
Performance of GridRPC-based programming systems for

distributed scientific computing:

issues and solutions

Author:

Michele Guidolin

B.Sc., M.Sc.

The thesis is submitted to

UNIVERSITY COLLEGE DUBLIN

for the degree of

PHD IN COMPUTER SCIENCE

in

COLLEGE OF ENGINEERING, MATHEMATICAL

& PHYSICAL SCIENCES

September 2009

SCHOOL OF COMPUTER SCIENCE & INFORMATICS

Head of School:

Dr. Joe Carthy

Supervisor:

Dr. Alexey Lastovetsky

To my love Katie,

to my parents Teresio and Silvana,

and to my brother Claudio

Contents

1 Introduction 1

2 State of the Art 8

2.1 GridRPC . 12

2.1.1 GridRPC Model . 13

2.1.2 GridRPC Communication Model 15

2.1.3 GridRPC API . 15

2.1.4 GridRPC Middlewares 16

2.1.5 Alternative RPC model for Grid: OmniRPC 19

2.2 GridRPC Performance Analysis: Related Work 20

2.2.1 NAS Grid Benchmarks 22

2.2.2 Evaluation Applications used in GridSolve 23

2.2.3 Evaluation Applications used in Ninf-G 26

2.2.4 Evaluation Applications used in DIET 28

2.3 Summary . 30

3 A Scientific Application as a Tool for Analysing the Performance of

GridRPC Systems 32

3.1 Classification of Grid Applications 33

3.2 Hydropad . 34

3.3 GridRPC Implementation of Hydropad 38

3.4 Non Performance Related Benefits of GridRPC 40

3.5 Summary . 42

I

Contents

4 Experimental Analysis of Performance Potential and Limits of

GridRPC Model 44

4.1 Faster Solution of a Given Problem. 45

4.2 Reduced Client Memory Use and Paging 47

4.3 Summary . 49

5 SmartGridRPC: Overcoming the Limitations of GridRPC 51

5.1 SmartGridRPC Model . 52

5.2 SmartGridRPC Communication Model 55

5.3 SmartGridRPC API . 55

5.4 SmartGridRPC Middleware . 57

5.4.1 SmartGridSolve Internals 58

5.4.2 Task Graph . 59

5.5 SmartGridRPC Implementation of Hydropad 61

5.6 Related Work . 64

5.7 Summary . 66

6 Experimental Analysis of Performance Potential and Limits of

SmartGridRPC Model 67

6.1 Improved Computation Load . 70

6.2 Improved Communication Load 71

6.3 Further Reduced Client Memory Use and Paging 73

6.4 Minimal Performance Influence by the Client-Side Hardware . . . 75

6.5 Summary . 76

7 The Automatic Task Graph Generation Issue: Irregular Algorithms 78

7.1 Examples of Irregular Algorithms 79

7.2 GridRPC and SmartGridRPC implementations 81

7.2.1 Iterative Algorithm . 82

7.2.2 Conditional Algorithm 84

7.2.3 Adaptive Algorithm . 87

7.3 Summary . 88

II

Contents

8 Algorithm Definition Language: Generation of Explicit Task Graphs

for Irregular Algorithms 92

8.1 Conditional Algorithm Using ADL 93

8.2 Adaptive Algorithm Using ADL 99

8.3 Experimental Results . 102

8.4 Related Work . 105

8.4.1 Languages Used in Workflow Management Systems . . . 105

8.4.2 Languages Used in GridRPC Middlewares 110

8.5 Summary . 112

9 ADL: Language and Compiler 113

9.1 Language . 113

9.1.1 Module Definition . 114

9.1.2 Component . 116

9.1.3 IFO: Identified Flying Object 118

9.1.4 Algorithm . 119

9.1.5 Inout . 123

9.2 Compiler . 125

9.2.1 Internal Structure . 127

9.2.2 Output Code . 129

9.3 Compiler Implementation . 133

9.3.1 Scanner . 133

9.3.2 Parser . 134

9.3.3 Attribute Syntax Tree . 135

9.3.4 Code Generator . 136

9.4 Multi-size Multi-dimensional Array 137

9.5 Summary . 141

10 Conclusion and Future Work 143

Bibliography 149

A ADL - Grammar 158

A.1 Programs definition . 159

III

Contents

A.2 Components definition . 159

A.3 Statements . 160

A.4 Declarations . 162

A.5 Expressions . 165

A.6 Base Nonterminals . 167

IV

List of Tables

2.1 Example of GridRPC methods 17

3.1 Hydropad universe evolution loop 38

3.2 Hydropad implementation using GridRPC API 39

4.1 Input values and problem sizes for the Hydropad experiments . . . 45

4.2 Experimental results with GridSolve using client C1-1 46

4.3 Experimental results with GridSolve using client C100-256 48

5.1 Example of a group of task calls specification in SmartGridRPC . 54

5.2 Example of SmartGridRPC methods 57

5.3 Hydropad implementation using SmartGridRPC API 61

5.4 Dynamic selection of the number of evolution cycles included in

the group of tasks to map collectively 62

6.1 Experimental results with SmartGridSolve using client C100-256 . 68

6.2 Experimental results using only star-network and client C1-1 . . . 71

6.3 Experimental results using client C100-1 72

6.4 Experimental results using client C1-256 74

7.1 Example of a GridRPC implementation of an iterative algorithm . 82

7.2 Example of a SmartGridRPC implementation of an iterative algo-

rithm . 83

7.3 Example of a GridRPC implementation of a conditional algorithm 84

7.4 Example of a SmartGridRPC implementation of a conditional al-

gorithm . 85

V

List of Tables

7.5 Example of a GridRPC implementation of an adaptive algorithm . 87

7.6 Example of a SmartGridRPC implementation of an adaptive algo-

rithm . 88

8.1 Example of an ADL module of the conditional algorithm 94

8.2 Example of ADL use in the conditional algorithm application through

the SmartGridRPC method . 96

8.3 ADL module of the adaptive algorithm example 99

8.4 Example of ADL use in the adaptive algorithm application through

the SmartGridRPC method . 100

8.5 Experimental results for the conditional algorithm applications . . 103

8.6 Experimental results for the adaptive algorithm applications . . . 104

9.1 Example of an ADL module definition 114

9.2 Example of the declaration of various parameters 115

9.3 Example of a component section with tasks and modules declaration116

9.4 Example of dgesv task definition in GridSolve IDL file “lapack.idl” 117

9.5 Example of IFO declaration . 119

9.6 Example of module calls in ADL 121

9.7 Example of dgesv task call in a ADL module 122

9.8 An example declaration of input and output IFOs lists in an ADL

module . 124

9.9 Example of the task graph generation in the external code through

the use of the external function and the wrapper method 130

9.10 Example of parameters’ initialisation in the generated C code . . . 131

9.11 Example of IFOs initialisation in the generated C code 131

9.12 Example of the algorithm section in the generated C code 132

9.13 Example of the regular expressions and rules used to generate the

scanner . 134

9.14 Example of the grammar used to generate the parser 134

9.15 Example of the code used to generate the attribute syntax tree . . . 135

9.16 Example of the code used to generate the target C code 136

9.17 Example of the declaration of a multi-size multi-dimensional ar-

rays with one dimension . 137

VI

List of Tables

9.18 Example of the initialisation of a multi-size multi-dimensional ar-

ray with one dimension in the generated C code 138

9.19 Example of the declaration of a multi-size multi-dimensional ar-

ray with two dimensions . 139

9.20 Example of the initialisation of a multi-size multi-dimensional ar-

ray with two dimensions in the generated C Code 140

VII

List of Figures

2.1 The basic GridRPC model . 14

2.2 GridRPC communication model 16

2.3 Workflow graph of the NAS Grid Benchmarks Mixed Bag problem. 23

3.1 Example of Hydropad Output . 35

3.2 Internal structure of Hydropad 37

4.1 Execution time of the evolution step, with varying problem sizes,

for the local and GridSolve versions of Hydropad using client

C100-256 . 49

5.1 SmartGridRPC communication model 56

5.2 Example of SmartGridSolve task graph 60

5.3 Task graph for two evolution cycles 63

6.1 Execution time of the evolution step, with varying problem sizes,

for the GridSolve and SmartGridSolve versions of Hydropad us-

ing client C100-256 . 69

6.2 Execution time of the evolution step, with varying problem sizes,

for the local, GridSolve and SmartGridSolve versions of Hydropad

using client C1-256 . 75

6.3 Execution time of the evolution step, with varying problem sizes,

for the GridSolve and SmartGridSolve versions of Hydropad us-

ing clients C1-1 and C100-256 77

VIII

List of Figures

7.1 Three task graphs generated from the SmartGridRPC implemen-

tation of the conditional algorithm example 86

7.2 Two task graphs generated from the SmartGridRPC implementa-

tion of the adaptive algorithm example 89

8.1 The task graph generated from the ADL module of the conditional

algorithm example . 98

8.2 The task graph generated from the ADL module of the adaptive

algorithm example . 101

9.1 Example of the use of the ADL compiler 126

9.2 Internal structure of the ADL compiler 128

9.3 Example of a multi-size multi-dimensional array of IFOs with one

dimension . 138

9.4 Example of a multi-size multi-dimensional array of IFOs with two

dimensions . 141

IX

Acknowledgements

This thesis would have never been possible if it wasn’t for the help of my

supervisor Alexey. Thanks to his knowledge, presence, suggestions and guidance,

I was able to carry out this research.

I would like to thank the guys in the HCL laboratory, Thomas, Robert, Brett,

Vladimir, Maureen, Ravi, and Xin, for the help during this experience. Particu-

larly Thomas, for the work together on the project, and Robert, for all the time he

help in problem solving.

During these years, I met a lot of new friends that helped me in this adven-

ture: Davide, Luis, Alfredo, Jose and Andreas for the fun time together; Lisa and

Patrizio for the bowling games; Thomas and Francesco that had to endure me at

lunch time; Britta, Martin and Paulo for all the good times in the flat; Marco,

Claudio, Mattia and Lenka for the lovely pizza nights; and the volleyball people

for the endless hours of play. I will be never able to show them how much im-

portant they have been for me. By the way, thanks Thomas for the help with the

cover letter.

I would like to thank my parents for the continuous drive to finish my thesis

(“work you lazy . . . ”) and moreover for the endless hours of support by phone

during the difficult times. Furthermore, I would also like to thank my brother

Claudio for always reminding me of my final goal (“get a job!”); It looks like I

finally got it.

Last but not least (or least but not last, I’m never sure about these things), a

big thanks goes to Katie who, despite not letting me eat her brain, gave me the

best reason for finishing this thesis (and she corrected it). Grazie mille Katie.

Michele Guidolin

Summary

The GridRPC programming model is a standard designed for easy develop-

ment of distributed scientific applications for Grid computing, while obtaining

high performance. As there are already many specialised systems for embarrass-

ing parallel and stream applications, GridRPC needs to obtain good performance

with tightly synchronised applications in order to reach a large audience.

Unfortunately, a comprehensive performance analysis of the GridRPC model

for these applications is missing. In this work, we present Hydropad, a real life

task parallel tightly synchronised astrophysical simulation, as a method to eval-

uate the performance of GridRPC systems. The results show that the GridRPC

version of Hydropad can achieve faster computation than the sequential code but

is limited by the client-to-server connection speed and the client memory. As a

result the client-side hardware is a performance bottleneck. GridRPC is therefore

not the ideal paradigm for executing tightly synchronised task parallel distributed

applications on a Grid environment.

SmartGridRPC aims to overcome the limitations found in GridRPC. This is

done by implementing server-to-server communications and mapping of groups

of tasks. Our experiments show that the SmartGridRPC version of Hydropad

obtains significant performance gains in comparison to both the GridRPC imple-

mentation and also the sequential one. Furthermore, these performance gains are

not influenced negatively by the client hardware. Our analysis shows that Smart-

GridRPC is an effective alternative for executing tightly synchronised task parallel

distributed applications on a Grid environment.

To get these improvements, a SmartGridRPC middleware needs a task graph

that fully represents the application’s algorithm. The automatic task graph gen-

eration method introduced by SmartGridRPC may not always work for all kinds

of algorithms. To overcome this, we developed the Algorithm Description Lan-

guage (ADL) which allows the explicit generation of a task graph for any given

algorithm. The results show that SmartGridRPC with ADL obtains higher perfor-

mance than without ADL and using only GridRPC.

Chapter 1

Introduction

Distributed computing allows a scientific user to connect together the resources

of different platforms that are available in an institution in order to execute larger

scientific applications. Grid Computing [47] expands this idea by allowing var-

ious geographically and managerially separated powerful systems to be grouped

together while keeping the access to their resources as simple as possible.

GridRPC [75] is a standard promoted by the Open Grid Forum that allows

a scientific user to design an application to interface smoothly with a Grid envi-

ronment. The motivation that led to the conception of the GridRPC model [74]

was the need to have a programming model that simplifies the development of

scientific Grid applications, in order to obtain widespread adoption of Grid com-

puting by scientific users that are not grid specialists. Therefore, it was important

to develop a programming model that can hide the technicalities and difficulties

of interfacing with a Grid environment through a middleware. For these reasons

a remote procedure call (RPC) model [16] adjusted for Grid computing has been

chosen since this model was already familiar to a large amount of scientific users

and it can be easily picked up by new programmers. The GridRPC programming

model is easier than the RPC one since the programmer does not need to specify

the server to execute the task and the stub for each remote task. Furthermore,

GridRPC extends RPC since it adds asynchronous remote task calls. Currently,

various Grid middleware systems implement the GridRPC model, such as Grid-

Solve, Ninf-G and DIET.

1

Introduction

In this thesis, we found that the GridRPC mapping and communication models

have some limitations that can impact heavily on the performance of distributed

scientific applications. A GridRPC middleware, due to the GridRPC program-

ming model, works by individually mapping the applications tasks to appropriate

servers in the Grid. This model supports minimisation of the execution time of

each individual task of the application rather than the minimisation of the execu-

tion time of the whole application. Furthermore, the individual mapping of tasks

implies that a GridRPC middleware is unaware of any data dependencies between

tasks. Therefore, all the data objects used in a remote task can be communicated

only between the server and the client machine without direct server- to-server

communication. The drawback of this communication model is that for each task

there is a high quantity of data communication on the client-to-server network

link.

The work in this thesis is part of the SmartGridRPC [17] project, which is a

new programming model aimed to overcome the GridRPC limitations by extend-

ing its single-task map and client-to-server communication models without chang-

ing the base of the GridRPC programming model. The SmartGridRPC model im-

plements server-to-server communications and mapping of groups of tasks while

adding only two new methods to the GridRPC API. In order to collectively map a

group of tasks and to use a fully connected network, a SmartGridRPC middleware

needs a task graph that represents the full knowledge of all the tasks executed in

the applications algorithm. The task graph, a direct acyclic graph (DAG) structure,

highlights the order of tasks and their synchronisation (whether they are executed

in sequence or parallel), the dependencies between tasks, the load of data com-

munication and the task computational volume [18]. An important new feature

of SmartGridRPC is the automatic task graph generation method that allows the

building of the task graph directly from the application code by iterating twice

through the code that contains the task calls to be mapped collectively.

Problems and Motivations

The main problem of GridRPC, and therefore the main motivation of this thesis, is

that there has been no comprehensive performance analysis of the GridRPC model

2

Introduction

showing its potential and limitations for tightly synchronised applications. The

overwhelming majority of applications chosen, or artificially created, to demon-

strate the performance of GridRPC middlewares are pipelined or embarrassing

parallel (as analysed in section 2.2 of this thesis). We do not know if the GridRPC

model has the potential to achieve good performance for a wide range of scien-

tific applications, since performance evaluations of GridRPC middlewares with

tightly synchronised applications are missing and it is difficult to obtain top per-

formance in a distributed environment for such applications because of their high

level of data communication between tasks. We believe that to justify the use

of GridRPC we should not use an extremely suitable application to demonstrate

the performance potential of GridRPC systems but a real life tightly synchronised

application that shows the eventual limits and benefits of the middleware tested.

Furthermore, the new SmartGridRPC programming model suffer the same

issue since we also do not know if the new extensions implemented in Smart-

GridRPC, the mapping of group of tasks and the improved communication model,

allow tightly synchronised applications, as well any other scientific distributed ap-

plications, to fully take advantage of the Grid environment. Therefore, it is im-

portant to evaluate also the performance potential of SmartGridRPC and compare

with the GridRPC model.

In this thesis we also analyse that the automatic task graph generation method

of SmartGridRPC has some restrictions that can impact the performance of vari-

ous applications. A task graph may not always be automatically generated for all

kinds of algorithms. There are different situations where the automatic task graph

generation will not work. A typical example is when, in the code to be mapped,

a conditional construct exists that checks a value that cannot be known without

executing a remote task call. We show that a technique to avoid this problem is

to create the task graph from a smaller block of code, but the resulting group of

tasks to be mapped generates a less optimal execution. A comprehensive solution

to this problem is to permit the application programmer to explicitly specify a task

graph that best represents the run-time execution of the irregular algorithm. Since

the application programmer usually has an in depth knowledge of the algorithm

used inside his application, he or she can generate the most representative task

graph possible in the situation where the output of a remote task call can change

3

Introduction

the flow of execution.

It is essential to resolve these issues given that high performance in the execu-

tion of any type of distributed scientific application is an important design objec-

tive of the GridRPC model, and thus of the SmartGridRPC model, since the target

users are computational scientists. If we consider that many available systems

for Grid computing are highly specialised in executing embarrassing parallel and

pipelined applications and are already widely used; the main aim of GridRPC and

SmartGridRPC must be to achieve high performance in the execution of tightly

synchronised distributed scientific applications. This is the only way to allow

GridRPC and SmartGridRPC to be used by a large audience of scientific users,

since an easy to use and easy to develop paradigm that obtains high performance

for such applications in Grid computing is still missing.

Contributions

This thesis contains two main contributions, the first is the performance evalu-

ations of the GridRPC and SmartGridRPC models using a tightly synchronised

real-life astrophysical application, Hydropad. The second is the design and im-

plementation of a specific high level language, Algorithm Description Language

(ADL), that can be used by the applications programmer to directly specify a task

graph like structure into SmartGridRPC. Broken down further, the main contribu-

tions are:

The design and implementation of Grid-enabled Hydropad [55]: This is a

real-life astrophysical application that was “gridified” in order to be used as a

tool for experimental performance evaluation of GridRPC and SmartGridRPC

systems. This application is composed of tasks that have a balanced ratio be-

tween computation and communication with a high level of data synchronisation

between them. Therefore, this application can be classified as a tightly synchro-

nised application. Hydropad requires high processing resources because it has to

simulate an area comparable to the dimensions of the universe and simultaneously

try to achieve a high enough resolution to show how the stars developed.

4

Introduction

The analysis of the benefits and limitations of GridRPC model: Where we

show that despite the fact that Hydropad is not the most suitable application to be

executed on a Grid environment (because of the high magnitude of data commu-

nication involved between tasks), the GridRPC version of Hydropad obtains many

non performance and performance related benefits, which can be applied to many

other scientific applications. Our analysis shows that the GridRPC implemen-

tation of Hydropad can achieve better performance than the original sequential

code. This is due to the performance advantages of the GridRPC model, namely,

the remote execution of tasks on powerful servers and the parallel execution of

the tasks. However, as previously mentioned, we show that the mapping and com-

munication models utilised by GridRPC are not optimal and thus the increase in

computational performance using GridRPC depends on the client-to-server links

speed and specifically the client side hardware.

The analysis of the benefits and limitations of SmartGridRPC model: Here

we show that the SmartGridRPC implementation of Hydropad does not only keep

the non performance related benefits but can significantly improve the perfor-

mance of the application. This applies even in situations where the GridRPC

implementation fails to do so, and we also show that these performance gains are

not deteriorated by the client side hardware. However, in order to obtain these

performance improvements, SmartGridRPC needs a task graph that is representa-

tive of the underlying algorithm of the application and therefore we present three

trivial examples of irregular algorithms where the automatic task graph generation

method fails to build a representative task graph.

The development and implementation of the ADL language: This is a tool to

help an application programmer easily specify a task graph for all kinds of algo-

rithms. We demonstrate that the use of ADL in conjunction with SmartGridRPC

improves the performance of example applications, that are comprised of irregu-

lar algorithms, over the individual use of SmartGridRPC and GridRPC. The ADL

language is modular, it has a well-defined structure and its syntax is similar to

C language. The objectives of this language are to be easy to use and easy to

understand. Its integration with the SmartGridRPC model is straightforward and

5

Introduction

it permits a user to select the flow of execution and the relative task complexity

dynamically from the client code. The idea behind the development of ADL is

to give a powerful tool to the programmer that help him or her implement any

SmartGridRPC application with the best mapping and execution possible.

Structure

The thesis is outlined as follows. Chapter 2 introduces briefly the distributed and

Grid computing fields and the RPC model. Then, it presents the GridRPC model

and the existing GridRPC middlewares. The last part of the chapter contains a

literature review of the different applications used to evaluate the performance

of GridRPC middlewares. Chapter 3 presents Hydropad, its implementation in

GridRPC and the non-performance related benefits of GridRPC, that can be ap-

plied to Hydropad as well as to any other distributed scientific application. Fur-

thermore, this chapter introduces a classification of Grid applications that com-

pares the difference in computation of the tasks, the amount of memory and data

used and inter-task communications required between different types of scientific

applications. In chapter 4, we outline the performance related benefits and the

eventual limits that the GridRPC model delivers to any scientific application by

analysing the experimental results obtained using Grid-enabled Hydropad.

Chapter 5 presents the new SmartGridRPC model and the SmartGridSolve

middleware, which extends the GridSolve middleware to implement this new

model. Furthermore, this chapter shows the SmartGridRPC implementation of

Grid-enabled Hydropad. In chapter 6, we use the various implementations of Hy-

dropad to evaluate the performance potential that the new SmartGridRPC model

delivers in comparison to the GridRPC model.

Chapter 7 presents three example algorithms where the automatic task graph

generation of SmartGridRPC fails. These examples model real-life irregular al-

gorithms that are common in many scientific applications. In this chapter, we

analyse the problems behind the automatic task graph generation and we outline

the GridRPC and the eventual SmartGridRPC implementations of these exam-

ple algorithms. In chapter 8, we introduce how ADL can be used to generate a

representative task graph for the example irregular algorithms. We also analyse

6

Introduction

the performance improvements obtained by the use of ADL in conjunction with

SmartGridRPC and compare them with the GridRPC and SmartGridRPC imple-

mentations. Furthermore, this chapter contains a literature review of existing lan-

guages that are used to generate task graphs or similar structures for systems in the

Grid computing field and for GridRPC middlewares. Finally, chapter 9 presents

an in depth description of the ADL language and its compiler.

7

Chapter 2

State of the Art

Scientific applications are designed to simulate, analyse and solve problems in

many different fields (such as physics, biology, chemistry, etc) through the use of

mathematical models. Their internal structure, algorithm and composition vary

vastly according to the field or subject considered. These applications usually

need high amounts of computational power and memory footprint to solve the

mathematical models with high accuracy. Therefore, they are executed in specific

systems that have enough hardware resources to handle their complexity. Unfor-

tunately, powerful systems are not easy to access since they are expensive and

difficult to manage. Thus, a common situation is that the systems available to a

scientific user do not have enough resources to compute the desired large problem.

Instead of utilising a single powerful system, a common solution is to use dis-

tributed computing. The idea behind distributed computing is not recent and it is

to connect together all the resources of different platforms available in an insti-

tution to execute the required scientific application. These distributed resources

are accessed by dividing the computational problem of the application into many

tasks. These tasks are executed, synchronously or asynchronously, on the various

remote platforms and the data is communicated between each task through the use

of a common technique or paradigm. Therefore, distributed computing permits a

scientific user to easily access all the available resources.

Thanks to its many advantages, the field of distributed computing for com-

putational science has been studied and researched for many years. However, in

8

State of the Art

the past not all types of scientific applications were executed in a distributed en-

vironment, due to the limitations on speed and latency of the network links. The

ideal application to get top performance in a distributed environment is composed

of coarse-grained tasks. These tasks have high computation and minimal data

dependencies between them. Due to these characteristics, scientific applications

with this type of task were the most developed and executed in distributed envi-

ronments since they were the most able to gain from the remote and distributed

execution of tasks.

A common technique used to execute coarse-grained scientific applications in

a distributed environment is batch processing. In this technique, the various tasks

of an application are developed as individual programs, called jobs. These jobs are

executed in batches through the use of script languages or remote shells. Another

typical approach is the use of batch management systems, such as Condor [66]

and PBS [57]. They provide a high level of abstraction to easily manage remote

jobs and their executions, such as job queueing, scheduling, workflow definition,

resource monitoring and management. These techniques are still used today since

they are very effective for this type of scientific application. However, they were

not the only distributed computing paradigms developed. An important technique

was the remote procedure call (RPC) model [16]. It was developed to achieve

remote task execution in an easy way by directly using the high level language of

the application.

The RPC model provides a straightforward and simple programming model

for executing tasks on remote computers. To execute a task remotely, the applica-

tion programmer does not need to learn a new programming language but merely

uses an RPC method. The main idea behind RPC is that a remote call is as similar

as possible to a normal function call of the underlying language. There are many

different implementations of the RPC model. However, a typical RPC function

call consist of the remote task to be performed, the server to execute the task, the

location of the input data on the user’s computer required by the task, the loca-

tion on the user’s computer where the results will be stored and the encoding and

decoding method used during the communication of the data.

The RPC model is based on a client-server architecture. The application, that

implements the RPC API, acts as a client while the remote systems run the server

9

State of the Art

components. At run-time during the RPC method call, the client sends the input

data to the given server. Then, the server executes the specific procedure using the

communicated data. When the procedure is completed on the server, the output

data generated are communicated back to the client. During this process, while the

task is being executed remotely, the application is blocked inside the RPC method.

Then, when the client receives the data back, the RPC call is finished and thus

the application can continue the computation. The various software components,

which implement this model of execution (for example, the data communication

model, the remote executions, the scheduling, etc), are called the middleware of an

RPC implementation. The information used to execute tasks remotely is specified

by the application programmer in special files called stubs.

Recently, due to improvements in software tools and communication infras-

tructures, the concept of distributed computing has been expanded into a new field.

The concept is that various geographically and managerially separated powerful

systems can be grouped together in a common computational network and the re-

sources of this network can be easily accessed by a scientific user like an electrical

grid; this is called Grid computing [47]. The main objective of Grid computing

is the ease of use, ease of development and the single point of access to the avail-

able resources. Therefore, a Grid environment could have resources located in the

same place or scattered around the world and managed by different entities but

their access would be through the use of a single login and a common method.

Another objective of Grid computing, important for scientific applications, is the

ability to reach high computational performance. Thanks to the low latency and

fast communication speed of the recent network links, scientific Grid applications

can benefit from the use of distributed resources also if they have tasks with finer

granularity, thus with lower computation and higher data dependencies than pre-

viously possible.

Snavely et al. in [76] identify a trend in the types of scientific applications

that may benefit from Grid computing. They classified Grid applications in four

large groups by comparing the difference in computation of the tasks, the amount

of memory and data used and inter-task communications required (see section 3.1

for more details). The first class defined (class I) contains applications that are

embarrassing parallel in nature. These applications can be divided into many tasks

10

State of the Art

where there are no data dependencies between them. Thus, these tasks can easily

run simultaneously on many systems of the Grid environment. The applications of

second class (class II) compute continuous streams of data. Thus, they are called

pipeline or stream applications. The tasks that compose an application of this class

are data intensive and, while there is parallelism between them, there are minimal

data dependencies between tasks. Class III applications have tasks with a high

level of data synchronisation between them. Thus, data dependencies and inter-

task communication have an important impact on the performance and possible

task parallelism of the application. The applications of this class are called tightly

synchronised applications. Finally, class IV contains applications that perform

data related workloads, such as search or distributed database applications. The

tasks employed by these applications are usually not computational and memory

intensive.

As previously mentioned, Classes I and II of distributed scientific applications

are ideal to get top performance in a distributed environment and therefore in

a Grid environment. This happens since their tasks have high computation and

minimal data dependencies and they can be easily executed in parallel on many

different remote systems. In fact, these two classes of applications are still mainly

developed and executed using batch management systems specific for Grid com-

puting (e.g. Condor-G [49]) or Grid middlewares specific for stream processing

(e.g. gLite [1]). On the other hand, the class III group is more important since

it contains a large amount of scientific applications that are largely used and that

are difficult to execute in a distributed environment. For example, climate, astro-

physics, aerodynamic and molecular simulations. Typically, tightly synchronised

applications are executed in massive parallel systems and they implement data par-

allelism. However, the opportunity to exploit the natural task parallelism of some

mathematical models with the increase in speed of communication links have am-

plified the possibility for tightly synchronised applications that implement task

parallelism to have good performance in a Grid environment.

The vast amount of resources that can be available in a Grid environment,

with the possibility to utilise them for accelerating many types of scientific ap-

plications, has generated a large amount of research for finding paradigms that

permit a user to easily unlock these resources. This situation, and the fact that

11

State of the Art

Grid computing is still a fairly young research field, has produced many different

programming models and paradigms. For example, message passing, shared state

model, batch system, workflow system and software toolkit [64]. As in the case of

scientific applications for distributed computing, one of the most researched tech-

niques for Grid computing is RPC. This is due to its straightforward programming

model, since the main objectives of Grid computing are its ease of use and ease

of development. Many projects using the RPC model have been implemented for

Grid computing, however in this thesis we focus on GridRPC [75], a standard

promoted by the Open Grid Forum [2], that is designed for distributed scientific

computing in a Grid environment.

In this chapter, we first introduce the GridRPC project by showing its pro-

gramming and communication model. Then, we present the GridRPC methods

that can be used in order to interface a scientific application to a Grid environment.

Finally, we introduce three middlewares that implement the GridRPC model and

we present a different programming model that is similar to GridRPC. In the sec-

ond part of this chapter, we show that the overwhelming majority of applications

chosen, or artificially created, to demonstrate the performance of GridRPC mid-

dlewares are of class I and II.

2.1 GridRPC

GridRPC provides a simple and portable programming interface that permits an

easy development of applications which can simply execute tasks remotely in a

Grid environment. A number of Grid middleware systems are GridRPC compliant

including GridSolve, Ninf-G and DIET.

GridRPC extends the traditional RPC model in that the programmer does not

need to specify the server to execute the task. When the programmer does not

specify the server, the middleware system, which implements the GridRPC API, is

responsible for finding the remote executing server. When the program runs, each

GridRPC call results in the middleware mapping the call to a remote server and

then the middleware is responsible for the execution of that task on the mapped

server. Another difference is that GridRPC is a stub-less client model, meaning

that the programmer does not need to specify a stub for each remote task. There-

12

State of the Art

fore, client programs are not required to be recompiled when tasks are changed or

added. This facilitates the creation of interfaces to scientific computing environ-

ments (SCEs) such as Matlab and Mathematica.

These fundamental characteristics of GridRPC are possible due to the use of

the function handle and section ID objects in the GridRPC API. The function han-

dle associates a task name with the respective task implementation in a specific

server. This association is performed automatically by the underlying GridRPC

middleware. The session ID represents a particular non-blocking RPC call. These

two objects are the only extra information that is used during a remote task call in

comparison to a local subroutine call of the applications language. Therefore, the

development of a GridRPC application from an existing scientific code is straight-

forward.

GridRPC standard does not dictate the underlying structure of the middleware,

since different GridRPC implementations may use different mechanisms, but in-

dicates only the API and the programming model [74]. This model is designed to

hide the complexity of the interaction with a Grid environment from the program-

mer and consequently to simplify the development of a Grid-enabled application.

2.1.1 GridRPC Model

The GridRPC model is based on a client-server architecture and its basic structure

is illustrated in figure 2.1. The functionalities presented in this section are shared

by all the implementations of the GridRPC model [67].

Function handle In order for a task to be available on a server, a programmer

has to define the specific information that describes various aspects of the remote

task. The information used, and the method to define it, differs in each GridRPC

implementation. Typically the various aspects described are:

• The task name (dgesv, dgemm etc.).

• The object types of the arguments (scalars, vectors, matrices etc.).

• The data type of the arguments (integer, float, double, complex etc).

13

State of the Art

Figure 2.1: The basic GridRPC model

• Whether the arguments are inputs or outputs.

Common in all the implementations is the use of the function handle to associate

a task name to the respective task implementation in a specific server. Through

the function handle, the task’s information is retrieved by the client and is used

by the middleware to execute the task on the server. This technique eliminates the

need for client-side stubs for each task in the Grid environment.

