architecture, and
memory management. It can make it challenging for those
less familiar with low-level parallelization constructs to write
and maintain parallel code. Furthermore, debugging CUDA
applications can be challenging due to the complexity of
the underlying hardware and the need for comprehensive
debugging tools. As a result, CUDA may not be the
best choice for developers who prioritize ease of use and
maintainability over raw performance.

Finally, CUDA would need to be paired up with another
tool, such as OpenMP or Pthreads, to utilize the host CPU in
a hybrid application.

E. OPENCL
OpenCL (OpenComputing Language) [7] is an open standard
designed to support portable parallel application development
on heterogeneous platforms comprising multicore CPUs and
accelerators (such as GPUs and FPGAs).

OpenCL’s platform model represents the topology of a
platform by a host CPU connected to one or more OpenCL
compute devices.

It contains two APIs: platform layer API and runtime API.
The platform layer API functions run on the host CPU and
allow users to detect the available computing devices. The
runtime API enables the application’s kernel programs to be
compiled, loaded and executed on the computing devices in
parallel.

Like CUDA, it utilizes a low-level approach to developing
code for the accelerator. Therefore, it requires the user to have
a high level of understanding and a tailored implementation
for the architecture the code is targeting.

The OpenCL’s uniform programming environment pro-
vides maximum code portability for its heterogeneous
applications composed of software components executing
parallelly on compute devices. However, it has yet to
hold dominant mainstream support since it competes with
other mainstream solutions widely used in each software
component category. For example, OpenCL competes with
OpenMP, the most popular programming tool for developing
software components for multicore CPUs, with CUDA and
OpenACC for accelerator software components for Nvidia
GPUs.

F. MPI
MPI (Message Passing Interface) is the de facto standard
and library for developing parallel programs for distributed

memory systems. In the MPI programming model, processes
with separate address spaces execute in parallel and commu-
nicate using messages.

MPI is usually combined with one of the tools above to
develop parallel programs for heterogeneous clusters where
MPI is used between processes across nodes and a shared
memory tool inside a process within a node.

G. SUMMARY
OpenMP and OpenACC are promising tools for developing
portable parallel programs on heterogeneous hybrid server
platforms. However, a critical concern in leveraging OpenMP
as the sole solution for hybrid programming is ensuring
parallel execution of CPU kernels and the hosting threads of
the GPU kernels on disjoint groups of CPU cores. The lack
of facility to address this concern will become more apparent
once we discuss OpenMP’s approach to affinity.

OpenACC does not inherently utilize idle CPU cores
for computational tasks beyond running hosting threads.
Consequently, to achieve a hybrid programming model that
effectively employs both CPU and accelerator resources,
OpenACC needs to be supplemented by complementary tools
such as Pthreads or OpenMP.

Therefore, in their current state, none of these tools can
facilitate the development of portable parallel programs on
heterogeneous hybrid server platforms.

III. PORTABLE PARALLEL PROGRAMS ON
HETEROGENEOUS HYBRID SERVERS USING
OPENMP+OPENACC: DESIGN ISSUES
This section describes our initial attempt at leveraging the
widely adopted high level programming models, OpenMP
and OpenACC, in synergy to develop a programming model
for developing portable parallel programs on heterogeneous
hybrid servers.

Leveraging OpenMP and OpenACC in synergy is deemed
favorable due to OpenMP’s widespread usage in parallel CPU
code and OpenACC’s capability to offload computations to
accelerators, complemented by its relatively advanced stage
of development for GPU offloading compared to OpenMP.
By adopting a directive-based paradigm, the proposed model
aimed to alleviate the burden of system intricacies from
developers, enabling them to focus primarily on the logic of
the code and to ensure system agnosticism of the code-base.

We discuss the limitations and challenges that surfaced
during the attempt, prompting the identification of areas that
require improvement. In response, we design and implement
a novel programming model, presented in the next section,
to empower developers with greater control over addressing
these challenges when crafting hybrid code.

A. OPENMP AND OPENACC COMPILERS
Our first goal is to find compilers that support both OpenMP
and OpenACC. Several compilers implement the OpenMP
specification [21]. However, the options for OpenACC are
much more limited.

23670 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

Among the compilers supporting OpenMP, Nvidia’s NVC
compiler [22] and GCC [23], the GNU compiler collection,
support OpenACC for Nvidia GPUs. GCC supports Ope-
nACC for Nvidia through a tool called nvptx-tools and also
supports AMD Radeon GPUs [24]. However, both compilers
have issues compiling hybrid codes using OpenMP and
OpenACC.

GCC currently does not allow users to compile projects
targeting both OpenMP and OpenACC. A workaround is for
GCC to utilise the newer OpenMP specification [5] to offload
GPU work, removing OpenACC from the process. However,
this feature is not yet fully functional on the platforms we
tested.

The issue with the NVC compiler is that it fails to
compile more complex code that employs nested parallelism
supported in OpenMP. Therefore, unlike GCC, the NVC
compiler has no integrated support for nested parallel regions
in OpenMP, despite being supported in the OpenMP spec-
ification. Nevertheless, a workaround can be employed for
NVC, utilising Pthreads to replace the top-level parallelism
in the code. This workaround would marginally increase
complexity and decrease portability (limiting it to POSIX
compliant systems).

In summary, we choose the NVC compiler due to
its OpenACC implementation’s maturity over the newer
accelerator offloading specifications of OpenMP. However,
it would be ideal to use an open-source compiler like GCC
when it can better support hybrid codes developed using
OpenMP and OpenACC.

B. PROCESSOR AFFINITY CHALLENGES
This section describes the processor binding and thread affin-
ity features provided by OpenMP. High-level programming
tools such as OpenMP often abstract and limit this affinity
configuration, likely in an attempt to reduce complexities.
Whilst these abstractions are often reasonable when using the
API in isolation, once a developer looks to combine multiple
APIs, their implied benefits quickly become obstructions.
As such, any hybrid model will need to provide developers
with much more control over the final configuration of where
hosting and worker threads are located on the CPU. Note that
OpenACC has no support for processor binding and thread
affinity.

1) OPENMP PROCESSOR BINDING AND THREAD AFFINITY
OpenMP 4.0 provides two environment variables, OMP_
PLACES and OMP_PROC_BIND, to specify how the
OpenMP threads are bound to logical cores on the machine.
The logical cores will be the same as physical CPU cores if
hyperthreading is absent.

In addition to the two environment variables, OMP_
PLACES and OMP_PROC_BIND, OpenMP 4.0 provides the
proc_bind clause, which can appear on a parallel pragma
directive. The proc_bind clause specifies how the team of
threads executing the parallel region are bound to processors.

The value set in OMP_PROC_BIND environment variable is
a global setting and applies to all the parallel teams launched
in the OpenMP program. However, the global setting can be
overridden locally using the proc_bind clause.
The OpenMP approach (using environment variables

and options in pragma parallel directive) is different from
multi-threaded applications written using Pthreads that
make use of POSIX/Unix calls (pthread_setaffinity_np,
sched_setaffinity), to pin the thread to a specific logical core.

OMP_PLACES specifies the places on the machine to
which the threads are bound and is called a partition (of
the physical/logical set of core IDs). OMP_PROC_BIND
specifies the binding policy that prescribes how the threads
are assigned to places. Therefore, OMP_PROC_BIND must
be used in conjunction with OMP_PLACES to enable
binding.

The OMP_PLACES environment variable allows two
types of settings, high-level and low-level. In the high-level
version, OMP_PLACES permits three values: threads, cores,
or sockets. When set to threads, each place corresponds to
a single hardware thread. When set to cores, each place
corresponds to a single core on the target machine. Finally,
when set to sockets, each place corresponds to a single socket.
If OMP_PLACES is not set, the default value is cores.

For example, the setting, export OMP_PLACES=‘‘threads
(48)’’, specifies the number of hardware threads for
possible places (including hyper-threads). The number
of places in parentheses is optional. The setting, export
OMP_PLACES=‘‘cores(24)’’, specifies the number of
cores for possible places (each core may have a cer-
tain number of hardware threads). The setting, export
OMP_PLACES=‘‘sockets(2)’’, specifies the number of
sockets for possible places where each socket may consist
of a certain number of cores.

The low-level version allows the user to specify an
explicit list of places described by non-negative numbers.
A place is defined by an unordered set of comma-
separated non-negative numbers enclosed by braces.
Generally, the numbers represent the smallest unit of
execution exposed by the execution environment, typically
a hardware thread. For example, the setting, export
OMP_PLACES=‘‘{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,
15}’’, specifies four places. The first place includes CPU
cores, {0,1,2,3}. The second place, {4,5,6,7}, and so on.
Intervals may also be used to define places. For example, the
settings, export OMP_PLACES=‘‘{0:4},{4:4},{8:4},{12:4}’’
and export OMP_PLACES=‘‘{0:4}:4:4’’, are the same as the
setting above.

The OMP_PROC_BIND environment variable provides
fine-grained control of how threads are bound and distributed
to places and whether OpenMP threads can be moved
between places.

When set to true, the thread affinity is enabled, and the
threads are bound to places specified in OMP_PLACES
environment variable. When set to false, thread affinity is
disabled, and threads are allowed to move between places.

VOLUME 12, 2024 23671

S. Farrelly et al.: OpenH: A Novel Programming Model and API

The value master assigns the threads in the team to
the same place as the master thread. The master thread
in OpenMP is an OpenMP thread with thread number 0.
A parent thread is the thread that encounters the parallel
construct and generated a parallel region. It is the parent
thread of each of the threads in the team of that parallel region.
The master thread of a parallel region is the same as its parent
thread.

Consider the following example:

1 export OMP_NUM_THREADS=4;
2 export OMP_PROC_BIND=master;
3 export OMP_PLACES=’{0:4},{4:4},{8:4},
4 {12:4},{16:4},{20:4},{24:4},{28:4}’

The four OpenMP threads defined by the OMP_NUM_
THREADS environment variable are assigned to place 0.
Place 0 is the list, {0, 1, 2, 3} of core IDs.

The value close assigns the threads in the team to places
close to the place of the parent thread. Suppose T is the
number of threads in the team, and P is the number of places
in the parent’s place partition. If T ≤ P, the master thread
(with ID 0) executes in the place of the parent thread. Thread
1 executes on the next place in the place partition, and so on.

If T > P, each place is assigned at least S = ⌊
T
P ⌋

consecutive threads. The first S threads, including the master
thread, are assigned to the place of the parent thread. The
following S threads are assigned to the next place in the place
partition, and so on. The wrap-around is to the place partition
of the master thread.

Consider the following example:

1 export OMP_NUM_THREADS=4;
2 export OMP_PROC_BIND=close;
3 export OMP_PLACES=’{0:4},{4:4},{8:4},
4 {12:4},{16:4},{20:4},{24:4},{28:4}’

The value of T and P are 4 and 8, respectively. The 8 places
are, {0,1,2,3}, . . . , {28,29,30,31}. The OpenMP thread 0 is
assigned to place 0, thread 1 to place 1, and so on.

The value spread distributes a set of T threads as evenly as
possible amongP places of the parent thread’s place partition.
If T ≤ P, the parent thread place partition is divided into T
subpartitions, each containing at least S = ⌊

T
P ⌋ consecutive

places. A single thread is assigned to each subpartition. The
master thread executes in the place of the parent thread and is
assigned to the subpartition that includes that place. Thread 1
is assigned to the first place in the next subpartition, and so on.

Consider the following example:

1 export OMP_NUM_THREADS=4;
2 export OMP_PROC_BIND=spread;
3 export OMP_PLACES=’{0:4},{4:4},{8:4},
4 {12:4},{16:4},{20:4},{24:4},{28:4}’

Since the number of threads (T = 4) is less than the
number of places P = 8, four subpartitions are formed, each
containing two places. The thread assignment is as follows:

OpenMP thread 0 is assigned to place 0, thread 1 is assigned
to place 2, thread 2 is assigned to place 4, and thread 3 is
assigned to place 6.

If T > P, the parent thread’s place partition is divided into
P subpartitions, each corresponding to a single place. Then,
each place contains at least S = ⌊

T
P ⌋ consecutive threads. The

first S threads with the smallest thread number (including the
master thread) are assigned to the subpartition that contains
the place of the parent thread. The subsequent S threads with
the following smallest thread numbers are assigned to the next
place in the place partition, and so on.

