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Abstract

Modern clusters of computers are becoming more and more heterogeneous not only in
terms of their processing units, but also in terms of the underlying network. In grid
networks, it is common to combine optic fiber with Ethernet or Infiniband networks.
These distributed resources have varying network properties, but even supercomputers
using vendor-specific interconnects are often heterogeneous in terms of both latency
and achievable bandwidth between different process pairs. In this sense, network het-
erogeneity is a general problem, with a different magnitude for different domains.

The performance of MPI collective communication operations (e.g. broadcasts)
depends strongly on awareness of the properties of such networks. The advantages of
topology-aware collective communication (in regard to the network) have been clearly
demonstrated in the grid computing domain; this aspect is increasingly important in the
domain of supercomputing. Providing network topology to collective communication
should not be the task of the application programmer; parallel programs need to be
written in a network-oblivious way. For example, the Message Passing Interface was
not designed to require any provisioning of network topology. But it is widely rec-
ognized that topology awareness is needed for optimal performance. In modern MPI
implementations this feature can be included in a transparent way.

In this thesis, we investigate and solve a number of issues when designing effi-
cient collective communication for complex platforms. We first focus on the techni-
cal difficulties of running and configuring MPI for complex grid environments. Grids
are accessible and attractive to many researchers, but difficult to use in the context of
message passing. We propose solutions to both technical and configuration problems.
Then we proceed to develop a novel method of measuring performance, in particular
achievable bandwidth, on a large scale in complex networks. The method is inspired
by peer-to-peer protocols like BitTorrent, and their adaptive nature. The resulting data
represents a simple performance model. We then use data analysis techniques like
clustering methods to recognize bandwidth clusters. We also design a hierarchical
clustering algorithm, which reconstructs the network as a hierarchy. This hierarchy
can be interpreted as a network topology. We are also able to reconstruct topology as a
tree in an alternative method.

Overall, this process results in a generic technique to produce topology from per-
formance, independent of the underlying network technology. To complete the process
of designing efficient communication middleware, we also describe how both perfor-
mance and topology can be used as input for performance- or topology-aware collective
communication. Topology-aware communication has been studied in the past, and we
outline some general hierarchical solutions. In addition, we use a flexible software tool,
which separates between performance models and general collective algorithms. This
allows for easier implementation of performance-aware collective operations.
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Chapter 1

Introduction

1.1 Motivation and Goals
Collective communication is generally defined as communication involving multiple
processes. Collective operations like multicasts and broadcasts are important in com-
puter networks [114], and have been implemented in hardware for some networks like
Ethernet or token ring. Today, networks are more and more complex, they can involve
different transports, and can cross gateways across different subnetworks; for these
complex networks collective operations are usually implemented on a software level.
There is a variety of useful collective operations today, including broadcast, scatter,
gather, and others. In the context of parallel programming, their semantic meaning has
been laid out in the Message Passing Interface (MPI) by the MPI forum [38].

Choosing an optimal algorithm for collective communication is a very complex
task even for simple homogeneous networks, and both model-based and experimen-
tal data is often used for making an optimal decision [118, 98]. When dealing with
complex networks, properties along the links can differ. The naive idea of finding an
optimal communication for a network represented as a graph with various edge proper-
ties unfortunately presents an NP-complete problem. Heuristics can offer an acceptable
solution to this problem. Another challenging problem is the estimation of link prop-
erties for all links, which can be expensive.

The topic of this research is optimization of collective operations for heterogeneous
and hierarchical platforms. The central question we address is this: How to optimize
collective operations specifically for complex platforms? Our work is not concerned
with the general design of efficient collective algorithms, but is focused on the un-
derlying network, its properties, and the most efficient way to implement collective
operations for the network.

Optimized collectives for heterogeneous networks generally follow two main phases
as shown in Fig.1.1. In the first phase, a network model is created which character-
izes the underlying network in some form and way. In the second phase, this model
is used for efficient collective communication. Two different categories of collective
communication for heterogeneous platforms can be identified – topology-aware and
performance-aware collectives. A topology-based model is used in a topology-aware
algorithm. A performance-aware model is used either in a performance-aware algo-
rithm, or in a prediction-based selection from a pool of algorithms.

The following sections give an overview of existing optimization from the perspec-
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Network model

Topology

Performance

Optimized collec-
tive operation

Topology-aware algo-
rithm

Performance-aware
algorithm or prediction-
based selection of
algorithm

(a) (b)

Figure 1.1: General phases of topology- or performance-aware collective communi-
cation. (a) A network model represents topology or performance. (b) Design of a
topology-aware or performance-aware collective communication.

tive of two important and different computer science domains – the domain of High
Performance Computing (HPC), and the domain of distributed computing. We con-
sider both of these domains because the domain of HPC puts significant requirements
on the efficiency of the underlying communication, whereas the distributed systems
domain presents a challenging network with significant level of heterogeneity. Indeed,
the combination of these domains is a fruitful area of research, a prominent example be-
ing the optimization of MPI collectives for wide-area networks. We will detail related
work in this area in Ch. 2. Since our research centers around the underlying platform,
and the HPC and the distributed computing domains differ in the main platforms, ap-
plications, and communication libraries (with some overlap), we give an overview how
collective communication is usually optimized for both of these domains.

1.2 The HPC View of Collectives
The main application domain of HPC are scientific kernels. They implement funda-
mental mathematical operations, which require collective communication when paral-
lelized. Important parallel libraries using MPI collectives include matrix-matrix mul-
tiplication [9], or Fast Fourier Transformation [41]. More recently, some newer trends
are emerging, for example the MapReduce [22] concept, which also can be supported
with MPI collective operations [99].

In high performance computing, two main programming models exist depending on
the programmer’s view of the system memory – the shared memory and the distributed
memory model. In the distributed memory model, it is common to have explicit com-
munication between processes through messages passing. The most popular interface
for this purpose in the last two decades is MPI [110, 47]. Among many other features,
MPI provides two main sets of communication calls – point-to-point calls, and collec-
tive communication calls. Strictly speaking, collective communication calls in MPI are
not required. A programmer can implement a collective using send and receive point-
to-point calls. Such implementation, however, is very likely to suffer from efficiency
and sometimes correctness issues. The collectives in MPI have been adopted early on,
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On top of MPI

Within MPI
Generic optimizations

Below MPI
Protocol- and hardware-
specific optimizations

Figure 1.2: Optimizations of collective operations in relation to MPI - on top, within,
or below MPI. In theory, generic optimizations stand above MPI, but as indicated in
red, in practice their implementation is either above or within an MPI library.

and their impact on applications has been demonstrated [103].
There is a large body of research on optimizing collective MPI operations. Intu-

itively, the goal of all such optimizations is to reduce the global runtime of the com-
munication operations. But there are different ways to achieve this goal. The vastness
of optimizations of MPI collectives has obstructed, rather than helped for any division
of the different types of optimizations into categories. For clarity, in this section we
specify a few categories of such optimizations in regard to the software layer they are
embedded in. MPI is still the most used communication library for high performance
computing, and we classify all existing approaches in their relation to this library. We
present this MPI-centric view in Fig. 1.2. With such a categorization, it is easier to talk
of the particular area of interest in this work and differentiate it from other research
which is also concerned with achieving better performance, but in a different manner.

Optimizations below the MPI layer include tuning of parameters that affect the
performance of the underlying protocol. An important example of such tuning [49]
demonstrates that the TCP window size has a significant impact on MPI communica-
tion on links with a high bandwidth-delay product. Modern grid infrastructures em-
ploying fiber optics over long distances have these properties.

Collective optimizations within the MPI layer can be very broad. Some of these
are implemented within the MPI library because they require access to hardware-
related interfaces. For example, optimizations for Infiniband networks can make use
of Remote Direct Memory Access (RDMA) [85, 81] or multicast calls [55] within
MPI. Other such optimizations include accessing kernel modules like Central Process-
ing Unit (CPU) affinity to control the migration of MPI processes on cores, and others.
Also, some protocols like eager and rendezvous [47], which affect point-to-point and
collective operations, are intrinsic to the MPI communication library.

More generic optimized MPI collective algorithms can be implemented on top of
MPI. The most obvious example is reimplementing a collective on top of the provided
MPI point-to-point calls or MPI collectives.

Still, such generic optimizations are not always implemented on top of MPI, but
sometimes are embedded within the MPI layer. The decision to embed an optimiza-
tion within an MPI implementation in such cases is driven by software development or
other considerations rather than strict requirements. For example, some generic opti-
mizations of collectives are in fact implemented within Open MPI as modules [43].
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1.3 The Distributed Systems View of Collectives
In distributed systems, collective operations also play an important role, but there is
a significant shift in the typical application domains for collectives. There are two
important application domains, which can be implemented with multicast commu-
nication. File distribution is probably the most prominent domain of collectives for
distributed systems. Another example of collectives in distributed system, which has
hugely gained in importance, is video-on-demand.

For both file distribution and video on demand, peer-to-peer computing has come
to play a central role. The BitTorrent protocol [19] is the most popular representative of
peer-to-peer protocols. For file sharing, while naive implementations are possible (e.g.
on top of point-to-point protocols like File Transfer Protocol (FTP)), peer-to-peer file
sharing now plays a central role in large-scale file sharing. For video-on-demand ap-
plications, there are also numerous research efforts to leverage the BitTorrent protocol
for streaming media [100, 21].

1.4 Contributions
The contributions of this thesis span several areas. At the center of our findings is per-
formance measurement, and how it can be used to optimize collective communication
on complex networks:

• We develop a new method for measuring achievable bandwidth at application
level, which relies on the BitTorrent protocol; because it is not exhaustive, it
significantly outperforms the state-of-the-art methods, by several orders of mag-
nitude, for medium- and large-sized networks.

• We demonstrate that for hierarchical Ethernet networks, receiver-initiated multi-
casts can outperform sender-initiated multicasts, including MPI, for large enough
messages. This has only been demonstrated for emulated networks with much
higher heterogeneity before.

• We design performance-aware collective algorithms within our software tools
CPM and MPIBlib. The algorithms generate communication trees on the fly de-
pending on the network properties, and therefore are significantly more flexible
and dynamic than collectives using a fixed schedule.

We also develop some data analysis techniques, which are needed to process the
measurement data:

• We use modularity clustering to efficiently and reliably produce bandwidth clus-
ters from the measurement data.

• We develop a hierarchical clustering method which reconstructs network topol-
ogy as a hierarchy of bandwidth clusters. The basis for the hierarchical clustering
method is modularity clustering, which has only been used for partitioning be-
fore.

• We develop a spanning tree algorithm which reconstructs network topology as a
tree.

• We design a measure of ground truth for simulated networks, which is based on
the achievable bandwidth per connection.
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Our methods for processing performance data into topology allow us to see a dual-
ity between performance and topology. This leads us to classify collective communi-
cation as topology-aware or performance-aware.

The technical contributions of this work are as follows:

• We develop a software tool called MPI-Start, which provides an abstraction layer
for better MPI support on grid infrastructures.

• We design an original algorithm for MPI point-to-point communication across
high bandwidth-delay-product links; the algorithm fragments messages and uses
collective operations; this results in significant speedup whenever end hosts use
suboptimal Transmission Control Protocol (TCP) window size.

• We introduce tracing of BitTorrent communication to a toolkit for tracing and
performance analysis.

• We verify the accuracy of a recently developed simulator for what we call “sim-
ulated tomography”, which allows for experimenting with more complex net-
works. The simulated tomography is the first realistic use case for the simulator.

1.5 Outline
The thesis is structured as follows. We dedicate Ch. 2 to an overview of the related
work in optimizing collective communication. We classify the related work as based
on topology, or based on performance, and observe each of these directions for opti-
mization.

We start our work in Ch. 3 by presenting important issues of running MPI applica-
tions on modern grid infrastructures. Some issues are in the difficulty of successfully
running MPI applications on complex grid platforms. Other issues are in the perfor-
mance of MPI communication, which often needs to be tuned on MPI Point-to-Point
(P2P) level.

In Ch. 4 we introduce a new measurement technique of achievable bandwidth of
collective communication for complex networks. The technique is inspired by BitTor-
rent, and relies on its adaptive nature when muticasting.

The measurement data, however, is relatively “noisy”. Therefore, the following Ch.
5 uses data analysis methods to reconstruct topologies from the measurements. This
includes clustering methods and graph algorithms.

Ch. 6 then observes how the performance data discussed in the previous two chap-
ters can be used in implementing topology- or performance-aware collectives. The
outcome of our methods can be used as input to existing topology-aware collectives;
we also design flexible performance-aware collective communication on top of MPI.

We conclude our work with Ch. 7.
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Chapter 2

Topology- and
Performance-Aware Collectives:
State of the Art

The main approach for optimizing collective communication in complex networks is to
use some sort of a network model in the communication schedule [26]. We can divide
network models into two types: it can be a topology-based model, or a performance-
based model. This naturally leads to topology-aware or performance-aware communi-
cation. This chapter discusses these areas, and shows some of their limitations: In the
area of performance, accurate network models are difficult to use, while in the area of
topology, the difficulty is in an automated topology generation.

We find the distinction between topology and performance important in the course
of the thesis; indeed, an interesting relation between the two exists, which will become
evident in methods like our performance-based topology generation.

2.1 Topology-Aware Collectives
The now common term “topology-aware” seems to originate from the networking do-
main (e.g. [72]), where information from routing tables can help reduce the number
of hops when transferring packets. The central property of this type of optimization
is that it does not rely on actual performance data, but rather on the network topology,
which is often synonymous to hierarchy and structure.

2.1.1 Distributed Systems
In the last 15 years, a significant effort has been made to implement topology-aware
collective operations for wide-area networks, including grid infrastructure. The most
notable examples are MagPIe [69], PACX-MPI [42], MPICH-G2 [64], and StaMPI
[56]. In many ways, these efforts follow similar ideas, but somewhat differ in the
underlying design.

The central idea of these efforts is the minimization of traffic across slow links,
which are usually across different clusters or supercomputers, and the use of native

7
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MPI
imple-
menta-
tion

Depth of sup-
ported topolo-
gies

How is topology pro-
vided

Design of topology-aware
collective

MagPIe Two layers Manually provided
topology

Flat trees for inter-cluster com-
munication, binomial trees for
intra-cluster communication

PACX-
MPI

Two layers Manually provided
topology

A single representative per
cluster is selected, and all rep-
resentatives communicate us-
ing TCP connections; native
MPI for intra-cluster commu-
nication

MPICH-
G2

Many layers
(e.g. WAN,
LAN, intra-
cluster)

Grid middleware Hierarchical design of collec-
tives, native MPI at each hier-
archy level

Table 2.1: Overview of differences between MagPIe, PACX-MPI and MPICH-G2 in
relation to topology.

or optimized MPI communication within. [91] gives a good overview of these imple-
mentations. However, since its main focus is on connectivity issues and network per-
formance, we describe here the generation of topology and its use for topology-aware
collective communication for the three grid-enabled MPI implementations MagPIe,
PACX-MPI, and MPICH-G2.

There is a highly non-trivial problem to be solved in all designs: How to obtain
the underlying topology? The related work usually does not address this question in
great detail, although providing a good mechanism for topology generation would be
desirable for all topology-aware algorithms. PACX-MPI and MagPIe rely on manual
configuration of the so called “meta-computer” by the user. MPICH-G2, on the other
hand, uses the communication component within Globus called Nexus [40] for topol-
ogy discovery.

These libraries also differ in their implementation of topology-aware communi-
cation. PACX-MPI spawns a gateway process per cluster/supercomputer, and these
processes build a top layer of communication; on the local communication layer, the
native MPI implementation is used. MagPIe uses flat trees for communication on the
top layer; for the local communication layer, binomial trees are used. MPICH-G2 of-
fers, in our opinion, the most elegant and generic approach. It creates a number of
communicators per layer (or hierarchy level), which works for any number of layers.
Then collectives like a broadcast are implemented as a sequence of hierarchical broad-
casts. We describe the MPICH-G2 approach in detail in Ch. 6.

Finally, we summarize these different approaches to providing topology, and to
implementing topology-aware collectives, in Table 2.1.

In peer-to-peer protocols, topology awareness is also beneficial to efficiency. The
popular Gnutella protocol, for example, developed a two-layer topology [115] to im-
prove scalability. In this design, each peer is either a top-layer ultrapeer or legacy
peer, or a bottom-layer peer. This topology, however, does not optimize the actual data
transfer between two peers, but the mediation between them. The BitTorrent protocol
in its current specification does not have a concept of a topology. However, topology-
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aware versions of the protocol have been implemented with gains in performance; a
topology-aware BitTorrent client [105] has shown gains in performance and reduction
in traffic.

In distributed systems, methods of topology reconstruction include RocketFuel
[112]; the tool relies on traceroute to reconstruct the underlying physical topology
spanning multiple domains managed by different Internet service providers.

2.1.2 HPC Environments
In HPC environments, topology awareness has recently gained in importance. In the
past, the main concern has been on the general complexity of collective communica-
tion algorithms [118]. However, the advent of many-cores and GPUs in clusters has
introduced a hierarchy, and a heterogeneity, also for intra-cluster communication. In
many ways, the general ideas for topology-aware collectives for HPC platforms are not
new; rather, experiences from MPI implementations for distributed environments can
and should be re-used. One central idea is the hierarchical design of collectives, where
each hierarchy level has its root as representative [63]; this idea, with some modifica-
tions, plays a central role today in the context of many-core nodes, which introduce new
hierarchy levels. Even if such common practices are well established, however, many
technical difficulties exist when implementing topology-aware MPI collectives in well
structured and clean source code. The focus of research in this field nowadays is shift-
ing from the general concepts of hierarchical collectives to technical considerations,
like clean software design and flexibility; this in itself presents a complex engineering
effort. [73] presents a hierarchical framework for collective algorithms called Chee-
tah. [83] is also concerned with hierarchical collective communication, and relies on a
kernel module called KNEM for asynchronous communication and overlap at different
communication levels.

In distributed computing, there are complex algorithms, e.g. based on traceroute,
for such topology reconstruction. For supercomputers or HPC clusters, it should be
easier to provide an automated topology discovery service, since the underlying net-
work heterogeneity is not as high as in distributed computing. However, it is only recent
that portable abstractions have been developed. The hwloc [13] utility is portable and
widely used today for intra-node topology discovery. For some network technologies,
intra-node solutions can be extended to inter-node solutions. One such example are
Infiniband networks, which offer services for topology discovery and routing informa-
tion. Based on such services, [116, 117] develop topology discovery services across
Infiniband clusters, and use them in a topology-aware MPI collective implementation.

In Ch. 5, we design topology discovery methods based entirely on performance
measurements. This is uncommon in HPC environments, but promising; such a topol-
ogy discovery can be used universally across various and complex networks, since it
is based on performance rather than discovery services based on vendor Application
Programming Interface (API) or grid middleware.

2.2 Performance-Aware Collectives
The other popular direction of optimization is performance-aware communication. In
this case, network properties are reconstructed with performance measurements. This
approach is useful when topology information can not be provided or is not sufficient
to determine the performance.
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When performance is used to characterize network properties, it is common to use
communication performance models. But such performance models face significant
challenges. As described in Fig. 1.2, a number of layers exist for the communication
library, and components of each layer impact the performance in some way. Therefore,
it is unrealistic to look for “one fits all” model – its complexity and number of param-
eters would be overwhelming. Instead, it is reasonable to make the assumption that
optimized low level settings are a given, and to focus on the communication as some-
thing generic. In many cases, this notion is too idealistic – e.g. misconfiguration of the
underlying hardware or software (including MPI) is possible, and then incorporation of
additional parameters is necessary to reflect these irregularities. Configuration issues
are not central to us, but they affect our work as well (see Ch. 3).

A significant advantage of an accurate communication performance model is that
it can be efficiently used for a wide range of optimized collective operations. The use
of the model consists of two important phases, as outlined earlier in Fig.1.1:

• In the first phase, the model parameters are estimated.

• In the second phase, some form of optimization is targeted – either through
prediction-based selection, or through a design of new algorithm.

For clarity, each time we introduce a model we will briefly address the issue of
parameter estimation, and how the models can be used on the example of a broadcast
operation.

2.2.1 Homogeneous Performance Models
The simple Hockney model [53] is the most comprehensive performance model of
point-to-point communication, and is the common starting point for modeling collec-
tive algorithms. If the latency is α and the reciprocal value of the bandwidth is β, the
time T to transfer a message of size m is given as:

T (m) = α+ β ∗m (2.1)

The estimation of model parameters is trivially done with ping-pong benchmarks
with different message sizes, and tools like NetPIPE [109] can be used.