Resource discovery Each server of the Grid environment registers its tasks

available in a registry. This involves the servers sending the task’s information

to the registry. The registry is an abstract term that could indicate a single entity

or several entities, which works as a resource discovery. Its mechanism varies

between implementations. Different implementations of the registry may store

further information, such as data describing the underlying Grid, i.e. the speed of

the client-to-server network links and the performance of the servers. These vari-

ous different types of information can be utilised to generate performance models

which are used to estimate the possible execution time of a task in the Grid envi-

ronment.

Client application run-time The function handle is retrieved at run time by

using the GridRPC method grpc function handle default. When this method is

invoked without a specific server, the server is dynamically chosen by the re-

14

State of the Art

source discovery mechanism. Once a particular task-to-server mapping has been

established by initialising a task handle, all GridRPC task calls using that func-

tion handle will be executed on the server specified in that binding. Each GridRPC

task call gets processed individually, where each task is discovered (task look-up)

and executed separately from all the other tasks in the application. A GridRPC

system, which performs dynamic resource discovery and mapping, can delay the

selection of the server until the task is called. In theory there is more chance to

choose a better server in this way, since at the time of invocation more informa-

tion regarding the task and network is known, such as the size of input/outputs,

complexity of task and dynamic performance of client-server links.

2.1.2 GridRPC Communication Model

Another important aspect of GridRPC is its communication model. Since the

GridRPC model maps tasks individually, the data dependencies between tasks are

not known during run-time. This model forces bridge communication between

tasks because the underlying GridRPC middleware does not know if an output data

object is an input in an another task. Thus, output objects need to be sent to the

client and input objects need to be received from it. Therefore, the communication

model of GridRPC is based on the client-server model or star network topology.

This means that input/output objects can only traverse the client-server links even

though the server machines are connected directly by a network link. Figure 2.2

show the structure of the GridRPC communication model.

2.1.3 GridRPC API

The standard API includes a large number of methods, which can be utilised in

various ways, from initialising and finalising the middleware to error manage-

ment. However, the main methods used in an application’s algorithm are the re-

mote task call functions and the asynchronous tasks control functions.

The task call functions are divided into two types, blocking and non-blocking.

The method grpc call is used to execute a remote task synchronously, i.e. the

function call waits until the end of the remote task computation before returning

to the caller. While the method grpc call async executes the task asynchronously,

15

State of the Art

Figure 2.2: GridRPC communication model

i.e. the function call returns immediately without waiting for the end of the task

execution, thus permitting tasks parallelism.

Table 2.1 shows an example application of these functions. The first argument

of both methods is the function handle of the task executed. The second argument

of the non-blocking call is the session ID of the remote call. The following argu-

ments are the data objects used by the remote task. The session ID (SID) is used

by the method grpc wait to block the client computation until the remote task, that

generates the SID, is concluded. The function grpc wait all blocks the execution

until any previously issued asynchronous request has completed.

2.1.4 GridRPC Middlewares

A GridRPC middleware is responsible for:

• Giving a method to define the task’s information.

• Defining performance models of tasks and the network.

16

State of the Art

Table 2.1: Example of GridRPC methods

1 // Blocking call

2 grpc call(&handle,obj1,obj2,...);

3

4 // Non-blocking call

5 grpc call async(&handle,&sid,obj1,obj2,...);

6

7 // Asynchronous tasks control

8 grpc wait(sid)

9 grpc wait all();

• Managing the scheduling of tasks.

• Directing the movement of task data.

• Executing the task on the remote server.

In this section, the three major GridRPC middlewares are introduced.

2.1.4.1 GridSolve

The GridSolve middleware [84, 42] is the evolution of the NetSolve [25] system

that implements the GridRPC model. It enables users to solve complex scientific

tasks remotely on distributed resources. GridSolve emphasises ease-of-use for

the user and includes resource monitoring, mapping and service-level fault tol-

erance. In addition to providing Fortran and C clients, GridSolve enables SCEs

to be used as clients, so domain scientists can use Grid resources from within

their preferred environments. The GridSolve system consists of three entities:

the client that calls the remote task in its algorithm, the server that executes the

tasks requested by the client and the agent that acts as a registry and can perform

dynamic discovery. GridSolve, to generate the performance model, uses the LIN-

PACK benchmark and the ping pong benchmark for calculating respectively the

servers’ performances and client-to-server links speeds. A programmer, that in-

cludes tasks in a server, has to provide the description of the task by using the

17

State of the Art

GridSolve Interface Definition Language (gsIDL). This language allows an easy

implementation of existing functions as tasks in a GridSolve server [41].

2.1.4.2 Ninf-G

Ninf-G [79] is a redesign of the Ninf [68] system that fulfils the GridRPC API

and programming model. The focal point in the Ninf-G development is simplic-

ity. Thus, Ninf-G does not implement its own protocols but it is designed to be

a small RPC layer on top of the Globus toolkit [46]. This permits a high level

of interoperability with other Globus-based Grid systems. The Globus toolkit

provides different components to Ninf-G, such as GRAM to invoke remote exe-

cutable and MDS (Monitoring and Discovery Service) for distributed resource dis-

covery. However, Ninf-G does not directly provide fault recovery, load-balancing

or scheduling. Client programs that interface with Ninf-G can be written in C,

C++, Fortran and Java; while server tasks can be written in C, C++ and Fortran.

Furthermore, Ninf-G can execute remote tasks that use MPI. To include functions

from existing libraries in a server, a programmer can utilise Ninf-IDL (Interface

Description Language). This language, that is similar to the GridSolve one but

with a different semantic, is used to describe the interface of a task.

2.1.4.3 DIET

DIET (Distributed Interactive Engineering Toolbox) [23] is a set of tools designed

to build and manage a scalable Grid middleware with a highly hierarchical struc-

ture that is accessible through native and GridRPC API. The resource discovery

and scheduler in DIET are scattered across a hierarchy of Local Agents and Master

Agents. The motivation for this architecture is that it is more scalable and solves

the problem of bottlenecks in a centralised agent/scheduler when many clients

try to access several servers. DIET uses Corba as a communication layer. The

user can use different types of client interfaces to access DIET middleware: web

portals, SCEs and C or C++ applications. DIET is a GridRPC system that can per-

form dynamic mapping of tasks, i.e. delay the selection of the server during the

remote task call. Furthermore, DIET dynamic mapping also involves discovery

of performance models, which are used by the mapping heuristics. The perfor-

18

State of the Art

mance models for DIET are the FAST prediction tool, Network Weather Service

(NWS) [23] and CoRi [7]. In DIET, the information needed by a task to be exe-

cuted in a server is not added by the programmer with a specific language as for

GridSolve and Ninf-G. Instead, the task information is retrieved directly from the

task code thanks to specific methods included in it. This approach has the disad-

vantage that the task code has to be heavily modified by the programmer [38].

2.1.5 Alternative RPC model for Grid: OmniRPC

As previously mentioned, GridRPC is not the only programming model devel-

oped to implement the remote procedure call paradigm for Grid computing. An

important alternative model is the OmniRPC [72] programming model. OmniRPC

is designed to allow easy development and implementation of parallel scientific

applications for distributed and Grid environments.

OmniRPC is an evolution of Ninf, since it inherits the API and basic struc-

ture from it, and thus the OmniRPC programming model is very similar to the

GridRPC one. The central difference is that OmniRPC is mainly designed for

multi-threaded clients that have a master-worker structure. This design is achieved

by implementing a remote procedure call system that is thread-safe.

The architecture of OmniRPC is similar to the one of GridRPC. It is composed

of a client application and various remote computational hosts, which execute the

remote procedures. Remote locations can be connected via a local area network

or over a wide-area network. The client application can be written in various

different languages, such as FORTRAN, C and C++, and the parallel execution

in the client can be obtained by using direct thread libraries, such as the POSIX

thread, or the OpenMP API. The interface to a remote function is described by the

Ninf IDL. In OmniRPC, the remote executions are managed by the use of remote

shell (rsh) for local distributed environments and by the use of Globus and ssh for

Grid environments. This techinique fulfills another objective of OmniRPC; that is

the possibility to seamless switch from a distributed environment to a Grid one.

19

State of the Art

2.2 GridRPC Performance Analysis: Related Work

The GridRPC model is designed to permit a typical scientific application to gain

many non-performance related benefits, such as ease of development and con-

trol of the application. However, an important goal of the GridRPC model is to

achieve high performance in execution of various types of scientific applications.

Thus, an investigation into the performance of the execution model of GridRPC

is necessary to fulfil its design. Furthermore, as indicated in section 2.1.4, the

various GridRPC middlewares have different structures and implementations de-

spite having a standard model in common. Therefore, it is difficult to understand

which GridRPC middleware has better performance for a wide range of applica-

tions or which particular implementation component is a performance bottleneck

for a specific type of applications.

A popular approach is to utilise a singular or a set of different programs to

experimentally analyse the performance of a system. This allows the comparison

of different designs and implementations of a particular execution model. As it

has developed in the High Performance Computing (HPC) field, the existing tools

for performance analysis in Grid computing appear to be in two categories:

1. Low level probes, which are used to measure the performance of single

component of a system. For example, the one proposed by Chun et al. [29].

2. Benchmark applications, which are used to evaluate the overall performance

of a tested system and its execution model such as the GridNPB (NAS Grid

Benchmarks) [50] suite.

Since benchmark applications permit to expose the eventual limits and bene-

fits of Grid middlewares, they are often used to show the performance of new Grid

implementations. This is the case for GridRPC systems as well. Unfortunately,

applications of class I and II, which are best suited to run on a Grid environment,

are typically chosen to analyse and present the performance of a GridRPC mid-

dleware system. This induces the situation where it is difficult to differentiate the

performance of the various GridRPC implementations or to expose problems in

the execution model. Therefore, this nullifies the benefits that the experimental

investigation of the performance brings.

20

State of the Art

Another different approach in selecting a good application for analysing the

performance of a Grid system is the possibility to choose an artificially created

application or a real-life one. The former is designed from the ground up to iden-

tify the bottleneck of a system and to anticipate the requirements of the applica-

tions that will run on the system. These modelled applications have the advantage

that they are easy to manage, such as choosing the quantity of data computed or

the numbers of tasks executed. However, there is always the risk, with artificial

applications, that the internal structure, tasks, and algorithm chosen are not rep-

resentative of the future real-life applications executed on the tested system. It is

challenging for the tester to predict all the characteristics of an application and

their impact on performance. There is always the chance of a misunderstanding

that may compromise the results obtained. The second possibility is to utilise a

real-life application as a performance analysis tool with the same characteristics

of the future applications to be executed in the system. This has the advantage that

the application represents exactly the kind of problem that the system tested has to

face at production time. However, real-life applications have some disadvantages

as well. They may not be flexible enough, perhaps only allowing particular input

data sizes or having a limited number of parallel tasks available. Furthermore, im-

plementing a real-life application with a particular set of API can be challenging.

An additional distinction to make when choosing an application for perfor-

mance analysis is about task parallelism and data parallelism executions. As pre-

viously mentioned, a task parallel application divides the computation between

different tasks. Each task executes the same computation or different computa-

tions on the same or different data. A data parallel application divides the data be-

tween different processes that execute the same computation. The dissimilarities

between the two modes are subtle. However the main difference is that task par-

allelism is usually coarse-grained while data parallelism is usually fine-grained.

Therefore, tightly synchronised data parallel applications have a high amount of

data communication for each computation block and they are typically executed

on a system with very fast network links, such as massive parallel systems. Thus,

they are developed using message passing or shared memory paradigms, such as

MPI or OpenMP, and not using remote procedure call methods. Consequently,

data parallel applications are not representative of the types of applications devel-

21

State of the Art

oped for RPC.

In the following sections we examine the various applications, frameworks

and algorithms used to evaluate the performance of a generic Grid system and of

different GridRPC middlewares.

2.2.1 NAS Grid Benchmarks

GridNPB suite is a pencil-and-paper specification, i.e. it provides only reference

code not real implementation, which aims to give to the developers and users a

uniform tool to analyse the performance of a Grid systems [50]. It is based on

the NAS Parallel Benchmarks (NPB) suite [13] that is largely used to analyse the

performance of HPC systems. GridNPB defines four families of problems that

represent workloads of Grid applications. Each problem is defined by a work-

flow graph and each node in the graph is an instance of an NPB code. The four

GridNPB problems are: Embarrassingly Distributed (ED), Helical Chain (HC),

Visualisation Pipeline (VP), and Mixed Bag (MB). The ED problem is related to

class I of Grid applications, while HC and VP are related to class II. The MB

problem can be affiliated to class III applications. At the moment of writing, a

GridRPC version of NAS Grid Benchmarks has not yet been implemented.

The Mixed Bag problem is the more interesting since it represents a model of a

tightly synchronised application. Figure 2.3 shows the workflow graph of the MB

problem, where boxes represent the tasks executed and arrows the data commu-

nications between tasks. The Mixed Bag tasks perform operations that symbolise

typical scientific computations, such as Fourier transform (FT), Multigrid (MG)

and LU solver. The computational granularity of a task can be controlled by vary-

ing the number of iterations using the task’s parameters.

NAS Grid Benchmarks, and specifically Mixed Bag, can be a good tool for

performance analysis since it aims to provide a standard set of tasks and problems

that can be used as a meaningful comparison. However, the issue of GridNPB

is that the four problems are artificial. For example, the Mixed Bag problem is

designed from the ground up to represent a highly synchronised application with

asymmetrical data communication. Therefore, despite the use of tasks that are

realistic, the workflow itself is only a representation of what might be a real-life

22

State of the Art

Figure 2.3: Workflow graph of the NAS Grid Benchmarks Mixed Bag problem.

application. Consequently, using this benchmark on a Grid system may not high-

light performance problems that could arise from production time applications.

Furthermore, the possibility to change the computation granularity of the tasks

could result in the tester involuntarily setting a favourable amount of workload

and consequently invalidating the results.

2.2.2 Evaluation Applications used in GridSolve

As previously mentioned (section 2.1.4.1), GridSolve is an evolution of NetSolve,

which started in 1996. Therefore, during its evolution many new components or

models were developed to improve its performance (see section 5.6). Naturally,

different applications were used to analyse the performance of the various imple-

mentations of the components and GridSolve itself.

MCell is a real-life application used in the neuro-science field. It uses a Monte

Carlo method as the main algorithm. Casanova et al. [26] utilise this application

to analyse the performance of a scheduling algorithm and the task farming compo-

23

State of the Art

nent in NetSolve. A Monte Carlo method consists of many identical, independent

computations of different values generated randomly. Thus, MCell is composed

of large numbers of parallel tasks and can be considered a class I application.

Arnold et al. [11] utilise two sensing/image processing domain applications to

benchmark the request sequencing component in NetSolve. The first application

performs the Principle Component Analysis (PCA) transformation to an image.

This application is composed of data intensive sequential tasks and can be cate-

gorised as a class II. The second application performs several classification steps

to an image and the results of these steps are combined by a fusion module. This

application is of class II as well because is composed of two data intensive parallel

tasks with minimal synchronisations.

Desprez and Jeannot [39] analyse the performance of their implementation of

a data persistence component in NetSolve by using two applications. The first

one consists of three matrix multiplication tasks where the first two tasks are ex-

ecuted in parallel. This application can be classified as a class II. The second

application performs a singular matrix multiplication using a parallel block algo-

rithm. Thus, this application is composed of fine-grained parallel tasks with a

high level of data synchronisation and can be considered class III. Parallel block

matrix multiplication applications can be treated as typical examples of data par-

allel applications. This type of fine-grained data parallelism application is rarely

computed on a Grid environment instead of a parallel supercomputer due to the

high amount of data communication in relation to the computation. Furthermore,

how this application’s data is usually divided to be computed in parallel and the

relative data communication are specifically well-suited to being developed with

a message passing paradigm rather than a remote procedure call programming

model.

To illustrate the use of Internet Backplane Protocol (IPB) in NetSolve, Beck et

al. [14] implement an application that performs two sequential tasks. The first one

executes a matrix multiplication, the second task reuse the output of the first task

to solve a complex system of equations. This can be categorised as an artificial

application of class II.

YarKhan et al. [84] create two artificial applications to benchmark the load

balancing and the request sequencing components of a newly implemented Grid-

24

State of the Art

Solve. The first one is composed of 16 parallel isolated tasks of matrix multiplica-

tion while the second application uses three matrix multiplication sequential tasks.

These two applications can be roughly classified as class I and II respectively.

To test the integration between GridSolve and gLite [1], Hardt et al. [56] use

an artificial application composed of many parallel tasks, each one made of a

CPU intensive loop. These tasks do not communicate between them, thus this

benchmark application can be considered class I.

Yinan et al. [65] analyse the performance of the GridSolve request sequencing

component with two applications. The first application calculates a matrix multi-

plication using the Strassen’s Algorithm. This application is composed of differ-

ent layers of fine-grained parallel tasks with a high level of data synchronisation

between tasks of different layers. Therefore, this benchmark can be classified as

a data parallel class III application since is similar to the parallel block matrix

multiplication previously discussed.

The second application is taken from an image processing toolkit. The work-

flow of the original real-life application consists of a series of data intensive se-

quential tasks. This workflow was modified to have a variable number of inde-

pendent parallel tasks before the sequential tasks. Therefore, this application can

be considered class I in the modified part and class II in the rest of the workflow.

It is important to notice that Yinan et al. [65] using the data parallel class III

application, the Strassen’s Algorithm, detect that the performances obtained in

the experiments using more than one computer are not satisfactory in comparison

to the executions with a single computer. They emphasise that the improvement

generated by the parallel execution and the new request sequencing component

is offset by the overhead of the data communication caused by the fine-grained

highly synchronous parallel tasks. While this conclusion is highlighted as well by

the experiment results of this thesis (see section 4), we consider that the use of a

tightly synchronised data parallel application as a tool to analyse the performance

of GridRPC is out of scope since this type of application is mainly developed

using the message passing programming paradigm on massive parallel systems.

Therefore, an analysis of the performance potential and limits of GridSolve with

task parallel tightly synchronised scientific applications is missing.

25

State of the Art

2.2.3 Evaluation Applications used in Ninf-G

Ninf-G is an evolution of the Ninf middleware that started around the same time

as the NetSolve project. In the initial articles produced to present Ninf, three ap-

plications were used to analyse the performance of the various components of the

new middleware, such as overhead of remote executions, overhead of multiple

simultaneous client executions and load balancing techniques. The three appli-

cations are: an artificial application composed of two sequential remote calls of

Linpack benchmark [73], the embarrassingly parallel problem of NAS Parallel

Benchmark [77] and the density of states calculation of a large molecule [69] that

can be divided in many parallel individual computations. The first application can

be roughly considered as a class II application, while the other two applications

belong to the class I group.

Tanaka et al. [79] present the newly implemented Ninf-G middleware and its

performance by using an embarrassingly parallel class I Monte Carlo application.

Furthermore, a weather forecasting application is used as well to analyse the per-

formance of Ninf-G. While the internal details of this application are not given,

the authors indicate that the client executes altogether many simulations on vari-

ous servers. Therefore, it can be considered as a class I application.

A phylogenetic tree contains the information of evolutionary relationships be-

tween various biological species. It is used to determine how different species

have evolved and are related to each other. Yamamoto et al. [83] introduce an ap-

plication that parallelises the searches on a phylogenetic tree by splitting the main

tree into sub-trees. A part of the various subtree computations is parallelised using

Ninf. These computations are independent of each other, therefore the application

can be considered as a class I.

A second version of Ninf-G is presented by Tanaka et al. [80] and to evalu-

ate the performance of this new version of the middleware a weather forecasting

application is used. This application is designed to predict short to middle term

global weather changes and the main simulation routine is implemented as a re-

mote task. The client code performs many parallel independent remote simula-

tions, therefore this application is embarrassingly parallel and of class I.

Osawa et al. [71] present a technique to speed-up the finding of an optimal

26

State of the Art

batting order in a baseball team through the use of a Markov chain method im-

plemented in Ninf-G. This is a class I application, since the calculation for each

batting order is independent.

Takemiya et al. [78] research the possibility to execute a multi-scale simula-

tion of a semiconductor processing using a Grid environment composed of sys-

tems scattered across the pacific. Furthermore, the authors test the feasibility and

performance of using a hybrid GridRPC/MPI application with Ninf-G in such

an unstable Grid system. The application is composed of a molecular dynamic

(MD) simulation that performs many quantum mechanical (QD) simulations that

are computational intensive . The MD simulation is implemented in MPI code

and it acts as a GridRPC client where the various QD simulations are executed

remotely in different cluster systems using the Ninf-G middleware. The QD task

is implemented in MPI as well and the various QD simulations are independent

each other. The authors take advantage of the natural embarrassingly task paral-

lelism of the application to analyse the performance of various components of the

project. Therefore, this application belongs to the class I group.

One interesting application that is used to analyse the performance of Ninf

and Ninf-G is an application that implements a parallel branch and bound algo-

rithm to solve the BMI eigenvalue problem. This application appears in various

works with slightly different internal structure and implementation. However,

the method to “gridify” the algorithm is the same in all the various guises [4].

The branch and bound algorithm repeats the following procedures until the gap

between the lower and upper bounds of the solution space is less than a thresh-

old; decomposing a master problem into two sub-problems (branching operation),

computing the lower and upper bounds, and the solution for each sub-problem.

The sub-problem is then pruned if its lower bound is greater than the tempo-

rary upper bound (bounding operation), and a sub-problem with the lowest lower

bound is selected as the next master problem to restart the cycle. This applica-

tion uses a Master-Worker paradigm, where a master (GridRPC client) dispatches

sub-problems to multiple workers (GridRPC servers), and the worker performs

computations on the sub-problem (GridRPC tasks). The computation granularity

of a task can be changed by part of the branching being performed in the task

itself instead of the client. However, the task has a really fine granularity, in fact

27

State of the Art

the computation can take less than a second on modern hardware.

The algorithm generates a search tree where the root is the initial problem and

the nodes represent sub-problems. The amount of data communicated between

tasks in comparison to the computation is minimal, but there is a good level of

synchronisation between tasks of different levels in the search tree. However, the

computations of tasks in the same level are independent of each other and after a

few iterations there are thousands of parallel tasks computed simultaneously in a

level of the search tree. Therefore, this application is embarrassingly parallel and

of class I. The characteristic of this algorithm, which generates thousands of in-

dependent parallel and really fine-grained tasks, lets Aida and Osumi [5] consider

this application as a good performance evaluation tool for Ninf/Ninf-G middle-

wares. In this work, the authors realise that the computation of the various tasks

is too fine for the middleware overhead. Therefore, they implement a hierarchy

structure in the application to be able to enlarge sufficiently the task granularity.

Despite this application being of class I, it is a good tool to evaluate the per-

formance of a Grid system since it shows the limits of the middleware. In this

particular case, it is the fine granularity of the tasks. However, also in the case

of Ninf-G, a performance evaluation of the middleware and the GridRPC model

limits and benefits of class III applications has not been done.

2.2.4 Evaluation Applications used in DIET

As previously mentioned in section 2.1.4.3, one important characteristic of DIET

is its hierarchical structure of agents, where they can be local or master agents

that perform the resource discovery and scheduler functionalities. Therefore, the

existing literature of the DIET project is notably focused on analysing and testing

various algorithms for this hierarchical structure and thus different applications

were used as performance evaluation tools to analyse these algorithms. Further-

more, as it was in the case of GridSolve, during the existence of DIET various

functionalities were included to improve the performance of the middleware (see

section 5.6), and therefore different applications were used to evaluate the perfor-

mance of these new functionalities.

Dail and Desprez [32] introduce an extension of the DIET scheduler that in-

28

State of the Art

creases its ability to support a high flow of requests through various levels of the

agents hierarchical structure. Two usage scenarios are presented to test this sched-

uler extension, a sequential user model and a batch user model. The application

used in these two scenarios is composed of a single task or ten sequential tasks

of a matrix-matrix operation. While the application itself is class II, it is exe-

cuted multiple times in parallel for the batch user scenario. Therefore, it can be

considered as an embarrassingly parallel experiment.

The problem of optimally deploying a scheduler for hierarchically organised

systems is analysed by Chouhan et al. [27] using DIET as a testbed. The appli-

cation used to evaluate the deployment model analysed is composed of a single

matrix multiplication task call and therefore is class II.

Jannot and Monard [60] utilise DIET to execute an application that calcu-

lates the potential energy of a chemical system (a molecule or a set of interacting

molecules). Since this potential energy is calculated for each atoms’ conformation

in the system and this calculation is independent between different conformations,

this computation is highly parallel and thus the application is class I.

In order to minimise the amount of data communicated during a remote task

execution, DIET introduces a new functionality, DTM (Data Tree Manager), that

permits the application programmer to directly specify data persistence between

tasks and between different executions of an application. This new functional-

ity is tested with various different applications during its development. At first,

Caron et al. [22] uses an application composed of three sequential matrix-matrix

operations to analyse the performance of DTM. Therefore, this application is class

II. Then, a more detailed analysis of different DTM attributes is made by Del

Fabbro et al. [34] using various applications: (1) an application composed of 10

synchronously remote tasks, which is executed simultaneously many times to test

the overhead and scalability of DTM; (2) a linear algebra application composed of

a single remote task, where the computation time is independent of the data size,

to evaluate the benefits of data persistence between various executions; (3) an ap-

plication with various synchronous calls of a task, which computes the number

of occurrences of a letter in a file, to analyse the advantage of data replication;

and finally (4) to test DTM under realistic conditions, an application that extracts

and displays an isosurface from a 3D medical image, which is composed of three

29

State of the Art

sequential remote tasks. All these applications are class II.

Ramses is an astrophysical application that simulates the evolution of the dark

matter in the universe using an N-Body algorithm. Caniou et al. [20] present a

Grid version of Ramses that uses DIET. This application executes a “zoom simu-

lations” technique that is composed of two steps: a fast simulation of the universe

with low accuracy to identify dark-matter halo regions and re-simulations of these

regions using a high amount of particles for more accuracy. Therefore, the flow

of tasks execution is made of a singular remote task, which executes the initial

low resolution simulation, followed by many parallel tasks that compute the re-

simulations. Since these parallel tasks are independent each other, Ramses is a

class I application.

JUXMEM is a software platform that permits a Grid application to share data

between different servers in a Grid environment. These servers can be divided in

various communication groups that are part of a hierarchy. Antoniu et al. [9] in-

troduce a performance analysis of the JUXMEM integration in the DIET middle-

ware. This analysis is done by using MUMPS, a sparse parallel solver, as a remote

task and by using an application that is composed of 32 sequential GridRPC calls

to this task. Therefore, this application is class II.

This analysis shows that in the case of DIET, all the applications used to eval-

uate the middleware performance are either class I or II.

2.3 Summary

In this chapter, we have presented the GridRPC programming model, its commu-

nication model and its API. Furthermore, we have introduced the various middle-

wares that implement the GridRPC model. We have also analysed all the appli-

cations used to evaluate the performance of GridRPC middlewares. This analy-

sis shows that typically the applications used belong mainly in the class I or II

groups. These types of applications are extremely suitable for execution in a Grid

environment, therefore they do not emphasise the eventual performance problems

or advantages of a Grid system. We believe that to justify the use of GridRPC for

a wide range of applications, we should not use an extremely suitable application

to demonstrate the performance potential of GridRPC systems but a real life ap-

30

State of the Art

plication of class III that shows the eventual limits and benefits of the GridRPC

middlewares tested.

The idea of using tightly synchronised Grid applications to research the perfor-

mance of a GridRPC programming system is a valid one since this approach can

be seen also in NAS Grid Benchmarks. This suite uses four different types of prob-

lems as performance analysis tools; these problems are not only representative of

class I and II applications but also of class III, as in the case of Mixed Bag work-

flow. In fact, when a class III application is used as a benchmark for GridRPC sys-

tem, like Yinan et al. [65] with the Strassen’s Algorithm, the eventual limits of the

studied component are recognised. Therefore, it is possible to understand which

component of a middleware or part of an execution model represents the bottle-

neck in term of performance. Unfortunately, the few class III applications used

as performance analysis tools in GridRPC belong to the data parallelism field, i.e.

applications of which the fine-grained highly synchronised parallel computation

is more suitable to be handled using message passing paradigms like MPI. Since

the RPC programming model, and thus GridRPC, is mainly used for task paral-

lel applications, the use of data parallel applications for performance analysis of

GridRPC is not representative.

Another problem of the existing applications used to analyse the performance

of GridRPC systems is that they are created artificially for this purpose. The use

of artificially designed applications is good to stress test one or many components

of a GridRPC system. However, they are not good to research the overall perfor-

mance since there is the chance that the engineered algorithm, task computations

and data communications are not representative of the future real applications

executed on a system. Therefore, real life scientific applications used as perfor-

mance analysis tools allow a scientific user to research, not only the performance

of particular components, but also the limits and benefits that a particular class of

application will get when executed using the specifically programming model and

middleware tested.

31

Chapter 3

A Scientific Application as a Tool for

Analysing the Performance of

GridRPC Systems

As it was shown in section 2.2, the overwhelming majority of applications used

to demonstrate the performance potential of GridRPC middlewares are either em-

barrassing parallel (class I) or pipelined (class II). Furthermore, these applications

are usually artificially created. Therefore, a performance analysis of GridRPC

programming systems with real life tightly synchronised (class III) applications is

missing.

In this work, we designed and implemented Grid-enabled Hydropad [55], a

real-life task parallel tightly synchronised application, which we propose to use as

a method to evaluate the performance of GridRPC systems. Hydropad as a bench-

mark application shows the eventual limits and benefits of the GridRPC middle-

ware systems tested and it justifies the use of a GridRPC system for a wide range

of applications. Grid-enabled Hydropad can be used as a stand alone performance

analysis tool or can be used in association with other different applications in a

benchmark framework. Hydropad is an astrophysical application that simulates

the evolution of clusters of galaxies in the universe. This application is composed

of a natural task parallelism and its tasks have a balanced ratio between computa-

tion and communication and a high level of data synchronisation between them.

32

Performance Analysis Application for GridRPC Systems

Hydropad requires high processing resources because it has to simulate an area

comparable to the dimension of the universe and simultaneously try to achieve a

high enough resolution to show how the stars developed.

In the first section of this chapter, we present in more detail the classification of

Grid applications introduced by Snavely et al. [76]. In the following sections, we

introduce Hydropad, its internal structure and the type of computations of its task.

Then, we show how Grid-enabled Hydropad was implemented using GridRPC. In

the last section of the chapter, we introduce the non-performance related benefits

of using GridRPC in Hydropad, which can then be applied to any other scientific

application.

3.1 Classification of Grid Applications

The four classes of scientific application that may benefit from grid Computing

identified by Snavely et al. are:

I Loosely Coupled. Applications that are embarrassingly parallel in nature, thus it

is very easy to separate the computation in parallel tasks. Each task is com-

posed of a computational intensive algorithm with low memory requirement

that does not need to exchange information with other tasks. Therefore,

there is not data dependencies between tasks. As previously mentioned,

this type of application are ideally suited to achieve high performance in

Grid computing. Some examples can be found in the image processing,

bioinformatics, molecular biology and cryptography fields.

II Pipelined. Applications that have to compute a continuous stream of data,

which can be generated in real-time by data acquisition devices. The tasks

that composed this class of application are often very memory and data in-

tensive and there is a highly level of parallelism between them. However,

in comparison to class I applications, data communication exists between

tasks. This type of application highly benefits from Grid computing as well

because the data steams processed may be generated in different places ge-

ographically separated. Example applications can be real-time signal pro-

cessing, remote sensors such as satellite, microscope etc. Another important

33

Performance Analysis Application for GridRPC Systems

examples of this class are the particles physics Grid applications that com-

pute the stream of data generated by the particle generators in CERN.

III Tightly Synchronised. Applications in this class have tasks with a high level of

data synchronisation between them. Thus, data dependencies and inter-task

communication have an important impact on the performance and possi-

ble task parallelism of the application. The ratio between task computa-

tion and data communication depends on the application. Therefore, the

communication infrastructure and its model can be the performance bottle-

neck of these applications. Typically, these types of applications are exe-

cute in HPC systems and they exploit data parallelism. The possibility to

use these applications in a Grid environment depends on their computation-

communication ratio. Hoverer, the opportunity to exploit natural task par-

allelism, other than data parallelism, can increase an application’s chance

to have good performance in a Grid environment. Applications that adopt

iterative method as main algorithm are examples of this class of applica-

tions. They are used in climate, astrophysics, aerodynamic and molecular

simulations.