Consider the following example:

1 export OMP_NUM_THREADS=8;
2 export OMP_PROC_BIND=spread;
3 export OMP_PLACES=’{0:4},{4:4},
4 {8:4},{12:4}’

Since the number of threads (T = 8) is greater than the
number of places (P = 4), four subpartitions are formed, each
corresponding to a single place and containing two threads.
The thread assignment is as follows: OpenMP threads 0 and
1 to place 0, threads 2 and 3 to place 1, and so on.

2) OPENMP NESTED PARALLELISM FOR HYBRID PARALLEL
APPLICATION EXECUTION
The Nested Parallelism feature in OpenMP is essential to
developing hybrid parallel applications. To understand why,
we present here the anatomy of a hybrid parallel application.

A hybrid parallel application is composed of several
software components (kernels) executing in parallel. There
is a one-to-one mapping between the components and
computing devices of the hybrid platform on which the
application is executed. The execution of an accelerator
component involves a dedicated CPU core, running the
hosting thread, and the accelerator itself, performing the
accelerator code. The execution of the accelerator component
includes data transfer between the CPU and accelerator
memory, computations by the accelerator code, and data
transfer between the accelerator memory and CPU. The
execution of a CPU component only involves the CPU cores
performing the multithreaded CPU code.

Therefore, a hybrid parallel application developed using
OpenMP will have two levels of nesting. At the top level,
a team of threads is created whose size is equal to the
number of software components in the application. At the
second level, each thread from the top level will create a
team of threads to execute the software component. There
will be a one-to-one mapping between the teams and the
software components. All the teams will now execute the
components in parallel. Moreover, note that different teams
will have different numbers of threads due to the nature of the
component decomposition of the hybrid parallel application.

Furthermore, the software components must be mapped
to the physical/logical cores considering the affinity of the
accelerators to the CPU cores. Therefore, the programmer

23672 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 1. A hybrid parallel matrix multiplication application computing the matrix product (C+ = A × B) of two dense square matrices A and B of size
N × N . It is executed on a hybrid server comprising a multicore CPU, an Nvidia k40c GPU, and an Intel Xeon Phi 3120P. The application comprises
3 software components (one CPU component, one GPU component, and one Xeon Phi component) executed in parallel. The matrix B is shared by all the
teams. Each software component i is assigned a number of rows of A and C proportional to its performance.

must carefully understand the hardware topology of the
server and map the execution of software components to
partitions of CPU cores.

We briefly overview the complexity of developing a
hybrid parallel matrix multiplication application using the
nested parallelism feature of OpenMP. Figure 1 illustrates the
application. It computes the matrix product (C+ = A × B)
of two dense square matrices A and B of size N × N .
The application is executed on a hybrid server comprising
a dual-socket multicore CPU with each socket containing
24 logical cores, and two accelerators, one Nvidia k40c GPU
and an Intel Xeon Phi 3120P.

The hardware topology of the hybrid server and the CPU
affinity of the accelerators are shown in Figure 2. The Nvidia
k40c GPU in the hybrid server is closest to the cores in
NUMA node 1 (12-23,36-47) on this hybrid server.

The application contains three software components exe-
cuting in parallel, a CPU component and two accelerator
components. The execution of the accelerator component
involves a dedicated CPU core, running the hosting thread,
and the accelerator itself, performing the accelerator code.
The CPU component involves the remaining 46 CPU cores
executing the multithreaded CPU code. Thus, three OpenMP
threads – the master thread of the CPU component and

the hosting threads of the accelerator components – are
running in parallel, each leading the execution of one software
component. ThematricesA andC are partitioned horizontally
among the three components such that the number of rows of
A and C assigned to each component is proportional to its
performance.

Figure 3 shows the two principal parts of the application.
The first part involves environment variable settings external
to the OpenMP program essential to extracting optimal
performance on the hybrid platform.

While OpenMP allows the setting of OMP_PROC_BIND
variable for each nesting level, it does not provide a similar
system for OMP_PLACES. That is, OMP_PLACES setting
for nested levels is not permitted. Therefore, each child
thread will inherit the same list of places (specified in
OMP_PLACES) of the parent thread to distribute its child
threads if OMP_PROC_BIND on the current level is set
to ‘‘master’’ or ‘‘close’’. If using the spread option for
OMP_PROC_BIND on the current level, the parent thread
place partition is divided into subpartitions as previously
outlined.

Lines 1-3 contain the environment variable settings. The
master or parent thread partition comprises three places
specified in OMP_PLACES. The first and second places

VOLUME 12, 2024 23673

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 2. The hardware topology of the hybrid server comprising a dual-socket multicore CPU with each socket containing 24 logical cores, and two
accelerators, an Nvidia K40c GPU and an Intel Xeon Phi 3120P. The graphic is generated using the lstopo tool of the hwloc package. While the Intel Xeon
Phi card is closest to cores in NUMA node 0, the Nvidia k40c GPU is closest to the cores in NUMA node 1.

represent cores 0 and 12. The third place represents the list
of cores, {1, · · · , 11, 13, · · · , 47}.
The second principal part of the application comprises

OpenMP and OpenACC pragmas and library functions to
execute the CPU and accelerator software components.
In Line 5, three team leads are created using proc_bind
value of spread. Therefore, the parent thread partition is
divided into three subpartitions, where each subpartition
gets a place. So, team lead 0 gets place 0 (core 0), team
lead 1 gets place 12 (core 12), and team lead 2 gets the
place, {1, · · · , 11, 13, · · · , 47}, which is the set of remaining
cores.

Lines 7-20 implement the execution of the Xeon Phi
software component with OpenMP thread 0 as its hosting
thread leading the execution. The Xeon Phi component
invokes Intel MKL dgemm routine to compute the matrix
product C1 += A1 × B1. The OpenMP thread 1 leads the
execution of the GPU software component in Lines 22-33.
This software component employs OpenACC to execute the
cublas Dgemm library routine to compute the matrix product
C2 += A2 × B2. Finally, the OpenMP thread 2 creates a team
of 46 threads bound to CPU cores {1, · · · , 11, 13, · · · , 47} to
execute the CPU component. The CPU component invokes

Intel MKL dgemm routine to compute the matrix product
C3 += A3 × B3.

3) OPENMP NESTED PARALLELISM FOR HYBRID PARALLEL
APPLICATION EXECUTION: LIMITATIONS AND CHALLENGES
The hybrid program presented in Figure 3 fully complies
with the official OpenMP and OpenACC specifications.
It comprises two principal parts. The first part involves
environmental variable settings to map the CPU and accel-
erator components to the hybrid platform to extract optimal
performance. The second part contains the execution of
the CPU and accelerator components using OpenMP and
OpenACC constructs.

However, limitations in the state-of-the-art compilers
prohibit the compilation of this program, and challenges
include the need for code portability. We will start with
limitations before discussing portability.

The first limitation pertains to the lack of compiler
support for the program. We will look at two prominent
compilers, NVC and GCC. While the NVC compiler allows
the compilation of OpenACC constructs to execute the
GPU accelerator component, it does not support OpenMP’s
nested parallelism and execution of the Xeon Phi accelerator

23674 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 3. A hybrid parallel matrix multiplication application executing
on a server comprising a dual-socket multicore CPU of 48 logical cores
and two accelerators, an Nvidia k40c GPU, and an Intel Xeon Phi 3120P.
The application contains three software components (kernels) executing
in parallel, one Intel Xeon Phi component, one GPU component, and one
CPU component. The application uses the OpenMP’s nested parallelism
feature and OpenACC to execute the accelerator components. The team
leads 0 and 1 will lead the execution of the Xeon Phi and GPU
components on cores 0 and 12, respectively. The team lead 2 will lead the
execution of the CPU component on the set of cores,
{1, · · · , 11, 13, · · · , 47}. It is important that the programmer know the
affinity of the accelerators to the CPU cores for mapping the software
components for optimal performance..

component. Therefore, it would fail to compile the program.
Note that Intel no longer supports the Intel Xeon Phi family
of coprocessors. Therefore, we will not consider this family
of coprocessors further in this article.

The GCC compiler does not support using OpenMP
and OpenACC in a single program. Therefore, it will
fail to compile the OpenACC constructs executing the
accelerator components. Hence, the programmer must use
vendor-specific API to perform the accelerator computations
hindering the portability of the code.

Finally, one can rewrite the hybrid program using OpenMP
only to execute the CPU and accelerator components since
the latest OpenMP specification provides constructs targeting
accelerators. However, the OpenMP version of the hybrid
program fails to compile on our hybrid servers, highlighting
a lack of comprehensive support for accelerators.

We focus on portability challenges now. The pro-
grammer must employ the environment variable settings
(OMP_PLACES and OMP_PROC_BIND) to map the execu-
tion of the program to the underlying CPU cores for optimal
performance. The environment variable approach renders
the program non-portable to other platforms because the
environment variable settings will differ from one platform
to another.

Furthermore, the portability of the presented hybrid
program is hindered by the fact that the hybrid application
developer must understand the hardware topology of the
hybrid server and the CPU affinity of the accelerators.
To extract the maximum performance, the developers must
carefully map the CPU threads of their hybrid programs
to partitions of cores. To the author’s knowledge, there is
no library automating this feature crucial to the optimal
performance of hybrid programs.

4) NESTED PARALLELISM PROBLEM: SOLUTION USING
PTHREADS AND OPENMP
One can utilize Pthreads to replace the top-level OpenMP
threads as the team leads to solving the limitations in the NVC
compiler related to nested parallelism.

Consider the execution of the hybrid matrix multiplication
application developed using Pthreads, OpenMP, and Ope-
nACC on the same server platform. Three Pthreads will be
created at the top level, out of which two Pthreads will lead
the execution of the two accelerator components, and one
Pthread will lead the execution of the CPU component using
the OpenMP parallel loop construct.

To extract optimal performance on the server platform,
the Pthreads executing the GPU components must be bound
to CPU cores 0 and 1. The Pthread executing the CPU
component will need to be bound to the set of CPU cores,
{2, 3, · · · , 63}.

Hence, it is necessary to explore how mixing thread
affinities between the Pthreads and OpenMP worked. To the
author’s knowledge, there is no documentation for this as it
is not a common use case to need both in traditional parallel
models. Consequently, we developed several test programs
to assess the impact on affinity utilizing both Pthreads and
OpenMP.

When creating an OpenMP parallel region, a Pthread par-
ent thread with no set affinity will utilize the OMP_PLACES
environment variable setting. However, once a Pthread
parent thread’s affinity is set using pthread_setaffinity_np()
or sched_setaffinity() call, all OpenMP threads inside the
parallel regionwill share the same affinity as the parent thread
and ignore the value set in OMP_PLACES environment
variable.

VOLUME 12, 2024 23675

S. Farrelly et al.: OpenH: A Novel Programming Model and API

The summary of challenges when mixing Pthreads and
OpenMP in the same program follows:

• The programmer must avoid mixing the Pthread
API or Unix system calls, pthread_setaffinity_np() or
sched_setaffinity(), and OpenMP (OMP_PLACES and
OMP_PROC_BIND) for processor binding and thread
affinity to ensure the correctness and reliability of hybrid
parallel applications.

• The programmer must carefully analyze the hardware
topology of the server and bind the top-level Pthreads (or
team leads) to partitions of cores to execute the software
components of the hybrid application in parallel for
optimal performance. Moreover, the programmer must
consider the additional layer of complexity introduced
by hyperthreading.

C. SUMMARY
The development of portable hybrid parallel programs is
hampered by limitations in the state-of-the-art NVC andGCC
compilers and lack of tools to map the software components
of the hybrid program to the CPU cores of the hybrid platform
for optimal performance.

When attempting to integrate programming models of
OpenMP and OpenACC to develop a hybrid approach,
significant challenges arise in effectively controlling the
assignment of threads to specific cores. This control is
essential for ensuring code efficiency and avoiding scenarios
of oversubscription or underutilization. There should be a
unified and transparent method of mapping process threads
to logical or physical cores as the developer desires.

Furthermore, the utilization of hyperthreading introduces
another layer of complexity due to the mapping of logical
cores to physical cores within the system. This mapping
discrepancy can confuse developers, as it impacts the
determination of the available number of physical cores for
parallelization and which logical cores to use to maximize
efficiency. Addressing these issues becomes imperative
to provide developers with the available resources for
parallelization efficiently.