As a simple example of predicting collectives, let us consider the binomial tree
broadcast operation. For p participating processes, it can be trivially predicted [118] as

T (m) = dlog(p)e ∗ (α+m ∗ β) (2.2)

Numerous early efforts exist to design efficient collective operations on networks
with heterogeneous links with the Hockney model. A feature they share is the use
of a heuristic to provide an efficient communication schedule rather than an optimal
one. An intuitive idea is to use minimum spanning tree algorithms and modifications
thereof, using the communication cost as edge property [8]. The authors construct
performance-aware communication using Prim’s minimum spanning tree algorithm.
While the principle tree construction is identical, there are variations in the used edge
cost when processes i and j are communicating. Three variations are proposed:

• In complete agreement with the heterogeneous Hockney model, use as edge cost
αij +m ∗ βij .

• In addition, include a factor Ri, the ready time of sender i: Ri + αij +m ∗ βij .
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Figure 2.1: LogP example: Even basic predictions for collectives require consideration.
Depending on o and g, completion can either take (g + 2 ∗ o+ L) or (3 ∗ o+ L).

• In addition, include a look-ahead factor into the edge cost: Ri+αij+m∗βij+Lj ,
where Lj is the look-ahead. Lj is taken as the minimum cost according to the
Hockney model of node j communicating to any of the unassigned nodes.

All of these variations are demonstrated to optimize communication in simulated
settings, coming close to the optimal communication schedule.

Other heuristics of trees with binomial or other structure also exist, for example
considering overlap of communication [51]. Interestingly, it is not always the case that
complex heuristics result in better efficiency – some evidence suggests that even a sim-
ple heuristic based on a fixed tree structure with reordering of processes can produce
efficient communication trees [28].

A more advanced model is the LogP model [20], which has an upper bound L on
latency, overhead o, gap per message g, and the number of processors P. The increase
in parameters allows separate contributions for the network and processors at each
machine – with g and L being network-dependent, and o being processor-dependent.
And yet, a number of questions arise. While conceptually we can differentiate between
the processor- and network-dependent contributions o and g, it is unclear where to
draw the line between these contributions and what benchmarks should be performed
in order to accurately estimate these parameters. This might be unproblematic for
point-to-point communication, but is more important for collectives.

There are also other challenges to these parameters. The gap g and the overhead
o parameters overlap in time. Consider for example a trivial broadcast between 3 pro-
cessors as shown in Fig. 2.1. The prediction depends on the relation between g and o,
since they overlap in time at each node.

Let us use this model to predict the familiar binomial tree broadcast for small mes-
sages. If we consider that for small message size m the gap g is small, we make the
assumption g < 2 ∗ o+ L, resulting in [54]:

T = dlog(p)e ∗ (2 ∗ o+ L) (2.3)

An extension of this model – LogGP model [1] – introduces the additional param-
eter gap per byte G for long messages. The extra parameter accounts for the overhead
of sending one long message, where the prediction for a binomial tree broadcast is

T (m) = dlog(p)e ∗ (2 ∗ o+ L+G ∗ (m− 1)) (2.4)

The PLogP model [71], or the Parametrized LogP model, is another model related
to LogP/LogGP model. It has the same 4 parameters, but they capture slightly different
properties – we refer to the information provided in the original work for details. An
important feature is that the parameters g and o are not constant, but functions – g(m)
and o(m), and do not need to be linear, but only piecewise linear. This, in principle,
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allows to capture non-linear behavior for varying message sizes, and such nonlinearities
are sometimes observed in MPI (e.g. at the switch point between eager and rendezvous
protocol).

The developers of the model provide a software tool for estimating its parame-
ters. The original work introducing LogP/LogGP does not provide such software, and
only micro benchmarks have been developed for these models. By using the provided
PLogP software, its parameters can be evaluated, and can then in turn be translated into
the LogP/LogGP parameters. The estimation of the parameters is much more com-
plex than with simple models like Hockney. The authors claim that their model can
be efficiently evaluated, because only g(0) benchmarks need to saturate the network.
However, this does not account for non linear behavior of the network, when the cost
of estimating the parameters increases significantly. In such cases, PLogP benchmarks
are increased for more message sizes to extrapolate the non linear runtime more accu-
rately using g(m) and o(m). For example, the authors acknowledge that g(m > 0)
with saturation of a link can take up to 17 times longer per link.

2.2.2 Heterogeneous Performance Models
The motivation for more complex performance models is that predictions for collective
operations are not accurate based on traditional point-to-point models. Even if the in-
dividual contributing factors (network and processor contribution) can be ignored for
point-to-point predictions, these factors are needed when modeling collective commu-
nication. Performance models of heterogeneous networks can follow one of two ap-
proaches – either homogeneous communication models can be applied separately for
each link, or new heterogeneous models can be introduced. To avoid the introduction of
an entirely new model, a simple first step is the slight modification of an existing model
to represent at least some of the heterogeneity of the used platform. On the example
of LogP, it has been recognized early that on sender and receiver side, contributions
can differ for different nodes, and the constant overhead o can be subdivided into sepa-
rate sender and receiver overheads os and or [89]. New heterogeneous communication
models have been proposed [4, 79] with the idea to have more parameters which give
more expressive power and, potentially, better accuracy. Parameters for constant and
variable contributions of the network and sender and receiver are introduced. Here, we
show the point-to-point prediction as given in [4]:

T (m) = Sc + Sm ∗m+Xc +Xm ∗m+Rc +Rm ∗m (2.5)

In this formula, the components Sc, Xc and Rc are the constant parts of the send,
transmission and receive costs respectively. m is the message size, with Sm, Xm, and
Rm being the message-dependent parts. Prediction formulas are provided for various
collective operations – but with more expressiveness of different contributions to the
runtime than homogeneous models. However, the prediction formulas are significantly
more complex. If we consider the binomial tree broadcast, the prediction is:

T (m) = max{T 0
recv(m), T 1

recv(m), . . . , Tn−1
recv (m)} (2.6)

with

T i
recv(m) = T parent(i)

recv + childrank(parent(i), i)

∗(Sparent(i)
c + Sparent(i)

m ∗m)

+Xm ∗m+Xc +RI
m ∗m+Ri

c. (2.7)
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parent(i) is the parent of node i in the broadcast tree, and childrank(parent(i), i) is
the order, among its siblings, in which node i receives the message from its parent.

Unfortunately, the maximum operator cannot be eliminated, and a simpler predic-
tion is impossible in such cases. The reason behind this is that it cannot be determined
in advance which tree path is overall slower – and dominating the runtime – on hetero-
geneous networks.

2.2.3 Estimation of Parameters of Heterogeneous Performance Mod-
els

A significant challenge when increasing the number of parameters of heterogeneous
models is the estimation phase. A model with a large number of parameters capturing
separate contributions in communication is useless if the parameters cannot be prac-
tically established. After all, in real experiments it is the estimation phase that gives
meaning to the model parameters – not an abstract description of what they should rep-
resent. There is good reason to be cautious – the presented model in previous section
claims that two sets of experiments, ping-pong and consecutive sends, are sufficient to
capture all 9 parameters. This is not plausible. For example, no procedure is proposed
for the estimation of the constant sender contribution Sc. Also, the constant network
contribution Xc is sometimes ignored during the estimation phase.

The proper estimation of model parameters is addressed in more recent work [77,
79]. One important observation is that nmodel parameters require the estimation phase
to provide benchmarks which can be formulated as a system of n linear equations with
a single unique solution. It is difficult to design an estimation procedure providing such
a system of equations. However, under certain assumptions it is feasible and is demon-
strated for Ethernet clusters. For a number of collectives, the resulting predictions are
shown to be more accurate than simple model predictions.

2.2.4 Other Performance Models
Performance models are not limited to capturing point-to-point or collective operations
under “ideal” conditions. Another potential use case for such models is capturing con-
tention and/or congestion. The topic is important, with the increase in networking and
memory bus capacity lagging behind the increase of processing units like cores. We
only give a short overview of recent efforts. Simple approaches suggest introducing a
multiplicative factor to the familiar Hockney model, which slows down performance
proportionally to the process number [113]. Other work in this direction introduces
more complex extensions to LogP/LogGP to capture network contention [89]. The
communication pattern of an application as well as the underlying network are ana-
lyzed. While more accurate for the given applications, the model uses a much larger
number of parameters. There are also efforts for new contention models, for example
an experiment-oriented model which estimates penalty coefficients for Infiniband [87],
or a congestion model for hierarchical Ethernet networks [128]. A model capturing the
congestion on Ethernet clusters for collective operations like “gather” is developed in
[76].
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Figure 2.2: Overview of network tomography.

2.3 Network Tomography – Network Models for Non-
Cooperative Networks

We find that the workflow of measurement and subsequent data analysis proposed in
this thesis have a strong resemblance to network tomography. Therefore, we here
shortly introduce this field as well.

Since it was first used about two decades ago [122], the term “network tomogra-
phy” has come to represent an important area of distributed systems research. It sets
out to discover and characterize heterogeneous, complex, and largely uncooperative
networks. Many network tomography methods assume the topology to be known. In
this case, the link properties of interest along this topology are reconstructed. Alter-
natively, the topology may also be unknown, and the reconstruction of both topology
and its properties may be desired. The common ground across all methods is that only
“traffic measurements at a limited subset of the nodes” [18] are possible. Although this
is a generalization, we can think of network tomography as a workflow, in which cer-
tain properties of the physical network are unknown, and there are two distinct phases,
as depicted in Fig. 2.2, which lead to a logical view of the network. The first phase
involves only end-to-end measurements of the network. Based on how these measure-
ments are performed, actively or passively, we can differentiate between passive or
active network tomography.

After measurement data is collected, the second phase of the process always in-
volves the use of very advanced statistical methods for a logical topology reconstruc-
tion. While many metrics can be used, a number of metrics are particularly rele-
vant from the user perspective. Some methods reconstruct a logical network topol-
ogy [32, 102]; some reconstruct internal network loss [121, 15, 102], some recon-
struct bandwidth [11, 80]; more recent efforts reconstruct logical router-level topology
[94, 35].

In the sense of reconstructing logical network properties, which do not need to
be identical to the underlying physical topology, the term Metric-Induced Network
Topology (MINT) [6] has been introduced. The main sets of problems associated with
MINTs are then topology inference and topology labeling. Inference is the reconstruc-
tion of a topology based on a metric. Labeling is not only the reconstruction, but also
the generation of labels along the edges of a topology.

Network tomography in effect creates a network model based on performance mea-
surements. As such, this field of distributed computing is related to the performance
models of HPC platforms. In particular:

• Topology inference could be a useful mechanism in complex HPC networks,
which currently use manual configuration or very limited topology discovery
mechanisms.

• Topology labeling of properties like latency or bandwidth is comparable to the
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estimation of model parameters for models like the simple Hockney model in the
context of HPC platforms.

The main difference between network tomography and performance models for
HPC platforms is that in network tomography, the underlying network is significantly
more complex, non-cooperative and difficult to measure reliably than on HPC plat-
forms. For this reason, network tomography often needs to establish a solid theoretical
foundation on which it builds when reconstructing the properties of interest. In con-
trast, HPC clusters are always a controlled environment with fully cooperative and con-
trollable end hosts, which makes measurement procedures easier and more reliable.
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Chapter 3

MPI Support on a Grid

The general idea of a grid is to offer powerful computing and storage resources in a
transparent way [39]. Grid infrastructures across the world are very important to the
broader community of scientists, because they are easily accessible, and also afford-
able. Unfortunately, providing support for efficient MPI job execution is not simple
for grid platforms. We need to address existing issues before we can proceed to higher
abstractions like collective communication.

On the one hand, setting up even a suboptimal and simply functional grid environ-
ment for MPI-parallel applications is technically challenging. We describe one way to
resolve many technical issues – a sort of abstraction layer supporting the end user, and
the grid middleware.

On the other hand, the issue of performance is also central to MPI-parallel ap-
plications, and one which is also difficult to resolve in heterogeneous environments.
We detail common performance problems with using long-haul TCP connections with
MPI, and describe a number of solutions.

3.1 Resolving Technical Issues
During the deployment of large European grid infrastructures, it became evident that
the MPI support is lacking. In a report of the MPI Task Force of the EGEE user com-
munity [90], scientific communities “reported that only 7 sites from 26 supporting both
MPI and its virtual organization ran their applications without errors”. In the course
of the EU-funded project Int.EU.Grid [86] we developed mechanisms to improve the
support for running MPI applications on grid infrastructures.

The approach to resolving technical issues in a grid depends on its design. From our
experience, grids can be organized in various ways, and one central aspect is the level
of software and hardware heterogeneity in a grid infrastructure. Int.EU.Grid supported
a substantial level of heterogeneity at each of its compute sites. To keep the process
of booking resources and running MPI-parallel jobs transparent, it was necessary to
introduce an abstraction layer into the middleware. In Int.EU.Grid, this was achieved
with the help of two software components:

• The CrossBroker [37], a job management service, was developed in the course
of multiple grid projects, including Int.EU.Grid.

• A set of modular scripts (MPI-Start) was developed for Int.EU.Grid.

17
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Figure 3.1: MPI-Start architecture

The CrossBroker communicates some settings to MPI-Start through environment
variables; other settings can be found automatically.

MPI-Start [27] was developed as a framework to support a number of heteroge-
neous components in a transparent way for the end user. The architecture of MPI-Start
is shown in Fig. 3.1. The three core modules are job schedulers, hooks for file systems,
and MPI implementations:

• The supported job schedulers include Platform LSF, Torque PBS, SGE.

• File systems using Network File System (NFS), and non-shared file systems, are
supported.

• As intra-site MPI implementations, both Open MPI and MPICH are supported.
For inter-site MPI jobs, PACX-MPI is supported.

For site administrators, this leads to a larger degree of freedom in the installed
schedulers or MPI libraries. For the end users, this enables the transparent execution
of MPI jobs. For example, in the presence of CrossBroker and MPI-Start, an end user
can submit an MPI-parallel job within Int.EU.Grid sites as follows:

Executable = "mpi-test";
JobType = "Parallel";
SubJobType = "openmpi";
NodeNumber = 16;
StdOutput = "mpi-test.out";
StdError = "mpi-test.err";
InputSandbox = "mpi-test";
OutputSandbox = {"mpi-test.err","mpi-test.out"};

To understand how this process abstracts away technical details, we summarize
how parallel job submission was done on standard EGEE sites. One option was for
the user to write a set of complex and very error-prone shell scripts for running MPI
applications. Alternatively, the user could manually inject MPI-Start for each parallel
job. This was not necessary in the given example submission file since the CrossBroker
automatically calls the installed MPI-Start package for parallel jobs.

Apart from this basic functionality for running MPI applications, the support ex-
tends to more advanced concepts. As an example, the hooks framework in MPI-Start
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can be used to inject user-defined scripts before, during, or after execution of MPI ap-
plications on sites. These scripts enable features like application compilation, or use
of advanced tools (e.g. profiling tools) to understand application performance. Other
advanced concepts include cross-site execution of MPI applications; this has been en-
abled once again through an orchestrated effort of the CrossBroker, MPI-Start, and
PACX-MPI.

For more recent grid platforms like Grid’5000 [16], the overall software design is
different: Grid’5000 offers less autonomy to local sites. For example, all sites uni-
versally agree on using a standardized job scheduler called OARSub, and all efforts
on inter- or intra-site job reservation are part of its functionality. Other components
can not be standardized, e.g. the MPI library, or the file system. In such cases, an
abstraction layer like MPI-Start is still relevant and useful.

3.2 Resolving Low-Level Performance Issues
So far we have discussed a number of technical issues when using grids for MPI-
parallel jobs. When these issues are resolved, MPI applications can be run success-
fully. However, important performance issues exist with MPI applications across grid
platforms. Some of these issues are quite fundamental, and are relevant both to Point-
to-Point (P2P) and collective communication.

From our experience, one major issue is the proper configuration of TCP and MPI
settings for long-haul connections. [49] describes an important optimization on the
TCP level, which applies to all MPI connections using links with high Bandwidth-
Delay Product (BDP) (as is the case for Grid’5000). The authors introduce a reconfig-
uration as follows:

• As administrator, increase the TCP window size.

• Increase the Eager/Rendezvous threshold within the MPI library.

Both of these steps are necessary for the optimization, and the idea behind is to
avoid synchronization messages for as much as possible, since latency is high. The
impact of the proposed optimizations for MPI and TCP can be very significant: The
authors report an MPI P2P bandwidth of around 100 Mbps before, and around 950
Mbps after the optimization. In our experimental work, we made similar observations.
We describe a very different approach to achieve a comparable optimization in the
following section.

3.2.1 Implementing MPI P2P Communication Using Two-Phase
Linear Scatter/Gather

In [2], an extension to GridFTP called “Globus Striped GridFTP” is described. Strip-
ing data segments at both ends of the network is just one of the interesting features.
More importantly for us, multiple TCP streams are also tested, on a single node at
each end of a network. The authors experimentally show that using multiple streams
leads to increase in performance for a number of settings: Local Area Network (LAN),
Metropolitan Area Network (MAN) and Wide Area Network (WAN). While the rea-
sons behind the performance gains are not analyzed, it is noted that “up to five streams
seem to make a difference in all cases, after which little additional benefit is gained”.
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Figure 3.2: Illustration of proposed MPI P2P implementation as linear scatter-gather
across sites.

For another setting, it is also noted that “parallel streams are more effective with higher
Round-Trip Delay Time (RTT) and with higher packet loss”.

In [29], we propose a related optimization of MPI P2P communication. We look
for possible optimizations of cross-site MPI communication based on following ob-
servation: The achievable bandwidth of long-haul MPI connections was extremely
low (70-80 Mbps) compared to the bandwidth provided by TCP connections, which
approached 900 Mbps. These bandwidth numbers result from measurements with Net-
PIPE [109] using MPI and TCP, respectively. Our approach was to design an original
MPI P2P implementation on top of MPI. After failing to show improvement of P2P
communication by using multiple threads (a hybrid OpenMP/MPI approach), we de-
cided to implement the same idea with MPI processes instead. At the initialization of
the program, we spawn a fixed number of additional MPI processes per node. We also
create a global communicator that includes all processes after this phase. Since this
overhead is only at startup, it is not taken into account in our benchmarks.

The original P2P communication between processes P0 and P1 is divided into two
phases – a scatter phase and a gather phase (Fig. 3.2). Each phase is implemented as
a linear sequence of P2P calls for the different message chunks of the original mes-
sage. To exploit the parallelism of P2P calls, we cannot reuse the scatter and gather
operations provided by the MPI library. The default implementation for scatter/gather
is often based on the binomial tree algorithm, which transfers messages along a bi-
nomial tree. This algorithm is not suitable for exploiting a parallelization of transfer
along a single link, since each link is always used once. The proposed linear scatter/-
gather implementation is a linear sequence of MPI P2P calls. The experiments with
different combinations of P2P calls (non-blocking standard send or blocking standard
or eager send) show that a sequence of non-blocking sends for phase 1 and a sequence
of non-blocking receives for phase 2 perform the best.

For example, if we spawn 2 additional processes at each of two nodes at the initial-
ization, a P2P communication between process P0 on the sender node and P1 on the
receiver node will proceed as follows:

• P2-P5 are chosen from the global communicator to participate in this message
exchange based on the host information for P0 and P1; no extra communicators
need to be created.

• Processes P2-P5 are notified to participate in each subsequent P2P communica-
tion.

• A message of sizeM is fragmented into (n−1) pieces; each helper process now
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Figure 3.3: Comparison of non-optimized long-haul MPI P2P communication and
scatter-gather based P2P communication.

deals with a message of size M
n−1 , withM being the message size, and n the new

process count.

• Processes P0-P5 call the linear scatter implementation using MPI_Isend and
MPI_Recv calls; processes P0-P5 call the linear gather implementation using
MPI_Irecv and MPI_Send calls.

• This delays the switch point of each MPI process from the eager to the ren-
dezvous protocol by a factor (n− 1).

• At the switch point, all MPI sender processes exchange acknowledgments with
the MPI receivers in parallel, i.e. the acknowledgments are pipelined in the
network.

3.2.2 Experimental Results and Interpretation
The proposed scatter/gather implementation of P2P was implemented within the MPI-
Blib benchmarking library (Details in Ch. 6). We display the performance and pattern
experiments in Fig. 3.3.

