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Abstract—Energy proportionality (EP) means designing a
system that consumes energy proportional to the amount of
work it performs. For an EP system, optimizing an application
for performance also optimizes the application for total energy.
Energy-proportional multicore CPUs and graphics processing
units (GPUs) are fundamental to addressing the grand tech-
nological challenge of energy efficiency in Information and
Communications Technology. In this work, we formally propose
strong and weak notions of EP for modern microprocessors.

Multicore CPUs were experimentally found to violate both
strong and weak EP. This work presents the first attempt at a
theoretical analysis to explain the behaviour. GPUs are carefully
designed with on-chip resources primarily dedicated to achieving
high arithmetic throughput rather than caching and flow control.
Consequently, the mainstream view is that GPUs exhibit strong
and weak EP. However, GPUs were experimentally found to
violate strong EP. In this work, we experimentally study the
weak EP of an Nvidia K40c GPU and an Nvidia P100 PCIe GPU
using a specially designed matrix multiplication application. We
show that both the GPUs also breach weak EP, which presents
an opportunity for bi-objective optimization of the application
for dynamic energy and performance. By analyzing the Pareto
fronts of dynamic energy and performance for a wide range of
workloads, the maximum dynamic energy savings are up to 18%
while tolerating a performance degradation of 7% for Nvidia
K40c GPU and (50%,11%) respectively, for Nvidia P100 PCIe
GPU.

Index Terms—Energy Proportionality, Multicore CPU, GPU,
Bi-objective Optimization, Energy, Performance, 2D FFT, Matrix
Multiplication

I. INTRODUCTION

Energy efficiency in Information and Communications

Technology (ICT) is now a grand technological challenge

and the top design constraint in all computing settings (mo-

bile, desktop, server, supercomputer, and data centre) [1],[2].

Energy-proportional computing is considered fundamental to

addressing this challenge. The high-level definition of energy

proportionality (EP) is to design a system (such as a micro-

processor) that consumes energy proportional to the amount

of work it performs.

Chandrakasan et al. [3] is an influential work in proposing

energy efficiency in digital system design and paving the path

towards energy-proportional computing. Barroso and Hölzle
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[4] propose that designing energy-proportional servers should

be the primary design goal of component and system designers

since a server’s energy consumption has an enormous direct

impact on the data centre’s infrastructure cost. Since this

proposal, EP has been analyzed extensively in server CPUs

[5], [6], [7], [8], networks [9], and storage [10], [11].

We now illustrate strong and weak notions of energy

proportionality. Before we do this, relevant terminology for

power and energy consumption in computing follows. There

are two types of power consumption in a component ex-

ecuting an application: dynamic power (Pd) and static or

idle power (Ps). Dynamic power consumption happens due

to the switching activity in the component’s circuits. Static

power consumption happens when the component is not active

or doing work. The total energy consumption (ET ) during

an application execution is the sum of dynamic and static

energy consumptions. The static energy consumption (Es) is

the idle power of the platform (without application execution)

multiplied by the application’s execution time (t). The dynamic

energy consumption (Ed) is the total energy consumed by

the platform during the application execution minus the static

energy consumption.

A. Strong Energy Proportionality

Mathematically speaking, a strong interpretation of EP

based on its high-level definition signifies that Ed = c ×W
for an EP system where c is a constant and W is the

work performed. Therefore, it implies that dynamic energy

consumption increases linearly with work.

However, Khaleghzadeh et al. [12] establish through ex-

tensive experiments using two data-parallel applications on

a modern Intel multicore CPU and two Nvidia GPUs that

strong EP is breached significantly for these processors. We

summarize the experimental setup and the findings here. The

processors are a dual-socket Intel Haswell multicore CPU

containing 24 physical cores with 64 GB main memory, an

Nvidia K40c GPU and an Nvidia P100 PCIe GPU (specifica-

tions shown in Table I). The 2D-FFT application employed in

the experiments computes 2D discrete Fourier Transform of a

complex signal matrix of size N ×N . It employs Intel MKL

FFT routines for the CPU and CUFFT routines for Nvidia

GPUs. The application on multicore CPUs is a multithreaded

parallel application that divides the workload equally between

the threads and cores. There are no communications involved
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TABLE I: Specifications of the Intel Haswell multicore CPU,

a Nvidia K40c, and a Nvidia P100 PCI-E GPU.

Intel Haswell E5-2670V3
No. of cores per socket 12
Socket(s) 2
CPU MHz 1200.402
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30720 KB
Total main memory 64 GB DDR4
(Intel MKL, OpenBLAS) versions (2020.0.4, 0.2.19)

NVIDIA K40c
No. of CUDA cores (Base clock) 2880 (745 MHz)
Total board memory 12 GB GDDR5 SDRAM
L2 cache size 1536 KB
Thermal design power (TDP) 235 W
(CUDA, nvcc) versions (7.5, 7.5.17)

NVIDIA P100 PCIe
No. of CUDA cores (Base clock) 3584 (1328 MHz)
Total board memory 12 GB CoWoS HBM2
L2 cache size 4096 KB
Thermal design power (TDP) 250 W
(CUDA, nvcc) versions (10.1, 10.1.243)

Fig. 1: The dynamic energy consumption (Ed) versus the work (W )
for the FFT application computing 2D discrete Fourier Transform of
a dense complex signal matrix of size N ×N .

between the threads. The amount of work (W) performed is

5.0×N2 × log2(N). N ranges from 125 to 44000.