In conclusion, the limitations in OpenMP and OpenACC
require a solution using Pthreads. Furthermore, there is a need
for a tool to empower developers with complete control to
bind the hybrid parallel program’s CPU threads to the hybrid
platform’s CPU cores.

IV. OPENH: A NOVEL PROGRAMMING MODEL FOR
DEVELOPING PORTABLE PARALLEL PROGRAMS ON
HETEROGENEOUS HYBRID SERVERS
We propose OpenH, a novel programming model that
enables users to seamlessly combine Pthreads, OpenMP,
and OpenACC and a library API to address the portability
challenges mentioned above to aid the development of
portable hybrid parallel programs.

The OpenH library contains critical missing features in the
current models to allow developers to write portable hybrid

parallel programs. It provides API functions for obtaining the
configuration of the executing environment and binding the
hybrid program’s software components to the CPU cores to
get the best performance.

A. OPENH PROGRAMMING MODEL
An OpenH hybrid parallel program starts as a single main
thread, which then creates a group of Pthreads called hosting
Pthreads.

Unlike OpenMP, OpenACC, and Pthreads, the OpenH
programming model explicitly abstracts not only program
threads but also the physical and logical CPU cores and the
accelerators of the hybrid executing platform. The physical
CPU cores are represented by IDs that are integers in the
array, {0, . . . , npc − 1}, where npc is the total number of
physical cores in the platform. Similarly, the logical CPU
cores are represented by integer identifiers given by the array,
{0, . . . , nlc−1}, where nlc is the total number of logical cores
in the platform. Finally, the accelerators are signified by IDs
taking values in the array, {0, . . . , nacc − 1}, where nacc is
the total number of accelerators in the platform. Apart from
an ID, each accelerator also has an OpenH type. However, all
CPU cores are assumed to be the same type and do not possess
an OpenH type. Therefore, the OpenH programming model
employs a simple abstraction of CPU cores and accelerators
and hides the intricate hardware topology of the hybrid server
platform.

The OpenH program execution model is a fork-join model
illustrated in Figure 4 where the main thread creates a group
of hosting Pthreads responsible for leading the execution of
the software components in parallel.

A CPU hosting Pthread leads the execution of a
multithreaded CPU software component employing either
OpenMP or a multithreaded library routine. There can be
one or more CPU software components and, therefore, one
or more CPU hosting Pthreads. For a CPU component
employing an OpenMP parallel region, the hosting Pthread
of the component becomes the master thread of the region.

An accelerator hosting Pthread leads the execution of an
accelerator component, which is an OpenACC (or OpenMP)
component running on one of the accelerators of the server.

The hybrid program’s main thread joins with the group
after completing the computations, forming a barrier or
synchronization point. The results of the computations
can be safely used for further processing after the join
synchronization.

In addition, the hosting Pthreads can synchronize their
actions during the execution of the software components by
employing the Pthread synchronization API.

Finally, the OpenH library provides API functions that
allow programmers to get the configuration of the executing
environment. Furthermore, the library provides API functions
for binding the hosting Pthreads (and hence the execution
of the software components) to the CPU cores of the hybrid
server to get the best performance.

23676 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 4. The OpenH fork-join programing model comprising a group of p Pthreads called hosting Pthreads. Each hosting Pthread leads the execution
of either a CPU software component or an accelerator software component of the program. The CPU components are shown as multithreaded OpenMP
components with OpenMP threads indicated by dark solid arrows.

B. OPENH LIBRARY API
The OpenH library provides sets of API functions for
environment, thread placement and processor binding.

1) API FOR ENVIRONMENT AND TOPOLOGY
The OpenH library runtime is initialized and destroyed using
the following API functions:

1 int openh_init();
2 int openh_finalize();

The above functions must only be invoked by the main
thread. It is erroneous to call any other OpenH library
function before openh_init().
The main thread and the hosting Pthreads can invoke the

rest of the API functions in this category.
The API function, openh_is_hyperthreaded(), returns 1 if

hyperthreading is enabled on the platform and 0 otherwise.
The function is reentrant and thread-safe.

1int openh_is_hyperthreaded();

The API functions, openh_get_num_pcores() and
openh_get_num_lcores(), return the number of physical
and logical CPU cores in the platform, respectively. Both
functions are reentrant and thread-safe.

1 int openh_get_num_pcores();
2 int openh_get_num_lcores();

If hyperthreading is not present, the number of physical
CPU cores will be the same as the number of logical CPU
cores.

If hyperthreading is present, the number of logical
cores will be greater than the number of physical cores.
For this case, the OpenH library provides two API
functions for obtaining the mapping between the OpenH
logical CPU core IDs to the OpenH physical CPU
core IDs.

The first API function, openh_get_mapping_scheme(),
returns the underlying hardware vendor’s scheme for map-
ping logical CPU core IDs to physical CPU core IDs. The
function is reentrant and thread-safe.

1 int openh_get_mapping_scheme();

The current version of the OpenH library provides the
enum, openh_mapping_scheme, containing two well-known
mapping schemes, round-robin (OPENH_L2P_ROUNDROBIN)
and linear (OPENH_L2P_LINEAR), supported bymainstream
hardware vendors and a mapping scheme
(OPENH_L2P_NWK) covering the rest of the cases, for
example, platforms where logical CPU core IDs are mapped
to physical CPU core IDs with a stride.

VOLUME 12, 2024 23677

S. Farrelly et al.: OpenH: A Novel Programming Model and API

1 enum openh_mapping_scheme {
2 OPENH_L2P_ROUNDROBIN = 0,
3 OPENH_L2P_LINEAR,
4 OPENH_L2P_NWK
5 };

The round-robin scheme for mapping logical CPU core
IDs to physical CPU core IDs is the default in Intel and
AMD multicore CPU processors. The mapping scheme can
be changed to linear in BIOS in AMD processors.

The second API function, openh_get_mapping_function(),
returns the mapping function given the input mapping
scheme, mapping_scheme. It is reentrant and thread-safe.

1 typedef int (*openh_pcoreid_func)(
2 int openh_lcoreid);
3 openh_pcoreid_func

openh_get_mapping_function(
4 int mapping_scheme);

The programmer uses the mapping function pointer,
openh_pcoreid_func, provided by the second API func-
tion, openh_get_mapping_function(), to obtain the OpenH
physical CPU core ID associated with the input OpenH
logical CPU core ID, openh_lcoreid. Therefore, the
programmer first obtains the mapping scheme using
openh_mapping_scheme(), then uses this scheme to obtain
the mapping function pointer via the API function call,
openh_get_mapping_function(), and finally obtains the
physical CPU core IDmapped to a logical CPU core ID using
the mapping function pointer.

The programmers can use their own mapping functions,
but this will hinder the portability of their OpenH programs.

We illustrate the two well-known mapping schemes,
round-robin and linear. Consider a dual-socket multicore
CPU with eight physical cores per socket and two logical
cores per physical core. Then the OpenH physical CPU core
IDs are {0, 1, · · · , 15} and the OpenH logical CPU core IDs
are {0, 1, · · · , 31}.
Suppose the mapping scheme is round-robin. The

API function call, openh_get_mapping_scheme(), returns
OPENH_L2P_ROUNDROBIN. The OpenH logical CPU
core IDs, {0, 1, · · · , 31}, map to the array of OpenH physical
CPU core IDs, {0, · · · , 15, 0, · · · , 15}. Therefore, for exam-
ple, the function pointer, openh_pcoreid_func(), obtained
using the mapping function, openh_get_mapping_function(),
will return the OpenH physical CPU core ID of 0 for input
OpenH logical CPU ID of 16 and 1 for
input 17.

Suppose the mapping scheme is linear. The API function
call, openh_get_mapping_scheme(), returns OPENH_L2P
_LINEAR. the OpenH logical CPU core IDs, {0, 1, · · · , 31},
map to the array of OpenH physical CPU core IDs,
{0, · · · , 7, 0, · · · , 7, 8, · · · , 15, 8, · · · , 15}. Therefore, for
example, the function pointer, openh_pcoreid_func(),
obtained using the mapping function, openh_get_mapping_

function(), will return the OpenH physical CPU core id
of 8 for input OpenH logical CPU ID of 16 and 9 for
input 17.

The API function, openh_get_ptol_function(), allows the
programmer to obtain the list of OpenH logical CPU core
IDs associated with an OpenH physical CPU core ID. It is
reentrant and thread-safe.

1 typedef int (*openh_ptol_func)(
2 int openh_pcoreid, int**

lcpuids, int* nlids);
3 openh_ptol_func

openh_get_ptol_function(
4 int mapping_scheme);

The programmer first obtains the mapping scheme using
openh_mapping_scheme() and then uses this scheme to
obtain the physical-to-logical function pointer, openh_ptol_func,
using the function openh_get_ptol_function(). Finally, the
programmer obtains the list of OpenH logical CPU core
IDs in the array, lcpuids, using the function pointer,
openh_ptol_func, for the input physical CPU core ID,
openh_pcoreid. The size of the array lcoreids is nlids.
Memory for lcoreids is obtained using malloc() and can be
freed with free().
The following code snippet demonstrates the use of theAPI

function, openh_get_ptol_function(), to obtain and print the
list of OpenH logical CPU core IDs for input OpenH physical
CPU core ID, pcpuid.

1 int i, mscheme =
openh_get_mapping_scheme();

2 openh_ptol_func optolf =
openh_get_ptol_function(mscheme);

3 int* lcpuids, nlids;
4 int rc = optolf(pcpuid, &lcpuids,

&nlids);
5 printf(
6 "Logical IDs for physical CPU ID %d:

",
7 pcpuid);
8 for (i = 0; i < nlids; i++) {
9 printf("%d ", lcpuids[i]);

10 }
11 printf("\n");
12 free(lcpuids);

2) API FUNCTIONS FOR ACCELERATORS
We now present the API functions concerning the accelera-
tors.

The API function, openh_get_num_accelerators(), returns
the number of accelerators in the execution platform.

1 int openh_get_num_accelerators();

The API function, openh_get_acc_type(), returns the type
of the accelerator given the id.

23678 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

1 int openh_get_acc_type(int id);

The current version of the OpenH library provides the
following enum, openh_acc_type, containing the supported
accelerator types.

1 enum openh_acc_type {
2 OPENH_CUDA_GPU = 0,
3 OPENH_AMD_GPU,
4 OPENH_FPGA,
5 OPENH_UNKNOWN
6 };

The API functions, openh_get_num_accelerators() and
openh_get_acc_type(), together allow the programmer to
obtain a mapping between the accelerator IDs and types. Both
functions are reentrant and thread-safe.

The OpenH physical CPU core IDs closest to an
accelerator can be obtained using the API function
openh_get_accelerator_pcpuaffinity.

1 int openh_get_accelerator_pcpuaffinity(
2 int accnum, int** closestPcpuids,
3 int* npcpuids);

The above function returns the closest OpenH physical
CPU core IDs to the accelerator, accnum, in the array,
closestPcpuids. The size of the output array is npcpuids.
Memory for closestPcpuids is obtained using malloc() in the
API function, and can be freed with free().
Similarly, the closest OpenH logical CPU core IDs can be

obtained using the API function
openh_get_accelerator_lcpuaffinity.

1 int openh_get_accelerator_lcpuaffinity(
2 int accnum, int** closestLcpuids,
3 int* nlcpuids);

Both openh_get_accelerator_pcpuaffinity() or
openh_get_accelerator_lcpuaffinity() are reentrant and
thread-safe.

If hyperthreading is not present, the set of physical
CPU core IDs in the array, closestPcpuids, will be the
same as the logical CPU core IDs in the array, clos-
estLcpuids. In this case, to get optimal performance,
the programmmer must bind different accelerator host-
ing Pthreads to different CPU core IDs in the out-
put array from openh_get_accelerator_pcpuaffinity() or
openh_get_accelerator_lcpuaffinity().

If hyperthreading is present, we would recommend the
programmer bind different accelerator hosting Pthreads to
different physical CPU core IDs using the API function,
openh_get_accelerator_pcpuaffinity(). Using
openh_get_accelerator_lcpuaffinity() API call to bind differ-
ent accelerator hosting Pthreads to different logical CPU core
IDs may lead to overloading or oversubscribing a physical
CPU core if the logical CPU cores happen to share the same
physical CPU core. Such a case can arise when the hardware

vendor follows a linear enumeration scheme for logical CPU
core IDs.