If we consider the timings in Fig. 3.3a, we realize that each jump for increasing
message size corresponds to a synchronization message. This is reaffirmed by the
fact that the height of each jump approximately corresponds to the round-trip time.
The jumps can be either caused by ACK messages during the transfer of a TCP data
window, or during the MPI-specific rendezvous protocol, which asks if the receiver has
issued an MPI_Recv call. There is a distinct offset in the point of jump when using
1+4 MPI processes at each end of the network instead of 1. This offset happens to
be 5 times, which is not a coincidence. The jump is still of the same height, and we
explain it with an acknowledgment message as explained above. But there is another
important observation here – the acknowledgments of the 5 processes at each side of
the long-haul connection are pipelined. If the acknowledgments were serialized, there
would be no factor of improvement in the new implementation; we would only observe
a shifted timing curve.
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Figure 3.4: Optimizing MPI communication across long-haul connections. Top: stan-
dard MPI point-to-point. Middle: Reconfigured MPI/TCP. Bottom: proposed opti-
mized MPI point-to-point.

Let us compare the transfer times of the original MPI implementations without
modifications, the reconfigured MPI library of [49], and our version:

• The original MPI implementation would have a transfer time

T (M) = α+ β ∗M + tc ∗ b
M

mc
c (3.1)

In our cross-site experiments, a synch message is tc = 0.02s for each fragment
mc = 128KB. This results in a much higher cost than the bandwidth-related
value β.

• The reconfigured MPI library would have T (M) = α + β ∗M . However, the
receiver buffer may overflow when transferring large messages with the eager
protocol.

• Our modified communication has the transfer time

T (M) = α+ β ∗M + tc ∗ b
M

(n− 1) ∗mc
c (3.2)

when using a total of n MPI processes (after spawning helper processes) for the
communication. The rendezvous protocol is employed, and no restrictions exist
on the receiver buffer.

The term b M
(n−1)∗mc

c makes clear that the number of spawned MPI processes
(which is (n − 2)) can be limited if we know in advance the message range of the
deployed MPI application. As an example, in the used test cases, if message sizes
do not exceed 256 KB (which was 2 ∗ mc for the tested settings), spawning only 1
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additional MPI processes (either at sender or receiver side) is sufficient for the best
achievable speedup. In this case, we deal with fragment size of 128 KB in scatter and
gather, which is the borderline of employing the rendezvous protocol. However, as we
discuss in the following section, the proposed solution can also significantly help in
cases of applications with unknown message ranges, and limited receiver buffers.

3.2.3 Future Work
We analyze the advantages and disadvantages of this pipelined acknowledgments so-
lution as compared to the proposed optimal configuration at TCP/MPI level described
in [49]. If the additional MPI processes are spawned only on the source and target
nodes, the proposed solution adds a layer of complexity, and potentially scalability is-
sues, to the standard MPI P2P communication, and requires spawning additional MPI
processes. On the other hand, its primary advantage is that it improves performance
without the need for administrator privileges or MPI reconfiguration.

Significant advantages of the proposed approach can be expected in some scenarios.
Let us observe the producer-consumer problem, in particular with a producer which,
for a limited period, quickly produces large volumes of data, i.e. in the presence of
bursty traffic. If the receiver can not match the speed of receiving and storing this data
in an unexpected message queue, the eager protocol is not useful. We are forced to
use the rendezvous protocol due to limitations in the receiver’s buffer. This excludes
the configuration proposed by related work. But in this case a producer might produce
more data than is available in its sender buffer. If we employ the proposed P2P im-
plementation launching the additional MPI processes on different nodes, the available
buffer space increases proportionally, since the aggregate memory of all nodes can be
used as a larger distributed buffer until the receiver is ready to receive the data. In this
sense, the proposed MPI P2P implementation can increase the tolerance for bursty traf-
fic, and at the same time maintain high bandwidth, across links with high BDP. This is
an interesting area if stream processing systems communicate via MPI, since in stream
processing bursty traffic is common and buffer space is a scarce resource [3].
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Chapter 4

A New Performance
Measurement Technique Using
Adaptive Communication

In this chapter, we experiment with various collective communication mechanisms.
This includes MPI collectives, which are an example of sender-initiated communica-
tion, but also receiver-initiated communication like the BitTorrent protocol. We show
that adaptive receiver-initiated multicasts can be very efficient not only in wide-area
networks, but also in non-trivial local-area networks. Based on this observation, we
develop a new measurement technique for the data flow through the network, which
proves efficient and reliable both in LANs and geographically distributed networks.
The measurement technique builds the first phase of a two-phase reconstruction of net-
work properties; the second phase, which is the reconstruction phase, is presented in
the following chapter.

4.1 Performance of Adaptive Receiver-Initiated Multi-
casts

In the HPC domain, collective communication is traditionally implemented as a fixed
schedule of point-to-point communications. This introduces high requirements on the
selected communication schedule. In general, we have to explore a wide range of
algorithms, and evaluate them based both on analytical and experimental observations
[98]. These principles apply even before we have considered the network performance.

There are alternatives to this difficult optimization task; instead of a fixed schedule
of collective communication, there is the option of an adaptive schedule of communi-
cation. In such a schedule, messages can be delivered to the receivers in more than one
route. The topic has been largely ignored in the HPC domain; yet there are indications
that adaptive communication schedules can perform as good as static schedules, and
are therefore a viable alternative for collective operations on a number of platforms.
An important research effort in demonstrating the good performance of adaptive proto-
cols is [23]. The author examines carefully two types of adaptive multicasting, namely
sender-initiated and receiver-initiated adaptive multicasting. The sender-initiated ver-
sion faces a significant number of challenges like deadlocks, duplicates, and an expo-

25
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nential number of routes for forwarding data. Receiver-initiated multicasts solve most
of these issues, and this is demonstrated in detail with two such solutions called MOB
and Robber.

Robber [24] is the most recent of a series of such adaptive multicast implementa-
tions. Like all its predecessors, Robber incorporates topology information in terms of
intra- and inter-cluster communication in order to prevent unnecessary data transfers
across wide area links. This is a major difference to topology-oblivious protocols like
BitTorrent; still, Robber is the most adaptive of the presented protocols of this work.
Similarly to BitTorrent, the protocol adapts to the network conditions, both on local
and global level. Most of the experimental settings use highly heterogeneous networks.
The emulated scenarios use links with differences in capacity in the factor of 5 to 10.
Experiments confirm that Robber provides comparable performance to sender-initiated
approaches, without any performance-related information through network monitor-
ing. This is encouraging, and poses the question if the good performance of adaptive
multicasts is observed also in other scenarios.

4.2 Introduction to BitTorrent
The measurement technique that we propose in this chapter is based on BitTorrent.
BitTorrent [19] is a peer-to-peer protocol for the decentralized distribution of large
data. One of the most popular private file sharing tools [84], recent years have seen
the introduction of BitTorrent and its derivatives also as official platforms for operating
system releases and the transmission of multimedia stream data (e.g., in [100]). There
are compelling reasons to use BitTorrent for our purposes. The protocol is known to
very well leverage a network’s capacity for file transmission [106]. Related work [33]
has shown the convergence of the protocol; while protocols with faster convergence
exist, the download rate of each peer converges to the upload capacity. This is demon-
strated for heterogeneous peer settings, which are similar to ours. Also, the scalability
of the protocol is excellent; numerous experiments [30, 59] observe linear download
time O(n) with n peers even for up to thousands of nodes. This motivates the use of
the proposed approach for larger and more complex settings.

From the point of view of application development, BitTorrent also offers a large
degree of freedom and adaptation to different scenarios. Only the messages exchanged
between BitTorrent applications are clearly defined, while the protocol logic is mostly
consensus and best-practice based [111, 19]. The general behavior of a BitTorrent
swarm is the following. An initial uploader creates a meta information file about the
content to be shared and publishes it. This file, amongst other information, contains a
sub-division of the shared content into a continuous stream of small pieces. A central
entity (the tracker) then distributes the IP addresses of those interested in the shared
content (the leechers) and those already having it (the seeders). Leecher clients based
on this information then establish individual connections with other clients and ex-
change information about the availability of pieces on their side of the connection. Af-
terwards, they decide which pieces shall be requested from which of the known remote
peers. Upon the reception of a piece request, a client does not directly send over the
data. Instead, peers are choked and not allowed to request or download any data until a
client has decided to explicitly unchoke a peer and to inform this peer about this deci-
sion. The decision of a client to unchoke a part of the interested peers is usually based
on the observed download rate. Typically, only a handful of peers per client are un-
choked (including a randomly chosen peer to avoid deadlock situations – the so called
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optimistic unchoking) and the choking operation is regularly repeated to reward top-
performing uploaders with download slots. This tit-for-tat unchoking scheme is one
of the core principles of BitTorrent. The notion of unchoking in combination with the
relatively small size of the individual exchanged pieces makes BitTorrent well-suited
for our cause, as it establishes both long-lived, high-bandwidth data exchanges as well
as seldom-used low-bandwidth links.

4.2.1 Experimental Work in Hierarchical LANs
In [25], we extend the knowledge of adaptive dynamic protocols to study complex but
less heterogeneous settings, including both the established variety of sender-initiated
MPI broadcasts and a receiver-initiated broadcast (BitTorrent). We perform many ex-
periments using not WAN settings, but LAN settings, which involve switched Ethernet
clusters building a trivial or less trivial hierarchy. It is therefore interesting if in less
heterogeneous settings like hierarchically switched LANs, receiver-initiated multicasts
can compete with sender-initiated multicasts.

We examine the performance of the fastest MPI broadcast algorithms (all of which
are sender-initiated) for a hierarchical switched Ethernet network. Many studies exist
for broadcast implementations in the context of Ethernet networks. The most popular
broadcast implementations in MPI are flat tree, linear tree or binomial tree algorithms,
and pipelined versions thereof (An introduction to MPI broadcast algorithms can be
found e.g. in [123]). [97] studies in particular large message broadcasts for various
Ethernet clusters, and which pipelined implementations are most efficient. For small to
medium sized messages, binomial tree broadcasts or scatter/allgather implementations
are common; for large messages, pipelined algorithms for broadcasts are common;
studies on Ethernet switched clusters show that for sufficiently large messages, the
message size, rather than the process count, dominates the runtime. Then the theoret-
ical lower limit for a broadcast of a message is the transfer time of this message only
between two nodes, since in a pipeline many nodes can overlap their message transfer
to each other. The authors of [97] perform a simple analysis finding that a pipelined
linear tree broadcast without contention and with good segment size comes close to
the theoretical lower limit for large messages on single-switch clusters, as well as on
multiswitch clusters with fully homogeneous network. The theoretical proof is trivial,
and observes that on Ethernet, every node should only have one child, since a fork of
multiple children is a serialization point (serial transfer to each child). The good per-
formance of the linear tree algorithm is also experimentally confirmed for the given
settings. This is indeed the default algorithm for large-message broadcasts in Open
MPI; for MPICH2, the default algorithm is based on scatter/allgather.

In principle, this leaves limited room for improvement: When broadcasting very
large messages (Megabytes) across 10s to 100s of processes, efficient algorithms like
the linear tree algorithm in MPI have a time complexity of O(M) with M being the
message size. With the BitTorrent-based approach, we are not aware of a closed-form
estimation of complexity, and we can only hope to reduce the complexity of sender-
initiated broadcasts by a constant factor.

Inspired by recent observations on sender- and receiver-initiated multicasts, and
some knowledge gaps summarized in Table 4.1, we here build a bridge between the
algorithms used in the high-performance computing domain and the algorithms used
in the distributed computing domain for large message broadcasts. In particular, we
examine if both sender- and receiver-initiated multicasts have their justification when
using homogeneous or less homogeneous hierarchical networks.
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Underlying network Optimal broadcast algorithm
Very homogeneous Linear tree algorithm (static)
Very heterogeneous topology-aware pipelined trees (static)

or receiver-initiated multicasts (dynamic)
Some level of heterogeneity Unknown

Table 4.1: Optimal large-message broadcast algorithms for the two extremes of homo-
geneous or heterogeneous networks according to recent research

4.2.2 Experimental Setup
The network for our experimental setup is a hierarchy of Ethernet clusters (details are
provided in in Sect. 5.4). The used setting has significantly less heterogeneous network
properties than settings usually used in the distributed computing domain, but we do not
consider this a disadvantage. On the contrary, this moderately heterogeneous setting is
more typical for high-performance computing.

The original Python-based BitTorrent client by Bram Cohen is used, with following
minor modifications:

• File I/O was removed. Instead, dummy data strings are generated on-the-fly and
transferred over the network.

• The wall clock time is taken at initiation of the class StorageWrapper and at
download completion in the same class. The time difference is used as reference.

For discovering the runtime algorithm and fragment size for pipelining in Open
MPI we used PERUSE [68]. The decision making process in Open MPI is very com-
plex and runtime checks with PERUSE are a reliable way to find which algorithm is
used for particular process number and message size. For MPICH2, we use related
work and the source code to find which algorithm is being used.

4.2.3 Timing Mechanism Used in BitTorrent and MPI
In this section, we give a detailed explanation of the timing methodology used con-
sistently both in BitTorrent and MPI experiments. This is important since BitTorrent
originally does not provide such timing, while MPI supports timing calls and logical
operations with the collective call MPI Reduce.

The runtime setup for BitTorrent involves starting a BitTorrent tracker and then
launching BitTorrent clients simultaneously identically to MPI program startup. The
execution time of a BitTorrent program is then taken as the wall clock time between the
start of a StorageWrapper instance and the moment download completion is registered.
A BitTorrent client then has to be explicitly terminated since it has no concept of com-
pleting a collective communication. In MPI, a barrier call is made, and then the wall
clock time is taken before and after the broadcast operation. Then, timing mechanism
is as follows:

• In each run and for both types of broadcasts, 64 processes are run, and each of
them provides a different wall clock time to finish. As a reference, we take the
maximum time between all processes both for BitTorrent and MPI.

• We also perform a number of iterations for each run. As a reference, we take the
average of all iterations - again, both for BitTorrent and MPI.
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Figure 4.1: 64 node broadcasts without the main bottleneck link. On this homogeneous
setting, the linear tree algorithm performs best as expected for very large messages, but
BitTorrent also performs well.

For each message size and each setting, we perform 5 iterations for MPI and Bit-
Torrent.

4.2.4 Benchmarks on a Homogeneous Setting
In the first setting, we test the performance of the presented broadcast algorithms with-
out involving the main bottleneck link. We first use 64 nodes on the Ethernet cluster
Bordereau (Fig. 4.1a). Then we use 55 nodes on Bordereau and 9 nodes on Borderline
(Fig. 4.1b). We benchmark three broadcast versions - MPICH2, Open MPI and BitTor-
rent. The used message sizes are 1, 5, 10, 50, 100 and 239 MB. The results for both runs
are similar. They demonstrate that for the message sizes 5 MB and 10 MB, MPICH2
marginally outperforms Open MPI, but Open MPI and the linear tree algorithm is most
efficient for the rest of message sizes. However, the broadcasts with BitTorrent come
very close to the Open MPI broadcasts and even outperform MPICH2 for large mes-
sages. This result is unexpected, since the initial assumption is that BitTorrent-based
broadcasts are not suitable for homogeneous clusters – however, BitTorrent performs
excellent for both settings. The difference to the linear tree broadcast is even minimal
for the second run. We interpret this with the fact that this run involves the Nortel-HP
link as well and this introduces an increase in network heterogeneity.

4.2.5 Benchmarks on More Heterogeneous Settings
In the second setting, we involve the main bottleneck link in two different runs. First,
we use 32 Bordeplage nodes and 32 Bordereau nodes (Fig. 4.2a). Then, we involve
32 Bordeplage nodes, 25 Bordereau nodes and 7 Borderline nodes (Fig. 4.2b). For
the MPI runs, processes are started in the way they are listed. We consider this the
most efficient process-to-node assignment for the linear tree algorithm. Inter-cluster
communication is minimized, and intra-cluster communication has been proved to be
efficient anyway. For MPICH2, there is no simple solution for providing an optimal file
for the scatter/allgather algorithm, and we provide the same process-to-node mapping.
We use the same broadcast implementations and message sizes as before. The bench-
marks show that on both settings, for message sizes of 50 MB and larger BitTorrent
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Figure 4.2: 64 node broadcasts with main bottleneck link. This setting has some level
of heterogeneity, and BitTorrent performs better than MPI for large messages.

(which is oblivious of the topology) outperforms both MPICH2 and Open MPI. A sec-
ondary result is that for the same large message range, the scatter-allgather algorithm
used by MPICH2 outperforms the linear tree algorithm used by Open MPI.

4.2.6 Interpreting the Results
The performance of the linear tree algorithm of Open MPI decreases significantly with
the introduction of a bottleneck link; the throughput decreases by around 50 %. On
the other hand, the binomial tree and particularly the BitTorrent algorithm perform ex-
cellent. The total amount of received data at all processes does not differ between the
different broadcast algorithms. However, the schedule of point-to-point communica-
tion differs between the three algorithms. The MPI tree-based algorithms are fixed,
and data flows in one direction – e.g. the linear tree algorithm only transfers the ex-
act message size once across the bottleneck link. On the other hand, BitTorrent can
use a larger number of parallel point-to-point connections to dynamically schedule the
broadcast. This allows the protocol to utilize the network better. A more detailed anal-
ysis confirms that data is broadcast in different ways for BitTorrent and MPI. In Fig.
4.3, we display a ”profile“ of a 239 MB broadcast with Open MPI and BitTorrent. The
dynamics of data movement in a broadcast is difficult to visualize. We choose a view
representing the amount of data passing through all switches in any direction during
the broadcast. For this purpose we do not use monitoring on the switch level, but a
different approach depending on the library we use. For MPI, we know the underlying
broadcast algorithm (linear tree) and placement of processes, and we can determine the
data movement a-priori. For BitTorrent, as explained in this work, this is not possi-
ble, so we measure traffic through additional profiling at each peer instead. Fig. 4.3
displays the BitTorrent switch traffic in blue, and the MPI switch traffic in green. It re-
veals that inter-cluster communication is more intense with BitTorrent than with MPI –
a typical 239 MB broadcast with the setting of Fig. 4.2b transfers around 3,4 GB across
the bottleneck switch (in any direction) with BitTorrent, and only the minimal 239 MB
with Open MPI. Within clusters however, data exchange with BitTorrent is less intense
than with the linear tree algorithm. This behavior can be partially explained with the
fact that BitTorrent is topology-unaware. However, the protocol observes topology
to some extent, since the intra-cluster communication is still more intense than inter-
cluster communication. Fig. 4.3 suggests that rather than ignore topology, BitTorrent
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Figure 4.3: Data flow in a 239 MB broadcast with BitTorrent and MPI on three Bor-
deaux clusters. BitTorrent transfers are adaptive and follow a different ratio and direc-
tion from the fixed MPI schedule.

uses a different ratio between intra- and inter-cluster communication.
We conclude that in the presence of bottleneck links, BitTorrent dynamically finds

a more efficient schedule for a broadcast than a good tree-based algorithm. As an
interesting direction for future work, this schedule could possibly be used as input
to sender-initiated multicast algorithms. For example, the more intense data transfer
through the bottleneck link seems to improve, rather than reduce performance for Bit-
Torrent. Therefore, the use of multiple spanning trees in parallel in the MPI library
could be explored.

4.3 Bandwidth Measurement Techniques: Related Work
There are good introductions to bandwidth and capacity estimation methods [101, 23].
Among others, they include important definitions on properties like capacity, avail-
able bandwidth, and Bulk Transfer Capacity (BTC), and describe methods to measure
them. These are fundamental and important properties in computer networks; how-
ever, they do not describe the throughput of applications; rather, network properties are
measured under some strong assumptions. We do not strive for completeness here, and
only mention a few examples to illustrate the different goals and assumptions made by
network-centric approaches.

One technique called packet pair technique [17] efficiently measures link capacity;
however, a common assumption when measuring capacity is the absence of cross traffic
when probing the network. A more recent technique called packet tailgating [74] also
measures link bandwidth; however, if there are more than a few hops between sender
and receiver, the technique is inaccurate.

We do not wish to make assumptions on the network, and follow an approach which
is not concerned with a generic network model under ideal conditions; instead, we
are focusing on measuring the bandwidth achieved by end applications. This can in-
clude cross traffic and hardware or software failures. Our measurement tools are either
benchmarking suites, or applications like peer-to-peer clients [30, 31]. We are mea-
suring network properties from an application-centric perspective, mostly interested in
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achievable bandwidth or throughput, and use these terms in agreement with related
work like [23].

4.3.1 Exhaustive Bandwidth Measurements
NetPIPE [109] is among the most popular tools for measuring the maximum band-
width along a link. The design of NetPIPE is ”motivated by the need to assess the
performance of communication bound applications“. The tool is protocol independent;
it attempts to find the saturation point after which no increase in throughput is observed.
The nature of such benchmarks is quite exhaustive. Another tool employing similarly
costly measurements, but with the option of using multiple parallel streams, is iperf
[119].