Figure 1 shows the dynamic energy consumption (Ed)versus

the work (W). For each data point reported in this work, the
application is run repeatedly until the sample mean lies in the
95% confidence interval, and a precision of 0.025 (2.5%) is
achieved. For this purpose, Student’s t-test is used assuming
that the individual observations are independent and their
population follows the normal distribution. The validity of
these assumptions is verified using Pearson’s chi-squared test.
The dynamic energy consumption is determined using the

system-level power measurements provided by the WattsUp

Pro power meter, which is the most accurate mainstream

method [13].

The graph shows that for all three processors, the dynamic

energy is a complex non-linear function of work performed,

and therefore strong EP does not hold for them. The research

work [12], however, does not provide a theoretical analysis of

the experimentally observed energy nonproportionality.

B. Weak Energy Proportionality

We look at the simple EP model specified and investigated

in [4], [14], [15], [5], [6] to define weak energy proportionality.

Research works [4], [5] specify that an ideal EP system would

consume dynamic power proportional to its utilization level.

Fan et al. [14] show that the dynamic power is nearly linear

against CPU utilization for a dual-core Intel Xeon processor.

Rivoire et al. [15] demonstrate that the dynamic power is

linear for CPU utilization up to 500% (5 cores) and then

levels off for an 8-core Intel Xeon processor. Ryckbosch et

al. [5] analyze dynamic power versus CPU utilization graphs

for the SPECpower ssj2008 benchmark for about 210 servers

from 20 vendors. They find that some servers exhibit a linear

relationship.

Mathematically speaking, the simple EP model states that

the dynamic power consumption (Pd) is linearly proportional

to utilization (U ), Pd = a×U , for an EP system. The execution

time of an application (t) by definition is inversely proportional

to utilization, t = b
U . The dynamic energy and total energy

consumptions are then equal to the following:

Ed = Pd × t = a× U × b

U
= a× b = k

ET = Ed + Es = k + Ps × t

Therefore, optimizing an application for performance will

optimize the application for total energy since k and Ps are

constants. We define weak energy proportionality based on

the practical implication of the simple EP model, which is

that the dynamic energy consumption is a constant for all the

application configurations solving the same workload.

To isolate the impact of the system architecture on energy

proportionality from the impact of the application software, the

design of the application testing the energy proportionality of

the system should follow some constraints. The application

must be a load-balanced multithreaded parallel application

where all the application configurations run one thread per

core and distribute the workload equally between threads.

Ideally, there should be no communications or synchronization

between the threads. In this case, the variations in utilizations

of cores for different configurations can be attributed entirely

to the complexity of the system architecture (mainly due to

contention for shared resources) rather than to the parallel

algorithm or unequal distribution of workload.

To summarize, we define strong EP to mean that dynamic

energy consumption increases linearly with work, whereas

weak EP to imply that dynamic energy consumption is a

constant for all the application configurations solving the same

workload (or performing an equal amount of work), given

that different configurations equally distribute the workload
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between the parallel threads resulting in equal utilization of

identical abstract processors running the threads.

Khokhriakhov et al. [8] discover that weak EP does not

hold for modern multicore processors. They study weak EP

of four modern multicore processors by carefully designing

four highly optimized multithreaded data-parallel applications

and by analyzing the functional relationship between dynamic

energy and execution time for different application configura-

tions solving the same workload. They show that optimizing

for performance alone may significantly increase dynamic

energy consumption and optimizing for dynamic energy alone

– in considerable performance degradation. They propose

a qualitative dynamic energy model that demonstrates that

energy nonproportionality is due to data translation lookaside

buffer’s disproportionately energy expensive activity (dTLB).

However, the authors [8] do not provide a theoretical analysis

of the experimentally observed energy nonproportionality of

their multicore CPU platforms.

In this paper, we bridge the gap with the first attempt

at a theoretical analysis of the energy nonproportionality of

multicore CPUs based on CPU utilization. We first show

how the EP picture has changed from a single-core era

when systems obeyed the ideal EP model to the complex

multicore era where non-functional EP behaviour is observed.

We then consider the simplest case of two homogeneous

cores executing different application configurations solving the

same workload. We show that dynamic energy increases in

all situations when there are differences in utilizations of the

cores, thereby contravening the simple EP model.

GPUs are designed carefully with on-chip resources (for

example, the large number of small CUDA cores) primarily

dedicated to data computations rather than caching and flow

control to provide high arithmetic throughput. Therefore, a

GPU is inherently less heterogeneous than a multicore CPU

with less complex dynamic power management, and conse-

quently, one would expect that GPUs exhibit strong and weak

EP. However, the Figure 1 shows that GPUs breach strong EP

[12].

In this work, we experimentally study the weak EP of the

two Nvidia GPUs shown in Table I. To elucidate the weak

EP of a GPU, we specially design the matrix multiplication

application (detailed in Section IV). It computes a given

number of matrix products of two dense square matrices of

size, N=18432, on an Nvidia P100 PCIe GPU (Table I). The

selected matrix size is among the several workloads exhibiting

energy nonproportionality and is used only for illustrative

purposes. There are three decision variables employed in the

application; the per-block shared memory dimension employed

during one matrix product call, BS, the size of a group of

device matrix product codes repeated textually one after the

other, G, and the number of runs of a group, R.