Furthermore, if there is one single-socket multicore CPU
and multiple accelerators on a platform, all the accelerators
will likely be closest to all the logical cores of the multicore
CPU. Therefore, the output arrays, closestPcpuids and clos-
estLcpuids, will be the same for all the accelerators. Hence,
to get optimal performance, the programmer must bind
different accelerator hosting Pthreads to different physical
CPU core IDs or logical CPU core IDs that do not share the
same physical CPU core.

Therefore, the OpenH library provides two high-level
functions that allow the programmer to assign unique OpenH
physical CPU core IDs or OpenH logical CPU core IDs that
map to unique OpenH physical CPU core IDs.

1 int openh_get_unique_pcore(int accId);
2 int openh_get_unique_lcore(int accId);

The API function, openh_get_unique_pcore(), assigns a
unique OpenH physical CPU core ID to pin the hosting
Pthread for the accelerator accId. Finally, the API function,
openh_get_unique_lcore(), assigns a unique OpenH logical
CPU core ID to pin the hosting Pthread for the accelerator
accId. Furthermore, different accelerator hosting Pthreads are
assigned unique OpenH logical CPU core IDs that map to
a unique OpenH physical CPU core ID when using the API
function, openh_get_unique_lcore().

The two API functions, openh_get_unique_pcore() and
openh_get_unique_lcore(), are not thread-safe. It is recom-
mended that programmers invoke these functions only in the
main thread. Furthermore, only one of the functions must be
used for obtaining the unique OpenH CPU core IDs to assign
for binding the accelerator hosting Pthreads.

The two high-level API functions above are implemented
on top of the basicAPI functions, openh_get_accelerator_pcp
uaffinity() and openh_get_accelerator_lcpuaffinity(). They
are high-level helpers provided for programmers who prefer
the defaults employed by OpenH library for their OpenH
programs.

The two API functions, openh_get_accelerator_pcpuaffi
nity() and openh_get_accelerator_lcpuaffinity(), cater to
advanced programmers who would like to design and
implement a different portable solution to the one the OpenH
library provides that is optimal for their platform.

We illustrate the use cases for the affinity API functions for
accelerators in our description of an OpenH hybrid parallel
matrix multiplication application in Section V-A.

3) ASSIGNMENT AND BINDING API FOR HOSTING THREADS
AND SOFTWARE COMPONENTS
The OpenH library provides two sets of API functions for
assigning the CPU core IDs and binding the main thread and
hosting Pthreads and the execution of software components to
the assigned CPU core IDs, called affinity and binding APIs.

VOLUME 12, 2024 23679

S. Farrelly et al.: OpenH: A Novel Programming Model and API

Like OpenMP, the affinity API assign the places (or CPU
core IDs) for binding (or pinning) the main thread and the
hosting Pthreads. The binding API bind the hosting Pthreads
to the CPU core IDs assigned using the affinity API. For
the CPU component, the affinity and binding API functions
assign the CPU core IDs for binding the CPU hosting Pthread
and the execution of the CPU component on the CPU core
IDs.

Therefore, an OpenH programwill always have the affinity
API function invocations followed by binding API function
invocations. Furthermore, the affinity API must be invoked
only by the main thread.

The primary reason for division into affinity and binding
APIs is to avoid locking and synchronization between
Pthreads to get and set the CPU core IDs for binding.
Furthermore, both affinity and binding API functions are not
thread-safe.

The following API functions assign the OpenH physical
CPU core IDs for binding the main and hosting Pthreads:

1 void openh_assign_main_pcpuid(int
pcpuid);

2 void openh_assign_acc_pcpuids(int
accId, int* pcpuids, int size);

3 void openh_assign_cpu_pcpuids(int
cpuComponentId, int* pcpuids, int
size);

TheAPI function, openh_assign_main_pcpuid, assigns the
OpenH physical CPU core ID, pcpuid, for binding the main
thread. It must be invoked by the main thread only.

The API function, openh_assign_acc_pcpuids, assigns the
OpenH physical CPU core IDs provided in the array, pcpuids,
for binding the hosting Pthread for the accelerator accId. The
size of the array is provided in the size argument.

The API function, openh_assign_cpu_pcpuids, assigns the
OpenH physical CPU core IDs provided in the array, pcpuids,
for binding the CPU hosting Pthread and the execution of the
CPU component cpuComponentId. The size of the array is
provided in the size argument.
Similarly, the following API functions assign the OpenH

logical CPU core IDs for binding the main and hosting
Pthreads:

1 void openh_assign_main_lcpuid(int
lcpuid);

2 void openh_assign_acc_lcpuids(int
accId, int* lcpuids, int size);

3 void openh_assign_cpu_lcpuids(int
cpuComponentId, int* lcpuids, int
size);

Finally, the following API functions are helpers for
automatically assigning the OpenH physical and logical CPU
core IDs for binding the CPU hosting Pthread and the
execution of the CPU component cpuComponentId:

1 void openh_assign_cpu_free_pcpuids(
2 int cpuComponentId);
3 void openh_assign_cpu_free_lcpuids(
4 int cpuComponentId);

After assigning the OpenH physical CPU core IDs
for the accelerator hosting Pthreads, the programmers
can use openh_assign_cpu_free_pcpuids() to assign the
remaining free OpenH physical CPU core IDs for bind-
ing the hosting Pthread and therefore for the execu-
tion of the CPU component cpuComponentId. Similarly,
openh_assign_cpu_free_lcpuids() assigns the remaining free
OpenH logical CPU core IDs. Note that once the CPU hosting
Pthread is assigned physical CPU core IDs for binding
using openh_assign_cpu_free_pcpuids(), there will be no
free physical CPU core IDs left. Similarly, once the CPU
hosting Pthread is assigned logical CPU core IDs for binding
using openh_assign_cpu_free_lcpuids(), there will be no free
logical CPU core IDs left.

The following binding API functions actually bind the
hosting Pthreads to the CPU core IDs that have been assigned
using the affinity API functions.

1 int openh_bind_main_self();
2 int openh_bind_acc_self(int accId);
3 int openh_bind_cpu_self(int

cpuComponentId);

The function openh_bind_main_self() must be called by
the main thread only. The function openh_bind_acc_self()
is called by the hosting Pthread for the accelerator
accId. It binds the accelerator hosting Pthread to the
core IDs assigned for binding in the API function calls,
openh_assign_acc_pcpuids() or openh_assign_acc_lcpuids().
The function openh_bind_cpu_self() is called by the

hosting Pthread for the CPU component cpuComponentId.
It binds the CPU hosting Pthread and the execution of the
CPU component to the CPU core IDs assigned for binding
in the API function calls, openh_assign_cpu_pcpuids() or
openh_assign_cpu_lcpuids(). Therefore, the CPU compo-
nent executes only on the CPU core IDs assigned using the
affinity assignment API.

Finally, these functions are typically the first invocations
in the Pthread function execution of the corresponding com-
ponent. For example, the function openh_bind_cpu_self()
would be invoked before any processing in the Pthread
function associated with a CPU component.

V. HYBRID PARALLEL APPLICATIONS USING OPENH
We present the design and implementation of two hybrid
parallel applications based on matrix multiplication and
2D fast Fourier transform (2D-FFT), respectively. We then
discuss interesting use cases of the OpenH library employing
the hybrid parallel matrix multiplication application as an
example.

23680 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 5. An OpenH hybrid parallel matrix multiplication application computing the matrix product (C+ = A × B) of two dense square matrices A and B
of size N × N using p computing devices (one multicore CPU and p − 1 accelerators). It comprises a group of p hosting Pthreads leading the execution of p
software components, one CPU component and p − 1 accelerator components. The matrix B is shared by all the components. Each component i is
assigned a number of rows of A and C proportional to its performance and given by d [i].

A. HYBRID PARALLEL MATRIX MULTIPLICATION
APPLICATION USING OPENH
This section illustrates the OpenH library API to develop a
hybrid parallel matrix multiplication application on a server
comprising p computing devices, one multicore CPU and
p− 1 accelerators.

We first present the design and implementation of the
application for the most general case of a hybrid server,
which is hyperthreaded and comprises nlc number of logical
CPU cores. The design employs only the group of API
functions provided for dealing with OpenH logical CPU core
IDs. Therefore, the application is designed to be portable to
all hyperthreaded and non-hyperthreaded hybrid platforms
without any code changes.

1) DESIGN AND IMPLEMENTATION
Figure 5 illustrates the application. It computes the matrix
product (C+ = A × B) of two dense square matrices A
and B of size N × N . It comprises p software components,
{S1, . . . , Sp}, one CPU component and p − 1 accelerator
components. The main thread creates the group of p hosting
CPU and accelerator Pthreads to lead the execution of the
CPU and the accelerator software components in parallel.

The matrices A and C are partitioned horizontally
among the p components such that each component is

assigned a number of rows of A and C proportional
to its performance. The distribution of rows of A and
C is provided in the array, d . The matrix B is shared
by all the components. So, each component Pi computes
its horizontal partition CPi using the matrix product,
CPi+ = APi × B.

In the supplemental, we provide the implementation of our
hybrid program that shows how the workload distribution
array, d , is automatically determined using the performances
of the software components estimated at runtime. We do not
present the OpenH API functions employed for determining
the performances and the workload distribution since they are
a work in progress.

We first determine the relative performances of the
software components using the OpenH API function,
openh_perf_benchmark(), which executes small representa-
tive benchmark codes of the software components solving the
same workload size in parallel. The execution times of all
the benchmark codes are measured simultaneously, thereby
considering the influence of resource contention. The API
function implementation essentially executes a mini-version
of the hybrid matrix multiplication application employing the
same affinity and binding settings for the Pthreads executing
the benchmark codes as the hosting Pthreads and the same
library settings for the library routines invoked in the software
component implementations.

VOLUME 12, 2024 23681

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 6. The OpenH parallel matrix multiplication code illustrating the
OpenH fork-join model of execution. The OpenH library calls are
highlighted in bold. The main thread creates the group of hosting CPU and
accelerator Pthreads to lead the execution of the CPU and the accelerator
software components in parallel. If the accelerator is a CUDA-enabled
GPU signified by the enum value OPENH_CUDA_GPU, then the accelerator
hosting Pthread will lead the execution of the Nvidia CUDA GPU
component, accCudaMxmComponent. Otherwise, the accelerator hosting
Pthread will lead the execution of the accNonCudaMxmComponent.

The performances are then used to determine the workload
distribution using the API function, openh_get_wd(). Note
that the sum total of the execution times of the benchmark
codes, the determination of the performances and workload
distribution are insignificant compared to the total execution
time of the hybrid program. Furthermore, the OpenH API
function for benchmarking performances essentially reuses
the structure of the hybrid program and the software
component implementations.

Figures 6 and 7 illustrate the main steps of execution of the
OpenH parallel matrix multiplication application.

FIGURE 7. The OpenH parallel matrix multiplication application is
decomposed into p software components (one CPU and p − 1 accelerator
components) and executing on a heterogeneous platform comprising p
devices, one multicore CPU and p − 1 accelerators. The OpenH library
calls are highlighted in bold. The CPU software component
implementation is in the function, cpuMxmComponent. The software
component implementation specific to Nvidia CUDA GPU is in the
function, accCudaMxmComponent. For any other accelerator, the
software component implementation is in the function,
accNonCudaMxmComponent.

Wewill first describe the execution steps of themain thread
in the application (Figure 6). Line 8 initializes the OpenH
library runtime using the API function openh_init(). The API
function, openh_get_num_accelerators, returns the number
of accelerators (Line 10).

The variable p stores the number of hosting Pthreads
in the program, which is equal to the number of soft-
ware components. Lines 14-17 determine and assign the
physical CPU core IDs closest to the accelerators for
binding the accelerator hosting Pthreads. The API function,

23682 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

openh_get_unique_lcore(i), returns the unique OpenH log-
ical CPU core ID closest to the input accelerator, i. The
hosting Pthread for the accelerator i is assigned the place
using the API function, openh_assign_acc_lcpuids (Line 16).
The OpenH library functions ensure that different accelerator
hosting Pthreads are set to OpenH logical CPU core IDs that
map to different OpenH physical CPU core IDs for optimal
performance.