IV Widely Distributed. Applications that perform data related workloads, such

as search or distributed database applications. The tasks employed by these

applications are usually not computational and memory intensive. However,

they work on large data-set (databases, files, etc.) that can be everywhere

on the Grid. These types of applications are especially used in commercial

environments and they can be considered as part of cloud computing and

“software as service” applications.

3.2 Hydropad: a Simulator of Galaxies’ Evolution

Hydropad is a cosmological application, originally written by Claudio Gheller,

which simulates the evolution of clusters of galaxies in the universe [51]. The

cosmological model that this application is based on has the assumption that the

universe is composed of two different kinds of matter. The first is baryonic matter,

which is directly observed and forms all bright objects. The second is dark matter,

34

Performance Analysis Application for GridRPC Systems

which is theorised to account for most of the gravitational mass in the Universe.

The evolution of this system can only be described by treating both components

at the same time, looking at all of their internal processes, while their mutual in-

teraction is regulated by a gravitational component. Figure 3.1 shows an example

of a typical output generated by Hydropad.

Figure 3.1: Example of Hydropad Output

The dark matter computation can be simulated using N-Body methods [59].

These methods utilise the interactions between a large number, Np, of collision-

less particles. These particles, subjected to gravitational forces, can simulate the

process of the formation of galaxies. The accuracy of this simulation depends on

the quantity of particles used. Hydropad utilises a Particle-Mesh (PM) N-Body

algorithm, which has a linear computational cost and depends on the number of

particles O(Np). In the first part this method transforms the particles, through an

interpolation, into a grid of density values. Afterwards the gravitational poten-

tial is calculated from this density grid. In the last part the particles are moved

35

Performance Analysis Application for GridRPC Systems

depending on the gravitational forces of the cell where they were located.

The baryonic matter computation uses a Piecewise-Parabolic-Method (PPM)

hydrodynamic algorithm [31]. This is a higher order method for solving partial

differential equations. PPM reproduces the formation of pressure forces and the

heating and cooling processes generated by the baryonic component during the

formation of galaxies. For each time step of the evolution, the fluid quantities of

the baryonic matter are estimated over the cells of the grid by using the gravita-

tional potential. The density of this matter is then retrieved and used to calculate

the gravitational forces for the next time step. The accuracy of this method de-

pends on the number of cells of the grid used, Ng, and its computational cost is

linear O(Ng). The application computes the gravitational forces, needed in the two

previous algorithms, by using the Fast-Fourier-Transform (FFT) method to solve

the Poisson equation. This method has a computational cost of O(Ng logNg). All

the data, used by the different components in Hydropad, are stored and manipu-

lated in three-dimensional grid-like structures. In the application, the uniformity

of these base structures permits easy interaction between the different methods.

Figure 3.2 shows the work-flow of the Hydropad application. It is composed

of two parts: the initialisation of the data and the main computation. The main

computation of the application consists of a number of iterations that simulate the

discrete time steps used to represent the evolution of the universe from the Big

Bang to present time. This part consists of three tasks: the gravitational task (FFT

method), the dark matter task (PM method) and the baryonic matter task (PPM

method). For every time step in the evolution of the universe, the gravitational task

generates the gravitational field using the density of the two matters calculated in

the previous time step. Hence the dark and baryonic tasks use the newly produced

gravitational forces to calculate the movement of the matter that happens during

this time step. Then the new density is generated and the lapse of time in the next

time step is calculated from it. It is possible to see in figure 3.2 that the dark matter

task and baryonic matter task are independent of each other.

The initialisation part is also divided into two independent tasks. The main

characteristic of dark matter initialisation is that the output data is generated by

the external application grafic, a module of the package COSMICS [15]. Grafic,

given the initial parameters as an input, generates the position and velocity of the

36

Performance Analysis Application for GridRPC Systems

Figure 3.2: Internal structure of Hydropad

particles that will be used in the N-Body method. The output data is stored in

two files, the information within this has to be read by the application during the

initialisation part. Like the main application, grafic has a high memory footprint.

An important characteristic of Hydropad is the difference in computational

and memory load of its tasks. Despite both algorithms being linear, the compu-

tational load of the baryonic matter component is far greater than the dark matter

one, Cbm ≫ Cdm, when the number of particles is equal to the number of cells

in the grid, Np = Ng. Furthermore the quantity of data used by the dark matter

computation is greater than the baryonic matter one, Ddm≫ Dbm.

As previously indicated Hydropad utilises three dimensional grid structures

to represent the data. In the application code these grids are represented as vec-

tors. In the case of the dark matter component, the application stores the position

and velocity in three vectors for each particle, one for each dimension. The size

of these vectors depends on the number of particles, Np, chosen to run on the

simulation. For the gravitational and baryonic components the different physical

37

Performance Analysis Application for GridRPC Systems

variables, such as force or pressure, are stored in vectors, with the size depending

on the given number of grid cells Ng. In a typical simulation the number of par-

ticles is of the order of billions, while the number of cells in a grid can be over

1024 for each grid side. Given that for the values of Ng = 1283 and Np = 106 the

total amount of memory used in the application is roughly 500MB, the memory

demand to run a typical simulation is very high.

3.3 GridRPC Implementation of Hydropad

Hydropad was originally a sequential Fortran code, we upgraded this program to

take advantage of the GridRPC API and to work with the GridSolve middleware.

Table 3.1 shows the original Hydropad code of the main loop, written in the C

language. Three functions, grav, dark, and bary, are called in this loop to perform

the three main tasks of the application. In addition, at the first iteration of this

loop, a special task, initvel is called to initialise the velocities of the particles. The

dark and baryonic tasks compute the general velocities of the respective matter. At

each iteration, these velocities are used by a local function, timestep, to calculate

the next time step of the simulation. The simulation continues until this time

becomes equal to the present time of the universe, tsim = tuniv.

Table 3.1: Hydropad universe evolution loop

1 t sim=0;

2 while(t sim<t univ) {

3

4 grav(phi,phiold,rhoddm,rhobm,...);

5

6 if(t sim==0){ initvel(phi,...); }

7

8 dark(xdm,vdm,...,veldm);

9 bary(nes,phi,...,velbm);

10

11 timestep(veldm,velbm,...,t step);

12 t sim+=t step;

13 }

38

Performance Analysis Application for GridRPC Systems

The GridRPC implementation of Hydropad application utilises the functions

grpc call and grpc call async to execute respectively a blocking and an asyn-

chronous remote call of the Fortran routines. The first argument of both methods

is the function handle of the task executed (section 2.1.1), the second is the ses-

sion ID of the remote call while the following arguments are the parameters of the

task (section 2.1.3). Furthermore, the code uses the method grpc wait to block

the execution until the chosen, previously issued asynchronous request has com-

pleted. When the program runs, the underlying GridRPC middleware maps each

grpc call and grpc call async functions singularly to a remote server. Then, the

middleware communicates the data from the client computer to the chosen server

and then executes the task remotely. At the end of the task execution, the data is

communicated back to the client. In the blocking call method, the client cannot

continue the execution until the task is finished and all the outputs have been re-

turned. Instead, in the asynchronous method, the client does not wait for the task

to finish and proceeds immediately to execute the next code. The output of the

remote task is retrieved when the respective wait call function is executed.

Table 3.2: Hydropad implementation using GridRPC API

1 t sim=0;

2 while(t sim<t total) {

3

4 grpc call(grav hndl,phiold,...);

5

6 if(t sim==0){ grpc call(initvel hndl,phi,...); }

7

8 grpc call async(dark hndl,&sid dark,x1,...);

9 grpc call async(bary hndl,&sid bary,nes,...);

10

11 grpc wait(sid dark); /*wait for non blocking*/

12 grpc wait(sid bary); /*calls to finish*/

13

14 timestep(t step,...);

15 t sim+=t step;

16 }

39

Performance Analysis Application for GridRPC Systems

Table 3.2 outlines the GridRPC implementation of the main loop of Hydropad

that simulates the evolution of universe. At each iteration of the loop, the first

grpc call results in the gravitational task being mapped and then executed. When

this task is completed, the client proceeds to the next call, which is a non-blocking

call of the dark matter task. This call returns after the task is mapped and its

execution is initiated. Then, the baryonic matter call is executed in the same way.

Therefore, the baryonic and dark matter tasks are executed in parallel. After this,

the client waits for the outputs of both these parallel tasks using the grpc wait

calls.

3.4 Non Performance Related Benefits of GridRPC

The use of GridRPC for scientific applications does not only bring performance

related advantages. The main idea that led to the conception of GridRPC was the

need to have a programming model that simplifies the development of Grid appli-

cations, in order to obtain a widespread adoption of Grid computing. Therefore, in

this section we analyse the non-performance related benefits that we experienced

from using GridRPC in the Grid-enable Hydropad project which can be applied

to any other scientific applications.

An easy and powerful development paradigm As shown in table 3.1, the Hy-

dropad code was already logically divided into tasks by the original author. He

used different procedures for each component of the cosmological model since

each specific component solves a different mathematical model and thus algo-

rithm. To “gridify” this application, we had only to identify these logical divi-

sions and the relative code and then create for each procedure the gsIDL stub file;

thus enabling the remote execution of the tasks. Then, thanks to the simplicity

of the RPC programming model, we easily included the remote task execution in

the main loop of the application using the grpc call method in the place of the

original procedures.

The possibility to simply reuse code and algorithms One of the few prob-

lems that we came across during the development of GridRPC implementation of

40

Performance Analysis Application for GridRPC Systems

Hydropad was to identify all the global variables used in the various Hydropad

procedures. A numerical method, to be executed remotely, has to avoid internal

state changes, like a function with isolated computation and no global variable.

This method of development creates tasks that have a specific interface for in-

put/output values. Therefore, the GridRPC tasks and their respective algorithms

can be easily reused in other Grid applications because their execution with the

same input always produces the same output. This situation can reduce the pro-

grammer’s effort in developing a Grid application. For example, the programmer

can use already existing tasks that he/she would not have the time or skill to write.

Exploiting the natural task parallelism of scientific problems The idea of

solving a scientific problem using different complex mathematical components

and thus algorithms is a desired one. Unfortunately, multiple powerful systems

able to compute various computational intensive algorithm of desired size have

never been easy to find. Therefore, the opportunity created by Grid computing

to gather multiple powerful systems together in addition to the one created by

the ease of development and code reuse of GridRPC programming model is an

unique one. It permits a scientific user to solve easily and quickly a composed

and complex scientific problem by exploiting its possible task parallelism. For

example, in the GridRPC implementation of Hydropad, the baryonic matter task

with its PPM method can be computed remotely in a parallel cluster using the MPI

paradigm while simultaneously the dark matter task with its PM N-Body method

can be solved in a different cluster using the openMP paradigm.

Portability Since Grid-enabled Hydropad comprises of a client application and

server-side compiled executables, the client application can be easily ported, com-

piled and executed on a new machine. This does not require the recompilation of

server-side task executables, which could make up a large proportion of the appli-

cation.

More control over the application Hydropad potentially can be executed not

only in a Grid environment but also in a high performance computer (HPC) sys-

tem. Unfortunately, in a HPC system, where applications are executed in batch

41

Performance Analysis Application for GridRPC Systems

mode, the user will not have much control over the execution. Grid-enabled Hy-

dropad allows the user to have a high control over its execution because, although

the tasks are being computed in remote servers, the main component of the appli-

cation is running on the client machine. This can be important for many types of

applications, some examples are:

• Applications that need a direct interaction with the data produced. For ex-

ample, the user could visualise directly in the client machine the evolution

of the universe, while Hydropad is running on the Grid. Furthermore while

the user is checking the simulation evolution, he or she could decide on the

fly to change some parameters of the simulation or restart the application.

This is possible since in Grid-enabled Hydropad the main data and the main

execution are on the client machine.

• Applications that have a task that is inherently remote. For example in

the case of Hydropad, if grafic cannot be executed on the client machine

because it needs a specific hardware, the user has to generate the initial data

on the remote server and then manually retrieve it. The use of GridRPC

can simplify this situation by allowing a special task to interface with grafic

directly on the remote server. This task can communicate immediately the

initial data generated by grafic to the application.

3.5 Summary

In this chapter, we have introduced Hydropad, a real-life astrophysical applica-

tion, that we propose should be used as a tool for experimental performance eval-

uation of GridRPC systems. This application is composed of tasks that have a

balanced ratio between computation and communication with a high level of data

synchronisation between them. Therefore, this application can be classified as a

class III. Hydropad requires high processing resources because it has to simulate

an area comparable to the dimensions of the universe and simultaneously try to

achieve a high enough resolution to show how the stars developed. Despite the

fact that these types of tasks are not the most suitable to be executed on a Grid

because of the high magnitude of communication involved, we have shown that

42

Performance Analysis Application for GridRPC Systems

Hydropad obtains many benefits from being Grid-enabled. These benefits are re-

lated to performance gains and also the management and development aspects of

the application.

43

Chapter 4

Experimental Analysis of

Performance Potential and Limits of

GridRPC Model

In this chapter, we research and present the performance related benefits and the

eventual limits that the GridRPC model delivers to any scientific applications by

analysing the experimental results obtained using Grid-enabled Hydropad. The

chapter is divided into two sections where each section is composed of an intro-

duction to a possible GridRPC benefit and the experimental results to test it.

In these experiments, we compare the execution times and memory footprints

of the GridSolve implementation of Hydropad against its sequential execution on

the client machine. For each version, we present the average computation time of

one evolution step and the memory footprints of the application on the client ma-

chine. The average time is calculated from five separate executions, where each

execution is composed of ten evolution steps. The hardware configuration used

in the experiments consists of three machines: a client and two remote servers,

S1 and S2. The two servers are heterogeneous; however, they have similar per-

formance, respectively 498 and 531 MFlops, and they have an equal amount of

main memory, 1GB each. The bandwidth of the communication link between

the two servers is 1Gb/s. The client machine, C, is a computer with low hard-

ware specifications, 248MFlops of performance. The client to server connection

44

Experimental Analysis of Performance of GridRPC model

varies depending on the experimental setup. We use two setups, C1 with a 1Gb/s

connection and C100 with a 100Mb/s communication link. For each experiment

conducted, table 4.1 shows the initial problem parameters, the corresponding data

sizes and the total memory used during the execution of Hydropad on a single

machine. The quantity of memory available in the client machine varies as well

depending on the experimental setup. We use two configurations: C-1 with 1GB

of memory, which is large enough to avoid paging, and C-256 with 256MB of

memory, that undergoes paging for larger problems.

Table 4.1: Input values and problem sizes for the Hydropad experiments

Problem ID Np Ng Data Size

P1 1203 603 73MB

P2 1403 803 142MB

P3 1603 803 176MB

P4 1403 1003 242MB

P5 1603 1003 270MB

P6 1803 1003 313MB

P7 2003 1003 340MB

P8 2203 1203 552MB

P9 2403 1203 624MB

4.1 Faster Solution of a Given Problem.

Grid-enabled Hydropad has the potential to perform the simulations of the same

given size faster than the original Hydropad on the client machine. There are two

main reasons for this:

• The Hydropad application includes two independent tasks, the baryonic

matter task and the dark matter task, that can be executed in parallel. The

non-blocking GridRPC task call function allows the implementation of par-

allel execution on remote servers of the Grid environment. This parallelisa-

tion decreases the computation time of the application.

45

Experimental Analysis of Performance of GridRPC model

• If the Grid environment contains machines more powerful than the client

machine, then remote execution of the tasks of this application on these

more powerful machines will also decrease the computation time of the

application.

However, this decrease of the computation time does not come for free. The

application will pay the communication cost due to remote execution of the tasks.

If communication links connecting the client machine and the remote servers are

relatively slow, than the acceleration of computations will be compensated by the

communication cost resulting in a higher total execution time of the application

than in the case of its sequential execution on the client machine. On the other

hand, the experimental results in the next section show that the GridRPC version

of Hydropad can achieve faster execution times with larger problem sizes also

when there is a relatively slow link speed, thanks to reduced use of the client

machine memory of GridRPC remote computations.

Table 4.2: Experimental results with GridSolve using client C1-1 that has 1Gb/s

network link to the servers and 1GB of memory

Local GridSolve

P. ID Time Step Time Step Sp vs Local

P1 14.12s 9.40s 1.50

P2 29.90s 18.38s 1.63

P3 34.84s 20.82s 1.67

P4 52.04s 30.81s 1.69

P5 54.06s 32.00s 1.69

P6 58.56s 36.81s 1.59

P7 66.29s 37.22s 1.78

P8 102.03s 67.04s 1.52

P9 114.83s 112.05s 1.02

Table 4.2 shows the results obtained by local computations and by the Grid-

Solve version of Hydropad using C1-1 as the client machine which has a fast net-

work connection and large quantity of memory. In this table and in the following

ones, the symbol Sp stands for speed-up. It is possible to see that the GridSolve

version is faster than the local sequential computation. The speedup obtained is

46

Experimental Analysis of Performance of GridRPC model

constantly over 1.50. This is due to the parallel execution of the two tasks and the

use of servers with greater performance than the client machine. The fluctuation

in speedup obtained by GridSolve depends on the varying ratio of data size used

by the two parallel tasks for different problem size. Furthermore it should also be

noted, that the speedup achieved on P9 is significantly lower due to paging on the

server. This is caused by the fact that the GridRPC model occasionally maps both

tasks to the same server and therefore causing paging on it.

4.2 Reduced Client Memory Use and Paging

Grid-enabled Hydropad has the potential to perform larger simulations faster than

in the case of sequential execution, thus resulting in higher accuracy. Indeed, the

baryonic and dark matter tasks allocate temporary memory during their execution.

Remote execution of these tasks will decrease the amount of memory used on the

client machine as the temporary memory is now allocated on remote machines.

Therefore, within the same memory limitations on the client machine (such as the

amount of memory that can be used by the application without heavy paging),

Grid-enabled Hydropad will achieve high performance for larger simulations.

Table 4.3 shows the results obtained by the GridSolve version when the client

machine used, C100-256, has a slow client-to-servers connection of 100Mb/s and

the quantity of memory available is only 256MB. This hardware configuration

simulates a common situation that can happen in real life. A user has access only

to a slow client machine with low hardware specification, which is not suitable

for performing large simulations, and wants to use a powerful Grid environment

through a slow network link. Table 4.3 also presents the scale of paging that

occurs in the client machine during the executions. It is possible to see that for the

local computation the paging is taking place when the problem size is equal to or

greater than the machine memory of 256MB.

In these experiments light paging means that paging is occurring only in some

task calls and the amount of paging is approximately 10% of the main memory

(approx. 25MB). Normal paging means that paging is occurring on almost every

task call and the amount of paging is approximately 40% of the main memory

47

Experimental Analysis of Performance of GridRPC model

Table 4.3: Experimental results with GridSolve using client C100-256 that has

100Mb/s network link to the servers and 256MB of memory

Local GridSolve

P. ID Time Step Paging Time Step Paging Sp vs Local

P1 14.32s No 20.26s No 0.71

P2 30.05s No 38.75s No 0.78

P3 35.78s No 48.65s No 0.74

P4 55.57s Light 60.48s No 0.92

P5 62.13s Light 66.43s No 0.94

P6 84.33s Yes 76.76s Light 1.10

P7 128.22s Yes 93.74s Yes 1.37

P8 231.56s Heavy 150.03s Heavy 1.54

P9 279.52s Heavy 183.45s Heavy 1.52

(approx. 100MB). Heavy paging means that all task calls cause a memory page

and almost 100% of the main memory is paged (approx. 256MB).

The GridSolve version is slower than the local computation when the client

machine is not paging. This is happening because there is a large amount of data

communication between tasks. So for this configuration, the time spent commu-

nicating the data compensates for the time gained by computing tasks remotely.

However as the problem size gets larger and the client machine starts paging, the

GridSolve version becomes faster than the local computation, even in the case of

slow communication between the client and server machines. This trend is also in

figure 4.1 on page 49. In the GridSolve version the paging is occurring later than

the local version, when the problem size is around 310MB, as shown in table 4.3.

The GridRPC implementation can save memory due to the temporary data allo-

cated remotely in the tasks and consequently increase the problem size that will

not cause the paging. Furthermore in the sequential local execution the paging is

taking place during a task computation, while for the GridSolve version the pag-

ing occurs during a remote task data communication. Hence for the GridSolve

version of Hydropad the paging on the client machine does not negatively affect

the execution time of the experiments.

48

Experimental Analysis of Performance of GridRPC model

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

ev
o
lv

e
ti

m
e

st
ep

 (
s)

data size (MB)

Local-seq C100-256
GridSolve C100-256/S1/S2

Figure 4.1: Execution time of the evolution step, with varying problem sizes, for

the local and GridSolve versions of Hydropad using client C100-256

4.3 Summary

The use of Grid-enabled Hydropad as a performance analysis tool shows that

tightly synchronised applications can also achieve many benefits from the use of

a GridRPC system (as shown in section 3.4, not only performance related). Fur-

thermore, the experiments, performed using GridSolve, show that the GridRPC

version of Hydropad is faster than a local computation when there is a 1Gb/s

client-to-server link speed connection. This is due to the remote execution of

tasks on powerful servers and the parallel execution of the baryonic and dark

matter tasks. Thus Hydropad, despite being a class III application, can achieve

good performance with a GridRPC system. However, this performance improve-

ment depends on the client-to-server link speed and generally on the client side

hardware. Regardless of this limitation, the experimental results show that the

GridRPC programming model allows faster execution of large computations than

49

Experimental Analysis of Performance of GridRPC model

would be possible using only a local machine. The benefits of GridRPC permit a

programmer to have an alternative option when executing scientific applications.

The GridRPC implementation of Hydropad has some advantages over the se-

quential local computation. However, it is evident that the model of execution

utilised by GridRPC is not optimal. In a GridRPC system all tasks are mapped

individually. The mapper will always choose the fastest available server at the

instant that a task is called, regardless of the computational size of the task and re-

gardless of whether the task is to be executed sequentially or in parallel. A draw-

back of this behaviour is highlighted by Grid-enabled Hydropad. The parallel

tasks in Hydropad are not computationally balanced. The baryonic task is com-

putationally far larger than the dark matter one, Cbm ≫ Cdm. When a GridRPC

system goes to map these two tasks, it does so without the knowledge that they

are part of a group to be executed in parallel. Its only goal is to minimise the exe-

cution time of individual tasks as it is called by the application. If the smaller dark

matter task is called first it will be mapped to the fastest available server. With the

fastest server occupied, the larger baryonic task will then be mapped to a slower

server and the overall execution time of the group of tasks will be sub-optimal.

Another constraint of the GridRPC model, which influences the performance

of Hydropad as with any other application, is that all the data objects have to pass

through the client machine and thus the client hardware acts as a performance

bottleneck. Various servers computing tasks with data dependencies on each other

cannot communicate with each other directly. It is possible for the application

programmer to avoid this issue by implementing data caching in remote tasks.

However it requires the programmer to make heavy modification to the tasks and

this is a clear drawback. It also means that remote tasks passing data to each other

must all run on the same server, where the data they need is cached. Another

possibility for the application programmer is to store the main data in different

files and then use the file name as task arguments instead of data objects. However,

for this method to work it needs a global file system that is deployed through the

various servers and heavy modification to the tasks and client codes as well.

50

Chapter 5

SmartGridRPC: Overcoming the

Limitations of GridRPC

SmartGridRPC [17] is an extension of GridRPC that has been designed to bypass

the limitations of the GridRPC model of execution. It expands the individual task

map and client-server communication model of GridRPC by implementing:

• The mapping of groups of tasks.

• The server to server communication.

• The broadcast communication.

• The automatic data caching on servers.

Collective mapping of groups of tasks, using a fully connected network, allows

a SmartGridRPC middleware to find an optimal mapping solution for an applica-

tion that fully exploits a Grid environment. Furthermore, the direct server to server

communication, broadcast communication and automatic data caching minimise

the amount of memory used on the client and the volume of communication nec-

essary between client and server. The data objects can reside only on the servers

where they are needed and they can be moved directly between servers without

having to pass through the client.

The main goal of the SmartGridRPC model is to provide these functionalities

to the user in a practical and simple way. To achieve this, it provides only mi-

nor changes and an addition to the API of GridRPC. The SmartGridRPC model

51

SmartGridRPC: Overcoming the Limitations of GridRPC

is designed so that when it is implemented it is interoperable with the existing

GridRPC implementation. An application programmer can take advantage from

the improved performance of using SmartGridRPC by making only minor modi-

fications to any application that is already GridRPC enabled.

In this chapter, we introduce the SmartGridRPC programming model and its

differences to the GridRPC one. Then, we show how SmartGridRPC allows the

mapping of a group of tasks and the server-to-server communication while adding

only two new methods in the GridRPC API. We also introduce the internal struc-

ture of the SmartGridSolve middleware, which implements the SmartGridRPC

model, and we present the structure of the task graph used by this middleware.

Furthermore in this chapter, we show how the SmartGridRPC model can be eas-

ily implemented in Hydropad. Finally, we examine the various components and

functionalities implemented into GridRPC systems that are related to new features

of the SmartGridRPC project.

5.1 SmartGridRPC Model

The SmartGridRPC model is similar to the GridRPC one (see section 2.1.1), with

the same structure, client-server architecture and functionalities. The main differ-

ence is that the SmartGridRPC model defines:

1. New API to specify a block of code, in which a group of GridRPC task calls

should be mapped collectively.

2. A specific performance model, which permits the estimation of the execu-

tion time of a group of tasks on a fully connected network instead of a single

task on a star network.

3. A modification to the client application run-time, which adds the generation

of part of the performance model and the processing of the group of tasks.

Performance model The SmartGridRPC model does not specify the structure,

internal data and implementation of the performance model since there are many

numerous methods for estimating the execution time of the group of tasks on

52

SmartGridRPC: Overcoming the Limitations of GridRPC

a fully connected network. Furthermore, it does not indicate where the perfor-

mance model is generated and stored. However, SmartGridRPC defines that the

performance model has to contain the necessary information to estimate:

• The execution time of a task on a server.

• The execution time of multiple tasks on a server and the effect that the

execution of each task has on the other (perturbation).

• The communication time of sending inputs and outputs between client and

server.

• The communication time of sending inputs and outputs between different

servers.

Additionally, the SmartGridRPC model defines the logical structure of the per-

formance model. The approach chosen in SmartGridRPC is similar to the one

implemented in mpC [61] and HeteroMPI [62] that use the performance model

of the application and the performance model of the heterogeneous network to

optimally map the application on the underlying network. Thus, the performance

model in SmartGridRPC is logically divided in two sub parts:

1. Task Graph: This part is application specific, such as the list of tasks in the

group, their order, the dependencies between tasks and the values and sizes

of the arguments in the calling sequences. These arguments can be used to

calculate the size of the data objects and thus the computational weight of

the remote tasks.

2. Network Performance Model: This part is server and network specific, such

as the dynamic performance of the various servers on the Grid and the com-

munication links between them and the client. Furthermore, it contains the

performance model of each task available on a Server.

Client application run-time The client application provides the data needed to

generate the task graph part of the performance model. This information is gen-

erated automatically at run-time by using the SmartGridRPC method grpc map.

53

SmartGridRPC: Overcoming the Limitations of GridRPC

Furthermore, this method allows the application programmer to specify the group

of GridRPC calls to be mapped collectively, see example of table 5.1. This is done

Table 5.1: Example of a group of task calls specification in SmartGridRPC

1 grpc map(...) {

2 ...

3 //group of GridRPC calls to map collectively

4 ...

5 }

by using a set of parenthesis, which follows the map function, to specify a block of

code. This code contains the group of GridRPC task calls that should be mapped

collectively. When this function is executed at run-time, the code and GridRPC

task calls within the parenthesis of the function are iterated through twice and

three phases are performed:

◦ Discovery phase: On the first iteration through the group of tasks, each

GridRPC task call within the parenthesis is discovered but not executed,

thus all tasks in the group can be discovered collectively. This is different

to the GridRPC model, which only allows a single task to be discovered at

a time. Then, the client can look up and retrieve handles for all tasks in the

group at the same time.

◦ Mapping phase: After the discovery phase, the task graph can be generated,

on the client or on a different entity, using the information contained in the

handle and the other data retrieved during the discovery, such as the order

of tasks in the group, their dependencies and the values of each argument

in a task calling sequence. Then the task graph, in conjunction with the

network performance model, is used in the mapping phase to generate a

mapping solution. An application programmer can specify the mapping

heuristic using the SmartGridRPC map function. The SmartGridRPC model

does not define any specific mapping heuristic implementations but it allows

different ones to be added. Therefore, SmartGridRPC provides an ideal

framework for testing and evaluating different mapping algorithms.

54

SmartGridRPC: Overcoming the Limitations of GridRPC

◦ Execution phase: The execution phase occurs during the second iteration

through the group of tasks. In this phase, each GridRPC call is executed

according to the mapping solution generated by the mapping heuristic on

the previous iteration. The mapping solution not only outlines the task-to-

server mapping but also the remote communication operations between the

tasks in the group.

5.2 SmartGridRPC Communication Model

The SmartGridRPC communication model differs from the GridRPC one because

it is based on a fully connected network topology (figure 5.1), instead of a star net-

work topology (figure 2.2). Since tasks are mapped collectively in SmartGridRPC,

dependencies between tasks are known during the mapping phase. This knowl-

edge permits an underlying SmartGridRPC middleware to identify which are the

source tasks and the destination tasks of each data object. Thus, an object can be

send directly from the server of the source task to the server of the destination task

without passing through the client. Furthermore, if the source task and destina-

tion task are both executing on the same server then this output could be cached

on the local file system or on memory. Finally, if an object has more than one

destination, this object can be broadcast to multiple servers.

5.3 SmartGridRPC API

SmartGridRPC introduces two new methods in addition to the one of GridRPC,

the grpc map and grpc local functions. The SmartGridRPC map method is used

to specify the block of code that contains the group of GridRPC tasks calls to

be mapped collectively. This function is also used to automatically retrieve the

information needed to build the task graph. The method grpc local is used by

the application programmer to indicate a block of code that contains local com-

putation. Table 5.2 shows an example containing the two new methods. The first

argument of the map function is a string that specifies the mapping heuristic used

during the mapping phase. There is also a fault tolerant version of this function,

55

SmartGridRPC: Overcoming the Limitations of GridRPC

Figure 5.1: SmartGridRPC communication model

grpc map ft, where the mapping solution generated does not implement server-

to-server communication.

When the grpc map function is called, the code within its parenthesis will

be iterated through twice as previously described in section 5.1. The first iteration

does not execute the remote task calls; however the non GridRPC code is executed

normally. Therefore, the method grpc local is used to indicate the part of the code

that cannot be executed twice, like a function executed locally that computes some

variables. Thus, the code inside the block is executed only during the second

iteration. The arguments passed to the grpc local method are the data objects,

used or generated by remote tasks, that are required locally. This information is

used to determine when data objects will be sent back to client and it is essential

to generate the task graph.

The procedure of iterating the code twice, performed by the grpc map and

grpc local methods, is called automatic task graph generation. This technique

permits an application programmer to easily add the mapping of a group of tasks

in a pre-existing GridRPC code without the need to add extra information of the

underlying algorithm.

56

SmartGridRPC: Overcoming the Limitations of GridRPC

Table 5.2: Example of SmartGridRPC methods

1 grpc map("map heuristic") {

2 // Code iterated twice

3

4 grpc call(&handle,obj1,obj2,...); // Blocking

5

6 grpc call async(&handle,&sid,obj3,obj4,...); // Non-blocking

7

8 grpc local(obj1,obj2,...)

9 {

10 // Code ignored during the first iteration

11 }

12

13 // Asynchronous tasks control

14 grpc wait(sid)

15 grpc wait all();

16 }

5.4 SmartGridRPC Middleware

SmartGridSolve [18] is an extension of the GridSolve middleware that imple-

ments the SmartGridRPC model. The first version of SmartGridSolve was called

SmartNetSolve [19] and it was based on NetSolve. The SmartGridSolve exten-

sion is interoperable with GridSolve. Therefore, if GridSolve is installed with the

SmartGridSolve extension, the user can choose whether to implement an appli-

cation using the standard GridRPC model or the extended SmartGridRPC model.