Figure 2 illustrates the energy nonproportionality of Nvidia

P100 PCIe. The data points in the graph represent different

configurations (BS,G,R) of the application solving the same

problem (N ). The dynamic energy and execution time are

measured only for the CUDA kernel invocations. The dynamic

energy consumption is determined using the system-level

power measurements provided by the WattsUp Pro power

meter.
The figure shows two distinct regions. The top right plot

shows a region of energy nonproportionality where dynamic

energy increases monotonically with the execution time. This

region contains application configurations employing per-

block shared memory size, BS, ranging from 1 to 20. So,

optimizing the application for performance in this region

optimizes it for dynamic energy. The bottom left plot shows

the region of energy nonproportionality containing data points

for application configurations employing per-block shared

memory dimension, BS, ranging from 21 to 32. There is an

opportunity here for bi-objective optimization of the applica-

tion for dynamic energy and performance. The Pareto front

resulting from the dynamic energy and performance trade-off

analysis contains two points. A 2.5% performance degradation

(from the performance-optimal solution) gives 12.5% dynamic

energy savings. If we consider the region of nonproportionality

for application configurations with BS less than or equal to 30,

one can obtain 24% dynamic energy savings while allowing a

performance degradation of only 8%.
To summarize, this work presents the first attempt at a theo-

retical analysis of the violation of weak EP of multicore CPUs.

We then experimentally study the weak EP of an Nvidia K40c

GPU and an Nvidia P100 PCIe GPU using a matrix multiplica-

tion application specially designed for energy proportionality

analysis. We show that both the GPUs violate weak EP, which

presents an opportunity for bi-objective optimization of the

application for dynamic energy and performance. For a given

workload, we determine the Pareto front using the dynamic

energies and execution times determined for all the application

configurations solving the workload. Based on a wide range

of workloads, the observed average and the maximum points

in local Pareto fronts are 4 and 5 for the Nvidia K40c GPU.

For this GPU, the global Pareto front consists of only one

point, signifying that the optimal solution for performance

is optimal for dynamic energy. For the Nvidia P100 PCIe

GPU, the observed average and the maximum number of

points in the global Pareto front are 2 and 3. The maximum

dynamic energy savings can be up to 18% while tolerating

a performance degradation of 7% for Nvidia K40c GPU and

(50%,11%) respectively, for Nvidia P100 PCIe GPU.
In summary, the main contributions of this work are:

• Formalization of strong and weak notions of energy

proportionality of modern microprocessors;

• The first attempt at a theoretical analysis of the violation

of the weak energy proportionality of multicore CPUs

based on CPU utilization;

• The first experimental study demonstrating the violation

of the weak energy proportionality of two Nvidia GPUs,

an Nvidia K40c GPU and an Nvidia P100 PCIe GPU.

We organize the rest of this paper as follows. We start with

survey of related works in section II. We present the theoretical

analysis of energy nonproportionality of multicore CPUs in

III. We describe the matrix multiplication application used for
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Fig. 2: EP plots for Nvidia P100 PCIe GPU executing different configurations of the matrix multiplication application that multiplies two
dense square matrices of size, N=18432. Each data point in the graph represents an application configuration (BS,G,R) solving the same
workload (N ). The top left plot graphs the dynamic energies and execution times for all the application configurations. The top right plot
shows the region of energy nonproportionality where optimizing for performance alone optimizes the application for dynamic energy. The
bottom left plot zooms in to the region of energy nonproportionality where bi-objective optimization for dynamic energy and performance
results in the global Pareto front (shown in the bottom right plot). The Pareto fronts displayed in this work are discrete and contain the solid
square points. The points are connected by lines for visualization purposes only.

analysis of weak EP for Nvidia GPUs in IV. Then, we present

our experimental results and discussion in section V. Finally,

we conclude the paper in section VI.

II. RELATED WORK

We start this section with a review of notable research

works in bi-objective optimization for energy and performance

followed by research works on energy proportionality (EP) of

the CPU, network, and storage devices.

A. Bi-Objective Optimization on High Performance Comput-
ing Platforms

There are two principal categories of solution methods for

optimizing high-performance computing (HPC) platforms for

performance and energy applications. The first category of

system-level solution methods aims to optimize the perfor-

mance and energy of the executing environment of the appli-

cations. The dominant decision variable in this category is Dy-

namic Voltage and Frequency Scaling (DVFS). DVFS reduces

the dynamic power consumed by a processor by throttling

its clock frequency. The methods proposed in [16],[17],[18]

optimize for performance under a energy budget or optimize

for energy under an execution time constraint. The methods

proposed in [19],[20],[21] solve bi-objective optimization for

performance and energy with no time constraint or energy

budget.

The second category of application-level solution meth-

ods [22],[23],[24],[25],[26],[12] use application-level decision

variables and models. The most popular decision variables

include the loop tile size, workload distribution, number of

processors, and number of threads. Reddy et al. [25], [26]

study bi-objective optimization of data-parallel applications for

performance and energy on homogeneous clusters multicore

CPUs employing only one decision variable, the workload

distribution. They propose an efficient solution method. The

method accepts the number of available processors, the dis-

crete function of the processor’s energy consumption against

the workload size, and the processor’s performance against

the workload size. It outputs a Pareto-optimal set of workload

distributions. Khaleghzadeh et al. [12] propose exact solution

methods solving bi-objective optimization problem for hybrid

data-parallel applications on heterogeneous computing plat-

forms for performance and energy.

Tarplee et al. [27] consider optimizing two conflicting

objectives, the make-span and total energy consumption of

all nodes in an HPC platform. The decision variable is task

mapping. Aba et al. [28] present an approximation algorithm

to minimize both make-span and the total energy consumption

of parallel applications running on heterogeneous platforms.

The decision variable is task scheduling.

B. Energy Proportionality

Guerra et al. [10] study the potential energy savings by an

energy-proportional storage architecture where energy usage

is proportional to the utilization of storage units. They study

the impact of storage energy-saving techniques (intelligent

data placement, disk low energy modes, compression) on the

EP of the storage. Harder et al. [11] study the EP of disk-

based buffer algorithms and find no noticeable power variation
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when the system state changes from idle to full utilization.

They conclude that the processor component is not energy-

proportional during the execution of the database workload.