These tools measure the throughput along a link. For measuring the throughput
for entire networks, it is possible to measure the maximum bandwidth step by step
for each link. However, this approach will not account for links sharing a bottleneck
link. To also be able to identify bottleneck links, similar measurement procedures can
be employed, but using multiple links or paths in parallel. Two essential steps are
generally involved when trying to identify both maximum bandwidth and bottleneck
links:

• In the first step, an intense communication is established along a path until its
capacity is reached.

• In subsequent steps, in addition to the first step, an intense communication is
established along another path, until its capacity is reached; the capacity of the
previous path is reexamined. If no change in bandwidth is observed, then the
links are probably independent – more pairs communicating in parallel could
unveil a bottleneck at a later point. But if the bandwidth of the node pairs under
examination decreases, then it is clear that they share the same physical (and
logical) link.

Following this procedure, experiments are performed until the entire network is
reconstructed. While intuitive, this approach is very expensive. The measurement
procedures have polynomial complexity, even after some optimizations using heuristics
or parallelism.

Related work [11, 80] following these techniques to reconstruct large topologies
belongs to the area of network tomography. While [80] infers a qualitative view of the
network, [11] infers a more quantitative view, including labeling of actual achievable
bandwidth. The most time-consuming phase in these approaches is the bandwidth
measurement.

4.3.2 Measuring Achievable Bandwidth Based on Dynamic Paral-
lel Access

Our measurements differ from the above techniques. Early work [106] uses the term
”dynamic parallel access“ and experimentally verifies that a client using a number of
parallel TCP connections to different servers will download a file with a rate approach-
ing the upload rate of the fastest server. When using a number of parallel connections,
more data will be naturally transferred through the links with higher bandwidth. In-
deed, the BitTorrent protocol, which will be introduced in detail shortly, uses a number
of parallel connections to exploit this network feature.
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Few efforts have explored the use of dynamic parallel access and BitTorrent for
network measurements. A notable example is BitProbes [58], which layers a set of in-
strumented BitTorrent clients (an overlay swarm) on top of existing BitTorrent swarms.
These clients are guaranteed to participate with the rest of the peers due to the opti-
mistic unchoking in the tit-for-tat strategy. To infer capacity, the clients of the overlay
swarm record the arrival times of packets. These arrival times serve as input to a capac-
ity measurement tool called MultiQ [66]. The tool requires ”a significant number of
packets“ to reliably estimate a path capacity; the measurement period in BitProbes is 1
week. The authors claim that BitProbes provides sufficient input to MultiQ for reliable
capacity estimation.

4.4 Formal Definition of Proposed Measurement
In general, the BitTorrent protocol distributes data without requiring the availability
of all peers. In contrast to this common scenario, we use fully synchronized instru-
mented execution of BitTorrent clients until all clients have downloaded a file, which
we naturally call BitTorrent broadcasts. The used metric in all reconstruction methods
is derived from these broadcasts and is bandwidth-related. We observe the communi-
cation network as a directed graph G = (V,E). A file of size M is distributed as M

16KB
fragments of 16KB to all nodes v ∈ V using BitTorrent broadcasts (The actual frag-
ment size is irrelevant for the metric – the 16 KB are simply the observed fragment
size when using the original BitTorrent client). If v1 →i v2 denotes the number of
fragments sent directly from v1 to v2 within broadcast operation i, then we define the
metric w per edge e for one run as

w(e) = v1 →1 v2 + v2 →1 v1 (4.1)

with e = (v1, v2). Since performing more iterations significantly increases the accu-
racy of the metric, for n iterations we simply aggregate the individual runs into

wn(e) =

∑n
i=1 v1 →i v2 + v2 →i v1

n
(4.2)

with e = (v1, v2).
We have instrumented the original Python version of the BitTorrent client written

by Bram Cohen and available in most Linux distributions. We introduce simple and
efficient profiling of the arriving data as follows: At the reception of each data frag-
ment, a counter is incremented associated with the sending peer using a hash table of
counters. At the end of a run, all peers have a record of the source peers and the number
of fragments they received from each peer.

As an example, in a broadcast operation involving 64 nodes on two clusters on one
geographical site, we display measurements for a randomly chosen node in Fig. 4.4.
The bars represent the metric as defined above for 36 iterations for all edges which
include the fixed node. Since the results involve many iterations, the chosen node
exchanges fragments with all 63 peers. For clarity, we have grouped on the left side
the metric values for the 31 peers in the local cluster, and grouped the values for the 32
remote nodes on the right side. While we see a high level of noise, it is also evident
that the metric converges to levels correlated to the achievable bandwidth. The higher
bars roughly correspond to the edges to local nodes, and the lower bars – to edges to
remote nodes.
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Figure 4.4: w36(e) as measured for all edges e to a randomly fixed node (36 iterations).
On the left are edges to local cluster nodes, on the right are edges to remote nodes.

4.5 Efficiency of the Metric
The main strength of our method is that it takes only a single broadcast of a large mes-
sage per run to collect data on a large subset of all possible peer-to-peer connections.
In our setup, the observed complexity of BitTorrent broadcasts is O(M) – linear in the
message size M. We verified experimentally that as we alter the number of nodes, the
BitTorrent broadcast requires nearly constant time. According to practices from high-
performance computing, our reference time for the completion of a BitTorrent broad-
cast is the maximum download completion time of all the BitTorrent clients, which we
start synchronously. For 32, 64 and 128 nodes, the broadcast of a large message (here:
239 MB) always takes about 20 seconds on the Grid’5000 infrastructure, even when
the nodes are spread across 4 geographically distributed sites. Related work [59] also
suggests that a high download rate can be sustained for very large peer numbers; the
number of participating peers in such experiments typically does not alter the estimated
time of O(M) for all peers to download the file. Other work [129] also demonstrates
that the BitTorrent protocol is competitive with client/server architectures in its peak
download rate.

Each step in the algorithms of related work is very time consuming. First, every
link has to be saturated until the maximum bandwidth on that link is reached. This is a
costly operation which incurs heavy network overhead. The second challenge consists
of probing the link bandwidth in parallel for multiple links. This process is repeated
until all nodes have been sufficiently tested. For example, [11] performs such tests
only with at most triplets of nodes. It is stated that triplets are sufficient as long as the
single-link experiments can reach the maximum capacity. Even with this assumption,
all possible triplets need to be tested in the worst case. This step is performed since
it is assumed that there is no a priori knowledge of the topology of the network. The
observed complexity of the algorithm in this case is O(N3), where N is the number of
nodes.

The algorithm proposed by [80], on the other hand, tests pairs incrementally, fully
in parallel and without limiting the maximum number of tested links at a time. In
specific cases, where no interference of links is observed, the complexity is estimated
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Figure 4.5: Distribution of measured metric w(e) for a fixed edge e and 36 independent
iterations.

at O(N2). The only empirical experiments performed are for networks of 20 nodes,
and these take about one hour to complete.

This complexity makes it infeasible to perform such bandwidth-related network
tomography on large-scale computer networks. Related work details this issue and
resorts to running simulations.

4.6 Level of Randomness With Single Runs Using the
Metric

If we examine the volume of exchanged data shown in Fig. 4.4 over a number of
iterations, we notice that a total of 22533 fragments are exchanged with local cluster
nodes, and 6337 fragments are exchanged with remote nodes. This is a clear indication
that with BitTorrent broadcasts, data flows with a preference for high bandwidth links.
Furthermore, we observe this phenomenon quite reliably in our experimental data.

We have previously defined a single run of our metric as transmitting a single file
which takes approximately 20 seconds. As the operation of the BitTorrent protocol
is stochastic, and the data transferred across each link varies from run to run, it is
important to attempt to characterize the accuracy of the metric we have defined for a
single run. Thus, we now observe how the metric fluctuates using one Grid’5000 site
(Bordeaux). We focus on an edge between 2 nodes randomly chosen from within a
cluster. Each run measures the metric w(e) independently (no aggregation is used).
Fig. 4.5 shows the distribution of w(e) along the fixed edge over 36 runs. In 13 of
the 36 runs, the two peers do not exchange any data with each other. In the other 23
runs, the exchanged data varies between 3 and 6304 fragments. This distribution shows
that the variance is very high. For comparison, when running the well known NetPIPE
tool [109] to establish the maximum achievable bandwidth along the link between two
peer nodes on the same compute cluster used above, the variance is very low and the
distribution is dense around 890 Mbps.

Fig. 4.5 suggests that while inexpensive to compute, the metric is very variable for
single runs. With this level of measurement noise and randomness, a good analysis
technique will be needed to extract meaningful data from these measurements.Yet one
important consideration is that our analysis method does not consider each link’s band-
width in isolation, as is the case for more quantitative methods looking for achievable
bandwidth, and this to some extent is a relaxation on the part of measurements.

We briefly list the BitTorrent properties which are responsible for the variance and
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high degree of randomness between single runs of the metric:

• Initially, BitTorrent clients randomly choose their initial peers (adjustments in
the peer selection are part of the protocol for longer runs).

• By default, BitTorrent internally limits the number of parallel uploads to 5, and
this indirectly limits the number of parallel downloads.

• Another protocol feature is that the number of total peers to store is by default
limited to 35. This means that for larger numbers of nodes and a single broadcast,
measurements using this protocol will not provide a complete graph - only a
subset of possible connections will be measured. One solution to this problem
is to aggregate the measurements over a number of BitTorrent broadcasts, as we
shall see.

• Using a BitTorrent broadcast operation means that nodes which are better con-
nected to the ‘root node’ are more likely to receive more fragments from the
root. This is simply due to the asymmetric way data flows in a broadcast oper-
ation as compared to, for example, an all-to-all transmission. However, in our
experiments this was never an issue during the reconstruction and analysis of our
networks. If this affects results in some cases, a simple solution is using different
root nodes over a number of runs.

These are characteristics of the protocol, which, while important for transmission
efficiency and reliability, increase the variance of our measurements, and could make
the reconstruction process hard. Iteration significantly improves the quality of the met-
ric.

4.7 Iteration of BitTorrent Broadcasts and Convergence
While a single broadcast measurement has a high level of noise and randomness, ag-
gregating data over a number of iterations resolves these issues. The BitTorrent pro-
tocol converges to download rates reflecting the upload capacity of links; this has
been demonstrated in [33]. In our experiments, we assume that the upload/down-
load capacity of links is identical. This means that for the metric w(e) we expect:
∀e1, e2 : wn(e1)

wn(e2)
→ bw(e1)

bw(e2)
for n→∞.

In order to quantify the number of iterations needed to sufficiently improve accu-
racy, the key questions are:

• How close is the single run data to an “ideal” representation of the peer-to-peer
bandwidth when performing bulk data transfers?

• How fast does the aggregated data over a number of runs converge to the “ideal”
representation?

These questions could be addressed by an analytical approach, which quantifies
the deviation of the proposed metric from an exact solution. However, we follow a
more holistic approach: Instead of an isolated analysis of the measurement procedure,
we use its output as input to reconstruction techniques, which are presented in Ch.
5. The accuracy of the measurements is then evaluated based on the outcome of the
reconstruction techniques.
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Figure 4.6: A shorter choke/unchoke period negatively impacts the quality of our
method. This is an indication that the tit-for-tat strategy should be removed from peer-
to-peer protocols for efficient bandwidth measurements. The accuracy is measured
with Normalized Mutual Information (NMI) along the y-axis. This measure compares
the results of a reconstructed clustering to the (accurate) ground truth clustering.

In other words, we address the question of accuracy in an end-to-end manner, by
quantitatively evaluating the performance of the entire system which uses these mea-
surements.

4.8 Further Issues with BitTorrent and Experimental
Setup

We already presented a number of issues with the noise and randomness intrinsic to
BitTorrent. In this section, we present some further issues. On the one hand, we
find that the tit-for-tat strategy of the BitTorrent protocol to some extent obstructs the
proposed measurements. On the other hand, we discuss an alternative experimental
setup with passive and non-controlled mechanisms for measuring bandwidth, which
would allow an easier deployment on a large scale.

4.8.1 Tit-for-Tat Strategy
One important implication of the tit-for-tat policy, which plays an important role with
the longer running simulated BitTorrent downloads, is that clients become more adap-
tive. Towards the end of each run, faster uploaders are preferred. In experimental work
with a simulator, we found that this adaptiveness obstructs the accuracy of the mea-
surement procedures. We performed simulated tomography with a complex network
(network N2 of Ch. 5). We compared how BitTorrent clients perform with 5-second
vs 60-seconds choke/unchoke period (One run completes within 5 minutes of simu-
lated runtime). We expect the tit-for-tat policy to manifest itself better in the shorter
5-second choke/unchoke period. For this policy, the accuracy of the simulated tomog-
raphy method is significantly lower in the first few iterations (Fig. 4.6). Our interpreta-
tion is that a more adaptive client does not provide a broad enough metric w to various
peers, since it prefers faster ones; as a consequence, it can produce less reliable results.
This is significant: The tit-for-tat strategy is at the core of BitTorrent protocol, but some
of its aspects like the tit-for-tat policy should be redesigned if possible for the purposes
of our measurements.
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4.8.2 Number of Active Connections
Another aspect which can influence the measurement procedures is the number of si-
multaneously active connections. There is a fine balance between keeping too few and
too many active connections. Having few connections results in a less dense graph
per BitTorrent measurement, and potentially larger number of iterations before con-
vergence. However, having too many active connections can lead to congestion and
TCP-specific congestion control. The BitTorrent specification is rather generic, stat-
ing that an algorithm “should cap the number of simultaneous uploads for good TCP
performance”. The default number of active peer connections is set to 5.

4.8.3 Shortcomings of Proposed Setup
In its current design, the proposed measurement belongs to the active network tomog-
raphy area; it assumes that all BitTorrent clients are part of a controlled environment.
They are instrumented, and can be started and stopped at will, which requires minor
modification of the clients, and administrator privileges at the nodes participating in the
measurements. Most real-life environments do not offer such level of control. Further-
more, due to the controlled execution entirely for the purpose of traffic measurements,
dummy data is transferred. While these measurements are efficient, they are quite un-
usual compared to the common scenario in a swarm.

In real-life scenarios, the swarm distributes useful data, and clients can join and
leave at any time without any control mechanism. Therefore, the BitTorrent protocol
seems much more suitable for a different measurement setup. We see two possible
approaches to passive measurements with BitTorrent in real large-scale settings, and
present them in Fig. 4.7.

One possibility is the introduction of an overlay swarm of instrumented clients as
described in [58]. This has advantages for the proposed measurements: it allows for
more extensive measurement modifications or changes in protocol to be introduced into
the overlay swarm without affecting the non-instrumented peers in any way. The main
disadvantage is in the performance loss. Optimistic unchoking is the main mechanism
of involving the overlay swarm into the overall data exchange, and this only can happen
gradually. An efficient measurement procedure is unlikely in such a scenario.

An alternative to this approach, which is likely to be much faster in gathering mea-
surement data, is to instrument the entire swarm of BitTorrent peers. Then, a measure-
ment log can be taken at any time with a high degree of accuracy. Technically, this is
possible without any overhead, or loss of anonymity for the peers; some authors [82]
argue that in practice an instrumented BitTorrent client is unlikely to be adopted by a
large user community.
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Figure 4.7: Two approaches to passive BitTorrent measurements. (a) Introduction of
an overlay swarm. (b) A fully instrumented swarm.
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Chapter 5

Performance-Based
Reconstruction of Networks

The presented measurement technique in previous chapter provides raw bandwidth
data, which in principle can provide input to performance-aware collective commu-
nication. In search for ways to transform the performance data into more meaningful
representations, we first introduce some useful tools for tracing, analyzing and visualiz-
ing measurement data. We then focus on topology, and design two topology generation
methods. One method is based on a clustering method called modularity-based cluster-
ing. We first successfully apply it for recognizing bandwidth clusters. Then we proceed
to develop a hierarchical clustering algorithm, which generates a bandwidth-based hi-
erarchy. The hierarchy can be seen as another representation of topology. Another
method is based on the classical spanning tree algorithm for graphs, and generates a
topology as a tree.

5.1 Useful Tools for Visualization and Analysis
In this section, we present some of the tools we used in our work. First we introduce
the Paraver toolkit, which we extend to trace and visualize socket communication with
BitTorrent. Then we introduce Graphviz, which gives us important hints about the
suitability of modularity clustering methods.

5.1.1 Tracing BitTorrent Communication Using the Paraver Toolkit
The metric w provides a count of the exchanged data fragments between peers. We
described how to collect this metric – we introduce counters to the BitTorrent clients.
In effect, this type of measurement is a profiling technique. One of the main advantages
of profiling is that it does not introduce a great overhead to the profiled application. Its
main disadvantage is that sometimes profiling is not sufficient for detailed analysis.

When it comes to performance measurements, the main alternative to profiling is
tracing. Tracing provides great detail for analysis, since it allows to timestamp each
event of interest during execution. This means that execution can be analyzed with
runtime in mind, and with an understanding of the corresponding dynamics of the
application during execution.

41
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Usually, an application is being traced, the traces are then visualized and analyzed,
performance bottlenecks are identified, and the application is modified. This is an itera-
tive process, which is continued until the performance of the application is satisfactory.

Our scenario for tracing, however, is rather different. Instead of analyzing an ap-
plication, we wish to perform measurements as proposed in Ch. 4, and design efficient
performance-aware collective communication. This unusual scenario, in which the un-
derlying communication library rather than the application is being analyzed, is some-
times referred to as introspective performance analysis. There is related work in the
HPC community; some efforts instrument events within the Open MPI library [68, 67],
and use the Paraver toolkit to extend their knowledge beyond the application level and
into the MPI communication middleware.

The Paraver toolkit [61] belongs to the most popular tools for tracing, visualizing
and analyzing applications. Some of the supported programming interfaces include
MPI, OpenMP, POSIX Threads (Pthreads), OmpSs and Compute Unified Device Ar-
chitecture (CUDA), but user-defined events enable any types of events to be traced.

Some of our goals in tracing BitTorrent communication are:

• to provide automatic and more flexible mechanisms to gather and process the
measurement metric w.

• to provide a visualization for the dynamics of data traffic during communication
between peers.

• to generally have a powerful visualization and analysis tool at hand for BitTorrent
communication.

We used the original Python client written by Bram Cohen [19]. The instrumenta-
tion with Paraver was achieved with following steps:

• Trace calls from the user API were added to all socket communication calls.

• Some calls were “borrowed” from the MPI library. This included initialization
and finalization of the tracing component of Paraver called Extrae (through MPI
calls intercepted by Extrae), as well as a barrier call for a synchronized termina-
tion of the clients.

We demonstrate some of the new capabilities of this approach by tracing a small
10 MB BitTorrent broadcast. As experimental setting, 32 nodes are run on the site
Bordeaux, 16 on the Bordeplage cluster, and 16 on the Bordereau cluster (see Sect.
5.4 for details). The received or sent bytes from/to each peer can immediately be
visualized, and an additive view of both 1 would represent a measure equivalent to the
measurement metric w we introduced earlier. Fig. 5.1 visualizes such a histogram
which shows in a matrix how much data is received by a peer from each other peer,
varying from 0 to nearly 4 MB per peer. This view shows how data can be distributed
with dynamic and adaptive receiver-initiated protocols. It can be observed that there is
no symmetry in the data exchange between clusters. For example, the top-right half of
the plot shows that little data is received from Bordeplage by Bordereau. The bottom-
right half shows that much more data is received from local Bordereau nodes. Since
data exchange is adaptive, this can hint at issues of inter-cluster communication.

1Such a view is not currently available in Paraver.
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Figure 5.1: A histogram showing the received data in a 10 MB broadcast between 32
BitTorrent peers. The x axis stands for peers 1 to 32, and the y axis for peers 1 to 32
with count starting from the top. For clarity we encode the received data in a colour
scheme. Bright yellow is the minimum of received data (here: 0 bytes), dark blue is
the maximum received data (here: 3,7 MB) from a single peer, and linear gradients are
used in between. Peer 0 (leftmost column) is the seeder, so it does not receive data.
Every other peer receives varying amounts of data from its peers.

For such a metric, however, we could have also used profiling rather than tracing.
To demonstrate the capabilities of tracing, we choose to display as an example the
“messages in transit” at each peer during the same experiment described above. The
messages in transit are messages being sent, or being received, where the point-to-
point communication is not complete yet. Fig. 5.2 shows a runtime with this metric. A
careful observation shows that the Bordeplage nodes (upper 16 timelines) have many
messages in transit for longer periods than the Bordereau nodes (bottom 16 timelines).
This could be an indication of a slower network on Bordeplage than on Bordereau.
Based on such observation, we can see hints for possible performance-based models
using the Paraver toolkit in conjunction with BitTorrent clients.