In addition, SmartGridSolve is incremental to the GridSolve system. Therefore,

if the SmartGridSolve extension is installed only on the client side, the system

will be extended to allow for collective mapping. If SmartGridSolve is installed

on the client side and on only some of the servers in the network, the system will

be extended to allow for collective mapping on a partially connected network. If

it is installed on all servers, the system will be extended to allow for collective

mapping on the fully connected network. In this work, the GridSolve middle-

ware with the SmartGridSolve extension activated will be referred to as simply

SmartGridSolve.

57

SmartGridRPC: Overcoming the Limitations of GridRPC

5.4.1 SmartGridSolve Internals

The GridSolve performance model includes functions for calculating the compu-

tation load and communication load of the called task. Furthermore, it contains

methods for calculating the dynamic performance of the servers and client-server

links. The SmartGridSolve network performance model extends this GridSolve

performance model by including the dynamic performance of each server-to-

server link. These performances are taken periodically utilising the same tech-

niques used by GridSolve. In the future, SmartGridSolve will implement perfor-

mance models such as the Functional Performance Model, which is described in

[63, 58]. Other future possible implementations could include the performance

models used in DIET and Ninf-G, such as NWS and MDS. The SmartGridSolve

task graph implementation is detailed in section 5.4.2.

In GridSolve, the agent entity works as the GridRPC resource discovery func-

tionality. Thus, the agent maintains a list of all available servers and their reg-

istered tasks. After being registered, a server sends to the agent the information

about its computational performance and the speed of client-to-server link. This

information is update dynamically because of the continuously changing status

of the server and network link. When a task is added to the agent, the server

sends also the task description retrieved from the respective gsIDL provided. This

information contains the computational complexity of the task in the form of a

mathematical formula that uses the sizes of data-objects. The agent uses all these

data to generate the performance model.

The SmartGridSolve agent performs the same work of the GridSolve one. In

addition, it receives from the servers the dynamic performance of each connection

link between them. Another job of the SmartGridSolve agent is to generate at

run-time the task graph and the network performance model. At the end of the

discovery phase, the client sends the information retrieved about the group of

tasks to the agent. This information plus the computational complexity of each

task, already present on the agent, are used to generate the task graph. After the

performance model is built on the agent from the two parts, it is sent to the client

where it is used to perform the collective mapping of the group of tasks.

58

SmartGridRPC: Overcoming the Limitations of GridRPC

5.4.2 Task Graph

The task graph in SmartGridSolve is implemented as a direct acyclic graph (DAG)

structure. It is used to fully represent the group of tasks, and thus the underlying

algorithm, defined by the grpc map method. The task graph specifies the order of

tasks execution and their synchronisation (whether they are executed in sequence

or in parallel), the data dependencies between tasks, the load of data communica-

tion and the task’s computational volume. This information is essential to choose

the best server to execute a task and to minimise the amount of data movement in

the Grid network.

Figure 5.2 on page 60 shows an example of a task graph. The example con-

tains five remote tasks, with two parallel executions composed of two tasks, and

a local computation. The rectangles in the graph represent remote tasks, the dia-

monds represent the client computation and the circles represent the data objects.

The incoming arrows of these circles indicate their source, whether it is the client

or another remote task and the outgoing arrows indicate their destination. If multi-

ple tasks require the same input object then more than one link will emanate from

this object. This indicates data broadcast. The dotted arrows highlight the order of

task calls and if the tasks are executed in sequence or parallel. The values inside

the circles and rectangles are respectively the size of a data object and the compu-

tational complexity of a task. These are correlated to the values of the respective

task arguments. In a task graph all the input data objects that are not generated

by a remote task are retrieved from the client. All the output objects that are not

used by a task call are sent back to the client. In the current implementation, only

non-scalar arguments (matrix, vector etc.) are represented.

The dependencies between tasks are determined by examining the pointers

of non-scalar arguments of the calling sequence of each task. Furthermore, the

gsIDL description is used to determine whether the objects are inputs or outputs.

The functions for calculating the computation load of each task in the group are

generated using the mathematical formulas specified by the programmer in the

gsIDL description. The information retrieved from the gsIDL is also used to gen-

erate the functions for calculating the communication load of each non-scalar data

objects in the group.

59

SmartGridRPC: Overcoming the Limitations of GridRPC

start_node_0

client_1

VA[0]

size=8MB

VA[1]

size=8MB

VB[0]

size=8MB

VB[1]

size=8MB

T1_2

flop=36.56MF

T1_3

flop=36.56MF

VC[0]

size=8MB

T2_4

flop=105.60MF

T3_6

flop=23.33MF

VC[1]

size=8MB

T3_7

flop=23.330MF

VC[0]

size=8MB

client_8

VC[1]

size=8MB

VD

size=8MB

client_5

ep_0

ep_1

end_node_9

Figure 5.2: Example of SmartGridSolve task graph

60

SmartGridRPC: Overcoming the Limitations of GridRPC

5.5 SmartGridRPC Implementation of Hydropad

In this section, we introduce how the SmartGridRPC API can be used in Hy-

dropad. The code in table 5.3 shows the changes required to use the Smart-

GridRPC model in Hydropad, in contrast to those shown in table 3.2 where we

illustrate the changes required for GridRPC. The only differences between the two

examples are the minor additions of the grpc map and grpc local methods. This

simple implementation permits Hydropad to work with SmartGridSolve and thus

to be able to map one or many evolution cycles collectively in a fully connected

network.

Table 5.3: Hydropad implementation using SmartGridRPC API

1 t sim=0;

2 while(t sim<t univ) {

3 grpc map("ex map") {

4

5 grpc call(grav hndl,phiold,...);

6

7 if(t sim==0){ grpc call(initvel hndl,phi,...);}

8

9 grpc call async(dark hndl,&sid dark,x1,...);

10 grpc call async(bary hndl,&sid bary,nes,...);

11

12 grpc wait(sid dark); /*wait for non blocking*/

13 grpc wait(sid bary); /*calls to finish*/

14

15 grpc local() {

16 timestep(t step,...);

17 t sim+=t step;

18 }

19 }

20 }

The code enclosed in the grpc map block will be iterated through twice. On

the first iteration, each grpc call and grpc call async is discovered but not ex-

ecuted. At the beginning of the second iteration, when all the tasks within the

scope of the block have been discovered, the respective task graph is generated.

61

SmartGridRPC: Overcoming the Limitations of GridRPC

Then, the second iteration is performed and the tasks are executed remotely using

the task graph to aid their mapping. The grpc local function is used by the appli-

cation programmer to indicate when a local computation is executed. At run time

on the first discovery iteration, the code within the parenthesis after this method

is not executed. This is to avoid computing local executions when generating the

task graph for the group of remote tasks.

The mapping in the code of table 5.3 is performed at every iteration of the

main loop. This can generate a good mapping solution if the Grid environment

is not a stable one. For example, where there are other applications’ tasks run-

ning on the Grid servers. If the Grid environment is dedicated, where only one

application executes at a time, a better mapping solution may be generated if the

area to map contains more tasks, i.e. two or more loop cycles. A simple solution

could be including an inner loop within the grpc map code block. The application

programmer could increase the number of tasks mapped together by changing the

number of iterations of the inner loop.

Table 5.4: Dynamic selection of the number of evolution cycles included in the

group of tasks to map collectively

1 t sim=0;

2 while(t sim<t univ) {

3 grpc map("ex map") {

4 nsteps = number of steps to map (...);

5 for(i=0;i<nsteps;i++)

6 grpc call(grav hndl,phiold,...);

7 ...

8 grpc local() {

9 timestep(t step,...);

10 t sim+=t step;

11 }

12 }

13 }

14 }

This type of coarse mapping would be more favourable on a Grid environment

that is highly stable. For example, a Grid that consists of dedicated servers or

62

SmartGridRPC: Overcoming the Limitations of GridRPC

CLIENT

X3DM_0 V3DM_0 P_0

RHOBM_0RHODM_0GSHAPE GRAVold_0

V3BM_0

PHIold_0

GRAV_0

PHI_1PHIold_1GRAV_1 GRAVold_1

BARY_0

V3BM_1 P_1

RHOBM_1VELBM_0

DARK_0

X3DM_1

V3DM_1

RHODM_1VELDM_0

CLIENT GRAV_1

PHI_2PHIold_2GRAV_2 GRAVold_2

BARY_1

V3BM_2 P_2RHOBM_2 VELBM_1

DARK_1

X3DM_2 V3DM_2RHODM_2 VELDM_1

CLIENT

Figure 5.3: Task graph for two evolution cycles

servers that are idle. However, if in a Grid the computation and communication

loads are highly changeable then it might be more advantageous to adjust the

frequency of mappings depending on these loads. The code of table 5.4 shows

an example where the number of evolution cycles to map, nsteps, is dynamically

chosen thanks to a special function. This method may change its return value

by evaluating the performances of previous executions of collective mappings.

Figure 5.3 shows an example of a task graph generated from the SmartGridRPC

implementation of Hydropad when two cycles of the evolution step are grouped

together (nstep = 2).

63

SmartGridRPC: Overcoming the Limitations of GridRPC

5.6 Related Work

In this section, we examine various components and functionalities implemented

into GridRPC systems that are related to new features of SmartGridRPC project.

Therefore, we focus on papers that introduce in GridSolve, Ninf-G and DIET the

features: direct server-to-server communication, data persistence and collective

mapping of a group of tasks. These works are presented in chronological order.

In 1999, task farming [26] functionality was implemented into NetSolve and it

was designed for embarrassingly parallel applications. It allows a certain class of

tasks, called farming jobs, to be processed collectively by using specific methods.

However, these tasks are not mapped collectively but individually and the com-

putation loads of subsequent tasks are dynamically adjusted at run-time based on

previous task response times. Therefore the mapping cannot take advantage of

characteristics of the group, such as data dependencies. Furthermore, the group

of tasks is called with one atomic call and therefore intermediate results cannot

be viewed or analysed. Another limitation of this approach is that conditional

statements and client computations cannot exist in the scope of the group of tasks.

2000, task sequencing [12] was added to the NetSolve middleware. Using the

task sequencing method a group of tasks is processed collectively and thus data

dependencies can be analysed. This group of tasks is subsequently mapped onto

a single server and if any data dependencies exist, the data is stored locally and

not sent back to the client. The limitations of task sequencing are that the group

of tasks can only be mapped to a single server and that conditional statements and

client computations cannot exist in the scope of the group of tasks.

In 2001, data persistence between servers was implemented into NetSolve [39]

and it was later implemented in the GridSolve system [40]. This is achieved by

adding a new method that allows the user to explicitly outline in the client code

data dependencies between tasks. The limitations of this approach are that the user

has to explicitly specify data dependencies and that tasks are mapped individually.

In 2002, Distributed Storage Interface (DSI) [10] was added to NetSolve. DSI

is another feature that attempts to minimise data movements in the Grid net-

work. With DSI, data can be stored in storage depots closer to servers where the

data is required. The depots are implemented using Internet Backplane Protocol

64

SmartGridRPC: Overcoming the Limitations of GridRPC

(IPB) [14]. This save multiple transmissions of the same data, since DSI permits

the data to be communicated once from the client to the storage depot. A data

handle is then used by the server to retrieve the stored data when executing a task.

This reduced communication times, however there is not direct server-to-server

communication and the user has to explicitly specify data dependencies.

In 2005, DTM (Data Tree Manager) [22] was implemented into DIET. DTM

allows data to be left on a server after a task and then retrieved by another server

during a different task computation. Furthermore, the data can be part of different

application’s executions. In DTM, data persistency is identified using data handle

with specific new methods, therefore the user has to explicitly specify these data

in the client code. Around the same time, also JUXMEM [23] was introduced. It

permits data to be shared between DIET servers using a peer-to-peer method and

a hiearchy of communication groups. In JUXMEM data sharing has to be directly

specified by the programmer in the client code and also in task code.

In 2006, SmartNetSolve, the predecessor of SmartGridSolve, was introduced.

SmartNetSolve was already implementing the direct server-to-server communica-

tion, data caching and collective mapping of a group tasks features. However, in

SmartNetSolve, the automatic generation of task graph was not yet implemented,

therefore the task graph was explicity specified by the user using a XML file, see

subsection 8.4.2 for more details.

In 2006, the NetSolve task sequencing was expanded to be distributed and to

be used with the GridRPC model [81]. This new functionality allows direct data

transfer between servers when executing a task sequencing. Therefore, multiple

servers can be used for a sequence of tasks instead of a single server as it is in the

case of the original NetSolve task sequencing. However, all the other limitations

of the original version persist also with this extended version.

In 2006, the special agent called MADAG was implemented in DIET which

handled workflow submissions, where a workflow is similar to a task graph. This

workflow is directly specified by the user using a XML file and it is executed

with one atomic call. The limitations of this approach are that intermediate results

cannot be viewed or analysed and conditional statements and client computations

cannot exist in the scope of the group of tasks. A more detail analysis is presented

in subsection 8.4.2.

65

SmartGridRPC: Overcoming the Limitations of GridRPC

5.7 Summary

In this chapter, we have presented the SmartGridRPC model, which is an ex-

tension to the GridRPC model that aims to achieve higher performance. Smart-

GridRPC expands GridRPC, which maps tasks individually on to a star network,

by providing the collective mapping of a group of tasks on a fully connected net-

work. These functionalities are achieved by adding only two new simple methods

into the GridRPC API and we have shown how easy it is to use these two methods

for implementing the SmartGridRPC model into the Hydropad application. The

impact in performance that the SmartGridRPC extension can have to Hydropad,

as well as to any other distributed scientific application, can be great and they are

evaluated in the next chapter.

66

Chapter 6

Experimental Analysis of

Performance Potential and Limits of

SmartGridRPC Model

In this chapter, we analyse the performance related benefits and the eventual limits

that the new SmartGridRPC model delivers in comparison to the GridRPC model.

We compare the experimental results obtained by the SmartGridRPC implementa-

tion of Hydropad using the SmartGridSolve middleware to those obtained by the

GridRPC implementation using GridSolve and the sequential execution of Hy-

dropad. The problem sizes utilised in the experiments (table 4.1 on page 45)

and the hardware configurations are the same as in previous experiments shown

in chapter 4. In these experiments, we present the average computation time of

one evolution step and the memory footprints of the application on the client ma-

chine. The average time is calculated from five separate executions, where in the

SmartGridSolve version the grpc map block contains ten evolution cycles (ex.

nstep = 10 in code of table 5.4).

In the first experiment, we use the same hardware configuration of table 4.3.

The client machine used, C100-256, has a slow client-to-servers connection of

100Mb/s and only 256MB of memory available. As previously mentioned, this

configuration simulates the situation where a user has only access to a slow client

machine with low hardware specification, which is not suitable to perform large

67

Experimental Analysis of Performance of SmartGridRPC model

Table 6.1: Experimental results with SmartGridSolve, GridSolve and local exe-

cution using client C100-256, which has 100Mb/s network link to the servers and

256MB of memory

Local GridSolve

P. ID Time Step Paging Time Step Paging Sp vs Local

P1 14.32s No 20.26s No 0.71

P2 30.05s No 38.75s No 0.78

P3 35.78s No 48.65s No 0.74

P4 55.57s Light 60.48s No 0.92

P5 62.13s Light 66.43s No 0.94

P6 84.33s Yes 76.76s Light 1.10

P7 128.22s Yes 93.74s Yes 1.37

P8 231.56s Heavy 150.03s Heavy 1.54

P9 279.52s Heavy 183.45s Heavy 1.52

SmartGridSolve

P. ID Time Step Paging Sp vs Local Sp vs GS

P1 7.31s No 1.96 2.77

P2 15.06s No 2.00 2.57

P3 16.36s No 2.19 2.97

P4 28.06s No 1.98 2.16

P5 27.54s No 2.26 2.41

P6 27.78s No 3.04 2.76

P7 30.81s Light 4.16 3.04

P8 48.04s Light 4.82 3.12

P9 60.74s Light 4.06 3.02

68

Experimental Analysis of Performance of SmartGridRPC model

simulations, and wants to use a powerful Grid environment through a slow net-

work link. Table 6.1 shows the results obtained by the SmartGridSolve version

for this configuration. In this table and in the following one, the symbol Sp stands

for speed-up, while GS is the abbreviation for GridSolve. This table shows that

the SmartGridSolve version is much faster than the GridSolve and the sequential

versions. The speed is around three times that of GridSolve (see figure 6.1 for the

trend) and the speedup versus the local sequential version is over 4 in the case of

larger problems.

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

ev
o
lv

e
ti

m
e

st
ep

 (
s)

data size (MB)

GridSolve C100-256/S1/S2
SmartGridSolve C100-256/S1/S2

Figure 6.1: Execution time of the evolution step, with varying problem sizes, for

the GridSolve and SmartGridSolve versions of Hydropad using client C100-256

These performance improvements are due to the new features of the Smart-

GridRPC model; the mapping of groups of tasks and the fully connected network

topology. These features involve performance related benefits to Grid-enabled

Hydropad, as well as other class III applications, such as improved mapping, im-

proved data movement and further reduced memory usage. In the following sec-

tions, we study these new benefits by using specific hardware configurations and

setup for the experiments

69

Experimental Analysis of Performance of SmartGridRPC model

6.1 Improved Computation Load

One important feature of SmartGridRPC is the possibility to have full knowl-

edge of the underlying algorithm and its remote task executions during the map-

ping phase. This permit a SmartGridRPC middleware to easily implement supe-

rior mapping heuristics in comparison to a standard GridRPC middleware. Thus,

the SmartGridRPC implementation of Hydropad has the potential to have an im-

proved computational load of tasks compared to the GridRPC version. For exam-

ple, a GridRPC middleware does not have the knowledge that the baryonic and

dark matter tasks are executed in parallel. Therefore its mapper could map the

smaller task to the fastest server if it is executed first. Occasionally, a GridRPC

middleware could map both tasks to the same server because its mapping heuris-

tic or its performance model fail to consider the possible perturbation between

the two tasks. Instead, a SmartGridRPC middleware knows about the parallel

execution of the dark matter and baryonic matter tasks and their respective com-

putational weight. Thus, its mapper can produce a better result and consequently

an improved load balancing.

In the computational load experiments, we compare the average computation

time of one evolution step achieved by the GridSolve version versus the Smart-

GridSolve version of Hydropad where SmartGridSolve is setup to utilise the same

network topology of GridSolve (star-network); i.e. without direct server-to-server

communication, server-caching and broadcast communication. Consequently, the

performance gains obtained by the SmartGridSolve version are due only to the

improved mapping method. In these experiments, we use C1-1 as the client ma-

chine. This machine has a high speed network connection of 1Gb/s to the servers

and 1GB of main memory. Table 6.2 shows that the SmartGridSolve version of

Hydropad is faster than the GridSolve version. The collective mapping of Smart-

GridRPC, despite Hydropad having only two parallel tasks, can produce a faster

execution time than the individual task mapping of GridRPC. As previously men-

tioned, the GridSolve middleware maps the smaller dark matter task to the fastest

server or occasionally both tasks to the same server. Instead, in SmartGridSolve

version of Hydropad the larger baryonic matter task is always mapped to the faster

server and the smaller dark matter task to the slower one.

70

Experimental Analysis of Performance of SmartGridRPC model

Table 6.2: Experimental results using only star-network topology (i.e. no direct

server-to-server communication) and client C1-1 that has 1Gb/s network link to

the servers and 1GB of memory

GridSolve SmartGridSolve

P. ID Time Step Time Step Sp vs GS

P1 9.40s 7.09s 1.33

P2 18.38s 15.27s 1.20

P3 20.82s 16.17s 1.29

P4 30.81s 29.02s 1.06

P5 32.00s 28.99s 1.10

P6 36.81s 29.88s 1.23

P7 37.22s 30.88s 1.21

P8 67.04s 50.05s 1.29

P9 112.05s 53.35s 2.10

6.2 Improved Communication Load

The SmartGridRPC implementation of Hydropad, due to its communication

model, minimises the amount of data that pass through the various client-to-sever

links. If all these network links are slow, then the SmartGridRPC version ob-

tains faster execution than the GridRPC one. Another common situation, where

the SmartGridRPC model has a performance advantage over GridRPC model, is

if the client-to-server links and the server-to-server links speeds vary widely. A

SmartGridRPC middleware knows the amount of data that each task need and the

speed of each network link, due to the task graph and network performance model.

Therefore, it can minimise the amount of data moved through the slowest links.

For example, considering the situation where the Grid environment is composed

of two very fast servers connected to the client machine with slow links and a

very slow server connected with a fast link. The SmartGridRPC implementation

of Hydropad knows that the dark matter task uses more data than the baryonic

matter task while being less computational intensive. Thus, the mapper could op-

timally decide if the amount of time wasted during the computation of the dark

matter task on the slow server is balanced by the time gained by the fast commu-

nication link. Furthermore, the mapper could optimally decide where to execute

71

Experimental Analysis of Performance of SmartGridRPC model

the gravitational task in order to minimise the data movement caused by the data

dependencies between the tasks.

In the next experiments, we set-up the client connection to the Grid environ-

ment to be slow since in this situation the improved communication load of Smart-

GridRPC model is most prominent. Table 6.3 shows the results obtained by the

SmartGridSolve version of Hydropad using C100-1 as the client machine which

has a slow network connection of 100Mb/s. One can see that the SmartGridSolve

version is much faster than the GridSolve versions. The increase of speed is over

twice that of GridSolve, which is primarily due to the improved communication

model of SmartGridSolve.

Table 6.3: Experimental results using client C100-1 that has 100Mb/s network

link to the servers and 1GB of memory

GridSolve SmartGridSolve

P. ID Time Step Time Step Sp vs GS

P1 19.97s 7.24s 2.76

P2 38.73s 15.17s 2.55

P3 48.20s 16.24s 2.97

P4 61.59s 29.42s 2.09

P5 66.26s 28.91s 2.29

P6 78.16s 29.73s 2.63

P7 93.20s 31.25s 2.99

P8 140.53s 50.20s 2.80

P9 174.14s 53.02s 3.28

Furthermore, one can see that the timing results obtained by SmartGridSolve

in table 6.2 are similar to those obtained in table 6.3. This shows that when the

client-server links are slow and there is direct communication (table 6.3), the re-

sults are similar to when the client links are fast and there is no direct commu-

nication. The SmartGridRPC model allows the mapping heuristic to generate

solutions, which effectively minimise the communication load on the networks

link.

72

Experimental Analysis of Performance of SmartGridRPC model

6.3 Further Reduced Client Memory Use and

Paging

In section 4.2, we discussed that the dark matter and baryonic matter tasks al-

locate temporary data during their execution. This permits the GridRPC imple-

mentation of Hydropad to cause less paging on the client machine for problems

with large computations during the remote execution of these tasks. The Smart-

GridRPC implementation of Hydropad, decreases further the amount of paging on

the client due to the direct server-to-server communication and the data caching

on the server. These two features allow a SmartGridRPC middleware to minimise

the amount of intermediate objects that cross the client machine. Therefore in the

SmartGridRPC implementation of Hydropad, the amount of active memory used

on the client machine is far less than the GridRPC one. Hence, the paging on

the client machine is minimal for computations of large problems. In figure 5.3

on page 63 (the task graph for two evolution cycles), it is possible to see that the

majority of the data objects are communicated to the client only at the beginning

and the end of the group of tasks execution.

In the memory usage experiments, we utilise as a client the machine C1-256,

which has a high speed network connection of 1Gb/s to the servers and has 256MB

of main memory. The client machine (with this quantity of main memory) experi-

ences paging during the execution of larger problems. Table 6.4 on page 74 shows

the average computation time of one evolution step achieved by the local compu-

tation, by the GridSolve version and by the SmartGridSolve version of Hydropad.

Table 6.4 also presents the scale of paging that occurs on the client machine during

the various executions.

One can see that for the SmartGridSolve experiments the paging on the client

machine is less penalising than in the GridSolve and local experiments since the

quantity of memory used on the client machine is lower than that of the GridSolve

version. Furthermore, in SmartGridSolve the memory paging is happening only

at the beginning and at the end of a group of tasks execution. This minimises

the impact of paging on the overall execution of the group of tasks. Therefore,

the SmartGridSolve version of Hydropad can execute larger problems without the

paging having a serious impact on the execution time. One can see that the com-

73

Experimental Analysis of Performance of SmartGridRPC model

Table 6.4: Experimental results using client C1-256 that has 1Gb/s network link

to the servers and 256MB of memory

Local GridSolve

P. ID Time Step Paging Time Step Paging Sp vs Local

P1 14.32s No 8.59s No 1.67

P2 30.05s No 18.41s No 1.63

P3 35.78s No 20.19s No 1.77

P4 55.57s Light 31.34s No 1.77

P5 62.13s Light 33.75s No 1.84

P6 84.33s Yes 42.32s Light 1.99

P7 128.22s Yes 63.12s Yes 2.03

P8 231.56s Heavy 109.33s Heavy 2.12

P9 279.52s Heavy 144.31s Heavy 1.94

SmartGridSolve

P. ID Time Step Paging Sp vs Local Sp vs GS

P1 7.08s No 2.02 1.21

P2 14.47s No 2.08 1.27

P3 15.84s No 2.26 1.27

P4 27.51s No 2.02 1.14

P5 28.17s No 2.21 1.20

P6 28.88s No 2.92 1.47

P7 30.02s Light 4.27 2.10

P8 46.65s Light 4.96 2.34

P9 55.13s Light 5.07 2.62

74

Experimental Analysis of Performance of SmartGridRPC model

putation time of the evolution steps for the SmartGridSolve version in table 6.4 is

similar to that of tables 6.3 and 6.2. The speedup of the SmartGridSolve version

over the GridSolve and local versions of Hydropad increases as the problem gets

larger due to paging on the client. This trend is also seen in figure 6.2.

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

ev
o
lv

e
ti

m
e

st
ep

 (
s)

data size (MB)

Local-seq C1-256
GridSolve C1-256/S1/S2
SmartGridSolve C1-256/S1/S2

Figure 6.2: Execution time of the evolution step, with varying problem sizes, for

the local, GridSolve and SmartGridSolve versions of Hydropad using client C1-

256

6.4 Minimal Performance Influence by the Client-

Side Hardware

The advantage discussed in this section is a combination of the previous two ben-

efits. The SmartGridRPC implementation of Hydropad achieves higher perfor-

mance than the GridRPC one due to the improved communication load and the

reduced client paging. These two benefits appear when the client machine has a

75

Experimental Analysis of Performance of SmartGridRPC model

low amount of memory and a slow client-to-server network link. Therefore, the

client-side hardware heavily influences the performance of the GridRPC imple-

mentation of Hydropad. Instead, the SmartGridRPC implementation performance

is influenced minimally by the client-side hardware. Hence, the SmartGridRPC

model permits a distributed scientific application to fully take advantage of the

Grid environment without being penalised by the client-side hardware. Figure 6.3

shows this trend. We compare the results obtained by the GridSolve and Smart-

GridSolve versions of Hydropad when the two configurations of the client used

are the optimal one, C1-1, and the worst case, C100-256. It is possible to see

that in the case of GridSolve the performance change depends dramatically on

the hardware used, and thus the client-side hardware is a performance bottleneck,

while for SmartGridSolve the performance is similar and therefore there is not a

large overhead from the client hardware.

6.5 Summary

The experiments performed in this chapter show that the SmartGridRPC model al-

lows Hydropad to obtain quite significant performance gains in comparison to the

GridRPC implementation and to the sequential one. These further performance

benefits of SmartGridRPC over GridRPC are identified as the improved computa-

tion load, improved communication load and further reduced client memory usage

and paging. Furthermore the experiment shows that these performance benefits

are not influenced negatively by the bottleneck of a potential slow client-servers

connection and low amount of memory in the client machine as much as with

the GridRPC model. Therefore, SmartGridRPC is more scalable and permits a

tightly synchronised Grid application, as well any other scientific distributed ap-

plications, to fully take advantage of the Grid environment; while keeping the

non-performance related benefits of the RPC programming model.

The gains obtained by the SmartGridRPC implementation are due to its two

new features; the collective mapping of a group of tasks and the use of a fully con-

nected network. As previously discussed, the direct server-to-server connections,

data broadcast and improve mapping items are the consequence of full knowledge

of the group of tasks algorithm. In SmartGridRPC this knowledge is represented

76

Experimental Analysis of Performance of SmartGridRPC model

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600

ev
o
lv

e
ti

m
e

st
ep

 (
s)

data size (MB)

GridSolve C100-256/S1/S2
GridSolve C1-1/S1/S2

SmartGridSolve C100-256/S1/S2
SmartGridSolve C1-1/S1/S2

Figure 6.3: Execution time of the evolution step, with varying problem sizes, for

the GridSolve and SmartGridSolve versions of Hydropad using clients C1-1 and

C100-256

by the use of a task graph as a performance model and without it the SmartGrid-

Solve middleware would not be able to achieve the discussed improved perfor-

mances. Therefore, a task graph that wholly represents the underlying algorithm

is of primary importance.

An important issue to consider when analysing the performance of Grid ap-

plications using the SmartGridRPC model is that a representative task graph may

not be always generated for every kind of algorithm by its automatic task graph

method. A typical example is when, in the code to be mapped, a conditional con-

struct exists that checks a value that cannot be known without executing a remote

task call. A detailed description of this problem, with various examples, and a

propose solution are discussed in the following chapters.

77

Chapter 7

The Automatic Task Graph

Generation Issue: Irregular

Algorithms

In order to optimally minimise the total execution time of an application, the

SmartGridRPC model uses the task graph of the group of tasks to be mapped

collectively as a part of the performance model. This task graph represents part

of the application’s algorithm and the full knowledge of all the tasks executed in

it. This information is essential to choose the best server to execute a task and to

minimise the amount of data movement in a Grid.

The task graph can be generated automatically from the application code by

using the SmartGridRPC API. This works by iterating twice through the code that

contains the task calls to be mapped collectively. On the first iteration through the

code, each task call is discovered but not executed. Then, when the last call in

the group of tasks is reached, the task graph is generated. On the second iteration,

after producing the mapping by using the new task graph, the code is normally ex-

ecuted and the task calls are performed according to the newly mapping solution.

The automatic construction of the task graph works flawlessly for many reg-

ular or static algorithms, i.e. algorithms where the execution is not influenced by

the inputs, because the flow of task calls is known at run-time before their execu-

tion. Thus, the task graph generated for such an algorithm accurately represents

78

The Automatic Task Graph Generation Issue: Irregular Algorithms

its run-time execution. This permits a SmartGridRPC middleware to obtain an

optimal mapping for this kind of algorithm and therefore to obtain better results

than a GridRPC one.

Unfortunately, the automatic approach has the restriction that a representative

task graph may not always be automatically generated for every kind of code.

The automatic construction of task graphs may not work for irregular or dynamic

algorithms, i.e. algorithms where the execution changes depending on the inputs.

A typical example is when, in the code, a conditional construct checks a value

that cannot be known without executing a remote task call. To apply collective

mapping in this case, the application programmer can choose to create task graphs

for smaller blocks of code. However, the resulting groups of tasks to be mapped

will generate a less optimal execution.

In this chapter, we present three example algorithms that model real-life irreg-

ular algorithms that are common in many scientific applications. These algorithms

are outlined using three trivial applications implemented in GridRPC and Smart-

GridRPC. Then, we show the restrictions of the automatic task graph generator

for these algorithms and we present some possible solutions.

7.1 Examples of Irregular Algorithms

Irregular algorithms, where the flow of task calls change dynamically, are im-

portant because they are common in many scientific simulations. In this section,

we introduce three trivial examples of irregular algorithms. These examples are

models of typical algorithms used to solve real-life problems.

Iterative Algorithm An iterative algorithm executes a sequence of computa-

tions to approximate a problem solution until the solution reaches a desired ac-

curacy. This algorithm is a general model of so called iterative methods. They

are used for solving linear and non-linear algebraic equations that are the base of

many numerical simulations. Algorithm 7.1 shows a pseudocode of the example

iterative algorithm. This type of algorithm is used in the main evolution loop of

the Hydropad application.

79

The Automatic Task Graph Generation Issue: Irregular Algorithms

Algorithm 7.1 Iterative

while Error ε is bigger than threshold tε do

Compute Solution

Compute Error ε

end while

Conditional Algorithm A common situation in a numerical computation arises

when the flow of execution in an algorithm depends on a conditional statement.

Algorithm 7.2 shows a pseudocode of the conditional algorithm. One can see that

the computation performed at the end of the algorithm depends on the previously

calculated error value. This situation can happen in many types of algorithms,

even in the iterative methods previously discussed.