Abts et al. [9] propose ways to design a data center network

whose power consumption is proportional to the volume of

data traffic flowing through it.

Ryckbosch et al. [5] propose a metric to quantify the EP of a

server’s CPU. They define it as one minus the area between the

CPU’s actual power consumption curve and the ideal power

consumption curve divided by the area under the ideal curve.

Wong and Annavaram [6] propose metrics that they believe

accurately quantifies EP. They show using the metrics that EP

improvements are not uniform across various server utilization

levels. Lo et al. [29] present a server power management

solution that adjusts power in a fine-grained manner based

on server request latency statistics to achieve the EP objective.

Subramaniam et al. [7] investigate the possibility to achieve EP

for enterprise-class server workloads by power management

using Intel Running Average Power Limit interfaces (RAPL).

Hsu and Poole [30] examine a range of metrics for quantifying

EP. Sen and Wood [31] extend the original definition ([4]) for

reconfigurable processors.

All the works reviewed above study EP based on the func-

tional relationship between power (or energy) consumption of

a system and its utilization.

Khokhriakhov et al. [8] demonstrate that the practical impli-

cation of EP does not hold for modern multicore processors us-

ing a novel application-level bi-objective optimization method

for energy and performance on a single multicore processor.

The method uses two decision variables, the number of iden-

tical multithreaded kernels (threadgroups) and the number of

threads in each threadgroup. A given workload is partitioned

equally between the threadgroups.

In this work, we present a theoretical analysis of the energy

nonproportionality of multicore CPUs. We experimentally

analyze the EP of an Nvidia K40c GPU and an Nvidia P100

PCIe GPU by analyzing the functional relationship between

dynamic energy and execution time of a matrix multiplication

application.

III. THEORETICAL ANALYSIS OF ENERGY

NONPROPORTIONALITY OF MULTICORE CPUS

This section presents our first contribution: the first simple

theoretical analysis of the energy nonproportionality (violation

of weak EP) that was experimentally observed for multicore

CPUs [8].

We start with an experimental analysis of the relation-

ship between performance and average CPU utilization and

dynamic energy and average CPU utilization for a modern

multicore CPU processor. For the multicore CPU processor,

the average CPU utilization is the average of the utilizations of

the individual cores. The analysis aims to understand how the

EP picture has changed from a single-core era when systems

obeyed the ideal EP model to the complex multicore era and

to allow us to explain the observed behaviour theoretically.

Fig. 3: Decomposition of the dense matrices, A, B, and C, in the
parallel matrix multiplication application. The application is executed
using p threadgroups where each group contains an equal number of
threads. Matrices A and C are horizontally partitioned equally among
the threadgroups. Matrix B is shared among the threadgroups. Each
thread is bound to a separate core. There are no communications
involved between the threads. Therefore, the workload is equally
distributed between the threads and hence cores.

For the experiments, we employ a dual-socket Haswell

processor with hyperthreading enabled (Table I) and two

parallel matrix multiplication applications based on Intel MKL

and OpenBLAS DGEMM routines. The multithreaded paral-

lel matrix multiplication application is carefully designed to

follow the guidelines set by the definition of weak EP. It is a

load-balanced application that distributes the workload equally

between the threads and the cores. In addition, there are no

communications or synchronization between the threads.

For the theoretical analysis, we inspect how the dynamic

energy consumption varies for the simplest case of two homo-

geneous cores executing different application configurations

that solve the same workload.

A. Parallel Matrix Multiplication Application

The parallel matrix multiplication application computes the

matrix product of two dense square matrices A and B of size

N × N . The application is executed using p threadgroups,

{P1, ..., Pp}. The matrices A and C are partitioned horizontally

such that each threadgroup is assigned N
p of the rows of B

and C as shown in the Figure 3. Matrix B is shared among

the threadgroups. Each threadgroup has the same number of

threads, t. Each thread is bound to a separate core. There are no

communications involved between the threads. Therefore, each

thread solves an equal amount of workload (N/(p× t)). Each

threadgroup Pi computes its horizontal partition CPi
using the

matrix product, CPi
= α×APi

×B+β×CPi
. The application’s

performance is calculated as (2.0 × N3)/t, where t is the

application’s execution time. The application is described in

detail in [8].

B. Analysis of Energy Nonproportionality

The Figure 4 shows the dynamic power consumption versus

the average CPU utilization and the performance (GFLOPs)

versus the utilization for the matrix size N = 17408. The data

points are obtained by employing a strict statistical methodol-

ogy. They represent different application configurations (type

of partitioning, number of thread groups, number of threads

per group). The behaviour is observed for a wide range of

matrix sizes. The selected matrix size is a representative

example. The dynamic power consumption equals the dynamic
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Fig. 4: Dynamic power versus average CPU Utilization and performance versus average CPU Utilization for the Intel MKL and OpenBLAS
DGEMM applications multiplying two dense square matrices of size N×N on an Intel E5-2670 V3 dual-socket processor with hyperthreading
where N=17408. The average CPU utilization is the average of the utilizations of the 48 logical cores. The data points in the graph represent
different application configurations (type of matrix partitioning, number of thread groups, number of threads per group) solving the same
matrix size. The green and blue lines show the linear and polynomial concave trend lines reported in the literature. Points A and B represent
the case when there is a small change in utilization of one or more cores. Points on lines C and D have the same average CPU utilization.

energy consumption divided by the application’s execution

time.

The average CPU utilization is obtained using the /proc/stat

interface. It is the average of the utilizations of the individual

cores. The first “cpu” line in /proc/stat file aggregates the

numbers in all of the other “cpuN” lines, one line per core.

Since the multicore CPU processor has 48 logical cores, there

are 49 lines in total. The numbers in each line identify the

amount of time the CPU has spent performing different kinds

of work.