The CPU software component with ID 0 is assigned
the remaining OpenH logical CPU core IDs using the API
function, openh_assign_cpu_free_lcpuids(), that execute the
component (Line 19). The number of logical CPU core IDs
for binding the CPU hosting Pthread is nlc − nacc since
nlc is the number of logical cores in the platform and nacc
logical CPU core IDs are assigned to accelerator hosting
Pthreads.

Lines 22-32 show the creation of the p − 1 accelerator
hosting Pthreads responsible for executing the accelerator
components. The partition data for an accelerator software
component is filled in the Lines 23-26. The accelerator type
for the accelerator i is returned by openh_get_acc_type().
If the accelerator type is OPENH_CUDA_GPU, then the
accelerator hosting Pthread will lead the execution of the
Nvidia CUDA GPU component, accCudaMxmComponent.
This component invokes the CUBLAS DGEMM routine
to compute the matrix product. Otherwise, the accelera-
tor hosting Pthread will invoke the software component
implementation provided in the function, accNonCudaMxm-
Component.

Lines 34-37 contain the filling of the partition data
for the CPU component and the creation of the hosting
Pthread leading the execution of the CPU component. This
component invokes the OpenBLAS DGEMM routine to
compute the matrix product.

After completing the computations, the main thread syn-
chronizes/joins with the p hosting Pthreads in Lines 39-41.
Finally, the OpenH runtime is destroyed using the API
function, openh_finalize().

Figure 7 show the main code fragments of the software
components. Lines 1-15 contain the CPU software com-
ponent code. The hosting Pthread leading the execution
of the CPU component with ID, cpuComponentId, is first
bound using the API function, openh_bind_cpu_self(). Then,
it executes the CBLAS DGEMM routine to compute the
matrix product, dC = dA×B, multiplying its horizontal slice
in A with B.

The DGEMM routine is executed using threads bound
to OpenH logical CPU core IDs that are set using
the API function, openh_assign_cpu_free_lcpuids(), in the
main thread. The number of threads employed by the
DGEMM routine is set using the CBLAS library API
function, cblas_set_num_threads(), which will be differ-
ent for different CBLAS library implementations. For
OpenBLAS implementation, the library API function is
oblas_set_num_threads(). For the Intel MKL library imple-
mentation, the libraryAPI function ismkl_set_num_threads().

The number of threads passed to the function is equal to nlc−
nacc where nlc is the number of logical cores in the platform
given by the API function, openh_get_num_lcores(), and
nacc is the number of accelerators given by the API function,
openh_get_num_accelerators().

Therefore, the OpenH main thread shares a core with
one of the hosting Pthreads. However, this sharing does not
affect the performance since the main thread is not involved
in the computations in this application and waits in the
pthread_join() loop to synchronize with the hosting Pthreads
(Figure 6, Lines 39-41).
Lines 16-35 demonstrate the execution of a component

employing an accelerator that is not an Nvidia GPU. The
hosting Pthread leading the execution of accId is bound using
the API function, openh_bind_acc_self(). Lines 24-35 show
the use of OpenACC pragmas to compute the matrix product,
dC = dA × B. The pragma acc data copyin (Line 24)
directive allocates memory on the accelerator for A, B, and
C , respectively, of sizesM ∗K , K ∗N , andM ∗N and copies
data from the host to the accelerator when entering the data
region enclosed by the directive.

The OpenACC execution model has three levels: gang,
worker, and vector. For Nvidia GPUs, an OpenACC gang
is a threadblock, a worker is a warp, and a vector is a
CUDA thread. Therefore, the pragma acc parallel loop gang
directive (Line 25)marks the loop for gang parallelism, which
maps to grid-level parallelism (for example, CUDA grid)
for the accelerator. The pragma acc loop vector (Line 27)
marks the loop for vector parallelism (for example, CUDA
threads).

Finally, Lines 36-57 demonstrate the execution of a
software component employing an Nvidia GPU. The hosting
Pthread leading the execution of gpuId is bound using the
API function, openh_bind_acc_self(). Lines 48-55 show the
use of OpenACC pragma directives to execute the CUBLAS
DGEMM routine to compute the matrix product, dC = dA×

B, on the GPU device, gpuId. The GPU device ID is set using
the OpenACC library function, acc_set_device_num.

The pragma acc host_data use_device directive allows
to get the device addresses of dA, B, and dC within host
code that can then be input to CUDA library functions
(such as the CUBLAS DGEMM routine) that expects CUDA
device pointers. The directive essentially allows the compiler
to generate code to use device copies of dA, B, and dC
as arguments to the CUBLAS DGEMM routine, which is
invoked on the CPU side. Lines 51-53 execute the CUBLAS
DGEMM routine to compute the matrix product, dC = dA×

B, on the GPU.

B. HYBRID 2D FAST FOURIER TRANSFORM USING OPENH
This section illustrates the OpenH library API to develop
a hybrid parallel 2D fast Fourier transform application (2D
FFT) on a server comprising p computing devices, one
multicore CPU and p− 1 accelerators.
Following in the same lines as the hybrid matrix multipli-

cation example, we present the design and implementation of

VOLUME 12, 2024 23683

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 8. The OpenH parallel 2D FFT application executing on a
heterogeneous platform comprising p devices, one multicore CPU and
p − 1 accelerators. The 2D FFT is accomplished in four steps: (1)
Computing 1D FFTs on rows of the signal matrix (using openhfft2d()),
(2) Tranpose of the signal matrix (using openhtranspose()), (3) 1D FFTs on
rows of the signal matrix (openhfft2d()), and finally (4) Tranpose of the
signal matrix (openhtranspose). In the openhfft2d function, the main
thread creates a group of p hosting CPU and accelerator Pthreads to lead
the execution of the CPU and the accelerator software components in
parallel. In the opentranspose function, the main thread creates one
hosting CPU Pthread to lead the execution of the CPU software
component. The software component employs all the CPU cores during its
execution.

the application for the most general case of a hybrid server,
which is hyperthreaded and comprises nlc number of logical
CPU cores. However, the hybrid 2D FFT implementation
is more complex than the hybrid matrix multiplication
implementation.

1) DESIGN AND IMPLEMENTATION
Figure 10 illustrates the OpenH hybrid parallel 2D FFT
application computing the 2D-FFT of a signal matrix S of

FIGURE 9. The CPU software component implementation computing the
1D FFTs of size N is in the function, cpuFFTComponent. The software
component implementation specific to Nvidia CUDA GPU is in the
function, accCudaFFTComponent. The CUDA implementation calls cuFFT
API functions to compute a batch of 1D FFTs of size N. For any other
accelerator, the software component implementation is in the function,
accNonCudaFFTComponent. The transpose of the signal matrix employing
all the CPU cores is presented in the supplemental.

size N × N using p computing devices (one multicore CPU
with nlc logical cores and p− 1 accelerators).

23684 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 10. An OpenH hybrid parallel 2D FFT application computing the 2D-FFT of a signal matrix S of size N × N using p computing devices (one
multicore CPU and p − 1 accelerators). It comprises four main steps. (a). A group of p hosting Pthreads lead the execution of p software components, one
CPU component and p − 1 accelerator components, that perform N row 1D-FFTs of size N indicated by dotted arrows. Each component i is assigned a
number of rows of S proportional to its performance and given by d [i]. (b). One hosting CPU Pthread leads the execution of a CPU software component
that transposes the signal matrix S. Steps (c) and (d) are the repetition of steps (a) and (b), respectively.

It comprises four main steps: (a). Function openhfft2d()
performing N row 1D FFTs of size N (Line 51). (b).
Function openhtranspose() tranposing the signal matrix S
(Line 52). Steps (c) and (d) are the repetition of steps
(a) and (b), respectively. Note that both openhfft2d() and
openhtranspose() are 2D-FFT application-specific functions
and not OpenH library functions.

Unlike the matrix multiplication application presented
earlier, where the whole computation is accomplished by just
one group of OpenH hosting Pthreads, the main thread in 2D-
FFT creates different groups of OpenH hosting Pthreads to
execute a batch of 1D FFTs and transpose. The composition
of the groups leading the execution of the batch of 1D FFTs
and transpose differ.

In our hybrid implementation of 2D-FFT, executing the
batch of 1D FFTs involves all the p computing devices,
whereas the transpose is executed by all the nlc logical
cores of the multicore CPU only. Note that one can have a
2D-FFT hybrid implementation containing a parallel hybrid
transpose that employs all the p computing devices. In such
an implementation, one group of OpenH hosting Pthreads
will lead the execution of a batch of 1D FFTs and then
the transpose. However, we found that this implementation
complicated the exposition. Furthermore, the cost of creating
and destroying a group of OpenH hosting Pthreads and
setting their affinities is not a concern since it is insignificant
compared to the total execution time of the application.

Figures 8 and 9 illustrate the main steps of execution of the
OpenH parallel 2D FFT application.

In the function openhfft2d(), the main thread creates
a group of p hosting Pthreads that lead the execution

of p software components, one CPU component and
p − 1 accelerator components. The signal matrix S is
partitioned horizontally among the p components such
that each component is assigned a number of rows of
S proportional to its performance. The distribution of
rows of S is provided in the array, d . The workload
distribution array, d , is automatically determined using
the performances of the software components estimated at
runtime.

Similar to the matrix multiplication application, we first
determine the relative performances of the software com-
ponents using the OpenH API function, openh_perf_
benchmark(), which executes small representative bench-
mark codes of the software components solving the same
workload size in parallel. The API function implementation
essentially executes a mini-version of the hybrid 2D-FFT
application employing the same affinity and binding settings
for the Pthreads executing the benchmark codes as the hosting
Pthreads and the same library settings for the library routines
invoked in the software component implementations. The
performances are then used to determine the workload dis-
tribution using the API function, openh_get_wd(). We do not
present the OpenH API functions employed for determining
the performances and the workload distribution since they are
a work in progress.

In the function openhfft2d(), Line 7 initializes the OpenH
library runtime using the API function openh_init(). The
API function, openh_get_num_accelerators, returns the
number of accelerators (Line 9). The variable p stores
the number of hosting Pthreads, which is equal to the
number of software components. Lines 10-13 assign the

VOLUME 12, 2024 23685

S. Farrelly et al.: OpenH: A Novel Programming Model and API

physical CPU core IDs closest to the accelerators for
binding the accelerator hosting Pthreads. The API func-
tion, openh_get_unique_lcore(i), returns the unique OpenH
logical CPU core ID closest to the input accelerator, i.
The hosting Pthread for the accelerator i is assigned the
place using the API function, openh_assign_acc_lcpuids
(Line 12).The CPU software component with ID 0 is assigned
the remaining OpenH logical CPU core IDs using the API
function, openh_assign_cpu_free_lcpuids(), that execute the
component (Line 15).

Lines 17-27 show the creation of the p − 1 accelerator
hosting Pthreads responsible for executing the accelerator
components. The partition data for an accelerator software
component is filled in the Lines 18-20. The accelerator type
for the accelerator i is returned by openh_get_acc_type().
If the accelerator type is OPENH_CUDA_GPU, then the
accelerator hosting Pthread will lead the execution of the
Nvidia CUDA GPU component, accCudaFFTComponent.
This component invokes cuFFT routines to compute the
1D FFTs. Otherwise, the accelerator hosting Pthread will
invoke the software component implementation provided in
the function, accNonCudaFFTComponent.

Lines 28-30 contain the filling of the partition data
for the CPU component and the creation of the hosting
Pthread leading the execution of the CPU component. This
component invokes the Intel MKL FFT routines to compute
the 1D FFTs.

After completing the computations, the main thread syn-
chronizes/joins with the p hosting Pthreads in Lines 32-33.
Finally, the OpenH runtime is destroyed using the API
function, openh_finalize().

In the function openhtranspose(), the main thread
creates a hosting Pthread that leads the execution of
a CPU software component computing the transpose
of the signal matrix S (Lines 43-45). The hosting
Pthread is assigned all the logical CPU cores using the
API function, openh_assign_cpu_lcpuids (Line 42). The
transpose is multithreaded and employs a number of
threads equal to the number of logical CPU cores in the
platform (nlc).