Algorithm 7.2 Conditional

Compute Solution

Compute Error ε

if Error ε is bigger than threshold tε then

Correct Solution by ε

else

Correct Solution by tε
end if

Adaptive Algorithm Typically an algorithm executes its computation on a spe-

cific data structure. Some algorithms dynamically change their internal data struc-

ture, and consequently their behaviour, depending on the data processed. These

algorithms are called adaptive algorithms. The pseudocode of algorithm 7.3 shows

a trivial example. In the first step of this example, the solution of the total compu-

Algorithm 7.3 Adaptive

Compute Solution in Domain D

Compute Error ε

Find Sub-domains S of D where ε > tε
for all Si in S do

Compute Solution in Sub-domain Si

end for

80

The Automatic Task Graph Generation Issue: Irregular Algorithms

tational domain is calculated. Then, this domain is divided into many sub-domains

by finding the location where the solution error is greater than a threshold. In the

next step, the solution is refined by further computation in each new sub-domain.

This pseudocode represents a sketch of the AMR (Adaptive Mesh Refinement)

method, a real-life example of the adaptive algorithm.

7.2 GridRPC and SmartGridRPC implementations

of the irregular algorithms

In this section, we present for each irregular algorithm its GridRPC and Smart-

GridRPC implementations. The SmartGridRPC implementations are then used

to show the restrictions of the automatic task graph generation method for these

types of algorithms. We also present some programming techniques that help mit-

igate these restrictions. As previously mentioned, the main evolution loop of the

Hydropad application is an iterative algorithm. Thus, the GridRPC and Smart-

GridRPC implementations and the technique to use the automatic task graph gen-

eration for this type of algorithm are already discussed respectively in section 3.3

and section 5.5. This information is further analysed in this section with additional

examples.

The following GridRPC examples use grpc call and grpc call async methods

to execute blocking and asynchronous remote calls respectively. Furthermore, the

codes use the method grpc wait all to block the execution until any previously is-

sued asynchronous request has been completed. Additionally, the SmartGridRPC

examples use the grpc map method to define a specific area of code. All the task

calls contained in this area are mapped as a group of tasks in a fully connected

network. These examples utilise also the grpc local method to identify the area of

code that contains local computations. The following examples consist of many

tasks (T1, T2, . . .), where all the parameters are input objects except the last one

that is an output object. The same is applied to the functions (F1, F2, . . .), which

represent local computations. The objects (A, B, . . .) used in the examples are all

vectors of double precision numbers. All the examples have these characteristics

except when indicated differently.

81

The Automatic Task Graph Generation Issue: Irregular Algorithms

7.2.1 Iterative Algorithm

Table 7.1 shows the GridRPC implementation of a trivial application that uses

an iterative algorithm. At the beginning, two parallel remote T1 task calls are

executed. These tasks compute a new solution of the objects A0 and A1 from

inputs B0 and B1. Then, the output objects (A0 and A1) are used as inputs of the

remote task T2. The output D of the latter task is then used as an input to a local

function F1. The function returns a scalar value E that is compared to a threshold

value, tE. When the returned value is lower than the threshold, the algorithm stops.

Table 7.1: Example of a GridRPC implementation of an iterative algorithm

1 while(E>tE){

2 grpc call async(T1 hnd,&id1,A0,B0,A0);

3 grpc call async(T1 hnd,&id2,A1,B1,A1);

4 grpc wait all();

5 grpc call(T2 hnd,&id3,A0,A1,D);

6 F1(D,E);

7 }

When the application is executed, a GridRPC middleware maps each grpc call

and grpc call async functions individually to a server in the Grid environment.

Then, the data is communicated from the client computer to the chosen server

and the task is executed remotely. At the end of the task execution, the data is

communicated back to the client.

Table 7.2 shows how the SmartGridRPC API can be used in the previous ap-

plication to map a group of tasks. This example uses the automatic task graph

generator to build the task graph. At run-time, when the grpc map method is

executed, the code within its parenthesis will be iterated through twice. On the

first iteration, both grpc call and grpc call async calls are discovered but not ex-

ecuted. At the beginning of the second iteration, the task graph and the mapping

solution are generated using the task information from the previous discovery. On

the second iteration, the task calls are executed through the SmartGridRPC mid-

dleware on the respective servers specified by the mapping solution. The block of

code defined by grpc local is not executed during the discovery phase, which is

82

The Automatic Task Graph Generation Issue: Irregular Algorithms

Table 7.2: Example of a SmartGridRPC implementation of an iterative algorithm

1 while(E>tE){

2 grpc map("ex map"){

3 for(i=0;i<nloops;i++){

4 grpc call async(T1 hnd,&id1,A0,B0,A0);

5 grpc call async(T1 hnd,&id2,A1,B1,A1);

6 grpc wait all();

7 grpc call(T2 hnd,&id3,A0,A1,D);

8 grpc local(D){

9 F1(D,E);

10 }

11 }

12 }

13 }

done on the first iteration, but only on the execution phase, which is done on the

second iteration. The argument in method grpc local is utilised by the program-

mer to inform the task graph generator that the object D is needed by the client

machine. The use of grpc local method in this code is necessary because during

the first iteration the object D does not contains any valid data since the task T2 is

not executed. Therefore, the local function F1 could fail or generate wrong results

if executed in the first iteration because of the invalid data in D.

In table 7.2 it is possible to see that for this example the grpc map method is

used inside the while loop of line code 1. A straightforward SmartGridRPC im-

plementation would be to apply the grpc map to the whole loop, letting the mid-

dleware find the optimal mapping solution for the group of remote tasks. Unfortu-

nately, the automatic task graph generator will not be able to build a representative

task graph for this straightforward implementation because the number of itera-

tive cycles executed is unpredictable during the discovery phase. A solution to this

problem is to use the SmartGridRPC function inside the while loop in conjunction

with a for loop statement. This implementation prevents the undefined behaviour

of the algorithm during the discovery phase. Furthermore, the programmer can

choose the number of iterations (nloops) to map simultaneously. Although the

code in table 7.2 executes more iterations than the code of table 7.1 when there is

83

The Automatic Task Graph Generation Issue: Irregular Algorithms

convergence and nloops is greater than one, the SmartGridSolve execution of the

SmartGridRPC implementation will usually outperform the GridSolve execution

of the GridRPC one by virtue of the better mapping.

7.2.2 Conditional Algorithm

Table 7.3 shows the GridRPC implementation of a trivial application that uses a

conditional algorithm. The peculiarity of this application is that the local function

F1 is used in the conditional statement to choose which data objects will be used

by the following task T3. If the value returned by this local function is greater

than a given threshold, objects A0 and A1 will be processed, otherwise it will be

objects B0 and B1.

Table 7.3: Example of a GridRPC implementation of a conditional algorithm

1 grpc call async(T1 hnd,&id1,A0,B0,C0);

2 grpc call async(T1 hnd,&id2,A1,B1,C1);

3 grpc wait all();

4 grpc call(T2 hnd,&id3,C0,C1,D);

5 if(F1(D)>tE){

6 grpc call async(T3 hnd,&id4,C0,A0,A0);

7 grpc call async(T3 hnd,&id5,C1,A1,A1);

8 grpc wait all();

9 }

10 else{

11 grpc call async(T3 hnd,&id4,C0,B0,B0);

12 grpc call async(T3 hnd,&id5,C1,B1,B1);

13 grpc wait all();

14 }

The ideal task graph, to be used to map this application, would represent the

exact run-time execution of the remote tasks. Thus, the ideal location for the

grpc map method would be at the beginning of the code to contain all the task

calls of the algorithm. As in the case of the previous example, this ideal task graph

cannot be generated by the automatic method because the application’s execution

is uncertain in the conditional statement. A technique, that allows the application

84

The Automatic Task Graph Generation Issue: Irregular Algorithms

programmers to still avail themselves of the SmartGridRPC group mapping, is to

break the whole code into smaller blocks suitable for the automatic task graph

generation as shown in table 7.4. This solution however produces many small

groups of tasks. Therefore the SmartGridRPC middleware will minimise the exe-

cution time of these small groups rather than the whole algorithm, thus producing

less optimal mapping. Additionally, the data objects used between groups instead

of being communicated directly between servers, will be communicated through

the client machine. Figure 7.1 on page 86 shows the three task graphs generated

from the example of table 7.4. This graph illustrates all the data objects that have

to pass through the client machine before and after the conditional statement and

shows all the data dependencies between the tasks executed that are missed by the

code in table 7.4.

Table 7.4: Example of a SmartGridRPC implementation of a conditional algo-

rithm

1 grpc map("ex map"){

2 grpc call async(T1 hnd,&id1,A0,B0,C0);

3 grpc call async(T1 hnd,&id2,A1,B1,C1);

4 grpc wait all();

5 grpc call(T2 hnd,&id3,C0,C1,D);

6 }

7 if(F1(D)>tE) {

8 grpc map("ex map"){

9 grpc call async(T3 hnd,&id4,C0,A0,A0);

10 grpc call async(T3 hnd,&id5,C1,A1,A1);

11 grpc wait all();

12 }

13 }

14 else{

15 grpc map("ex map"){

16 grpc call async(T3 hnd,&id4,C0,B0,B0);

17 grpc call async(T3 hnd,&id5,C1,B1,B1);

18 grpc wait all();

19 }

20 }

85

The Automatic Task Graph Generation Issue: Irregular Algorithms

start_node_0

client_1

A0

size=8MB

A1

size=8MB

B0

size=8MB

B1

size=8MB

T1_2

flop=36.56MF

T1_3

flop=36.56MF

C0

size=8MB

T2_4

flop=105.60MF

client_5

C1

size=8MB

D

size=8MB

ep_0

end_node_6

start_node_0

 TRUE

start_node_0

 FALSE

client_1 client_1

A0

size=8MB

A1

size=8MB

C0

size=8MB

C1

size=8MB

T3_2

flop=23.33MF

T3_3

flop=23.330MF

client_4

end_node_5

A0

size=8MB

A1

size=8MB
e p _ 1 _ 2

B0

size=8MB

B1

size=8MB

C0

size=8MB

C1

size=8MB

T3_2

flop=23.33MF

T3_3

flop=23.330MF

client_4

end_node_5

B0

size=8MB

B1

size=8MB
e p _ 1 _ 3

Figure 7.1: Three task graphs generated from the SmartGridRPC implementation

of the conditional algorithm example

86

The Automatic Task Graph Generation Issue: Irregular Algorithms

7.2.3 Adaptive Algorithm

Table 7.5 shows the GridRPC implementation of a trivial application that uses an

adaptive algorithm. The task T1 calculates the solution C. Then this data, together

with the threshold tE, are passed to the task T4. Task T4 checks the solution C

and outputs a vector of areas, S, and the number of such areas, n. The areas in

the vector S represent the location where the solution error is greater than the

threshold tE. In the next step, task T5 outputs two sub-vectors, AS and BS. These

sub-vectors are an interpolation, of higher resolution, of the main vectors (A, B)

for each area in S previously found. The sub-vectors are then used to calculate a

more accurate solution (CS) through task T1.

Table 7.5: Example of a GridRPC implementation of an adaptive algorithm

1 grpc call(T1 hnd,&id1,A,B,C);

2 grpc call(T4 hnd,&id2,C,tE,S,n);

3 for(int i=0;i<n;i++){

4 grpc call async(T5 hnd,&id3,i,S,A,B,AS[i],BS[i]);

5 grpc wait all();

6 }

7 for(int i=0;i<n;i++){

8 grpc call async(T1 hnd,&id4,AS[i],BS[i],CS[i]);

9 grpc wait all();

10 }

In this example, the outputs of task T4 not only change the flow of execution of

the algorithm but also change the sizes of the objects computed by the following

tasks. This is one of the worst case scenarios for the automatic task graph genera-

tion. On the discovery phase, the data objects n and S are unknown. Therefore, not

only will the flow of execution be unpredictable but also the data objects’ sizes.

As in the previous example, a solution is to apply grpc map to smaller blocks of

code, as shown in table 7.6.

Figure 7.2 on page 89 shows the two task graphs generated from the Smart-

GridRPC example code when the output of n is three and thus there are three sub-

vectors. The main problem of having two task graphs instead of a fully complete

87

The Automatic Task Graph Generation Issue: Irregular Algorithms

Table 7.6: Example of a SmartGridRPC implementation of an adaptive algorithm

1 grpc map("ex map"){

2 grpc call(T1 hnd,&id1,A,B,C);

3 grpc call(T4 hnd,&id2,C,tE,S,n);

4 }

5 grpc map("ex map"){

6 for(int i=0;i<n;i++){

7 grpc call async(T5 hnd,&id3,i,S,A,B,AS[i],BS[i]);

8 grpc wait all();

9 }

10 for(int i=0;i<n;i++){

11 grpc call async(T1 hnd,&id4,AS[i],BS[i],CS[i]);

12 grpc wait all();

13 }

14 }

one in this case is that, despite the second task graph in figure 7.2(b) containing

what appears to be a substantially representative task graph, the communication

of objects A, B and S is delayed. In fact these objects are communicated from the

client to remote servers just before the parallel execution of tasks T1 (code line 11)

instead of being communicated on the respective servers during the first T1 task

call (code line 2). Considering that the time spent to communicate the main ob-

jects from the client could be higher than the time spent to compute the whole

second group of tasks (since the sub-vectors are possibly much smaller than the

main objects and thus the respective task computation and data communication

times), the performance loss caused by the use of two separate task graphs could

be great.

7.3 Summary

In this chapter, we have shown how the automatic task graph generation method

included in the SmartGridRPC model may not work in the case of irregular algo-

rithms; i.e. algorithms where the flow of execution changes depending on values

previously calculated by remote tasks. We have shown that this problem can be

88

The Automatic Task Graph Generation Issue: Irregular Algorithms

start_node_0

client_1

A

size=8MB

B

size=8MB

T1_2

flop=100.56MF

end_node_5

C

size=8MB

T4_3

flop=10.60MF

S

size=12B

client_4

(a) First grpc map

start_node_0

client_1

A

size=8MB

B

size=8MB

S

size=12B
ep_0

T5_2

flop=100.60MF

T5_3

flop=100.60MF

T5_4

flop=100.60MF

AS[0]

size=16KB

T1_5

flop=20.56MF

BS[0]

size=16KB

CS[0]

size=16KB

client_8

AS[1]

size=8KB

T1_6

flop=10.56MF

BS[1]

size=8KB

CS[1]

size=8KB

AS[2]

size=24KB

T1_7

flop=30.56MF

BS[2]

size=24KB

CS[2]

size=24kB
ep_1

end_node_9

(b) Second grpc map

Figure 7.2: Two task graphs generated from the SmartGridRPC implementation

of the adaptive algorithm example

partially solved with some modification of the code of the application (table 7.2)

or by mapping smaller code blocks (tables 7.4 and 7.6) that enclose only the static

parts of the algorithms and thus avoid the dynamic parts.

However, the various fragmented task graphs generated by the partial map-

ping of code does not represent the underlying algorithm completely, therefore

information needed to improve the the data communication and tasks computa-

tion of the application may be missing (for example, information such as possible

data dependencies between the fragmented task graphs and possible parallel ex-

ecutions of tasks). The lack of this information could force the SmartGridRPC

middleware to communicate data objects through the client machine instead of

directly between servers. Additionally, the middleware could lack the knowledge

to anticipate which communication could waste time. Finally, if the middleware

scheduler is missing information about the execution of parallel tasks it could gen-

erate a computational unbalanced mapping solution. Therefore, a SmartGridRPC

89

The Automatic Task Graph Generation Issue: Irregular Algorithms

middleware that use fragmented task graphs instead of a complete representative

task graph may not obtain the best performance possible for the underlying algo-

rithm and thus the application.

A possible solution would be to enhance the automatic task graph generation

technique using additional specific functions or preprocessing tools to retrieve in-

formation about loops and conditions that change the flow of task calls. These

supplementary techniques would be added directly in the code by the application

programmer. However, these two approaches have some drawbacks, such as the

difficulty of implementation and, in the case of additional functions, a greater

performance penalty at run-time. Furthermore, a second problem is that the pro-

grammer would need to significantly change and clutter the client code in order to

highlight all the possible changes of flow and execution.

A better solution to this problem, which we propose, is to use a specific high

level language that permits the application programmer to explicitly specify a task

graph that best represents the run-time execution of the irregular algorithm. Since

the application programmer usually has a in depth knowledge of the algorithm

used inside his application, he or she can generate the most representative task

graph in the situation where the output of a remote task call can change the flow

of execution. Therefore, a SmartGridRPC middleware that would use an explicitly

generated representative task graph could achieve a faster execution of the appli-

cation than a SmartGridRPC middleware that uses partial task graphs generated

from smaller code blocks or a GridRPC middleware that uses the individual task

mapping method.

A typical code of this specific language should contain all the necessary in-

formation needed to generate a complete task graph. Furthermore, the language

should be easy enough to permit a user to easily define a simple algorithm but

be expressive enough to permit the definition of a complicated algorithm. The

language and its compiler should have these objectives: (i) to be easy to learn

and to understand; (ii) to provide a way to change the sizes of tasks’ objects from

the client code and to calculate the relative execution time of the tasks; (iii) to

specify possible changes in the flow of task calls and permit a user to select the

flow dynamically from the client code. (iv) to allow highlighting of the tasks that

can be executed asynchronously; (v) to permit a user to easily identify input and

90

The Automatic Task Graph Generation Issue: Irregular Algorithms

output objects of a task; and (vi) to provide a technique to set an eventual client

computation and the data objects used on it.

91

Chapter 8

Algorithm Definition Language:

Generation of Explicit Task Graphs

for Irregular Algorithms

As discussed in the previous chapter, the method that we propose to solve the

problem of representative task graph generation for irregular algorithms is to

utilise a high level language that permits a user to explicitly define task graphs.

The idea of using a specific language is similar to and based on the concept pre-

sented in the mpC [61] and HeteroMPI [62] projects for heterogeneous parallel

systems. These high level languages are used not only to generate the application

code but also to generate the application performance model.

The existing languages in Grid computing that are used to explicitly generate

task graphs or workflows are not expressive enough or they lack some essential

features to solve the problem of irregular algorithms (see section 8.4). In this

work, we have designed and implemented a language that permits a user to easily

define a representative task graph for any kind of algorithm: Algorithm Definition

Language (ADL) [54]. The main goal of ADL is to give a powerful tool to the ap-

plication programmer that can help him or her in implementing a SmartGridRPC

application with the best mapping and execution possible.

The ADL language is powerful enough to be able to fully describe a GridRPC

algorithm and to provide a way to calculate the computational and communication

92

Algorithm Definition Language: Generation of Explicit Task Graphs

time of the application, yet flexible enough to generate the task graph for any type

of algorithm. One of the objectives of ADL is to be user-friendly and easy to write.

The ADL syntax is similar to the C language since this is a widely used language

for computational science. The principal programming unit of this language is a

module that is used to specify the group of tasks of an individual algorithm. Fur-

thermore, the language is divided into well-defined sections that specify distinct

parts of the algorithm and thus simplify the understanding of the algorithm and of

the code. The ADL compiler does not directly produce the task graph from the

module but generates C code that is used at run-time by the grpc map method in

the client application to build the task graph. In the next sections, we show how

the application programmer can use ADL to originate a representative task graph

for the conditional and adaptive example algorithms. Furthermore, we present

a brief description of the language syntax and how ADL is integrated into the

SmartGridRPC model and thus how it is possible to generate a task graph in the

client code. In the last section, we presents the results of experiments with the

example applications showing that the use of ADL significantly improves their

performance.

8.1 Conditional Algorithm Using ADL

Table 8.1 on page 94 shows the ADL module that describes the algorithm of

our example conditional application (see table 7.3 on page 84 to compare with

the GridRPC implementation code). An ADL module is composed of the key-

word module followed by the name, the list of parameters and the module body.

The body is divided into the following sections. The component section includes

a declaration of the tasks used in the algorithm, such as T1, T2 and T3 for the

example application. The IFO section contains a declaration of data objects. In

ADL, the data objects, that are used in a task and can be moved anywhere on the

Grid, are called Identified Flying Objects (IFOs). Their declaration is composed

of the type (in upper-case letters to differ from a variable type), the number of

dimensions and the list of IFO names. The list of types to choose for an IFO is

correlated to types used in the GridRPC API. The number of round bracket pairs,

located after the type, represent the number of dimensions of an IFO. In the ex-

93

Algorithm Definition Language: Generation of Explicit Task Graphs

Table 8.1: Example of an ADL module of the conditional algorithm

1 module cndalg(int size, int cndtrue, int cndfalse)

2 {

3 component:

4 task "cond.idl" T1,T2,T3;

5

6 IFO:

7 DOUBLE(size) A[2],B[2],C[2],D;

8

9 algorithm:

10 parfor(int i=0;i<2;i++){

11 T1:(A[i],B[i])->(C[i]);

12 }

13

14 T2:(C[0],C[1])->(D);

15

16 client:(D)->();

17

18 parallel{

19 if(cndtrue)

20 parfor(int i=0;i<2;i++)

21 T3:(C[i],A[i])->(A[i]);

22

23 if(cndfalse)

24 parfor(int i=0;i<2;i++)

25 T3:(C[i],B[i])->(B[i]);

26 }

27

28 inout:

29 }

94

Algorithm Definition Language: Generation of Explicit Task Graphs

ample application, the IFO arrays (A, B and C) and the single IFO (D) are vectors

of double precision numbers. The size of these vectors depends on the value of

the parameter size. Finally, the algorithm section describes the flow of execution

of the application and the inout section defines the input and output IFOs of the

module, in this particular case there are none.

Table 8.1 shows how a task call is described in ADL. A remote call is com-

posed of two parts, divided by a semicolon. The first part is the name of the task

called (e.g. T1). The second part is the list of IFOs used as task inputs (e.g. A and

B for task T1) followed by an arrow symbol and the list of output IFOs (e.g. C).

This task call syntax is made in a way that easily highlights the parameters passed

and the IFOs used as inputs and outputs of the task. The parfor construct specifies

that the task calls between the iterations of the loop are asynchronous while the

task calls inside the same iteration are sequential. The parallel construct indicates

that all the included statements are considered asynchronous. One of the main dif-

ferences between the ADL code and the application code is the use of the special

keyword client, as a task name, to specify any local execution. For the purpose

of task graph generation, ADL does not need to know which local computations

will be done and which local data will be used in these computations. The only

information needed is which IFOs are used in these computations (but not their

values). Thus, in the case of a local computation, ADL requires only the informa-

tion about the IFOs used as inputs and outputs of this computation. Therefore, in

table 8.1 the client task has only D as an input and no output, and the name of the

client task, F1, is not included in the specification.

The straightforward description of the conditional algorithm would be with

an if-then-else statement, as it is in the original SmartGridRPC code in table 7.4.

Instead, in the ADL example in table 8.1, the module contains two conditional

statements, in lines 19 and 23, that check the value of the parameters cndtrue and

cndfalse. The application programmer, by setting only one of these two values to

true, can choose the flow of execution that is most likely to happen. Furthermore,

the programmer can choose to generate and use a task graph that contains both

branches of the execution by setting the two parameters to be true simultaneously.

The parallel construct in line 18 is used for this option. Without it, the compiler

will consider the two branches as being executed sequentially, one after the other.

95

Algorithm Definition Language: Generation of Explicit Task Graphs

The setting of different parameter values allows the application programmer to

easily choose the most representative task graph from a set of different possible

task graphs. Furthermore, the parameters in ADL are not only used to determine

the control flow of the algorithm but also to specify the size and the number of

IFOs utilised in the module. An IFO cannot change its size after the declaration,

consequently all the parameters are considered constant in the ADL language.

Table 8.2: Example of ADL use in the conditional algorithm application through

the SmartGridRPC method

1 grpc map("ex_map",ADL,cndalg,"%d,%d,%d",size,1,1){

2 grpc call async(T1_hnd,&id1,A0,B0,C0);

3 grpc call async(T1_hnd,&id2,A1,B1,C1);

4 ...

5 if(F1(D)>tE){

6 ...

7 }

8 else{

9 ...

10 }

11 }

Table 8.2 shows how to use the grpc map method with ADL to build the task

graph. The first argument of the function is the string that specifies the mapping

heuristic and it is the same as in any other SmartGridRPC example, like the one of

the conditional algorithm in code of table 7.4 on page 85. The second argument is

the keyword ADL. This specifies that the task graph will be built by using the code

generated from the ADL module named in the following argument (e.g. cndalg).

The next argument is a string that contains the quantity and the type of parameters

passed to the module. The format is similar to the printf function call of the C

language. The final arguments in the grpc map method are the values or variables

assigned to the parameters of the given ADL module. In table 8.2, the application

programmer has decided that both conditional statements are true. The run-time

execution of the grpc map function is different from the case of the automatic

method. The task graph is built and the mapping solution is generated directly

96

Algorithm Definition Language: Generation of Explicit Task Graphs

when the method is called. Therefore, the code inside the parenthesis block will be

iterated only once and the task calls are executed normally on the servers specified

in the mapping solution. Thus, the use of the SmartGridRPC function grpc local

is not needed when using ADL.

The task graph generated from the ADL code of table 8.1 together with the

SmartGridRPC code of table 8.2 is illustrated in figure 8.1 on page 98. The values

inside the circles and rectangles are respectively the size of an IFO and the com-

putational complexity of a task. These are correlated to the value of the module

parameter size passed through the third to last argument of the grpc map method.

One can see that the generated task graph contains the task calls for both possi-

ble flows of execution of the conditional statement. This information permits the

SmartGridRPC mapper to map efficiently the different versions of tasks T3 in or-

der to minimise the total data communication, such as tasks T3 6 and T3 8 on the

same server of task T1 2 while tasks T3 9 and T3 9 are on the same server of task

T1 3. If we compare the task graph generated from the ADL code with the three

task graphs of figure 7.1 on page 86, generated by using the grpc map method

for smaller blocks of code (table 7.4), it is possible to see that the input arrays

A and B can be sent directly to the servers where the various versions of tasks

T3 are going to be executed. Furthermore, the output array C can be broadcasted

directly as well to the same servers. Due to better mapping and various direct and

broadcasted communications of data, the SmartGridRPC implementation of the

conditional example that use the ADL code can obtain better performance than

the SmartGridRPC implementation without the use of ADL.

97

Algorithm Definition Language: Generation of Explicit Task Graphs

start_node_0

client_1

A[0]

size=8MB

A[1]

size=8MB

B[0]

size=8MB

B[1]

size=8MB

T1_2

flop=36.56MF

T1_3

flop=36.56MF

T3_6

flop=23.33MF

T3_7

flop=23.330MF

A[0]

size=8MB

client_10

A[1]

size=8MB

T3_8

flop=23.33MF

T3_9

flop=23.330MF

B[0]

size=8MB

B[1]

size=8MB

C[0]

size=8MB

T2_4

flop=105.60MF

C[1]

size=8MB

D

size=8MB

client_5

ep_0

ep_1 ep_2

end_node_11

Figure 8.1: The task graph generated from the ADL module of the conditional

algorithm example

98

Algorithm Definition Language: Generation of Explicit Task Graphs

8.2 Adaptive Algorithm Using ADL

Table 8.3 shows the ADL module that describes the algorithm of our example

adaptive application. One can see that the sizes of data objects A, B, C, depend

on the parameter size. The parameter n is used to determine the number of areas

in vector S that could be generated by the task T4. Furthermore, the value of n is

used to set the number of times that task T5 is executed and hence the number of

sub-vectors (AS, BS, CS) that are generated. The parameter subsize is an array of

integers that contains the sizes of each sub-vector object. The dimension of this

array depends on the value of n.

Table 8.3: ADL module of the adaptive algorithm example

1 module adaptalg(int n, int size, int subsize[n])

2 {

3 component:

4 task "adapt.idl" T1,T4,T5;

5

6 IFO:

7 DOUBLE(size) A,B,C;

8 DOUBLE(subsize) AS[n],BS[n],CS[n];

9 INTEGER(n) S;

10

11 algorithm:

12 T1:(A,B)->(C);

13

14 T4:(C)->(S);

15

16 parfor(int i=0;i<n;i++){

17 T5:(S,A,B)->(AS[i],BS[i]);

18 }

19

20 parfor(int i=0;i<n;i++){

21 T1:(AS[i],BS[i])->(CS[i]);

22 }

23 }

99

Algorithm Definition Language: Generation of Explicit Task Graphs

Table 8.4: Example of ADL use in the adaptive algorithm application through the

SmartGridRPC method

grpc map("ex_map",ADL,adaptalg,"3,1000,{200,100,300}"){

grpc call(T1_hnd,&id1,A,B,C);

grpc call(T4_hnd,&id2,C,tE,S,n);

for(int i=0;i<n;i++){

grpc call async(T5_hnd,&id3,i,S,A,B,AS[i],BS[i]);

grpc call async(T1_hnd,&id4,AS[i],BS[i],CS[i]);

grpc_wait_all();

}

The application programmer, by setting the values of the three parameters in

grpc map, can directly specify the number of task calls and the sizes of objects in

the task graph generated. Table 8.4 shows the use of the ADL module adaptalg

in the modified adaptive SmartGridSolve application. In this case, the application

programmer presumes that the remote computation of task T4 produces n = 3

and thus the programmer chooses to generate a task graph with three T5 calls.

The size of data objects will be 1000 and the sub-vectors’ sizes will be 200, 100

and 300. The method used to set the parameter values in this example, instead

of being a string formatted like the printf method of the code in table 8.2, is

a string directly containing the values for the parameters. Furthermore, the use

of curly brackets permits a user to group different values for a parameter array,

in this case the parameter subsize. Figure 8.2 shows the generated task graph

from the SmartGridRPC code of table 8.4 in conjunction with the ADL code of

table 8.3. The comparison between this task graph with the two partial task graphs

of figure 7.2 on page 89 shows that the objects A and B can be communicated

directly to the servers that execute the different versions of task T5.

In this case, it is difficult to generate a task graph that corresponds exactly

to the flow of task calls since the value of n probably changes for each execution.

There are two possible outcome for this and similar situations; the user generates a

task graph that is a super-set of the task executions or a task graph that is a sub-set.

In the later case SmartGridSolve handles this situation, i.e. task being executed

but not existing in the mapping solution, by reverting the execution method of

100

Algorithm Definition Language: Generation of Explicit Task Graphs

start_node_0

client_1

B

size=8MB

A

size=8MB

T1_2

flop=100.56MF

T5_4

flop=100.60MF

T5_5

flop=100.60MF

T5_6

flop=100.60MF

C

size=8MB

T4_3

flop=10.60MF

S

size=12B

AS[0]

size=16KB

T1_7

flop=20.56MF

BS[0]

size=16KB

CS[0]

size=16KB

client_10

AS[1]

size=8KB

T1_8

flop=10.56MF

BS[1]

size=8KB

CS[1]

size=8KB

AS[2]

size=24KB

T1_9

flop=30.56MF

BS[2]

size=24KB

CS[2]

size=24kB

ep_0

ep_1

end_node_11

Figure 8.2: The task graph generated from the ADL module of the adaptive algo-

rithm example

101

Algorithm Definition Language: Generation of Explicit Task Graphs

the missing remote tasks to the original GridSolve one. This involves more data

communication through the client machine for tasks using the GridRPC model

and probably a minor load computation unbalance. In the case of a super-set,

i.e the task graph contains all the possible task calls, SmartGridSolve moves the

objects needed by a task also if this task is not executed. These unused objects

are stored in the server until the method grpc map completes the execution phase.

This involves a small waste of resources in the Grid environment, such as network

and memory. The user can choose one of the two options that is similar to the

real execution, thus reducing these small disadvantages in a way that they become

insignificant in comparison to the the gains obtained by having a bigger group of

tasks to map.

8.3 Experimental Results

In this section, we compare the execution times, for both conditional and adaptive

example algorithms, of the three different implementations; the GridRPC version

(tables 7.3 and 7.5), the SmartGridRPC with smaller mapping blocks version (ta-

bles 7.4 and 7.6) and the SmartGridRPC with ADL version (tables 8.2 and 8.4).

The first implementation is executed through the GridSolve middleware while the

last two are executed through the SmartGridSolve middleware. The hardware

configuration used in the experiments consists of fives machines; a client and four

remote servers. The four servers are heterogeneous however they have similar

performance, from 422 to 531 MFlops, and the same size of main memory, 1GB

each. The bandwidth of the communication links between servers is 1Gb/s. The

client machine has a 100Mb/s connection to the servers. This represents a com-

mon situation where a user wants to use a powerful Grid environment through a

relatively slow network connection. In the experiments, we vary the total input

data size, N, from 24 to 576 megabytes. Each remote task executed has a log-

linear complexity, O(N× lnN). This complexity, with the slow client-to-server

connection, permits the computation load and the communication load to have

an equal impact on the total execution time of the experiments. In the follow-

ing tables, the symbol Sp stands for speed-up; while GS is the abbreviation for

GridSolve and SGS is the one for SmartGridSolve with smaller mapping blocks.