The performance exhibits a typical relationship with the

average CPU utilization. It is linear until the peak performance

of 700 GLOPs before plateauing, suggesting that utilizing the

CPU further does not yield better performance. The flattening

of the performance is due to the memory activity of the threads

hitting the peak memory bandwidth of the system.

However, the dynamic power consumption starts as a linear

function for low utilization before exhibiting a nonfunctional

relationship. For example, points with about 50% utilization

have different dynamic powers and performances in the graphs

for Intel MKL application (Figure 4). Similarly for points close

to 65% utilization in the graphs for OpenBLAS application.

This is abnormal behavior differing from the observed lin-

earity following the simple EP model ([14], [15], [5]) or the

deviations from the linearity (but still following a functional

relationship) observed in [6], [30]. The green line and blue

line show the linear and polynomial concave trend lines that

were reported in ([14], [15], [5], [6], [30]).

However, the experimentally observed differences in uti-

lizations of individual cores (even for the same average CPU

utilization) for different application configurations executing

the same workload are normal rather than abnormal for

modern multicore CPUs due to the inherent complexity of

the hardware architecture.

Therefore, while the simple EP model is accurate for one

microprocessor component, it does not accurately capture the

complex inner workings of a multicore CPU. A modern multi-

core processor is complex with independently powered hetero-

geneous components, expensive and inexpensive in terms of

power consumption, and exhibits different functional utiliza-

tions due to inherent energy-efficient hardware techniques such

as clock and power gating, dynamic voltage and frequency

scaling, and dynamic power management.

To illustrate this complexity, we will consider the simplest

case where a microprocessor comprises two homogeneous

cores, C1 and C2, connected by a single power supply and

that follow the simple EP dynamic power model, P1 = a×U
and P2 = a×U [4], [14], [15], [5]. For example, the cores on

the same socket executing a multithreaded parallel application

where threads are bound to separate cores and do not interact

with each other. For the execution time, we will use a simple

model, t = b
U . The constants a and b will be the same for all

the application configurations solving the same workload.

Consider the dynamic energy consumption of the applica-

tion configuration that utilizes both C1 and C2 equally. The

average utilization is U .

Ed1,1 = Ed2,1 = a× U ×max(
b

U
,
b

U
) = a× b

E1 = Ed1,1 + Ed2,1 = 2× a× b
(1)

where Ed1,1 and Ed2,1 are the dynamic power consumptions

of C1 and C2.
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Consider an application configuration that increases only the

utilization of C1 by ΔU , then

Ed1,2 = a× (U +ΔU)×max(
b

U +ΔU
,
b

U
)

= a× b× U +ΔU

U

Ed2,2 = a× U ×max(
b

U +ΔU
,
b

U
)

= a× b

E2 = Ed1,2 + Ed2,2

= a× b× U +ΔU

U
+ a× b

> 2× a× b > E1

(2)

Therefore, this application configuration increases dynamic

energy without improving performance. For example, points A

and B depict this case in Figure 4 for the two applications. For

the application configuration that decreases only the utilization

of C1 by ΔU without changing the utilization of C2, the

dynamic energy increases and the performance decreases.

Now consider an application configuration that increases

only the utilization of C1 by ΔU and decreases the utilization

of C2 by ΔU . The average utilization is U . For example, the

points on the lines C and D in Figure 4 exemplify this case.

Ed1,3 = a× (U +ΔU)×max(
b

U +ΔU
,

b

U −ΔU
)

= a× b× U +ΔU

U −ΔU

Ed2,3 = a× (U −ΔU)×max(
b

U +ΔU
,

b

U −ΔU
)

= a× b

E3 = Ed1,3 + Ed2,3

= a× b× (1 +
U +ΔU

U −ΔU
)

> a× b× (1 +
U +ΔU

U
) > E2

> 2× a× b > E1

(3)

Therefore, this application configuration increases dynamic

energy while decreasing the performance. One can indeed

explain the non-functional behaviour exhibited by points C

and D (Figure 4) using the distribution of the individual core

utilizations (that follow the simple EP model).

Hence, we prove energy nonproportionality for the simplest

case of two homogeneous components executing different

application configurations solving the same workload. In our

future work, we will investigate energy nonproportionality in-

depth for a real-life microprocessor with more than two homo-

geneous components and considering their realistic functional

dynamic power models.

IV. MATRIX MULTIPLICATION APPLICATION FOR ENERGY

PROPORTIONALITY ANALYSIS OF GPUS

This section presents our second contribution: the design

and development of a matrix multiplication application used

to analyze the weak EP of two Nvidia GPUs experimentally.

There were two design goals. The first design goal is to

select an optimized CUDA code with one or more application-

level decision variables. Having one or more decision variables

with a high positive correlation with performance and dynamic

energy will provide performance and dynamic energy tradeoffs

(for a given problem size) and allow effective analysis of

EP. We choose the blocked matrix multiplication supplied

in the CUDA programming guide that allows the user to

specify the per-block shared memory dimension. The shared

memory is faster than global memory and minimizes the

number of global memory accesses from a CUDA block. The

CUBLAS DGEMM library routine is not selected since it lacks

application-level tuning variables.

The second design goal is that the application should allow

us to select CUPTI performance events and metrics [32] that

satisfy the practical implications of the theory of energy pre-

dictive models of computing [33]. Briefly, the theory of energy

predictive models of computing is a formalism containing

properties of energy predictive models employing performance

events as model variables. The properties are manifestations

of the fundamental physical law of energy conservation. They

capture the essence of single application runs and characterize

the serial execution of two applications.

The practical implications of the theory include an additivity
property for the selection of model variables that allow con-

structing accurate and reliable linear energy predictive models.