Figure 9 shows the main code fragments of the software
components involved in executing the N 1D FFTs of the
signal matrix S. Lines 1-21 contain the CPU software
component code. The hosting Pthread leading the execution
of the CPU component with ID, cpuComponentId, is first
bound using the API function, openh_bind_cpu_self(). Then,
it executes the Intel MKL FFT routines (using the FFTW
interface) to compute M 1D FFTs of size N in its partition,
cData.myS.

The Intel MKL FFT routine (fftw_plan_many_dft()) plans
multiple multidimensional complex DFTs to compute how-
many transforms, each having rank rank and size s. The Intel
MKL FFT routine (fftw_execute()) is executed using threads
bound to OpenH logical CPU core IDs that are set using the
API function, openh_assign_cpu_free_lcpuids(), in the main

thread. The number of threads employed by the routine is set
using the library API function, fftw_plan_with_nthreads().
The number of threads passed to the function is equal to nlc−
nacc where nlc is the number of logical cores in the platform
given by the API function, openh_get_num_lcores(), and
nacc is the number of accelerators given by the API function,
openh_get_num_accelerators().

Therefore, the OpenH main thread shares a core with
one of the hosting Pthreads. However, this sharing does not
affect the performance since the main thread is not involved
in the computations in this application and waits in the
pthread_join() loop to synchronize with the hosting Pthreads
(Figure 8, Lines 32-33).
Lines 22-49 demonstrate the execution of a component

employing an accelerator that is not an Nvidia GPU.
Note that the implementation of 2D FFT presented here
is basic and unoptimized. The hosting Pthread leading
the execution of accId is bound using the API function,
openh_bind_acc_self().

Lines 29-48 show the OpenACC pragmas employed to
compute M 1D FFTs of size N in myS. The pragma acc
data copyin (Line 29) directive allocates memory on the
accelerator for dft andmyS, respectively, of sizesN andM∗N
and copies data from the host to the accelerator when entering
the data region enclosed by the directive. The pragma acc
parallel loop gang directive (Line 30) marks the loop for
gang parallelism, which maps to grid-level parallelism (for
example, CUDA grid) for the accelerator. The pragma acc
loop vector (Line 32) marks the loop for vector parallelism
(for example, CUDA threads). The loop (Line 31) computes
M 1D FFTs of size N . Lines 33-47 compute an 1D FFT of
size N .
Finally, Lines 50-71 demonstrate the execution of a

software component employing an Nvidia GPU. The hosting
Pthread leading the execution of gpuId is bound using the API
function, openh_bind_acc_self(). Lines 50-60 show the use
of OpenACC pragma directives to execute the cuFFT routine
computing the 1D FFTs on the GPU device, gpuId. The
GPU device ID is set using the OpenACC library function,
acc_set_device_num.

The pragma acc host_data use_device directive
(Lines 50-51) allows to get the device address of myS within
host code that can then be input to CUDA library functions
that expects CUDA device pointers. The directive essentially
allows the compiler to generate code to use a device copy of
myS as an argument to the cuFFT routine (cufftExecZ2Z()),
which is invoked on the CPU side.

Lines 54-59 execute the cuFFT routines to computeM 1D
FFTs of size N on the GPU. The cuFFT function cufftPlan-
Many() creates a FFT plan configuration of dimension rank ,
with sizes specified in the array s. The batch input parameter
tells cuFFT how many transforms to configure. The cuFFT
routine cufftExecZ2Z() executes a double-precision complex-
to-complex transform plan in the transform direction as
specified by direction parameter.

23686 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

C. DISCUSSION OF THE USE CASES
We discuss here a few use cases for OpenH library API
functions employing the hybrid parallel matrix multiplication
above as an example.

1) HYPERTHREADING
We assume the hybrid server is hyperthreaded in the
hybrid matrix multiplication application presented above.
The application code invoked the OpenH library API
functions that deal solely with OpenH logical CPU core
IDs. For example, API functions openh_get_unique_lcore()
and openh_assign_acc_lcpuids() are used to get the
closest OpenH logical CPU core IDs to the accel-
erators to pin the accelerator hosting Pthreads and
openh_assign_cpu_free_lcpuids() to select the OpenH
logical CPU core IDs for binding the CPU hosting Pthread.

For a server that is not hyperthreaded, the programmer can
use either of the two groups of API functions provided for
dealing with OpenH physical or logical CPU core IDs since
the set of the OpenH physical CPU core IDs is the same as
the set of OpenH logical CPU core IDs.

For use cases where programmers find that hyperthreading
hampers the performance of their applications, they can
employ the group of API functions dealing with OpenH
physical CPU core IDs only and desist from using the
API functions involving the OpenH logical CPU core IDs.
For example, the API functions openh_get_unique_pcore()
and openh_assign_acc_pcpuids() can be used to get the
closest OpenH physical CPU core IDs to the accelerators
and openh_assign_cpu_free_pcpuids() to select the OpenH
physical CPU core IDs for binding the CPU hosting Pthread
and the execution of the CPU component.

2) AFFINITY API FOR THE ACCELERATORS
The OpenH library provides two high-level API functions,
openh_get_unique_pcore() and openh_get_unique_lcore(),
that allow programmers to obtain unique OpenH physical
CPU core IDs or OpenH logical CPU core IDs that map
to unique OpenH physical CPU core IDs for binding the
accelerator hosting Pthreads.

However, these two functions are high-level helpers that
provide one solution from a set of solutions for the problem,
which is to determine unique OpenH physical CPU core IDs
or OpenH logical CPU core IDs that map to unique OpenH
physical CPU core IDs for binding the accelerator hosting
Pthreads. They are provided for programmers who prefer
the defaults employed by OpenH library for their OpenH
programs.

The two API functions, openh_get_accelerator_
pcpuaffinity() and openh_get_accelerator_lcpuaffinity(),
cater to advanced programmers who would like to design
and implement a different portable solution to the one the
OpenH library provides that is optimal for their platform.
Suppose a hybrid platform with a single-socket multicore
CPU, sixteen physical cores, and two accelerators. Then,

the OpenH physical CPU core IDs are {0, 1, · · · , 15}. Also,
consider that all the physical CPU cores are closest to both
accelerators. The programmer can use the following solution
to assign unique OpenH physical CPU core IDs for binding
the accelerator hosting Pthreads.

1 int nacc = openh_get_num_accelerators();
2 for (i = 0; i < nacc; i++) {
3 int* closestPcpuids; int npcpus;
4 openh_get_accelerator_pcpuaffinity(i,

&closestPcpuids, &npcpus);
5 openh_assign_acc_pcpuids(i,

&closestPcpuids[i], 1);
6 free (closestPcpuids);
7 }

In the code snippet above, the OpenH physical CPU
core IDs closest to the accelerator i are obtained in
the array, closestPcpuids, using the API function call,
openh_get_accelerator_pcpuaffinity(). The accelerator i is
assigned the OpenH physical CPU core ID at index i in
the array, closestPcpuids. Hence, the accelerator with ID
0 is assigned the OpenH physical CPU core ID 0, and the
accelerator with ID 1 is assigned the OpenH physical CPU
core ID 0. The programmer may assign the OpenH physical
CPU core ID at index nacc−1− i in the array, closestPcpuids
to binding the hosting Pthread for accelerator i. In this case,
the accelerator with ID 0 is assigned the OpenH physical
CPU core ID 15, and the accelerator with ID 1 is assigned
the OpenH physical CPU core ID 14.

However, suppose the programmers choose to use the
API functions, openh_get_accelerator_lcpuaffinity() and
openh_assign_acc_lcpuids(), to assign unique OpenH logical
CPU IDs that map to unique OpenH physical CPU core IDs
for binding the accelerator hosting Pthreads. The solution to
this problem involves considering the mapping scheme for
OpenH logical CPU IDs to OpenH physical CPU core IDs.
We describe one solution in the supplemental (Section IV).

VI. EXPERIMENTAL RESULTS AND DISCUSSION
We experimentally analyze the practical performance and
dynamic energy consumption of three matrix multiplication
applications, OpenH, OpenMP, and OpenACC, on our
research hybrid server whose specifications are given in
Table 1 (Topology given in Supplemental, Section II). The
two Nvidia A40 GPUs are closest to all the cores (0-63) in
the Intel Icelake multicore CPU of the hybrid server.

We employ system-level physical measurements using
external power meters for component-level measurement of
energy consumption. The measurements obtained this way
are considered ground truth [25].

The hybrid server has one WattsUp Pro power meter
between the wall A/C outlets and the node’s input power
sockets. The power meter captures the total power consump-
tion of the node. It has a data cable connected to one USB
port of the node. A Perl script collects the data from the
power meter using the serial USB interface. The execution

VOLUME 12, 2024 23687

S. Farrelly et al.: OpenH: A Novel Programming Model and API

TABLE 1. Specifications of the Intel hybrid server containing a
single-socket Icelake multicore CPU and two Nvidia A40 GPUs.

of these scripts is non-intrusive and consumes insignificant
power. The power meters are periodically calibrated using
an ANSI C12.20 revenue-grade power meter, Yokogawa
WT210. The maximum sampling speed of the power meters
is one sample every second. The accuracy specified in the data
sheets is ±3%. The minimum measurable power is 0.5 watts.
The accuracy at 0.5 watts is ±0.3 watts. The static power
consumption of the server is 146 W.

To ensure the reliability of our results, we follow a
statistical methodology where a sample average for a
response variable (execution time and energy) is obtained
from multiple experimental runs. The sample average is
calculated by executing the application repeatedly until it lies
in the 95% confidence interval and a precision of 0.05 (5%) is
achieved. For this purpose, Student’s t-test is used, assuming
that the individual observations are independent and their
population follows the normal distribution. We verify the
validity of these assumptions using Pearson’s chi-squared
test.

A. OPENH PARALLEL MATRIX MULTIPLICATION
APPLICATION
The OpenH application comprises three hosting Pthreads
leading the execution of three software components,
{S_CPU,S_GPU1,S_GPU2}. It computes the matrix prod-
uct, C+ = A × B, where A, B, and C are square matrices of
size N × N . The application (where p = 3) is illustrated in
Figures 5, 6 and 7. The workload size is 2 × N 3.
The accelerator hosting Pthreads leading the execution of

the GPU components, {S_GPU1,S_GPU2}, are pinned to
two different CPU cores (0 and 1) on the hybrid server.
The software component S_CPU invokes the OpenBLAS
DGEMM routine and is executed on the Intel multicore CPU
using 62 OpenBLAS threads. It is pinned to the CPU cores,
{2,3,. . . ,63}. The accelerator components, {SGPU1, SGPU2},
are implemented using the thread function, accCudaMxm-
Component, which invokes the CUBLAS DGEMM routine.
We observed that the performance of this component is sig-
nificantly better than the pure OpenACC implementation in
accNonCudaMxmComponent (Figure 7). The experimental

finding informs that pure OpenACC implementations have
yet to match the performance of the hardware vendor’s
scientific libraries highly optimized for their accelerators.

The matrices A and C are partitioned horizontally among
the three OpenH software components such that each
component is assigned a number of rows of A and C
proportional to its performance. The distribution of rows of
A and C is provided in the array d . All the components share
the matrix B.

B. PERFORMANCE FUNCTIONS AND
WORKLOAD DISTRIBUTION
We present the workload partitioning algorithm to determine
the workload distribution, d , optimizing the OpenH matrix
multiplication application for performance.

The decomposition of the matrix A is computed using a
model-based workload partitioning algorithm [26], [27]. The
inputs to the algorithm are N and execution time functions
of the three software components, {SCPU , SGPU1, SGPU2} of
matrix dimension M . Each data point in a execution time
function contains the execution time of the component com-
puting a matrix product of two matrices of dimensionsM×N
andN×N , respectively. The workload partitioning algorithm
finds the partitioning, d = {d[0], . . . , d[2]}, d[0] + d[1] +

d[2] = N , of the workload of size N using the three software
components to minimize the computation time of parallel
execution of the workload.

Therefore, the output by the algorithm is an array d of
three elements, where d[0], d[1], and d[2], respectively,
contain the number of rows of A and C assigned to
{SCPU , SGPU1, SGPU2}.