It is likely that more intuitive and meaningful views can be generated, depending
on the interest of the developer. Further methods are the subject of future work. How-
ever, it should be noted that powerful performance tools like Paraver offer possibilities,
but no answers; ultimately, the application or middleware developer is responsible for
designing meaningful views to detect issues, and to find solutions.

5.1.2 Cluster Visualization with GraphViz
In order to investigate the potential for an algorithmic clustering method to deduce
the ground truth clusters from the measured network, we first visualize the measured
network data using a network layout algorithm. On each layout visualization, we use
nodes of different shapes to represent different ground truth clusters. (The exact de-
tails of how the ground truth is produced from the physical network topology will be
discussed in Section 5.4). As is shown visually in Figures 5.3, 5.4, 5.5, 5.6 and 5.7,
the application of a layout algorithm to the measured networks allows us to visually
observe groups of nodes the layout places close to each other. These groups clearly
correspond to the ‘ground truth’ logical clusters of the underlying computer network.

For these visualizations, we layout the networks using the implementation of the
Kamada-Kawai spring weighted graph layout algorithm [62] from the ‘Graphviz’ soft-
ware package [34], in which we make the length of edges between nodes inversely
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Figure 5.2: A timeline (x axis) of messages in transit for a 10 MB broadcast between
32 BitTorrent peers (y axis). For clarity we use a colour scheme. Green is the minimum
messages in transit (here: 0), orange is the maximum messages in transit (here: 18), and
linear gradients are used in between. This view shows the dynamics of data distribution
during runtime. The nodes on Bordeplage (top 16) have many messages in transit for
longer than the nodes on Bordereau (bottom 16).
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Figure 5.3: Applying Kamada-Kawai layout (using the Graphviz’ ‘Neato’ tool) to the
weighted graph of experiments using Bordeaux site. The configuration has 64 nodes,
divided between 3 physical compute clusters. These 3 physical compute clusters give
rise to only 2 logical network clusters, as there is a fast link between the ‘Bordereau’
and ‘Borderline’ physical clusters. The shape and color of each node rendered reflects
the labeling of the ground truth cluster it is in. We render only the edges in the top half
of all edges, by weight. While the graph is too dense to visually make out any structure
due to edge weight, it is clear that the layout algorithm is grouping nodes corresponding
to their ground truth. This provides grounds for expecting a graph clustering algorithm
to find these clusters.



5.1. USEFUL TOOLS FOR VISUALIZATION AND ANALYSIS 45

172.16.0.9

172.16.0.47

172.16.1.10

172.16.113.92

172.16.113.139

172.16.113.136

172.16.113.98

172.16.113.124

172.16.113.35

172.16.113.50

172.16.0.37

172.16.0.32

172.16.0.51

172.16.113.51

172.16.113.56

172.16.113.138

172.16.0.30

172.16.113.126

172.16.113.19

172.16.113.123

172.16.113.38

172.16.2.4

172.16.0.33

172.16.0.42

172.16.113.52

172.16.1.11

172.16.113.26

172.16.113.33

172.16.0.50

172.16.113.16

172.16.1.12

172.16.113.18

172.16.0.28

172.16.113.135

172.16.0.49

172.16.0.34

172.16.113.95

172.16.0.39

172.16.0.3

172.16.2.9

172.16.113.76

172.16.113.134

172.16.113.140

172.16.2.7

172.16.113.117

172.16.113.28

172.16.113.49

172.16.0.6

172.16.0.5

172.16.0.4

172.16.0.8

172.16.113.9

172.16.0.35

172.16.0.48

172.16.113.133

172.16.2.1

172.16.2.3

172.16.113.57

172.16.0.44

172.16.0.46

172.16.113.3

172.16.113.36

172.16.0.36

Figure 5.4: Applying Kamada-Kawai layout to weighted graph of experiments using
64 nodes on Bordeaux and Toulouse sites, and the same rendering options as for Figure
5.3. Toulouse is represented here by diamonds; the ground truth clusters represented by
circles and triangles both belong to Bordeaux. Our non-hierarchical clustering method
does not recover this ground truth; it finds only two clusters, one for Toulouse and one
for Bordeaux. The third ground truth cluster is distinct in the visualization, however,
showing that the BitTorrent measurements do reflect it.
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Figure 5.5: Applying Kamada-Kawai layout to weighted graph of experiments using
64 nodes on Grenoble and Toulouse sites, and the same rendering options as for Figure
5.3.
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Figure 5.6: Applying Kamada-Kawai layout to weighted graph of experiments on Bor-
deaux, Grenoble and Toulouse, and the same rendering options as for Figure 5.3.
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Figure 5.7: Applying Kamada-Kawai layout to weighted graph of experiments using
the 4 sites Bordeaux, Grenoble, Toulouse and Lyon, and the same rendering options
as for Figure 5.3. The ground truth clusters in this rendering appear to be visually
less distinctly laid out than the other examples; however, we note that the algorithmic
clustering method still achieves perfect accuracy – see Figure 5.13.
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proportional to the measured edge weight (which in turn corresponds to the presented
metric w(e) – the exchanged fragments between two nodes). While we use all of the
measured edges in our layout algorithms, for clarity of presentation in these diagrams
we only render the edges which are in the top 50% of network edges by weight. It
can be clearly seen that the ground truth clusters correspond to visually identifiable
groups of nodes formed by the spring weighted layout. The fact that clear groupings
are present in the layout visualizations is strong evidence that the BitTorrent measure-
ment process is working correctly, and that the randomness in the data gathering pro-
cess is not a problem when detecting groups. That the groupings correspond well to the
ground truth clusters indicates that algorithmic clustering approaches will be successful
on this problem.

Another visualization and analysis tool for graphs, which supports a wide variety of
layout algorithms and clustering algorithms, is Gephi [5]. In our efforts for hierarchical
clustering, we increasingly used Gephi; among many other features, it is interactive,
and provides spring weighted layout, and implementations of useful clustering algo-
rithms.

5.2 Modularity-Based Clustering
We have an indication that the measurement technique is meaningful – the layout visu-
alizations of Graphviz show a relationship between the ground truth partitions and the
groups of the nodes in the measured network. However, visual inspection of observed
clusters is not a robust means of evaluating performance. In addition, we want to be
able to automate our tomography technique and to deploy it on networks too large to
visualize. Thus we need an algorithmic clustering technique that finds clusters of nodes
like those groups apparent on the layout visualizations.

Clustering is an actively researched area, in which experimental validation of a
clustering method is extremely important. In our work [30, 31], we chose a technique
from modern network analysis. We use the modularity function of Newman and Girvan
[93] to identify sets of nodes which are more densely interconnected than the general
level of interconnection in the network.

The modularity method is defined by the following objective:

Q =
∑
i

(
eii − a2i

)
= Tr(e)−

∥∥e2∥∥ (5.1)

Q compares, for a given clustering, the proportion of network edges that are intra-
cluster eii, for each cluster i, against the proportion that would be intra-cluster in a
randomized model of the same network. As described by Newman and Girvan: “This
quantity measures the fraction of the edges in the network that connect vertices of the
same type (i.e., within community edges) minus the expected value of the same quan-
tity in a network with the same community divisions but random connections between
the vertices.” All modularity clustering implementations strive to find a clustering that
maximizes Q.

We use a weighted version of this same objective, which will have a high value for
clusters of nodes that have a high internal weight. This objective has been applied in
a wide range of domains, including finding communities of users in social networks,
finding highly connected communication groups in telecoms networks, and many other
related application problems. As our objective is to find a partition of the network
into dense non-overlapping clusters, and in particular as we do not wish to specify
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beforehand the number of logical clusters to find, this objective function is appropriate.
In addition, our empirical results show it is effective at recovering the ground truth
clusters as part of our tomography approach.

As an alternative, we also attempted to perform experiments with another modern
clustering algorithm – Infomap [107] – which is based on compressing random walks
through the network, and finds communities which correspond to the areas of a network
that a random walk would get ‘stuck’ in. However, we find Infomap does not perform
as well as modularity-based clustering on this particular problem.

5.2.1 Fast Louvain Method
The worst-case of a naive implementation of modularity clustering has an impractical
complexity O(‖E‖2 ∗V ). Many different algorithms have been developed to optimize
the modularity objective function. These algorithms improve on the original methods
provided and are designed to work in practical settings and on large scale networks.
One of the most successful and widely used methods is that of Blondel et al. [10],
known as the Louvain method. This algorithm was originally developed and applied to
large mobile telecommunications networks, in order to uncover clusters of frequently
communicating users, and social communities; the authors found that they could un-
cover many levels of hierarchical organizational structure within the communications
network.

While no meaningful close form complexity of this heuristic implementation is
currently available, its fast runtime in practice and ability to scale to large datasets,
such as telecoms networks with millions of nodes, make this modularity optimization
algorithm suitable for our purposes.

This algorithm produces a dendrogram of hierarchical clusters by default. We do
not use this dendrogram for now; instead, we take the cut of the dendrogram at the
point that yields the highest modularity value of the resulting partitions. This results in
only a single level of partitioning. To uncover a structure of a more hierarchical nature,
we present a hierarchical clustering algorithm in Sect. 5.10.

There are additional reasons to use the modularity maximization method. The work
of Noack [95] has shown an equivalence between modularity-based network partition-
ing approaches and particular types of force directed network layout algorithms. This
does not include the Kamada-Kawai algorithm we use, but does provide motivation
for trying the modularity-based methods in domains where graph layout algorithms
successfully lay out nodes corresponding to their ground truth clusters.

Modularity maximization is not without its problems: Good et al. [44] performed
analysis of the modularity objective function in a variety of practical contexts, and
concluded that the optimization surface is often bumpy, and often lacks a clear global
maximum in empirical settings. However, we find that this widely used community
finding algorithm produces results that work well in this particular application domain.
Further, we find that repeated iterations of the optimization algorithm find results that
are consistent with those presented in this paper; on the experimental networks we
have examined, the algorithm seems to consistently converge to results that are in high
agreement with our ground truth.
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Figure 5.8: Grid’5000 sites, interconnected with Renater network [45].

5.3 Comparison of Network Clustering
In order to quantitatively evaluate the performance of our method a numerical measure
of clustering accuracy is necessary. Various methods for comparing set assignments
exist. In the domain of network community finding, a frequently used measure of com-
parison between a ground truth clustering, and an algorithmically provided clustering,
is the Normalized Mutual Information (NMI) between the two. For convenience, and
to enable the future extension of our work to situations where the ground truth overlaps,
we use the overlapping NMI implementation of [75]. This method is capable of calcu-
lating the NMI between sets of communities which overlap, as well as sets of network
partitions. This widely used measure enables us to compare our clustering against the
ground truth. It ranges from 0 to 1, where 1 denotes perfect agreement of the found
clustering with the ground truth. We note that there are several improvements on this
NMI method. We have also investigated the results of some of these, and observed
consistent results. As such we report scores only for the popular NMI method of [75].

5.4 Ground Truth of Real-Life Experiments
The purpose of a network reconstruction method is to correctly uncover the properties
of interest. In this particular work, the described algorithm performs well if the recon-
struction is correct with regard to the dynamic bandwidth properties of the network. In
practice, the relationship between these dynamic properties and the physical structure
of the network topology is often complex. However, in order to evaluate our method,
we use the physical structure of the network topology, including information about how
network hardware connects compute clusters within physical sites, and information on
the speed of the inter-site links, to form a ground truth dataset.

We perform our real-life experiments on Grid’5000 [16], a large and geographically
distributed grid infrastructure in France. It is highly configurable, free and accessible;



50 CHAPTER 5. RECONSTRUCTION OF NETWORKS

Figure 5.9: Ethernet network on Bordeaux site. 10G denotes a single 10 Gigabit link;
x1, x10 and x93 denotes Ethernet bonding of 1, 10 or 93 1 Gigabit connections. The
Dell–Cisco link is a major bottleneck during intense collective communication between
Bordeplage and Borderline or Bordeplage and Bordereau

for these reasons, it is very attractive to the research community. Currently, it consists
of 10 functional compute sites in France, all of them interconnected through a fast optic
fiber backbone called Renater. The Renater backbone and all sites throughout France
are shown in Fig. 5.8. Within each site, there are differing technologies, hierarchies and
clusters. For this work, only the Ethernet network within sites as well as the Renater
network between sites are used.

For one-site experiments, we often used the site Bordeaux in Grid’5000 as exper-
imental platform. It had the 3 clusters Bordereau, Borderline and Bordeplage. Figure
5.9 shows the Ethernet network between the clusters 2.

Here, isolated point-to-point bandwidth between any two nodes across the clus-
ters is 1 Gbps (limited by the network interface). However, when intense collective
communication is used, the point-to-point throughput decreases significantly across
the Dell ProConnect – Cisco connection , because only a single 1 Gbit link connects
the two switches. In addition, we measure an increased latency along this link – easily
explained with the traversal of more switches. This is the main potential bottleneck.
To a lesser extent, the Nortel-HP link also can turn into a bottleneck link for collective
communication.

One important realization is that even when provided with an explicit diagram of
the network, it still is not obvious where the bottlenecks and the strong links are in terms
of achievable bandwidth. The site administrator clarified the significant bottlenecks,
which manifests itself mostly during intense bulk data transfers.

Grid’5000 is constantly evolving. One of the side effects of this process is that some
of the local clusters and settings are disappearing, while others are being introduced.
Whenever we need the properties of a local site in our experiments, we describe that
in the corresponding experimental work section. Our description may not reflect the
current state of the Grid’5000 platform, but rather the available network at the time of
experiments.

The a priori knowledge of the network, which is independent of the network tomog-
raphy algorithm, is very important in this work. This knowledge provides our ground
truth which we use to evaluate the found clustering. We have ground truth information
about multiple aspects of the system:

• The communication between sites has similar properties - it uses the Renater in-
frastructure. While it provides very high inter-site bandwidth, it is reasonable

2All of the above 3 clusters were closed for general usage in mid 2013 due to the difficulty “to keep
online lately, due to their age”.
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to assume that when Ethernet nodes across different sites connect through Re-
nater, their throughput will not outperform local Ethernet communication. Ex-
periments using NetPIPE confirm this assumption - for example, the maximum
bandwidth achieved between nodes on Bordeaux and Toulouse is around 787
Mbps - compared to 890 Mbps achieved within Ethernet clusters.

• Within a Grid’5000 site, intra-site communication is complex. Physical hard-
ware information is typically provided by online documentation available at [45].
However, transient network anomalies can arise when observing the network be-
havior (e.g. bandwidth bottlenecks, availability of multiple Ethernet interfaces,
hardware changes), and so the authoritative ground truth clustering is generally
best provided by the site administrator.

When we use a setup spanning multiple sites, we assume the clustering should sub-
divide the network into separate logical clusters, each cluster corresponding to a single
site. If we evaluate our method on a single site – which we do for the Bordeaux network
– we generate our ground truth using the available information about the structure of
the physical topology in that site. We discuss these specifics in each of our experiments
in turn.

5.5 Motivation for Using a Simulator
During our experimental work it became evident that more flexibility in the network
settings is needed. The experimental test bed Grid’5000 offers a good level of hetero-
geneity, but has its limitations. On one hand, the scale of experiments is limited. A
few hundred nodes can be booked at most, and reservations of this scale across multi-
ple sites is difficult. On the other hand, the hierarchy level of the network is limited.
The hierarchy is relatively flat, consisting of two network layers at most – the optic
fiber backbone being the top layer, and the local networks being the bottom layer. Any
reconfiguration of the network hierarchy or the bandwidth and connectivity between
nodes to explore deeper hierarchies can only be done through emulation software on
Grid’5000.

To broaden the applicability of our approach to multilayer hierarchical settings, we
decided to introduce a network simulation approach. Our original experimental band-
width tomography method consists of two clearly separated phases – a measurement
phase, and an off-line reconstruction phase (Fig. 5.10). Without modifying the recon-
struction phase, a simulated BitTorrent network would allow us to seamlessly conduct
experiments under conditions not available using a real-life test bed.

There are several good simulators for BitTorrent swarms. Models for well-known
packet-based simulators include [65, 36] for OMNeT++ and VODSim [125] for ns-
3. There are also special-purpose simulators for peer-to-peer like GPS [127], and a
BitTorrent simulator by Microsoft [7].

While a large scale simulator is generally desirable for our experiments, simulators
of tens of thousands of peers use too simplistic abstractions of the low-level commu-
nication. We favor a packet-based simulator because we prioritize accuracy in repro-
ducing behavior at the lower levels of the network stack. The proposed bandwidth to-
mography targets bottlenecks and achievable bandwidth under heavy traffic, and these
properties need to be well reflected in complex settings. Delay, resource sharing, and
fragmentation, are some of the network parameters that can be modeled more accu-
rately with packet-based simulators. Both OMNeT++ and ns-3 provide sophisticated
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Figure 5.10: Bandwidth tomography: Real-life tomography and the proposed simu-
lated tomography differ only in the measurement procedures (Phase 1).

models for the simulation of such parameters. Preliminary evaluations in previous
work [125] show that an ns-3 model sufficiently recreates BitTorrent swarms with re-
spect to messaging behavior, but that further evaluation of the file distribution behavior
is needed.

5.6 VODSim: A Modular ns-3 Based BitTorrent Simu-
lator

ns-3 [52], which is the basis of the VODSim simulation model, was specifically created
with realism in its models in mind and hence features bit-level recreations of packets
traversing the network and implementations of protocols of varying layers (like Ether-
net, IP, TCP) adhering to the known standards. Standardized interfaces often resem-
bling those of the Linux kernel (like the Sockets API) are then used to glue the different
parts together. In this layered model, the application-level logic is completely decou-
pled from the underlying network technology. This opens up the possibility to test
our method on arbitrary networks; in particular, we can start with the reproduction of
our original test bed settings to align the results of the simulator with those in the real
world. The client implementation within the employed BitTorrent framework resem-
bles the modular structure of ns-3 by providing several independent “strategy” classes,
such as for piece selection and choking (cf. Sect. 4.2). The classes are interconnected
via a centralized callback distribution mechanism. For our purposes, minor modifica-
tions of the model code were sufficient; indeed, we needed to introduce profiling of the
metric w at each peer. We also increased the (hard-coded) choking interval (details in
App. A).

While ns-3 is able to simulate arbitrary networks, their creation is usually a te-
dious process which involves manual instantiation and configuration of the topology.
Similarly, configuration of the applications in ns-3 is also commonly done manually.
VODSim ships with a scenario setup module which is able to automatically configure
both the simulated network as well as the behavior of the simulated clients. The client
behavior is supplied in a human-readable file. Associated with this so called “story”
file is another file describing the general (router-level) topology to which BitTorrent
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client nodes are then added. The only supported format for topology input is that of the
BRITE topology generator [88]. For our initial “alignment” to real experiments, we set
up the basic topology of the Grid’5000 subnetwork as a BRITE topology file and create
a small story file in which we added the respective number of clients to the network.
The original version of VODSim, however, uses a random approach of attaching client
nodes to a topology. We implemented fully configurable attachment of nodes to routers
as part of the story file. This enables us to accurately recreate the test bed topologies
without more tedious setup.

Based on our evaluation of simulated tomography, which is detailed in App. A,
we are confident that the performance and reliability results obtained in the simulated
experiments are either as good as the real-life experimental results or converge slower
than the real-life results. Therefore, good simulated experimental results with high
level of confidence will demonstrate the feasibility of the tested tomography method.

5.7 Ground Truth of Simulated Experiments
The question of ground truth, i.e. the bandwidth-induced topology we expect, requires
knowledge of how link capacity can be reconstructed under resource sharing condi-
tions, i.e. when many connections use a link simultaneously. In our real-life exper-
iments, we presented ground truth based on measurements or information provided
by system administrators (Sect. 5.4). This requires careful consideration of various
components such as network hierarchy and bottleneck links.

As it turns out, since simulated networks can have arbitrary complexity, a corre-
sponding model of ground truth is needed, and is a much more challenging topic than a
readily provided ground truth. Therefore, we need to detail a model which can be used
to derive the ground truth for simulated networks.

5.7.1 Averaging Edge Weights after Partitioning
The proposed reconstruction method of bandwidth differs significantly from exhaus-
tive methods. A single BitTorrent connection, unlike a NetPIPE connection, may not
reach the maximum achievable bandwidth of a link. Multiple peer-to-peer connections
can therefore utilize a single physical link better than a single connection. This has
implications to the way we reconstruct a network if we wish to combine edge weights
after partitioning.