102

Algorithm Definition Language: Generation of Explicit Task Graphs

Table 8.5: Experimental results for the conditional algorithm applications

GridSolve SmartGridSolve SmartGridSolve

smaller blocks with ADL

Data Size Avg Time Avg Time Avg Time

24MB 24.08s 19.31s 14.08s

48MB 48.30s 40.35s 26.94s

96MB 97.51s 81.00s 57.63s

192MB 195.80s 156.67s 113.67s

384MB 404.31s 317.36s 230.03s

576MB 648.02s 497.31s 364.62s

Data Size Sp v GS Sp v GS Sp v SGS

24MB 1.25 1.71 1.37

48MB 1.20 1.79 1.50

96MB 1.20 1.61 1.41

192MB 1.25 1.72 1.38

384MB 1.27 1.76 1.38

576MB 1.30 1.78 1.36

Conditional Algorithm Table 8.5 shows the results obtained by the GridSolve

and SmartGridSolve executions of the three different implementations of the con-

ditional algorithm. For each individual experiment, the average time is calculated

from ten separate executions, where the condition of the conditional statement is

set to return true in half of them. In the SmartGridSolve with ADL experiments,

the task graph generated by ADL contains both branches of the execution. One

can see that the SmartGridSolve implementation, with smaller blocks to map, is

faster than the simple GridSolve implementation, showing the speed-up of ap-

proximately 1.2. Furthermore, the SmartGridSolve implementation, that uses a

representative task graph generated from ADL, outperforms the other two imple-

mentations, displaying the speed-up of approximately 1.7 and 1.4 respectively.

Adaptive Algorithm Table 8.6 shows the results of experiments with three dif-

ferent implementations of the adaptive algorithm. As in the previous experiments,

the average time is calculated from ten separate executions. The number of sub-

vectors, n, and their sizes, S, generated by task T4, are constant between experi-

ments of the same initial data size but change randomly between experiments with

103

Algorithm Definition Language: Generation of Explicit Task Graphs

different data sizes. The maximum number of sub-vectors is set to four and the

sum of their sizes is set to be less than the size of the original input vectors (A,

B, C). In the SmartGridSolve with ADL experiments, the task graph generated by

ADL is set to contain four sub-vectors which sizes are one quarter of the original

vector’s size. Therefore, this task graph is a super-set of the possible executions

since it contains the maximum number of remote tasks possible.

Table 8.6: Experimental results for the adaptive algorithm applications

GridSolve SmartGridSolve SmartGridSolve

smaller blocks with ADL

Data Size Avg Time Avg Time Avg Time

24MB 28.03s 25.02s 17.41s

48MB 51.26s 46.70s 30.40s

96MB 112.53s 86.76s 58.40s

192MB 216.99s 182.15s 118.70s

384MB 435.56s 369.25s 269.65s

576MB 713.78s 604.23s 445.75s

Data Size Sp v GS Sp v GS Sp v SGS

24MB 1.12 1.61 1.44

48MB 1.10 1.69 1.54

96MB 1.30 1.93 1.49

192MB 1.19 1.83 1.53

384MB 1.18 1.62 1.37

576MB 1.18 1.60 1.36

The speed-up demonstrated by the SmartGridSolve implementation (that uses

smaller blocks to map) over the GridSolve execution is less than in the previous

experiments, with the implementations of the conditional algorithm. The reason

is that the tasks in the second mapping block of this application (see table 7.6) are

less computationally intensive than the tasks in the first mapping block. The sub-

vectors are smaller than the original vectors. Therefore, the improved SmartGrid-

Solve mapping of the parallel tasks in the second block is limited by the execution

time of the tasks in the first block. At the same time, the speed-up obtained by the

SmartGridSolve implementation using ADL over the other two implementations

is similar to the conditional algorithm experiments. The reason is that the use of

104

Algorithm Definition Language: Generation of Explicit Task Graphs

ADL permits SmartGridSolve to map a larger group of tasks and to minimise the

amount of data moved in the network.

8.4 Related Work

The need to directly define, for performance or direct execution purposes, a con-

struct that precisely represents the underlying algorithm of an application, or the

application itself, is common in many different fields of computational science.

Therefore, various software, tools and languages exist that permit a user to gen-

erate a representative construct of an application’s algorithm. However, in this

chapter we focus on the different languages already existing that are used to gen-

erate task graphs or similar structures for systems in the Grid computing field.

Furthermore, we analyse the languages specifically designed for GridRPC mid-

dlewares.

8.4.1 Languages Used in Workflow Management Systems for

Grid Computing

In the area of workflow management systems for Grid computing there has been a

huge amount of research and implementation of languages designed to explicitly

generate task graph like structures. A workflow management system provides var-

ious tools, components, middlewares and applications to define, manage and exe-

cute scientific workflows on a Grid environment [85]. A workflow is a description

of a sequence of operations and procedures with data and files synchronisations

that define the execution of an application.

The concept of workflow is similar to that of a task graph. However it has a

broader meaning since, instead of representing only a group of tasks, the workflow

can represent a group of programs, jobs, services, tasks and activities. Addition-

ally, in the workflow concept the notion of client computation is missing, since a

workflow is usually a complete distributed application itself and workflow man-

agement systems do not have a client application. However, the structures used to

represent workflows are usually the same structures used to represent task graphs.

105

Algorithm Definition Language: Generation of Explicit Task Graphs

Therefore, it is important to analyse and compare the various languages used to

define workflows in these systems.

Considering that many workflow management systems are evolutions of batch

management systems for Grid computing and it was common in these systems to

use script languages to execute remote computations; the simplest method used by

workflow management systems to generate a workflow is a script-based language.

However, the expressiveness of these languages is limited since they are originally

designed for the execution of distributed jobs.

More recent workflow management systems, designed specifically for Grid

computing, use XML-based languages to take advantage of the extensibility and

portability of XML. Furthermore, these systems often use XML also to define

the jobs and services used. Some examples of workflow systems that utilise a

XML-based language are GridFlow [21], Taverna [70], Triana [30], GridAnt [8],

etc. Usually tags, elements and attributes of these XML-based languages vary be-

tween systems. However, all these languages suffer from the difficulty to express

large and complicated workflows in XML, since all the information needs to be

explicitly written when using a markup language. In some cases, such as GridAnt,

in order to avoid the expressiveness limitation of a XML-based language, specific

conditional or loop statements are added to the language. In some other cases,

such as Taverna and Triana, a graphical user interface is implemented to help the

user to visually generate the XML file and therefore the workflow. However, this

visual help may not always be useful when the execution contains many jobs with

a high amount of data dependency between them, since this situation could pro-

duce an extremely complicated workflow of which the visualisation and editing is

difficult.

Finally, another common method in workflow management systems is the use

of specifically designed high level languages. These languages can be based on

common imperative languages (C, Fortran, etc.), or be data driven languages,

i.e. the generation of the workflow depends on data dependencies. In the follow-

ing part of this section, we present some significant languages used in workflow

management systems to explicitly generate the task graph, where these languages

represent indicative cases of script-based languages (DAGMan), XML-based lan-

guages (AGWL), imperative high level languages (YvetteML) and data driven

106

Algorithm Definition Language: Generation of Explicit Task Graphs

high level languages (Chimera VDL).

DAGMan

In the Condor batch management system exists a specific meta-scheduler compo-

nent called DAGMan [82] that permits a user to submit various jobs as a workflow

(DAG structure) to the Condor scheduler. The user specifies the workflow using

a specific language. This language code is parsed by DAGMan to generate the

workflow. In the code the various remote jobs and the direct dependencies be-

tween these jobs are described. These dependencies have to be directly indicated

by a special keyword by the programmer and they do not indicate any data com-

munication but only the order of execution. Consequently the respective data

communications have to be defined through the use of pre-processing and post-

processing commands associated with each job. The language used is similar to a

script language, however it does not contain any control flow constructs, such as

conditional and loop statements. Furthermore, the ability to define and use vari-

ables in the language is minimal and the flow of execution is fixed. It is not easy

to generate large workflows using the DAGMan language since its expressiveness

is very limited.

Abstract Grid Workflow Language (AGWL)

AGWL (Abstract Grid Workflow Language) [44] is an XML-based language used

to generate workflow for scientific Grid applications and it is part of the Grid ap-

plication development and computing environment Askalon [43]. The main aim

of AGWL is to hide the details and complexities of the underlying Grid infrastruc-

ture to the programmer and to allow the easy generation of scientific workflows.

An important characteristic of AGWL is the ability to define complex workflows,

since the language contains basic control flow constructs, such as conditional and

loop statements, and advance control flow constructs, such as parallel sections and

parallel loops. Furthermore, AGWL permits a user to specify the data computed in

the various services and thus to control the data flow. The data flow constructs and

control constructs are defined in the language by using specific starting and ending

tag pairs. For example, <while> </while>, <if> </if>, <dataIn> </dataIn>,

107

Algorithm Definition Language: Generation of Explicit Task Graphs

<value> </value>. Furthermore, each attribute or parameter of these constructs

has to be preceded by its name, such as name=”name”, source=”source”. While

the expressiveness of this language is far superior to a typical XML-based lan-

guage, in fact it is similar to that of a high level language, the need to directly

specify each tag pair and attribute in the workflow make the code writing tedious,

long and error prone. Furthermore, the readability of the code suffers. Another

limitation of AGWL is that the expressions in the code are specified using XSL

transformations [3]. XSLT is used to transform a XML document into another

XML one. In fact the AGWL code has to be pre-processed into a concrete XML

code, which contains all the data of the executed workflow. The use of a con-

crete XML to specify the workflow limits the ability to dynamically change the

execution flow during run-time. Even if the AGWL code could be used directly

at run-time to have the ability to change the flow dynamically, the use of XSL

transformations could have a great performance impact since this technique is

specifically designed to process XML documents and not workflow structures.

YvetteML

YML [36] is a workflow management system designed to provide scientific users

with a simple way to develop and execute applications on peer-to-peer and Grid

middlewares over large scale environments. It is mainly aimed at parallel and

distributed numerical applications, specifically linear algebra, and solving prob-

lems that need a large amount of data. However, YML can be used for any type

of application. To hide the complexity of the underlying infrastructure from the

user, YML is logically divided into two layers [28]; a front end, which is com-

posed of user tools for developing and managing services and workflows, and a

back end, which schedules and executes the workflow on the middleware. This

logical structure permits YML to execute the workflow on multiple middlewares

such as XtremWeb [45] and OmniRPC [72]. A workflow in YML is represented

by a directed graph that can contain loops, iterations and branching. The work-

flow is defined using a graph description language called YvetteML [37]. This

is a high level language with a syntax similar to Pascal and C. In order to de-

scribe complex workflows, YvetteML contains several constructs such as service

108

Algorithm Definition Language: Generation of Explicit Task Graphs

calls, sequential and parallel iterations, parallel sections, conditional branches and

events management. Another characteristic of this language is the possibility to

modularise the code [35], i.e. the ability to create a hierarchy of workflows and

thus reuse code. Furthermore, YvetteML contains a specific data type that permits

a user to define a collection of elements. This data type permits the workflow to

have out-of-core executions, global communications and services with unknown

number of parameters. These characteristics make the language highly expressive

and therefore it is possible to define complex workflows. However, the few limi-

tations of this language are the difficulty of identifying input and output data on a

remote computation.

Chimera Virtual Data Language

Pegasus [33] is a framework that permits a user to define and execute complex

workflows on Grid environments and it is aimed at large-scale data problems. Pe-

gasus works by taking an abstract workflow as an input, where the various jobs

are defined independently of the Grid resources available, and generate a concrete

workflow, where the jobs are linked to specific resources. Then, this concrete

workflow is executed and mapped using DAGMan. The abstract workflow is de-

fined by a programmer using the Chimera system [48] and its virtual data language

(VDL). VDL is a data driven language, since the generation of the abstract work-

flow depends on existing files and selected output file name. In the VDL language,

a user defines a job template by using the keyword TR (transformation). A trans-

formation contains the information needed to execute the job, such as executable

name, location, command line arguments and input/output files used. The execu-

tion of a transformation, thus a job, is defined in the language using the keyword

VD (derivation). Associated with a derivation is the name of the template that

defines the job and the data files computed. It is possible to use variables instead

of strings for the arguments and files in a transformation and a derivation. Given a

desired output filename, Chimera analyses the dependencies between the various

derivations and transformations to find all the files needed to generate the desired

one. Then, Chimera will build the abstract workflow with only the jobs that are

needed to create the missing files. Therefore, the workflow generated changes de-

109

Algorithm Definition Language: Generation of Explicit Task Graphs

pending on the output filename selected and the existing files. The expressiveness

of the VDL language is superior to a XML-based language or a script language,

where the various jobs and data dependencies have to be specified directly, since

the flow of execution changes depending on input parameters. However, the gram-

mar and syntax of the language are not easy to understand and consequently its

usage is not trivial.

8.4.2 Languages Used in GridRPC Middlewares

Amar et al. [6] introduce a new special agent called MADAG in the DIET mid-

dleware. This new component accepts a direct acyclic graph (DAG) structure that

represents the flow of executions of the application and permits the middleware to

execute directly the various tasks described on the Grid. In their work the authors

use the word workflow to define this structure; in this particular case the meaning

of the word workflow can be considered to be similar to the word task graph that

we use in this thesis.

The user defines the task graph by creating an XML file that contains the

necessary information. Then, this XML file is used in the client as an argument

of a specific new DIET function. This function executes the task graph without

the need to create the respective task calls in the client code. This implementation

does not follow the RPC style of calling each task in the application since the only

function call used in the code is the one that submits the task graph as a single

entity and executes it in the Grid environment. The user, for each task call in the

XML file, has to explicitly write the arguments of the task, if they are an input or

output, their name, their type and eventually their possible value. This information

has to be included also if two tasks have the same arguments. The limitations to

this approach are:

• Since the task graph is executed directly by a single function call, this ap-

proach does not follow the GridRPC model and the intermediate results

between task calls cannot be sent back to the client.

• Furthermore, since the client code is missing the respective task calls, it

may be difficult to understand the algorithm described in the task graph

110

Algorithm Definition Language: Generation of Explicit Task Graphs

because the XML format is not very expressive and it is not similar to human

languages.

• The flow of execution is fixed in the XML file. Therefore, the number of

tasks executed, their arguments and the flow itself are not easy to modify.

• The task graph cannot change at run-time depending on some initial values

since the XML file does not contain any technique to change the generation

flow such as conditional or loop statement.

• It is not user friendly as it can be difficult and time consuming to write the

XML description for each task in the graph.

Caron et al. [24] introduce in the DIET project a graphical user interface (GUI)

that permits the user to graphically design, by drag and drop, the task graph of the

application and save the task graph in the XML file to be executed. This approach

has the advantage of an easier and less error prone development of the task graph

with respect to the XML file. Furthermore, it is easier to understand the algo-

rithm implemented since the graphical representation of the task graph is more

expressive than the XML file. However, many previously mentioned limitations

still apply for this approach since the execution of the task graph is still done by

a single function call and the graphical representation of the flow of execution is

still fixed, i.e. it flow does not change depending on initial input values.

Before DIET introduced the use of a task graph and the XML file to define

it, the SmartNetSolve middleware, the predecessor to SmartGridSolve, was al-

ready using a XML file to generate a task graph of the the GridRPC application’s

algorithm. SmartNetSolve presented by Brady et al. [19] already implemented

the collective mapping of a group of tasks and the fully connected network fea-

tures. However, the automatic task graph method was not conceived at that time.

Therefore, the method chosen to generate the task graph was to use a XML file

to describe the algorithm and the group of task calls to map collectively. This

approach is similar to the one later implemented in DIET and thus they share the

same limits. However, the main difference between the two is that SmartNetSolve

did not execute directly the task graph generated by the XML file but the task

graph was only used to generate the performance model and the mapping. The

111

Algorithm Definition Language: Generation of Explicit Task Graphs

real execution of the remote task calls was still happening on the client applica-

tion through the use of the GridRPC specific methods where the XML file was

parsed by a method similar to grpc map to generate the task graph. Therefore,

SmartNetSolve was permitting client computation inside the group of tasks.

8.5 Summary

In this chapter, we have studied how the problem that the automatic mapper en-

counters with irregular algorithms can be overcome by using Algorithm Definition

Language (ADL) to explicitly specify the task graph that best represents the im-

plemented algorithm of a SmartGridRPC application.

The ADL language is designed to be easy to understand and use, since its syn-

tax is similar to C. It is modular and a module is divided in well defined sections

that permits the code to be read easily. Furthermore, The language syntax easily

highlights to a user: the data objects used in the algorithm that are communicated

on the Grid network, the remote task call executed, the input output objects of

a task and the eventual parallel executions. More details about the ADL syntax,

semantic and compiler functionalities will be presented in the next chapter.

We have compared the task graphs generated by using ADL with the partial

task graphs generated by using grpc map in smaller block of code. We have em-

phasised how the former contains more information about the group of tasks to

map collectively. This information can be important to obtain the benefits previ-

ously discussed of SmartGridRPC, such as better mapping, improve computation

and communication load. We have conducted experiments that demonstrate sig-

nificant performance gains in the conditional and adaptive examples due to the

use of ADL in conjunction with SmartGridSolve. Therefore, we have shown that

ADL in conjuction with SmartGridRPC is a further powerful tool in the hand of

scientific users to develop distributed scientifc applications. The use of ADL has

the potential to increase the types of distributed applications that can obtain high

performance with a SmartGridRPC middleware.

112

Chapter 9

ADL: Language and Compiler

In the first part of this chapter, we present an in depth analysis of the syntax and

semantic of the language. The following sections explain how the compiler works

and how it is implemented. Finally in section 9.4, the special multi-size multi-

dimensional array feature of ADL is introduced.

9.1 Language

The ADL language grammar is based on the C language syntax, the reason for

this is that C language is extensively used for scientific applications. Furthermore,

ADL uses the same approach of C for array indexing by starting the indexing

from the value zero. A full description of the grammar of the ADL language is

available in the appendix A. One of the main features of the ADL language is the

logical division into two groups of the variables used in a module. The first group

is composed of local variables and parameters. They are used in the same way

as a typical programming language, i.e. to change the flow of execution and data.

The second group is composed of Identify Flying Objects (IFOs). They represent

the data that are used by remote tasks and can be located anywhere in the Grid

environment. The ADL language differentiates between these two types of data in

the grammar. Therefore, each type of data can be only used in specific statements,

expressions and list of arguments and they cannot be interchanged.

113

ADL: Language and Compiler

Another important characteristic of ADL is the use of two types of compo-

nents: tasks and modules. A task is an atomic computation that is executed re-

motely by a SmartGridRPC call; while a module represents an algorithm which is

a changeable flow of execution composed of different tasks and/or sub-modules.

A modular approach is a simple way of describing an algorithm and keeping the

code easy to write and to understand. In ADL, a module is divided into well

defined sections in order to further simplify the reading of code; each section

specifies a characteristic of the algorithm and the module.

9.1.1 Module Definition

The first step in using the ADL language is to define a module. This is done by

using a syntax that is composed of the keyword module, the name of the mod-

ule, the list of parameters and the module body (see table 9.1). This last one is

divided into different sections that are: a) component section, which contains the

declaration of tasks and sub-modules used in the module; b) IFO section, which

includes the data objects that are used by the remote task calls and sub-modules;

c) algorithm section, where the flow of execution is described using the previously

declared tasks, sub-modules and IFOs; and d) inout section, which contains the

input and output IFOs of the module. The order of these sections in the body is

fixed.

Table 9.1: Example of an ADL module definition

1 module name(parameters)

2 {

3 component:

4

5 IFO:

6

7 algorithm:

8

9 inout:

10

11 }

114

ADL: Language and Compiler

The parameters in a module are declared in the same way as the parameters in a

function of C language. Therefore, ADL uses the same set of types, qualifiers and

rules as this language. The types used are char, int, float and double; where the

qualifiers are short, long, signed and unsigned (see table 9.2 for various examples

of declarations). Given that ADL does not use pointers, the void type and the

use of the asterisk symbol for pointer declaration are therefore not recognised.

Furthermore, the use of the qualifier const in ADL is redundant, since all the

parameters in ADL are always constant. One design choice, made in the ADL

project, is that the number of IFOs and their sizes cannot be changed after their

declaration in the IFO section. This simplifies the writing and understanding of

the ADL code and it eases the generation of the task graph. Therefore, given that

parameters are used to set these IFO characteristics, they have to be constant.

Table 9.2: Example of the declaration of various parameters

1 module modex1(char a, short b, unsigned int c, long d){...}

2

3 module modex2(float f, double g){...}

4

5 module modex3(int vector[3], int matrix[3][4]){...}

6

7 module modex4(int numdim, int dimsize[numdim]){...}

In ADL, it is possible to declare a parameter as an array of elements or a multi-

dimensional array using the same syntax as C. Therefore, the square brackets

are used to indicate the size of each dimension of the declared array (see line 5

in table 9.2). The only difference is that the size of an array cannot be empty.

Additionally, in ADL is possible to set an array size using a parameter defined in

the same parameter list (see line 7 in table 9.2). This leads to a special feature

of ADL called a multi-size multi-dimensional array, which will be discussed in

section 9.4.

115

ADL: Language and Compiler

9.1.2 Component

The component section in ADL includes the declaration of tasks and modules

used in the algorithm; the syntax of this is shown in table 9.3. Task declaration is

composed of the keyword task, a string and a list of task names. The ADL lan-

guage needs to provide the compiler with specific information about the remote

tasks used in the module. The ADL compiler, for each task, requires the number

and type of input/output arguments and the eventual computational complexity of

the task. These data are retrieved from a GridSolve Interface Definition Language

(gsIDL) [41] file. The gsIDL is the mechanism through which GridSolve and

SmartGridSolve enables computational methods to be invoked remotely as a task

on a Grid environment (see the following subsection). Therefore in the task dec-

laration, the string after the keyword task is used to specify the name of the gsIDL

file that contains the data of all the tasks introduced in the following list. If the

gsIDL file does not include all of the tasks declared, the ADL compiler generates

an output error.

Table 9.3: Example of a component section with tasks and modules declaration

1 component:

2 task "blas.idl" ddot,dgemm;

3 module "example.adl" example;

4 module example2;

An idea for future work would be to give the application programmer the abil-

ity to provide, “ad hoc”, the task information to the compiler. This would allow

task definition in ADL, in a similar way that a module is defined, by using the

keyword task instead of the keyword module and a specific structure of the body.

Being able to use a gsIDL file for retrieving the task information would be con-

venient for already existing GridSolve applications; while in the case of a new

application, it would be more appropriate to directly specify the information of a

task needed by using the “ad hoc” task definition in ADL.

The declaration of a module, in the component section, is similar to the task

declaration with the difference that the keyword used is module and it is not nec-

116

ADL: Language and Compiler

essary to include a string after the keyword. The eventual string is the name of

the ADL file that contains the code of all the module names that are into the sub-

sequent list of names. If the string is missing the compiler retrieves, for each

module in the list, a file object that contains the information needed. The name of

the file object is the same name as the module represented and the file extension

is “.mod”. The directories, where a module file objects is searched, can be passed

to the compiler using a specific argument or environment variable.

GridSolve IDL

Table 9.4 shows an example of the GridSolve IDL syntax. This example (from

“lapack.idl” file) contains the definition of the dgesv task, which is a LAPACK

routine that computes the solution to a real system of linear equations A∗X = B.

This language permits a programmer to describe the data type of each argument

(integer, float, double etc.), the object type of each argument (scalar, vector, or

matrix) and whether each argument is an input, an output or an input-output.

Table 9.4: Example of dgesv task definition in GridSolve IDL file “lapack.idl”

1 SUBROUTINE dgesv(

2 IN int N, IN int NRHS, INOUT double A[LDA][N],

3 IN int LDA, OUT int IPIV[N], INOUT double B[LDB][NRHS],

4 IN int LDB, OUT int INFO

5)

6 "This solves Ax=b using LAPACK"

7 LANGUAGE = "FORTRAN"

8 LIBS = "$(LAPACK_LIBS) $(BLAS_LIBS)"

9 COMPLEXITY = "2.0*pow(N,3.0)*(double)NRHS"

10 MAJOR="COLUMN"

This gsIDL example specifies that the first two arguments of the calling se-

quence are input scalar integers. The third argument of the calling sequence is an

input-output, which is a matrix of elements of type double. The fourth argument

is an output scalar argument. The fifth argument is an output vector of integers

and the sixth is an input-output matrix of doubles. The seventh is a scalar integer

117

ADL: Language and Compiler

input and the eighth is a scalar output integer. Included in the task definition is a

formula that is used in conjunction with the calling sequence to generate a func-

tion for calculating the computation load of the task. This formula is denoted in

the gsIDL file by the COMPLEXITY keyword.

9.1.3 IFO: Identified Flying Object

An IFO represents a data object that is used in a remote call, it differs from param-

eters and variables since it can be anywhere on the Grid environment. The IFOs

are important for generating the task graph; since depending on their size and

type, they can influence the computational time of the different tasks and the to-

tal communication time of the application. Furthermore, the knowledge of which

task uses which IFO can help the compiler to determine the dependencies between

tasks. In the ADL language, an IFO cannot be used as an element of an expression

statement or as an argument of a module parameter list. A variable and a param-

eter cannot be used as an argument of the input and output list of the module and

the task calls. The syntax of an IFO declaration is composed of an IFO type (in

upper-case letters to differ from a variable type), the number of dimensions with

their sizes and the list of IFO names. For an IFO, the list of types to choose from

is linked to the types available in the gsIDL and the GridRPC API. These types

are similar to those found in C and Fortran and they are:

• CHAR, one byte character.

• INTEGER, four bytes integer number.

• FLOAT, four bytes single precision floating point number.

• DOUBLE, eight bytes double precision floating point number.

• SCOMPLEX, eight bytes complex number compose of two single preci-

sion numbers.

• DCOMPLEX, sixteen bytes complex number compose of two double pre-

cision numbers.

118

ADL: Language and Compiler

The use of upper-case letters for the name of an IFO and lower-case letters for

parameters and variables names is not compulsory. However, this technique is

suggested since it allows a user to easily discern the IFOs from the other variables

and to simply highlight them in the code.

Table 9.5: Example of IFO declaration

1 IFO:

2 CHAR A,B[10]; // Scalar

3 INTEGER(3) C; // Vector

4 DOUBLE(nx)(ny) D; // Matrix

5

Table 9.5 shows an example of the IFO declaration syntax. The number of

round bracket pairs, written after the type, represents the number of dimensions

of an IFO. It specifies if the IFO is a scalar, vector, matrix or multi-dimensional

object, i.e respectively a no bracket pair, one pair, two pairs and more than two

round bracket pairs. The value inside the round bracket pairs correspond to the

size of the specific dimension and it cannot be changed in the algorithm section.

Consequently the application programmer can use only a literal number or a pa-

rameter as the size inside the brackets. In table 9.5, the IFO named C (line 3)

is a vector composed of 3 integer elements; while the IFO named D (line 4) is a

matrix with nx rows and ny columns of double elements. It is possible to declare

a multi-dimensional array of IFOs, with all the IFOs having the same number of

dimensions and the same size for dimension, by utilising the same syntax used

for the declaration of a multi-dimensional array of parameters, i.e. square brack-

ets. Furthermore, it is also possible to declare a multi-dimensional array of IFOs

where each IFO has a different size; this is explained in more detail in section 9.4.

9.1.4 Algorithm

The algorithm section describes how tasks and/or modules are executed, which

IFOs are used and how the parameters change the flow of execution. It is similar

to the body of a C function. It can contain loop statements (using the keywords

119

ADL: Language and Compiler

for or while) and/or selection statements (using the keywords if or switch). The

syntax used in these statements is the same as the C language. One difference

is the use of two specific constructs for parallel execution of tasks, the keywords

parallel and parfor.

The rules used to declare variables in ADL are the same as those used in the

C language. However, there are two differences in the actual implementation of

ADL language when compared to the C language. At the moment of writing,

variables can be declared only at the beginning of the algorithm section, before

any other statements. Furthermore, in ADL setting an initial value to a variable

has not yet been implemented. The data types and qualifiers available in variable

declarations are the same ones used in the parameters declaration.

The syntax of the task and module calls is made in a way to easily highlight

the parameters passed and the IFOs used as inputs and outputs. There is a small

difference between a task call and a module call that permits a user to simply

discern the two various calls. A remote task call is composed of two parts divided

by a colon. In the first part there is the name of the task called. In the second part

there is the list of input IFOs (with the IFOs separated by commas and contained

between two round brackets), followed by an arrow symbol (− >) and then the

list of output IFOs (with the same syntax of the input list). A call statement is

completed by the semicolon symbol. A module call is composed in the same

way as a task call. The only difference is in the first part where the module call

contains, before the colon, a list of parameters to pass to the module (with the

same syntax of the input and output lists).

In table 9.6 is possible to see various examples of module and task calls.

Thanks to the use of the colon and the arrow symbols, it is easy to recognise the

parameters and the input/output IFOs for the different remote calls. The modules

used in this table are the same ones declared in table 9.2 and it is possible to see

how the parameter lists match the module parameter declarations. Each module

in table 9.6 has a different number of input and output IFOs and thus this table

shows different methods to indicate input and output IFOs lists. The first module

(line 3) has both input and output IFOs. The second module (line 5) does not have

any input or output IFOs. The third example (line 7) has only output IFOs while

the last module has only input IFOs. In the case of a module call without output

120

ADL: Language and Compiler

Table 9.6: Example of module calls in ADL

1 algorithm:

2

3 modex1(a,b,c,d):(A,B,C)->(C);

4

5 modex2(f,g):()->();

6

7 modex3(vec,mat):()->(A,B);

8

9 modex4(ndim,dsize):(A);

10

11 taskex1:(A)->(B,C);

12

13 taskex2:(A);

IFOs, it is possible to write the arrow symbol followed by an empty list, as in the

second example, or to simply indicate only the input list, as in the last module ex-

ample of line 9. Table 9.6 shows also two examples of task calls (line 11 and 13).

It is possible to see that a task call does not have the list of parameters before the

colon. While after the colon, the same rules of a module call, for input and output

lists of IFOs, are applied for a task call.

A remote task executes a specific function in the remote machine. Therefore,

the IFOs of a task call represent the arguments used in the calling sequence of

this underlying function. Usually a remote task is composed of many IFOs that

are not always significant to generate a task graph. An IFO is significant when

contains important data for the algorithm and when is not a scalar, i.e the IFO

may be a large object and thus have an impact on data communication. The non-

significant IFOs are, for example, size of arrays, flags or return value arguments of

the underlying function (see arguments N, NRHS, LDA, LDB and INFO of the task

dgesv in table 9.4). These arguments are important for the normal execution of the

underlying function, and thus of the remote task call, since they can change the

final data. However, the ADL compiler does not needed to know any information

about these non-significant arguments to generate a task graph. The task call

examples previously introduced in table 9.6, and also all the ADL code examples

121

ADL: Language and Compiler

of chapter 8, contain only significant IFOs in the lists of input and output. This

choice was made to simplify the reading and understanding of the language.

Table 9.7: Example of dgesv task call in a ADL module

1 module ex5(int n, int nrhs, int lda, int ldb) {

2 component:

3 task "blas.idl" dgesv;

4

5 IFO:

6 DOUBLE(lda)(n) A;

7 DOUBLE(ldb)(nrhs) B;

8 DOUBLE(n) IPIV;

9

10 algorithm:

11 dgesv:(@,@,A,@,B,@)->(A,IPIV,B,@);

12 dgesv:(@n,@nrhs,A,@,B,@)->(A,IPIV,B,@);

13

14 inout:

15 }

Table 9.7 shows an example of two more realistic task calls, since the task

dgesv contains non-significant IFOs in the input and output lists. There is a spe-

cial symbol called ignore (@) in the task calls. This symbol indicates that the IFO

at that particular position in the task call is non-significant to generate a task call

and thus can be ignored. In the task call of line 11, the application programmer

indicates that ADL compiler can ignore the first, second, fourth and sixth input el-

ements (N, NRHS, LDA and LDB in table 9.4) and the last output element (INFO).