We present the methodology to construct the execution
time profiles of the three components ({SCPU , SGPU1,

SGPU2}). The execution time profiles are experimentally built
using an automated build procedure employing a group of
three hosting Pthreads. Figure 11 shows the execution time
profiles. The workload size of a data point in a profile is
2 ×M × N 2 and is proportional toM since N is a constant.
The execution times of all the components executing the

same workload are measured simultaneously, thereby con-
sidering the influence of resource contention. The execution
time for an accelerator component includes the time to
transfer data between the host device and the accelerator. For
example, the execution time of the execution of a workload
on GPU_1 includes the time to transfer data from the host
multicore CPU core to the accelerator and back and the
computations on the accelerator.

C. PERFORMANCE OF OPENH PARALLEL MATRIX
MULTIPLICATION APPLICATION
Figure 12 compares the execution times of three matrix mul-
tiplication applications experimented on our server platform
(Table 1).

23688 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 11. The execution time profiles of the three software components, {SCPU , SGPU1, SGPU2}, executing the matrix multiplication application
computing a matrix product of two matrices, respectively, of dimensions M × N and N × N . The workload size of a data point in each figure is
2 × M × N2 and therefore is proportional to M since N is a constant. The CPU component employs the DGEMM routine provided by OpenBLAS
0.3.23.dev. The GPU components employ CUBLAS DGEMM provided by CUDA 12.0 toolkit. The profiles are linear functions of workload size. The
performances of the two accelerator components are indistinguishable.

The matrix multiplication application (openh_hybrid) is
the OpenH application presented in the Figures 6 and 7 com-
prising three software components, {SCPU , SGPU1, SGPU2}.
The matrix multiplication application (openmp_cpu_only)

is based on OpenMP only and employs only the multicore
CPU. It executes the OpenBLAS DGEMM routine run-
ning 64 OpenBLAS threads equal to the total number of
logical CPU cores in the server platform. Finally, the matrix
multiplication application (openacc_2_a40_gpus) is based
on OpenACC and employs only the two Nvidia A40 GPUs.

The workload is divided equally between the GPUs since
their performance functions are identical (Figure 11).

The OpenH matrix multiplication application performs
the best since it employs the performance-optimal workload
distribution and mapping of the software components
to the CPU cores of the hybrid server. Furthermore,
the performance-optimal workload distribution is the
load-balanced distribution between the three software
components [27], [28] since their execution times are linear
functions of workload size.

VOLUME 12, 2024 23689

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 12. The comparison of execution times of OpenH matrix multiplication application against OpenMP matrix
multiplication application employing CPU only and OpenACC matrix multiplication application employing only the two GPU
components. The matrix multiplication applications compute a matrix product of two matrices of dimensions N × N and
N × N . The performance of the OpenH matrix multiplication application is the best.

D. ENERGY CONSUMPTION OF OPENH PARALLEL
MATRIX MULTIPLICATION APPLICATION
Briefly, we introduce some terminology on energy consump-
tion. The total energy consumption during an application exe-
cution is the sum of dynamic and static energy consumption.
We define static energy consumption as the energy consumed
by the platform without the application execution. Dynamic
energy consumption is calculated by subtracting this static
energy consumption from the total energy consumed by the
platform during the application execution.

For the OpenH matrix multiplication application,
we employ the workload partitioning algorithms proposed
in [27], [28], and [29] to determine the partitioning of the
matrices between A and C that minimizes the total dynamic
energy consumption of the application. Specifically, the
matrices A and C are partitioned horizontally among the
three software components to minimize the application’s total
dynamic energy consumption.

The inputs to the algorithm are N and dynamic
energy functions of the three software components,
{SCPU , SGPU1, SGPU2} of matrix dimension M . Each data
point in a function contains the dynamic energy consumption
of the component computing a matrix product of two
matrices, respectively, of dimensionsM ×N and N ×N . The
workload partitioning algorithm finds the partitioning, d =

{d[0], . . . , d[2]}, d[0] + d[1] + d[2] = N , of the workload
of size N using the three software components that minimize
the total dynamic energy consumption of parallel execution
of the workload. The output by the algorithm is an array d of
three elements where d[0], d[1], and d[2] contain the number

of rows of A and C assigned to {SCPU , SGPU1, SGPU2},
respectively.

The dynamic energy profiles of the three components are
constructed using the additive approach [28]. The dynamic
energy profiles are provided in the supplemental, Section III.
In the additive approach, the dynamic energy profiles of
the three components are constructed serially. The combined
profile where the individual dynamic energy consumptions
are totalled for each data point is then obtained. Then,
the dynamic energy profile employing all the components
in parallel is built. The difference between the parallel
and combined dynamic energy profiles is observed. The
parallel and combined profiles follow the same pattern,
and the average difference between the corresponding data
points in the profiles is around 2.5% (within the statistical
accuracy threshold set in our experiments). Therefore, since
the component profiles satisfy the additive hypothesis, we can
use the dynamic energy profiles constructed serially as input
to the workload partitioning algorithm for dynamic energy
optimization.

The dynamic energy profiles (Section III, Supplemental)
are linear functions of M . Therefore, the profiles are linear
functions of the workload size since the workload size 2 ×

M × N 2 of each data point is proportional to M (N is a
constant). The authors [27] and [30] show that for the case of
linear dynamic energy profiles that the workload distribution
optimizing the application for dynamic energy has the total
workload assigned to the most energy-efficient processor, the
processor with linear energy function with the lowest slope
(multicore CPU in this case).

23690 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

FIGURE 13. The comparison of dynamic energy consumptions of OpenH matrix multiplication application against OpenMP
matrix multiplication application employing CPU only and OpenACC matrix multiplication application employing only the
two accelerator components. The matrix multiplication application computes the matrix product of two matrices of
dimensions N × N and N × N , respectively. The OpenH application uses the energy-optimal workload distribution, which
involves only the multicore CPU. Therefore, both OpenH and OpenMP applications consume the least dynamic energy.

Figure 13 compares the dynamic energy consumptions of
the three matrix multiplication applications. The OpenMP
matrix multiplication application (openmp_cpu_only)
employs only the multicore CPU. It executes the OpenBLAS
DGEMM routine running 64 OpenBLAS threads equal to the
total number of logical CPU cores in the server platform.

The OpenACC matrix multiplication application (ope-
nacc_2_a40_gpus) comprises the GPU components,
{S_GPU1,S_GPU2}, employing the two Nvidia A40 GPUs.
The workload is divided equally between the GPUs. More-
over, the accelerator hosting Pthreads leading the execution of
the GPU components are pinned to two different CPU cores
(0 and 1) on the hybrid server.

The OpenH application employs the energy-optimal work-
load distribution that assigns the total workload to the most
energy-efficient processor, the multicore CPU. Therefore,
the OpenH application has one hosting Pthread that leads
the execution of the CPU component, which executes the
OpenBLASDGEMM routine running 64 OpenBLAS threads
equal to the total number of logical CPU cores in the server
platform. It will have no accelerator components.

Both OpenH and OpenMP matrix multiplication applica-
tions consume the least dynamic energy.

VII. RELATED WORK
We start with an overview of research works on programming
models and runtimes supporting hybrid parallel program-
ming. Then, we present research works proposing hybrid
parallel applications.

Research works (Diaz et al. [31], Fang et al. [32])
comprehensively survey the leading families of high-level
programming models in heterogeneous many-core archi-
tectures. Therefore, we focus only on research works that
propose extensions to the mainstream tools to support
parallel programming on heterogeneous hybrid servers with
a multicore CPU hosting multiple accelerators.

Komoda et al. [15] and Yan et al. [16] propose extensions
to OpenACC and OpenMP to execute parallel loops across
multiple accelerators (GPUs). The loop iterations are divided
into chunks of equal size and executed across different
GPUs. Matsumura et al. [33] propose a transpiler that
takes an OpenACC code and generates a hybrid OpenMP
and OpenACC code capable of multi-GPU execution. The
outermost loop of OpenACC kernels is distributed equally
between the different GPUs in the hybrid code. However, the
host CPU is not considered one of the devices in the above
research works.

Yan et al. [17] propose HOMP, an extension of OpenMP
that automates the complex process of distributing the
computations and data of parallel loops between CPUs and
accelerators. HOMP offers language extensions, workload
distribution algorithms, and runtime support to facilitate
parallel loop execution across heterogeneous devices. While
HOMP focuses on distributing the iterations of parallel
loops, OpenH is based on the parallel execution of software
components (kernels) that compose a hybrid program.

Cho et al. [18] propose an array programming inter-
face to distribute parallel loops between different nodes
and different devices inside each node using MPI and

VOLUME 12, 2024 23691

S. Farrelly et al.: OpenH: A Novel Programming Model and API

OpenCL, respectively. Torres et al. [19] propose extensions
of OpenMP to distribute workload between multiple devices.
Kale et al. [20] propose extensions toOpenMP task constructs
to schedule loop computations across multiple GPUs.

All the above research works focus on the homogeneous
distribution of loop iterations across multiple GPUs using
extensions of OpenMP and OpenACC.

Zhong et al. [34], [35] propose a novel hybrid paral-
lel matrix multiplication application manually optimized
for performance on a hybrid platform consisting of four
single-socket AMD multicore CPUs and two Nvidia GPUs.
The application comprises several CPU and GPU software
components (kernels) executing in parallel. The CPU com-
ponents employ the DGEMM routine offered by the AMD
Core Math Library, and the GPU components invoke the
CUBLAS DGEMM routine offered by the Nvidia CUDA
library. The workload is divided heterogeneously between
the components based on their functional performance
models.

Xu et al. [14] employ OpenMP and OpenACC to
develop hybrid applications for heterogeneous platforms with
multiple GPUs. They propose extensions to OpenACC to
support multiple GPUs. Synchronization between kernels
executing on the devices is handled via special OpenACC
directives using the host CPU. Therefore, the host CPU
thread synchronizes updates to the kernels’ shared data.
Vitali et al. [36] use OpenMP and OpenACC to develop
a hybrid molecular docking application employed in drug
discovery.

While the research works reviewed previously propose
language extensions to automate the parallel loop execution
across heterogenous devices, the research works [14], [34],
[35], [36] manually optimize the parallel applications on
heterogeneous hybrid platforms for performance.

OpenH differs from the above research works in several
ways. It is the first programming tool for developing portable
parallel programs on heterogeneous hybrid servers composed
of a multicore CPU and one or more different types of
accelerators. It comprises a novel programming model and
library API that allow programmers to get the configuration
of the executing environment and bind the hosting Pthreads
of the program to the CPU cores of the hybrid server to get
the best performance.

OpenH employs Pthreads, OpenMP, and OpenACC seam-
lessly to address the limitations and challenges in state-
of-the-art hybrid parallel program development. It provides
a library API, which is missing in the prior art, to place
and bind software components for optimal performance and
energy. Moreover, OpenH allows programmers to employ
heterogeneous workload distribution between the software
components, optimizing the program for performance and
energy. In addition, OpenH targets different types of accelera-
tors. Finally, unlike the above researchworks, we also analyze
the energy consumption of a hybrid matrix multiplication
application based on OpenH.

VIII. CONCLUSION
Heterogeneous architectures featuring multicore CPU pro-
cessors hosting multiple accelerators, such as GPUs, top the
TOP500 and Green500 lists and dominate the computing
landscape due to their superior performance and energy
efficiency. However, developing parallel programs providing
portable performance on such platforms remains challenging.

Vendor-specific programming tools such as CUDA and
ROCmprovide low-level APIs to the programmer to fine-tune
their parallel programs to extract the best performance on a
specific GPU architecture, Nvidia and AMD GPUs, respec-
tively. These tools are combined with OpenMP to develop
heterogeneous parallel programs. However, using these tools
introduces vendor lock-in, hampering the portability of the
programs.

Several vendor-agnostic high-level programming tools are
proposed to simplify heterogeneous programming by provid-
ing high-level abstractions that automate handling low-level
details and architecture-specific optimization without sig-
nificantly sacrificing performance. They employ directive-
based (OpenMP, OpenACC), C++-based (OpenCL, SYCL,
OneAPI), and skeleton-based (SkelCL, SkePU) approaches.

However, the existing tools suffer from some limitations,
which include a lack of compiler support for nested par-
allelism, performance portability, automatic heterogeneous
workload distribution, user-friendly thread placement and
processor affinity that are essential to the portable perfor-
mance of hybrid programs.

In this paper, we proposed OpenH, a novel programming
model and library API for developing portable parallel
programs on heterogeneous hybrid servers composed of
a multicore CPU and one or more different types of
accelerators.