Let us consider a simple network of nodes N1 – N4 as shown in Fig. 5.11. Modu-
larity clustering merges nodes N3 and N4 into a single partition. However, the preser-
vation of the edges properties after partitioning is important, and needed for any further
reconstruction based on partitioning. In Fig. 5.11, after the partitioning on the left we
need to combine the edge weights N2 – N3 and N2 – N4.

There are different possibilities for edge combination, which depend on the under-
lying measurement procedure:

• For exhaustive measurement procedures (e.g. NetPIPE), summation is suitable,
since each connection fully saturates the link capacity.

• For the used BitTorrent connections, averaging is suitable, since a single Bit-
Torrent connection does not saturate the link capacity, and each new connection
across the link increases throughput.
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Figure 5.11: If we wish to continue after the partitioning step (left), the individual
bandwidths of BitTorrent connections may need to be combined (right). We consider
averaging rather than summation suitable – otherwise the use of 2 connections across
the N2-{N3,N4} link might “boost” the edge weight.

Figure 5.12: Estimating initial BitTorrent connections between node sets: At the start,
more BitTorrent clients will randomly build active connections across central links
(right) than across the edges of the network (left, middle).

• A middle ground between these methods is also an option.

As shown in Fig. 5.11 (right), we accordingly average over the 2 connections using
N2 – N3,N4 link.

An Estimation of Inter-Cluster BitTorrent Connections

To be able to average, we need to estimate the number of active BitTorrent connections
across clusters. Due to the short runtime of our experiments (few minutes), we here
ignore the effects of tit-for-tat strategy.

Following factors are specific to the BitTorrent protocol:

• Every BitTorrent client limits the number of active connections to a hard-coded
number (usually 5).

• Before the popular tit-for-tat strategy adapts the active connections, the choice
of peers is random.

Let us consider any two sets of BitTorrent peers divided by some physical link, as
visualized in Fig. 5.12. Due to the random choice of a peer at the start, links at the
edges of a network are used by significantly less active connections, since the hosts on
a small partition are unlikely to be initially randomly matched together with any of the
hosts of a large partition. On the other side, links dividing the network into evenly-
sized partitions have the most active connections, since peers on both sides are more
likely to randomly match each other as communication partners.

We estimate the number of active inter-cluster connections as:

conn(A,B) =
min(|A|, |B|)
max(|A|, |B|)

∗ ( |A|+ |B|
2

) (5.2)

This equation is based on random pairing of peers between partitions of different
size. The estimation is specific to the benchmarks based on BitTorrent clients before
the tit-for-tat strategy adapts the active connections. After the tit-for-tat strategy runs
for sufficiently long, the equation is inaccurate since the choice of active connections
is then based on upload capacity. We will use this estimation for our model of ground
truth in hierarchical clustering.
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5.7.2 Model of Simultaneous and Non-Simultaneous Communica-
tion in ns-3 Simulator

We also model two types of media – those supporting simultaneous communication,
and those not supporting simultaneous communication. For details how communica-
tion media are modeled within ns-3, documentation is available at [92].

• The clusters are modeled using a simplified Carrier Sense Multiple Access (CSMA)
model. A global state shared between all channel devices indicates when it is
ready for transmission, so that ”[physical] collisions in the sense of Ethernet
never happen” . We consider the intra-cluster communication bandwidth as si-
multaneous.

• The links between routers are modeled using a point-to-point model. This medium
only supports non simultaneous communication, and is therefore shared by a
number of active connections across the link.

Since the TCP protocol attempts to guarantee fairness when many connections si-
multaneously use a link, we expect each connection to get an equal share of the link
bandwidth. For any two clusters C1 and C2, we model the achievable bandwidth be-
tween peers p1 ∈ C1 and p2 ∈ C2 as:

bw(p1, p2) =
capacity(C1, C2)

conn(C1, C2)
(5.3)

where conn is approximated using Eq. 5.2. This means that in contrast to the link
capacity, which is constant, we now calculate the achievable bandwidth per connection.

This results in a number of differing bandwidths for different peer connections,
which do not depend only on the link capacity, but on how many connections share a
link.

Even so, the model for bandwidth per connection is not sufficient for determining
an ultimate ground truth. This is not related to the modeling we propose, but to the
clustering algorithm of choice; different algorithms might partition the network into
different numbers of partitions. Therefore, a number of possible ground truths can be
established. A ground truth can be seen as a function of threshold – all nodes p1, p2
with bw(p1, p2) higher than the given threshold are grouped together, and the rest are
separated.

When discussing experimental results, for each set of simulation experiments we
analyze the expected bandwidth per connection. Then we choose the threshold that
gives us the most intuitive and natural ground truth. Sometimes, there may be several
equally good candidates. In this case, the ground truth is defined as a set of all accept-
able solutions. We consider such a set of solutions reasonable in real-life scenarios,
which often do not have clear bottlenecks, and are therefore more unlikely to be parti-
tioned into the same number of bandwidth clusters by different clustering algorithms.
The results of partitioning or hierarchical clustering are analyzed against the ground
truth or the set of ground truths.

5.8 Experimental Results on Flat Clustering
All our experiments on flat clustering are run using real-life tomography on Grid’5000.
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5.8.1 One Site Experiments
We use the Bordeaux site on Grid’5000 for our one site experiments. We provided a
detailed description of that site in Section 5.4.

2x2 nodes

We start with a small experiment within the Bordeaux site with 2 nodes on the Bor-
deplage compute cluster and 2 nodes on the Borderline compute cluster. We ran 30
iterations and aggregated the measured data. The measurements provide very simi-
lar metrics for all links. For such a small setting, the link connecting Bordeplage and
Borderline is not a bottleneck. In agreement with this observation, the used method
identified a single logical cluster containing all four nodes.

32x32 nodes

In another experiment we use 64 nodes - 32 nodes on Bordeplage, 5 nodes on Bor-
derline and 27 nodes on Bordereau. We performed 36 BitTorrent iterations. Fig. 5.3
shows the visualization of the results, which produce a perfect match to the real topol-
ogy. The two clusters Bordereau and Borderline (in circles) are merged together since
they do not have a bottleneck link between them. However, the Bordeplage cluster (in
diamonds) forms a different logical cluster, since it communicates to Borderline and
Bordereau on a bottleneck 1 Gigabit link.

We also present the NMI between the specified ground truth clustering and the
clustering produced by our tomography technique. Fig. 5.13 shows that after only 2
BitTorrent measurement iterations, the clustering is completely in accordance with the
ground truth, and remains so during all additional iterations.

5.8.2 Two Site Experiments
In the next step we extend the experiments to include nodes from two sites – Bordeaux
and Toulouse. We still use 64 nodes in total – 32 nodes per site. For inter-site con-
nections between sites on Grid’5000, the optic fiber Renater network is used. This
connection provides very good bandwidth (10 Gbps) for inter-site communication, but
overall the observed inter-site bandwidth is slightly lower than the intra-site bandwidth
as described in Section 5.4. With the aggregated metric data, the clustering algorithm
identifies two logical clusters, one corresponding to each of the two different sites.

Figure 5.13 shows that after 4 iterations, the clustering converges to a steady state.
However, we note that the NMI with the ground truth, while high, is imperfect – ap-
proximately 0.7. On investigation, we observed that this is because we have provided a
ground truth within which there are 3 different partitions: for the ground truth, the net-
work was partitioned into the Bordeaux and Toulouse sites, and then the Bordeaux site
was partitioned into two separate logical clusters (as discussed in the previous section),
giving a total of three separate clusters. The best way to represent this physical setup
is with the hierarchical representation of the clusters, as presented later in this chapter.

Fig. 5.4 shows that the Kamada-Kawai layout appears to correctly group Bordeaux
and Toulouse, but also seems to layout two groups within the Bordeaux cluster. That
the visualization makes visible the two separate sites within the Bordeaux cluster once
again suggests that the hierarchical version of our algorithm is needed to identify in-
dividual clusters within sites, and makes clear the reason for the lower NMI in this
case.
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In another two site experiment, we used the sites Grenoble and Toulouse, again
using 64 nodes and 30 runs. Unlike Bordeaux, Grenoble and Toulouse both have a
flat bottom layer of the hierarchy since interconnected with an Ethernet network. As
such, neither Grenoble nor Toulouse are further subdivided in our ground truth. The
aggregated measurement data of our tomography method on Grenoble and Toulouse
was sufficient for the clustering algorithm to identify two clusters with 100% accu-
racy within the first 2 iterations (Figure 5.13), and this is in agreement with the used
visualization (Figure 5.5).

5.8.3 Three and Four Site Experiments
In the following experiments, we use only intra-site nodes which are not separated by
bottlenecks within their site (e.g. in the case of Bordeaux, all nodes used are in the well
connected Borderline and Bordereau physical clusters).

First, we perform a three-site experiment, using the sites Grenoble, Bordeaux and
Toulouse (32 nodes per site). Again, we perform 30 iterations, but only 2 iterations are
sufficient for perfect accuracy (Fig. 5.13) of the modularity clustering. Three clusters
are identified, which are also apparent in the visualization (Fig. 5.6).

In the experiment which spans most sites, we use 16 nodes for each of the sites
Grenoble, Bordeaux, Toulouse and Lyon. Again, we perform 30 iterations. Modularity
clustering of our BitTorrent tomography measurements correctly identifies the 4 log-
ical clusters, which are also apparent in the visualization (Fig. 5.7). One interesting
observation is that in this visualization, the central cluster of nodes represents the Lyon
site, which is also positioned centrally in the star-like geographical topology of Figure
5.8. Also interesting is that in this four-site experiment we need around 15 iterations
(Fig. 5.13) to achieve perfect accuracy. While this is still very few, it is the largest
number of iterations needed of any flat clustering setting. This is not surprising as this
is the setting with the largest number of logical clusters.

Figure 5.13 shows the NMI values for all the flat clustering experiments.
Overall, it demonstrates that for various settings data aggregation converges to the

ideal representation in a few iterations.

5.9 Representation of Hierarchy as a Hasse Diagram
When a topology does not need to be accurately labeled at each level, a partial order
might be useful instead of a total order. Some work [11] then chooses a representation
of a network topology as a Hasse diagram. In a Hasse diagram, a partially ordered set
S,≥ is displayed with the vertical positioning representing the partial order between
elements.

This representation is suitable for our measurement method, since the used metric
w is not fully accurate for each communication link. We have seen promise in the pro-
vided bandwidth clustering, and here we detail how it seems to be suitably represented
through a Hasse diagram. For our purposes, we use the proposed bandwidth-related
metric to define the partial order: X ≥bw Y ≡ “achievable bandwidth within the set X
is higher than achievable bandwidth within Y”.

As an example, consider two clusters X and Y, which are interconnected (Fig.
5.14). It is common for inter-cluster bandwidth to be lower than the intra-cluster
bandwidth. In this respect, we can often produce a relation {X} ≥bw {X,Y }, and
{Y } ≥bw {X,Y }. However, the relation between {X} and {Y } might not be defined.
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Figure 5.13: Comparison of the clustering found using our tomography method, against
the ground truth clustering provided. The results are shown in terms of Normalized Mu-
tual Information [75]. We observe that, in general, the NMI improves as the number
of measurement iterations performed increases, converging on a stable value. The con-
vergence occurs quickly on the simpler topologies. The NMI frequently converges to 1
– perfect agreement with the ground truth. In the case where NMI does not converge to
1, visualized in Figure 5.4, we see a strong motivation for a hierarchical ground truth,
and a hierarchical clustering approach. Details of the topologies between the four sites
used – Bordeaux, Grenoble, Toulouse and Lyon – are provided in Section 5.4.
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{X,Y }

{X} {Y }

Figure 5.14: Use of Hasse diagram for achievable bandwidth. For example, the ver-
tically connected nodes {X} and {X,Y} are in relation {X} ≥bw {X,Y } with each
other: The achievable bandwidth within the nodes in {X} is higher than that within
{X,Y}

In our tomography method, this is due to efficiency considerations – we need to per-
form many BitTorrent measurements to be able to establish a total order. We find the
use of a partial order suitable and efficient.

We design a hierarchical clustering algorithm, which finds a suitable representation
through a Hasse diagram with the defined partial order.

5.10 Hierarchical Clustering
Hierarchical clustering algorithms can generally be subdivided into agglomerative (bottom-
up) or divisive (top-down). In each case, they rely on some flat clustering algorithm as
a building block.

Initially, we experimented with the popular hierarchical clustering method of Ward
[124]. While the method produces a hierarchical clustering, the initial results are not
as expected even for simple settings (see App. B). On the other hand, modularity clus-
tering provides good results for flat clustering [30, 31]. We proceeded to implement a
bottom-up clustering, using Louvain’s method as a flat clustering method; our motiva-
tion is in the excellent accuracy that Louvain’s method has provided.

We first introduce merging of edge weights through averaging, since each time we
apply the flat clustering, partitions of nodes are merged to nodes.

This leads to following two-phase algorithm:

• We apply modularity-based clustering to reconstruct the basic bandwidth parti-
tions.

• We then average the edge weights between the partitions (see Sect. 5.7.1) as

w((V1, V2)) =

∑
∀v1∈V1,∀v2∈V2

w((v1, v2))

connh(V1, V2)
(5.4)

with

connh(V1, V2) =
min(V1, V2)

max(V1, V2)
(5.5)

Eq. 5.4 essentially averages the edge weight between newly constructed partitions
of nodes: because the link is shared, the average exchanged fragments are the summed
up exchanged fragments of all connections, divided by the number of connections along
that link. A similar formula is used when calculating the bandwidth per connection in
Eq. 5.3. One major difference in Eq. 5.4 is the used heuristic connh instead of a
more accurate estimation (as conn in Eq 5.2). Since the tree is being reconstructed, we
can not accurately state the number of active connections across a link; only the parti-
tions forming the link V1 and V2 are known. For this reason, we choose the heuristic
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connh, which only observes the elements of these two partitions, but ignores any active
connections using this link for routing traffic of further partitions. This formulation is
driven by empirical observations; we find in the experiments that Eq. 5.4 does a good
job in topology and hierarchy inference.

Then the recursive algorithm is as follows:

• Partition and generate new nodes and edge weights as described above to build
this hierarchy level.

• If more than two partitions are generated, repeat recursively.

We need to motivate why we use Louvain’s method as a building block for hierar-
chical clustering, rather than use Louvain’s method “as is”. Louvain’s implementation
builds a hierarchy of clusters, starting out with many small communities, and gradually
building few larger communities until the objective is maximized. In our bottom-up al-
gorithm, we are not really interested in the intermediate partitions, since we accept the
optimal partition, and then look for larger, “post-optimal” step partitions. These larger
partitions are not calculated by the original algorithm. In addition to that, after each
partitioning we re-scale the weights (according to Formula 5.4), which would require
further modifications of the original implementation.

We should note that we are in uncharted territory when using Louvain’s method for
hierarchical clustering. As Blondel states “the accuracy of the intermediate partitions
has still to be shown” [10]. As we will see, our experimental results are encouraging.

5.11 Hierarchical Clustering with Simulated Tomogra-
phy

We experiment with two networks, both part of the proposed simulated tomography,
since the experimental platform was incapable of providing comparable hierarchies.
One of the networks builds a more balanced tree with distinct bottlenecks, and we will
refer to it as N1. The other network builds a more unbalanced tree, with gradually
decreasing capacity, and we will refer to it as N2.

5.11.1 N1
As first test case, we construct a hierarchical network N1 as shown in Fig. 5.15. The
distinct feature of this network is that while it consists of 15 interconnected routers,
only the 8 routers building the leafs of the hierarchy tree have cooperative hosts at-
tached to them. The main advantage of such a test case is that we can configure band-
width and/or latency of the backbone (i.e. routers R9-R15) in any way. In addition to
that, this setting is very relevant to tomography methods, where a significant part of the
backbone structure might not have cooperative end nodes.

We choose a low latency between routers (100 microseconds), which is compara-
ble to intra-cluster latency. This latency is more typical of LANs rather than distributed
networks. We justify such decision with out primary interest in dealing with bandwidth
heterogeneity rather than latency heterogeneity. Any increase of the inter-router latency
will further strengthen the algorithms in identifying trees and hierarchies between the
routers, due to the message fragmentation which is latency-bound. In terms of band-
width heterogeneity, we choose to interconnect the routers with 1 Gbps bandwidth,
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Figure 5.15: N1: This topology has 4 clear bottlenecks. Link capacity is colored from
blue (high) to red (low). We attach 64-node clusters at the leaf routers R1-R8, totalling
512 nodes.

with exception of the 4 bottleneck links (marked in red), which provide 100 Mbps. We
attach 64 hosts as 1 Gigabit Ethernet clusters to each leaf router (R1 to R8), totaling
512 hosts.

Let us consider the ground truth we expect for the given network in Fig. 5.15.
Within each Ethernet cluster, there is bidirectional 1 Gbps bandwidth for intra-cluster
traffic. However, all the inter-cluster traffic travels through shared links – some with
1 Gbps bandwidth (in blue), others with 100 Mbps bandwidth (in red). For them, the
ground truth depends on the number of active connections.

5.11.2 Ground Truth and Initial Partitioning for N1
The results according to the bandwidth per connection for N1, and the chosen thresh-
old, are all shown in Fig. 5.16. It is evident that the equal capacity of links does not
translate into equal bandwidth per connection after the number of connections across
links are considered. Still, the intentionally introduced bottlenecks are reflected clearly,
and the chosen threshold for the ground truth observes exactly these bottlenecks.

Let us proceed to the simulated tomography and the resulting partitioning. The
modularity clustering of the simulated benchmarks produces 4 partitions – {R1,R2},
{R3,R4}, {R5,R6}, and {R7,R8} – which can be seen in the lowest hierarchy level of
Fig. 5.19. This corresponds to a ground truth for the threshold shown in Fig. 5.16.
In this cut, nodes across higher bandwidth links are merged, and nodes across lower
bandwidth links are separated into different partitions. The latter correspond to the four
bottleneck links of N1. Thus, the partitioning is consistent with the ground truth of the
network.

5.11.3 N2
For the second set of simulation experiments, we use the simulated network N2 shown
in Fig. 5.17. In contrast to the previous experimental setup, there are no backbone
routers; we attach Ethernet clusters to each router. Again, each cluster consists of 64
nodes, and the entire setup consists of 9 routers, totalling 576 nodes. Each 64-node
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Figure 5.16: N1: Model of expected bandwidth per connection for different links. The
y-axis represents the bandwidth per connection values of Eq. 5.3. The values are useful
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Figure 5.17: N2: The backbone capacity of this topology is gradually decreasing, with
high capacity links at the top of the tree. Link capacity is colored from blue (high) to
red (low). Each dotted router represents a 64 nodes Ethernet cluster. Every router R
has 64 Ethernet nodes with 1Gbps up/downlink, totalling 576 hosts.
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y-axis represents the bandwidth per connection values of Eq. 5.3. The values are useful
for finding a ground truth, and are not used otherwise. The horizontal line shows the
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setting is modeled as a 1 Gigabit Ethernet cluster. We assign differing bandwidths
between 1 and 10 Gbps to the router links, without introducing distinct bottlenecks as
we did in the previous case. The high inter-cluster bandwidth used in this simulated
network is a common feature of many modern HPC platforms; for example, the optic
fiber backbone usually provides a 10 Gpbs bandwidth. We set 20 ms latency along the
R1-R2 and R2-R3 links, on similar scale to some backbone measurements from real
experiments. For all other router connections, we set low latency of 100 microseconds,
same as the intra-cluster latency, to increase the heterogeneity of this setting; we also
gradually decreased the bandwidth down to 1 Gbps, as labeled in Fig. 5.17.

5.11.4 Ground Truth and Initial Partitioning for N2
Since the network N2 has no clear bottlenecks, but has rather gradually changing link
capacities, the question of ground truth in this case is not trivial. On the other hand, this
case is quite representative for real-life topologies, which do not usually build clearly
cut partitions.

Again, the results for the bandwidth per connection are shown in Fig. 5.18. As
in the previous setup, they demonstrate the importance of how intensely a link is used
by active connections. For example, while some of the links (R1-R2 and R2-R3) have
identical capacity, the bandwidth per connection across R2-R3 is significantly lower,
since more connections are established across this link. Overall, a set of ground truths
can be established according to the displayed bandwidth per connection. The threshold
determining the ground truth could be the bandwidth per connection between the links
R3-R4, R2-R3, or R5-R6.