In some cases, a task call may have a high number of consecutive non-significant

IFOs. It can be tedious and error prone to write the symbol ignore for each of

these IFOs. An alternative solution is to utilise the special symbol ellipsis (. . .) to

indicate that all the following IFOs in the list can be ignored.

In the declaration of A, B and IPIV of table 9.7 (respectively line 6, 7 and 8),

the parameters used in the round bracket to indicate the sizes of IFOs match the

arguments used to declare the sizes of vector and matrix arguments in the dgesv

definition of table 9.4. For example the IFO declaration “DOUBLE(lda)(n) A” in

122

ADL: Language and Compiler

the ADL code corresponds to the “A[LDA][N]” matrix argument declaration in

the GridSolve IDL code.

The ADL compiler uses the formula specified by the COMPLEXITY keyword

in the GridSolve IDL file to calculate the computation load of a task. In the dgesv

example of table 9.4, this formula includes the N and NRHS arguments of the

function calling sequence. Therefore, the ADL compiler needs the values of these

two arguments to calculate the computational load of the dgesv task. In the ADL

example of table 9.7, the ADL compiler cannot retrieve the values of these two

arguments from the task call of line 11, since the symbol ignore is used in the

input list. In this particular case, the values of the function arguments N and

NRHS correspond to the values of the ADL parameters n and nrhs. However, it is

not possible to use directly these two parameters in the task call input list, since

only IFOs can be passed in the input and output lists of a task or module call.

The solution implemented to solve this problem is to use the symbol ignore (@)

to specify an expression (called an “at expression”) which transforms a parameter

or a variable into an IFO. This expression allows the compiler to link the value

of the indicated parameter to the relative function argument. Table 9.7 shows an

example of this specific expression on the task call of line 12. It is possible to

see that the parameters n and nrhs are included after the symbol ignore in the

two first element of the input list. This action links the values of these two ADL

parameters to the function arguments N and NRHS. Therefore in this example, the

ADL compiler calculates the computational load of the task using the values of n

and nrhs in the complexity formula.

9.1.5 Inout

The input and output IFOs of a module, which are passed during a module call,

can be declared in the inout section of the module definition. The syntax of the

input IFOs declaration is composed of the keyword input followed by a comma-

separated list of IFO names. This list is then terminated by a semicolon symbol.

In the case of output IFOs, the syntax is the same one, but in this case the keyword

output is used instead of the keyword input. If a module does not have any input

and output IFOs, the inout section can be left empty. In the case that there are no

123

ADL: Language and Compiler

IFOs in one of the two lists, the solution is to use the specific keyword followed

directly by the semicolon symbol, therefore without any IFO name in the list of

names. The two lists of IFOs can be declared in any order in the inout section.

IFOs are passed by reference between

In a module call it is possible to pass, as an argument of the input or output list,

a individual IFO or a multi-dimensional array of IFOs. In the case of a single IFO,

the ADL compiler checks that the type, the number of IFO dimensions and their

sizes are the same between the IFOs of the module call and the corresponding

IFOs declared in the input or output list of the module called. In the case of an

array of IFOs, the compiler also has to check the number of dimensions of the

array and the size of these dimensions.

Table 9.8: An example declaration of input and output IFOs lists in an ADL

module

1 module ex6(int n, int size, int i){

2 component:

3 task "example.idl" sum;

4

5 IFO:

6 DOUBLE(size) A[n],B[n],RES;

7

8 algorithm:

9 sum:(RES,A[i],B[i])->(RES);

10 if(i<n)

11 ex6(n,size,i+1):(RES,A,B)->(RES);

12

13 inout:

14 input RES,A,B;

15 output RES;

16 }

Table 9.8 shows an example of the syntax used for the declaration of the input

and output lists of IFOs. In this example, the module is recursive and it takes as

inputs three elements and as an output only one element. All these elements are

vectors of type double (see IFOs declaration in line 6). The first input (RES) is

a single IFO while the other two inputs (A and B) are arrays of IFOs. The only

124

ADL: Language and Compiler

output element of the module is the IFO RES that is also the first input element.

The arrays of IFOs are indicated using only the name of the arrays in the input list

declaration, without the need of any other symbol (line 14); this is as the input list

of the module call (line 11). As previously mentioned, the ADL compiler knows

that A and B in the input list declaration are arrays of IFOs and therefore it checks

that the elements in the module call input list are arrays of IFOs with the same

characteristics.

9.2 Compiler

The main objective of the ADL compiler is to allow an external code (such as a

SmartGridRPC middleware) to easily obtain at run-time a task graph of a module;

where the task graph can be changed depending on the values of the parameters

passed.

During design time, there were three possible techniques that could have been

deployed in order to achieve this result. The first technique is to make the compiler

directly output the task graph, given the ADL code and the value of the parameters

as inputs. The task graph would be saved in a file using a special data structure

and then it would be loaded into the external code at run-time from this file. The

second technique is to directly insert parts of the compiler functionality into the

external code at run time. The compiler would parse the ADL code and then yield

a special tree structure that corresponds to the ADL code of the module, such as

a syntax tree. This tree structure would be saved in a file that would be loaded

by the external code at run-time. Then, the external code would traverse this tree

structure depending on the values of the parameters and during this traversal of the

tree the task graph would be generated. The third technique that was considered is

to make the ADL compiler yield a C language code that contains special methods

and structures which can be used at run-time to generate the task graph. The code

yielded would be specific to the module that was used as the input of the ADL

compiler. At run-time, the external code has only to call these special methods by

passing the desired values of the parameters.

The main drawback of the first technique is that the task graph is fixed at run

time. This is against the main objective of ADL, which is to be able to change

125

ADL: Language and Compiler

the task graph at run-time depending on the value of the parameters, therefore this

technique was not considered. The second technique has the small issue that, in

order to execute some of the compiler functionalities, the external code needs to

load part of the compiler code and thus to have a deep integration with the com-

piler internal implementation. Furthermore, this technique has the drawback that

the action of loading the tree structure from a file and of traversing the tree are

very time consuming. The third technique has the small issue that the external

code needs to be linked together with the code generated by the ADL compiler.

However once this is done, for example by creating a library with the code gener-

ated, the final application does not need to keep any link to the compiler. Given

that in the case of the second technique the loading and traversing of the tree is

happening for every execution, while for the third technique the code generated

needs to be compiled only once and then the execution is really fast, the third tech-

nique is more favourable. Therefore, we chose to implement the third technique

for the ADL compiler.

Task Graph

C Files

"example.adl"
".adl" Files

"f i le. idl"
".idl" Files

"example.adl"
".mod" Files

ADL Compiler

C Code

Figure 9.1: Example of the use of the ADL compiler

126

ADL: Language and Compiler

Figure 9.1 shows the various steps of a typical utilisation of the compiler. The

ADL compiler takes as an input a single or multiple files (“.adl” extension) which

contain the module and sub-modules that describe the application’s algorithm.

While the compiler is compiling the ADL code, it fetches the files which contain

the definitions of the sub-modules and tasks that are declared in the component

section. These files are module objects (“.mod” extension) and gsIDL task defi-

nitions (“.idl” extension). At the end of the execution, the ADL compiler yields

a C code file for each module used in the algorithm. In order to generate the task

graph, the external code needs to be compiled together with the yielded code.

9.2.1 Internal Structure

The internal structure of the ADL compiler follows the typical structure of a com-

piler, as shown in figure 9.2 on page 128. It is composed of a scanner (i.e. lexical

analyser), a parser (i.e. syntax analyser), an attribute syntax tree (i.e. intermediate

representation), tree manipulation procedures and a code generator.

The ADL input file is read by the scanner which separates the code into to-

kens. These tokens are recognised in the code using specific rules and regular

expressions. The parser uses these tokens as inputs and then, by following the

grammar that specifies the ADL language, it generates an attribute syntax tree.

During this execution, the parser also reads the information from the gsIDL files.

The parser is a look-ahead LR parser (LALR) and the grammar is written in the

BNF notation (see appendix A). The attribute syntax tree represents, in tree form,

the code parsed in almost a one-to-one correspondence. The attributes of the tree

are used to do the semantic check on the ADL code parsed, such as the correct-

ness of the type and number of the parameters and IFOs in a task or module call.

Furthermore, the attribute syntax tree is the internal structure of the module file

object. Therefore the various module objects retrieved are merged in a singular

tree during the compilation. The attribute syntax tree is used by the code generator

to produce the corresponding C code of the modules.

127

ADL: Language and Compiler

".mod" Files

C Code

".adl" File

Scanner

Parser

Code

Generator

C Code

".mod" Files

".idl" Files
".idl" Files

Trees

Transformation

& Evaluation

Attr ibute

Syntax Tree

Attr ibute

Syntax Tree

Tokens

Figure 9.2: Internal structure of the ADL compiler

128

ADL: Language and Compiler

9.2.2 Output Code

The choice to use the C language as a target language for the code generated by

the ADL compiler was made for three main reasons. The first reason is that the

C language is well-known by the scientific community and therefore it is used in

many scientific applications. Second, the GridSolve middleware and consequently

the SmartGridSolve middleware are written in C, and this simplifies the integra-

tion of the generated code into the SmartGridSolve middleware. Furthermore, C

code can be easily integrated with code written in many other different languages.

Third, the tools used to create the ADL compiler (see section 9.3) are well-suited

to produce a compiler that generates procedural programming languages code, as

it is the C language.

The ADL compiler generates for each module two C functions, called internal

and external. The internal function is used when a module calls another module

inside its algorithm section. Therefore the function of the caller module executes

the internal function of the called module. It is the internal function that contains

the algorithm section of the module. The external function, which has the same

name of the module, is used to interface between the internal function of a module

and the external code. The majority of the structures used to represent the param-

eters, variables and IFOs are initialised in the external function. Furthermore, the

external function needs a common interface between modules in order to permit

the external code to use different modules interchangeably. To achieve this, the

external function utilises the variable arguments list technique, in a similar way

to the printf function call of the C language. In chapter 8, two examples are pre-

sented on how this technique can be used to generate the task graph of a module;

specifically in table 8.2 on page 96 for the conditional algorithm example and in

table 8.4 on page 100 for the adaptive algorithm example.

In order to generate the task graph of a module, an external code (such as

the grpc map method of SmartGridSolve) needs to call the external function of

the module using a special wrapper method. Table 9.9 shows how this wrapper

method is used (in the upper part of the table) and its code (in the lower part

of the table). The wrapper method takes as arguments the pointer to the external

function (i.e. the same name of the module), the pointer to the task graph structure,

129

ADL: Language and Compiler

Table 9.9: Example of the task graph generation in the external code through the

use of the external function and the wrapper method

1 // External code

2 adltg(cndalg,&tg,str,size,cndtrue,cndfalse);

1 int adltg(adlmain_pt ext_func, adltg_pt tg, char *str, ...){

2 adlva_t args; // Variable arguments list

3 va_start(args.va, str);

4 int ret = (*ext_func)(tg,&args); // Calls external-function

5 va_end(adlva.va);

6 return ret;

7 }

and the string and the arguments of the variable arguments list. Inside the wrapper

method: the variable argument list is initialised (line 3); then the external function

of the module is called (line 4) using as arguments the task graph structure and

the variable arguments list; finally the variable arguments list is finalised (line 5).

It is the external function that produces the task graph, which is returned to the

external code through the pointer to the task graph structure.

Pseudo-code of the Output Code

In the following part of this subsection, we introduce the pseudo-code of the code

generated by the ADL compiler for the most important part of an ADL module.

The module used as the base example is in table 9.8 on page 124. This is a simple

module that contains the base functionalities of the ADL language, such as the

parameters’ initialisation, the array of IFOs, the task call, the module call and the

input and output of IFOs.

Table 9.10 shows how the parameters of the module ex6 are initialised in the

generated C code. The upper part of the table shows the portion of the ADL code

considered while the lower part of the table shows the pseudo-code. This pseudo-

code represents the code at the beginning of the external function of the module.

In this particular case, the initialisation of the parameter is straightforward since

all the parameters are single variables (see section 9.4 for multi-dimensional array

initialisation). The variable arguments list that is passed as an argument of the

130

ADL: Language and Compiler

Table 9.10: Example of parameters’ initialisation in the generated C code

1 module ex6(int n, int size, int i)

1: {args is the variable arguments list}
2: init n← first argument of args

3: init size← second argument of args

4: init i← third argument of args

external function is used to retrieve the values of the parameters. These values are

in the same order as the initialisation of the parameters.

Table 9.11: Example of IFOs initialisation in the generated C code

1 DOUBLE(size) A[n],B[n],RES;

1: init array A← n elements

2: for i = 1 to n do

3: init element i of A← size size and type DOUBLE

4: end for

5: ... {Similar initialisation for B}
6: init RES←size size and type DOUBLE

Table 9.11 shows how the IFOs of the module ex6 are initialised in the gen-

erated C code. Also this pseudo-code represents the code at the beginning of the

external function of the module. The array of IFOs A and the array of IFOs B (that

is not shown) are initialised to have the value of the parameter n as the number of

elements of the array. Then for each element in the array, the size of the IFO is

set to be the value of parameter size and of type double. The same size and type

are set for the single IFO RES. In the C code generated, the array of IFOs and a

single IFO are defined using a specific structure that can be managed as a single

element or as an array of elements. This structure allows the code to have an array

of arrays. A similar structure is used for the parameters. When an IFO, an array

of IFOs, a parameter and an array of parameters are passed between internal func-

tions in the C code, they are passed as pointers to their structures. Therefore in the

ADL language, parameters and IFOs are passed by reference between modules.

Table 9.12 shows how the algorithm section of the module ex6 is executed in

131

ADL: Language and Compiler

Table 9.12: Example of the algorithm section in the generated C code

1 sum:(RES,A[i],B[i])->(RES);

2 if(i<n)

3 ex6(n,size,i+1):(RES,A,B)->(RES);

1: input← RES, element i of A, element i of B

2: out put← RES

3: call sum task← input, out put

4: if i < n then

5: input← RES, A, B

6: out put← RES

7: parameters← n, size, i+1

8: call ex6 internal← parameters, input, out put

9: end if

the generated C code. This pseudo-code represents the code inside the internal

function of the module. It is the internal function of a module that is called when

there is a module call in the ADL code (see line 8 of the pseudo-code). The

interface of the internal function takes as input three lists: the list of input IFOs,

the list of output IFOs and the list of parameters. The order of the elements in

these lists is set by the inout section and by the parameter list of the ADL code of

the module. A task call in the ADL code is represented in the generated code by

a call to a special task function (see line 3 of the pseudo-code). Since task calls

take as arguments only input and output IFOs, the task functions take only two

arguments, i.e. not the list of parameters.

When a task function is executed, a special identifier of the IFO is memorised

for each input and output IFO in a global structure together with a unique identifier

of the task call. At the end of the execution of the external function, this global

structure is populated with all identifiers of the task calls and respective IFOs of

the module and sub-modules. Then, these identifiers are analysed while traversing

the global structure in order to build a list of data and task dependencies. At the

end, the global structure with the list of dependencies is used to build the task

graph of the module. This task graph is then returned to the external code that

called the external function of the module.

132

ADL: Language and Compiler

9.3 Compiler Implementation

The ADL compiler is made using the Cocktail Toolbox [52], which is a set of tools

that allows a user to generate nearly all functionalities of a compiler, and the C

language, which is used to manage and to connect these different functionalities.

The Cocktail tools [53] used in ADL are: (i) rex that builds the scanner from the

scanner specification file; (ii) lark that generates the LALR parser from the parser

specification file; (iii) ast that provides the tree manipulating procedures and is

used to define the structure of the attribute syntax tree; (iv) ag which generates

the procedures that transform and evaluate the attributes of the attribute syntax

tree; and (v) the puma tool which produces the methods that are used to build the

final C code from the attribute syntax tree. These tools take as inputs different

files, which are coded using different languages, and output C code files, which

need to be compiled together to obtain the ADL compiler. Another important

instrument of the Cocktail toolbox is the Reuse library which contains the data

types and procedures that are useful for the development of the compiler, such as

hash map, string manipulation and dynamic array functionalities. In the following

subsections we introduce, for each function of the ADL compiler, the code that

we specified and tools that we used in order to produce that functionality.

9.3.1 Scanner

The scanner of the ADL compiler is made using the rex tool. This tool takes a

specification file as the input, which contains the rules that define the various to-

kens to be recognised, and it outputs C code, which contains the functions that

read the input file and return the tokens matched. The rules in the specifica-

tion file are composed of various different regular expressions. In order to match

all the possible tokens, we defined five families of rules in the specification file,

which allow the scanner to identify: (1) the keywords, such as if, double and

IFO; (2) the symbols, such as open or close parenthesis, semicolon, colon and

full arrow; (3) the identifiers, such as the names of variables, parameters, task and

modules; (4) the mathematical constants; (5) and the strings. Table 9.13 shows the

regular expressions and the rule that recognise the identifiers in the ADL code.

133

ADL: Language and Compiler

Table 9.13: Example of the regular expressions and rules used to generate the

scanner

1 ...

2 D = {0-9} .

3 L = {a-zA-Z_} .

4

5 RULES

6 L(L|D)* : { return IDENTIFIER; }

7 ...

9.3.2 Parser

The parser of the ADL compiler is made using the lark tool. This tool accepts a

specification file as the input, which contains the attribute grammar, and outputs

a C code. The attribute grammar defines the syntax of the ADL language. It

is composed of different rules, where each rule matches a specific sequence of

tokens and executes a specific action. In the case of the ADL compiler, we defined

that for each action a node of the attribute syntax tree is produced, where the

node represents the rule recognised. The C code yielded by the lark tool contains

the method that reads the tokens generated by the scanner and outputs the final

attribute syntax tree.

Table 9.14: Example of the grammar used to generate the parser

1 iteration_stmt = <

2 ...

3 = fs:for_specifier ’(’ e1:expr’;’e2:expr’;’e3:expr’)’ bs:block_stmt

4 { Tree:=mIRFor(fs:ForSpec,e1:Tree,e2:Tree,e3:Tree,bs:Tree); } .

5 ...

6 > .

7 for_specifier = <

8 = FOR { ForSpec:=For; } .

9 = PARFOR { ForSpec:=ParFor; } .

10 > .

Table 9.14 shows the two rules that match the possible variations of a for

statement. The bottom rule (for specifier) recognises the token (FOR or PAR-

134

ADL: Language and Compiler

FOR) used as a keyword of the statement. The upper rule recognises the different

expressions of the for statement and the following block of code. The code inside

the curly brackets is the action taken when the rule is recognised. In this example,

the parser generates the node IRFor using the method mIRFor, which is produced

by the ast tool (see the following sub-section), where the leaves of the node are

the expressions of the statement and the attribute is the type of the for statement.

9.3.3 Attribute Syntax Tree

The methods that are used in the parser to produce the attribute syntax tree are

made using the ast tool. This tool takes a file as the input, which describes

the structure of the tree, and outputs a C code, which contains the functions that

generate the tree. The attribute syntax tree is composed of various nodes where

each node represents a syntax rule and contains various sub-trees (leaves) and at-

tributes. Table 9.15 shows the structure of the node IRFor that represents the for

Table 9.15: Example of the code used to generate the attribute syntax tree

1 StmtList =<

2 NoStmt = .

3 Statement = Next: StmtList REV <

4 ...

5 IRFor = [ForSpec: int] IRInit:Expr IRCond:Expr

6 IRIncr:Expr IRBody:StmtList.

7 ...

8 > .

9 > .

statement. The arguments of the method used to build the node, mIRFor (pre-

sented in the previous table), are the elements defined in the structure of the node.

In order to simplify the generation of the attribute syntax tree, we defined its struc-

ture as similar as possible to the grammar used by the parser; thus similar to the

syntax of the ADL language. The attributes of the attribute syntax tree are evalu-

ated by specific methods that are generated using the ag tool. We specify for each

node of the tree and for each attribute of the node a distinct computation. These

computations are used to analyse the semantic of the ADL code.

135

ADL: Language and Compiler

9.3.4 Code Generator

The code generator functionality takes as the input the attribute syntax tree and

produces the target C code. This target code contains the internal and external

functions that are used at run-time to build the task graph of the module.

The code of this functionality, which is part of the ADL compiler, is made

using the puma tool and a specific input file. The code generated by puma works

by traversing, multiple times, each node of the attribute syntax tree. During the

traversing, the code matches the node traversed, and the specific values of the

attributes and the leaves of the node, with an action to take. The nodes to recognise

and the respective actions to perform during the traversing of the tree are defined

in the input file passed to the puma tool. For the ADL compiler, we specified that

each action performed writes in a file the target C code that represents the matched

node.

Table 9.16: Example of the code used to generate the target C code

1 IRFor({For},IRInit,IRCond,IRIncr,IRBody),

2 TGCode(TGFile:=TGFile(_,_,FD,NTab),Ret:=Ret):-

3 printTGFile(FD,NTab,0,0,"");

4 Ret:=Ret & TGCodeExpr(IRInit,TG);

5 printTGFile(FD,0,0,1,";");

6 printTGFile(FD,NTab,0,0,"for(; ");

7 Ret:=Ret & TGCodeExpr(IRCond,TG);

8 printTGFile(FD,0,0,0,"; ");

9 Ret:=Ret & TGCodeExpr(IRIncr,TG);

10 printTGFile(FD,0,0,1,")");

11 Ret:=Ret & TGCodeAlgo(IRBody,TG);

12 RETURN Ret;

13 .

Table 9.16 shows a part of the input file passed to the puma tool that is used to

produce the code generator functionality. This example contains the action taken

when the node traversed is the IRFor node that represent the for statement. The

first line of the example indicates the node to match, the value of the attribute

ForSpec and the value of the leaves. While the lines after the :- symbol indicate

the action to take. In this case, the action prints to file the target C code, with

136

ADL: Language and Compiler

the method printTGFile, and traverses recursively the leaves of the node, with the

method TGCodeEpxr.

9.4 Multi-size Multi-dimensional Array

As previously mentioned, one of the main characteristics of the ADL language is

the possibility of declaring a parameter array where the size of the array is set by

a parameter declared in the same parameters list. This allows a programmer to

create multi-dimensional arrays with multiple sizes for each dimension after the

first one. This technique can be useful to easily declare arrays of IFOs, or tree like

structures of IFOs, where each IFO has a different size.

Table 9.17: Example of the declaration of a multi-size multi-dimensional arrays

with one dimension

1 module msmda1(int ndim1, int sizeA[ndim1]) {

2 ...

3 IFO:

4 DOUBLE(sizeA) A[ndim1];

5 ...

6 }

The table 9.17 shows an example of the declaration of a multi-size multi-

dimensional array and how this array is used to declare an array of IFOs with

different sizes for each IFO. The array in this example has only one dimension

and it is similar to the example shown in table 8.3 for the adaptive algorithm. The

programmer, by setting the value of ndim1 parameter, can decide the number of

parameters in the array sizeA and the number of IFOs in the array A. Then, he or

she can choose the size of each IFO in the array by setting the respective value of

the parameter of the sizeA array.

Table 9.18 shows the pseudo-code of the code generated from the ADL module

previously introduced. This pseudo-code initialises the multi-dimensional multi-

size array of parameters in the first five lines, and initialises the respective array

of IFOs in the following lines of code. The number of elements in the sizeA array

137

ADL: Language and Compiler

Table 9.18: Example of the initialisation of a multi-size multi-dimensional array

with one dimension in the generated C code

1: init ndim1← first argument of args

2: init array sizeA← ndim1 elements

3: for i = 1 to ndim1 do

4: init element i of sizeA← next argument of args

5: end for

6: init array A← ndim1 elements

7: for i = 1 to ndim1 do

8: init element i of A← size (value i of sizeA) and type DOUBLE

9: end for

depends on the value of ndim1. Furthermore, the value of each element in the

array is retrieved from the variable arguments list args. A similar code is executed

for the array of IFOs. The number of elements for this array depends on the value

of ndim1. Then, for each element in the array A, the size of the IFO is set by the

value of the equivalent element (i) of the array of parameters sizeA.

Figure 9.3: Example of a multi-size multi-dimensional array of IFOs with one

dimension

Figure 9.3 shows an example utilisation of the ADL code in table 9.17. The

upper part of the figure presents how the module is called, while the lower part

shows the resulting IFO. The values of the parameters are set through the use of

the string in the grpc map method. The value of ndim is the first number of the

string (3), while the values of the array sizeA are the following numbers inside the

138

ADL: Language and Compiler

pair of curly brackets (300, 15, 70). the number of IFOs in the array A is equal to

the value of parameter ndim1, while the size of the IFOs (the circles in the picture)

are equal to the values of the parameters of sizeA.

Table 9.19: Example of the declaration of a multi-size multi-dimensional array

with two dimensions

1 module msmda2(int ndim1, int ndim2[ndim1],

2 int sizeB[ndim1][ndim2]) {

3 ...

4 IFO:

5 DOUBLE(sizeB) B[ndim1][ndim2];

6 ...

7 }

In table 9.19 there is a more advanced example of the utilisation of the multi-

size multi-dimensional array technique. The array sizeB has two dimensions: the

first dimension is declared using the simple parameter ndim1, while the second

dimension is declared using the multi-size multi-dimensional array ndim2. The

array sizeB is used to set the size of each IFO in the array of IFOs B. It is important

to notice that the parameters used to set the dimension of the array of IFOs B are

the same parameters used to set the dimension of the array of parameters sizeB.

Table 9.20 shows the pseudo-code of the C code generated that initialises the

multi-dimensional multi-size array of parameters with two dimensions, in the first

eight lines. That, in turn, initialises the respective IFO, in the following lines of

code. The number of elements in the first dimension of the array sizeB depends

on the value of ndim1. Then, each element in the first dimension of sizeB is an

array as well, where the number of elements of this array depends on the value of

the equivalent element (i) of the array ndim2 (see line 3). Thus, all the elements

in the first dimension are arrays of different sizes. The value of the elements in

the second dimension of the array sizeB are retrieved from the variable arguments

list (see line 5). The initialisation of the array of IFOs B is similar to one of the

array of parameters sizeB. Thus, B is an array of arrays where all the arrays in

the second dimension have different sizes. Furthermore, all the IFOs in B have

139

ADL: Language and Compiler

Table 9.20: Example of the initialisation of a multi-size multi-dimensional array

with two dimensions in the generated C Code

1: init array sizeB← ndim1 elements

2: for i = 1 to ndim1 do

3: init element i of sizeB← (value i of ndim2) elements

4: for j = 1 to (value i of ndim2) do

5: init element i and j of sizeB← next argument of args

6: end for

7: end for

8: init B← ndim1 elements

9: for i = 1 to ndim1 do

10: init element i of B← (value i of ndim2) elements

11: for j = 1 to (value i of ndim2) do

12: init element i and j of B← size (value i and j of sizeB) ...

13: ... and type DOUBLE

14: end for

15: end for

different sizes.

Figure 9.4 shows an example of utilisation of the ADL code in table 9.19

The values of the parameter are set through the use of the string in the grpc map

method. The value of ndim1 is equal to three and therefore the first dimension

of the array of IFOs B contains three elements. The first pair of curly brackets

in the string have the values (2, 1, 3) of the array ndim2. These values are the

numbers of elements of the arrays in the second dimension. The figure shows that

the array in the first position has two elements, the one in the second position has

only one element, while the last array has three elements. Finally, the last pair of

curly brackets in the string contains the values of the array sizeB and thus the sizes

of the IFOs. This last pair is divided in three sub-pairs of curly brackets. These

represent the three elements of the first dimension of the array sizeB. The number

of elements of each one of these sub-pairs is equal to the equivalent value of the

array ndim2. The array of IFOs B is composed of three elements where: the first

element is an array of two IFOs of sizes 100 and 200; the second element is an

array of one element of size 50; and the third element is an array of three elements

of sizes 300, 150 and 70.

140

ADL: Language and Compiler

Figure 9.4: Example of a multi-size multi-dimensional array of IFOs with two

dimensions

9.5 Summary

In this chapter, we have presented the grammar, syntax and semantic of the lan-

guage by doing an in depth analysis of each section of the ADL module. We

have introduced the characteristics and motivations of the language such as the

division between local variables and parameters and the Identify Flying Objects

(IFOs), and the division of the language in modules. Furthermore, we have shown

how a task can be added in the language by using the GridSolve IDL. In the second

part of this chapter, we have introduced the ADL compiler, its internal structure,

and how the code is produced and used to generate the task graph by the Smart-

GridSolve middleware. Furthermore, we have presented how the various part of

141

ADL: Language and Compiler

the compiler (the scanner, parser, attribute syntax tree and code generator) are

implemented using the cocktail toolbox. Finally, we have introduced the multi-

dimensional arrays technique that can be useful to easily declare arrays of IFOs,

or tree like structures of IFOs, where each IFO has a different size.

142

Chapter 10

Conclusion and Future Work

The idea behind the design and development of GridRPC was to create a stan-

dard that provides an appropriate programming model for Grid computing while

meeting the needs of computational scientists. Thus permitting a scientific user to

easily create Grid applications that take advantage of the vast resources available

on the Grid. Since the remote procedure call programming method is a widely

used approach for distributed computing and it is easy to understand and easy to

use, a RPC model adjusted for Grid computing was chosen. The GridRPC pro-

gramming model has several non performance related benefits and thanks to the

experience of developing a Grid-enabled version of Hydropad we have found the

beneficial characteristics of GridRPC to be: (a) an easy and powerful development

paradigm; (b) the ability to simply reuse code and algorithms; (c) the possibility

of exploiting the natural task parallelism of scientific problems; (d) its portability

and (e) the increased control over the application.

Naturally, since the targets of the GridRPC standard are computational scien-

tists, the performance potential of the model and relative middlewares are impor-

tant and this potential has to be applicable to a wide range of distributed scientific

applications. However, we have determined that a comprehensive performance

evaluation of GridRPC middlewares, which shows their limits and benefits for

any types of distributed applications, has never been done. Generally, the only

applications used as performance analysis tools are of classes I and II, which are

ideal to get top performance in a Grid environment. This situation is problematic

143

Conclusion and Future Work

because the objective of reaching a wide audience with the GridRPC standard may

not get achieved; given that many systems exist that are highly specialised in exe-

cuting class I and II applications in Grid environments, such as batch management

systems and stream processing systems.

The need to analyse the performance of GridRPC programming systems also

for applications of class III has motivated us in designing and developing the

GridRPC implementation of Hydropad. This real life tightly synchronised task

parallel distributed application has characteristics that are missing on all the other

applications used to analyse GridRPC middlewares, such as tasks with a balanced

ratio between computation and communication, a high level of data synchroni-

sation between tasks and a minimal task parallelism. This kind of application

represents border line applications that can achieve high performance using Grid

computing. Therefore, Grid-enabled Hydropad is an effective test for GridRPC

programming systems.

In the experimental results using the GridSolve middleware, we have identified

that the performance benefits of the GridRPC implementation of Hydropad ver-

sus the original sequential execution can be grouped into two categories: (1) the

faster solution of a given problem, thanks to the parallel execution of tasks and the

computational powerful servers on the Grid, and (2) the decrease in the amount of

memory used on the client machine, and thus paging for large problems, since the

temporary memory of the remote tasks is allocated on the servers. However, our

experimental results show that the GridRPC version of Hydropad has a faster ex-

ecution than the sequential version only when there are fast client-to-server con-

nection links, i.e. 1Gb/s in these experiments. In fact, in the experiments with

slow client-to-server links the GridRPC version of Hydropad is slower with small

problems than the sequential problems. Despite that, in the same experiments

the GridRPC version of Hydropad achieves faster execution times with problems

larger than the client main memory thanks to less paging on the client machine.

However, considering the limitations in the communication model of GridRPC,

we believe that GridRPC as it stands is not the ideal paradigm for executing tightly

synchronised task parallel distributed application on a Grid environment.

144

Conclusion and Future Work

In order to overcome the communication model limitations of GridRPC and

the restrictions caused by GridRPC individual task mapping, Brady et al. [17] de-

signed an extension of the GridRPC model, SmartGridRPC, and developed the

relative middleware, SmartGridSolve, that permit a Grid application to avail of

collective mapping of a group of tasks, direct server-to-server communication,

broadcast communication and data caching on a server. This is done in Smart-

GridRPC thanks to the detailed information about the underlying algorithm of the

group of tasks stored in the task graph DAG structure. SmartGridRPC, in order

to retrieve this information, define two new methods, grpc map and grpc local,

in the GridRPC API that automatically generate the task graph. These two new

methods are introduced in SmartGridRPC without changing the RPC program-

ming model concept and thus SmartGridRPC maintains the previously discussed

non performance related benefits of the GridRPC model.