The property is based on an intuitive and simple rule that if

a model variable is employed in a linear energy predictive

model, its count for a compound application should be equal to

the sum of its counts for the executions of the base applications

forming the compound application. A compound application
is defined as the serial execution of two applications, which

we call the base applications.

Therefore, our goal is to design a compound CUDA appli-

cation that employs two base applications that can be executed

one after the other on the GPU. CUPTI event counts are

obtained for the two base applications separately. The CUPTI

event count for the compound application is then obtained, and

the additivity error is recorded [33]. Finally, the most additive

CUPTI events are employed in constructing a qualitative linear

dynamic energy model to accurately and reliably analyze

EP by demonstrating the processor components with energy

nonproportional activity.

A compound application executes two device matrix mul-

tiplication kernels one after the other on the GPU. There

are two approaches for the serial execution of two device

kernels. The first approach is to call the kernels one after

another. The second approach is to call a kernel containing

the two device matrix product codes repeated textually one

after another. This grouping of codes provides an additional

decision variable. The number of runs of a group forms the

third decision variable.

The matrix multiplication application is illustrated in Figure

5. It computes G × R matrix products, C = A × B, of

two dense square matrices A and B of size N × N . The

application employs three decision variables. First, BS is the
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per-block shared memory dimension employed during one

matrix product call. The size of the shared memory used in

one matrix product is 2 × BS × BS. Second, G represents

the size of a group of device matrix product codes repeated

textually one after the other. For example, G = 4 means a

group of four device matrix product codes repeated textually

one after another. Finally, R is the number of runs of a group.

Lines 1-21 show the computations involved in a matrix

product. Each thread block computes one square sub-matrix

Csub of C. Each thread within the block computes one ele-

ment of Csub. Csub is the product of a rectangular sub-matrix

of A of dimensions, (N,BS) and a rectangular sub-matrix of

B of dimensions, (BS,N). The two rectangular sub-matrices

are divided into square matrices of size, BS × BS. Csub is

the sum of the sub-products of these square matrices. Each

sub-product is computed by loading the two corresponding

square matrices from global memory to shared memory (Line

10). Each thread accumulates the result of each product into

a register and writes the result to global memory (Line 20).

The per-block shared memory dimension BS is passed as a

template parameter.

Lines 22-35 show the eight groups of device matrix product

codes. Group1 (dgemmG1) contains one device matrix product

code. Group2 (dgemmG2) contains two device matrix product

codes. Similarly, until Group 8. Lines 36-72 show the G×R
matrix product invocations for block sizes BS varying from 1

to 32. The library function call, syncthreads(), is used only

to synchronize threads within a block. The blocks of threads

are executed simultaneously by the GPU multiprocessors and

there do not communicate with each other.

For a given matrix size N , the application is executed for all

the possible combinations (BS,G,R). Due to the limited size

of the per-block shared memory, only certain (G,R) combi-

nations are permissible for a given BS. The dynamic energy

and execution time is obtained for each valid combination.

The resulting execution times and dynamic energies are used

to analyze energy proportionality and determine the Pareto

front.

V. EXPERIMENTAL RESULTS

We study the weak energy proportionality of an Nvidia

K40c GPU and an Nvidia P100 PCIe GPU whose specifi-

cations are given in Table I using the matrix multiplication

application described above (Section 5). The dynamic energy

and execution time shown in the graphs are for the CUDA

kernel invocations only. The execution time of a CUDA

kernel is measured using the cudaEventCreate, cudaEven-
tRecord, cudaEventSynchronize, cudaEventElapsedTime, and

cudaEventDestroy call sequence.

Each GPU resides in a separate node. The node hosting a

GPU has one WattsUp Pro power meter, which sits between

the wall A/C outlets and the input power sockets of the node.

The power meter provides the total power consumption of the

node. It has a data cable connected to one USB port of the

server. A script written in Perl collects the data from the power

meter using the serial USB interface. The execution of the

1 t e m p l a t e < i n t BS> d e v i c e vo id dgemmG1 (
2 d o u b l e *C , d o u b l e *A, d o u b l e *B , i n t N) {
3 i n t bx = b l o c k I d x . x ; i n t by = b l o c k I d x . y ;
4 i n t t x = t h r e a d I d x . x ; i n t t y = t h r e a d I d x . y ;
5 i n t aBegin = N * BS * by ; i n t aEnd = aBegin + N − 1 ;
6 i n t a S t e p = BS ; i n t bBegin = BS * bx ;
7 i n t bS tep = BS * N; d o u b l e Csub = 0 ;
8 f o r ( i n t a = aBegin , b = bBegin ; a <= aEnd ;
9 a += aStep , b += bStep ) {