Modularity clustering builds 7 partitions out of the 9 clusters, merging R1 and R2,
and R3 and R4, as shown in Fig. 5.20. This partitioning corresponds to the second
listed threshold, where nodes with a bandwidth per connection higher than R2-R3 are
grouped together, and the rest are separated, as shown in the lowest hierarchy level of
Fig. 5.18. It is hard to say why there is no preference for another threshold instead;
this is likely a property of the modularity clustering algorithm.
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Figure 5.19: N1: Reconstruction of hierarchy as Hasse diagram (lower position means
higher achievable bandwidth).
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Figure 5.20: N2: Reconstruction of hierarchy as Hasse diagram (lower position means
higher achievable bandwidth).

5.11.5 Experimental Results
The hierarchy of bandwidth clusters for the network N1 is accurately reconstructed by
our BitTorrent-based method as shown in Fig. 5.19. The lowest level of hierarchy
consists of the 1 Gbps Ethernet clusters. The next level includes the clusters sharing
the bottlenecks 9-10 and 13-14. Finally, the bottleneck 11-12-15 is the most significant
bottleneck, since it is shared by most connections.

The hierarchical clustering for the network N2 produces a hierarchy as shown in
Fig. 5.20. The initial partitioning corresponds to the leaf nodes in the hierarchy tree,
and we expect a sustained 1 Gbps bandwidth for traffic within that level. On the next
higher level, routers 1,2,3 and 4 (and their cluster nodes) are merged together; the rest
of the routers build another partition. This partitioning corresponds to a threshold in
which the R3-R5 links has somewhat lower bandwidth per connection than the R5-
R7 link. While these two links are by far the lowest bandwidth per connection links,
this reconstruction is not consistent with our bandwidth per connection, which gives
30 % higher bandwidth for the R3-R5 than the R5-R7 link. This suggests that our
approximation could be improved. However, the following discussion on convergence
proves that the approximation is reasonable; these two links both compete for a number
of iterations for determining the higher level of hierarchy. Each of these links could be
used to provide a good second level of partitioning into low-bandwidth clusters.

It is more challenging to demonstrate a ground truth in a hierarchical clustering
algorithm, since it consists of multiple phases. For simplicity, we show the NMI as box
height for each of two hierarchy levels:

• The NMI for level 1 reflects the accuracy of the partitioning algorithm.

• The NMI for level 2 represents the accuracy of the hierarchical clustering.

In Fig. 5.21, we visualize the convergence of hierarchy reconstruction for the net-
works N1 and N2. Within the performed iterations, NMI of level 1 is around 0.85
for N1 and nearly 1.0 for N2. This index is extremely high in community finding;
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Figure 5.21: Convergence of hierarchy clustering for N1 (above) and N2 (below). The
bar height represents the accuracy in terms of L1 and L2 hierarchy (using NMI).

0.85 is not related to percentage, and corresponds to less than 6 misplaced nodes per
128 node cluster, and 1.0 corresponding to perfect reconstruction. The NMI levels
are achieved within less than 10 iterations in both cases. This clearly indicates that the
used partitioning algorithm is efficient even for larger and more complex networks than
previously tested.

We now turn our attention to the convergence of hierarchical clustering. The con-
vergence for N1 is impressive. Within 2 iterations, an accurate hierarchy is recon-
structed. The network N2 is more challenging; it takes 14 iterations until the algorithm
converges to a hierarchy. It is interesting to note that the two alternating hierarchies
in iterations 4 to 14 have near identical bandwidth per connection in our model. It is
therefore not surprising that the two alternating hierarchies are determined by alternat-
ing between the two near identical lowest bandwidths, and that convergence is more
challenging in this case.

We can translate the simulated convergence within 10-15 iterations into a real-life
runtime estimation. In our comparison between real-life and simulated tomography,
the simulated runtime was overly pessimistic; 20-second runs for 64 nodes could re-
sult in 1 minute, and for some cases in 2-3 minutes of simulated runtime. We are not
entirely sure what causes this pessimistic simulated runtime; we suspect that the meta-
data exchange with the tracker is slow in some runs. The simulated runtime of a single
iteration for the experimental settings of this section was less than 5 minutes. If we
accept that overly pessimistic estimation, we reach an upper bound of 10-15 minutes
for the hierarchical network, and just over 1 hour for the tree-like network, before we
reliably reconstruct the hierarchy and topology of these networks.

5.12 Topology As a Tree
In this section, we introduce a method of topology inference based on our graph-level
measurements and graph-centric input. We first demonstrate that large settings can be
simplified by prepending the familiar partitioning and generation of new nodes and
edges introduced in previous section. Then we introduce a spanning tree algorithm,
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which produces a topology as a tree.
It is in the nature of network tomography to only partially recover the underlying

network. Even the most exhaustive benchmarks can not uncover uncooperative net-
work elements – e.g. switches which are not configured to respond to ICMP packets.

But apart from these limitations, network tomography often makes assumptions on
the inferred structure. For example, it is common to assume the underlying topology
to be a tree, even if in complex networks this might not be the case. Recent work
[104] claims that reconstructing delay or bandwidth trees even for complex networks is
realistic. Some sources [14] state that for some scenarios single trees are not sufficient.

In this work, we adopt the view that a simplified tree representation is sufficient
even for complex networks, and develop an algorithm which produces such a tree.
This poses no restriction at all in the topology to uncover; this topology can have
arbitrary complexity, and does not need to be a tree. Since the input to our algorithm
is an arbitrary network in the form of a complete graph, we can use classical graph
algorithms for tree reconstruction.

5.12.1 Prepending Partitioning for Large-Cluster Experiments
A central part of this work is scaling up experiments to many hosts. One common ob-
servation for cloud and grid-based settings is that they consist of clusters with efficient
intra-communication, which are then loosely interconnected with a possibly heteroge-
neous backbone network. It is possible to apply a spanning tree algorithm on the graph
as a whole, but this application seems inappropriate for where many nodes at the bot-
tom layer build a homogeneous setting. For example, an Ethernet cluster can sustain
1 Gbps bandwidth for all its nodes. The elements of such a cluster do not build any
multilevel hierarchy, and the generation of a spanning tree for such a cluster, which
implies a complex hierarchy, is misleading.

Instead, we propose to prepend modularity-based clustering to the presented algo-
rithm. In previous work [30], we have used it to successfully identify bandwidth clus-
ters. We can use it to merge the components of the network that are tightly connected,
like Ethernet clusters. We can then proceed to identify the heterogeneous structure of
the network using a maximum spanning tree algorithm.

Apart from the logical motivation in prepending the partitioning phase, it also sig-
nificantly reduces the complexity of the maximum spanning tree phase by merging
together a potentially large number of hosts. Since the complexity of the spanning
tree algorithm is O(N2), we achieve a significant speedup with N being the number of
bandwidth clusters instead of a total node count.

5.12.2 Using Maximum Spanning Trees for Topology Inference
The initial partitioning to simplify an initial complex topology follows the exact same
steps as described in Sect. 5.10. Then, the maximum spanning tree algorithm can be
applied on the new graph. The tree generation algorithm for large networks is therefore
as follows:

• Use flat clustering to generate partitions, and generate new nodes and new edges
as described in the hierarchical clustering algorithm.

• Generate the maximum spanning tree using this new graph.
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Figure 5.22: Left: A small topology (one node per router attached) with heterogeneous
bandwidths for each router link. Right: Convergence to accurate topology inference
with (small) 10 MB broadcasts. 1.0 is accurate, lower level is inaccurate inference.

The correctness of the algorithm is easy to show. The algorithm is correct if it
reconstructs an accurate bandwidth-induced topology after sufficient number of itera-
tions. Consider that (i) the graph is complete, (ii) every subtree of a maximum span-
ning tree is a maximum spanning tree, and (iii) the metric is determined by BitTorrent
data exchange, which has been proved to converge exactly to the achievable bandwidth
along links. Then the algorithm converges to an accurate representation.

If we compare the algorithm to other topology inference techniques, we recognize
that it is surprisingly simple, and it poses no requirements on the tree to reconstruct.
Some topology inference algorithms make assumptions on the structure of the inferred
tree. E.g. some delay-based algorithms assume a binary tree [18], which can then be
transformed into a more generic tree. The proposed algorithm can reconstruct an ar-
bitrary tree – ranging from a linked tree to a fat tree, or anything in between. We also
avoid another difficulty common in both delay- and bandwidth-based measurements –
path-level measurement procedures have designated sources and receivers of measure-
ments. The proposed graph-level measurements do not require a designated source or
receiver.

We first demonstrate the topology inference method on a setting with a small num-
ber of hosts. The topology is visualized in Fig. 5.22. We attach varying bandwidth to
each router link, and a single node is attached to each router with a 1 Gbps connection.
We randomly choose the node attached to R1 to be the seeder (but have also placed the
seeder at opposing routers with similar outcome). To better visualize the convergence
of the maximum spanning tree algorithm, we choose to distribute a (small) file of 10
MB per iterations. Within 30 iterations, the topology is accurately reconstructed, de-
spite the potential difficulty of using heterogeneous links and no a-priori knowledge of
the topology. When using larger files, the convergence is significantly faster.

From practical point of view, the maximum spanning tree algorithm is not without
its challenges. Consider the nodes A,B and C, with links A-B and B-C, which need
to be reconstructed. If the bandwidth βBC is significantly higher than βAB , then we
might have very similar w(A,B) ∼ w(A,C). Then, the algorithm might not converge
as quickly. Our experiments may reflect that difficulty in the increased number of
iterations before converging to an accurate topology inference, but no scenario diverged
from the correct topology.
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Figure 5.23: Reconstruction of topology as a tree using partitioning to simplify net-
work, and maximum spanning tree algorithm.

5.12.3 Experimental Results
For our experimental work, all of the topology trees are generated using the tool Net-
workX [50], which provides implementations for spanning tree algorithms on graphs.
For tree reconstruction, in contrast to the use of NMI for clustering, we take a simplistic
approach: the topology is either inaccurately or accurately reconstructed as a tree.

Since we prepend the partitioning algorithm, the tree topology reconstruction method
will generate not a tree of hundreds of hosts, but a tree of few bandwidth clusters
formed by the partitioning method. The tree is accurate if the edges connecting band-
width clusters in our reconstructed tree can be mapped to the physical links between
nodes.

The reconstructed tree for the network N1 is shown in Fig. 5.23a. The partitioning
step successfully simplifies the network, and the generated tree based on the simplified
network fully corresponds to the tree topology of network N1.

For the tree reconstruction of network N2, we again prepend the partitioning phase.
Once again, we then apply the spanning tree algorithm on the simplified network. This
produces the topology shown in Fig. 5.23b, with edges connecting the partitions. They
perfectly match the topology of N2. Therefore, the proposed partitioning phase and
associated maximum spanning tree reliably discovers the expected topology for the
tested settings.

The convergence of the tree reconstruction is very quick – it needs 2 iterations to
reconstruct the expected tree of network N1, and 5 iterations to reconstruct the expected
tree of network N2.



Chapter 6

Software Design Considerations
for Topology- and
Performance-Aware MPI
Collectives

In this chapter, we detail the software considerations and good software design prac-
tices for topology- and performance-aware MPI collectives. As an example of good
design for topology-aware MPI collectives, we give an overview of MPICH-G2, which
introduced a now widely recognized hierarchical design. As an example of good de-
sign of performance-aware MPI collectives, we give an overview of our software tools
MPIBlib and CPM. We introduce model-based builders of communication trees as part
of our software design. In particular, we demonstrate how this supports the implemen-
tation of irregular scatter/gather communication.

6.1 Good Practices for Topology-Aware MPI Collectives
Some grid implementations of MPI like MPICH-G2 [63] can serve as early examples
of good software design of topology-aware MPI collectives; they recognize the impor-
tance of hierarchy and use multiple levels of communicators for MPI collectives. It
is not surprising that such good design practices have seen a revival in recent years
[73, 117] in the HPC domain. After all, the introduction of additional hierarchy levels
for many-core nodes in recent years have strengthened this hierarchy-based approach.
Some of the widely accepted principles used in topology-aware implementations of
collectives are as follows:

• Hierarchy is at the center of designing topology-aware collectives. The used
hierarchy levels do not need to reflect the physical hierarchy levels, but most
often do.

• For different hierarchy levels, different (overlapping) communicators are de-
fined. The overlapping processes are leaders of one or more hierarchy levels.
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Figure 6.1: An example of a multilayer hierarchy, and topology-aware broadcast as
proposed in MPICH-G2.

• A collective operation for a hierarchy is broken down into a sequence of col-
lective calls across different communicators. The leaders usually act as root
processes of such collective calls.

We detail the implementation of such a hierarchical collective algorithm on the
example of the broadcast operation proposed by the MPICH-G2 developers; a similar
approach is also taken for a hierarchy of Infiniband networks in [117].

Consider the hierarchy displayed in Fig. 6.1. For a hierarchical broadcast, a first
step is to create a hierarchy of communicators from the global communicator. For the
given example hierarchy, this can be done as follows:

• Create one L2 communicator: L21 = {0, 8, 16}

• Create three L3 communicators:

– L31 = {0, 1, 2, 3, 4, 5, 6, 7}
– L32 = {8, 9, 10, 11, 12, 13, 14, 15}
– L33 = {16, 20, 24, 28}

• Create four L4 communicators:

– L41 = {16, 17, 18, 19}
– L42 = {20, 21, 22, 23}
– L43 = {24, 25, 26, 27}
– L44 = {28, 29, 30, 31}

A broadcast can then be executed as a sequence of broadcasts at each hierarchy
level, starting from higher levels and proceeding to lower levels. For brevity, let
B(comm,root) denote the broadcast of a message in communicator comm with root
root. Let MPI_COMM_WORLD be the global MPI communicator. Then, a broadcast
can be split into hierarchical levels as follows:

B(MPI COMM WORLD, 0) =B(L21, 0);

B(L31, 0);B(L32, 8);B(L33, 16);

B(L41, 16);B(L42, 20);B(L43, 24);B(L44, 28);

As an optimization, all broadcasts at the same level can be fully parallelized. In
addition, a number of general optimizations for a broadcast operation can be imple-
mented without any topology and hierarchy considerations. Such general optimiza-
tions include optimizations for a network technology, the best algorithm of choice, and
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the segmentation of large messages. As demonstrated in related work [118, 98], these
optimizations in themselves are very difficult; they do not need to be concerned with a
hierarchy of different network layers.

We haven chosen the broadcast operation simply as a convenient example; the same
ideas can be employed for other operations like gather, by reversing the order of the
given operations, starting from the bottom layer, and progressing to the upper layers of
hierarchy.

In the context of our work, there is a significant advantage to this generic design
of topology-aware communication – the topology generation algorithm we designed in
previous chapters can be directly employed.

A typical and general scenario is a large and complex network setting, in which a
user needs to perform a large-message MPI broadcast. Since the network typically in-
volves multiple network technologies (e.g. optic fiber, Infiniband, Ethernet), no unified
API can statically supply topology information. We propose following work flow:

• Efficiently benchmark the network with our proposed bandwidth measurement
technique (Ch. 4).

• Generate a hierarchical representation of the network as proposed with hierar-
chical modularity-clustering method (Ch. 5).

• Use hierarchy as input topology to topology-aware algorithms like the algorithm
described above.

This general work flow can be universally applied to topology-aware collective
communication on arbitrary and large networks. The main assumption is that the same
underlying communication protocol is used by both the measurement technique and
the communication library (i.e. MPI). This assumption holds for heterogeneous net-
works like grid infrastructures, where MPI uses TCP/IP. Whenever other protocols are
employed, as is the case in lower hierarchy layers like shared memory communication,
the measurement technique needs to employ these same protocols for a realistic per-
formance model. This is the subject of further research. It is hoped that employing
alternative protocols for measurements should be possible within reasonable effort.

6.2 Good Practices for Performance-Aware MPI Col-
lectives

Performance-aware communication faces different challenges to topology-aware com-
munication. While a topology restricts the way communication is scheduled, there are
no restrictions in performance models characterizing each edge of the network. We can
choose various schedules of communication, ranging from minimum spanning trees to
binomial trees or other schedules. In this section, we describe some of the choices of
communication trees of related work. Then we present our tools MPIBlib and CPM,
which provide performance-aware MPI collective communication. On the example
of the irregular scatter and gather operations, it is shown how these libraries can be
combined to implement model-based binomial trees or a more flexible tree structure.

6.2.1 The Choice of Tree Shape
We have introduced early examples of using a model to generate minimum spanning
trees for communication. These spanning trees can adopt any shape; anything between
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(a) (b)

Figure 6.2: Communication overlap in a trivial binomial tree for a broadcast. (a) The
root communicates to its right child. (b) Two independent point-to-point exchanges
can be performed in parallel to complete the operation.

the two extremes of a flat tree or linear tree is possible. This method is indeed centered
around a network model, but it ignores aspects of communication which also have a
strong impact. For example, pipelining of large messages or maximizing communica-
tion overlap are ignored in such cases.

In high-performance computing, tree structures are usually selected with consider-
ation of message size or process count. For example, binomial trees are widely used
across all popular MPI libraries for small to medium size message broadcasts. Their
recursive definition introduces a symmetry in shape, which utilizes communication
overlap, as shown in Fig. 6.2.

Notable examples of looking for a good tree shape in performance-aware MPI col-
lectives include [70, 120]. In both cases, a tree shape with positive properties serves as
a template, and performance models are used to introduce some variations of the shape
or process mapping. A common consideration is to limit the height of the communica-
tion tree. For this purpose, [120] uses binomial trees as a template, and shows “that the
trees constructed can be no worse than the binomial trees” in the sense that the depth of
the tree, or the maximum number of children, does not exceed that of a binomial tree.
We follow a similar method in our model-based implementation of collectives.

6.2.2 MPIBlib: A Benchmarking Library for Point-to-Point and
Collective Operations

Benchmarking is central in all communication experiments, but designing accurate
measurement procedures is a very challenging engineering effort. All good bench-
marks need to provide a good variety of benchmarks (ideally both for point-to-point
and collectives), non-trivial time measurement methods, and a minimum of statistical
methods to reduce measurement errors. A number of popular MPI benchmarking tools
have been implemented with their own objectives in the past: mpptest [46], NetPIPE
[109], IMB [57], MPIBench [48], and SkaMPI [126]. We refrain from a detailed de-
scription of each tool here, but refer to related work giving a detailed overview [96].

Our solution called MPIBlib [78] is implemented in C/C++ on top of MPI. The
overall design of MPIBlib is displayed in Fig. 6.3. The package consists of libraries,
and tools. The libraries of MPIBlib are:

• mpiblib: Extensive benchmarking functionality, used both in MPIBlib and CPM
package

• mpiblib p2p: Algorithms for point-to-point communication

• mpiblib coll: Algorithms for collective communication
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Figure 6.3: MPIBlib design

The tools verify algorithms and perform benchmarks. They are run as standalone
programs, and accept a number of user input arguments. Their output includes the re-
sults of measurements and communication trees (for tree-based algorithms of collective
operations).

The design of the MPIBlib libraries shows a major difference to existing bench-
marking tools. They are not only linked into standalone benchmarking tools; these
libraries can also be conveniently extended and used in existing MPI applications.

6.2.3 Orthogonal Concepts: Trees and Semantics of Collectives
MPIBlib currently offers implementations for following MPI collectives: MPI_Bcast,
MPI_Reduce, MPI_Scatter(v), MPI_Gather(v) (see [38] for details). For
each of these collective operations, a number of possible implementations exists. To
reduce complexity and code repetition, we identified two important orthogonal con-
cepts in implementing MPI collectives:

• Communication trees: In MPI, each collective operation can be implemented
as a sequence of point-to-point calls. This sequence can be represented by a
communication tree. Typical examples of communication trees are linear, or
binomial communication trees.

• Semantics of communication call: In MPI, different calls have different seman-
tics. MPI collectives, like a broadcast and a scatter, differ from each other in
their semantics, as described in the MPI standard.

We exemplify the orthogonality between trees and the semantics of the communi-
cation call, and how we directly translate this orthogonality into the design of MPIBlib
collectives. Consider implementing the MPI_Scatterv operation using a binomial
tree algorithm. As illustrated in Fig. 6.4, MPIBlib implements this concept in follow-
ing steps:

• The function MPIB_Scatterv_tree_algorithm accepts all MPI_Scatterv
specific parameters, and implements the message exchange of scatterv based on
a generic communication tree.

• The communication tree is generated by a binomial tree builder. This builder is
implemented within MPIBlib, and relies on Boost Graph [108] for fast prototyp-
ing.
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Figure 6.4: Orthogonality between communication trees and collective calls on the
example of MPIB_Scatterv_binomial operation.