OpenH integrates Pthreads, OpenMP, and OpenACC
seamlessly to develop hybrid parallel programs. An OpenH
hybrid parallel program starts as a single main thread,
creating a group of Pthreads called hosting Pthreads.
A hosting Pthread then leads the execution of a software
component of the program, either an OpenMP multithreaded
component running on the CPU cores or an OpenACC (or
OpenMP) component running on one of the accelerators of
the server. The OpenH library provides API functions that
allow programmers to get the configuration of the executing
environment and bind the hosting Pthreads of the program
to the CPU cores of the hybrid server to get the best
performance.

OpenH differs from OpenCL in its design philosophy.
OpenCL provides a generic unified interface to programmers
to program the software components in the heterogeneous
hybrid application for multicore CPUs and accelerators.
While the unified framework allows OpenCL to provide
maximum code portability for its applications, it does
not hold dominant mainstream support since it competes
with mainstream solutions widely used in each software
component category. For example, OpenCL competes with

23692 VOLUME 12, 2024

S. Farrelly et al.: OpenH: A Novel Programming Model and API

OpenMP, the most popular programming tool for developing
software components for multicore CPUs, with CUDA and
OpenACC for accelerator components for Nvidia GPUs.

OpenH, however, reuses the mainstream solutions and
glues them seamlessly to facilitate the development of hybrid
parallel programs. It provides a minimalistic layer of API
functions on top of the mainstream solutions to provide both
code and performance portability.

We illustrated the OpenH programming model and library
API using two hybrid parallel applications based on matrix
multiplication and 2D fast Fourier transform for the most
general case of a hybrid hyperthreaded server comprising p
computing devices.

We demonstrated the practical performance and energy
consumption of OpenH for the hybrid parallel matrix mul-
tiplication application on a server comprising an Intel Icelake
multicore CPU and two Nvidia A40 GPUs. Specifically,
we compared the performance and dynamic energy consump-
tion of the OpenH matrix multiplication application against
the matrix multiplication application based on OpenMP,
employing only the multicore CPU and matrix multiplication
application based on OpenACC and employing only the
two Nvidia A40 GPUs. The OpenH matrix multiplication
application outperforms the other applications in terms of
performance. Furthermore, the OpenH application, when
optimized for dynamic energy, performs the best and
consumes the least dynamic energy by employing the most
energy-efficient processor (multicore CPU in this case).

Our OpenH library implementation is available at the
URL [37].

REFERENCES
[1] (2023). Top500 Supercomputers. [Online]. Available:

https://www.top500.org/lists/green500/2023/06/
[2] (2023). Green500 Supercomputers. [Online]. Available:

https://www.top500.org/lists/green500/2023/06/
[3] Nvidia Compute Unified Device Architecture (CUDA) Toolkit. Accessed:

Sep. 11, 2023. [Online]. Available: https://developer.nvidia.com/cuda-
toolkit

[4] AMD ROCm Open Software Platform, Adv. Micro Devices, Inc. (AMD),
Santa Clara, CA, USA, 2024.

[5] (Jul. 2013). OpenMP Application Program Interface Version 4.0.
[Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP4.0.0.pdf

[6] The OpenACC API Specification for Parallel Programming. Accessed:
Sep. 11, 2023. [Online]. Available: https://www.openacc.org/

[7] OpenCL—Open Standard for Parallel Programming of Heterogeneous
Systems. Accessed: Sep. 11, 2023. [Online]. Available: https://
www.khronos.org/opencl/

[8] Heterogeneous Device Programming Using Sycl. Accessed: Sep. 11, 2023.
[Online]. Available: https://www.khronos.org/sycl/

[9] H. C. Edwards, C. R. Trott, and D. Sunderland, ‘‘Kokkos: Enabling
manycore performance portability through polymorphic memory
access patterns,’’ J. Parallel Distrib. Comput., vol. 74, no. 12,
pp. 3202–3216, Dec. 2014. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0743731514001257

[10] D. S. Medina, A. St-Cyr, and T. Warburton, ‘‘OCCA: A unified approach
to multi-threading languages,’’ 2014, arXiv:1403.0968.

[11] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian,
A. J. Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
‘‘RAJA: Portable performance for large-scale scientific applications,’’ in
Proc. IEEE/ACM Int. Workshop Perform., Portability Productiv. HPC
(PHPC), Nov. 2019, pp. 71–81.

[12] M. Steuwer and S. Gorlatch, ‘‘Skelcl: Enhancing opencl for high-
level programming of multi-gpu systems,’’ in Proc. 12th Int. Conf.
Parallel Comput. Technol., vol. 7979. Berlin, Germany: Springer, 2013,
pp. 258–272.

[13] A. Ernstsson, L. Li, and C. Kessler, ‘‘SkePU 2: Flexible and type-safe
skeleton programming for heterogeneous parallel systems,’’ Int. J. Parallel
Program., vol. 46, no. 1, pp. 62–80, Feb. 2018.

[14] R. Xu, S. Chandrasekaran, and B. Chapman, ‘‘Exploring programming
multi-GPUs using OpenMP and OpenACC-based hybrid model,’’ in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Workshops Phd Forum,
May 2013, pp. 1169–1176.

[15] T. Komoda, S. Miwa, H. Nakamura, and N. Maruyama, ‘‘Integrating
multi-GPU execution in an OpenACC compiler,’’ in Proc. 42nd Int. Conf.
Parallel Process., Oct. 2013, pp. 260–269.

[16] Y. Yan, P.-H. Lin, C. Liao, B. R. de Supinski, and D. J. Quinlan,
‘‘Supporting multiple accelerators in high-level programming models,’’ in
Proc. 6th Int. Workshop Program. Models Appl. Multicores Manycores.
New York, NY, USA: Association for Computing Machinery, 2015,
pp. 170–180, doi: 10.1145/2712386.2712405.

[17] Y. Yan, J. Liu, K. W. Cameron, and M. Umar, ‘‘HOMP: Automated
distribution of parallel loops and data in highly parallel accelerator-based
systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2017, pp. 788–798.

[18] H. D. Cho, O. Kwon, and S. P. Midkiff, ‘‘HDArray: Parallel array interface
for distributed heterogeneous devices,’’ in Languages and Compilers for
Parallel Computing, M. Hall and H. Sundar, Eds. Cham, Switzerland:
Springer, 2019, pp. 176–184.

[19] R. Torres, R. Ferrer, and X. Teruel, ‘‘A novel set of directives for multi-
device programming with OpenMP,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2022, pp. 401–410.

[20] V. Kale, W. Lu, A. Curtis, A. M. Malik, B. Chapman, and O. Hernandez,
‘‘Toward supporting multi-GPU targets via taskloop and user-defined
schedules,’’ in OpenMP: Portable Multi-Level Parallelism on Modern
Systems, K. Milfeld, B. R. de Supinski, L. Koesterke, and J. Klinkenberg,
Eds. Cham, Switzerland: Springer, 2020, pp. 295–309.

[21] OpenMPCompilers& Tools. Accessed: Sep. 11, 2023. [Online]. Available:
https://www.openmp.org/resources/openmp-compilers-tools/

[22] NVIDIA HPC Fortran, C and C++ Compilers With OpenACC. Accessed:
Sep. 11, 2023. [Online]. Available: https://developer.nvidia.com/hpc-
compilers

[23] GCC, the GNU Compiler Collection—GNU Project. Accessed: Sep. 11,
2023. [Online]. Available: https://gcc.gnu.org/

[24] OpenACC—GCC Wiki. Accessed: Sep. 11, 2023. [Online]. Available:
https://gcc.gnu.org/wiki/OpenACC

[25] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, ‘‘A com-
parative study of methods for measurement of energy of computing,’’
Energies, vol. 12, no. 11, p. 2204, Jun. 2019. [Online]. Available:
https://www.mdpi.com/1996-1073/12/11/2204

[26] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A novel
data-partitioning algorithm for performance optimization of data-parallel
applications on heterogeneous HPC platforms,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 10, pp. 2176–2190, Oct. 2018.

[27] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘Efficient exact
algorithms for continuous bi-objective performance-energy optimization
of applications with linear energy and monotonically increasing perfor-
mance profiles on heterogeneous high performance computing platforms,’’
Concurrency Comput., Pract. Exper., vol. 35, no. 20, p. e7285, Sep. 2023.

[28] H. Khaleghzadeh, M. Fahad, A. Shahid, R. R. Manumachu, and
A. Lastovetsky, ‘‘Bi-objective optimization of data-parallel applications
on heterogeneous HPC platforms for performance and energy through
workload distribution,’’ IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3,
pp. 543–560, Mar. 2021.

[29] H. Khaleghzadeh, M. Fahad, R. Reddy Manumachu, and A. Lastovetsky,
‘‘A novel data partitioning algorithm for dynamic energy optimization
on heterogeneous high-performance computing platforms,’’ Concurrency
Comput., Pract. Exper., vol. 32, no. 21, p. e5928, Nov. 2020.

[30] A. Lastovetsky and R. R. Manumachu, ‘‘Energy-efficient parallel comput-
ing: Challenges to scaling,’’ Information, vol. 14, no. 4, p. 248, Apr. 2023.

[31] J. Diaz, C. Muñoz-Caro, and A. Niño, ‘‘A survey of parallel programming
models and tools in the multi and many-core era,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1369–1386, Aug. 2012.

[32] J. Fang, C. Huang, T. Tang, and Z. Wang, ‘‘Parallel programming models
for heterogeneous many-cores: A comprehensive survey,’’ CCF Trans.
High Perform. Comput., vol. 2, no. 4, pp. 382–400, Dec. 2020.

VOLUME 12, 2024 23693

http://dx.doi.org/10.1145/2712386.2712405

S. Farrelly et al.: OpenH: A Novel Programming Model and API

[33] K. Matsumura, M. Sato, T. Boku, A. Podobas, and S. Matsuoka, ‘‘MACC:
AnOpenACC transpiler for automaticmulti-GPUuse,’’ in Supercomputing
Frontiers, R. Yokota and W. Wu, Eds. Cham, Switzerland: Springer, 2018,
pp. 109–127.

[34] Z. Zhong, V. Rychkov, and A. Lastovetsky, ‘‘Data partitioning on hetero-
geneous multicore and multi-GPU systems using functional performance
models of data-parallel applications,’’ in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2012, pp. 191–199.

[35] Z. Zhong, V. Rychkov, andA. Lastovetsky, ‘‘Data partitioning onmulticore
and multi-GPU platforms using functional performance models,’’ IEEE
Trans. Comput., vol. 64, no. 9, pp. 2506–2518, Sep. 2015.

[36] E. Vitali, D. Gadioli, G. Palermo, A. Beccari, C. Cavazzoni, and C. Silvano,
‘‘Exploiting OpenMP and OpenACC to accelerate a geometric approach to
molecular docking in heterogeneousHPCnodes,’’ J. Supercomput., vol. 75,
no. 7, pp. 3374–3396, Jul. 2019.

[37] S. Farrelly, R. R. Manumachu, and A. Lastovetsky. (2023).OpenH: A Tool
for Programming Portable Parallel Applications on Heterogeneous Hybrid
Servers. [Online]. Available: https://csgitlab.ucd.ie/manumachu/openh.git

SIMON FARRELLY is currently pursuing the
B.Sc. degree (Hons.) with the School of Computer
Science, University College Dublin.

RAVI REDDY MANUMACHU (Member, IEEE)
received the B.Tech. degree from IIT, Madras,
in 1997, and the Ph.D. degree from the School
of Computer Science, University College Dublin
(UCD), in 2005. He is currently an Assistant
Professor with the School of Computer Science,
UCD. Hismain research interests include high per-
formance heterogeneous computing and energy-
efficient computing.

ALEXEY LASTOVETSKY (Member, IEEE)
received the Ph.D. degree from the Moscow
Aviation Institute, in 1986, and the Doctor of
Science degree from the Russian Academy of
Sciences, in 1997. He is currently an Associate
Professor with the School of Computer Science,
University College Dublin (UCD). At UCD, he is
also the Founding Director of the Heterogeneous
Computing Laboratory. He authored the mono-
graphs Parallel Computing on Heterogeneous

Networks (Wiley, 2003) and High Performance Heterogeneous Computing
(Wiley, 2009). His main research interests include high performance
heterogeneous computing and energy-efficient computing.

23694 VOLUME 12, 2024