10 s h a r e d d o u b l e As [ BS ] [ BS ] , Bs [ BS ] [ BS ] ;
11 As [ t y ] [ t x ] = A[ a+N* t y + t x ] ;
12 Bs [ t y ] [ t x ] = B[ b+N* t y + t x ] ;
13 s y n c t h r e a d s ( ) ;
14 # pragma u n r o l l
15 f o r ( i n t k = 0 ; k < BS ; ++k )
16 Csub += As [ t y ] [ k ] * Bs [ k ] [ t x ] ;
17 s y n c t h r e a d s ( ) ;
18 }
19 C[N*BS*by + BS*bx + N* t y + t x ] += Csub ;
20 }
21 t e m p l a t e < i n t BS> d e v i c e vo id dgemmG2 (
22 d o u b l e *C , d o u b l e *A, d o u b l e *B , i n t N) {
23 / * dgemmG1 m a t r i x m u l t i p l i c a t i o n code h e r e . . . * /
24 s y n c t h r e a d s ( ) ;
25 / * dgemmG1 m a t r i x m u l t i p l i c a t i o n code h e r e . . . * /
26 s y n c t h r e a d s ( ) ;
27 }
28 / * dgemmG3 , . . . , dgemmG7 * /
29 t e m p l a t e < i n t BS> d e v i c e vo id dgemmG8 (
30 d o u b l e *C , d o u b l e *A, d o u b l e *B , i n t N) {
31 / * dgemmG1 code h e r e . . . * /
32 s y n c t h r e a d s ( ) ;
33 / * dgemmG1 , s y n c t h r e a d s ( ) r e p e a t e d 7 more t i m e s * /
34 }
35 g l o b a l vo id dgemm1 ( d o u b l e *C , d o u b l e *A, d o u b l e *B ,
36 c o n s t i n t N, c o n s t i n t G, c o n s t i n t R) {
37 f o r ( i n t run = 0 ; run < R ; run ++)
38 i f (G == 1)
39 dgemmG1<1>(C , A, B , N) ;
40 / * dgemmG2<1 > ( . . . ) ;
41 . . . ,
42 dgemmG7<1 > ( . . . ) ; * /
43 i f (G == 8)
44 dgemmG8<1>(C , A, B , N) ;
45 }
46 / * dgemm2 , . . . , dgemm7 * /
47 g l o b a l vo id dgemm8 ( d o u b l e *C , d o u b l e *A, d o u b l e *B ,
48 c o n s t i n t N, c o n s t i n t G, c o n s t i n t R) {
49 f o r ( i n t run = 0 ; run < R ; run ++)
50 i f (G == 1)
51 dgemmG1<8>(C , A, B , N) ;
52 / * dgemmG2<8>, dgemmG3<8>, . . . , dgemmG7<8> h e r e * /
53 i f (G == 8)
54 dgemmG8<8>(C , A, B , N) ;
55 }
56 / * dgemm9 , . . . , dgemm31 * /
57 g l o b a l vo id dgemm32 ( d o u b l e *C , d o u b l e *A, d o u b l e *B ,
58 c o n s t i n t N, c o n s t i n t G, c o n s t i n t R) {
59 f o r ( i n t run = 0 ; run < R ; run ++)
60 i f (G == 1)
61 dgemmG1<32>(C , A, B , N) ;
62 i f (G == 2)
63 dgemmG2<32>(C , A, B , N) ;
64 }

Fig. 5: The matrix multiplication application employed to
analyze the energy proportionality of our GPUs. Routine
dgemmx(C,A,B,N,G,R), x ∈ {2, . . . , 32} computes G × R
matrix products, C = A × B, of two dense square matrices A
and B of size N × N where each product employs per-block
shared memory dimension, x. BS is the per-block shared memory
dimension. G is the size of a group of repeated device matrix
product codes. R is the number of runs of a group.

script is non-intrusive and consumes insignificant power. An

automated tool, HCLWATTSUP [34], is used to determine the

dynamic and total energy consumptions. HCLWATTSUP has

no extra overhead and, therefore, does not influence the energy
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consumption of the kernel. Several precautions are taken in

computing energy measurements to eliminate the potential

disturbance due to components such as SSDs and fans.

The application is executed repeatedly to obtain an experi-

mental data point until the sample mean lies in the 95% con-

fidence interval, and a precision of 0.025 (2.5%) is achieved.

For this purpose, Student’s t-test is used assuming that the

individual observations are independent and their population

follows the normal distribution. Finally, we verify the validity

of these assumptions using Pearson’s chi-squared test.

A. Energy-Performance Interplay Using Only G

This section demonstrates the interplay between the dy-

namic energy and performance of the matrix multiplication

employing only the decision variable G. The other application-

level configuration parameters, (N,BS,R), are fixed.

Fig. 6: Energy expensive activity on Nvidia P100 PCIe shown by non-
additivity of dynamic energy as G is increased from 1 to 4 for the
matrix multiplication application (section IV). For the additive graphs
in the plots (shown in red), the dynamic energy is G×Eg1 where Eg1

is the dynamic energy for G = 1. The dynamic energies are highly
non-additive for N=5120. The non-additivity keeps decreasing before
becoming zero for matrix sizes exceeding N=15360.

Figure 6 shows the relationship between dynamic energy

and execution time for Nvidia P100 GPU as the variable G is

increased. For the additive graphs in the plots (shown in red),

the dynamic energy is G × Eg1 where Eg1 is the dynamic

energy for G = 1. The execution times are observed to be

additive.

The dynamic energies start highly non-additive and become

additive for matrix sizes exceeding 15360. Similar behaviour

is observed for Nvidia K40c GPU where the dynamic energies

start highly non-additive and become additive for matrix sizes

exceeding 10240. The non-additivity of the dynamic energy

in the Figure 6 is due to an energy-expensive component

consuming constant dynamic power consumption of 58 W. If

we include this dynamic power in the static power consump-

tion, then the resulting dynamic energy consumption becomes

additive. We will investigate if this behaviour is application-

specific in our future work.

B. Energy Proportionality and Pareto Front

Fig. 7: Energy nonproportionality of Nvidia K40c obtained by
executing the matrix multiplication application (section IV) for two
matrix sizes, N=8704 (left column) and N=10240 (right column).
The top plot graphs the dynamic energies and execution times for all
application configurations. The middle plot shows the energy non-
proportionality region where bi-objective optimization for dynamic
energy and performance results in a local Pareto front (shown in the
bottom plot). The Pareto fronts are discrete and contain the solid
square points. The points are connected by lines for visualization
purposes only.