The tree builder is passed as a template parameter. The advantages of this design
extend beyond the clean and compact code when combining arbitrary tree builders and
collective calls. In following section, we demonstrate how the design of performance-
aware collectives can be simplified significantly with the help of this design.

6.2.4 CPM: A Library for Communication Performance Models
CPM [79] is a software tool that automates the estimation of parameters of both tra-
ditional and advanced heterogeneous communication performance models. CPM con-
sists of command-line tools, and libraries. The overall design is shown in Fig. 6.5.
Two libraries with different functionality are implemented:

• libcpm implements communication performance models

• libcpm coll implements collective operations relying on performance models

The implemented communication performance models are heterogeneous Hockney
model, LMO, and heterogeneous PLogP. Similarly to MPIBlib, the CPM libraries can
be linked to external tools and libraries.

In following sections, we describe the software approach to performance-aware
collective operations with the help of CPM [28]. We implement multiple performance-
aware versions of two algorithms of the MPI standard – MPI_Scatterv and MPI_Gatherv.
While implementing such algorithms in general can be very complex, CPM simplifies
our task by allowing us to focus on the design of performance-aware communication
trees. The rest of the functionality is already provided in the framework.

One way to construct communication trees is to follow a prescribed tree shape
(e.g. binomial tree), and to only perform remapping of communicating processes to
the tree nodes. Another possibility is to modify the tree shape altogether, while still
observing some restrictions. We implement both of these options; in each case, we use
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Figure 6.5: CPM design

the Hockney model as performance model. The model provides a prediction function
t(i, j, m), which predicts the point-to-point runtime of sending a message of size m from
sender i to receiver j.

The choice of the simple Hockney model, rather than e.g. the PLogP model, is
determined by the ease of estimation of model parameters. This ease of estimation
makes the Hockney model suitable for prototyping purposes, and for initial evaluation
of algorithms. As we will see in following section, due to the two-layer heterogeneity
of the used experimental settings (intra-cluster and inter-cluster), the simple Hockney
model proves sufficiently accurate. For cases where the prototyped model-based col-
lective algorithm lacks in accuracy, it is logical to consider using the PLogP model.
This model can provide more accurate results, but is significantly more expensive to
estimate.

6.2.5 Model-Based Binomial Tree Scatterv/Gatherv
In this algorithm we use point-to-point predictions to map processes to a binomial tree.
The binomial tree is constructed in a depth-first traversal, starting with the lowest-order
subtrees (We also provide implementations of breadth-first traversal). Each new tree
node receives the process number i from the set of free processes that has minimal
(minimum-first) or maximal (maximum-first) predicted communication time t(parent,
i, mi), where mi is the message size assigned to process i. A good choice of mapping
may sometimes depend on the experimental platform, and may be subject to experi-
ments. In heterogeneous and hierarchical networks, minimum-first mapping is suitable
because processes that are close to each other in terms of topology are likely to be
mapped to the same communication subtree. To confirm this hypothesis, we also im-
plemented logging of the generated communication tree. As an example, in Fig. 6.6 we
visualize the generated communication tree using the above binomial tree algorithm for
a scatter operation across two sites on Grid’5000. It can be seen that the communication
schedule minimizes communication across slow links based on the model parameters
provided by the Hockney model for each link. This process is fully automated and
requires no manual input of topology by the user.

6.2.6 Model-Based Träff Algorithm for Scatterv/Gatherv
We will significantly modify an algorithm [120] which targets irregular scatter/gather
operations when constructing a communication tree. The author considers the message
size assigned to each process and assumes identical links between all nodes; instead,
we consider both the message size and the characteristics of the links between nodes
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Figure 6.6: Example of minimum-first, depth-first binomial tree with Hockney model
for communication. We generate this tree for a scatter operation with 30 MPI processes,
running on 30 nodes (15 on Bordeaux site, 15 on Lyon site). Processes in blue are
placed on Bordeaux nodes, processes in red on Lyon nodes.

by using the prediction function t(i, j, m). Even for a fixed node count, the original
algorithm can generate different trees depending on the message sizes at the node level.

We have the additional link costs, but that introduces a significant complexity. Find-
ing optimal communication trees is NP-complete under the given conditions, and we
propose an algorithm using a heuristic, instead of looking for a globally optimal algo-
rithm. Since our modified algorithm observes the weight of the links instead, both the
process mapping as well as the tree structure can differ from the original algorithm. We
partition the children of any tree node to build relatively “balanced” subsets in terms of
the overall communication cost.

The algorithm is as follows: Starting from a set of nodes to build a tree with a
given root (Fig. 6.7a), we construct this tree from the set step by step. First, we sort
and partition the given set into subsets by taking both the message size and the link
properties into account (6.7b). We sort processes with messages which take longer to
send to the left and processes with messages which take less time to send to the right
and then partition in subsets in a relatively “balanced” tree, i.e. the left subtrees have
less nodes with slower transfer times while the right subtrees have more nodes with
faster transfer times. Each of these subsets will find a root which will have the roots of
the subsets as its children (6.7c). We build the root by observing the sum of message
sizes associated to a given subset of processes and finding the node which is predicted
to transfer this sum to/from the parent of the whole subset the fastest. The motivation
for this is that the link between the parent of the subset and the root of the subset (to
become a tree) will be used to transfer the aggregated messages from/to all subset nodes
anyway, so we choose for this the node that provides the fastest link. We continue the
algorithm for all subsequent subsets until the tree is fully constructed. Phases b) and c)
have to be repeated for each next subset as the links change their predicted properties
from step to step. A tree with such construction is not deeper, and often has a smaller
number of children per node (smaller fan-in) than a binomial tree. A formal proof is
given in [120]. The communication efficiency of the constructed tree is not necessarily
optimal, but good enough based on the heuristic. It takes into account the underlying
communication network at each step.

The pseudo-code for the proposed algorithm is presented in Alg. 1.
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Figure 6.7: Building balanced subtrees in modified algorithm of Träff.

Input: Set of nodes S with corresponding sendcounts/recvcounts mi

defined predictor t(i, j, m)
Result: A communication tree
S := S \ root;
create edge root – S;
parent(S) := root;
while S 6= ∅ do

Svec = pop(S);
sort ranks in Svec so that
i < j → t(i, parent(Svec),mi) > t(j, parent(Svec),mj);
partition the vector Svec into n minimal size subsets so that
t(Svec[i]) ≥

∑i−1
j=1 t(Svec[j])

and t(S) :=
∑

i∈S t(parent(S), i,mi);
for i← 1 to n do

Find rank r ∈ Svec[i] with minimal t(r, parent(Svec),mr);
Svec[i] := Svec[i] \ r;
create edge r – parent(Svec);
parent(Svec[i]) := r;
push(Svec[i]) into S;

end
end

Algorithm 1: A performance-aware communication tree builder for irregular scatter
and gather.
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6.2.7 Design of Performance-Aware Collectives in CPM
In the presence of a performance model of the underlying network, the central applica-
tion is to implement a performance-aware collective operation. The interplay between
CPM and MPIBlib allows such an implementation in following steps:

• Implement a performance model of the network

• Implement a model-based tree builder

• Pass the model-based tree builder as argument to a generic implementation of a
collective within MPIBlib

This design is robust and flexible. The two presented model-based algorithms differ
significantly in their complexity, but both of them are implemented simply by imple-
menting two model-based tree builders. Furthermore, there is no need for reimple-
menting the irregular scatter or gather operations, since it is implemented in a generic
way within the MPIBlib library. We describe as an example how we have implemented
the MPI_Scatterv operation, using a depth-first and minimum-first binomial tree,
and the Hockney model.

First, we call a generic model-based routine, in which we pass a Hockney-based
predictor (which uses Hockney parameters α and β).

int Hockney_Scatterv_dfs_binomial_min(<MPI argument list>)
{
...
return CPM_Scatterv_dfs_binomial(

&Hockney_model_instance->predictor, MIN,
<MPI argument list>);

}

This function is implemented as follows:
int CPM_Scatterv_dfs_binomial(

CPM_predictor* predictor, CPM_next_node_strategy next_node,
<MPI argument list>)

{
return MPIB_Scatterv_tree_algorithm(

DFS_binomial_builder(predictor, next_node), R2L,
<MPI argument list>);

}

The novelty here is in the use of a model-based tree builder, instead of a generic
tree builder. The tree builder is parametrized to either pick a minimum or a maximum
element at each next step. Also, since the binomial tree is not symmetric, we need to
specify if we build it from left to right (L2R), or right to left (R2L). The entire logic
of performance-aware collective communication is embedded within the model-based
tree builder, and none of the performance logic is needed anywhere else in the code.
Both the builder and the communication algorithm use the Boost Graph library.

To better visualize the interaction between the generic MPIBlib components, and
the model-based CPM components, we once again show a scheme of implementing
Hockney_Scatterv_dfs_binomial_min in Fig. 6.8. The generic components
are shown in black, and the model-based components are shown in red.

The exact same design is used for the model-based Träff algorithm. In both al-
gorithms, the heterogeneous Hockney model is used, and its prediction is accessed
through the predictor t. The functionality of estimating parameters of the heteroge-
neous Hockney model is implemented in CPM with the support of MPIBlib for bench-
marks.
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Figure 6.8: Example of implementing scatterv operation with a binomial communica-
tion tree, and based on the Hockney performance model. Model-based components are
highlighted in red.

6.2.8 Experimental Results
We performed all experiments on Grid’5000, which offers sufficient heterogeneity in
communication links. Since MPI_Scatterv and MPI_Gatherv deal with varying
message sizes per process, we needed to provide a message size distribution to the
benchmarking library. We only used one distribution, based on the processor speeds
of the participating nodes. To approximate the processor speeds, we used trivial mi-
crobenchmarks performing matrix multiplication. The experiments involved 39 nodes
from 5 clusters (bordeplage, bordereau, chicon, chti, chuque) located on 2 sites (Bor-
deaux, Lille). MPICH2 (version 1.2.1) was used with TCP/IP as communication layer.
We remark here that for these experiments, no reconfiguration of TCP/MPI for long-
haul connections was performed. Consequently, the cross-site communication with
MPI is not optimal. The results are shown in Fig. 6.9 and demonstrate that on het-
erogeneous platforms like Grid’5000, the model-based modifications of Träff’s and
the binomial tree algorithm clearly outperform their non model-based counterparts.
Another observation is that even though the model-based Träff algorithm is more com-
plex, the simpler model-based binomial algorithm showed similar performance. These
results are in agreement with early work on performance-aware collectives [8], where
relatively simple heuristics can be close to the optimal performance. App. C contains
more detailed experimental results.
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Figure 6.9: Experimental results for modified MPI_Scatterv and MPI_Gatherv
algorithms on Grid’5000



Chapter 7

Conclusion

In this thesis, we have investigated how to design efficient collective communication for
complex networks. Without exception, this goal can only be achieved by first abstract-
ing into a model the important properties of the underlying communication network.
This model can be incorporated into the implementation of collective operations, which
leads to significantly faster completion time, as established by numerous research ef-
forts.

We have found little evidence of network model classification for optimizing col-
lective communication in related work. However, we found it important in our work to
differentiate between two possibilities – topology-based models, or performance-based
models. Each of these leads to its own set of collective communication algorithms:
topology-aware collectives, or performance-aware collectives.

We have used achievable bandwidth as a starting point towards a new performance-
based model of the network. Inspired by dynamic parallel access, we have developed a
new measurement technique, which traces the flow of data through the network in the
presence of multiple open connections per node. For our experiments, we have conve-
niently used the BitTorrent protocol, in which the peers use this technique to download
more data across faster links. We have shown two important properties of this measure-
ment procedure: First, it is very efficient in comparison to traditional methods which
measure achievable bandwidth in an exhaustive manner. Second, the raw data contains
more noise and randomness than exhaustive techniques, which poses a challenge for
any further processing. In addition, we have also found that some of the core design
decisions of BitTorrent, like the tit-for-tat strategy, are problematic for the accuracy of
our measurements.

Despite these challenges, we have used a number of data analysis techniques to
generate a useful representation of the network from this raw measurement data. We
have first demonstrated the suitability of modularity-based clustering to detect band-
width clusters, and bottlenecks between such clusters. The approach proved efficient
and reliable for various settings, outperforming by orders of magnitude existing band-
width tomography measurements. We have then extended this technique into a hier-
archical clustering mechanism, which also efficiently generates a multilayer hierarchy
of complex networks. The hierarchy can be seen as a topology, and can be directly
plugged into existing implementations of topology-aware MPI collectives. In addition
to our hierarchy-generating method, we have also designed a method for generating a
topology tree, based on graph algorithms. These findings show that performance can be
used for universal and automated topology generation for complex networks. Also, due
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to their efficiency and scalability, such methods can be employed to dynamically find
metric-induced topologies, which are likely to differ from statically provided topolo-
gies in the presence of heavy cross-traffic, or partial hardware failures in the network.
This can have implications in the domain of high-performance computing, where hier-
archy levels of topologies are increasing, but their generation is limited, and based on
APIs provided by network vendors or grid middleware components.

In our work, we have also designed flexible and modular components within our
software tools MPIBlib and CPM for the purpose of performance-aware collective
communication. The main lessons learned in the context of this thesis have not been
in the use of elaborate performance models, but rather in the use of self-contained
software components interacting with each other. Our implementation uses a model-
based tree builder, which separates the performance of the network from the underlying
implementation of a collective operation. In this way, both traditional performance
models as well as new performance models can be seamlessly used for evaluating
performance-based collective operations.

We have also dedicated significant effort into resolving technical issues in our ex-
perimental work. Some of it has resulted into an abstraction layer for successfully
running MPI applications on grid platforms. Other efforts have led to optimizations of
MPI point-to-point communication across long-haul connections, which is a prerequi-
site to optimizing collective communication. In the course of our work, we have also
made contributions to tools for better assessing the performance of BitTorrent. The Par-
aver toolkit now provides very detailed communication measurements of instrumented
BitTorrent clients. Also, a new ns-3 based network simulator was evaluated and its
accuracy has been analyzed and found satisfactory. This simulator was subsequently
used for a range of experiments on hierarchical and large networks.

7.1 Future Work
We have seen promising results from the cross-over between distributed systems and
high-performance computing, and see further opportunities in this area.

One important area is the modification of the proposed measurements in a number
of ways. In terms of the BitTorrent protocol, we have shown that some of its core prin-
ciples, like the tit-for-tat strategy, while guaranteeing the convergence to link capacity,
also generally obstruct the accuracy of our measurements. It is therefore worthwhile to
consider alternative versions of peer-to-peer protocols for similar measurements. There
is also a lot of potential for implementing a more realistic measurement setup for dis-
tributed environments with BitTorrent, in which the swarm is not controlled by the
administrator for measurements, but passively provides logs of useful data exchange
between real peers. Technically, this is realistic, since the measurements are imple-
mented easily, are very efficient, and fully anonymous.

Data mining techniques, in particular clustering algorithms, are also an active area
of research. Since our clustering and topology generation methods depend on these
techniques, they would benefit from more efficient and accurate clustering algorithms.

Another challenging field is to demonstrate that a performance model based on dy-
namic communication schedules like BitTorrent can be used to educate static commu-
nication schedules like MPI in HPC platforms. This includes a challenging extension
to our work – the re-design of the measurement procedures on HPC platforms. This
might require the support for native low-level protocols for measurement purposes. For
example, many high-speed networks like Infiniband have their own efficient protocols,
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which should be used for realistic performance assessment. Similar considerations are
required for intra-node communication.
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Appendix A: Comparison
Between Simulated and
Real-Life Tomography

In this section, we present the results of our initial experiments with ns-3. The goal
of these experiments is to estimate the level of realism the simulator can provide. Our
previous work [30] is rich with experimental results and is a good starting point for our
evaluation. The workflow for our experiments always consists of a translation of the
real setting into a topology in BRITE format and a VODSim Story, several experiment
runs and a comparison of the outcomes. Information about the internal structure of the
Grid’5000 network used in the real-world experiments is publicly available, yet some
structures are simplified for reasons of model clarity. This, along with the fact that the
BRITE format is still limited in its expressiveness (e.g. with regard to resource shar-
ing), means that the simulation itself is not the only possible source of deviation from
real-life experiments. The simplified BRITE topology is also only an approximation of
the underlying experimental platform.

We visualize the comparison between simulated and real-life tomography with the
help of the index of accuracy NMI in Fig. 1. For the simpler settings, the simulated
tomography converges to real-life tomography within very few iterations. With more
heterogeneous settings, the simulation needs longer than the real experiments for per-
fect reconstruction. Finally, for the most complex experimental setting consisting of 4
sites with 16 nodes per site, the simulation still recognizes 4 sites, but builds imperfect
clusters of between 12 and 20 nodes within the limited number of 30 iterations.

Another (somewhat visual) measure of the accuracy of the simulation is the distri-
bution of the used metric w in simulations and real experiments. In Fig. 2, we display
the distribution of w30 (i.e. after 30 iterations) for all edges and the 4-site scenario.
Overall, the distribution is similar. This indicates that the simulated environment re-
produces the heterogeneity of the network in agreement with the real experiments.

One major difference between the BitTorrent simulator and the experiments with
the original BitTorrent client is the download completion time. We found that the sim-
ulated completion time is longer. This, together with the equally set unchoke interval
of simulated and real clients, leads to slower convergence of the simulated tomogra-
phy. We performed some tuning (a slight increase of the choke/unchoke interval) in the
simulation to come closer to the original BitTorrent client behavior. This was not an ef-
fort to remove the tit-for-tat strategy, but to better mimic the real-life BitTorrent client;
the ratio between completion time and choke/unchoke intervals should be comparable
between simulated and real client.

In summary, the simulated tomography provides convincing results, in particular
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when the difficulty of modeling topologies and the complexity of the BitTorrent proto-
col is considered. For complex scenarios however, the simulation needs more iterations
than real-life experiments to produce the same results.
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Appendix B: Remarks on
Clustering Algorithms

During our work with clustering algorithms we made some observations which we
list here. First, when experimenting with small use cases, modularity clustering never
produces single-element clusters. This is due to the nature of this method, and has
been proved formally in related work like [12]. To resolve this issue for small use
cases, or when using the method for agglomerative clustering which narrows down the
final number of partitions, we sometimes introduced dummy duplicate nodes to each
node, with an edge with high weight between original and duplicate.

Another issue is that Louvain’s method has different implementations. We found
that sometimes a graph is partitioned differently, and with different modularity, with
different libraries. The user is advised to try out multiple implementations for tricky
graphs.

We also experimented using the metric w with Ward’s algorithm; our experiments
are not to be seen as a guide for using or not using the algorithm in our setting. Our
motivation was to find if Ward’s algorithm can quickly generate good hierarchical clus-
tering, which can compare to the proposed hierarchical clustering using modularity.

Since Ward’s algorithm gets a distance matrix as input, the intuitive idea is to invert
our metric w: The more messages are exchanged between peers, the closer they are in
terms of bandwidth, and the shorter the distance between them should be. However,
we also passed the metric “as is” for a more complete picture.

We start out with a simple example, in which we have 6 nodes, numbered from 0 to
5. 0, 1 and 2 are interconnected with weight of 100; 3, 4 and 5, are also interconnected
with weight of 100. All the other weights are 5. Modularity clustering correctly builds
two partitions: one with nodes 0, 1 and 2; another with nodes 3, 4 and 5. Ward’s
algorithm was used with the SciPy package [60]. Results are not as expected, and
displayed in Fig. 3a for the inverted metric, and in Fig. 3b for the metric “as is”.
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Appendix C: Irregular
Scatter/Gather Algorithms:
Experimental Results

In Fig. 4, we show experimental results for a range of irregular scatter/gather algo-
rithms on multiple sites on Grid’5000. All operations with prefix MPIB are not based
on models, but can still perform sorting based on message sizes. All operations with
prefix Hockney are model-based, and incorporate the Hockney performance model into
the construction of communication trees.

This early experimental work does not use optimal configuration of point-to-point
communication across long-haul connections, which we presented in detail in Ch. 3.
This introduces some unexpected effects: For example, all MPI_Scatterv algo-
rithms using a naive flat tree implementation (root sends to all receivers in sequence)
perform extremely well, often outperforming all binomial tree algorithms. We be-
lieve this is related to the optimization we presented in our modified point-to-point
algorithm. Both the naive flat tree algorithm and our optimization pipeline acknowl-
edgments from the receivers across long-haul connections, which helps when the TCP
buffer window has not been configured properly.

Apart from that observation, the results are as expected: performance-aware algo-
rithms, when properly used, outperform algorithms which have no network knowledge.
This is evident on the example of the binomial tree algorithms.
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