In the experimental analysis of SmartGridRPC we have used Hydropad as the

test case by comparing its SmartGridSolve version against the GridSolve and se-

quential ones. Our analysis shows the performance benefits that SmartGridRPC

delivers to class III applications are: (i) improved computation load; (ii) improved

communication load; (iii) further reduced memory usages and paging on the client

machine; and (iv) minimal performance influence by the client-side hardware.

We have shown that the performance advantages generated by the new features

of SmartGridRPC allow Hydropad to obtain quite significant performance gains

in comparison to the GridRPC implementation and to the sequential one. An

important point in the experiments is that these performance gains are not influ-

enced negatively by the bottleneck of a slow client-servers connection and/or low

amount of memory in the client machine as with the GridRPC model. Therefore,

we have shown that SmartGridRPC is an effective alternative tool for computa-

tional scientists to deploy class III applications and thus a wide range of distributed

scientific applications on a Grid environment.

Additional experiments worth investigating would be analysing the perfor-

mance of SmartGridRPC model when the Grid environment is composed of ge-

ographically separated cluster of clusters; since with this set-up new dynamics

such as network delay and server stability would need to be taken into account.

Therefore, a possible future work would be to implement the server side code

145

Conclusion and Future Work

of the various Hydropad tasks using MPI or openMP to utilise the natural data

parallelism of the N-Body, FFT and PPM algorithms. Unfortunately, at the time

of writing the integration of MPI or openMP tasks on SmartGridRPC is not yet

ready.

While the SmartGridRPC programming model achieves high performance on

different types of applications, the performances are dependant on the use of a

task graph that is representative of the underlying application’s algorithm. In this

thesis, we have analysed the automatic task graph generator method of Smart-

GridRPC in the case of irregular algorithm, i.e. algorithm that change the flow of

execution depending on values computed by remote tasks. The problem is that

the automatic task graph generation may not work for this kind of algorithm or

may not generate a representative task graph. We have presented three different

examples of irregular algorithms: (1) iterative algorithm, where the algorithm it-

erates the computation of a problem until its solution reaches a desired accuracy;

(2) conditional algorithm, where the flow of execution depends on a conditional

statement; and (3) adaptive algorithm, where the internal data structure, and con-

sequently the flow of execution, depends on the data processed. In this thesis,

we have introduced three trivial example applications, implemented in GridRPC

and SmartGridRPC, of these irregular algorithms. We have shown in the Smart-

GridRPC examples two techniques that can partially solve these example prob-

lems. These techniques are; modifying the code to map multiple iterations (in the

case of iterative algorithm) and generating partial task graphs by mapping smaller

areas of code where the algorithm is static (in the other two algorithms). While

the first technique generates a task graph that is representative of the algorithm

and permits the application to achieve high performance (the iterative algorithm

is the main algorithm used in Hydropad), the other technique generates small task

graphs that are missing some important information needed to achieve high per-

formance. Therefore, in the case of irregular algorithms, SmartGridRPC cannot

always achieve the highest performance possible.

In order to overcome the problem of the automatic task graph generation with

irregular algorithms, we designed and developed a specific high level language

called Algorithm Definition Language (ADL). This language permits the applica-

tion programmer to specify explicitly the task graph for any type of application’s

146

Conclusion and Future Work

algorithms. The language has the following characteristics: (•) a syntax similar

to C language; (•) it is a modular language and each module is divided into well-

defined sections that specifies distinct parts of the algorithm; (•) it provides a way

of changing the sizes of tasks’ objects from the client code and to calculate the

relative execution time of the tasks; (•) it specifies possible changes in the flow of

task calls and permits a user to select the flow dynamically from the client code;

(•) it highlights the tasks that can be executed asynchronously; (•) it permits an

easy identification of input and output objects of a task; and (•) it provides a tech-

nique to set an eventual client computation and the data objects used on it. The

design objectives of ADL are ease of use and ease of code understanding. The

ADL compiler works by generating C code that can be easily integrated in the

SmartGridRPC client code. Then, the task graph is built at run time in the client

code using functions and structures introduced in the compiler output code.

In this thesis, we have shown how to use ADL to generate representative task

graphs for the conditional and adaptive trivial examples and presented how the ap-

plication user can set the task graph flow and object data sizes from the client code.

In the experimental results, we have compared the execution time of the Smart-

GridSolve with ADL version of the examples versus the SmartGridSolve with

smaller code maps and GridSolve version of the examples. These experiments

show that the use of ADL to explicitly specify the task graph permits Smart-

GridRPC to obtain high performance in comparison to the other two versions,

thanks to more information being contained in the explicit task graph. However,

while these experimental results show that ADL permits GridRPC applications

whit irregular algorithms to obtain high performance in conjunction with Smart-

GridRPC model; since the examples used are artificial, we think that more investi-

gation is needed with additional experimental analysis using a real life application

where the main algorithm is irregular.

The work presented in this thesis shows that is possible to implement itera-

tive, conditional and adaptive applications in SmartGridRPC with good results by

implementing two techniques. The first one is by slightly changing the code to

make the algorithm static (as shown in the example of the iterative algorithm),

the second one is by describing the algorithm and thus the task graph in ADL (as

shown in the conditional and adaptive algorithms examples).

147

Conclusion and Future Work

Future work for the ADL project could include modifying the language and

the compiler output to easily interface with other GridRPC middlewares. This

should be possible by implementing a method that allows the integration between

language and middleware, similar to grpc map, in the other projects. While the

language, other than reading the task information from the gsIDL file, could also

read this information from a Ninf-G IDL. Another option is to let the application

programmer include the information about the task in a special construct similar to

a module. Furthermore, as we have previously mentioned, since the information

needed to generate a task graph is similar to the one needed to generate a workflow,

ADL could be used as workflow generator for workflow management systems.

We think that another important future step for the ADL project that is worth

investigating is to allow the language and the compiler to directly generate the

GridRPC application code. The idea is to execute the task graph generated by

ADL using only the grpc map function in the client code without the need to write

the subsequent GridRPC methods, in a similar but more dynamic way than is done

in DIET with the XML workflow. The language will need further keywords and

special statements in order to do this. These new features would highlight the

changes in the flow of execution of the task graph but would also generate the

normal flow of execution in the client code. This new functionality could permit

a scientific user to easily generate distributed scientific applications since the ex-

pressiveness of the ADL syntax, which easily highlights parallel remote tasks and

the input output data dependencies between tasks, promotes the development of

task parallel applications.

148

Bibliography

[1] EGEE Project. gLite. http://glite.web.cern.ch/glite/, June 2009.

[2] Open Grid Forum. http://www.ogf.org/, June 2009.

[3] XSL Transformations (XSLT) version 1.0. www.w3.org/TR/xslt, August 2009.

[4] K. Aida, Y. Futakata, and S. Hara. High-Performance Parallel and Distributed Com-

puting for the BMI Eigenvalue Problem. In IPDPS ’02: Proceedings of the 16th In-

ternational Parallel and Distributed Processing Symposium, page 177, Washington,

DC, USA, 2002. IEEE Computer Society.

[5] K. Aida and T. Osumi. A Case Study in Running a Parallel Branch and Bound

Application on the Grid. In SAINT ’05: Proceedings of the The 2005 Symposium on

Applications and the Internet, pages 164–173, Washington, DC, USA, 2005. IEEE

Computer Society.

[6] A. Amar, R. Bolze, A. Bouteiller, P. K. Chouhan, A. Chis, Y. Caniou, E. Caron,

H. Dail, B. Depardon, F. Desprez, J.-S. Gay, G. Le Mahec, and A. Su. DIET: New

Developments and Recent Results. In L. et al. (Eds.), editor, CoreGRID Workshop

on Grid Middleware (in conjunction with EuroPar2006), number 4375 in LNCS,

pages 150–170, Dresden, Germany, August 28-29 2006. Springer.

[7] A. Amar, R. Bolze, Y. Caniou, E. Caron, A. Chis, F. Desprez, B. Depardon, J.-S.

Gay, G. Le Mahec, and D. Loureiro. Tunable scheduling in a GridRPC framework.

Concurr. Comput. : Pract. Exper., 20(9):1051–1069, 2008.

[8] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi.

GridAnt: A Client-Controllable Grid Work.ow System. In HICSS ’04: Proceedings

of the Proceedings of the 37th Annual Hawaii International Conference on System

Sciences (HICSS’04) - Track 7, page 70210.3, Washington, DC, USA, 2004. IEEE

Computer Society.

[9] G. Antoniu, E. Caron, F. Desprez, A. Fèvre, and M. Jan. Towards a Transparent Data

Access Model for the GridRPC Paradigm. In S. A. et al. (Eds), editor, HiPC’2007.

14th International Conference on High Performance Computing., number 4873 in

149

Bibliography

LNCS, pages 269–284, Goa. India, December 17-20 2007. Springer Verlag Berlin

Heidelberg.

[10] D. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve Grid Com-

puting System. Concurr. Comput. : Pract. Exper., 14(13-15):1457–1479, 2002.

[11] D. C. Arnold, D. Bachmann, and J. Dongarra. Request Sequencing: Optimizing

Communication for the Grid. In Euro-Par ’00: Proceedings from the 6th Inter-

national Euro-Par Conference on Parallel Processing, pages 1213–1222, London,

UK, 2000. Springer-Verlag.

[12] D. C. Arnold and J. Dongarra. The NetSolve Environment: Progressing Towards

the Seamless Grid. In ICPP ’00: Proceedings of the 2000 International Workshop

on Parallel Processing, page 199, Washington, DC, USA, 2000. IEEE Computer

Society.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi,

P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K.

Weeratunga. The nas parallel benchmarks. Technical report, The International

Journal of Supercomputer Applications, 1991.

[14] M. Beck, D. Arnold, A. Bassi, F. Berman, H. Casanova, J. Dongarra, T. Moore,

G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, and R. Wolski. Middleware for the

use of storage in communication. Parallel Comput., 28(12):1773–1787, 2002.

[15] E. Bertschinger. COSMICS: Cosmological Initial Conditions and Microwave

Anisotropy Codes. ArXiv Astrophysics e-prints, June 1995.

[16] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems, 2(1):39–59, February 1984.

[17] T. Brady, J. Dongarra, M. Guidolin, A. Lastovetsky, and K. Seymour. Smart-

GridRPC: The New RPC Model for High Performance Grid Computing. Technical

Report UCD-CSI-2009-10, School of Computer Science and Informatics, Univer-

sity College Dublin, October 2009.

[18] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve:

Achieving Higher Performance by Improving the GridRPC Model. In Proceedings

of the 9th IEEE/ACM International Conference on Grid Computing (Grid 2008),

Tsukuba, Japan, 29 September - 01 October 2008. IEEE Computer Society.

[19] T. Brady, E. Konstantinov, and A. Lastovetsky. SmartNetSolve: High Level Pro-

gramming System for High Performance Grid Computing. In Proceedings of the

20th International Parallel and Distributed Processing Symposium (IPDPS 2006),

Rhodes Island, Greece, 25-29 April 2006.

150

Bibliography

[20] Y. Caniou, E. Caron, H. Courtois, B. Depardon, and R. Teyssier. Cosmological

Simulations using Grid Middleware. In Fourth High-Performance Grid Computing

Workshop (HPGC’07), Long Beach, California, USA, March 26 2007. IEEE.

[21] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow: Workflow Management for

Grid Computing. In CCGRID ’03: Proceedings of the 3st International Symposium

on Cluster Computing and the Grid, page 198, Washington, DC, USA, 2003. IEEE

Computer Society.

[22] E. Caron, B. DelFabbro, F. Desprez, E. Jeannot, and J.-M. Nicod. Managing data

persistence in network enabled servers. Sci. Program., 13(4):333–354, 2005.

[23] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled

Servers on the Grid. International Journal of High Performance Computing Appli-

cations, 20(3):335–352, 2006. Sage Science Press.

[24] E. Caron, F. Desprez, and D. Loureiro. All-in-one Graphical Tool for the manage-

ment of DIET a GridRPC Middleware. In CoreGRID Workshop on Grid Middle-

ware (in conjunction with OGF’23), Barcelona, Spain, June 2-6 2008. To appear.

[25] H. Casanova and J. Dongarra. NetSolve: a network server for solving computational

science problems. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE

conference on Supercomputing (CDROM), page 40, Washington, DC, USA, 1996.

IEEE Computer Society.

[26] H. Casanova, M. Kim, J. S. Plank, and J. J. Dongarra. Adaptive Scheduling for Task

Farming with Grid Middleware. Int. J. High Perform. Comput. Appl., 13(3):231–

240, 1999.

[27] P. K. Chouhan, H. Dail, E. Caron, and F. Vivien. Automatic Middleware Deploy-

ment Planning On Clusters. Int. J. High Perform. Comput. Appl., 20(4):517–530,

2006.

[28] L. Choy, O. Delannoy, N. Emad, and S. G. Petiton. Federation and Abstraction of

Heterogeneous Global Computing Platforms with the YML Framework. Complex,

Intelligent and Software Intensive Systems, International Conference, 0:451–456,

2009.

[29] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark probes for grid assess-

ment. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th

International, page 276, 2004.

[30] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Tay-

lor, and I. Wang. Programming scientific and distributed workflow with Triana ser-

vices: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1021–1037,

2006.

151

Bibliography

[31] P. Colella and P. Woodward. The piecewise parabolic method (PPM) for gas-

dynamical simulations. Journal of Computational Physics, 54:174–201, 1984.

[32] H. Dail and F. Desprez. Experiences with Hierarchical Request Flow Management

for Network-Enabled Server Environments. International Journal of High Perfor-

mance Computing Applications, 20(1):143–157, 2006. Sage Science Press.

[33] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K. Vahi, and

M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In Proceedings

of 2nd EUROPEAN ACROSS GRIDS CONFERENCE, Nicosia, Cyprus, 2004.

[34] B. Del-Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe. DTM: a service for

managing data persistency and data replication in network-enabled server environ-

ments: Research Articles. Concurr. Comput. : Pract. Exper., 19(16):2125–2140,

2007.

[35] O. Delannoy. YML: A scientific Workflow for High Performance Computing. PhD

thesis, University of Versailles Saint-Quentin, September 2008.

[36] O. Delannoy, F. Emad, and S. Petiton. Workflow Global Computing with YML.

In GRID ’06: Proceedings of the 7th IEEE/ACM International Conference on Grid

Computing, pages 25–32, Washington, DC, USA, 2006. IEEE Computer Society.

[37] O. Delannoy and S. Petiton. A Peer to Peer Computing Framework: Design and

Performance Evaluation of YML. In ISPDC ’04: Proceedings of the Third In-

ternational Symposium on Parallel and Distributed Computing/Third International

Workshop on Algorithms, Models and Tools for Parallel Computing on Heteroge-

neous Networks, pages 362–369, Washington, DC, USA, 2004. IEEE Computer

Society.

[38] F. Desprez et al. DIET User’s Mannual, Version 2.3. INRIA, ENS-Lyon, UCBL,

July 2008.

[39] F. Desprez and E. Jeannot. Adding Data Persistence and Redistribution to NetSolve.

Research Report 2001-39, Ecole Normale Superieure de Lyon, 46 Allee d’Italie,

69364, Lyon, France, 2001.

[40] F. Desprez and E. Jeannot. Improving the GridRPC Model with Data Persistence

and Redistribution. In ISPDC ’04: Proceedings of the Third International Sym-

posium on Parallel and Distributed Computing/Third International Workshop on

Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks,

pages 193–200, Washington, DC, USA, 2004. IEEE Computer Society.

[41] J. Dongarra, K. Seymour, and A. YarKhan. Users’ Guide to GridSolve, Version

0.15. University of Tennessee, Knoxville, TN, USA, 2006.

152

Bibliography

[42] J. Dongarra, K. Seymour, and A. YarKhan. GridSolve: The Evolution of A Net-

work Enabled Solver. In IFIP International Federation for Information Processing,

volume 239, pages 215–224. Springer Boston, November 2007.

[43] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, Jr., and H.-L. Truong.

ASKALON: a tool set for cluster and Grid computing: Research Articles. Concurr.

Comput. : Pract. Exper., 17(2-4):143–169, 2005.

[44] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications

with AGWL: an Abstract Grid Workflow Language. In CCGRID ’05: Proceedings

of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CC-

Grid’05) - Volume 2, pages 676–685, Washington, DC, USA, 2005. IEEE Computer

Society.

[45] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: A Generic Global

Computing System. In CCGRID ’01: Proceedings of the 1st International Sympo-

sium on Cluster Computing and the Grid, page 582, Washington, DC, USA, 2001.

IEEE Computer Society.

[46] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In-

ternational Journal of Supercomputer Applications, 11:115–128, 1996.

[47] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[48] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data System

for Representing, Querying, and Automating Data Derivation. In SSDBM ’02: Pro-

ceedings of the 14th International Conference on Scientific and Statistical Database

Management, pages 37–46, Washington, DC, USA, 2002. IEEE Computer Society.

[49] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A Com-

putation Management Agent for Multi-Institutional Grids. Cluster Computing,

5(3):237–246, 2002.

[50] M. Frumkin and R. F. Van der Wijngaart. NAS Grid Benchmarks: A Tool for Grid

Space Exploration. Cluster Computing, 5(3):247–255, 2002.

[51] C. Gheller, O. Pantano, and L. Moscardini. A cosmological hydrodynamic code

based on the Piecewise Parabolic Method. Royal Astronomical Society, Monthly

Notices, 295(3):519–533, 1998. Blackwell Publishing.

[52] J. Grosch. Cocktail Toolbox. http://www.cocolab.com/en/cocktail.html,

September 2009.

[53] J. Grosch and H. Emmelmann. A Tool Box for Compiler Construction. CoCoLab,

Achern, Germany, 1990.

153

Bibliography

[54] M. Guidolin and A. Lastovetsky. ADL: An Algorithm Definition Language for

SmartGridSolve. In Proceedings of the 9th IEEE/ACM International Conference

on Grid Computing (Grid 2008), Tsukuba, Japan, 29 September - 01 October 2008.

IEEE Computer Society.

[55] M. Guidolin and A. Lastovetsky. Grid-Enabled Hydropad: a Scientific Application

for Benchmarking GridRPC-Based Programming Systems. In Proceedings of the

23rd International Parallel and Distributed Processing Symposium (IPDPS 2009),

Rome, Italy, 25-29 May 2009. IEEE Computer Society.

[56] M. Hardt, K. Seymour, J. Dongarra, M. Zapf, and N. V. Ruiter. Interactive Grid-

Access Using Gridsolve and Giggle. Computing and Informatics, 27(2):233–248,

2008.

[57] R. L. Henderson. Job Scheduling Under the Portable Batch System. In IPPS ’95:

Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing,

pages 279–294, London, UK, 1995. Springer-Verlag.

[58] R. Higgins and A. Lastovetsky. Managing the Construction and Use of Functional

Performance Models in a Grid Environment. Rome, Italy, 25/05/2009 2009.

[59] R. Hockney and J. Eastwood. Computer Simulation Using Particles. McGraw Hill,

New York, 1981.

[60] E. Jeannot and G. Monard. Computing Molecular Potential Energy Surface with

DIET. In ITCC ’05: Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC’05) - Volume I, pages 286–291, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[61] A. Lastovetsky. Adaptive parallel computing on heterogeneous networks with mpC.

Parallel Comput., 28(10):1369–1407, 2002.

[62] A. Lastovetsky and R. Reddy. HeteroMPI: towards a message-passing library for

heterogeneous networks of computers. J. Parallel Distrib. Comput., 66(2):197–220,

2006.

[63] A. Lastovetsky, R. Reddy, and R. Higgins. Building the Functional Performance

Model of a Processor. Dijon, France, April 23-27 2006 2006. ACM, ACM.

[64] C. Lee and D. Talia. Grid programming models: Current tools, issues and directions.

In In Grid Computing: Making The Global Infrastructure a Reality, pages 555–578.

Wiley, 2003.

[65] Y. Li, J. Dongarra, K. Seymour, and A. YarKhan. Request Sequencing: Enabling

Workflow for Efficient Problem Solving in GridSolve. In GCC ’08: Proceedings

of the 2008 Seventh International Conference on Grid and Cooperative Computing,

pages 449–458, Washington, DC, USA, 2008. IEEE Computer Society.

154

Bibliography

[66] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter of idle workstations. In Dis-

tributed Computing Systems, 1988., 8th International Conference on, pages 104–

111, June 1988.

[67] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova. A

GridRPC Model and API for End-User Applications. Technical Report GFD.52,

Open Grid Forum, 2005.

[68] H. Nakada, M. Sato, and S. Sekiguchi. Design and implementations of Ninf: to-

wards a global computing infrastructure. Future Gener. Comput. Syst., 15(5-6):649–

658, 1999.

[69] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato, and S. Sekiguchi.

Utilizing the Metaserver Architecture in the Ninf Global Computing System. In

HPCN Europe 1998: Proceedings of the International Conference and Exhibition

on High-Performance Computing and Networking, pages 607–616, London, UK,

1998. Springer-Verlag.

[70] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition

and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,

2004.

[71] K. Osawa and K. Aida. Speed-up Techniques for Computation of Markov Chain

Model to Find an Optimal Batting Order. In HPCASIA ’05: Proceedings of the

Eighth International Conference on High-Performance Computing in Asia-Pacific

Region, page 315, Washington, DC, USA, 2005. IEEE Computer Society.

[72] M. Sato, T. Boku, and D. Takahashi. OmniRPC: a Grid RPC ystem for Parallel

Programming in Cluster and Grid Environment. In CCGRID ’03: Proceedings of

the 3st International Symposium on Cluster Computing and the Grid, page 206,

Washington, DC, USA, 2003. IEEE Computer Society.

[73] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi.

Ninf: A Network Based Information Library for Global World-Wide Computing

Infrastructure. In HPCN Europe ’97: Proceedings of the International Conference

and Exhibition on High-Performance Computing and Networking, pages 491–502,

London, UK, 1997. Springer-Verlag.

[74] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and

Middleware APIs for GridRPC. In Workshop on Grid Application Programming

Interfaces, In conjunction with GGF12, Brussels, Belgium, September 2004.

[75] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.

Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In

155

Bibliography

Proceedings of the Third International Workshop on Grid Computing (Grid 2002),

pages 274–278, London, UK, 2002. Springer-Verlag.

[76] A. Snavely, G. Chun, H. Casanova, R. F. Van der Wijngaart, and M. A. Frumkin.

Benchmarks for grid computing: a review of ongoing efforts and future directions.

SIGMETRICS Perform. Eval. Rev., 30(4):27–32, 2003.

[77] A. Takefusa, S. Matsuoka, H. Ogawa, H. Nakada, H. Takagi, M. Sato, S. Sekiguchi,

and U. Nagashima. Multi-client LAN/WAN performance analysis of Ninf: a high-

performance global computing system. In Supercomputing ’97: Proceedings of the

1997 ACM/IEEE conference on Supercomputing (CDROM), pages 1–23, New York,

NY, USA, 1997. ACM.

[78] H. Takemiya, Y. Tanaka, S. Sekiguchi, S. Ogata, R. K. Kalia, A. Nakano, and

P. Vashishta. Sustainable adaptive grid supercomputing: multiscale simulation of

semiconductor processing across the pacific. In SC ’06: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 106, New York, NY, USA, 2006.

ACM.

[79] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G: A

Reference Implementation of RPC-based Programming Middleware for Grid Com-

puting. Journal of Grid Computing, 1(1):41–51, 2003. Springer.

[80] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi. Design, Implementation and

Performance Evaluation of GridRPC Programming Middleware for a Large-Scale

Computational Grid. In GRID ’04: Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, pages 298–305, Washington, DC, USA, 2004. IEEE

Computer Society.

[81] Y. Tanimura, H. Nakada, Y. Tanaka, and S. Sekiguchi. Design and Implementation

of Distributed Task Sequencing on GridRPC. In CIT ’06: Proceedings of the Sixth

IEEE International Conference on Computer and Information Technology, page 67,

Washington, DC, USA, 2006. IEEE Computer Society.

[82] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor: a distributed job

scheduler. pages 307–350, 2002.

[83] Y. Yamamoto, H. Nakada, H. Shimodaira, and S. Matsuoka. Parallelization of Phy-

logenetic Tree Inference Using Grid Technologies. In LSGRID, pages 103–116,

2004.

[84] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra. Recent Developments

in GridSolve. International Journal of High Performance Computing Applications,

20(1):131–142, 2006. Sage Science Press.

156

Bibliography

[85] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid

Computing. Journal of Grid Computing, 3(3-4):171–200, September 2005.

157

Appendix A

ADL - Grammar

This appendix presents the context free grammar of the ADL language. The cho-

sen grammar consists of terminals, nonterminals, productions and a start symbol.

They are presented using the following rules:

1. A production consists of a nonterminal (left side), an assignment symbol

(→) and a sequence of terminals and/or nonterminals (right side).

2. Different lines in a production means different choices in the production

construction.

3. Terminals are represented by using monospace strings.

4. Nonterminals are represented by using italic strings.

5. In this appendix some abbreviations are used for the following common

words: (i) expr for expression; (ii) stmt for statement; (iii) arg for argument;

(iv) spec for specifier; and (v) oper for operator.

6. When a nonterminal is introduced and the relative production is not avail-

able in the current section, a reference number of the section containing the

production is added. For example the production of the nonterminal symbol

start (A.1) is in section A.1.

158

ADL - Grammar

A.1 Programs definition

start → translation-unit

translation-unit → definition-seq

definition-seq → root-definition (A.2)

| root-definition definition-seq

A.2 Components definition

root-definition → component-spec (A.4.2) root-declarator root-body

root-declarator → identifier (A.6) ()

| identifier (parameter-list)

parameter-list → parameter-declaration

| parameter-declaration , parameter-list

parameter-declaration → c-type-spec-list (A.4.1) declarator (A.4.4)

root-body → { section-stmt-seq (A.3.4) }

| { statement-list (A.3) }

| { statement-list section-stmt-seq }

| { }

159

ADL - Grammar

A.3 Statements

statement-list → statement

| statement-list statement

statement → compound-stmt (A.3.1)

| labeled-stmt (A.3.2)

| jump-stmt (A.3.3)

| declaration-stmt (A.3.1)

| parallel-stmt (A.3.1)

| expression-stmt (A.3.1)

| selection-stmt (A.3.2)

| iteration-stmt (A.3.3)

| call-stmt (A.3.5)

| inout-stmt (A.3.6)

block-stmt → compound-stmt

| jump-stmt

| parallel-stmt

| expression-stmt

| selection-stmt

| iteration-stmt

| call-stmt

A.3.1 Base Statements

compound-stmt → { statement-list (A.3) }

| { }

expression-stmt → expression (A.5) ;

| ;

declaration-stmt → block-declaration (A.4)

parallel-stmt → parallel compound-stmt

160

ADL - Grammar

A.3.2 Conditional Statements

selection-stmt → if (expression (A.5)) block-stmt (A.3)

| if (expression) block-stmt else block-stmt

| switch (expression) compound-stmt (A.3.1)

labeled-stmt → case constant-expr (A.5) :

| default :

A.3.3 Iteration Statements

iteration-stmt → while (expression (A.5)) block-stmt (A.3)

| do block-stmt while (expression) ;

| f-spec (f-expr ; f-expr ; f-expr) block-stmt

f-spec → for

| parfor

f-expr → expression

| ε

jump-stmt → continue ;

| break ;

A.3.4 Section Statement

section-stmt-seq → section-stmt

| section-stmt section-stmt-seq

section-stmt → identifier (A.6) : statement-list (A.3)

| section-spec : statement-list

| section-spec :

section-spec → IFO

| algorithm

| component

| inout

161

ADL - Grammar

A.3.5 Call Statement

call-stmt → call-identifier call-arg -> call-arg ;

| call-identifier call-arg ;

call-identifier → identifier (A.6) :

| function-expr (A.5) :

call-arg → ()

| (arg-expr-list-ellipsis (A.5))

A.3.6 In & Out Statement

inout-stmt → inout-definition ;

inout-definition → inout-spec arg-expr-list (A.5)

| inout-spec

inout-spec → input

| output

A.4 Declarations

block-declaration → c-declaration (A.4.1)

| component-declaration (A.4.2)

| ifo-declaration (A.4.3)

162

ADL - Grammar

A.4.1 C declaration

c-declaration → c-type-spec-list c-init-declarator-list ;

c-init-declarator-list → c-init-declarator

| c-init-declarator , c-init-declarator-list

c-init-declarator → declarator (A.4.4)

| declarator = c-initialiser

c-type-spec-list → c-type-spec

| c-type-spec c-type-spec-list

c-type-spec → char

| short

| int

| long

| float

| double

| signed

| unsigned

| const

c-initialiser-list → c-initialiser

| c-initialiser-list , c− initialiser

c-initialiser → constant-expr (A.5)

A.4.2 Component Declaration

component-declaration → component-spec declarator-list (A.4.4) ;

| component-spec string (A.6) declarator-list ;

component-spec → function(Future work)

| task(Future work)

| module

163

ADL - Grammar

A.4.3 IFO Declaration

ifo-declaration → ifo-spec declarator-list (A.4.4) ;

ifo-spec → ifo-type-spec

| ifo-type-spec size-spec-list

ifo-type-spec → CHAR

| INTEGER

| FLOAT

| DOUBLE

| SCOMPLEX

| DCOMPLEX

| BYTE

size-spec-list → size-spec

| size-spec size-spec-list

size-spec → (constant-expr-list (A.5))

| (constant-expr (A.5))

A.4.4 Declarator

declarator-list → declarator

| declarator , declarator-list

declarator → identifier

| declarator [constant-expr (A.5)]

| declarator [constant-expr-list (A.5)]

164

ADL - Grammar

A.5 Expressions

expression → assignment-expr (A.5.6)

constant-expr → conditional-expr (A.5.6)

constant-expr-list → constant-expr : constant-expr

| constant-expr : constant-expr-list

at-expr → @

| @ constant-expr

| unary-expr (A.5.2) @ constant-expr

arg-expr → constant-expr

| at-expr

arg-expr-list → arg-expr

| arg-expr-list , arg-expr

arg-expr-list-ellipsis → arg-expr-list

| arg-expr-list , ...

| ...

function-expr → identifier (A.6) ()

| identifier (arg-expr-list)

A.5.1 Base Expressions

primary-expr → identifier (A.6)

| constant (A.6)

| (expression (A.5))

postfix-expr → primary-expr

| function-expr (A.5)

| postfix-expr [constant-expr-list (A.5)]

| postfix-expr [constant-expr (A.5)]

| postfix-expr ++

| postfix-expr --

165

ADL - Grammar

A.5.2 Unary Expressions

unary-expr → postfix-expr (A.5.1)

| unary-oper unary-expr

unary-oper → +

| -

| ~

| !

| ++

| --

A.5.3 Binary Expressions

mult-expr → unary-expr (A.5.2)

| mult-expr * unary-expr

| mult-expr / unary-expr

| mult-expr % unary-expr

add-expr → mult-expr

| add-expr - mult-expr

| add-expr + mult-expr

shift-expr → add-expr

| shift-expr << add-expr

| shift-expr >> add-expr

A.5.4 Selection Expressions

relational-expr → shift-expr (A.5.3)

| relational-expr < shift-expr

| relational-expr > shift-expr

| relational-expr <= shift-expr

| relational-expr >= shift-expr

equality-expr → relational-expr

| equality-expr == relational-expr

| equality-expr != relational-expr

166

ADL - Grammar

A.5.5 Logical Expressions

and-expr → equality-expr (A.5.4)

| and-expr & equality-expr

exclusive-or-expr → and-expr

| exclusive-or-expr ^ and-expr

inclusive-or-expr → exclusive-or-expr

| inclusive-or-expr | exclusive-or-expr

logical-and-expr → inclusive-or-expr

| logical-and-expr && inclusive-or-expr

logical-or-expr → logical-and-expr

| logical-or-expr || logical-and-expr

A.5.6 Top Expressions

conditional-expr → logical-or-expr (A.5.5)

| logical-or-expr ? conditional-expr : conditional-expr

assignment-expr → conditional-expr

| unary-expr (A.5.2) assignment-oper assignment-expr

assignment-oper → =

| *=

| /=

| %=

| -=

| <<=

| >>=

| &=

| ~=

| |=

A.6 Base Nonterminals

identifier → IDENTIFIER-TOKEN

constant → CONSTANT-TOKEN

string → STRING-TOKEN

167

... so long, and thanks for all the Guinness!