This section analyzes the interplay between dynamic energy

and performance by studying the graphs containing data points

for all the application configurations for a specific matrix size

N . For some matrix sizes, the global Pareto front contains only

one point signifying that the performance-optimal solution is

also optimal for dynamic energy. We show a local Pareto
front for such matrix sizes, which contains solutions that are

less optimal than the solutions in the global Pareto front.

There are two reasons for doing this. First, determining a

global Pareto front by exhaustively obtaining the data points

for all the application configurations can be expensive and

may not be feasible in dynamic environments with time

constraints. Second, local Pareto fronts contain regions of high

energy nonproportionality that provide many diverse trade-off

solutions (application configurations) for dynamic energy and

performance.

Figure 7 shows the energy nonproportionality and local

Pareto fronts for the Nvidia K40c GPU for matrix sizes,

N=8704 and N=10240. The global Pareto front consists of

only one point for the matrix sizes used in our experiments,

signifying that the performance-optimal solution is optimal for

dynamic energy also. We observe that a maximum of 18%

dynamic energy saving can be obtained while tolerating a
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Fig. 8: Energy nonproportionality of Nvidia P100 PCIe obtained by
executing the matrix multiplication application (section IV) for two
matrix sizes, N=10240 (left column) and N=14336 (right column).
The energy nonproportionality (middle plots) results in a global
Pareto front shown in the bottom plots. For N=10240, there are three
points in the global Pareto front where allowing 11% performance
degradation (from the performance-optimal solution) provides 50%
dynamic energy saving.

7% performance penalty. The observed average and maximum

points in the local Pareto fronts are four and five.

Figure 8 shows the energy nonproportionality and the global

Pareto front for the Nvidia P100 PCIe GPU for matrix

sizes, N=10240 and N=14336. For the range of matrix sizes

employed in our experiments, we find that allowing a maxi-

mum performance degradation of 11% (from the performance-

optimal solution) can provide a maximum of 50% dynamic

energy saving. The observed average and maximum points in

the global Pareto fronts are two and three.

C. Discussion

For the Nvidia K40c GPU, the global Pareto front con-

tains only one point for the matrix sizes employed in our

experiments. The value of BS for this configuration is 32,

the maximum allowed by the application. However, regions

of high energy nonproportionality exist that contain local

Pareto fronts with diverse dynamic energy and performance

tradeoffs. For the Nvidia P100 PCIe GPU, the average and

the maximum number of points in the global Pareto front are

2 and 3. It suggests that the GPU architectures are becoming

more complex and, therefore, present an excellent opportunity

for the application programmer to pursue global bi-objective

optimization using application-level decision variables.

One approach to explain the energy nonproportionality is

to study the relationship between dynamic energy and perfor-

mance by using a dynamic energy model employing perfor-

mance monitoring counters (PMCs) and resource utilization as

model variables and the application’s execution time. Khokhri-

akhov et al. [8] propose a qualitative dynamic energy model

based on variables reflecting TLB activity (the duration of

page walk) and average CPU utilization. The model variables

are selected using the theory of energy of computing [33] and

a high positive correlation with dynamic energy to analyze

the energy nonproportionality on their experimental platforms.

The model demonstrates that the energy nonproportionality is

due to the disproportionately energy-expensive data translation

lookaside buffer (dTLB) activity.

CUPTI events and metrics are provided for performance

profiling and are employed in dynamic energy predictive

models [35], [36], [37]. However, we observed many key

events and metrics overflow for large matrix sizes (N > 2048)

and reported inaccurate counts. Therefore, the CUPTI library

is inadequate to analyze the energy nonproportionality of the

GPUs. We will explore in our future work methods and tools to

explain the discovered energy nonproportionality of the GPUs.

VI. CONCLUSION

Energy-proportional computing is fundamental to address-

ing the grand technological challenge of energy efficiency

in Information and Communications Technology. Therefore,

the energy proportionality (EP) of the dominant processors,

multicore CPUs and GPUs, is a crucial design goal for

architects. In this work, we presented formal definitions of

strong and weak notions of EP. The strong notion of EP

signifies designing a system that consumes dynamic energy

proportional to the amount of work it performs. On the other

hand, the weak notion of EP implies that the dynamic energy

consumption is a constant for all the application configurations

solving the same workload while requiring careful design of

the parallel application to ensure that the variations of the

core utilizations are due to the complexity of the hardware

architecture and not the parallel algorithm.

Unfortunately, multicore CPUs are found to violate both

strong and weak EP [8]. In this work, we presented the first

attempt at a theoretical analysis of the weak energy nonpro-

portionality of multicore CPUs. Specifically, we considered the

simplest case of two homogeneous cores executing different

application configurations solving the same workload. We

showed that dynamic energy increases in all situations when

there are differences between the utilizations of the cores,

thereby contravening the simple EP model.

On the other hand, a GPU is designed carefully and is less

heterogeneous than a multicore CPU, where a more significant

part of its on-chip resources are dedicated to data computa-

tions rather than caching and flow control. Consequently, the

mainstream view is that GPUs exhibit strong and weak EP.

However, GPUs were found to breach strong EP ([12]).

In this work, we studied the weak EP of an Nvidia

K40c GPU and an Nvidia P100 PCIe GPU by employing

a specially designed matrix multiplication application. Both

the GPUs were shown to exhibit energy nonproportionality.

While energy nonproportionality is undesirable, it presents an
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opportunity for bi-objective optimization of the application for

dynamic energy and performance. By analyzing the Pareto

fronts of dynamic energy and performance for a wide range of

workloads, we find that the maximum dynamic energy savings

can be up to 18% while tolerating a performance degradation

of 7% for Nvidia K40c GPU and (50%,11%) respectively, for

Nvidia P100 PCIe GPU.
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