Efficient and Reliable Network Tomography in Heterogeneous Networks Using BitTorrent Broadcasts and Clustering Algorithms

Kiril Dichev1 Fergal Reid2 Alexey Lastovetsky1

1School of Computer Science and Informatics
University College Dublin

2Clique Research Cluster
Clique

November 13th, SC12, Salt Lake City
Outline

Introduction

Multiple Source / Multiple Destination Network Tomography
 State of the Art
 Measurement Procedures
 Reconstruction Algorithm

Experimental Results

Conclusion
Network properties significantly impact communication
Communication libraries can use knowledge of network for more efficiency
Various examples in HPC and distributed computing:
 - Early work includes MPI implementations for heterogeneous networks (MagPIe, PACX-MPI)
 - More recently – work on topology-aware collectives for multi-core clusters
Introduction

- Large body of work on efficiently using networks we know *a priori*
- But what if no *a priori* knowledge is available for complex networks (e.g. clouds or grids)?
- Discovery of network properties in heterogeneous networks:
 - Simple communication model (latency, bandwidth)
 - Isolated experiments for parameters at each link
 - Useful for communication on heterogeneous networks
- Isolated benchmarks do not reflect network properties during intense collective communication
Network Discovery and Network Tomography

- What about distributed computing?
- Network discovery has a long history and can involve all available components of a network
- More recently (late 90s), a sub-area called “network tomography” has emerged
- In network tomography, network properties are discovered only using end-to-end measurements
Two Phases in Network Tomography

Figure: Network tomography can be considered as a two-phase approach.
Network Tomography with Bandwidth as a Metric

- Majority of existing work covers metrics like delay and accessibility
- Work on discovering available bandwidth is limited
- Our contribution addresses the problem of “Multiple source, multiple destination network tomography”
 - Many peers simultaneously exchange large data volumes
 - What is the achievable bandwidth between each pair?
State-of-the-Art in Bandwidth Tomography

Recent work \(^1\):

- **Objective:** Establish logical links between nodes and capacity of each link
- Each benchmark is expensive in its nature
- Measurement procedure requires separate benchmarks for all triplets of nodes: \(O(n^3)\)
- Statistical analysis with acceptable runtime
- Real life experiments not feasible
- Approach only tested with simulation

\(^1\)Bobelin, L., Muntean, T.: Algorithms for network topology discovery using end-to-end measurements
State-of-the-Art in Bandwidth Tomography

Previous work ²:

- Objective: Find a simplified graph of a physical network reflecting the interferences of streams
- Measurement procedure for best-case scenarios (no interference): $O(n^2)$
- Real life experiments not feasible even for moderate node numbers
 - Very limited set of experiments – “about one hour for 20 nodes”
- Approach tested with simulation

² A. Legrand, F. Mazoit, M. Quinson: An application-level network mapper
Problem Statement

- The measurement procedures are inefficient, and yet focus is often on the reconstruction algorithm.
- Due to their high complexity, existing MSMD network tomography methods are not practical.
Proposed Solution

We propose a different MSMD tomography solution:

- For the measurement procedures, we use a highly efficient BitTorrent protocol
- As reconstruction algorithm, we employ reliable clustering techniques
BitTorrent Overview

Example

BitTorrent Overview

Why BitTorrent?

- BitTorrent protocol exploits available bandwidth well
- A BitTorrent client opens a number of parallel connections with many peers
- More data flows along faster connections
Measurement Method

Idea: Measure peer-to-peer traffic in BitTorrent (Analogy: Flow of water in pipes)

- Let a BitTorrent broadcast be a synchronized distribution of a file from one peer to the rest
- All peers are instrumented to record incoming and outgoing fragments
- Define metric between two nodes v_1 and v_2 as the count of exchanged fragments within a BitTorrent broadcast:

$$w((v_1, v_2)) = v_1 \rightarrow v_2 + v_2 \rightarrow v_1$$

(1)
Challenges with Chosen Metric

- BT “can be” very efficient: it is observed to scale as $O(n)$
- But it introduces a high degree of randomness and non-determinism
- There are two possible ways to address this issue:
 - Perform a number of iterations
 - Use a really good statistical algorithm
- Combining both is the best option
Our objective: Be useful to communication libraries (including MPI):

- Cluster together nodes that can sustain high bandwidth even under heavy communication
- Identify bottlenecks under heavy communication and separate nodes accordingly into different clusters

Choice of clustering algorithm not obvious

Based on experimental results, we chose the modularity-based clustering
The modularity method is defined by following objective:

\[Q = \sum_i (e_{ii} - a_i^2) = Tr(e) - \|e^2\| \] \hspace{1cm} (2)

- \(e_{ii} \) – fraction of edges that would be intra-cluster in cluster \(i \)
- \(a_i \) – fraction of inter-cluster edges connecting to cluster \(i \) in a randomized model
- Larger \(Q \) indicates stronger community structure
- Maximal \(Q \) gives best clustering
Gluing the Pieces Together

- “Exchanged fragments” metric used as input for clustering algorithm
- We choose the Louvain method as the algorithm to find a set of clusters that maximise the modularity criterion
Experimental Setup

- All experiments are performed on Grid’5000 infrastructure
- Runs involve 1, 2, 3 or 4 clusters at a single site or different sites
- Single BT broadcast chosen (arbitrarily) for a fixed size 240 MB dummy file
- Graphviz visualization indicative of quality of clustering
Example: Bordeaux Topology
Three clusters, One Major Bottleneck

Figure: Three clusters within Bordeaux site, one bottleneck. Note: Used visualization uses each edge weight as a spring.
Example: Two Clusters on Different Sites

Figure: Two distributed clusters – Grenoble and Toulouse
Example: Three Clusters on Different Sites

Figure: Three distributed clusters – Bordeaux, Grenoble and Toulouse
Example: Four Clusters Across France

Figure: Four distributed clusters – and an interesting recognition of star topology

4Source: Grid5000 Webpage
Measuring Accuracy of Proposed Solution

- A measure called NMI (normalized mutual information) is common in clustering algorithms.
- This index compares the ground truth – the a-priori knowledge of the network – against the clustering results.
- We “borrow” NMI to measure the accuracy of the proposed network tomography.
Ground Truth

How do we produce our ground truth, i.e. our *a priori* knowledge on the network?

- **Intra-site network:**
 - Documentation (Wiki) – sometimes not reliable
 - Network administrator – reliable source of information

- **Inter-site network (optic fiber):**
 - Documentation – generally reliable
 - But we still perform NetPIPE benchmarks
How Efficient and Reliable is the Proposed Approach?

Figure: The NMI quickly converges as the number of measurement iterations increases.
How Efficient and Reliable is the Proposed Approach?

- Results demonstrate that nearly all runs converge to perfect accuracy after at most 15 BT broadcasts
- Efficiency:
 - Each of the BT broadcasts requires around 20 seconds for 64 nodes (even when geographically distributed)
 - At most 5 minutes in total for full accuracy with 64 nodes
 - Related work would need more than 10 hours for measurement on similar setup
Conclusion

- We presented a new method of network tomography
- Both the BitTorrent-based measurement and coupling with a clustering algorithm are unconventional
- Randomness and non-determinism of BitTorrent easy to overcome through iteration
- Clustering algorithm provides reliable results
- Due to efficiency of measurement procedures, proposed solution is the only one that can be used for real platforms
Thank you!